NTNU
Department of Mathematical Sciences
Institutt for matematiske fag NTNU. 7491 Trondheim, Norway
Visiting address: Sentralbygg 2, Gløshaugen, Alfred Getz vei 1. Room 906
E-mail: carlos.mudarra@ntnu.no
Research fields: functional analysis, convex analysis, harmonic analysis
Position: Postdoctoral researcher
  18. Traces of vanishing Hölder spaces, (with K. Mohanta and T. Oikari), preprint (2024). pdf. arXiv
  17. Approximation in Hölder spaces, (with T. Oikari), preprint (2024). pdf. arXiv
  16. Weak porosity on metric measure spaces, preprint (2023). pdf. arXiv
  15. Weakly porous sets and Muckenhoupt Ap distance functions, (with T.C. Anderson, J. Lehrbäck and A.Vähäkangas), Journal of Functional Analysis, 287 (2024), no.8, 110558. pdf. arXiv
  14. Characterizations of weak reverse Hölder inequalities on metric measure spaces, (with J. Kinnunen and E.-K. Kurki), Mathematische Zeitschrift, 301 (2022), no.3, 2269-2290. pdf
  13. On the extension of Muckenhoupt weights in metric spaces, (with E.-K. Kurki), Nonlinear Analysis, 215 (2022), Paper No. 112671, 20 pp. pdf
  12. C1,ω extension formulas for 1-jets on Hilbert spaces, (with D. Azagra), Advances in Mathematics, 389 (2021), Paper No. 107928, 44 pp. pdf
  11. Kirszbraun's theorem via an explicit formula, (with D. Azagra and E. Le Gruyer), Canadian Mathematical Bulletin, 64 (2021), no.1, 142-153. pdf
  10. Convex C1 extensions of 1-jets from compact subsets of Hilbert spaces, (with D. Azagra), Comptes Rendus. Mathématique. Académie des Sciences. Paris, 358 (2020), no.5, 551-556. pdf
  9. Extensions of convex functions with prescribed subdifferentials, (with D. Azagra, J. Ferrera and J. Gómez-Gil), Studia Mathematica, 253 (2020), no.2, 199-213. pdf
  8. Prescribing tangent hyperplanes to C1,1 and C1,ω convex hypersurfaces in Hilbert and superreflexive spaces, (with D. Azagra), Journal of Convex Analysis, 27 (2020), no.1, 79-102. pdf
  7. Approximation of Lipschitz functions preserving boundary values, (with R. Deville), Journal of Optimization Theory and Applications, 182 (2019), no.3, 885-905. pdf
  6. Smooth convex extensions of convex functions, (with D. Azagra), Calculus of Variations and Partial Differential Equations, 58 (2019), no.3, Art. 84, 27 pp. pdf
  5. Global geometry and C1 convex extensions of 1-jets, (with D. Azagra), Analysis & PDE, 12 (2019), no.4, 1065-1099. pdf
  4. Explicit formulas for C1,1 and C1,ωconv extensions of 1-jets in Hilbert and superreflexive spaces, (with D. Azagra and E. Le Gruyer), Journal of Functional Analysis, 274 (2018), no.10, 3003-3032. pdf
  3. Whitney extension theorems for convex functions of the classes C1 and C1,ω, (with D. Azagra), Proceedings of the London Mathematical Society, 114 (2017), no.1, 133-158. pdf
  2. An extension theorem for convex functions of class C1,1 on Hilbert Spaces (with D. Azagra), Journal of Mathematical Analysis and Applications, 446 (2017), no.2, 1167-1182. pdf
  1. Global approximation of convex functions by differentiable convex functions on Banach spaces, (with D. Azagra), Journal of Convex Analysis, 22 (2015), no.4, 1197-1205. pdf