$$ \newcommand{\partd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\partdd}[2]{\frac{\partial^{2} #1}{\partial {#2}^{2}}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\Int}{\int\limits} \newcommand{\D}{\displaystyle} \newcommand{\ie}{\textit{i.e. }} \newcommand{\dA}{\; \mbox{dA}} \newcommand{\dz}{\; \mbox{dz}} \newcommand{\tr}{\mathrm{tr}} \renewcommand{\eqref}[1]{Eq.~(\ref{#1})} \newcommand{\reqs}[2]{\req{#1} and \reqand{#2}} \newcommand{\rthreeeqs}[3]{Eqs.~(\ref{#1}), (\ref{#2}), and (\ref{#3})} $$

 

 

 

5.2 Conservation of mass

Derived with \( b=\rho \) in Reynolds Transport Theorem Eq. (2.33) $$ \begin{equation} \dot{m}= \frac{d}{dt} \Int_{V(t)} \rho(\boldsymbol{r},t) \, dV = \Int_V \partd{\rho}{t} \, dV + \Int_A \rho \, (\boldsymbol{v \cdot n}) \, dA = 0 \tag{5.7} \end{equation} $$

Field equation $$ \begin{equation} \partd{\rho}{t}+ \nabla \cdot (\rho \boldsymbol{v}) = 0 \tag{5.8} \end{equation} $$ $$ \begin{equation} \partd{\rho}{t}+ (\rho v_i)_{,i} = 0 \tag{5.9} \end{equation} $$

Equivalent presentations of conservation of mass.

Conservative formulation: $$ \begin{equation} \partd{\rho}{t} + (\rho v_i)_{,i} = 0 \quad \Leftrightarrow \quad \partd{\rho}{t} + \nabla \cdot (\rho \boldsymbol{v}) = 0 \tag{5.10} \end{equation} $$ Non-conservative formulation $$ \begin{equation} \partd{\rho}{t}+ \rho_{,i} v_i + \rho v_{i,i} = 0 \quad \Leftrightarrow \quad \dot{\rho} + \rho \nabla \cdot \boldsymbol{v}= 0 \tag{5.11} \end{equation} $$ where we have introduced the material derivative of \( \rho \) is defined in Eq. (2.20).

Mass conservation for incompressible flow (\( \rho= \) constant) $$ \begin{equation} \partd{\rho}{t}+ \nabla \cdot (\rho \boldsymbol{v}) = 0 \tag{5.12} \end{equation} $$ $$ \begin{equation} \nabla \cdot \boldsymbol{v} = 0 \quad \Leftrightarrow \quad v_{i,i}=0 \tag{5.13} \end{equation} $$