
UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CIENCIAS MATEMÁTICAS

Departamento de Análisis Matemático y Matemática Aplicada

DIFFERENTIABLE APPROXIMATION AND EXTENSION
OF CONVEX FUNCTIONS

Aproximación y extensión diferenciable de funciones convexas

Memoria para optar al grado de
Doctor en Matemáticas

presentada por

Carlos Mudarra Díaz-Malaguilla

Bajo la dirección de

Daniel Azagra Rueda

Madrid, 2018





Index

Resumen 5

Introduction 13

1 C1 approximation of convex functions on Banach spaces 21
1.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Proof of the C1 approximation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 A characterization of Banach spaces with separable duals . . . . . . . . . . . . . . . . . 27

2 C1,ω extensions of convex functions in Hilbert Spaces 29
2.1 The C1,1 and C1,1

conv extension problem for jets . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 The C1,ω

conv extension problem for jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Optimal C1,1 convex extensions of jets by explicit formulas in Hilbert spaces . . . . . . 35
2.4 Interpolation of arbitrary subsets by boundaries of C1,1 convex bodies . . . . . . . . . . 40

2.4.1 The oriented distance function to convex subsets . . . . . . . . . . . . . . . . . 43
2.4.2 An interpolation theorem for C1,1 convex hypersurfaces . . . . . . . . . . . . . 47

2.5 Sup-inf explicit formulas of C1,1 convex extensions on Rn . . . . . . . . . . . . . . . . 50
2.6 Optimal C1,1 extensions of jets by explicit formulas in Hilbert spaces . . . . . . . . . . 54
2.7 Kirszbraun’s Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 C1,ω convex extensions of jets by explicit formulas in Hilbert spaces . . . . . . . . . . . 57

3 C1,α extensions of convex functions in superreflexive spaces 69
3.1 Moduli of smoothness and Pisier’s Renorming Theorem . . . . . . . . . . . . . . . . . . 69
3.2 C1,α convex extensions of jets by explicit formulas in superreflexive spaces . . . . . . . 70
3.3 Example in general Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 C1 extensions of convex functions on Rn 77
4.1 C1 convex extensions from compact subsets . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Proof of the results on compact subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Some relevant examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Interpolation of compact subsets by boundaries of C1 convex bodies . . . . . . . . . . . 88

4.4.1 The Minkowski functional. Elementary properties and differentiability . . . . . . 88
4.4.2 An interpolation theorem for C1 compact convex bodies . . . . . . . . . . . . . 90

4.5 Convex functions and self-contracted curves . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 C1 convex extensions from arbitrary subsets . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 Global behaviour of convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.8 Proving the necessity of the conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.8.1 Condition (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8.2 Condition (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8.3 Condition (iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8.4 Condition (v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8.5 Condition (iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



4.9 Proving the sufficiency of the conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.10 A C1 extension theorem for Lipschitz convex functions . . . . . . . . . . . . . . . . . . 118
4.11 Necessity of the conditions for C1 convex Lipschitz extensions . . . . . . . . . . . . . . 119
4.12 Sufficiency of the conditions for C1 convex Lipschitz extensions . . . . . . . . . . . . . 120

4.12.1 Defining new data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.12.2 Properties of the new jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.12.3 Construction of the extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.13 Interpolation of arbitrary subsets by boundaries of C1 convex bodies . . . . . . . . . . . 126
4.14 The problem in the setting of Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . 131
4.15 Convex functions and Lusin properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Cm extensions of convex functions on Rn 135
5.1 Whitney’s Extension Theorem for Cm . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2 The Cm convex extension problem for jets . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3 New conditions for the Cm convex extension problem . . . . . . . . . . . . . . . . . . . 139
5.4 Cm convex extensions from compact convex subsets . . . . . . . . . . . . . . . . . . . 143

5.4.1 Idea of the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.2 The function ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.3 The function ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.4 Selection of angles and directions . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.4.5 A convex extension on a neighbourhood of the domain . . . . . . . . . . . . . . 149
5.4.6 Conclusion of the proof: convexity of the extension on Rn. . . . . . . . . . . . . 151

5.5 Assuming a strict inequality on the boundary . . . . . . . . . . . . . . . . . . . . . . . 152
5.6 The two easiest situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6.1 The case when the domain is a singleton . . . . . . . . . . . . . . . . . . . . . . 154
5.6.2 The one dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7 Assuming further conditions on the domain: almost optimal results . . . . . . . . . . . . 157
5.7.1 Definition of (FIO) body of class Cm . . . . . . . . . . . . . . . . . . . . . . 157
5.7.2 Sublevel sets of strongly convex functions . . . . . . . . . . . . . . . . . . . . . 157
5.7.3 The distance to the intersection of convex sets . . . . . . . . . . . . . . . . . . . 158
5.7.4 Proof of the extension result for (FIO) bodies . . . . . . . . . . . . . . . . . . 159

5.8 Relation between (CW 2) and (CW 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.9 Remarks and Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 C∞ extensions of convex functions on Rn. 169
6.1 Whitney’s Extension Theorem for C∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 C∞ convex extension theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3.1 Sketch of the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.2 Lower estimates for the Hessian of f. . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.3 A Whitney partition of unity on (0,+∞) . . . . . . . . . . . . . . . . . . . . . 173
6.3.4 The sequence {δp}p and the function ε . . . . . . . . . . . . . . . . . . . . . . 176
6.3.5 The function ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.6 A smooth convex extension on a neighbourhood of the domain . . . . . . . . . . 178
6.3.7 Conclusion of the proof: convexity of the extension on Rn . . . . . . . . . . . . 180

Bibliography 181



5

Resumen

El tema principal de esta tesis es la aproximación y extensión diferenciable de funciones convexas en
diversos espacios de Banach.

En el Capítulo 1 tratamos el problema de aproximar funciones convexas por funciones de clase C1 y
convexas uniformemente en espacios de Banach. En Rn, es bien sabido que la convolución integral con
mollifiers nos permite aproximar funciones convexas por funciones de clase C∞ y convexas uniforme-
mente en conjuntos compactos. En espacios de Banach cuyo dual admite una norma equivalente LUR
(localmente uniformemente redonda), podemos aproximar funciones convexas por funciones de claseC1

y convexas uniformemente en subconjuntos acotados mediante las técnicas de convolución infimal. En
[1] se descubrió una nueva técnica de aproximación que nos permite aproximar funciones convexas (no
necesariamente uniformemente continuas) en Rn por funciones convexas de clase C∞ (o incluso real
analíticas), uniformemente en todo Rn. Combinando esta nueva técnica con el método de aproximación
por convolución infimal mencionado se sigue que las funciones convexas f que están acotadas en sub-
conjuntos acotados de un espacio de Banach E cuyo dual admite una norma equivalente LUR pueden
aproximarse por funciones convexas g de clase C1, uniformemente en todo E. Sin embargo, existen
ejemplos de funciones convexas y continuas (diferenciables o no) que no son acotadas en conjuntos aco-
tados. En esta tesis, refinando las técnicas introducidas en [1], vemos como podemos quitar la hipótesis
de que la función f sea acotada en acotados y demostramos el siguiente teorema.

Teorema 1. Sea X un espacio de Banach cuyo espacio dual X∗ admite una norma equivalente LUR.
Sea f : U → R una función convexa y continua definida en un subconjunto abierto U de X. Dado
ε > 0, existe una función convexa g : U → R de clase C1(U) de manera que f − ε ≤ g ≤ f en U.

El Teorema 1 se sigue de un resultado más general que demuestra que el problema de aproximar
funciones convexas continuas por funciones de clase Cm y convexas en subconjuntos abiertos U de X
puede reducirse al problema de aproximar funciones Lipschitz y convexas.

Además, como consecuencia de estos resultados, establecemos una nueva caracterización de los
espacios de Banach cuyo dual es separable, a saber, un espacio de Banach separable X tiene dual X∗

separable si y solo si toda función convexa y continua definida en un subconjunto abierto de X puede
aproximarse uniformemente por funciones convexas de clase C1.

Estos resultados han sido publicados en [9].

En el resto de la tesis, abordamos el problema de encontrar una versión del Teorema Clásico de Ex-
tensión de Whitney [71] para funciones convexas. Este famoso resultado, para la clase Cm, proporciona
condiciones necesarias y suficientes sobre una familia de funciones real valuadas {fα}|α|≤m (que lla-
maremos m-jet) definidas en un subconjunto cerrado E ⊂ Rn para la existencia de una función F de
clase Cm(Rn) tal que ∂αF = fα en E para todo multi-índice |α| ≤ m. Estas condiciones son relaciones
entre las funciones fα y el polinomio de Taylor putativo Py de grado menor o igual que m centrado
en y ∈ E y cuyos coeficientes son justamente los números (fα(y))α, y la extensión F se define medi-
ante una formula explícita que involucra una partición de la unidad adecuada subordinada a una familia
de cubos cuidadosamente elegidos que descompone el complementario del conjunto E. Algunos años
después, G. Glaeser [46] estableció una versión del Teorema de Extensión de Whitney para funciones
de clase C1,ω en Rn, mediante una construcción similar a la de Whitney, que además permite obtener
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un buen control del módulo de continuidad de las derivadas de la extensión en términos de la familia
{fα}|α|≤m dada. Por otro lado, J. C. Wells [70] demostró un análogo del Teorema de Extensión de
Whitney para funciones de clase C1,1 en espacios de Hilbert, obteniendo además un control óptimo de la
constante Lipschitz del gradiente de la extensión, en términos del 1-jet inicial. La demostración de Wells
se basa en una construcción geométrica muy complicada cuando el dominio es finito y después un pro-
ceso de paso al límite para conjuntos arbitrarios. Más recientemente, E. Le Gruyer [53] probó el mismo
teorema para la clase C1,1 simplificando considerablemente la demostración de Wells pero utilizando el
Lema de Zorn. Debe también mencionarse que M. Jiménez y L. Sánchez [50] demostraron una versión
del Teorema de Extensión de Whitney para funciones de clase C1 en espacios de Banach separables que
satisfacen una cierta propiedad relacionada con la aproximación de funciones Lipschitz por funciones
diferenciables Lipschitz, a saber, que toda función 1-Lipschitz puede aproximarse uniformemente por
funciones Lipschitz y de clase C1 con constante de Lipschitz menor o igual que una constante absoluta
que solo depende del espacio ambiente. Esta clase de espacios incluye, por ejemplo, el espacio de Hilbert
separable. Esta construcción es un refinamiento de una técnica de extensión introducida por D. Azagra,
R. Fry y L. Keener [6] para resolver el mismo problema cuando el dominio es un subespacio vectorial
cerrado de un espacio de Banach separable, y en última estancia depende de una técnica de extensión
inspirada por el Teorema de Extensión de Tietze y las sup particiones de la unidad introducidas por R.
Fry en [42]. Finalmente, cabe destacar que J. Ferrera y J. Gómez Gil en [31] probaron una versión del
Teorema de Extensión de Whitney para funciones subdiferenciables.

Otro problema relacionado es el Problema de Extensión de Whitney para funciones (en contraposi-
ción al problema para jets): dado un subconjunto arbitrario E de Rn, y una función f : E → R (pero sin
candidatos a derivadas) ¿qué condiciones sobre f son necesarias y suficientes para la existencia de una
función F : Rn → R de clase Cm o Cm−1,1 tal que F = f en E? Además, ¿qué podemos decir de la
norma de la extensión F en caso de existir? Este tipo de problemas son mucho más difíciles de resolver.
El caso C1,1 fue resuelto por Y. Brudnyi y P. Shvartsman en [20], y la solución completa al problema
fue dada por C. L. Fefferman en [36] y [37]. Véanse también los trabajos de C. L. Fefferman, A. Israel,
G. K. Luli and P. Shvartsman citados en la Bibliografía para resultados similares en ciertos espacios de
Sobolev.

El problema general sobre el que vamos a trabajar es el siguiente.

Problema. Dado un entero positivom, un subconjunto arbitrarioE de Rn y unm-jet {fα}|α|≤m definido
en E, ¿qué condiciones necesarias y suficientes sobre {fα}|α|≤m garantizarían la existencia de una fun-
ción convexa y de clase Cm(Rn) de manera que ∂αF = fα en E para todo |α| ≤ m ?

Un problema similar a este ha sido considerado por M. Ghomi [44] y M. Yan [73], y como conse-
cuencia de sus resultados se sabe que, si E es compacto y convexo y tenemos una función f : E → R
que admite una extensión Cm (no necesariamente convexa) a todo Rn cuya segunda derivada es definida
positiva en ∂E, entonces existe una función convexa F y de claseCm tal que F coincide con f enE. Por
supuesto, este resultado es solo una solución parcial a nuestro problema porque el hecho de que nuestra
función de partida tenga Hessiano estrictamente positivo es una hipótesis muy fuerte, que dista mucho
de ser necesaria. Por otro lado, K. Schulz y B. Schwartz [60] caracterizaron las funciones propias y
convexas en Rn definidas en dominios convexos que admiten extensiones convexas (no necesariamente
diferenciables) a todo Rn. También, B. Mulansky y M. Neamtu [55] probaron que cualquier conjunto
finito de datos en R o en R2 que sea estrictamente convexo en un sentido apropiado puede ser interpolado
por un polinomio convexo. Finalmente, mencionemos que O. Bucicovschi y J. Lebl [21] trabajaron el
problema de extender funciones convexas a la envoltura convexa de sus dominios y que J. M. Borwein,
V. Montesinos y J. Vanderwerff [18], y L. Veselý y L. Zajícek [67] demostraron que existen espacios
de Banach X de dimensión infinita, subespacios cerrados E ⊂ X y funciones continuas y convexas
f : E → R que no admiten ninguna extensión continua y convexa a todo X .

A continuación describimos el progreso realizado en la solución al problema en cuestión así como
las principales consecuencias y aplicaciones de nuestros resultados.
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En el Capítulo 2, damos la solución completa al problema anterior para funciones convexas de clase
C1,ω, incluso en espacios de Hilbert, es decir, dado un subconjunto arbitrario E de un espacio de Hilbert
X y dos funciones f : E → R and G : E → X, damos condiciones necesarias y suficientes sobre
(f,G) para la existencia de una función convexa F de clase C1,ω tal que F|E = f y ∇F|E = G. La
solución pasa por definir una nueva condición necesaria y suficiente (CW 1,ω), una sencilla desigualdad
que solo involucra el módulo de continuidad ω, una constante M > 0 y los valores de f y G en E.
Esta condición nos permite dar una formula explícita sencilla para la extensión F garantizando además
un control prácticamente óptimo del módulo de continuidad∇F en términos de (f,G). De hecho, en el
caso C1,1 se puede asegurar un control óptimo de la constante de Lipschitz de∇F . El enunciado preciso
del resultado es el siguiente.

Teorema 2. Dado un subconjunto arbitrario E ⊂ X de un espacio de Hilbert X, y dos funciones
f : E → R, G : E → X, de manera que (f,G) satisface la desigualdad (CW 1,1) con constante
M > 0 en E, la formula

F = conv(g), g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}, x ∈ X,

define una función convexa de clase C1,1 en X tal que F|E = f, (∇F )|E = G y Lip(∇F ) ≤M.

Esto indica que si definimos M como el menor número positivo tal que (f,G) satisface la condición
(CW 1,1) con constante M, entonces la extensión F anterior tiene la propiedad de que

Lip(∇F ) = inf{Lip(∇H) : H ∈ C1,1
conv(X), H|E = f, (∇H)|E = G},

y entonces podemos afirmar que ∇F tiene la mejor constante de Lipschitz posible. La formula para la
clase C1,ω es similar, y este caso obtenemos el mismo tipo de control salvo un factor 8.

La principal consecuencia de la formula anterior para funciones convexas C1,1 es que nos permite
dar una solución sencilla y explícita no solo para el problema de extensión C1,1

conv de jets sino también
para el problema general de extensión C1,1 de jets en espacios de Hilbert, y con la mejor constante de
Lipschitz posible del gradiente de la extensión. En [46] se demuestra que puede obtenerse un control del
tipo

Lip(∇F ) ≤ k(n) inf{Lip(∇H) : H ∈ C1,1(X), H|E = f, (∇H)|E = G},

para extensiones C1,1 en Rn, siendo k(n) una constante que depende únicamente de la dimensión y
tiende a∞ cuando n tiende a infinito. Por otro lado, la solución que se da en [70] y en [53] son óptimas
en el sentido anterior y son válidas para espacios de Hilbert de dimensión infinita, pero la demostración
de [70] se basa en una construcción geométrica extremadamente complicada y la de [53] usa el Lema de
Zorn y por tanto no es constructiva. Con la ayuda de nuestra solución al problema de extensión C1,1

conv
de jets, podemos recuperar los resultados de [46], [70] y [53] para funciones C1,1 mediante una formula
explícita sencilla que proporciona una extensión con un control óptimo de la constante de Lipschitz del
gradiente. Para hacer esto, consideramos la condición necesaria (W 1,1), que es una sencilla desigualdad
involucrando sólamente los valores de f y G y una constante M > 0 y es equivalente a las condiciones
consideradas anteriormente en [70] y [53]. El enunciado exacto de nuestra solución al problema de
extensión C1,1 de jets es el siguiente.

Teorema 3. Dado un subconjunto arbitrario E ⊂ X de un espacio de Hilbert X, y dos funciones
f : E → R, G : E → X, de manera que (f,G) satisface la desigualdad (W 1,1) con constante M > 0
en E, la formula

F = conv(g)− M
2 ‖ · ‖

2,

g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}+ M

2 ‖x‖
2, x ∈ X,

define una función de clase C1,1(X) tal que F|E = f , (∇F )|E = G, y Lip(∇F ) ≤M .
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Además, F puede tomarse con la propiedad de que

Lip(∇F ) = inf{Lip(∇H) : H ∈ C1,1(X), H|E = f, (∇H)|E = G}.

Por otro lado, toda función F ∈ C1,1(X) satisface la condición (W 1,1) con constante M =
Lip(∇F ) en todo subconjunto E de X .

Una consecuencia de nuestra solución al problema general de extensión C1,1 para jets (que, como
hemos dicho, es una consecuencia de nuestra solución al problema de extensión C1,1

conv para jets) es que
nos permite dar una breve demostración del Teorema de Extensión de Kirszbraun [52] para funciones
Lipschitz entre dos espacios de Hilbert proporcionando además una sencilla formula constructiva para la
extensión. Véase el Corolario 2.28 en el Capítulo 2.

Por último, hemos encontrado una aplicación de nuestro teorema de extensión C1,1
conv en relación con

la siguiente pregunta natural: dado un subconjunto arbitrario C de un espacio de Hilbert X y una colec-
ción H de hiperplanos afines de X tal que cada H ∈ H pasa por un punto xH ∈ C, ¿qué condiciones
necesarias y suficientes sobre esta familia nos garantizarían la existencia de una hipersuperficie convexa
S en X de clase C1,1 tal que H es tangente a S en xH para todo H ∈ H? Equivalentemente, dado un
subconjunto C de X y una aplicación N : C → SX , ¿qué condiciones necesarias y suficientes garan-
tizarían la existencia de cuerpos convexos V en X de clase C1,1 tal que C ⊆ ∂V y la normal exterior
unitaria a ∂V coincide con la aplicación N en C? La condición pertinente es una desigualdad sencilla
(KW1,1) para la aplicación N ; véase el Teorema 2.20 en el Capítulo 2.

En el Capítulo 3, consideramos el mismo problema que en el Capítulo 2 para la clase de funciones
convexas C1,α en espacios superreflexivos, para cierto α ∈ (0, 1) adecuado. El Teorema de Renor-
mamiento de Pisier [56] nos dice que todo espacio superreflexivo posee una norma equivalente uniforme-
mente suave con módulo de suavidad de tipo potencia p = 1 + α para algún α ∈ (0, 1). Demostramos
que la condición (CW 1,α) es necesaria y suficiente sobre un par de funciones (f,G) : E → R × X
para la existencia de una función convexa F de clase C1,α con (F,∇F ) = (f,G) en E. La expresión
que define F es similar a las que obtuvimos en espacios de Hilbert y, nuevamente, podemos conseguir
un control prácticamente óptimo del α-Hölder módulo de continuidad de ∇F en términos de (f,G) y
de una constante absoluta que solo depende del espacio.

Los resultados de los Capítulos 2 y 3 están publicados en [8], [10], y [11].

En el Capítulo 4 resolvemos el problema de extender dos funciones convexas f : E → R y G :
E → X, definidas en un subconjunto arbitrario E de Rn a una función convexa F de clase C1 tal que
F|E = f y ∇F|E = G, es decir, establecemos una versión C1

conv del Teorema de Extensión de Whitney
para jets. Empezamos resolviendo el problema cuando el dominio E es compacto por medio de dos
condiciones nuevas (C) y (CW 1). La condición (C) significa que la función f debe quedar por encima
de los tangentes putativos f(y)+〈G(y), ·−y〉 y la condición (CW 1) dice que si dos puntos de la gráfica
de f en E están en un segmento contenido en un hiperplano que queremos que sea tangente a la gráfica
de la extensión en alguno de esos puntos, entonces los hiperplanos tangentes putativos en ambos puntos
deben coincidir. El enunciado exacto de nuesto resultado para dominios compactos es el siguiente.

Teorema 4. Sea E un subconjunto compacto de Rn y sean f : E → R, G : E → Rn dos funciones tal
que G es continua. Existe una función convexa F de clase C1(Rn) con F|E = f y ∇F|E = G si y solo
si (f,G) satisface las condiciones (C) y (CW 1) en E. Además, la extensión F puede tomarse con la
propiedad de que Lip(F ) ≤ κ supE |G|, donde κ es una constante absoluta.

Es importante observar que este tipo de control de la constante de Lipschitz de la extensión F úni-
camente en términos de G no puede obtenerse para funciones generales (no necesariamente convexas)
de clase C1, en cuyo caso lo mejor que se puede obtener es una estimación de Lip(F ) en términos de
Lip(f) y de supE |G|.

Al igual que en el caso C1,1, una aplicación geométrica de nuestra solución al problema de extensión
C1

conv para jets definidos en conjuntos compactos es la caracterización de aquellos conjuntos compactos



9

C de Rn equipados con una aplicación N : C → Sn−1 que pueden interpolarse por fronteras de cuerpos
compactos convexos V de clase C1 que contienen al origen en su interior y tales que la normal exterior
unitaria a ∂V coincide con la aplicación N en C. Las condiciones pertinentes surgen de traducir de man-
era natural las condiciones (C) y (CW 1) al contexto de cuerpos convexos C1 mediante el Teorema de
la Función Implícita. Este resultado puede compararse con los de [43], donde M. Ghomi muestra cómo
construir cuerpos fuertemente convexos de clase Cm prescribiendo subvariedades fuertemente convexas
y planos tangentes. La caracterización que probamos nos permite tratar con conjuntos compactos arbi-
trarios en lugar de variedades y también eliminar la hipótesis de convexidad fuerte.

Destacamos también que, muy recientemente, E. Durand-Cartagena y A. Lemenant [29] han utilizado
el Teorema 4 para demostrar que las curvas fuertemente auto-contractantes de clase C1,α se caracterizan
por ser soluciones de ecuaciones de flujo de gradiente de funciones convexas de clase C1.

Consideremos ahora el problema cuando nuestro dominio E ⊂ Rn es arbitrario, y en particular no
necesariamente acotado. Al contrario que el caso compacto, dadas dos funciones f : E → R, G :
E → Rn con G continua, la hipótesis de que (f,G) satisface las condiciones (C) y (CW 1) no garantiza
que existan funciones convexas (no necesariamente diferenciables) extendiendo (f,G) a todo Rn, como
demostraremos con ejemplos. No es difícil resolver este inconveniente y basta con añadir una condi-
ción necesaria sobre (f,G), que en este resumen denotaremos por (EX). Sin embargo, todavía tenemos
que resolver un problema mucho más profundo que está relacionado con el comportamiento global que
pueden tener las funciones convexas diferenciables en Rn : la posible presencia de esquinas en el in-
finito. Diremos que el par de funciones (f,G) tiene un esquina en el infinito cuando (f,G) no satisface
la generalización natural de la condición (CW 1) que introducimos en el caso compacto (sustituyendo
puntos por sucesiones no acotadas). Por ejemplo, en R2, las funciones de clase C1 y convexas definidas
en todo Rn que tienen esquinas en el infinito pueden verse como funciones convexas diferenciables cuya
gráfica es tangente en el infinito a la gráfica de funciones convexas que no son diferenciables a lo largo
de alguna recta de R2. Y en dimensiones superiores pueden encontrarse más ejemplos patológicos de
funciones convexas diferenciables que tienen esquinas en el infinito en direcciones de subespacios de
dimensión k para todo k ≤ n. Por otra parte, en [1] se demostró que las funciones convexas en Rn tienen
subespacios unívocamente determinados que caracterizan su comportamiento global; lo que significa
que a cada función convexa g podemos asociarle un único subespacio vectorial Xg de Rn de manera que
g puede escribirse, salvo restar un funcional lineal, como una función convexa y coerciva definida en
Xg compuesta con la proyección ortogonal sobre Xg. Pues bien, resulta que la presencia de esquinas del
infinito en una función diferenciable y convexa g fuerza la coercividad esencial de g en las direcciones de
la esquina, es decir, el subespacio Xg contiene dichas direcciones. Por estas razones, vamos a enunciar
nuestros resultados de extensión no solo para 1-jets (f,G) sino también para un subespacio dado X de
Rn que queremos que represente el comportamiento global de nuestra función convexa F de clase C1

extendiendo el jet (f,G) a todo Rn. Lo que necesitaremos será una variante de la condición (CW 1),
a saber, una condición (CW 1) para (f,G) con subespacio Z, en la que se consideran sucesiones que,
aunque puedan ser no acotadas, sus proyecciones sobre el subespacio Z sí están acotadas. También
necesitamos suponer que el subespacio Y = span{G(E) − G(E)} de las diferencias de las derivadas
putativas en E está contenido en el subespacio de partida X. La condición más técnica que utilizare-
mos podría resumirse informalmente diciendo que, en el caso en que el jet (f,G) no nos proporcione
suficientes datos de diferenciabilidad para que (f,G) cumpla la condición (CW 1) con el subespacio
Y de direcciones putativas, debe haber suficiente espacio en Rn \ E para que podamos añadir nuevos
datos (β1, w1), . . . (βd, wd) asociados a puntos p1, . . . , pd ∈ Rn \ E de tal manera que este nuevo jet es
compatible con el problema de extensión convexo (es decir, que se sigue cumpliendo la condición (C)) y
además se satisface la condición (CW 1) con subespacioX. Esta condición de compatibilidad de nuestro
jet de partida (f,G) en términos de los subespacios X e Y será denotada en este resumen por (COYX).
Veremos que estas condiciones son necesarias y suficientes para la existencia de funciones convexas F
de clase C1 que extienden el jet (f,G) definido en E a todo Rn y tienen un comportamiento global
determinado por el subespacio X. En consecuencia, nuestra solución al problema de extensión convexa
de clase C1 para jets definidos en conjuntos arbitrarios tiene el siguiente enunciado (véase el Capítulo 4
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para la definición exacta de todas estas condiciones necesarias y suficientes).

Teorema 5. SeaE un subconjunto arbitrario de Rn,X ⊂ Rn un subespacio vectorial y f : E → R, G :
E → Rn dos funciones tales que G es continua. Denotemos Y = span{G(E) − G(E)}. Existe una
función convexa F : Rn → R de clase C1 tal que F|E = f , (∇F )|E = G, y XF = X , si y solamente si
(f,G) satisface las condiciones (C), (EX), Y ⊆ X, (COYX) y (CW 1) con subespacio X.

El Teorema 5 establece lo que podríamos llamar un Teorema de Extensión de Whitney para funciones
convexas de clase C1 con comportamiento global prescrito. Esto significa que podemos caracterizar el
comportamiento global de las extensiones diferenciables convexas F de (f,G) en términos del subespa-
cio generado por las diferencias de derivadas putativas G en E y del comportamiento diferencial del jet
(f,G) en E.

También vamos a estudiar la situación particular en la que la función G es acotada en E. En este
caso siempre existen extensiones convexas (no necesariamente diferenciables) y no necesitamos añadir
la condición (EX) mencionada anteriormente. Por otra parte, la condición de compatibilidad (COYX)
puede reescribirse, en este caso particular, de tal manera que solo es necesario verificar que la adherencia
E de E es disjunta con la unión de una cierta familia finita de conos. Además, podemos garantizar un
control prácticamente óptimo de la constante de Lipschitz de la extensión en términos de supE |G|.

Teorema 6. SeaE un subconjunto arbitrario de Rn,X ⊂ Rn un subespacio vectorial y f : E → R, G :
E → Rn dos funciones tales queG es continua y acotada. Denotemos Y = span{G(E)−G(E)}. Existe
una función Lipschitz y convexa F : Rn → R de clase C1 tal que F|E = f , (∇F )|E = G, y XF = X ,
si y solo si (f,G) satisface las condiciones (C), Y ⊆ X, (CW 1) con subespacio X y, si Y 6= X y
denotamos k = dimY y d = dimX , existen puntos p1, . . . , pd−k ∈ Rn \ E, un número ε ∈ (0, 1), y
vectores w1, . . . , wd−k ∈ X ∩ Y ⊥ normalizados y linealmente independientes tales que

E ∩

d−k⋃
j=1

Vj

 = ∅,

donde, para cada j = 1, . . . , d − k, se denota Vj := {x ∈ Rn : ε〈wj , x − pj〉 ≥ |PY (x − pj)|}, y
PY : Rn → Y es la proyección ortogonal sobre Y .

Además, existe una constante absoluta κ > 0 tal que, si se satisfacen las condiciones anteriores, la
extensión F puede tomarse de modo que

Lip(F ) ≤ κ sup
y∈E
|G(y)|.

Al igual que en caso compacto, el Teorema 6 puede usarse para dar respuesta a la siguiente pregunta:
dado un subconjunto arbitrario E de Rn y una colección H de hiperplanos afines de Rn tal que cada
H ∈ H pasa por un punto xH ∈ E, ¿qué condiciones son necesarias y suficientes para la existencia de
una hipersuperficie convexa S de clase C1 en Rn tal que H es tangente a S en xH para cada H ∈ H?
Equivalentemente, dado un subconjunto E de Rn equipado con una aplicación N : E → Sn−1, ¿qué
condiciones sobre E y N son necesarias y suficientes para la existencia de un cuerpo convexo V (no
necesariamente acotado) de clase C1 tal que E ⊆ ∂V y la normal exterior unitaria a ∂V coincida en
E con la aplicación N dada? Para responder a esta pregunta proporcionamos una caracterización que
también prescribe el subespacio de direcciones que queremos que tenga la normal exterior unitaria de
nuestro cuerpo convexo. Más precisamente, dadaN : E → Sn−1 y el subespacioX de Rn, encontramos
condiciones necesarias y suficientes en términos de N, span(N(E)) y X , para la existencia de un cuerpo
convexo V de clase C1 con 0 ∈ int(V ) y E ⊆ ∂V , con normal exterior unitaria nV a ∂V igual a N en
E y cumpliendo que X = span(nV (∂V )); véase el Teorema 4.69 en el Capítulo 4.

Finalmente, destacamos que, muy recientemente, D. Azagra y P. Hajłasz [7] han encontrado una
aplicación de nuestro teorema de extensión de funciones convexas de clase C1 para jets definidos en
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conjuntos arbitrarios al problema de caracterizar la clase de funciones convexas que tienen la propiedad
de Lusin de clase C1

conv. Más concretamente, demuestran que una función convexa f : Rn → R que
no es de clase C1 tiene una propiedad de Lusin de tipo C1

conv (es decir, que para todo ε > 0 existe una
función convexa g : Rn → R de clase C1 tal que Ln ({x ∈ Rn : f(x) 6= g(x)}) ≤ ε) si y solo si f es
esencialmente coerciva, i.e., coerciva salvo la resta de un funcional lineal.

Los resultados del Capítulo 4 están publicados en [11] y [12].

En el Capítulo 5 consideramos el problema de extensión de funciones convexas de claseCm para jets
en Rn, cuando m ≥ 2. Veremos por medio de ejemplos sencillos que, si el dominio no se supone con-
vexo, el problema es mucho más complicado que en los casos C1 o C1,ω. Por este motivo, centraremos
nuestra atención al caso en el que el dominio E de definición de nuestro jet es un convexo compacto.
Como hemos dicho anteriormente, siempre existen extensiones convexas de clase Cm si suponemos que
nuestro jet tienen segunda derivada putativa estrictamente positiva en ∂E, gracias a los resultados de
[44] y [73]. Esta condición es claramente no necesaria y debemos considerar otras condiciones en su
lugar. Introduciremos una condición nueva (CWm) para m-jets definidos en compactos convexos, que
esencialmente dice que la expresión del Hessiano putativo del jet en cada dirección v ∈ Sn−1 en términos
de los polinomios de Taylor putativos centrados en puntos y ∈ ∂E tiene límite inferior mayor o igual
que 0 uniformemente en y ∈ ∂E y v ∈ Sn−1. Aunque esta condición (CWm) es necesaria sobre un
m-jet para la existencia de extensiones convexas de clase Cm, daremos ejemplos que demuestran que no
es suficiente, al menos en el caso en el que el dominio E tiene interior vacío. De hecho, esos ejemplos
mostrarán que existen jets de clase C∞ satisfaciendo la condición (CW 3) en E y sin embargo no tienen
ninguna extensión convexa de clase C2. No obstante, se puede demostrar que si nuestro m-jet cumple la
condición (CWm) entonces posee una extensión convexa de clase Cm−n−1 en Rn. Además, añadiendo
algunas condiciones geométricas adicionales sobre el conjunto E (a saber, que E es la intersección de
una cantidad finita de ovaloides de clase Cm), entonces la condición (CWm) garantiza la existencia de
extensiones convexas de clase Cm−1(Rn).

En el Capítulo 6, resolvemos el problema de extensión de funciones convexas de clase C∞ para
jets infinitos definidos en dominios compactos y convexos de Rn. Por un jet infinito definido en E sim-
plemente entendemos una familia infinita de funciones real valuadas {fα}α∈(N∪{0})n definidas en E.
Introducimos una nueva condición (CW∞) sobre el jet infinito {fα}α∈(N∪{0})n , que dice que, para todo
entero m ≥ 2, la familia finita {fα}|α|≤m satisface la condición (CWm) para el problema Cm men-
cionada anteriormente. Afortunadamente, y al contrario que en el caso Cm con m finito, esta condición
(CW∞) es necesaria y suficiente para que haya extensiones convexas C∞, y nuestro principal resultado
para la clase C∞ es el siguiente.

Teorema 7. Sea E ⊂ Rn un subconjunto convexo y compacto y sea {fα}α∈(N∪{0})n un jet infinito en
E. Existe una función convexa F de clase C∞(Rn) tal que ∂αF = fα en E para todo multi-índice α si
y solo si el jet {fα}α∈(N∪{0})n satisface la condición (CW∞) en E.

Los resultados de los Capítulos 5 y 6 están publicados en [13].
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Introduction

The main topic of this thesis is the differentiable approximation and extension of convex functions in
different Banach spaces.

In Chapter 1 we deal with the problem of approximating convex functions by C1 convex functions
uniformly on Banach Spaces. In Rn, it is well known that convolution with mollifiers provides ap-
proximation of convex functions by smooth convex functions uniformly on compact sets. In Banach
spaces whose dual space has an equivalent LUR (locally uniformly rotund) norm, it is also well known
that infimal convolution techniques provide approximations of convex functions by C1 convex functions
uniformly on bounded subsets. In [1] a new approximation technique was found which allows to ap-
proximate (not necessarily uniformly continuous) convex functions on Rn by smooth convex functions,
uniformly on all of Rn. By combining this new technique with the mentioned infimal convolution tech-
nique it also follows that convex functions f which are bounded on bounded subsets of a Banach space
E whose dual has an equivalent LUR norm can be approximated byC1 convex functions g, uniformly on
all of E. However, there are examples of (smooth or nonsmooth) convex continuous functions which are
not bounded on bounded subsets. In this thesis, by means of a refinement of the techniques introduced
in [1], we show how to drop the hypothesis that the function f is bounded on bounded subsets, and we
prove the following result.

Theorem 1. Let X be a Banach space whose dual space X∗ admits an equivalent LUR norm. Let
f : U → R be a convex continuous function defined on an open subset U of X. Given ε > 0, there exists
a convex function g : U → R of class C1(U) such that f − ε ≤ g ≤ f on U.

Theorem 1 actually follows from a more general result which shows that the problem of approxi-
mating convex continuous functions by Cm convex functions defined on open subsets U of X can be
reduced to the problem of approximating Lipschitz convex functions.

Also, as a consequence of these results we establish a new characterization of those Banach spaces
whose dual is separable, namely, a separable Banach space X has dual X∗ separable if and only every
continuous convex function defined on an open subset ofX can be uniformly approximated byC1 convex
functions.

These results have been published in [9].

In the rest of the thesis, we deal with the problem of finding a version for convex functions of the
classical Whitney Extension Theorem [71]. This famous result, for the class Cm, provides necessary and
sufficient conditions on a family of real valued functions {fα}|α|≤m (which we call an m-jet) defined on
a closed subset E ⊂ Rn for the existence of a function F of class Cm(Rn) such that ∂αF = fα on E
for every |α| ≤ m. The mentioned conditions are relations between the functions fα and the putative
Taylor polynomial Py of order m centered at y ∈ E whose coefficients are precisely (fα(y))α, and the
extension F is defined by means of a formula involving a suitable partition of unity subordinated to a
carefully chosen family of cubes decomposing the complement of E. A few years later, G. Glaeser [46]
established a version of the Whitney Extension Theorem for functions of class C1,ω on Rn, by means
of a construction similar to Whitney’s, which also permits to obtain a good control on the modulus of
continuity of the derivatives of the extension in terms of the given family {fα}|α|≤m. On the other hand,
J. C. Wells [70] provided an analogue of the Whitney Extension Theorem for functions of class C1,1 in
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Hilbert spaces in which he managed to get an optimal control of the Lipschitz constant of the gradient
of the extension, in terms of the given 1-jet. Wells’s proof involved an intricate geometrical construction
for finite domains and then a limiting process for arbitrary domains. More recently, E. Le Gruyer [53]
proved the same C1,1 theorem simplifying considerably Wells’ proof but making use of Zorn’s Lemma.
Let us also mention that M. Jiménez and L. Sánchez [50] proved a version of the Whitney Extension
Theorem for C1 in separable Banach spaces which satisfy a certain property related to the approximation
of Lipschitz functions by smooth Lipschitz functions, namely, that every 1-Lipschitz function can be
uniformly approximated by C1 Lipschitz functions with Lipschitz constant smaller than an absolute
constant which only depends on the space. This class of spaces includes, for instance, the separable
Hilbert space. This construction refines an extension technique introduced by D. Azagra, R. Fry and
L. Keener [6] in order to solve the same problem when the domain is a closed subspace of a Banach
separable space, and ultimately relies on an extension technique inspired by Tietze’s extension theorem
and the sup partitions of unity which were discovered by R. Fry in [42]. Finally, let us also mention
that a version of Whitney’s Extension Theorem for subdifferentiable functions has been established by
J. Ferrera and J. Gómez Gil in [31].

A related issue is the Whitney Extension Problem for functions (as opposed to jets): if we are given an
arbitrary subset E of Rn, and a function f : E → R (but no candidates for derivatives) what conditions
on f are necessary and sufficient to guarantee the existence of a Cm or a Cm−1,1 function F : Rn → R
such that F = f on E? And what can be said about the norm of the extension F when it exists?
These questions are much more difficult to deal with. The C1,1 case was solved by Y. Brudnyi and P.
Shvartsman in [20], and the problem was solved in full generality by C. L. Fefferman in [36] and [37].
See also the papers by C. L. Fefferman, A. Israel, G. K. Luli and P. Shvartsman listed in the Bibliography
for similar results for some Sobolev spaces.

The general problem we will be dealing with is the following.

Problem. Given a positive integer m, an arbitrary subset E of Rn and a m-jet {fα}|α|≤m defined on
E, what necessary and sufficient conditions on {fα}|α|≤m would guarantee the existence of a convex
function F of class Cm(Rn) or Cm,ω(Rn) such that ∂αF = fα on E for every |α| ≤ m ?

A similar problem was considered by M. Ghomi [44] and M. Yan [73], and a consequence of their
results is that, if E is compact and convex and we are given a function f : E → R which admits a
Cm (not necessarily convex) extension to the whole Rn whose second derivative is positive definite on
∂E, then there exists a Cm convex function F which extends f from E. Of course, this is only a partial
solution to our problem, as strictly positiveness of the Hessian is a very strong assumption, which is far
from being necessary. On the other hand, K. Schulz and B. Schwartz [60] provided a characterization of
those proper convex functions on Rn defined on convex domains which admit convex (not necessarily
differentiable) extensions to all of Rn. Also, B. Mulansky and M. Neamtu [55] proved that any finite
subset of data of R or R2 which is strictly convex in an appropriate sense can be interpolated by a
convex polynomial. Finally, let us mention that O. Bucicovschi and J. Lebl [21] studied the problem of
extending convex functions to the convex hull of their domain, and that J. M. Borwein, V. Montesinos
and J. Vanderwerff [18], and L. Veselý and L. Zajícek [67] showed that there are infinite-dimensional
Banach spaces X , closed subspaces E ⊂ X and continuous convex functions f : E → R which have
no continuous convex extensions to X .

Let us now describe our progress in the solution to the mentioned problem as well as the main
consequences and applications of our results.

In Chapter 2, we give a full solution to the above problem for convex functions of class C1,ω, even in
the setting of Hilbert spaces, that is, given an arbitrary subset E of a Hilbert space X and two functions
f : E → R and G : E → X, we give necessary and sufficient conditions on (f,G) for the existence
of a convex function F of class C1,ω so that F|E = f and ∇F|E = G. In order to do this, we define a
new necessary and sufficient condition (CW 1,ω), a simple inequality which only involves the function
ω, a constant M > 0 and the values of f and G on E. This condition allows us to provide a simple and
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explicit formula for the extension F and obtain an almost optimal control on the modulus of continuity
of ∇F in terms of (f,G). In the C1,1 case our result provides optimal control of the Lipschitz constant
of ∇F . More precisely we have the following.

Theorem 2. Given E ⊂ X an arbitrary subset of a Hilbert space X, and two function f : E → R, G :
E → X, such that (f,G) satisfies the inequality (CW 1,1) with constant M > 0 on E, then the formula

F = conv(g), g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}, x ∈ X,

defines a C1,1 convex function with F|E = f, (∇F )|E = G and Lip(∇F ) ≤M.

This indicates that if we defineM as the smallest positive number for which (f,G) satisfies condition
(CW 1,1) with constant M, the extension F above has the property that

Lip(∇F ) = inf{Lip(∇H) : H ∈ C1,1
conv(X), H|E = f, (∇H)|E = G},

and then we one can say that ∇F has the best possible Lipschitz constant. The formula for C1,ω is
similar, and in this case we obtain the same kind of control up to a factor 8.

The main consequence of the above formula for C1,1
conv functions is that it allows us to give simple and

explicit solution not only for the C1,1
conv extension problem for jets but also for the general C1,1 extension

problem for jets in Hilbert spaces, and with the best possible Lipschitz constant of the gradient of the
extension. In [46] it is proved that a control of the type

Lip(∇F ) ≤ k(n) inf{Lip(∇H) : H ∈ C1,1(X), H|E = f, (∇H)|E = G},

can be obtained for C1,1 extensions on Rn, where k(n) depends on the dimension and tends to∞ as n
grows large. On the other hand, the solutions given in [70] and [53] are optimal in the above sense and
are valid for infinite dimensional Hilbert spaces, but the proof in [70] relies on a extremely complicated
geometrical construction and the proof in [53] is not constructive as it relies on Zorn’s Lemma. With
the help of our solution to C1,1

conv extension problem for jets, we can recover the results in [46], [70] and
[53] for C1,1 functions by means of a simple and explicit formula which provides an extension with an
optimal control of the Lipschitz constant of the gradient. In order to do this, we consider a necessary
condition (W 1,1), which is a simple inequality only involving the values of f and G and a constant
M > 0 and is equivalent to the conditions considered before by [70] and [53]. Our result for the C1,1

extension problem for jets reads as follows.

Theorem 3. Given E ⊂ X an arbitrary subset of a Hilbert space X, and two functions f : E → R, G :
E → X, such that (f,G) satisfies the inequality (W 1,1) with constant M > 0 on E, then the formula

F = conv(g)− M
2 ‖ · ‖

2,

g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}+ M

2 ‖x‖
2, x ∈ X,

defines a C1,1(X) function with F|E = f , (∇F )|E = G, and Lip(∇F ) ≤M .
Moreover, F can be taken so as to satisfy

Lip(∇F ) = inf{Lip(∇H) : H ∈ C1,1(X), H|E = f, (∇H)|E = G}.

On the other hand, every F ∈ C1,1(X) satisfies (W 1,1) with M = Lip(∇F ) on every subset E of
X .

As a consequence of our solution to the C1,1 extension problem for general jets (which, in turn, is
a consequence of our solution to the C1,1

conv extension problem for jets) we can give a short proof for the
Kirszbraun’s Extension Theorem [52] for Lipschitz mappings between two Hilberts spaces providing, in
addition, a constructive and simple formula for the extension; see Corollary 2.28 in Chapter 2.
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Finally, we have found a geometrical application of our C1,1
conv extension theorem concerning the

following natural question: given an arbitrary subset C of a Hilbert space X and a collectionH of affine
hyperplanes of X such that every H ∈ H passes through a point xH ∈ C, what conditions are necessary
and sufficient for the existence of a C1,1 convex hypersurface S in X such that H is tangent to S at xH
for every H ∈ H? Equivalently, given a subset C of X and a mapping N : C → SX , what conditions
are necessary and sufficient to ensure the existence of C1,1 convex bodies V such that C ⊆ ∂V and the
outer unit normal to ∂V coincides with the given mapping N on C? The pertinent condition is a simple
inequality (KW1,1) for the mapping N ; see Theorem 2.20 in Chapter 2.

In Chapter 3, we consider the same problem as in Chapter 2 for the class of C1,α convex functions in
superreflexive spaces, for suitable α ∈ (0, 1). By Pisier’s renorming Theorem [56], every superreflexive
space has an equivalent norm which is uniformly smooth with modulus of smoothness of power type
p = 1 + α for some α ∈ (0, 1). It is proved that condition (CW 1,α) is necessary and sufficient on a
pair of functions (f,G) : E → R × X for the existence of a convex function F of class C1,α with
(F,∇F ) = (f,G) on E. The formula defining F is similar to the ones we obtained in Hilbert spaces
and, again, we can arrange an almost optimal control on the α-Hölder modulus of continuity of ∇F in
terms of (f,G) and of an absolute constant depending only on the space.

The results of Chapters 2 and 3 are contained in the papers [8], [10], and [11].

In Chapter 4 we solve the problem of extending two functions f : E → R and G : E → X, defined
on an arbitrary subset of E of Rn to a C1 convex function F such that F|E = f and ∇F|E = G, that
is, we establish a C1

conv Whitney Extension Theorem for jets. We first solve this problem when E is a
compact subset by introducting two new conditions (C) and (CW 1). Condition (C) tells us that f must
lie above the putative tangents f(y) + 〈G(y), · − y〉 and condition (CW 1) tells us that if two points of
the graph of f lie on a line segment contained in a hyperplane which we want to be tangent to the graph
of an extension at one of the points, then our putative tangent hyperplanes at both points must be the
same. Our main result for compact domains reads as follows.

Theorem 4. Let E be a compact subset of Rn and f : E → R, G : E → Rn be two mappings
such that G is continuous. There exists a convex function F ∈ C1(Rn) with F|E = f and ∇F|E = G
if and only if (f,G) satisfies the conditions (C) and (CW 1) on E. In addition, we can arrange that
Lip(F ) ≤ κ supE |G|, where κ is an absolute constant.

It is worth mentioning that this kind of control of the Lipschitz constant of the extension F solely
in terms of G cannot be obtained for general (not necessarily convex) C1 functions, in which the best
possible estimation of Lip(F ) is in terms of Lip(f) and supE |G|.

As in the C1,1 case, we have found a geometrical application of our solution to the C1
conv extension

problem concerning characterizations of those compact subsets C of Rn equipped with a mapping N :
C → Sn−1 which can be interpolated by boundaries of C1 compact convex bodies V which contains the
origin as an interior point and such that the outer unit normal to ∂V coincides with the given mapping N
on C. The pertinents conditions are the natural translation of conditions (C) and (CW 1) to the setting
of C1 convex bodies via the Implicit Function Theorem. This result may be compared to [43], where
M. Ghomi showed how to construct Cm smooth strongly convex bodies with prescribed strongly convex
submanifolds and tangent planes. Our characterization allows us to deal with arbitrary compacta instead
of manifolds, and to drop the strong convexity assumption.

Let us also mention that, very recently, E. Durand-Cartagena and A. Lemenant [29] have used the
Theorem 4 in order to prove that strongly self contracted curves of class C1,α can be characterized as
being solutions to gradients flow equations of C1 convex functions.

Let us now consider the case when our domain E ⊂ Rn is arbitrary, and in particular not necessarily
bounded. Unlike the compact case, if we are given two functions f : E → R, G : E → Rn with G
continuous, the assumption that (f,G) satisfies conditions (C) and (CW 1) does not ensure the existence
of convex (not necessarily differentiable) extensions to all of Rn, as we will see in examples. It is not
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difficult to deal with this inconvenient and it is enough to assume an extra necessary condition on (f,G)
which we denote momentarily by (EX). However we still need to deal with a much harder problem
which is related to the global behaviour of differentiable convex functions on Rn: the possible presence
of corners at infinity. We will say that the pair (f,G) has a corner at infinity if the natural generalization
of condition (CW 1) (replacing points with unbounded sequences) fails to be satisfied for (f,G). For
instance, in R2, the C1 convex functions defined everywhere which have corners at infinity can be seen
as differentiable convex functions whose graphs are tangent at infinity to graphs of convex functions
which are not differentiable along some lines in R2. More pathological examples of functions which
have corners at infinity in directions of subspaces of dimension k for every k ≤ n can be given in
higher dimensions. On the other hand, in [1] it was proved that convex functions on Rn have uniquely
determined subspaces that characterize their global behaviour; this means that one can associate to each
convex function g a unique subspace Xg of Rn in such a way that g can be written, up to substracting a
linear function, as the composition of a coercive convex function on Xg with the orthogonal projection
onto Xg. The presence of corners at infinity for a differentiable convex function g forces the essential
coercivity of g in the directions of the corner, that is, the subspaceXg contains those directions. For these
reasons we formulate our extension theorem not only for single 1-jets (f,G) but also for a given subspace
X of Rn which we want to represent the global behaviour of our C1 convex extension F of (f,G). We
will need to define a variant of the condition (CW 1), namely condition (CW 1) for (f,G) with subspace
Z, in which we consider (possibly unbounded) sequences with bounded projection onto Z. We will need
to assume that the subspace Y = span{G(E)−G(E)} of the differences of the putative derivates onE is
contained in the given X. The most technical condition that we will need to assume could be informally
summed up by saying that whenever the jet (f,G) does not provide us with enough differential data
so that condition (CW 1) is satisfied for (f,G) with subspace Y, then there has to be enough room on
Rn \ E so we can define new jets (β1, w1), . . . (βd, wd) associated with points p1, . . . , pd ∈ Rn \ E in
such a way that this new jet is compatible with the convex extension problem (that is, satisfies condition
(C)) and does satisfy condition (CW 1) with subspaceX. This condition of compatibility of our given jet
(f,G) in terms of the subspaces X and Y will be denoted here by (COYX). All these conditions happen
to be necessary for the existence of C1 convex functions F which extend the jet (f,G) from E and
have global behaviour determined by X. In conclusion, the solution to the C1 convex extension problem
for jets defined on arbitrary subsets reads as follows (see Chapter 4 for the precise definitions of these
necessary and sufficient conditions).

Theorem 5. Let E be an arbitrary subset of Rn, X ⊂ Rn a linear subspace and f : E → R, G : E →
Rn two functions such that G is continuous. Let us denote Y = span{G(E) − G(E)}. There exists a
convex function F : Rn → R of class C1 such that F|E = f , (∇F )|E = G, and XF = X , if and only if
(f,G) satisfies the conditions (C), (EX), Y ⊆ X, (COYX) and (CW 1) with subspace X.

The above theorem establishes what one could call a C1 Whitney Extension Theorem for convex
functions with prescribed global behaviour. This means that we can characterize the global behaviour of
the C1 convex extension F in terms of the subspace generated by the putative derivatives G on E and of
the differential behaviour of the pair (f,G) on E.

We will also study the particular case when the functionG is bounded onE. In this case there always
exist convex (not necessarily differentiable) extensions and we do not need to assume the mentioned
condition (EX). On the other hand, the condition of compatibily (COYX) can be reformulated in such
a way that we only need to check that the closure E of E does not intersects a union of a certain finite
family of cones. In addition, we can provide an almost optimal control of the Lipschitz constant of the
extension in terms of supE |G|.

Theorem 6. Let E be an arbitrary subset of Rn, X ⊂ Rn a linear subspace and f : E → R, G : E →
Rn two functions such that G is continuous and bounded. Let us denote Y = span{G(E) − G(E)}.
There exists a Lipschitz convex function F : Rn → R of class C1 such that F|E = f , (∇F )|E = G,
and XF = X , if and only if (f,G) satisfies conditions (C), Y ⊆ X, (CW 1) with subspace X and, if
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Y 6= X and we denote k = dimY and d = dimX , there exist points p1, . . . , pd−k ∈ Rn \E, a number
ε ∈ (0, 1), and linearly independent normalized vectors w1, . . . , wd−k ∈ X ∩ Y ⊥ such that

E ∩

d−k⋃
j=1

Vj

 = ∅,

where, for every j = 1, . . . , d− k, we denote Vj := {x ∈ Rn : ε〈wj , x− pj〉 ≥ |PY (x− pj)|}, where
PY : Rn → Y is the orthogonal projection onto Y .

Moreover, there exists an absolute constant κ > 0 such that, whenever these conditions are satisfied,
the extension F can be taken so that

Lip(F ) ≤ κ sup
y∈E
|G(y)|.

As in the compact case, we can use the above result to answer the following question: given an
arbitrary subset E of Rn and a collection H of affine hyperplanes of Rn such that every H ∈ H passes
through a point xH ∈ E, what conditions are necessary and sufficient for the existence of a C1 convex
hypersurface S in Rn such that H is tangent to S at xH for every H ∈ H? Equivalently, given a subset
E of Rn equipped with a mapping N : E → Sn−1, what conditions on E and N are necessary and
sufficient for the existence of a C1 convex body V (not necessarily bounded) such that E ⊆ ∂V and
the outer unit normal to ∂V coincides with the given N on E? As a matter of fact we will answer to
these questions by providing a characterization which also takes into account the directions that we want
the outer unit normal of our convex body to have. That is, given N : E → Sn−1 and a subspace X we
find necessary and sufficient conditions, in terms of N, span(N(E)) and X , for the existence of a C1

convex body V with 0 ∈ int(V ) and E ⊆ ∂V , with outer unit normal nV to ∂V equal to N on E and
X = span(nV (∂V )); see Theorem 4.69 in Chapter 4.

Finally, let us mention that an application of our solution to the C1 convex extension problem for
jets defined on arbitrary domains to the question of characterizing the class of convex function which
have the Lusin property of class C1

conv has been found by D. Azagra and P. Hajłasz [7]. They have
proved that a convex function f : Rn → R which is not of class C1 has a Lusin property of type
C1

conv (meaning that for every ε > 0 there exists a convex function g : Rn → R of class C1 such
that Ln ({x ∈ Rn : f(x) 6= g(x)}) ≤ ε) if and only if f is essentially coercive, i.e., coercive up to
substracting a linear function.

The results of Chapter 4 are contained in the papers [11] and [12].

In Chapter 5 we consider the Cm convex extension problem for jets on Rn, when m ≥ 2. We will
see, by means of easy examples, that if the domain is not assumed to be convex, the situation gets much
more complicated than in the C1 or C1,ω case. For this reason we will restrict our attention to the case
when the domain E of definition of our jet is convex and compact. As we have said before, there always
exist convex extensions of class Cm if we assume that our jet has a putative second derivative which is
strictly positive on ∂E, thanks to the works in [44] and [73]. This condition is far from begin necessary
and some other assumptions must be made in its place. We define new conditions (CWm) for m-jets
defined on compact convex subsets, which essentially tell us that the expression of the putative Hessian
at every direction v ∈ Sn−1 in terms of the putative Taylor polynomial centered at points y ∈ ∂E has
lim inf greater than or equal 0, uniformly on y ∈ ∂E and v ∈ Sn−1. Although this condition is necessary
for the existence of a Cm convex extension of the m-jet, we show, by means of examples, that this
condition is no longer sufficient, at least when the set E has empty interior. In fact, we will see examples
of functions of class C∞ which satisfy the condition (CW 3) on E and yet has no convex extension of
class C2. Nevertheless, we show that if our m-jet satisfies (CWm) then it has a convex extension of
class Cm−n−1 to Rn. Moreover, if we make further geometrical assumptions on the set E (namely, that
E is the intersection of a finite number of ovaloids of class Cm), then condition (CWm) guarantees the
existence of a convex extension of class Cm−1(Rn).
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In Chapter 6, we solve the C∞ convex extension problem for infinite jets on compact convex subsets
of Rn. Here, by a infinite jet on E we merely understand an infinite family of real valued functions
{fα}α∈(N∪{0})n defined onE.We introduce a new condition (CW∞) on the infinite jet {fα}α∈(N∪{0})n ,
which says that, for every integer m ≥ 2, the finite family {fα}|α|≤m satisfies the condition (CWm) for
the Cm problem mentioned above. Unlike the Cm case, form finite, this condition (CW∞) is necessary
and sufficient for the existence of C∞ convex extensions, and our main result for the C∞ class reads us
follows.

Theorem 7. Let E ⊂ Rn be a convex compact subset and {fα}α∈(N∪{0})n be a infinite jet on E. There
exists a convex function F of class C∞(Rn) with ∂αF = fα on E for every multi-index α if and only if
{fα}α∈(N∪{0})n satisfies condition (CW∞) on E.

The results of Chapters 5 and 6 are contained in the paper [13].
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Chapter 1

C1 approximation of convex functions on
Banach spaces

1.1 Introduction and main results

It is no doubt useful to be able to approximate convex functions by smooth convex functions. In Rn,
standard techniques (integral convolutions with mollifiers) enable us to approximate a given convex
function by C∞ convex functions, uniformly on compact sets. If a given convex function f : U ⊆
Rn → R is not Lipschitz and one desires to approximate f by smooth convex functions uniformly on the
domain U of f , then one has to work harder as, in absence of strong convexity of f , partitions of unity
cannot be used to path local approximations into a global one without destroying convexity. In a recent
paper [1] D. Azagra devised a gluing procedure that permits to show that global approximation of (not
necessarily Lipschitz or strongly) convex functions by smooth (or even real analytic) convex functions is
indeed feasible. The main result in this direction is the following.

Theorem 1.1 (D. Azagra, [1]). Let U be an open convex subset of Rn, let f : U → R be a convex
function and let ε > 0. There exists a real analytic convex function g : U → R such that f − ε ≤ g ≤ f
on U.

We also refer to [47] and [63] for information about this problem in the setting of finite-dimensional
Riemannian manifolds, and to [3, 5] for the case of infinite-dimensional Riemannian manifolds.

In this chapter we will consider the question whether or not global approximation of continuous
convex functions can be performed in Banach spaces. Let us briefly review the main techniques available
in this setting for approximating convex functions by smooth convex functions. On the one hand, there
are very fine results of Deville, Fonf, Hájek and Talponen [27, 28, 32] showing that if X is the Hilbert
space (or more generally a separable Banach space with a Cm equivalent norm) then every bounded
closed convex body in X can be approximated by real-analytic (resp. Cm smooth) convex bodies. Via
the implicit function theorem this yields that for every convex function f : X → R which is bounded
on bounded sets, for every ε > 0, and for every bounded set B ⊂ X , there exists a Cm smooth convex
function g : B → R such that |f − g| ≤ ε on B. Unfortunately, these approximations g are only defined
on a bounded subset of X , so they cannot be used along with the techniques of [1] to solve the global
approximation problem we are concerned with.

On the other hand, if f : X → R is convex and Lipschitz and the dual space X∗ is LUR (we refer
the reader to [26, 33] for any unexplained terms in Banach space theory), then it is well known that the
Moreau-Yosida regularizations of f (also called the Moreau envelope of f , see the book by Rockafellar
and Wets [59]), defined by fλ(x) = infy∈X{f(y) + 1

2λ‖x − y‖
2} for x ∈ X , λ > 0, are C1 smooth

and convex, and approximate f uniformly on X as λ → 0+ (see the proof of Theorem 1.4 below). If
f is not Lipschitz but it is bounded on bounded subsets of X , then the fλ approximate f uniformly on
bounded subsets of X . And, if f is only continuous, then the convergence of the fλ to f is uniform only
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on compact subsets of X . By combining the gluing technique of [1, Theorem 1.2] with these results, one
can deduce the following.

Theorem 1.2. [1, Corollary 1.5] Let U be an open convex subset of a Banach space X such that X∗ has
an equivalent LUR norm. Then, for every real number ε > 0 and every convex function f : U → R which
is bounded on bounded subsets B such that dist(B, ∂U) > 0; there exists a convex function g : U → R
of class C1(U) such that f − ε ≤ g ≤ f on U.

However, as shown in [17, Theorem 2.2] or [19, Theorem 8.2.2], for every infinite-dimensional
Banach space X there exist continuous convex functions defined on all of X which are not bounded on
bounded sets of X . There are plenty of such examples, and they can be taken to be either smooth or
nonsmooth.

Example 1.3. Consider X = `2.

(1) The function f(x) =
∑∞

n=1 |xn|2n is real-analytic on X , but is not bounded on the ball B(0, 2) of
center 0 and radius 2 in X .

(2) If ϕ : [0,∞) → [0,∞) is a convex function such that t ≤ ϕ(t) ≤ 2t and ϕ is not differentiable at
any rational number, then it is not difficult to see that the function g(x) =

∑∞
n=1 ϕ(|xn|)2n is continuous

and convex on X , is not bounded on B(0, 2), and the set {x ∈ X : g is not differentiable at x} is dense.

In view of these remarks, even in the case whenX is the separable Hilbert space, the following result
is new.

Theorem 1.4. Let U be an open convex subset of a Banach space X such that X∗ has an equivalent
LUR norm. Then, for every real number ε > 0 and every continuous and convex function f : U → R,
there exists a convex function g : U → R of class C1(U) such that f − ε ≤ g ≤ f on U.

This will be proved by combining the above mentioned result on the Moreau-Yosida regularization
of a convex function with the following refinement of [1, Theorem 1.2] which tells us that, in general, the
problem of global approximation of continuous convex functions by Cm smooth convex functions can
be reduced to the problem of global approximation of Lipschitz convex functions by Cm smooth convex
functions.

Theorem 1.5. Let X be a Banach space with the following property: every Lipschitz convex function
on X can be approximated by convex functions of class Cm, uniformly on X. Then, for every U ⊆ X
open and convex, every continuous convex function on U can be approximated by Cm convex functions,
uniformly on U .

In order to know whether or not similar results are true for higher order of smoothness classes, and
in view of Theorem 1.5 above, one would only need to solve the following problem.

Open Problem 1.6. Let X be a Hilbert space (or in general a Banach space possessing an equivalent
norm of class Cm), f : X → R a Lipschitz and convex function, and ε > 0. Does there exist ϕ : X → R
of class C∞ (resp. Cm) and convex such that |f − ϕ| ≤ ε on X?

As a matter of fact, by combining Theorem 1.5 and the proof of [1, Theorem 1.2], it would also be
enough to solve the following.

Open Problem 1.7. Let X be a Hilbert space (or in general a Banach space possessing an equivalent
norm of class Cm), f : X → R a Lipschitz and convex function, B a bounded convex subset of X , and
ε > 0. Does there exist g : X → R of class C∞ (resp. Cm) and convex such that g ≤ f on X , and
f − ε ≤ g on B?
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1.2 Proof of the C1 approximation theorem

In this section we present the proofs of Theorems 1.5 and 1.4. Let us first recall a couple of tools from
[1].

Lemma 1.8 (Smooth maxima). For every ε > 0 there exists a C∞ function Mε : R2 → R with the
following properties:

1. Mε is convex;

2. max{x, y} ≤Mε(x, y) ≤ max{x, y}+ ε
2 for all (x, y) ∈ R2.

3. Mε(x, y) = max{x, y} whenever |x− y| ≥ ε.

4. Mε(x, y) = Mε(y, x).

5. Lip(Mε) = 1 with respect to the norm ‖ · ‖∞ in R2.

6. y − ε ≤ x < x′ =⇒ Mε(x, y) < Mε(x
′, y).

7. x− ε ≤ y < y′ =⇒ Mε(x, y) < Mε(x, y
′).

8. x ≤ x′, y ≤ y′ =⇒ Mε(x, y) ≤Mε(x
′, y′), with a strict inequality in the case when both x < x′

and y < y′.

We call Mε a smooth maximum. In order to prove this lemma, one first constructs a C∞ function
θ : R→ (0,∞) such that:

1. θ(t) = |t| if and only if |t| ≥ ε;

2. θ is convex and symmetric;

3. Lip(θ) = 1,

and then one puts

Mε(x, y) =
x+ y + θ(x− y)

2
.

See [1, Lemma 2.1] for details. Let us also restate Proposition 2.2 from [1].

Proposition 1.9. Let U be an open convex subset of X , Mε as in the preceding Lemma, and let f, g :
U → R be convex functions. For every ε > 0, the function Mε(f, g) : U → R has the following
properties:

1. Mε(f, g) is convex.

2. If f is Cm on {x : f(x) ≥ g(x)− ε} and g is Cm on {x : g(x) ≥ f(x)− ε} then Mε(f, g) is Cm

on U . In particular, if f, g are Cm, then so is Mε(f, g).

3. Mε(f, g) = f if f ≥ g + ε.

4. Mε(f, g) = g if g ≥ f + ε.

5. max{f, g} ≤Mε(f, g) ≤ max{f, g}+ ε/2.

6. Mε(f, g) = Mε(g, f).

7. Lip(Mε(f, g)|B ) ≤ max{Lip(f|B ),Lip(g|B )} for every ball B ⊂ U (in particular Mε(f, g) pre-
serves common local Lipschitz constants of f and g).

8. If f, g are strictly convex on a set B ⊆ U , then so is Mε(f, g).
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9. If f1 ≤ f2 and g1 ≤ g2 then Mε(f1, g1) ≤Mε(f2, g2).

We are now ready to prove our results. The norm on X will be denoted by ‖ · ‖.

Proof of Theorem 1.5. Given a continuous convex function f : U → R and ε > 0, we define, for each
n ∈ N,

En = {x ∈ U | f is n-Lipschitz on an open neighbourhood of x}.

It is obvious that En is an open subset of U and En ⊆ En+1 for every n ∈ N. Since f is continuous and
convex, f is locally Lipschitz and then, for every point x ∈ U, there is an open set x ∈ Ux ⊂ U and a
positive integer n for which f is n-Lipschitz on Ux. This proves that U =

⋃∞
n=1En. Now we set

fn : X −→ R
x 7−→ infy∈U{f(y) + n‖x− y‖} ,

n ∈ N.

Claim 1.10. For every n ∈ N, the function fn has the following properties:

(i) fn ≤ f on U.

(ii) fn is n-Lipschitz on X.

(iii) fn is convex on X.

(iv) f = fn on En. In particular, fn = fn+1 on En.

Proof of Claim 1.10. Although the first three statements are well-known facts about infimal convolution
on Banach spaces (see [65] for a survey paper on these topics) we expose their proofs for the reader’s
convenience. The statement (i) is obvious by the definition of fn.

(ii) Given x, z ∈ X and ε > 0 we can find y ∈ U such that fn(z) ≥ f(y) + n‖z − y‖ − ε. This yields

fn(x)− fn(z) ≤ f(y) + n‖x− y‖ − fn(z) ≤ n‖x− y‖ − n‖z − y‖+ ε ≤ n‖x− z‖+ ε.

This shows that fn(x)− fn(z) ≤ n‖x− z‖ and reversing x and z gives |fn(x)− fn(z)| ≤ n‖x− z‖.

(iii) Given x, z ∈ X and ε > 0 we can find points yx, yz ∈ U such that

fn(x) ≥ f(yx) + n‖x− yx‖ − ε and fn(z) ≥ f(yz) + n‖z − yz‖ − ε.

Fix λ ∈ [0, 1]. Since U is convex we have λyx + (1 − λ)yz ∈ U. Using the last inequalities and the
convexity of f, we can write

fn(λx+ (1− λ)z) ≤ f(λyx + (1− λ)yz) + n‖λ(x− yx) + (1− λ)(z − yz)‖
≤ λf(yx) + (1− λ)f(yz) + λn‖x− yx‖+ (1− λ)n‖z − yz‖
≤ λfn(x) + (1− λ)fn(z) + 2ε.

Since ε is arbitrary, the above shows that fn is convex on X.

(iv) We only need to check that f ≤ fn on En. Let x be a point of En and let Ux be an open subset of
U containing x for which f is n-Lipschitz on Ux. Then the function hx : U → R given by

hx(y) = f(y) + n||x− y|| − f(x), for all y ∈ U,

has a local minimum at the point x, where hx(x) = 0. Because f is convex, hx is convex as well and
then this local minimum is in fact a global one, and therefore f(x) ≤ f(y)+n‖x−y‖ for all y ∈ U.
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Since fn is Lipschitz, by assumption, for each n ∈ N we can find a function hn of class Cm(X) and
convex such that

fn −
n−1∑
j=0

ε

2j
≤ hn ≤ fn −

n−2∑
j=0

ε

2j
− ε

2n
on X. (1.2.1)

Note that Claim 1.10 together with the inequalities (1.2.1) yield

f −
n−1∑
j=0

ε

2j
≤ hn on En and hn ≤ f −

n−2∑
j=0

ε

2j
− ε

2n
on U. (1.2.2)

Now, using the smooth maxima of Lemma 1.8, we define a sequence {gn}n≥1 of functions inductively
by setting g1 = h1 and gn = Mε/10n(gn−1, hn), for all n ≥ 2. According to Proposition 1.9, we have
that each gn is convex and of class Cm on X. We also know that

max{gn−1, hn} ≤ gn ≤ max{gn−1, hn}+
ε

10n
on X (1.2.3)

and
gn(x) = max{gn−1(x), hn(x)} whenever |gn−1(x)− hn(x)| ≥ ε

10n
. (1.2.4)

In addition, the sequence {gn}n≥1 satisfies the following properties.

Claim 1.11. For every n ≥ 2, we have

(i) f − ε− ε
2 − · · · −

ε
2n−1 ≤ gn on En.

(ii) gn = gn−1 on En−1.

(iii) gn ≤ f − ε
2 + ε

102
+ · · ·+ ε

10n on U.

Proof of Claim 1.11. Property (i) is an obvious consequence of inequalities (1.2.2) and (1.2.3). The
statement (ii) can be proved as follows. Given x ∈ En−1, we have that fn(x) = fn−1(x) by Claim 1.10.
It is clear from (1.2.3) that gn−1(x) ≥ hn−1(x) and then, using (1.2.1), we obtain

gn−1(x) ≥ hn−1(x) ≥ fn−1(x)−
n−2∑
j=0

ε

2j
= fn(x)−

n−2∑
j=0

ε

2j
≥ hn(x) +

ε

2n
≥ hn(x) +

ε

10n
.

This implies that gn(x) = gn−1(x) by virtue of (1.2.4). We next show (iii) by induction. In the case
n = 2, the functions f, h1, h2 and g1 satisfy

g1 = h1 ≤ f −
ε

2
and h2 ≤ f − ε−

ε

4
on U

thanks to (1.2.2). Since g2 = Mε/102(g1, h2) these inequalities lead us to

g2(x) ≤ max{h2(x), g1(x)}+
ε

102
≤ max

{
f(x)− ε− ε

4
, f(x)− ε

2

}
+

ε

102
= f(x)− ε

2
+

ε

102
.

for every x ∈ U. This proves the statement for n = 2. Now we assume that for an integer n ≥ 2 we have
(iii), and we check that the same holds for n+ 1. Let us fix x ∈ U. From (1.2.3) we have

gn+1(x) ≤ max{hn+1(x), gn(x)}+
ε

10n+1
.

The induction hypothesis and (1.2.2) with n+ 1 in place of n gives the following two inequalities

gn(x) ≤ f(x)− ε

2
+

n∑
j=2

ε

10j
,
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hn+1(x) ≤ f(x)−
n−1∑
j=0

ε

2j
− ε

2n+1
.

Combining the three above inequalities it follows

gn+1(x) ≤ max

f(x)−
n−1∑
j=0

ε

2j
− ε

2n+1
, f(x)− ε

2
+

n∑
j=2

ε

10j

+
ε

10n+1
= f(x)− ε

2
+
n+1∑
j=2

ε

10j
.

and this proves (iii) with n+ 1.

Our approximating function is defined by

g(x) = lim
n→∞

gn(x) for all x ∈ U.

Claim 1.11 tells us that gn+k = gn on each En for all k ≥ 1. It is then clear that g is well defined and
g = gn on En for all n. Thus g coincides on En with a function of class Cm, where each En is an open
subset of U and U =

⋃∞
n=1En. This shows that g is of class Cm on U. Moreover the function g, being

a limit of convex functions, is convex as well. To complete the proof of Theorem 1.5 let us see that
f − 2ε ≤ g ≤ f on U. Indeed, let x ∈ U and take an integer n ≥ 2 for which x ∈ En. Using Claim 1.11
and the fact that gn(x) = g(x) we obtain

f(x)− 2ε ≤ f(x)−
n−1∑
j=0

ε

2j
≤ g(x) ≤ f(x)− ε

2
+

n∑
j=2

ε

10j
≤ f(x).

Therefore f − 2ε ≤ g ≤ f on U.

Proof of Theorem 1.4. Theorem 1.4 actually is a corollary of Theorem 1.5, because a Banach space X
whose dual X∗ is LUR has the approximation property mentioned in the hypotheses of Theorem 1.5 for
the class C1. This can be shown by using the infimal convolutions

fλ(x) = inf
y∈X

{
f(y) +

1

2λ
‖x− y‖2

}
,

where ‖ · ‖ is an equivalent norm in X whose dual norm is LUR. It is well known that if f is convex
and Lipschitz then fλ is C1 smooth and convex, and converges to f uniformly on X , as λ → 0+. For
the smoothness part of this assertion, see [34, Proposition 2.3]. On the other hand, we next offer a
proof of the fact that if f is Lipschitz then fλ converges to f uniformly on X as λ → 0+. Observe
first that in this case the infimum defining fλ(x) can be restricted to the ball B (x, 2λLip(f)); indeed, if
d(x, y) > 2λLip(f) then we have

f(y) +
1

2λ
d(x, y)2 ≥ f(x)− Lip(f)d(x, y) +

1

2λ
d(x, y)2 ≥ f(x) ≥ fλ(x).

Now, one has

0 ≤ f(x)− fλ(x) = f(x)− inf
y∈B(x,2λLip(f))

{
f(y) +

1

2λ
d(x, y)2

}
≤ sup

y∈B(x,2λLip(f))

{
|f(x)− f(y)|+ 1

2λ
d(x, y)2

}
≤ Lip(f) (2λLip(f)) +

(2λLip(f))2

2λ
,

and the last term converges to 0 as λ→ 0+, so the assertion is proved.
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1.3 A characterization of Banach spaces with separable duals

From Theorem 1.4 we will also deduce the following characterization of the class of separable Banach
spaces for which the problem of global approximation of continuous convex functions by C1 convex
functions has a positive solution.

Corollary 1.12. For a separable Banach space X, the following statements are equivalent.

(i) X∗ is separable.

(ii) For every U ⊆ X open and convex, every continuous convex function f : U → R and every real
number ε > 0, there exists g : X → R of class C1(U) and convex such that f − ε ≤ g ≤ f on U.

Proof. (i) =⇒ (ii): If X∗ is separable, it is well known (see [33, Theorem 8.6] for instance) that there
is an equivalent norm in X whose dual norm is LUR on X∗, and therefore by using Theorem 1.4 we
obtain (ii).
(ii) =⇒ (i): Take a convex function ϕ ∈ C1(X) such that

‖x‖ − 1

4
≤ ϕ(x) ≤ ‖x‖ for all x ∈ X.

It is easy to construct a function h ∈ C1(R) such that h(x) = 1 for all x ≤ 0 and h(x) = 0 for all
x ≥ 3/4. Now, if we define the function ψ := h◦ϕ it is obvious that ψ is of class C1(X) with ψ(0) = 1.
We also note that if ‖x‖ ≥ 1, then ϕ(x) ≥ 3/4 and this implies that ψ(x) = 0. This shows that ψ is a
bump function of class C1(X). Because X is separable, and according to [33, Theorem 8.6], the dual
space X∗ is separable too.
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Chapter 2

C1,ω extensions of convex functions in
Hilbert Spaces

Throughout this chapter, by a 1-jet defined on E ⊂ X, where X is a Hilbert space, we will understand a
pair of functions f : E → R and G : E → X.

2.1 The C1,1 and C1,1
conv extension problem for jets

Let us first recall the C1,1 version of the classical Whitney extension theorem, see [71, 46, 64] for
instance.

Theorem 2.1 (C1,1 Whitney-Glaeser Extension Theorem). If E is a subset of Rn and we are given
functions f : E → R, G : E → Rn, then there exists a function F ∈ C1,1(Rn) with F = f on E and
∇F = G on E if and only if the 1-jet (f,G) satisfies the following property: there exists a constant
M > 0 such that

|f(x)− f(y)− 〈G(y), x− y〉| ≤M |x− y|2, and |G(x)−G(y)| ≤M |x− y| (W̃ 1,1)

for all x, y ∈ E.

Let us briefly explain how the extension F of Theorem 2.1 is defined. Observe that if f and G are
as in Theorem 2.1, we can trivially extend (f,G) to the closure E of E so that the inequalities (W̃ 1,1)
hold on E with the same constant M. One of the main ingredients in the construction of the extension F
is the Whitney decomposition of open sets into a suitable family of cubes, which we call Whitney cubes.
Let us gather some of the most important properties of the Whitney decomposition of the set Rn \ E.

Proposition 2.2. There exists a countable family of compact cubes {Qk}k such that if we consider the
corresponding cubes {Q∗k}k with the same center asQk and dilated by the factor 9/8, the families {Qk}k
and {Q∗k}k satisfy the following properties.

1.
⋃
kQk =

⋃
kQ
∗
k = Rn \ E.

2. The interiors of Qk are mutually disjoint.

3. diam(Qk) ≤ d(Qk, E) ≤ 4 diam(Qk) for all k.

4. If two cubes Qk and Qj touch each other, that is ∂Qk ∩ ∂Qj 6= ∅, then diam(Qk) ≈ diam(Qj).

5. If two cubes Q∗k and Q∗j are not disjoint, then diam(Qk) ≈ diam(Qj).

6. Every point of Rn \E is contained in an open neighbourhood which intersects at most N = (12)n

cubes of the family {Q∗k}k.
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Here the notation Aj ≈ Bl means that there exist positive constants γ,Γ, depending only on the
dimension n, such that γAj ≤ Bl ≤ ΓAj for all j, l satisfying the properties specified in each case.
Also, one can associate to the Whitney cubes {Qk, Q∗k}k of Rn \ E an smooth partition of unity {ϕk}k
with the following properties.

Proposition 2.3. There exists a sequence of functions {ϕk}k defined on Rn \ E such that

1. ϕk ∈ C∞(Rn \ E).

2. 0 ≤ ϕk ≤ 1 on Rn \ E and supp(ϕk) ⊆ Q∗k.

3.
∑

k ϕk = 1 on Rn \ E.

4. For every multi-index α there exists a constantAα > 0, depending only on α and on the dimension
n, such that

|∂αϕk(x)| ≤ Aα diam(Qk)
−|α|,

for all x ∈ Rn \ E and for all k. Here ∂αϕk denotes the derivative ∂|α|ϕk
∂x
α1
1 ···∂x

αn
n

for every k and

every multi-index α = (α1, . . . , αn).

A partition of unity {ϕk}k with the above properties is called a Whitney partition of unity. One
can find a detailed exposition of the constructions of Propositions 2.2 and 2.3 in [64, Chapter VI]. The
extension F can be explicitly defined by

F (x) =

{
f(x) if x ∈ E∑

k (f(pk) + 〈G(pk), x− pk〉)ϕk(x) if x ∈ Rn \ E,
(2.1.1)

where each pk is a point of E which minimizes the distance of E to the cube Qk. In [46] it was also
proved that the function F constructed in this way has the property that Lip(∇F ) ≤ k(n)M, where
k(n) is a constant depending only on n (but going to infinity as n → ∞), and Lip(∇F ) denotes the
Lipschitz constant of the gradient∇F .

In [70, 53] it was shown, by very different means, that this C1,1 version of the Whitney extension
theorem holds true if we replace Rn with any Hilbert space and, moreover, there is an extension operator
(f,G) 7→ (F,∇F ) which is minimal, in the following sense. Given a Hilbert spaceX with norm denoted
by ‖ · ‖, a subset E of X , and functions f : E → R, G : E → X , a necessary and sufficient condition
for the 1-jet (f,G) to have a C1,1 extension (F,∇F ) to the whole space X is that

Γ(f,G,E) := sup
x,y∈E

(√
A2
x,y +B2

x,y + |Ax,y|
)
<∞, (2.1.2)

where

Ax,y =
2(f(x)− f(y)) + 〈G(x) +G(y), y − x〉

‖x− y‖2
and

Bx,y =
‖G(x)−G(y)‖
‖x− y‖

for all x, y ∈ E, x 6= y.

Moreover, the extension (F,∇F ) can be taken with best Lipschitz constants, in the sense that

Γ(F,∇F,X) = Γ(f,G,E) = ‖(f,G)‖E ,

where
‖(f,G)‖E := inf{Lip(∇H) : H ∈ C1,1(X) and (H,∇H) = (f,G) on E}

is the trace seminorm of the jet (f,G) on E; see [53] and [54, Lemma 15].
While the operators (f,G) 7→ (F,∇F ) given by the constructions in [53, 54, 70] are not linear,

they have the useful property that, when we put them to work on X = Rn, they satisfy Lip(∇F ) ≤
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η‖(f,G)‖E for some η > 0 independent of n (in fact for η = 1); hence one can say that they are bounded,
with norms independent of the dimension n, provided that we endow C1,1(X) with the seminorm given
by C1,1(X) 3 F 7→ Lip(∇F ) and we equip the space of jets (f,G) with the trace seminorm ‖(f,G)‖E .
In contrast, the Whitney extension operator is linear (see (2.1.1)) and also bounded in this sense, but
with norm going to ∞ as n → ∞. On the negative side, the formulas in [54] depending on Wells’s
construction are more complicated than the proof of [53], which uses Zorn’s lemma and in particular is
not constructive, and the proof of [70] is extremely complicated and not entirely constructive. For more
information about Whitney-type extension theorems for functions or jets, about constructing continuous
linear extension operators with nearly optimal norms, and about extending these results to other spaces
of functions such as Sobolev spaces, see [15, 16, 20, 23, 31, 36, 37, 38, 39, 40, 41, 46, 49, 50, 53, 54, 61,
62, 66, 69] and the references therein.

In this chapter, among other things, we will remedy these drawbacks by providing a very simple,
explicit formula for C1,1 extension of jets in Hilbert spaces: let us say that a jet (f,G) on E ⊂ X
satisfies condition (W 1,1) provided that there exists a number M > 0 such that

f(y) ≤ f(x) +
1

2
〈G(x) +G(y), y − x〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2 (W 1,1)

for all x, y ∈ E. In Proposition 2.8 below we will prove some properties of this condition but what
we can see at first sight is that condition (W 1,1) is equal to Wells’s necessary and sufficient condition
in [70, Theorem 2]. Moreover, (W 1,1) is also absolutely equivalent to (2.1.2) and, in fact, the number
Γ(f,G,E) is the smallest M > 0 for which (f,G) satisfies (W 1,1) with constant M > 0; see [54,
Lemma 15]. And, although condition (W̃ 1,1) was originally stated for the finite dimensional setting, it is
obvious that it makes sense in any Banach space and then we can compare this condition with (W 1,1).

Remark 2.4. Condition (W 1,1) is absolutely equivalent to (W̃ 1,1), in the sense that if (W 1,1) is satisfied
with some constant M > 0, then (W̃ 1,1) is satisfied with constant κM (where κ is an absolute constant
independent of the space X; in particular κ does not depend on the dimension of X), and vice versa.

Proof. Let E be a subset of a Hilbert space X and (f,G) : E → R × X a 1-jet. Given M > 0, let
us momentarily say that (f,G) satisfies the condition (W 1,1

M ) on E if the inequality defining condition
(W 1,1) is satisfied for (f,G) with constant M > 0. Also, given M1,M2 > 0, we will say that (f,G)

satisfies the condition (W̃ 1,1
M1,M2

) on E if the inequalities

|f(y)− f(x)− 〈G(x), y − x〉| ≤M1‖x− y‖2, ‖G(x)−G(y)‖ ≤M2‖x− y‖,

are satisfied for every x, y ∈ E.

We first claim that (W 1,1
M ) implies (W̃ 1,1

M
2
,M

). Indeed, for all x, y ∈ E, we have

f(y) ≤ f(x) +
1

2
〈G(x) +G(y), y − x〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2

and

f(x) ≤ f(y) +
1

2
〈G(y) +G(x), x− y〉+

M

4
‖y − x‖2 − 1

4M
‖G(y)−G(x)‖2.

By summing both inequalities we get ‖G(x) − G(y)‖ ≤ M‖x − y‖. On the other hand, thanks to the
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inequality (W 1,1
M ), we can write

f(y)− f(x)− 〈G(x), y − x〉 ≤ 1

2
〈G(x) +G(y), y − x〉 − 〈G(x), y − x〉

+
M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2

=
1

2
〈G(y)−G(x), y − x〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2

=
M

2
‖x− y‖2 − M

4

(
‖x− y‖2 +

1

M2
‖G(x)−G(y)‖2 − 2〈 1

M
(G(y)−G(x)), y − x〉

)
=
M

2
‖x− y‖2 − M

4

∥∥∥ 1

M
(G(x)−G(y))− (y − x)

∥∥∥2
≤ M

2
‖x− y‖2.

Also, we have

f(x)− f(y)− 〈G(x), x− y〉 ≤ 1

2
〈G(x) +G(y), x− y〉 − 〈G(x), x− y〉

+
M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2

=
1

2
〈G(y)−G(x), x− y〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2

=
M

2
‖x− y‖2 − M

4

(
‖x− y‖2 +

1

M2
‖G(x)−G(y)‖2 − 2〈 1

M
(G(y)−G(x)), x− y〉

)
=
M

2
‖x− y‖2 − M

4

∥∥∥ 1

M
(G(x)−G(y))− (x− y)

∥∥∥2
≤ M

2
‖x− y‖2.

This leads us to
|f(y)− f(x)− 〈G(x), y − x〉| ≤ M

2
‖x− y‖2,

which proves that (f,G) satisfies (W̃ 1,1
M
2
,M

) on E.

Now let us prove that (W̃ 1,1
M1,M2

) implies (W 1,1
M ), where M = (3 +

√
10) max{M1,M2}. Using that

f(y)− f(x)− 〈G(x), y − x〉 ≤M1‖x− y‖2, we can write

f(y)− f(x)− 1

2
〈G(x) +G(y), y − x〉 − M

4
‖x− y‖2 +

1

4M
‖G(x)−G(y)‖2

≤ 〈G(x), y − x〉+M1‖x− y‖2 −
1

2
〈G(x) +G(y), y − x〉 − M

4
‖x− y‖2

=
1

2
〈G(x)−G(y), y − x〉+

(
M1 −

M

4

)
‖x− y‖2 +

1

4M
‖G(x)−G(y)‖2

≤ 1

2
ab+

(
M1 −

M

4

)
a2 +

1

4M
b2,

where a = ‖x−y‖ and b = ‖G(x)−G(y)‖. Since G is M2-Lipschitz, we have the inequality b ≤M2a.
Hence the last term in the above chain of inequalities is smaller than or equal to

(1
2M2 + (M1 − M

4 ) + 1
4MM

2
2 )a2 ≤ (1

2K + (K − M
4 ) + 1

4MK
2)a2,

where K = max{M1,M2}. Then, the last term is smaller than or equal to 0 if and only if −M2 +
6MK +K2 ≤ 0. But, in fact, for M = (3 +

√
10)K the term −M2 + 6MK +K2 is equal to 0. This

proves that (f,G) satisfies (W 1,1
M ) on E.

In Theorem 2.27 below we will show that, for every 1-jet (f,G) defined on E and satisfying the
property (W 1,1) with constant M on E, the formula

F = conv(g)− M
2 ‖ · ‖

2, where (2.1.3)

g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}+ M

2 ‖x‖
2, x ∈ X,
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defines a C1,1(X) function with F = f and ∇F = G on E and Lip(∇F ) ≤ M. Here conv(g) denotes
the convex envelope of g, defined by

conv(g)(x) = sup{h(x) : h is convex, proper and lower semicontinuous, h ≤ g}. (2.1.4)

Another expression for conv(g) is given by

conv(g)(x) = inf


k∑
j=1

λjg(xj) : λj ≥ 0,

k∑
j=1

λj = 1, x =

k∑
j=1

λjxj , k ∈ N

 . (2.1.5)

In the case that X is finite dimensional, say X = Rn, this expression can be made simpler: by using
Carathéodory’s Theorem one can show that it is enough to consider convex combinations of at most n+1
points. That is to say, if g : Rn → R then

conv(g)(x) = inf


n+1∑
j=1

λjg(xj) : λj ≥ 0,
n+1∑
j=1

λj = 1, x =
n+1∑
j=1

λjxj

 ;

see [58, Corollary 17.1.5] for instance.
Let us briefly explain what is the idea behind formula (2.1.3). It is well known that a function

F : X → R is of class C1,1, with Lip(∇F ) = M , if and only if F + M
2 ‖ · ‖

2 is convex and F − M
2 ‖ · ‖

2

is concave. So, if we are given a 1-jet (f,G) defined on E ⊂ X which can be extended to (F,∇F ) with
F ∈ C1,1(X) and Lip(∇F ) ≤M , then the function H = F + M

2 ‖ · ‖
2 will be convex and of class C1,1.

Conversely, if we can find a convex and C1,1 function H such that (H,∇H) is an extension of the jet
E 3 y 7→

(
f(y) + M

2 ‖y‖
2, G(y) +My

)
, then X 3 y 7→

(
H(y)− M

2 ‖y‖
2,∇H(y)−My

)
will be a

C1,1 extension of (f,G). Thus we can reduce the C1,1 extension problem for jets to the C1,1
conv extension

problem for jets. Here C1,1
conv(X) stands for the set of all convex functions ϕ : X → R of class C1,1.

Now, how can we solve the C1,1
conv extension problem for jets? In [13] the following necessary and

sufficient condition for C1,1
conv extension of jets was given: for any E ⊂ Rn, f : E → R, G : E → X, we

say that (f,G) satisfies condition (CW 1,1) on E with constant M > 0, provided that

f(x) ≥ f(y) + 〈G(y), x− y〉+
1

2M
‖G(x)−G(y)‖2 for all x, y ∈ E.

In [13] it is shown that a 1-jet (f,G) has an extension (F,∇F ) with F ∈ C1,1
conv(X) if and only if

(f,G) satisfies (CW 1,1); moreover in this case one can take F ∈ C1,1
conv such that Lip(∇F ) ≤ k(n)M ,

where k(n) is a constant only depending on n. The construction in [13] is explicit, but has the same
disadvantage as the Whitney extension operator has, namely that limn→∞ k(n) =∞. In [10] this result
is extended to the Hilbert space setting, but the proof, inspired by [53], is not constructive as it relies in
Zorn’s Lemma. However, by following the ideas of the proof of [13], but using a simple formula instead
of the Whitney extension theorem, we will show in Theorem 2.11 below that if a 1-jet (f,G) defined on
a subset E of a Hilbert space satisfies condition (CW 1,1) then the function F defined by

F = conv(g), where g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}, x ∈ X, (2.1.6)

is a C1,1 convex function such that F|E = f , (∇F )|E = G, and Lip(∇F ) ≤ M . Moreover, if H is
another C1,1 convex function with H = f and ∇H = G on E and Lip(∇H) ≤ M, then H ≤ F . This
strategy allows us to solve the C1,1

conv extension problem for jets with best constants and, after checking
that if (f,G) satisfies (W 1,1) then

(
f(y) + M

2 ‖y‖
2, G(y) +My

)
satisfies (CW 1,1), also allows us to

show that the expression

F (x) = conv
(
z 7→ inf

y∈E
{f(y) + M

2 ‖y‖
2 + 〈G(y) +My, z − y〉+M‖z − y‖2}

)
(x)− M

2 ‖x‖
2,
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which is clearly equal to (2.1.3), provides an extension formula that solves the minimal C1,1 extension
problem for jets, in the sense that Lip(∇F ) ≤ M . Besides we will also prove that if H is another C1,1

function with H = f and ∇H = G on E and Lip(∇H) ≤ M , then H ≤ F . Since the extension of
(f,G) constructed by Wells in [70] also has this property, it follows that in fact (2.1.3) coincides with
Wells’s extension. The point is of course that both our formula (2.1.3) and the proof are much simpler
than Wells’s construction and proof.

2.2 The C1,ω
conv extension problem for jets

By a modulus of continuity ω we understand a concave and strictly increasing function ω : [0,+∞) →
[0,+∞) such that ω(0) = 0. It is well known that for every uniformly continuous function f : X →
Y between two metric spaces there exists a modulus of continuity ω such that dY (f(x), f(z)) ≤
ω (dX(x, z)) for every x, z ∈ X . Slightly abusing terminology, we will say that a mapping G : X → Y
is uniformly continuous with modulus of continuity ω if there exists M ≥ 0 such that

dY (G(x), G(y)) ≤Mω (dX(x, y))

for all x, y ∈ X . A version of the Whitney Extension Theorem for functions of class C1,ω(Rn), i.e.
functions of class C1 such the their first derivatives are uniformly continuous with modulus of continuity
ω, was proved by G. Glaeser in [46].

Theorem 2.5 (C1,ω Whitney-Glaeser Extension Theorem). If E is a subset of Rn, ω : [0,+∞) →
[0,+∞) is a modulus of continuity and we are given functions f : E → R, G : E → Rn, then there
exists a function F ∈ C1,ω(Rn) with F = f on E and ∇F = G on E if and only if the 1-jet (f,G)
satisfies the following property: there exists a constant M > 0 such that

|f(x)− f(y)−〈G(y), x− y〉| ≤Mω(|x− y|)|x− y|, and |G(x)−G(y)| ≤Mω(|x− y|) (W 1,ω)

for all x, y ∈ E.

The extension F above is defined by means of the expression (2.1.1) and in [46] it was proved that
one can arrange that

sup
x,y∈Rn, x 6=y

|∇F (x)−∇F (y)|
ω(|x− y|)

≤ k(n)M,

where k(n) is a constant only depending on n (but with limn→∞ k(n) = +∞). In [13, Theorem 1.4] we
proved that a necessary and sufficient condition on a 1-jet (f,G) defined on E for having a C1,ω convex
extension F is that

f(x) ≥ f(y) + 〈G(y), x− y〉+ |G(x)−G(y)|ω−1

(
1

2M
|G(x)−G(y)|

)
, x, y ∈ E. (CW 1,ω)

Moreover, we obtained a good control on the modulus of continuity of F in terms of the constant M,
namely,

sup
x,y∈Rn, x 6=y

|∇F (x)−∇F (y)|
ω(|x− y|)

≤ k(n)M, (2.2.1)

where, again, k(n) only depends on the dimension n (but tends to∞ as n goes to∞).

The latent potential in formula (2.1.6), at least in the convex case, is not confined to C1,1 extension
problems in Hilbert spaces. Indeed, in Theorem 2.40 below we will prove, by means of a similar formula,
that if X is a Hilbert space and ω is a modulus of continuity, with ω(∞) = ∞, then the condition
(CW 1,ω) is necessary and sufficient on a 1-jet (f,G) defined on a subset E of a Hilbert space for having
an extension (F,∇F ) such that F : X → R is convex and of class C1,ω, with

sup
x,y∈X,x 6=y

‖∇F (x)−∇F (y)‖
ω(‖x− y‖)

≤ 8M.
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Not only does this provide a new result for the infinite-dimensional case, but also shows that the constants
k(n) of (2.2.1) can be supposed to be independent of the dimension n, at least if ω(∞) = ∞ and in
particular for all of the classes C1,α

conv(Rn). We will provide a detailed exposition of this results in Section
2.8 below.

Of course, Theorem 2.40 (for theC1,ω class) is essentially much more general than Theorem 2.11 (for
the C1,1 class), but we deliberately present these two results in two different sections, for the following
two reasons.

1. In Theorem 2.11 we are able to obtain best possible Lipschitz constants of the gradients of the
extension, whereas in Theorem 2.40 we only get them up to a factor 8.

2. The proof of Theorem 2.40 is more technical and uses some machinery from Convex Analysis,
such as Fenchel conjugates, smoothness and convexity moduli, etc, which could obscure the main
ideas and prevent some readers interested only in the proofs of the C1,1 results from easily under-
standing them.

Unfortunately, it seems very unlikely that one could use this kind of formulas to solve C1,α extension
problems for general (not necessarily convex) 1-jets in Hilbert spaces. The exponent α = 1 is somewhat
miraculous in this respect: even for the simplest case that X = R, it is not true in general that, given
a function f ∈ C1,α(R), there exists a constant C such that f + C| · |1+α is convex, as the following
example shows.

Example 2.6. If 0 < α < 1 and f : R→ R is the function defined by

f(t) =

{
0 if t ≤ 1

−(t− 1)1+α if t ≥ 1,

then f is of class C1,α(R) but there is no constant C > 0 for which f + C| · |1+α is convex.

Proof. The function f is clearly differentiable on R and

f ′(t) =

{
0 if t ≤ 1

−(1 + α)(t− 1)α if t ≥ 1

It is then obvious that f ′ is α-Hölder continuous on R. For any C > 0, the second derivative of the
function f + C| · |1+α at t > 1 is

−(1 + α)α
(
(t− 1)α−1 − Ctα−1

)
,

which tends to−∞ as t→ 1+. This shows that f +C| · |1+α is not convex on a neighbourhood of 1.

Finally, let us mention that when the results presented in Sections 2.3, 2.6 and 2.8 were completed,
a preprint of A. Daniilidis, M. Haddou, E. Le Gruyer and O. Ley [24] concerning the same problem in
Hilbert spaces was made public too. The formula for C1,1

conv extension of 1-jets given in [24] is different
from the formula we provide in this thesis. As these authors show, their formula cannot work for the
Hölder differentiability classes C1,α

conv with α 6= 1. Two advantages of the present approach are the fact
that our formula does work for theses classes, and its simplicity.

2.3 Optimal C1,1 convex extensions of jets by explicit formulas in Hilbert
spaces

Definition 2.7. Given an arbitrary subset E of X, and a 1-jet f : E → R, G : E → X, we will say that
(f,G) satisfies the condition (CW 1,1) on E with constant M > 0, provided that

f(x) ≥ f(y) + 〈G(y), x− y〉+
1

2M
‖G(x)−G(y)‖2 for all x, y ∈ E.
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The following proposition shows that this condition is necessary for a 1-jet to have a C1,1 convex
extension to all of X .

Proposition 2.8. Let f ∈ C1,1(X) be convex, and assume that f is not affine. Then

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 1

2M
‖∇f(x)−∇f(y)‖2

for all x, y ∈ X , where

M = sup
x,y∈X,x 6=y

‖∇f(x)−∇f(y)‖
‖x− y‖

.

On the other hand, if f is affine, it is obvious that (f,∇f) satisfies (CW 1,1) on every E ⊂ X , for every
M > 0.

Proof. Suppose that there exist different points x, y ∈ X such that

f(x)− f(y)− 〈∇f(y), x− y〉 < 1

2M
‖∇f(x)−∇f(y)‖2,

and we will get a contradiction.
Case 1. Assume further that M = 1, f(y) = 0, and ∇f(y) = 0. By convexity this implies f(x) ≥ 0.
Then we have

0 ≤ f(x) <
1

2
‖∇f(x)‖2.

Call a = ‖∇f(x)‖ > 0, b = f(x), set

v = − 1

‖∇f(x)‖
∇f(x),

and define
ϕ(t) = f(x+ tv)

for every t ∈ R. We have ϕ(0) = b, ϕ′(0) = −a, and ϕ′(t) = 〈∇f(x + tv), v〉 is 1-Lipschitz because
so is ∇f and ‖v‖ = 1. This implies that

|ϕ(t)− b+ at| ≤ t2

2

for every t ∈ R+, hence also that

ϕ(t) ≤ −at+ b+
t2

2
for all t ∈ R+.

By assumption we have b < 1
2a

2, and therefore

f (x+ av) = ϕ (a) ≤ −a2 + b+
a2

2
< 0,

which is in contradiction with the assumptions that f is convex, f(y) = 0, and ∇f(y) = 0. This shows
that

f(x) ≥ 1

2
‖∇f(x)‖2.

Case 2. Assume only that M = 1. Define

g(z) = f(z)− f(y)− 〈∇f(y), z − y〉

for every z ∈ X . Then g(y) = 0 and ∇g(y) = 0. By Case 1, we get

g(x) ≥ 1

2
‖∇g(x)‖2,
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and since∇g(x) = ∇f(x)−∇f(y) the Proposition is thus proved in the case when M = 1.
Case 3. In the general case, we may assume M > 0 (the result is trivial for M = 0). Consider ψ = 1

M f ,
which satisfies the assumption of Case 2. Therefore

ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 ≥ 1

2
‖∇ψ(x)−∇ψ(y)‖2,

which is equivalent to the desired inequality.

We will need to use the following characterization of C1,1 differentiability of convex functions. Of
course the result is well known, but we will provide a short proof for completeness, and also in order to
remark that the implication (ii) =⇒ (i) is true for not necessarily convex functions as well, a fact that
we will have to use later on.

Proposition 2.9. For a continuous convex function f : X → R, the following statements are equivalent.

(i) There exists M > 0 such that

f(x+ h) + f(x− h)− 2f(x) ≤M‖h‖2 for all x, h ∈ X.

(ii) f is differentiable on X with Lip(∇f) ≤M.

Proof. First we prove that (ii) implies (i), which is also valid for non-convex functions. Using that
Lip(∇f) ≤M, it follows from Taylor’s theorem that

f(x+ h)− f(x)− 〈∇f(x), h〉 ≤ M

2
‖h‖2.

Similarly we have

f(x− h)− f(x)− 〈∇f(x),−h〉 ≤ M

2
‖h‖2,

and combining both inequalities we get (i).

Now we do assume that f is a convex function and let us show that (i) implies (ii). Since

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

‖h‖
= 0,

for all x ∈ X and f is convex and continuous, f is differentiable onX . In order to prove that Lip(∇f) ≤
M it is enough to see that the function F : X → R defined by F (x) = M

2 ‖x‖
2−f(x), x ∈ X, is convex.

Since f is a continuous function, the convexity of F is equivalent to:

F

(
x+ y

2

)
≤ 1

2F (x) + 1
2F (y) for all x, y ∈ X.

To see this, given x, y ∈ X, we can write

F

(
x+ y

2

)
= 1

2F (x) + 1
2F (y) +

1

2

(
f(x) + f(y)− 2f

(
x+ y

2

)
−M

∥∥∥x− y
2

∥∥∥2
)

Applying (ii) with h = x−y
2 we obtain that

f(x) + f(y)− 2f

(
x+ y

2

)
≤M

∥∥∥x− y
2

∥∥∥2
,

which in turns implies F
(x+y

2

)
≤ 1

2F (x) + 1
2F (y).
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Recall that for a function f : X → R, the convex envelope of f is defined by

conv(f)(x) = sup{φ(x) : φ is convex and lower semicontinuous, φ ≤ f}.

Another expression for conv(f) is:

conv(f)(x) = inf


n∑
j=1

λjf(xj) : λj ≥ 0,
n∑
j=1

λj = 1, x =
n∑
j=1

λjxj , n ∈ N

 .

The following result shows that the operator f 7→ conv(f) not only preserves C1,1 smoothness of func-
tions f and Lipschitz constants of their gradients ∇f , but also that, even for some nondifferentiable
functions f , their convex envelopes conv(f) will be of class C1,1, with best possible constants, provided
that the functions f satisfy suitable one-sided estimates. This is a slight (but very significant for our
purposes) improvement of particular cases of the results in [48], [22, Theorem 7], and [51].

Theorem 2.10. Let X be a Banach space. Suppose that a function f : X → R has a convex, lower
semicontinuous minorant, and satisfies

f(x+ h) + f(x− h)− 2f(x) ≤M‖h‖2 for all x, h ∈ X.

Then ψ := conv(f) is a continuous convex function satisfying the same property. In view of Proposition
2.9, we conclude that ψ is of class C1,1(X), with Lip(∇ψ) ≤ M. In particular, for a function f ∈
C1,1(X), we have that conv(f) ∈ C1,1(X), with Lip(∇ψ) ≤ Lip(∇f).

Proof. The function ψ is well defined as ψ ≤ f and f has a convex, lower semicontinuous minorant.
Now let us check the mentioned inequality. Given x, h ∈ X and ε > 0,we can pick n ∈ N, x1, . . . , xn ∈
X and λ1, . . . , λn > 0 such that

ψ(x) ≥
n∑
i=1

λif(xi)− ε,
n∑
i=1

λi = 1 and
n∑
i=1

λixi = x.

Since x± h =
∑n

i=1 λi(xi ± h), we have ψ(x± h) ≤
∑n

i=1 λif(xi ± h). This leads us to

ψ(x+ h) + ψ(x− h)− 2ψ(x) ≤
n∑
i=1

λi (f(xi + h) + f(xi − h)− 2f(xi)) + 2ε

By the assumption on f, we obtain

f(xi + h) + f(xi − h)− 2f(xi) ≤M‖h‖2 i = 1, . . . , n.

Therefore
ψ(x+ h) + ψ(x− h)− 2ψ(x) ≤M‖h‖2 + 2ε. (2.3.1)

Since ε > 0 is arbitrary, we get the desired inequality. It is clear that ψ, being a supremum of a family
of lower semicontinuous convex functions that are pointwise uniformly bounded (by the function f ), is
convex, proper and lower semicontinuous. And because all lower semicontinuous, proper and convex
functions are continuous at interior points of their domains (see [19, Proposition 4.1.5] for instance), we
also have that ψ is continuous.

Theorem 2.11. Given a 1-jet (f,G) defined on E satisfying property (CW 1,1) with constant M on E,
the formula

F = conv(g), g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}, x ∈ X,

defines a C1,1 convex function such that F|E = f , (∇F )|E = G, and Lip(∇F ) ≤M .
Moreover, if H is another C1,1 convex function with H|E = f , (∇H)|E = G, and Lip(∇H) ≤ M ,

then H ≤ F .
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Proof. We start with a lemma which tells us that the function g lies above every affine function x 7→
f(z) + 〈G(z), x− z〉, z ∈ E.

Lemma 2.12. We have that

f(z) + 〈G(z), x− z〉 ≤ f(y) + 〈G(y), x− y〉+ M
2 ‖x− y‖

2

for every y, z ∈ E, x ∈ X.

Proof. Given y, z ∈ E, x ∈ X, condition (CW 1,1) implies

f(y) + 〈G(y), x− y〉+ M
2 ‖x− y‖

2

≥ f(z) + 〈G(z), y − z〉+ 1
2M ‖G(y)−G(z)‖2 + 〈G(y), x− y〉+ M

2 ‖x− y‖
2

= f(z) + 〈G(z), x− z〉+ 1
2M ‖G(y)−G(z)‖2 + 〈G(z)−G(y), y − x〉+ M

2 ‖x− y‖
2

= f(z) + 〈G(z), x− z〉+ 1
2M ‖G(z)−G(y) +M(y − x)‖2

≥ f(z) + 〈G(z), x− z〉.

Observe that Lemma 2.12 shows that m ≤ g, where g is defined as in Theorem 2.11, and

m(x) := sup
z∈E
{f(z) + 〈G(z), x− z〉}, x ∈ X. (2.3.2)

Bearing in mind the definitions of g and m we then deduce that f ≤ m ≤ g ≤ f on E. Thus g = f
on E. It is worth noting that the function g is not differentiable in general. Nonetheless the function
F = conv(g) is of class C1,1 because, as we next show, g satisfies the one-sided estimate of Theorem
2.10.

Lemma 2.13. We have

g(x+ h) + g(x− h)− 2g(x) ≤M‖h‖2 for all x, h ∈ X.

Proof. Given x, h ∈ X and ε > 0, by definition of g, we can pick y ∈ E with

g(x) ≥ f(y) + 〈G(y), x− y〉+ M
2 ‖x− y‖

2 − ε.

We then have

g(x+ h) + g(x− h)− 2g(x) ≤ f(y) + 〈G(y), x+ h− y〉+ M
2 ‖x+ h− y‖2

+ f(y) + 〈G(y), x− h− y〉+ M
2 ‖x− h− y‖

2

− 2
(
f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2
)

+ 2ε

= M
2

(
‖x+ h− y‖2 + ‖x− h− y‖2 − 2‖x− y‖2

)
+ 2ε

= M‖h‖2 + 2ε.

Since ε is arbitrary, the above chain of inequalities proves our lemma.

By Lemma 2.13 and Theorem 2.10 we then obtain that F = conv(g) is convex and of classC1,1, with
Lip(∇F ) ≤ M. We also note that the function m of (2.3.2), being a supremum of continuous convex
functions, is convex and lower semicontinuous on X. By definition of F, we thus have m ≤ F ≤ g,
where both m and g coincide with f on E. Thus F = f on E.

In order to prove that ∇F coincides with G on E, we use the following well-known criterion for
differentiability of convex functions in Banach spaces, whose proof is presented in this thesis for the
sake of completeness.
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Lemma 2.14. If φ : X → R is convex and lower semicontinuous and ψ : X → R is differentiable at
y ∈ X with φ ≤ ψ, and φ(y) = ψ(y), then φ is differentiable at y, with∇φ(y) = ∇ψ(y).

(This fact can also be phrased as: a convex function φ is differentiable at y if and only if φ is superdif-
ferentiable at y.)

Proof. Using that φ(y) = ψ(y) and φ ≤ ψ on X, the differentiability of ψ at y gives

φ(x)− φ(y)− 〈∇ψ(y), x− y〉
‖x− y‖

≤ ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉
‖x− y‖

→ 0 (2.3.3)

as ‖x− y‖ → 0+. On the other hand, because φ is convex and lower semicontinuous on X, there exists
some ξ ∈ ∂φ(y), that is, the subdifferential of φ at the point y. Assume that ξ 6= ∇ψ(y). Then we must
have for v = ξ−∇ψ(y)

‖ξ−∇ψ(y)‖ and every t > 0 that

φ(y + tv)− φ(y)− t〈∇ψ(y), v〉
t

≥
〈
ξ −∇ψ(y), v

〉
= ‖ξ −∇ψ(y)‖,

where the left sided term tends to 0 as t→ 0 by (2.3.3). This yields ‖ξ −∇ψ(y)‖ ≤ 0, a contradiction.
Thus ξ = ∇ψ(y) and then∇ψ(y) ∈ ∂φ(y), which leads us to

0 ≤ φ(x)− φ(y)− 〈∇ψ(y), x− y〉
‖x− y‖

→ 0

as ‖x− y‖ → 0+ by virtue of (2.3.3). Therefore φ is differentiable at y with ∇φ(y) = ∇ψ(y).

Because m ≤ F on X and F = m on E, where m is convex and lower semicontinuous and F is
differentiable on X, Lemma 2.14 implies that m is differentiable on E with ∇m(x) = ∇F (x) for all
x ∈ E. It is clear, by definition of m, that G(x) ∈ ∂m(x) (denoting the subdifferential of m at x) for
every x ∈ E, and this observation shows that∇F = G on E.

Finally, consider another convex extension H ∈ C1,1(X) of the jet (f,G) with Lip(∇H) ≤ M.
Using Taylor’s theorem and the assumptions on H we have that

H(x) ≤ f(y) + 〈G(y), x− y〉+ M
2 ‖x− y‖

2, x ∈ X, y ∈ E.

Taking the infimum over y ∈ E we get H ≤ g on X. On the other hand, bearing in mind that H is
convex, the definition of the convex envelope of a function implies H = conv(H) ≤ conv(g) = F on
X . This completes the proof of Theorem 2.11.

2.4 Interpolation of arbitrary subsets by boundaries ofC1,1 convex bodies

We can use the above results to solve a geometrical problem concerning characterizations of subsets of
X which can be interpolated by boundaries of C1,1 convex bodies with prescribed unit outer normals. If
C is a subset ofX and we are given a Lipschitz mapN : C → X such that ‖N(y)‖ = 1 for every y ∈ C,
it is natural to ask what conditions on C and N are necessary and sufficient for C to be a subset of the
boundary of a C1,1 convex body V such that N(y) is outwardly normal to ∂V at y for every y ∈ C. This
is equivalent to the following question: given an arbitrary subset C of X and a collection H of affine
hyperplanes of X such that every H ∈ H passes through a point xH ∈ C, what conditions are necessary
and sufficient for the existence of a C1,1 convex hypersurface S in X such that H is tangent to S at xH
for every H ∈ H? We will also solve the same problem in the setting of Hilbert spaces for bounded
convex bodies.

Throughout this section X will denote a Hilbert space, ‖ · ‖ and 〈·, ·〉 will be respectively the norm
and the inner product onX, and SX will be the unit sphere ofX. Let us start by clarifying what we mean
by a C1,1 convex hypersurface. Some authors define them as boundaries of (not necessarily bounded)
convex bodies such that the outer normal is locally Lipschitz; however, we will require the existence of
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a global Lipschitz constant for the outer normal, and therefore we will make a distinction between C1,1

convex hypersurfaces and C1,1
loc convex hypersurfaces.

Recall that a convex body of class Cp is a closed convex set V with nonempty interior such that
its boundary ∂V is a one-codimensional submanifold of X of class Cp. Assuming, without loss of
generality, that 0 ∈ intV , this is equivalent to saying that the Minkowski functional of V , defined by

µV (x) = inf{t > 0 : x ∈ tV },

is a continuous sublinear functional which is of class Cp on X \ µ−1
V (0). This implies the existence of

convex functions ψ : X → R of class Cp(X) such that V = ψ−1(−∞, 1]. Conversely, if V is of this
form and ψ−1(−∞, 1) 6= ∅ then it is clear that V is a Cp convex body. Thus a Cp convex body is simply
a nondegenerate sublevel set of a Cp convex function of class Cp.

Now, a C1,1 convex body in a Hilbert space X can be defined as a C1 convex body V such that the
outer unit normal N : ∂V → SX is Lipschitz. Again this is equivalent to saying that V = ψ−1(−∞, 1]
for some C1 convex function ψ : X → R such that ψ−1(−∞, 1) 6= ∅ and N = ∇ψ/‖∇ψ‖ : ∂V → SX
is Lipschitz. This is the definition we will find most convenient to use.

Definition 2.15. We will say that a closed convex subset V of X is a convex body of class C1,1 if

1. V has nonempty interior.

2. V can be written as a sublevel set ψ−1 ((−∞, 1]) of a C1(X) convex function ψ : X → R such
that∇ψ(x) 6= 0 for every x ∈ ∂V.

3. The outer unit normal nV : ∂V → SX of V defined as

nV (x) =
∇ψ(x)

‖∇ψ(x)‖
, x ∈ ∂V,

is a Lipschitz mapping.

We will say that a subset S of X is a C1,1 convex hypersurface provided that there exists a C1,1 convex
body V in X such that S = ∂V.

The following proposition sums up some elementary properties of smooth convex bodies; in particu-
lar we recall the well-known fact that the definition of nV does not depend on the choice of the function
ψ. If V is closed and convex and such that ∂V is an hypersurface (i.e., a one-codimensional submani-
fold) of class C1, we will say that a vector w is outwardly normal to ∂V at a point x ∈ ∂V if w belongs
to the orthogonal complement of the (vectorial) tangent space of ∂V at x and x+ λw ∈ X \ V for every
λ > 0.

Proposition 2.16. Suppose that ψ : X → R is a convex function of class C1(X) such that ψ(x0) < 1
for some x0 ∈ X and let us denote V = {x ∈ X : ψ(x) ≤ 1}. Then the following is true.

(1) V is closed and convex.

(2) ∂V = {x ∈ X : ψ(x) = 1} and int(V ) = {x ∈ X : ψ(x) < 1}.

(3) V is bounded if and only if ψ is coercive (meaning that lim‖x‖→∞ ψ(x) =∞).

(4) ∇ψ(x) 6= 0 for every x ∈ ∂V.

(5) ∂V is a one-codimensional submanifold of X of class C1 and the (vectorial) tangent space Tx∂V
of ∂V at x is the orthogonal complement of ∇ψ(x). In fact,∇ψ(x) is outwardly normal to ∂V at
x for each x ∈ ∂V.
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(6) If x ∈ X \ V and xV ∈ ∂V is such that ‖x − xV ‖ = d(x, V ), then x − xV is outwardly normal
to ∂V at the point xV . Therefore x− xV is paralell to∇ψ(xV ) and

nV (xV ) =
∇ψ(xV )

‖∇ψ(xV )‖
=

x− xV
‖x− xV ‖

.

In particular, the definition of nV does not depend on the choice of ψ.

(7) V ⊂ {x ∈ X : 〈nV (z), x− z〉 ≤ 0} for every z ∈ ∂V.

Proof.

(1) It follows immediately from the convexity and the continuity of F.

(2) Let us first see that int(V ) = {x ∈ X : ψ(x) < 1}. Indeed, by continuity, {x ∈ X : ψ(x) < 1}
is an open subset contained in V, and then is contained in int(V ). Given any x ∈ int(V ), we can find a
point y ∈ int(V ) such that the line segment [x0, y] is contained in int(V ) and x ∈ (x0, y). The convexity
of ψ implies that, for some λ ∈ (0, 1),

ψ(x) ≤ λψ(x0) + (1− λ)ψ(y) ≤ λψ(x0) + (1− λ) < λ+ (1− λ) = 1,

that is ψ(x) < 1. This proves int(V ) = {x ∈ X : ψ(x) < 1}. It is now clear that

∂V = V \ int(V ) = {x ∈ X : ψ(x) = 1}.

(3) If V is unbounded, we can find a sequence (xk)k ∈ V such that limk ‖xk‖ = ∞ and then
limk ψ(xk) = ∞ by coercivity of ψ. This is a contradiction since ψ(xk) ≤ 1 for every k. Con-
versely, if V is bounded an has a nonempty interior then there exist x0 ∈ X and R, r > 0 such that
B(x0, r) ⊂ V ⊂ B(x0, R). Now, for every x ∈ X \ V , let yx ∈ ∂V denote the unique point of inter-
section of ∂V with the ray {t(x − x0) : t > 0}. If we write yx = ‖yx−x0‖

‖x−x0‖ x +
(

1− ‖yx−x0‖‖x−x0‖

)
x0, the

convexity of ψ leads us to

ψ(yx) ≤ ‖yx − x0‖
‖x− x0‖

ψ(x) +

(
1− ‖yx − x0‖

‖x− x0‖

)
ψ(x0),

which in turn yields
ψ(x)− ψ(x0)

‖x− x0‖
≥ ψ(yx)− ψ(x0)

‖yx − x0‖
≥ 1− ψ(x0)

R
.

This implies that lim‖x‖→∞ ψ(x) because ψ(x0) < 1.

(4) Because int(V ) 6= ∅, by (2) there exists a point x0 ∈ int(V ) with F (x0) < 1. Assume that
∇F (x) = 0 for some x ∈ ∂V. Using again (2), we have ψ(x) = 1 and, since ψ is a convex function, ψ
attains a global minimum at x. Therefore 1 = ψ(x) ≤ ψ(x0) < 1, a contradiction.

(5) We have that 1 is a regular value of ψ by virtue of (4). This shows that ∂V, being the level set
{x ∈ X : ψ(x) = 1} of ψ, is a one-codimensional submanifold of class C1. It is well known that, in
this case, the tangent space Tx∂V of ∂V at x is the orthogonal complement of∇ψ(x). Finally, let us see
that for every x ∈ ∂V, ∇ψ(x) is outwardly normal to V at the point x. Indeed, assume that there is some
λ > 0 with z + λ∇ψ(x) ∈ V. The convexity of ψ implies that

ψ(x+ λ∇ψ(x))− ψ(x) ≥ 〈∇ψ(x), x+ λ∇ψ(x)− x〉 = λ‖∇ψ(x)‖2 > 0,

that is ψ(x+ λ∇ψ(x)) > ψ(x) = 1, which is absurd.

(6) BecauseX is a Hilbert space, given x ∈ X \V we can find a unique xV ∈ ∂V such that ‖x−xV ‖ =
d(x, V ). In order to see that x− xV is orthogonal to TxV ∂V, let us define the function f(p) = ‖x− p‖2
for all p ∈ X. It is obvious that f is of class C∞(X) with f(p) ≥ f(xV ) for all p ∈ C. Let u ∈ TxV ∂V
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and α : (−r, r) → ∂V be a curve in ∂V such that α(0) = xV and α′(0) = u. The function g = f ◦ α :
(−r, r)→ R is of class C∞ and g(0) ≤ g(t) for every t ∈ (−r, r). Hence

0 = g′(0) = 〈∇f(α(0)), α′(0)〉 = 〈∇f(xV ), u〉 = 2〈x− xV , u〉.

Since u is arbitrary in TxV ∂V, the above proves that x − xV ∈ [TxV ∂V ]⊥. Besides, it is clear that
xV + λ(x− xV ) is outside V for every λ > 0. We have thus shown that x− xV is outwardly normal to
∂V at x. Finally, since TxV ∂V is a one-codimensional subspace of X, the vectors x− xV and ∇ψ(xV )
are necessarily paralell and because both x− xV and ∇ψ(xV ) are outwardly normal, we must have

nV (xV ) =
∇ψ(xV )

‖∇ψ(xV )‖
=

x− xV
‖x− xV ‖

.

(7) If z ∈ ∂V and x ∈ X is such that 〈nV (z), x− z〉 > 0, using (2) and (6) we obtain

ψ(x) ≥ ψ(z) + 〈∇ψ(z), x− z〉 = 1 + ‖∇ψ(z)‖〈nV (z), x− z〉 > 1.

This shows that x ∈ X \ V.

2.4.1 The oriented distance function to convex subsets

We will make intensive use of the oriented distance function associated with convex subsets in the proof
of our interpolation result.

Definition 2.17. Given a subset A of X with nonempty boundary, the oriented distance of A is the
function bA : X → R defined by

bA(x) =


d(x,A) if x ∈ X \A

0 if x ∈ ∂A
−d(x, ∂A) if x ∈ int(A).

Let us gather some properties concercing the convexity and smoothness of the oriented distance
function to convex bodies of class C1 or C1,1 as well as its relation with the outer unit normal. Most of
the statements of the following lemma are consequences of the results by M. C. Delfour and J. P. Zolesio
[25] in the case when X = Rn. However, we are going to present a detailed proof of these properties
because we have not been able to find any reference for the infinite dimensional setting and the proofs in
[25] cannot be easily adapted. For the sake of simplicity we will write dA instead of d(·, A) to refer the
distance to any closed subset A of X. For any point x ∈ X and any closed subset A, we will say that
the distances dA(x) or bA(x) are attained at x if the infimum/supremum defining dA or bA is attained.
Finally, for every x ∈ X and every closed subset A such that the distance dA(x) is attained at a unique
point of A, we will denote by PA(x) the mentioned point.

Lemma 2.18. Let V a closed convex subset of X. The following properties are satisfied for bV .

(1) bV is 1-Lipschitz on X.

(2) For every x ∈ X, the distance dV (x) is attained at a unique point PV (x) ∈ V, with PV (x) =
P∂V (x) whenever x ∈ X \ V, the mapping X 3 x 7→ PV (x) ∈ V is 1-Lipschitz and bV is
differentiable at every x ∈ X \ V , with∇bV (x) = ∇dV (x) = dV (x)−1(x− P∂V (x)). Moreover,
for every r > 0, the function ∇bV is Lipschitz on V +

r := {x ∈ X : d(x, V ) ≥ r} and
Lip(∇bV , V +

r ) ≤ 2r−1.

(3) The mapping d2
V : X → R is of class C1,1(X), with ∇d2

V (x) = 2(x − P∂V (x)) for every
x ∈ X \ V, ∇d2

V (x) = 0 for every x ∈ V and Lip(∇d2
V ) ≤ 2.

If we further assume that V is a convex body of class C1,1 and nV is as in Definition 2.15 then we have



44 Chapter 2. C1,ω extensions of convex functions in Hilbert Spaces

(4) If x ∈ int(V ) is such that d∂V (x) < Lip(nV )−1, the distance d∂V (x) is attained.

(5) For every x ∈ X and every y ∈ ∂V such that ‖x−y‖ = d∂V (x) we have that x−y = bV (x)nV (y).
Conversely, if y ∈ ∂V is such that x− y = bV (x)nV (y), then ‖x− y‖ = d∂V (x).

(6) If x ∈ X is such that d∂V (x) < Lip(nV )−1, then the distance d∂V (x) is attained at a unique
point, which we denote by P∂V (x). Moreover, for every ε ∈ (0, 1), the mapping P∂V is Lipschitz
on

Uε := {z ∈ X : d∂V (z) ≤ (1− ε) Lip(nV )−1},

with Lip(P∂V , Uε) ≤ 2ε−1.

(7) bV is differentiable on the set U := d−1
∂V

(
[0,Lip(nV )−1)

)
with ∇bV = nV ◦ P∂V . In particular

∇bV = nV on ∂V. Moreover,∇bV is Lipschitz on each Uε, with Lip(∇bV , Uε) ≤ 2ε−1 Lip(nV ).

(8) On the set U+ := b−1
V

(
(−Lip(nV )−1,+∞)

)
the function bV is differentiable, with ∇bV (x) =

x−P∂V (x)
bV (x) = nV (P∂V (x)) for every x ∈ U+. Moreover, for every ε ∈ (0, 1), ∇bV is Lipschitz on

U+
ε := b−1

V

(
[−(1− ε) Lip(nV )−1,+∞)

)
, with Lip(∇bV , U+

ε ) ≤ 2ε−1 Lip(nV ).

(9) bV is convex on X.

Proof.

(1) The distance function to any closed subset is 1-Lipschitz. Hence bV is 1-Lipschitz by definition.

(2) By the convexity of V and the strict convexity of the norm ‖ · ‖, for every x ∈ X \ V, the distance
bV (x) = dV (x) is attained at a unique point P∂V (x) ∈ ∂V and the mappings X \ V 3 x → P∂V (x) ∈
∂V, X \V 3 x→ x−P∂V (x) ∈ X are 1-Lipschitz. Moreover we know that dV is differentiable at every
x ∈ X \ V with ∇bV (x) = ∇dV (x) = x−P∂V (x)

dV (x) . In addition, given r > 0 and two points x, y ∈ V +
r

we can write, using that dV and P∂V are 1-Lipschitz on X,

‖∇bV (x)−∇bV (y)‖

=
∥∥∥x− P∂V (x)

dV (x)
− y − P∂V (y)

dV (y)

∥∥∥ =
‖(x− P∂V (x))dV (y)− (y − P∂V (y))dV (x)‖

dV (x)dV (y)

≤ ‖(x− y) + (P∂V (y)− P∂V (x))‖
dV (x)

+
‖(dV (y)− dV (x))(y − P∂V (y))‖

dV (x)dV (y)

≤ ‖x− y‖
dV (x)

+
|dV (y)− dV (x)|

dV (x)
≤ 2‖x− y‖

dV (x)
≤ 2r−1‖x− y‖.

(3) We immediately obtain from (2) that d2
V is differentiable on X \ V with∇d2

V (x) = 2(x− P∂V (x))
for every x ∈ X \ V. In order to see that d2

V is differentiable on V, let x0 ∈ V and write

lim
x→x0

d2
V (x)

‖x− x0‖
= lim

x→x0

‖x− PV (x)‖2

‖x− x0‖
≤ lim

x→x0

‖x− x0‖2

‖x− x0‖
= 0,

which shows that ∇b2V (x0) = 0. Finally, for every x, h ∈ X, we can find y ∈ V such that dV (x) =
‖x− y‖ and then

d2
V (x+ h) + d2

V (x− h)− 2d2
V (x) ≤ ‖x+ h− y‖2 + ‖x− h− y‖2 − 2‖x− y‖2 = 2‖h‖2.

We obtain from Proposition 2.9 that d2
V is of class C1,1(X) and Lip(d2

V ) ≤ 2.

(4) Given x0 ∈ int(V ) and r := d∂V (x0) < Lip(nV )−1, we can find a sequence (zn)n in ∂V such that
limn ‖zn − x0‖ = r. If we set xn := zn − rnV (zn), we claim that (xn)n converges to x0. Indeed, if n
is large enough so that r > 1

n , the point x0 + (r − 1
n)nV (zn) belongs to the interior of the ball B(x0, r)

and then x0 + (r − 1
n)nV (zn) ∈ V. Hence, by Proposition 2.16 (7), we have that〈

nV (zn), x0 + (r − 1
n)nV (zn)− zn

〉
≤ 0.
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This allows us to write

‖xn − x0‖2 = ‖zn − x0 − rnV (zn)‖2 = ‖zn − x0‖2 + r2‖nV (zn)‖2 + 2r
〈
nV (zn), x0 − zn

〉
= ‖zn − x0‖2 + r2 + 2r

〈
nV (zn), x0 + (r − 1

n)nV (zn)− zn
〉
− 2r

〈
nV (zn), (r − 1

n)nV (zn)
〉

≤ ‖zn − x0‖2 + r2 − 2r
〈
nV (zn), (r − 1

n)nV (zn)
〉

= ‖zn − x0‖2 + r2 − 2r(r − 1
n).

The last term tends to r2 + r2 − 2r2 = 0 as n → ∞. This shows that limn ‖xn − x0‖ = 0. Now, since
nV is Lipschitz we can write, for every n,m ∈ N,

‖zn − zm‖ = ‖xn + rnV (zn)− xm + rnV (zm)‖ ≤ ‖xn − xm‖+ r Lip(nV )‖zn − zm‖.

This leads us to
(1− r Lip(nV ))‖zn − zm‖ ≤ ‖xn − xm‖, n,m ∈ N,

which shows that (zn)n is a Cauchy sequence because so is (xn)n and r < Lip(nV )−1. Thus there exists
some z0 ∈ ∂V with d∂V (x0) = limn ‖zn − x0‖ = ‖z0 − x0‖.
(5) Let ψ be as in Definition 2.15. If x ∈ X \ V, we know that the distance is attained at a unique point
P∂V (x) by (2). According to Proposition 2.16, the vectors ∇ψ(P∂V (x)) and x − P∂V (x) are paralell
and outwardly normal to ∂V at P∂V (x) and

nV (P∂V (x)) =
∇ψ(P∂V (x))

‖∇ψ(P∂V (x))‖
=

x− P∂V (x)

‖x− P∂V (x)‖
=
x− P∂V (x)

bV (x)
,

which proves the assertion for points x ∈ X \ V. Now, consider points x ∈ int(V ) and y ∈ ∂V such
that ‖x − y‖ = d∂V (x). The function h : X → R defined by h(p) = ‖p − x‖2, for every p ∈ X, is of
class C∞. Given any u in the tangent space Ty∂V of ∂V at y we consider a curve α : (−ε, ε) → ∂V
of class C1 such that α(0) = y and α′(0) = u and set g = h ◦ α, which is C1 on (−ε, ε). Since
g(0) = ‖x− y‖ = d∂V (x), we must have g(t) ≥ g(0) for every t ∈ (−ε, ε) and then

0 = g′(0) = 〈∇h(α(0)), α′(0)〉 = 〈∇h(y), u〉 = 2〈y − x, u〉.

Because u is arbitrary on Ty∂V, this shows that x − y belongs to the orthogonal complement of Ty∂V,
which coincides with the line generated by nV (y) thanks to Proposition 2.16. Hence x − y is paralell
to nV (y) and then x − y = βnV (y) for some β. We have that both y − x and nV (y) are outwardly
normal to ∂V at y, and then it is clear that β < 0 and β = −‖x − y‖ = −d∂V (x) = bV (x). Therefore
x − y = bV (x)nV (y). Conversely, if y ∈ ∂V is such that x − y = bV (x)nV (y), it is obvious that
‖x− y‖ = d∂V (x) because ‖nV (y)‖ = 1.

(6) Let x be a point with d∂V (x) < Lip(nV )−1, or equivalently |bV (x)| < Lip(nV )−1. We know
from (4) that the distance d∂V (x) is attained at some y ∈ ∂V. Assume that there are different points
y1, y2 ∈ ∂V such that d∂V (x) = ‖x− y1‖ = ‖x− y2‖. It then follows from (5) that

x− y1 = bV (x)nV (y1), x− y2 = bV (x)nV (y2)

and substracting both equations we get y1 − y2 = bV (x) (nV (y2)− nV (y1)) . This implies that

‖y1 − y2‖ ≤ |bV (x)|‖nV (y2)− nV (y1)‖ ≤ |bV (x)|Lip(nV )‖y1 − y2‖ < ‖y1 − y2‖,

a contradiction. Therefore, the point y is the unique y for which we have ‖x − y‖ = d∂V (x). In
order to see that P∂V is Lipschitz on each Uε, let z1 and z2 be two points in Uε, and write P∂V (zi) =
zi − bV (zi)nV (P∂V (zi)) for i = 1, 2. It follows that

‖P∂V (z1)− P∂V (z2)‖
≤ ‖z1 − z2‖+ |bV (z1)− bV (z2)|‖nV (P∂V (z1))‖+ |bV (z2)|‖nV (P∂V (z1))− nV (P∂V (z2))‖
≤ ‖z1 − z2‖+ ‖z1 − z2‖+ (1− ε) Lip(nV )−1 Lip(nV )‖P∂V (z1)− P∂V (z2)‖.

In consequence, ‖P∂V (z1)− P∂V (z2)‖ ≤ 2ε−1‖z1 − z2‖.
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(7) By (6) the distance d∂V is attained at a unique point with continuous projection on U. By [57,
Theorem 4.1] we obtain that d∂V is differentiable at every x ∈ U \ ∂V with ∇d∂V (x) = x−P∂V (x)

d∂V (x) ; see
[30, Theorem 4.18, pg. 62] for an easier proof of this fact in the finite-dimensional setting. That is, bV is
differentiable on U \ ∂V and ∇bV (x) = x−P∂V (x)

bV (x) = nV (P∂V (x)) for every x ∈ U \ ∂V. In addition,

‖∇bV (x)−∇bV (y)‖ ≤ Lip(nV ) Lip(P∂V )‖x− y‖ ≤ 2ε−1 Lip(nV )‖x− y‖

for every x, y ∈ Uε \ ∂V. Now assume that x ∈ ∂V and let ε > 0. Because ‖nV (x)‖ = 1 and the norm
‖ · ‖ on X is differentiable at nV (x) with gradient equal to nV (x), there exists δ > 0 such that

‖y + nV (x)‖ − 1− 〈nV (x), y〉 ≤ ε

2
‖y‖, whenever ‖y‖ ≤ δ. (2.4.1)

By (6), the function nV ◦ P∂V is 2r−1 Lip(nV )-Lipschitz on Ur, for every r > 0. Assume that h ∈ X
satisfies

0 < ‖h‖ < min{δ, δ Lip(nV )−1, εδ2 Lip(nV ◦ P∂V , U1−δ−1‖h‖Lip(nV ))
−1}. (2.4.2)

We claim that x − tnV (x) ∈ int(V ) whenever 0 < t ≤ Lip(nV )−1. Indeed, otherwise we would have
that x − tnV (x) ∈ ∂V for some t ∈ (0,Lip(nV )−1] and then, by convexity and differentiability of ψ,
(this function ψ is as in Definition 2.15)

0 = ψ(x)− ψ(x− tnV (x))

≥
〈
∇ψ(x− tnV (x)), tnV (x)

〉
= t‖∇ψ(x− tnV (x))‖

〈
nV (x− tnV (x)), nV (x)

〉
=
t

2
‖∇ψ(x− tnV (x))‖

(
‖nV (x− tnV (x))‖2 + ‖nV (x)‖2 − ‖nV (x− tnV (x))− nV (x)‖2

)
≥ t

2
‖∇ψ(x− tnV (x))‖(2− Lip2(nV )t2) ≥ t

2
‖∇ψ(x− tnV (x))‖.

Since x − tnV (x) ∈ ∂V, we have that t‖∇ψ(x − tnV (x))‖ > 0, and the above chain of inequalities
yields a contradiction. Hence, if we set t = δ−1‖h‖, it follows that t < Lip(nV )−1 by (2.4.2) and then
x − tnV (x) ∈ int(V ) by the above claim. Moreover, if we denote r = 1 − tLip(nV ), the segment
(x, x − tnV (x)] lies on the region Ur, where bV is differentiable with derivative equal to nV ◦ P∂V , a
Lipschitz function. Thus we can write

bV (x− tnV (x))− bV (x) + t =

∫ 1

0

〈
∇bV (x− st nV (x))− nV (x),−tnV (x)

〉
ds

≤
∫ 1

0

〈
(nV ◦ P∂V ) (x− st nV (x))− nV (x),−tnV (x)

〉
ds ≤ 1

2 Lip(nV ◦ P∂V , Ur)t2.

Using (2.4.2), the above shows that

bV (x−tnV (x))−bV (x)+t ≤ 1
2 Lip(nV ◦P∂V , Ur)t2 = 1

2 Lip(nV ◦P∂V , Ur)δ−2‖h‖2 ≤ ε

2
‖h‖. (2.4.3)

The facts that bV is 1-Lipschitz and ‖t−1h‖ = δ, together with (2.4.3) and (2.4.1) allow us to write

bV (x+ h)− bV (x)− 〈nV (x), h〉
= bV (x+ h)− bV (x− tnV (x)) + bV (x− tnV (x))− bV (x)− 〈nV (x), h〉

≤ ‖h+ tnV (x)‖ − t− 〈nV (x), h〉+
ε

2
‖h‖ = t

(
‖t−1h+ nV (x)‖ − 1− 〈nV (x), t−1h〉

)
+
ε

2
‖h‖

≤ εt

2
‖t−1h‖+

ε

2
‖h‖ = ε‖h‖.

On the other hand, because x + nV (x) is outside V, we have bV (x + nV (x)) = dV (x + nV (x)) = 1.
Since ‖h‖ ≤ δ by virtue of (2.4.2), we obtain, using that bV is 1-Lipschitz together with (2.4.1), that

bV (x+ h)− bV (x)− 〈nV (x), h〉
= bV (x+ h)− bV (x+ nV (x)) + bV (x+ nV (x))− bV (x)− 〈nV (x), h〉

≥ −‖h− nV (x)‖+ 1− 〈nV (x), h〉 = − (‖ − h+ nV (x)‖ − 1− 〈nV (x),−h〉) ≥ −ε
2
‖h‖.
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In conclusion

|bV (x+ h)− bV (x)− 〈nV (x), h〉|
‖h‖

≤ ε whenever ‖h‖ satisfies (2.4.2),

that is, bV is differentiable at x with ∇bV (x) = nV (x). We thus have the formula ∇bV = nV ◦ P∂V on
U, which proves that∇bV is 2ε−1 Lip(nV )-Lipschitz on Uε for every ε ∈ (0, 1).

(8) Combining (2) and (7), we obtain that bV is differentiable on U+ with∇bV = nV ◦P∂V on U+ and
Lip(∇bV , U+

ε ) ≤ 2ε−1 Lip(nV ) for every ε ∈ (0, 1).

(9) Outside V we have that bV = dV , and dV is convex on X. Indeed, given x, y ∈ X \ V, λ ∈ [0, 1]
and zλ = λx+ (1− λ)y, the point λPV (x) + (1− λ)PV (y) belongs to V by convexity and then

dV (zλ) ≤ ‖z − (λPV (x) + (1− λ)PV (y)) ‖
≤ λ‖x− PV (x)‖+ (1− λ)‖y − PV (y)‖ ≤ λdV (x) + (1− λ)dV (y).

Hence bV is convex on any line segment contained in X \ intV . Let us now see that bV is convex on
int(V ). If [x, y] is a line segment contained in int(V ) and

zλ := (1− λ)x+ λy, λ ∈ [0, 1],

is a point of [x, y], for every ε > 0 we can find a point pλ ∈ ∂V such that

‖zλ − pλ‖ ≤ d(zλ, ∂V ) + ε = −bV (zλ) + ε.

Let Wλ denote the tangent hyperplane to ∂V at pλ; since V is convex we have that Wλ ∩ intV = ∅.
Then, if px and py denote the orthogonal projections of x and y onto Wλ, we have px, py ∈ X \ V , and
therefore

d(x, ∂V ) ≤ ‖x− px‖ and d(y, ∂V ) ≤ ‖y − py‖.

On the other hand, the function

[0, 1] 3 t 7→ d ((1− t)x+ ty,Wλ) ,

being the orthogonal projection onto an affine hyperplane, is obviously affine, so we have

−bV (zλ) + ε ≥ ‖zλ − pλ‖ ≥ d(zλ,Wλ) = (1− λ)d(x,Wλ) + λd(y,Wλ)

= (1− λ)‖x− px‖+ λ‖y − py‖ ≥ (1− λ)d(x, ∂V ) + λd(y, ∂V ) = −(1− λ)bV (x)− λbV (y),

that is to say,
bV ((1− λ)x+ λy) = bV (zλ) ≤ (1− λ)bV (x) + λbV (y) + ε.

Letting ε → 0+, the above shows that bV is convex on intV , and by continuity it follows that bV is
convex on V . Finally, if x ∈ X \ V and y ∈ intV , hence the line segment [x, y] is transversal to ∂V ,
we may write [x, y] = [x, z] ∪ [z, y], where z ∈ ∂V, [x, z] ⊂ X \ intV and [z, y] ⊂ V . Consider the
function ϕ : [0, 1] → R defined by ϕ(t) = bV ((1− t)x+ ty), and let t0 ∈ (0, 1) be the number such
that z = (1− t0)x+ t0y. We know that ϕ is convex on [0, t0], and ϕ is convex on [t0, 1] as well. Besides
ϕ is differentiable at t0 because bV is differentiable on a neighbourhood of ∂V by (7). Hence ϕ is convex
on [0, 1]. It follows that bV is convex on [x, y]. Therefore bV is convex on X .

2.4.2 An interpolation theorem for C1,1 convex hypersurfaces

We are now ready to formulate and prove the announced characterization of those subsets which can be
interpolated by boundaries of C1,1 convex bodies, see Definition 2.15.
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Definition 2.19. Given a subset C of X and a mapping N : C → SX , we will say that N satisfies
condition (KW1,1) on C provided that

〈N(y), y − x〉 ≥ δ‖N(y)−N(x)‖2 for all x, y ∈ C, (KW1,1)

for some δ > 0.

If V is a convex body of class C1,1 and u ∈ SX , we will say that u is outwardly normal to ∂V at
y ∈ ∂V if u coincides with the outer unit normal nV (y) of V at y.

Theorem 2.20. Let C be a subset of X , and let N : C → SX be a mapping. Then the following
statements are equivalent.

1. There exists a C1,1 convex body V such that C ⊆ ∂V and N(y) is outwardly normal to ∂V at y
for every y ∈ C.

2. N satisfies condition (KW1,1) on C for some δ > 0.

Moreover, if we further assume that C is bounded then V can be taken bounded as well.

Proof.

(2) =⇒ (1): Let us assume that N : C → SX satisfies (KW1,1) on C. Consider the sets

E0 = {x = z − 2δN(z) : z ∈ C}, E = C ∪ E0.

We claim that E0 and C are disjoint. Indeed, if there exists z ∈ C such that z′ = z − 2δN(z) ∈ C, then
z′ − z = −2δN(z) and condition (KW1,1) leads us to

−2δ〈N(z′), N(z)〉 = 〈N(z′), z′ − z〉 ≥ δ‖N(z)−N(z′)‖2 = −2δ〈N(z′), N(z)〉+ 2δ,

a contradiction. Assuming δ < 1 (which we can clearly do) let us define a 1-jet (f,G) on C by

f(y) =

{
1 if y ∈ C

1− δ if y ∈ E0,
and G(y) =

{
N(y) if y ∈ C

0 if y ∈ E0.

Let us check that (f,G) satisfies condition (CW 1,1) on E. Given x, y ∈ C we have

f(x)− f(y)− 〈G(y), x− y〉 − δ‖G(x)−G(y)‖2 = 〈N(y), y − x〉 − δ‖N(x)−N(y)‖2,

and the above term is nonnegative thanks to condition (KW1,1). If x, y ∈ E0, then

f(x)− f(y)− 〈G(y), x− y〉 − δ‖G(x)−G(y)‖2 = 0.

In the case when x ∈ C and y ∈ E0 we have

f(x)− f(y)− 〈G(y), x− y〉 − δ‖G(x)−G(y)‖2 = δ − δ‖N(x)‖2 = 0.

If both x, y belong to E0, we can write x = z − 2δN(z) for some z ∈ C and, by condition (KW1,1),

f(x)− f(y)− 〈G(y), x− y〉 − δ‖G(x)−G(y)‖2 = −2δ − 〈N(y), x− y〉
= −2δ − 〈N(y), z − 2δN(z)− y〉 ≥ −2δ + 2δ〈N(y), N(z)〉+ δ‖N(z)−N(y)‖2 = 0.

Thus (f,G) satisfies condition (CW 1,1) on E = C ∪ E0 and we can use Theorem 2.11 in order to find
a convex function F ∈ C1,1(X) such that (F,∇F ) = (f,G) on E. Observe that F ≥ 1 − δ on X by
convexity. For the set A = co(E), the closed convex hull of E, let us define

ψ = F + d(·, A)2 on X. (2.4.4)
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Since A is closed and convex, d(·, A)2 is a C1,1 convex function on X by virtue of Lemma 2.18 (3).
Thus, the function ψ is convex and of class C1,1 with ψ = F and ∇ψ = ∇F on A. Let us define
V = ψ−1((−∞, 1]). Because ψ = F = 1 − δ < 1 on E0, Proposition 2.16 says that V is closed and
convex, with E0 ⊂ int(V ) and ∂V = ψ−1(1). In particular, V has nonempty interior. Also, we have
C ⊂ ∂V because ψ = F = 1 on C. In order to prove that V is a C1,1 convex body it only remains to
check that the outer unit normal nV of V is Lipschitz on ∂V. To this purpose, we need to see first that
inf∂V ‖∇ψ‖ > 0. For every x ∈ X,we can find z ∈ co(E0∪C) such that d(x,A)+δ ≥ ‖x−z‖.We can
write z =

∑m
i=1 λizi +

∑n
i=m+1 λizi, where z1, . . . , zm ∈ C, zm+1, . . . , zn ∈ E0, and λ1, . . . , λn ≥

0,
∑n

i=1 λi = 1. And for each zi, i = 1, . . . ,m, we can take yi := zi − 2δN(zi) ∈ E0 satisfying
‖yi− zi‖ = 2δ. The point y :=

∑m
i=1 λiyi +

∑n
i=m+1 λizi belongs to the convex hull co(E0) of E0 and

then ψ(y) = F (y) ≤ 1− δ by convexity of F (recall that F = 1− δ on E0). We thus have

‖z − y‖ =

∥∥∥∥ m∑
i=1

λi(zi − yi)
∥∥∥∥ ≤ 2δ

m∑
i=1

λi ≤ 2δ

n∑
i=1

λi = 2δ.

This proves that ‖x − y‖ ≤ ‖x − z‖ + ‖z − y‖ ≤ d(x,A) + 3δ. Now, if x ∈ ∂V, we have that
ψ(x) = F (x) + d(x,A)2 = 1 and then d(x,A) ≤ 1 because F ≥ 0 on X. If y is as above then
ψ(y) = F (y) ≤ 1− δ and ‖x− y‖ ≤ 1 + 3δ. The convexity of F yields

‖∇ψ(x)‖‖x− y‖ ≥ 〈∇ψ(x), x− y〉 ≥ ψ(x)− ψ(y) = δ,

which implies ‖∇ψ(x)‖ ≥ δ
1+3δ . The outer unit normal nV of ∂V is given by

nV (x) =
∇ψ(x)

‖∇ψ(x)‖
, x ∈ ∂V,

and the fact that inf∂V ‖∇ψ‖ > 0 allows us to prove that nV is Lipschitz on ∂V. Indeed, given x, y ∈ ∂V,
we can write

‖nV (x)− nV (y)‖ =

∥∥∥∥ ∇ψ(x)

‖∇ψ(x)‖
− ∇ψ(y)

‖∇ψ(y)‖

∥∥∥∥ =

∥∥∥‖∇ψ(y)‖∇ψ(x)− ‖∇ψ(x)‖∇ψ(y)
∥∥∥

‖∇ψ(x)‖‖∇ψ(y)‖

=

∥∥∥ (‖∇ψ(y)‖ − ‖∇ψ(x)‖)∇ψ(x) + ‖∇ψ(x)‖ (∇ψ(x)−∇ψ(y))
∥∥∥

‖∇ψ(x)‖‖∇ψ(y)‖

≤ ‖∇ψ(x)−∇ψ(y)‖
‖∇ψ(y)‖

+
‖∇ψ(x)−∇ψ(y)‖

‖∇ψ(y)‖
=

2‖∇ψ(x)−∇ψ(y)‖
‖∇ψ(y)‖

.

If m denotes the number inf∂V ‖∇ψ‖, the preceding chain of inequalities and the fact that ∇ψ is Lips-
chitz lead us to

‖nV (x)− nV (y)‖ ≤ 2‖∇ψ(x)−∇ψ(y)‖
‖∇ψ(y)‖

≤ 2m−1‖∇ψ(x)−∇ψ(y)‖ ≤ 2m−1 Lip(∇ψ)‖x− y‖

for every x, y ∈ ∂V. Finally, if x ∈ C, then ∇ψ(x) = ∇F (x) = N(x), that is N = nV on C.

In addition, let us see that if C is bounded, the convex body V is also bounded. Indeed, the sets E0

and A = co(E0 ∪ C) are bounded because so is C and because ‖N‖ = 1. Thus the distance d2(·, A) is
coercive, that is, lim‖x‖→∞ d

2(x,A) = +∞. Since F is bounded below by 1 − δ on X, the function ψ
of (2.4.4) is coercive too and therefore V = ψ−1((−∞, 1]) is a bounded subset by virtue of Proposition
2.16 (3).

(1) =⇒ (2): If there exists such a convex body V, the outer unit normal nV of V is Lipschitz and we
know from Lemma 2.18 that the oriented distance function bV to V is convex, 1-Lipschitz on X and of
class C1,1 on the set

{x ∈ X : bV (x) ≥ −δ Lip(nV )−1} for every δ < 1.
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Let us denote r = Lip(nV )−1, ε = r
4 and define F = Mε(bV ,− r

2) on X, the ε-smooth maximum of
bV and −r2 , see Lemma 1.8 and Proposition 1.9. Since bV is convex, F is convex on X as well. Observe
that on the set {bV ≥ −r4 } we have that bV ≥ ε− r

2 , and the properties of smooth maxima give F = bV
on {bV ≥ −r

4 }, and then F is differentiable with ∇F = ∇bV on this set. In particular, the gradient
∇F of F is Lipschitz on this set, F = bV = 0 and ∇F = ∇bV on ∂V. On the other hand, on the set
{bV ≤ −3r

4 } we have −r2 ≥ bV (x) + ε, which implies that F = −r
2 on {bV ≤ −3r

4 }; in particular, F is
C1,1 on this set. Finally, on {x ∈ X : −3r

4 < bV (x) < −r
4 }, the definition of F is given by

F (x) =
bV (x)− r

2 + θ(bV (x) + r
2)

2
,

where bV is differentiable with Lipschitz derivative and θ : R → (0,+∞) is a C∞ function, see the
comments after Lemma 1.8. Using that bV is 1-Lipschitz on X and that∇bV is Lipschitz on U+ (which
contains the region we are working on), we can write

2‖∇F (x)−∇F (y)‖ = ‖∇bV (x)−∇bV (y) + θ′(bV (x) + r
2)∇bV (x)− θ′(bV (y) + r

2)∇bV (y)‖
≤ (1 + θ′(bV (y) + r

2)) Lip(∇bV , U+)‖x− y‖+ |θ′(bV (x) + r
2)− θ′(bV (y) + r

2)|‖∇bV (x)‖

≤

(
1 + sup

[−r
4
, r
4

]

|θ′|

)
Lip(∇bV , U+)‖x− y‖+

(
sup

[−r
4
, r
4

]

|θ′′|

)
‖x− y‖.

This proves that F is C1,1 on {x ∈ X : −3r
4 < bV (x) < −r

4 } too. In conclusion F is a convex function
of class C1,1(X) such that F = 0 and ∇F = nV on ∂V. According to Proposition 2.8, F satisfies the
condition (CW 1,1) on ∂V for some δ, i.e.,

F (x)− F (y)− 〈∇F (y), x− y〉 ≥ δ‖∇F (x)−∇F (y)‖2 for all x, y ∈ ∂V.

and therefore
〈nV (y), y − x〉 ≥ δ‖nV (x)− nV (y)‖2 for all x, y ∈ ∂V.

In particular, since our given function N : C → SX coincides with nV on C we have that N satisfies
(KW1,1) on C.

2.5 Sup-inf explicit formulas of C1,1 convex extensions on Rn

In this section, we present an alternative sup-inf formula for the extension F given in Theorem 2.11 for
C1,1

conv functions on Rn. This formula is inspired by that of [54, Theorem 26] for C1,1 (not necessarily
convex) functions but, in our case, the formula will be simpler.

Throughout this section, we will denote the euclidean norm on Rn by | · |. Let us assume that E is a
nonempty subset of Rn and (f,G) is a 1-jet on E satisfying the condition (CW 1,1) (see Definition 2.7)
with constant M > 0. For every a, b ∈ E, x ∈ Rn, we define

αa,b := M
(
f(b)− f(a)− 〈G(a), b− a〉

)
− 1

2 |G(a)−G(b)|2,

βxa,b :=
∣∣∣12(G(b)−G(a) +M(x− b)

)∣∣∣2,
Zxa,b := 1

2

(
G(a) +G(b) +M(x− b)

)
,

rxa,b :=
√
αa,b + βxa,b

and the set
Λx :=

⋂
a,b∈E

B(Zxa,b, r
x
a,b),
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where each B(Zxa,b, r
x
a,b) denotes the closed ball centered at Zxa,b with radius rxa,b. Finally let us define

the functions

ψ+(x, a, v) = f(a) + 〈v, x− a〉 − 1
2M |G(a)− v|2

ψ−(x, a, v) = f(a) + 〈G(a), x− a〉+ 1
2M |G(a)− v|2,

for all x ∈ Rn, a ∈ E, v ∈ Rn.

Remark 2.21.

(1) For every x ∈ Rn, we have v ∈ Λx if and only if

sup
a∈E

ψ−(x, a, v) ≤ inf
a∈E

ψ+(x, a, v).

(2) Given x0 ∈ Rn, the 1-jet (f̃ , G̃) extends (f,G) from E to E ∪ {x0} satisfying inequality (CW 1,1)
on E ∪ {x0} with constant M > 0 if and only if

sup
a∈E

ψ−(x, a, G̃(x)) ≤ f̃(x) ≤ inf
a∈E

ψ+(x, a, G̃(x)), x ∈ E ∪ {x0}.

Proof.

(1) We have that supa∈E ψ
−(x, a, v) ≤ infa∈E ψ

+(x, a, v) if and only if, for all a, b ∈ E,

f(a) + 〈G(a), x− a〉+
1

2M
|v −G(a)|2 ≤ f(b)− 〈v, b− x〉 − 1

2M
|v −G(b)|2.

Multiplying by M we have that

1

2

(
|v −G(a)|2 + |v −G(b)|2

)
+M〈v, b− x〉 ≤M(f(b)− f(a)) +M〈G(a), a− x〉.

Applying the Paralelogram Law to the left-side term we obtain

1

4

(
|2v −G(a)−G(b)|2 + |G(b)−G(a)|2

)
+M〈v, b− x〉 ≤M(f(b)− f(a)) +M〈G(a), a− x〉,

or equivalently∣∣∣∣v − G(a) +G(b)

2

∣∣∣∣2 +M〈v, b− x〉 ≤M(f(b)− f(a)) +M〈G(a), a− x〉 − 1

4
|G(b)−G(a)|2.

This can be written as∣∣∣∣v − G(a) +G(b)

2

∣∣∣∣2 − 2
〈
v − G(a) +G(b)

2
,
M

2
(x− b)

〉
+
M2

4
|x− b|2

≤M(f(b)− f(a)) +M〈G(a), a− x〉 − 1

4
|G(b)−G(a)|2

+ 2
〈G(a) +G(b)

2
,
M

2
(x− b)

〉
+
M2

4
|x− b|2,

which is equivalent to∣∣∣∣ (v − G(a) +G(b)

2

)
− M

2
(x− b)

∣∣∣∣2
≤M

(
f(b)− f(a)− 〈G(a), b− a〉

)
− 1

2
|G(a)−G(b)|2 +M〈G(a), b− a〉

+
〈
G(a) +G(b),

M

2
(x− b)

〉
+
M2

4
|x− b|2 +M〈G(a), a− x〉+

1

4
|G(a)−G(b)|2.
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By the definition of Za,b and αa,b we obtain

|v − Za,b|2 ≤ αa,b +M〈G(a), b− a〉+
〈
G(a) +G(b),

M

2
(x− b)

〉
+
M2

4
|x− b|2 +M〈G(a), a− x〉+

1

4
|G(a)−G(b)|2

= αa,b +
〈
G(b),

M

2
(x− b)

〉
−
〈
G(a),

M

2
(x− b)

〉
+

1

4
|G(a)−G(b)|2 +

M2

4
|x− b|2

= αa,b +
1

4
|G(a)−G(b)|2 + 2

〈G(b)−G(a)

2
,
M

2
(x− b)

〉
+
M2

4
|x− b|2

= αa,b +

∣∣∣∣12(G(b)−G(a)) +
M

2
(x− b)

∣∣∣∣2 = αa,b + βa,b.

Obviously, the above is equivalent to v ∈ B(Zxa,b, r
x
a,b) for every a, b ∈ E, that is v ∈ Λx.

(2) The 1-jet (f̃ , G̃) extends (f,G) from E to E ∪ {x0} and satisfies inequality (CW 1,1) on E ∪ {x0}
with constant M > 0 if and only if

f̃(x)− f(a)− 〈G(a), x− a〉 ≥ 1

2M
|G̃(x)−G(a)|2 and

f(a)− f̃(x)− 〈G̃(x), a− x〉 ≥ 1

2M
|G̃(x)−G(a)|2 for all x ∈ E ∪ {x0}, a ∈ E.

Note that these inequalities are equivalent to

f̃(x) ≥ f(a) + 〈G(a), x− a〉+
1

2M
|G̃(x)−G(a)|2 and

f̃(x) ≤ f(b)− 〈G̃(x), b− x〉 − 1

2M
|G̃(x)−G(b)|2 for all x ∈ E ∪ {x0}, a, b ∈ E,

which in turn is equivalent to

sup
a∈E

ψ−(x, a, G̃(x)) ≤ f̃(x) ≤ inf
a∈E

ψ+(x, a, G̃(x)), x ∈ E ∪ {x0}.

If F denotes the extension of the 1-jet (f,G) defined in Theorem 2.11, we know that (F,∇F )
satisfies condition (CW 1,1) on Rn with constant M > 0 (See Proposition 2.8). We obtain, by virtue of
Remark 2.21, that

∇F (x) ∈ Λx and sup
a∈E

ψ−(x, a,∇F (x)) ≤ F (x) ≤ inf
a∈E

ψ+(x, a,∇F (x)), x ∈ Rn. (2.5.1)

In particular, the set Λx is nonempty for every x ∈ Rn. Now, since ψ+ is continuous, the mapping

Rn 3 v 7−→ inf
a∈E

ψ+(x, a, v)

is upper semicontinuous and therefore the function

h(x) := sup
v∈Λx

inf
a∈E

ψ+(x, a, v), x ∈ Rn

is well defined.

Lemma 2.22. For every x ∈ Rn, there exists a unique vx ∈ Λx such that

h(x) = inf
a∈E

ψ+(x, a, vx).
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Proof. Fix x ∈ Rn. It is clear that Λx is a compact and convex subset of Rn. Then the supremum defining
h(x) must be attained at some vx ∈ Λx. In order to prove the uniqueness, we use the following. For all
v1, v2 ∈ Λx, λ ∈ [0, 1] and a ∈ E, we have λv1 + (1− λ)v2 ∈ Λx and

ψ+(x, a, λv1 + (1−λ)v2) = f(a) + 〈λv1 + (1−λ)v2, x−a〉− 1
2M |G(a)−λv1− (1−λ)v2|2, (2.5.2)

where |G(a)− λv1 − (1− λ)v2|2 can be written as

λ2|G(a)− v1|2 + (1− λ)2|G(a)− v2|2 + 2λ(1− λ)〈G(a)− v1, G(a)− v2〉
= λ|G(a)− v1|2 + (1− λ)|G(a)− v2|2

− λ(1− λ)
(
|G(a)− v1|2 + |G(a)− v2|2 − 2〈G(a)− v1, G(a)− v2〉

)
= λ|G(a)− v1|2 + (1− λ)|G(a)− v2|2 − λ(1− λ)|v1 − v2|2.

By plugging this on (2.5.2) we obtain

ψ+(x, a, λv1 + (1− λ)v2) = λ (f(a) + 〈G(a), v1〉) + (1− λ) (f(a) + 〈G(a), v2〉)
− 1

2M

(
λ|G(a)− v1|2 + (1− λ)|G(a)− v2|2 − λ(1− λ)|v1 − v2|2

)
.

Therefore

ψ+(x, a, λv1 + (1− λ)v2) = λψ+(x, a, v1) + (1− λ)ψ+(x, a, v2) + λ(1−λ)
2M |v1 − v2|2,

and this leads us to

inf
a∈E

ψ+(x, a, λv1 + (1− λ)v2) ≥ λ inf
a∈E

ψ+(x, a, v1) + (1− λ) inf
a∈E

ψ+(x, a, v2) + λ(1−λ)
2M |v1 − v2|2.

We then have proved that the function

Λx 3 v 7−→ inf
a∈E

ψ+(x, a, v)

is strictly concave. Therefore, the supremum defining h(x) is attained at a unique vx ∈ Λx.

Theorem 2.23. We have, for every x ∈ Rn,

F (x) = sup
v∈Λx

inf
a∈E

ψ+(x, a, v) = inf
a∈E

ψ+(x, a, vx), ∇F (x) = vx,

where F is that of Theorem 2.11 and vx ∈ Λx is as in Lemma 2.22.

Proof. We define the 1-jet (h,∇h) on Rn by setting

h(x) := sup
v∈Λx

inf
a∈E

ψ+(x, a, v), ∇h(x) := vx, x ∈ Rn.

If x ∈ E, we see from the definition of αx,x, βxx,x and rxx,x that Λx = {G(x)}. Since ∇h(x) ∈ Λx, we
get∇h(x) = G(x) = ∇F (x). By the definition of∇h(x) = vx (see Lemma 2.22) we also have

h(x) = inf
a∈E

ψ+(x, a,G(x)) ≤ ψ+(x, x,G(x)) = f(x) = F (x),

and then (2.5.1) shows that
F (x) ≤ inf

a∈E
ψ+(x, a,G(x)) = h(x)

This shows that h = F on E. Now, let us consider a point x ∈ Rn \ E. Using (2.5.1), it follows that
∇F (x) ∈ Λx and

F (x) ≤ inf
a∈E

ψ+ (x, a,∇F (x)) ≤ sup
v∈Λx

inf
a∈E

ψ+ (x, a,∇F (x)) = h(x).
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On the other hand, Remark 2.21 (1) tells us that

sup
a∈E

ψ−(x, a, vx) ≤ h(x) = inf
a∈E

ψ+(x, a, vx),

which shows that 1-jet (h,∇h(x)) satisfies condition (CW 1,1) on E ∪ {x} with constant M > 0. Then,
Theorem 2.11 provides a C1,1 convex extension (h∗,∇h∗) of (h,∇h(x)) to all of Rn satisfying that
Lip(∇h∗) ≤ M. Since (h∗,∇h∗) coincides with (h,∇h(x)) = (f,G) on E, the last part of Theorem
2.11 says that we must have h∗ ≤ F on Rn, which implies in particular that h(x) ≤ F (x). We have thus
shown that F = h on Rn. Finally, given x ∈ Rn \ E,

h(x) = F (x) ≤ inf
a∈E

ψ+(x, a,∇F (x)),

thanks to (2.5.1). The definition of h together with Lemma 2.22 allows us to conclude that ∇F (x) =
vx.

2.6 Optimal C1,1 extensions of jets by explicit formulas in Hilbert spaces

In this section we will prove that formula (2.1.3) defines aC1,1 extension of the jet (f,G) onE, provided
that this jet satisfies a necessary and sufficient condition found by Wells in [70], which is equivalent to
the classical Whitney condition for C1,1 extension (W̃ 1,1) by virtue of Remark 2.4.

Definition 2.24. We will say that a 1-jet (f,G) defined on a subsetE of a Hilbert space satisfies condition
(W 1,1) with constant M > 0 on E provided that

f(y) ≤ f(x) +
1

2
〈G(x) +G(y), y − x〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2

for all x, y ∈ E.

Let us first see why this condition is necessary for C1,1 extension.

Proposition 2.25.

(i) If (f,G) satisfies (W 1,1) on E with constant M, then G is M -Lipschitz on E.

(ii) If F is a function of class C1,1(X) with Lip(∇F ) ≤ M, then (F,∇F ) satisfies (W 1,1) on E = X
with constant M.

Proof.

(i) Given x, y ∈ E, we have

f(y) ≤ f(x) +
1

2
〈G(x) +G(y), y − x〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2

f(x) ≤ f(y) +
1

2
〈G(y) +G(x), x− y〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2.

By combining both inequalities we immediately obtain ‖G(x)−G(y)‖ ≤M‖x− y‖.

(ii) Fix x, y ∈ X and z = 1
2(x+ y) + 1

2M (∇F (y)−∇F (x)). Using Taylor’s theorem we obtain

F (z) ≤ F (x)+ 〈∇F (x), 1
2(y−x)+ 1

2M (∇F (y)−∇F (x))〉+ M
2

∥∥1
2(y−x)+ 1

2M (∇F (y)−∇F (x))
∥∥2

and

F (z) ≥ F (y)+〈∇F (y), 1
2(x−y)+ 1

2M (∇F (y)−∇F (x))〉−M
2

∥∥1
2(x−y)+ 1

2M (∇F (y)−∇F (x))
∥∥2
.
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We thus have

F (y) ≤ F (x) + 〈∇F (x), 1
2(y − x) + 1

2M (∇F (y)−∇F (x))〉

+ M
2

∥∥1
2(y − x) + 1

2M (∇F (y)−∇F (x))
∥∥2

− 〈∇F (y), 1
2(x− y)− 1

2M (∇F (y)−∇F (x))〉

+ M
2

∥∥1
2(x− y) + 1

2M (∇F (y)−∇F (x))
∥∥2

= F (x) +
1

2
〈∇F (x) +∇F (y), y − x〉+ M

4 ‖x− y‖
2 − 1

4M ‖∇F (x)−∇F (y)‖2

The following lemma will allow us to deal with the C1,1 extension problem for 1-jets by relying on
our previous solution of the C1,1 convex extension problem for 1-jets.

Lemma 2.26. Given an arbitrary subset E of a Hilbert space X and a 1-jet (f,G) defined on E, we
have the following: (f,G) satisfies (W 1,1) on E, with constant M > 0, if and only if the 1-jet (f̃ , G̃)
defined by f̃(x) = f(x) + M

2 ‖x‖
2, G̃(x) = G(x) +Mx, x ∈ E, satisfies property (CW 1,1) on E, with

constant 2M .

Proof. Suppose first that (f,G) satisfies (W 1,1) on E with constant M > 0. We have, for all x, y ∈ E,

f̃(x)− f̃(y)− 〈G̃(y), x− y〉 − 1

4M
‖G̃(x)− G̃(y)‖2

= f(x)− f(y) +
M

2
‖x‖2 − M

2
‖y‖2 − 〈G(y) +My, x− y〉

− 1

4M
‖G(x)−G(y) +M(x− y)‖2

≥ 1

2
〈G(x) +G(y), x− y〉 − M

4
‖x− y‖2 +

1

4M
‖G(x)−G(y)‖2

+ f(x)− f(y) +
M

2
‖x‖2 − M

2
‖y‖2 − 〈G(y) +My, x− y〉

− 1

4M
‖G(x)−G(y) +M(x− y)‖2

=
M

2
‖x‖2 +

M

2
‖y‖2 −M〈x, y〉 − M

2
‖x− y‖2 = 0.

Conversely, if (f̃ , G̃) satisfies (CW 1,1) on E with constant 2M, we have

f(x) +
1

2
〈G(x) +G(y), y − x〉+

M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2 − f(y)

= f̃(x)− M

2
‖x‖2 +

1

2
〈G̃(x) + G̃(y)−M(x+ y), y − x〉+

M

4
‖x− y‖2

− 1

4M
‖G̃(x)− G̃(y)−M(x− y)‖2 − f̃(y) +

M

2
‖y‖2

= f̃(x)− f̃(y) +
1

2
〈G̃(x) + G̃(y), y − x〉+

M

4
‖x− y‖2

− 1

4M
‖G̃(x)− G̃(y)−M(x− y)‖2

≥ 〈G̃(y), x− y〉+
1

4M
‖G̃(x)− G̃(y)‖2 +

1

2
〈G̃(x) + ˜G(y), y − x〉

+
M

4
‖x− y‖2 − 1

4M
‖G̃(x)− G̃(y)−M(x− y)‖2 = 0.

We are now ready to stablish our formula for C1,1 extension of general 1-jets.
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Theorem 2.27. Let E be a subset of a Hilbert space X . Given a 1-jet (f,G) satisfying property (W 1,1)
with constant M on E, the formula

F = conv(g)− M
2 ‖ · ‖

2,

g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}+ M

2 ‖x‖
2, x ∈ X,

defines a C1,1(X) function with F|E = f , (∇F )|E = G, and Lip(∇F ) ≤M .
Moreover, if H is another C1,1 function with H = f and ∇H = G on E and Lip(∇H) ≤ M, then

H ≤ F.

Proof. From Lemma 2.26, we know that the 1-jet (f̃ , G̃) defined by

f̃(x) = f(x) +
M

2
‖x‖2, G̃(x) = G(x) +Mx, x ∈ E,

satisfies property (CW 1,1) on E with constant 2M. Then, by Theorem 2.11, the function

F̃ = conv(g), g̃(x) = inf
y∈E
{f̃(y) + 〈G̃(y), x− y〉+M‖x− y‖2}, x ∈ X,

is convex and of class C1,1 with (F̃ ,∇F̃ ) = (f̃ , G̃) on E and Lip(∇F̃ ) ≤ 2M . The definitions of f̃ and
G̃ imply that

g̃(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+ M

2 ‖x− y‖
2}+ M

2 ‖x‖
2, x ∈ X.

Now, according to Proposition 2.8, the jet (F̃ ,∇F̃ ) satisfies condition (CW 1,1) with constant 2M on
the whole X. Thus, if F is the function defined by

F (x) = F̃ (x)− M

2
‖x‖2, x ∈ X,

we get, thanks to Lemma 2.26, that the jet (F,∇F ) satisfies condition (W 1,1) with constant M on X .
Hence, by Proposition 2.25, F is of class C1,1(X), with Lip(∇F ) ≤M . From the definition of f̃ , G̃, F̃
and F it is immediate that F = f and ∇F = G on E.

Finally, suppose thatH is anotherC1,1(X) function withH = f and∇H = G onE and Lip(∇H) ≤
M. Using all of these assumptions together with Taylor’s Theorem we have that

H(x) +
M

2
‖x‖2 ≤ f(y) + 〈G(y), x− y〉+

M

2
‖x− y‖2 +

M

2
‖x‖2,

for all x ∈ X, y ∈ E. Taking the infimum over E we get that

H(x) +
M

2
‖x‖2 ≤ g(x), x ∈ X.

Since H is C1,1(X) with Lip(∇H) ≤ M, the jet (H,∇H) satisfies the condition (W 1,1) on E with
constant M. Using Lemma 2.26, we obtain that (H̃,∇H̃) (defined as in that Lemma) satisfies (CW 1,1)
on E with constant 2M. In particular the function X 3 x 7→ H̃(x) = H(x) + M

2 ‖x‖
2 is convex, which

implies that

H̃ = conv(H̃) ≤ g.

Therefore, H̃ ≤ F̃ on X , from which we obtain that H ≤ F on X .
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2.7 Kirszbraun’s Extension Theorem

As a consequence of Theorem 2.27, we can give a short proof of Kirszbraun-Valentine’s Extension
Theorem for Lipschitz functions (see [52, 66]), providing an explicit formula for the extension.

Corollary 2.28 (Kirszbraun-Valentine’s Theorem). LetX,Y be two Hilbert spaces,E a subset ofX and
G : E → Y a Lipschitz mapping. There exists G̃ : X → Y with G̃ = G on E and Lip(G̃) = Lip(G). In
fact, if M = Lip(G), then the function

G̃(x) := ∇y(conv(g))(x, 0), x ∈ X, where

g(x, y) = inf
z∈E

{
〈G(z), y〉Y + M

2 ‖x− z‖
2
X

}
+ M

2 ‖x‖
2
X +M‖y‖2Y , (x, y) ∈ X × Y,

defines such an extension.

Proof. Consider on X × Y the scalar product given by 〈(x, y), (x′, y′)〉 = 〈x, x′〉X + 〈y, y′〉Y . We will
denote by ‖ · ‖, ‖ · ‖X and ‖ · ‖Y the norms on X × Y, X and Y respectively. Also, we denote by 〈·, ·〉X
and 〈·, ·〉Y the scalar products on X and Y respectively. It is then clear that X × Y is a Hilbert space.
Now we consider the 1-jet (f∗, G∗) defined on E × {0} by f∗(x, 0) = 0 and G∗(x, 0) = (0, G(x)), for
all x ∈ E. If we denote M = Lip(G), we have that

f∗(x, 0)− f∗(y, 0) +
1

2
〈G∗(x, 0) +G∗(y, 0), (y, 0)− (x, 0)〉

+
M

4
‖(x, 0)− (y, 0)‖2 − 1

4M
‖G∗(x, 0)−G∗(y, 0)‖2

=
1

2
〈(0, G(x))− (0, G(y)), (y, 0)− (x, 0)〉+

M

4
‖x− y‖2X −

1

4M
‖G(x)−G(y)‖2Y

=
M

4
‖x− y‖2X −

1

4M
‖G(x)−G(y)‖2Y ≥ 0.

Thus, (f∗, G∗) satisfies condition (W 1,1) on E × {0} with constant M. By Theorem 2.27, the function

F = conv(g)− M
2 ‖ · ‖

2,

g(x, y) = inf
z∈E
{f∗(z, 0) + 〈G∗(z, 0), (x− z, y)〉+ M

2 ‖(x− z, y)‖2}+ M
2 ‖(x, y)‖2, (x, y) ∈ X × Y,

is of class C1,1(X × Y ) with (F,∇F ) = (f∗, G∗) on E × {0} and Lip(∇F ) ≤ M. In particular, the
mapping X 3 x 7→ G̃(x) := ∇yF (x, 0) ∈ Y is M -Lipschitz and extends G from E to X. Finally, the
expressions defining G̃ and g can be simplified as

G̃(x) = ∇y(conv(g))(x, 0)−∇y
(
M
2 ‖ · ‖

2
)

(x, 0) = ∇y(conv(g))(x, 0), and

g(x, y) = inf
z∈E

{
〈G(z), y〉Y + M

2 ‖x− z‖
2
X

}
+ M

2 ‖x‖
2
X +M‖y‖2Y .

2.8 C1,ω convex extensions of jets by explicit formulas in Hilbert spaces

In this section we will present the solution to the problem of finding C1,ω convex extensions of 1-jets
in the Hilbert space by means of explicit formulas. Unless otherwise stated, we will assume that X is a
Hilbert space and ω : [0,+∞)→ [0,+∞) is a concave and increasing function such that ω(0) = 0 and
limt→+∞ ω(t) = +∞. Also, we will denote

ϕ(t) =

∫ t

0
ω(s)ds, for every t ≥ 0. (2.8.1)
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It is obvious that ϕ is differentiable with ϕ′ = ω on [0,+∞) and, because ω is strictly increasing, ϕ is
strictly convex. The function ω has an inverse ω−1 : [0,+∞) → [0,+∞) which is convex and strictly
increasing, with ω−1(0) = 0. We also note that

ω(ct) ≤ cω(t) and ω−1(ct) ≥ cω−1(t) for c ≥ 1, t ≥ 0

ω(ct) ≥ cω(t) and ω−1(ct) ≤ cω−1(t) for c ≤ 1, t ≥ 0.

In the sequel we will make intensive use of the Fenchel conjugate of a function on the Hilbert space.
Recall that, given a function g : X → R, the Fenchel conjugate of g is defined by

g∗(x) = sup
z∈X
{〈x, z〉 − g(z)}, x ∈ X,

where g∗ may take the value +∞ at some x. We next gather a couple of elementary properties of this
operator which we will need later on. A detailed exposition can be found in [19, Chapter 2, Section 3] or
[75, Chapter 2, Section 3] for instance.

Proposition 2.29. We have:

(i) (ag)∗ = ag∗( ·a) and
(
ag( ·a)

)∗
= ag∗ for a > 0.

(ii) If ρ : R→ R is even, then (ρ ◦ ‖ · ‖)∗ = ρ∗(‖ · ‖).

Abusing terminology, we will consider the Fenchel conjugate of nonnegative functions only defined
on [0,+∞), say δ : [0,+∞) → [0,+∞). In order to avoid problems, we will assume that all the
functions involved are extended to all of R by setting δ(t) = δ(−t) for t < 0. Hence δ will be an even
function on R and therefore

δ∗(t) = sup
s∈R
{ts− δ(s)} = sup

s≥0
{ts− δ(s)}, for t ≥ 0.

For our modulus of continuity ω, and the corresponding function ϕ (see 2.8.1), the following propo-
sition provides a formula for ϕ∗ in terms of ω.

Proposition 2.30. [See [75, Lemma 3.7.1, pg. 227].] We have that ϕ∗(t) =
∫ t

0 ω
−1(s)ds for all t ≥ 0

and ϕ(t) + ϕ∗(s) = ts if and only if s = ω(t).

Let us now recall the definition of uniformly convex functions and the modulus of convexity. See
[74, 75] for a detailed exposition of this topic.

Definition 2.31. A function f : X → R is said to be uniformly convex, with modulus of convexity δ
(being δ : [0,+∞)→ [0,+∞) a nondecreasing function with δ(0) = 0) provided that

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) + λ(1− λ)δ(‖x− y‖)

for all λ ∈ [0, 1] and x, y ∈ X.

Theorem 2.32. [68, Theorem 3]. Let X be a Hilbert space. If ρ : [0,+∞)→ [0,+∞) is an increasing
function with ρ(ct) ≥ cρ(t) for all c ≥ 1 and t ≥ 0, then the function Φ : X → R defined by
Φ(x) =

∫ ‖x‖
0 ρ(t)dt, x ∈ X, is uniformly convex, with modulus of convexity δ(t) =

∫ t
0 ρ(s/2)ds, t ≥ 0.

In addition,

(i) If the function (0,+∞) 3 t 7−→ ρ(t)

t
is convex we can take δ(t) = 2

∫ t
0 ρ
(
s
2

)
ds.

(ii) If the function (0,+∞) 3 t 7−→ ρ(t)

t
is concave we can take δ(t) = 1

2

∫ t
0 ρ(s)ds.

In particular, the Theorem applies for increasing convex functions ρ : [0,+∞)→ [0,+∞) with ρ(0) =
0.

For the sake of completeness and because we have not been able to find an English version of [68],
we are going to provide the proof of Theorem 2.32. We first need to prove the following lemma.
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Lemma 2.33. Let Φ : X → R be a differentiable function such that

〈∇Φ(x)−∇Φ(y), x− y〉 ≥ φ (‖x− y‖) for all x, y ∈ X, (2.8.2)

where φ : [0,+∞) −→ [0,+∞) is a nondecreasing function with φ(0) = 0 and φ(t) > 0 for t > 0.

Then Φ is uniformly convex on X with modulus of convexity δ(t) =
∫ t

0
φ(s)
s ds, provided that δ(t) is finite

for every t > 0.

Proof. Fix α ∈ (0, 1) and x, y ∈ X with x 6= y. We define

γ(t) = y +
t

‖x− y‖
(x− y), h(t) = Φ(γ(t)), for all t ∈ R.

Because ψ is differentiable on X, the function h is differentiable on R with

h′(t) =
〈
∇Φ(γ(t)),

x− y
‖x− y‖

〉
, t ∈ R.

By (2.8.2) we obtain for t > s that

h′(t)− h′(s) =
〈
∇Φ(γ(t))−∇Φ(γ(s)),

x− y
‖x− y‖

〉
=
〈
∇Φ(γ(t))−∇Φ(γ(s)),

γ(t)− γ(s)

t− s

〉
≥ φ (‖γ(t)− γ(s)‖)

t− s
=
φ(t− s)
t− s

.

We thus get

h′(t)− h′(s) ≥ φ(t− s)
t− s

for t > s. (2.8.3)

Now we write

αψ(x)+(1− α)ψ(y)− ψ(αx+ (1− α)y)

= αh(‖x− y‖) + (1− α)h(0)− h(α‖x− y‖)
= α (h(‖x− y‖ − h(α‖x− y‖)) + (1− α) (h(0)− h(α‖x− y‖))

= α

∫ ‖x−y‖
α‖x−y‖

h′(t)ds− (1− α)

∫ α‖x−y‖

0
h′(t)ds.

By changing the variable t = α‖x − y‖ + (1 − α)s in the first integral and t = α‖x − y‖ − αs in the
second one, we obtain that

α

∫ ‖x−y‖
α‖x−y‖

h′(t)ds− (1− α)

∫ α‖x−y‖

0
h′(t)ds

= α(1− α)

∫ ‖x−y‖
0

[
h′ (α‖x− y‖+ (1− α)s)− h′ (α‖x− y‖ − αs)

]
ds.

From (2.8.3), the last term is greater than or equal to

α(1− α)

∫ ‖x−y‖
0

φ(s)

s
ds = α(1− α)δ(‖x− y‖),

and this proves the Lemma.

Proof of Theorem 2.32. By the assumptions on ρ, the functions t 7→ ρ(t), t 7→ ρ(t)
t are nondecreasing.

Also, it is clear that Φ is differentiable on X with∇Φ(0) = 0 and∇Φ(x) = ρ(‖x‖)
‖x‖ x for x 6= 0. We now

fix x, y ∈ X with x 6= y and x, y 6= 0. We can write

〈∇Φ(x)−∇Φ(y),x− y〉 =
1

2

[
2‖x‖2 ρ(‖x‖)

‖x‖
+ 2‖y‖2 ρ(‖y‖)

‖y‖
− 2〈x, y〉

(
ρ(‖x‖)
‖x‖

+
ρ(‖y‖)
‖y‖

)]
=

1

2

[(
ρ(‖x‖)
‖x‖

− ρ(‖y‖)
‖y‖

)
(‖x‖2 − ‖y‖2) + ‖x− y‖2

(
ρ(‖x‖)
‖x‖

+
ρ(‖y‖)
‖y‖

)]
.
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Because t 7−→ ρ(t)

t
is nondecreasing, the identity above gives

〈∇Φ(x)−∇Φ(y), x− y〉 ≥ ‖x− y‖
2

2

(
ρ(‖x‖)
‖x‖

+
ρ(‖y‖)
‖y‖

)
. (2.8.4)

It is obvious that either ‖x‖ or ‖y‖ is bigger than 1
2‖x‖+ 1

2‖y‖, so

ρ(‖x‖)
‖x‖

+
ρ(‖y‖)
‖y‖

≥
ρ
(

1
2‖x‖+ 1

2‖y‖
)

1
2‖x‖+ 1

2‖y‖
. (2.8.5)

We also have that
ρ
(

1
2‖x‖+ 1

2‖y‖
)

1
2‖x‖+ 1

2‖y‖
≥ 2

‖x− y‖
ρ

(
‖x− y‖

2

)
, (2.8.6)

as ‖x− y‖ ≤ ‖x‖+ ‖y‖. Combining inequalities (2.8.4), (2.8.5) and (2.8.6) we obtain

〈∇Φ(x)−∇Φ(y), x− y〉 ≥ ‖x− y‖ρ
(
‖x− y‖

2

)
.

Note that the last inequality also holds for x = 0 or y = 0. Thus the first statement of the theorem is
proved by virtue of Lemma 2.33.

Now suppose that t 7→ ρ(t)
t is convex. Then, we have

ρ
(

1
2‖x‖+ 1

2‖y‖
)

1
2‖x‖+ 1

2‖y‖
≤ 1

2

ρ(‖x‖)
‖x‖

+
1

2

ρ(‖y‖)
‖y‖

for x, y 6= 0. Using (2.8.4) and a similar argument as in the proof (2.8.6) we get that

〈∇Φ(x)−∇Φ(y), x− y〉 ≥ 2‖x− y‖ρ
(
‖x− y‖

2

)
,

which is also true for x = 0 or y = 0. Bearing in mind Lemma 2.33, the statement (i) of the theorem is
proved.

Finally, let us suppose that t 7→ ρ(t)
t is concave. We have, for all x, y 6= 0, that

ρ (‖x‖+ ‖y‖)
‖x‖+ ‖y‖

‖x‖
‖x‖+ ‖y‖

≤ ρ(‖x‖)
‖x‖

,
ρ (‖x‖+ ‖y‖)
‖x‖+ ‖y‖

‖y‖
‖x‖+ ‖y‖

≤ ρ(‖y‖)
‖y‖

,

which implies that
ρ(‖x‖)
‖x‖

+
ρ(‖y‖)
‖y‖

≥ ρ (‖x‖+ ‖y‖)
‖x‖+ ‖y‖

.

The last inequality together with (2.8.4) and a similar argument as in the proof of (2.8.6) lead us to

〈∇Φ(x)−∇Φ(y), x− y〉 ≥ 1

2
‖x− y‖ρ (‖x− y‖) ,

which, again, is also true for x = 0 or y = 0. Thanks to Lemma 2.33, the statement (ii) is proved.

In the same spirit as in Proposition 2.9, we show that, in order to prove that a continuous convex
funcion f defined on a Banach space is differentiable with an ω-continuous derivative, it is enough to
check a simple inequality which only involves the values of f and the function ϕ of (2.8.1).

Proposition 2.34. Let X be a Banach space. If f : X → R is a continuous convex function and

f(x+ h) + f(x− h)− 2f(x) ≤ Cϕ(2‖h‖), for all x, h ∈ X,

then f is of class C1,ω(X) and ‖Df(x)−Df(y)‖ ≤ 4Cω (2‖x− y‖) for all x, y ∈ X.
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Proof. The inequality of the assumption together with (2.8.1) tells us that, for every x, h ∈ X,

f(x+ h) + f(x− h)− 2f(x)

‖h‖
≤ Cϕ(2‖h‖)

‖h‖
≤ 2Cω(2‖h‖),

where the last term tends to 0 as ‖h‖ → 0+. Because f is continuous and convex, this implies that f is
differentiable on X. Consider x, y, h ∈ X with ‖h‖ = ‖x− y‖. Using repeatedly the convexity of f and
then the assumption, we get

(Df(x)−Df(y))(h) ≤ f(x+ h)− f(x)−Df(y)(h)

≤ f(x+ h)− f(x) + f(x)− f(y)−Df(y)(x− y)−Df(y)(h)

≤ f(x+ h)− f(y)−Df(y)(x+ h− y)

≤ f(x+ h)− f(y)− f(2y − x− h)− f(y)

≤ f(y + (x+ h− y)) + f(y − (x+ h− y))− 2f(y)

≤ Cϕ (2‖x+ h− y‖) ≤ Cϕ (4‖x− y‖) .

Thus

‖Df(x)−Df(y)‖ ≤ 4C
ϕ(4‖x− y‖)

4‖x− y‖
.

Note that, by concavity of ω, it follows that

ϕ(t)

t
=

∫ 1

0
ω(tu)du ≤ ω

(
t

2

)
t ≥ 0.

Therefore ‖Df(x)−Df(y)‖ ≤ 4Cω (2‖x− y‖) .

Now we prove an inequality involving the function ϕ and the norm ‖ · ‖ which will be very useful in
the proof of the main theorem.

Lemma 2.35. Let (X, ‖ · ‖) be a Hilbert space, and ϕ be defined by (2.8.1). Then the function ψ(x) =
ϕ(‖x‖), x ∈ X , satisfies the following inequality

ψ(x+ h) + ψ(x− h)− 2ψ(x) ≤ ψ(2h) for all x, h ∈ X.

Also, ψ is of class C1,ω(X) with ‖∇ψ(x)−∇ψ(y)‖ ≤ 4ω(2‖x− y‖) for all x, y ∈ X.
Furthermore, we can arrange that:

(i) ψ(x+ h) + ψ(x− h)− 2ψ(x) ≤ 2ψ(h) for all x, h ∈ X if the function (0,+∞) 3 t 7→ ω−1(t)

t
is

convex, and

(ii) ψ(x+ h) + ψ(x− h)− 2ψ(x) ≤ 1
4ψ(4h) for all x, h ∈ X if the function (0,+∞) 3 t 7→ ω−1(t)

t
is concave.

Proof. By combining the fact that (ρ ◦ ‖ · ‖)∗ = ρ∗(‖ · ‖) for any even ρ : [0,+∞) → [0,+∞)
(see Proposition 2.29 and the subsequent comment) with Proposition 2.30, we obtain that ψ∗(x) =∫ ‖x‖

0 ω−1(s)ds, x ∈ X, where ω−1 is a convex function. Thus, we can apply Theorem 2.32 with
ρ = ω−1 and Φ = ψ∗ to deduce that

λψ∗(x) + (1− λ)ψ∗(y) ≥ ψ∗(λx+ (1− λ)y) + λ(1− λ)δ(‖x− y‖),

for all x, y ∈ X, λ ∈ [0, 1], where δ(t) =
∫ t

0 ω
−1
(
s
2

)
ds, t ≥ 0. Then it is clear that

δψ∗(ε) : = inf

{
1

2
ψ∗(x) +

1

2
ψ∗(y)− ψ∗

(
x+ y

2

)
: ‖x− y‖ ≥ ε, x, y ∈ X

}
≥ inf

{
1

4
δ(‖x− y‖) : ‖x− y‖ ≥ ε, x, y ∈ X

}
≥ 1

4
δ(ε)
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for all ε ≥ 0. Let us denote

ρψ(t) := sup

{
1

2
ψ(x+ ty) +

1

2
ψ(x− ty)− ψ(x) : x, y ∈ X, ‖y‖ = 1

}
for all t ≥ 0. Since ψ is continuous and convex on X, we can use [19, Theorem 5.4.1(a), pg. 252] to
deduce

ρψ(t) = sup
{
t ε2 − δψ∗(ε) : ε ≥ 0

}
, t ≥ 0.

Applying the preceding estimation to δψ∗ we see that

ρψ(t) ≤ 1
2 sup

{
tε− 1

2δ(ε) : ε ≥ 0
}

= 1
2

(
1
2δ
)∗

(t), t ≥ 0.

By definition of δ it is clear that 1
2δ(t) =

∫ t/2
0 ω−1(s)ds. Using Proposition 2.29 together with Proposi-

tion 2.30 we have that
(

1
2δ
)∗

(t) =
∫ 2t

0 ω(s)ds, t ≥ 0. Then it follows

ρψ(t) ≤ 1

2

∫ 2t

0
ω(s)ds, t ≥ 0

and therefore

ψ(x+ ty) + ψ(x− ty)− 2ψ(x) ≤
∫ 2t

0
ω(s)ds, for all t ≥ 0, x, y ∈ X, with ‖y‖ = 1,

which is equivalent to the desired inequality. For the second part, according to Theorem 2.32, we have
δ(t) = 2

∫ t
0 ω
−1
(
s
2

)
ds, t ≥ 0 in the case (i) and δ(t) = 1

2

∫ t
0 ω
−1(s)ds, t ≥ 0 in the case (ii). Then,

using Proposition 2.29 together with Proposition 2.30 we obtain
(

1
2δ
)∗

(t) = 2
∫ t

0 ω(s)ds, t ≥ 0 in the
case (i) and

(
1
2δ
)∗

(t) = 1
4

∫ 4t
0 ω(s)ds, t ≥ 0 in the case (ii). By repeating the same calculations as

above, we immediately obtain the inequalities (i) and (ii).
Finally, for every ω, it follows from Proposition 2.34 that ψ ∈ C1,ω(X) and ‖∇ψ(x) −∇ψ(y)‖ ≤

4ω(2‖x− y‖) for all x, y ∈ X.

A suitable condition for our extension problem is as follows.

Definition 2.36. Given an arbitrary subsetE of a Hilbert spaceX , and a 1-jet f : E → R, G : E → X,
we will say that (f,G) satisfies condition (CW 1,ω) on E with constant M > 0, provided that

f(x) ≥ f(y) + 〈G(y), x− y〉+Mϕ∗
(

1

M
‖G(x)−G(y)‖

)
for all x, y ∈ E. (CW 1,ω)

We can compare this with Definition 2.7, that is, if ω(t) = t, then ϕ(t) = 1
2 t

2 and ϕ∗ = ϕ. Thus,
condition (CW 1,ω) coincides with (CW 1,1) for ω(t) = t. Throughout the rest of the Section, for a
mapping G : E → X , where E is a subset of X , we will denote

Mω(G) = sup
x,y∈E, x 6=y

‖G(x)−G(y)‖
ω(‖x− y‖)

.

We next make some remarks on this new condition (CW 1,ω).

Remark 2.37. The following is true.

(i) If (f,G) satisfies (CW 1,ω) on E with constant M, then

‖G(x)−G(y)‖ ≤ 2Mω

(
‖x− y‖

2

)
x, y ∈ E.

In particular Mω(G) ≤ 2M.
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(ii) The inequality defining condition (CW 1,ω) can be rewritten as

f(x) ≥ f(y) + 〈G(y), x− y〉+ (Mϕ)∗ (‖G(x)−G(y)‖) for all x, y ∈ E,

Proof.

(i) We fix x, y ∈ E and set t = 1
M ‖G(x)−G(y)‖. We have that

Mϕ∗ (t) = ‖G(x)−G(y)‖ϕ
∗(t)

t
.

Using first Proposition 2.30 and then Jensen’s inequality (recall that ω−1 is a convex function) we obtain

ϕ∗(t)

t
=

∫ 1

0
ω−1(tu)du ≥ ω−1

(
t

2

)
= ω−1

(
1

2M
‖G(x)−G(y)‖

)
and then

Mϕ∗
(

1

M
‖G(x)−G(y)‖

)
≥ ‖G(x)−G(y)‖ω−1

(
1

2M
‖G(x)−G(y)‖

)
.

Now, using the inequality defining the condition (CW 1,ω) we have

f(x) ≥ f(y) + 〈G(y), x− y〉+Mϕ∗
(

1

M
‖G(x)−G(y)‖

)
f(y) ≥ f(x) + 〈G(x), y − x〉+Mϕ∗

(
1

M
‖G(x)−G(y)‖

)
hence

〈G(x)−G(y), x−y〉 ≥ 2Mϕ∗
(

1

M
‖G(x)−G(y)‖

)
≥ ‖G(x)−G(y)‖ω−1

(
1

2M
‖G(x)−G(y)‖

)
.

We conclude that

‖G(x)−G(y)‖ ≤ 2Mω

(
‖x− y‖

2

)
.

(ii) This follows from elementary properties of the conjugate of a function; see Proposition 2.29.

Remark 2.38. An alternative formulation of the condition (CW 1,ω) for a 1-jet (f,G) on E is that

f(x) ≥ f(y) + 〈G(y), x− y〉+ ‖G(x)−G(y)‖ω−1

(
1

2M
‖G(x)−G(y)‖

)
(2.8.7)

for all x, y ∈ E. This is the condition for C1,ω
conv extension of 1-jets that we introduced in [11]. If we

denote the above condition by ˜(CW 1,ω), we have that ˜(CW 1,ω) and (CW 1,ω) are actually equivalent.

Proof. Since ω−1 is convex, we have that

ϕ∗(t) =

∫ t

0
ω−1(s)ds ≥ tω−1 (t/2) for all t ≥ 0. (2.8.8)

On the other hand, because ω−1 is increasing, it follows

ϕ∗(t) =

∫ t

0
ω−1(s)ds ≤ tω−1(t) for all t ≥ 0. (2.8.9)

Taking first t = 1
M ‖G(x)−G(y)‖ in (2.8.8) and then t = 1

2M ‖G(x)−G(y)‖ in (2.8.9) and also bearing
in mind Proposition 2.29 (i) we obtain

(Mϕ)∗ (‖G(x)−G(y)‖) ≥ ‖G(x)−G(y)‖ω−1

(
1

2M
‖G(x)−G(y)‖

)
≥ (2Mϕ)∗(‖G(x)−G(y)‖).

By comparing condition (CW 1,ω) (Definition 2.36) with ˜(CW 1,ω) (inequality (2.8.7)) we then see that
both conditions are equivalent.
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Let us now see that (CW 1,ω) is a necessary condition for C1,ω convex extension of 1-jets.

Proposition 2.39. Let f ∈ C1,ω(X) be convex, and assume that f is not affine. Then the 1-jet (f,∇f)
satisfies the condition (CW 1,ω) with constant M > 0 on E = X , where

M = sup
x,y∈X,x 6=y

‖∇f(x)−∇f(y)‖
ω(‖x− y‖)

.

On the other hand, if f is affine, it is obvious that (f,∇f) satisfies (CW 1,ω) on every E ⊂ X , for every
M > 0.

Proof. Suppose that there exist different points x, y ∈ X such that

f(x)− f(y)− 〈∇f(y), x− y〉 < Mϕ∗
(

1

M
‖∇f(x)−∇f(y)‖

)
,

and we will get a contradiction.
Case 1. Assume further that M = 1, f(y) = 0, and ∇f(y) = 0. By convexity this implies f(x) ≥ 0.
Then we have

0 ≤ f(x) < ϕ∗ (‖∇f(x)‖) .

Set
v = − 1

‖∇f(x)‖
∇f(x),

and define
h(t) = f(x+ tv)

for every t ∈ R. We have h(0) = f(x), h′(0) = −‖∇f(x)‖, and h′(t) = 〈∇f(x+ tv), v〉. This implies
that ∣∣h(t)− f(x) + ‖∇f(x)‖t

∣∣ ≤ ∫ t

0
ω(s)ds = ϕ(t)

for every t ∈ R+, hence also that

h(t) ≤ −‖∇f(x)‖t+ f(x) + ϕ(t) for all t ∈ R+.

By using the assumption on f(x) and Proposition 2.30 we have

f
(
x+ ω−1(‖∇f(x)‖)v

)
< ϕ∗(‖∇f(x)‖)− ‖∇f(x)‖ω−1(‖∇f(x)‖) + ϕ

(
ω−1(‖∇f(x)‖)

)
= 0,

which is in contradiction with the assumptions that f is convex, f(y) = 0, and ∇f(y) = 0. This shows
that

f(x) ≥ ϕ∗ (‖∇f(x)‖) .

Case 2. Assume only that M = 1. Define

g(z) = f(z)− f(y)− 〈∇f(y), z − y〉

for every z ∈ X . Then g(y) = 0 and ∇g(y) = 0. By Case 1, we get

g(x) ≥ ϕ∗ (‖∇g(x)‖) ,

and since∇g(x) = ∇f(x)−∇f(y) the Proposition is thus proved in the case when M = 1.
Case 3. In the general case, we may assume M > 0 (the result is trivial for M = 0). Consider g = 1

M f ,
which satisfies the assumption of Case 2. Therefore

g(x)− g(y)− 〈∇g(y), x− y〉 ≥ ϕ∗ (‖∇g(x)−∇g(y)‖) ,

which is equivalent to the desired inequality.
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Let us now present the main result of this section.

Theorem 2.40. Given a 1-jet (f,G) defined on E satisfying the property (CW 1,ω) with constant M on
E, the formula

F = conv(g), g(x) = inf
y∈E
{f(y) + 〈G(y), x− y〉+Mϕ (‖x− y‖)}, x ∈ X,

defines a C1,ω convex function with F|E = f and (∇F )|E = G, and

‖∇F (x)−∇F (y)‖ ≤ 4Mω (2‖x− y‖) for all x, y ∈ X.

In particular, Mω(∇F ) ≤ 8M.

For the proof of Theorem 2.40 we will need to use the following well-known inequality, whose proof
is immediate from the definition of the Fenchel conjugate.

Proposition 2.41 (Generalized Young’s inequality for the Fenchel conjugate). Let ρ : R → R be a
convex function. Then

ab ≤ ρ(a) + ρ∗(b) for all a, b > 0.

As in the proof of Theorem 2.11, we will see that the function g of Theorem 2.40 lies above the affine
functions x 7→ f(z) + 〈G(z), x− z〉 for every z ∈ E.

Lemma 2.42. We have

f(z) + 〈G(z), x− z〉 ≤ f(y) + 〈G(y), x− y〉+Mϕ(‖x− y‖)

for every y, z ∈ E, x ∈ X.

Proof. Given y, z ∈ E, x ∈ X, condition (CW 1,ω) with constant M (together with Remark 2.37 (ii))
leads us to

f(y) + 〈G(y), x− y〉+Mϕ(‖x− y‖)
≥ f(z) + 〈G(z), x− z〉+ (Mϕ)∗(‖G(y)−G(z)‖)

+ 〈G(z)−G(y), y − x〉+Mϕ(‖x− y‖)
≥ f(z) + 〈G(z), x− z〉 − ab+Mϕ(a) + (Mϕ)∗(b),

where a = ‖y − x‖ and b = ‖G(z) −G(y)||. Applying Proposition 2.41 we obtain that the last term is
greater than or equal to f(z) + 〈G(z), x− z〉.

The previous Lemma shows that m ≤ g, where g is that of Theorem 2.40, and

m(x) := sup
z∈E
{f(z) + 〈G(z), x− z〉}, x ∈ X.

By definition of g and m it is then obvious that f ≤ m ≤ g ≤ f on E. Thus g = f on E. We next show
that g satisfies the one-sided estimate of Proposition 2.34.

Lemma 2.43. We have

g(x+ h) + g(x− h)− 2g(x) ≤Mϕ(‖2h‖) for all x, h ∈ X.

Proof. Given x, h ∈ X and ε > 0, by definition of g, we can pick y ∈ E with

g(x) ≥ f(y) + 〈G(y), x− y〉+Mϕ(‖x− y‖)− ε.
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We then have

g(x+ h) + g(x− h)− 2g(x) ≤ f(y) + 〈G(y), x+ h− y〉+Mϕ(‖x+ h− y‖)
+ f(y) + 〈G(y), x− h− y〉+Mϕ(‖x− h− y‖)
− 2 (f(y) + 〈G(y), x− y〉+Mϕ(‖x− y‖)) + 2ε

= M (ϕ(‖x+ h− y‖) + ϕ(‖x− h− y‖)− 2ϕ(‖x− y‖)) + 2ε

≤Mϕ(2‖h‖) + 2ε,

where the last inequality follows from Lemma 2.35.

Now, if we define F = conv(g), with the same proof as that of Theorem 2.10, we get that

F (x+ h) + F (x− h)− 2F (x) ≤Mϕ(‖2h‖) for all x, h ∈ X.

Because F is convex, by virtue of Proposition 2.34, we have that F ∈ C1,ω(X) with

‖∇F (x)−∇F (y)‖ ≤ 4Mω(2‖x− y‖) for all x, y ∈ X.

Finally, the same argument involving the function m as that at the end of Section 2.3 shows that F = f
and ∇F = G on E. The proof of Theorem 2.40 is complete.

In addition, for some particular modulus of continuity, we can improve the estimation on the modulus
of continuity of the gradient of the extension F provided by Theorem 2.40.

Theorem 2.44. Considering ω, (f,G) and F as in Theorem 2.40, the following holds.

(i) ‖∇F (x) − ∇F (y)‖ ≤ 4Mω (‖x− y‖) for all x, y ∈ X if the function (0,+∞) 3 t 7→ ω−1(t)

t
is

convex.

(ii) ‖∇F (x)−∇F (y)‖ ≤ 2Mω (4‖x− y‖) for all x, y ∈ X if the function (0,+∞) 3 t 7→ ω−1(t)

t
is

concave.
Furthermore, if ω(t) = tα, 0 < α ≤ 1, we can arrange Mω(∇F ) ≤ 22+α

1+αM whenever α ≤ 1
2 and

Mω(∇F ) ≤ 21+3α

1+α M whenever α > 1
2 .

Proof. By repeating the proof of Theorem 2.40 and using the second part of Lemma 2.35 we immediate
see that

F (x+ h) + F (x− h)− 2F (x) ≤ 2Mϕ(‖h‖) for all x, h ∈ X,

whenever (0,+∞) 3 t 7→ ω−1(t)

t
is convex and

F (x+ h) + F (x− h)− 2F (x) ≤ M

2
ϕ(‖2h‖) for all x, h ∈ X

whenever (0,+∞) 3 t 7→ ω−1(t)

t
is concave. Hence, using the same calculations as in Proposition

2.34, we get that

‖∇F (x)−∇F (y)‖ ≤ 4M
ϕ (2‖x− y‖)

2‖x− y‖
for all x, y ∈ X, in the case (i)

and

‖∇F (x)−∇F (y)‖ ≤ 2M
ϕ (8‖x− y‖)

8‖x− y‖
for all x, y ∈ X, in the case (ii).

Thus, the inequality ϕ(t)/t ≤ ω (t/2) leads us to

‖∇F (x)−∇F (y)‖ ≤ 4Mω (‖x− y‖) for all x, y ∈ X, in the case (i)
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and
‖∇F (x)−∇F (y)‖ ≤ 2Mω (4‖x− y‖) for all x, y ∈ X, in the case (ii).

As for the Hölder case, we see that t 7→ ω−1(t)

t
is convex for α ≤ 1/2 and t 7→ ω−1(t)

t
is concave for

α > 1/2. Since we can compute ϕ(t)
t = tα

1+α , it follows that

‖∇F (x)−∇F (y)‖ ≤ 22+α

1 + α
M‖x− y‖α for all x, y ∈ X, whenever α ≤ 1

2

and

‖∇F (x)−∇F (y)‖ ≤ 21+3α

1 + α
M‖x− y‖α for all x, y ∈ X, whenever α >

1

2
.

This completes the proof of the theorem.

Remark 2.45. Observe that if we are given a concave and strictly increasing modulus of continuity
ω : [0,+∞) → [0,+∞) such that limt→+∞ ω(t) is finite, we can define a new concave and strictly
increasing modulus of continuity ω̃ : [0,+∞) → [0,+∞) with ω ≤ ω̃ and limt→+∞ ω̃(t) = +∞ by
setting ω̃ = ω on [0, t0] and ω̃(t) = ω(t0)+ω′(t0)(t− t0) for every t ≥ t0, where t0 is a differentiability
point of ω. Therefore, for any uniformly continuous function G : E → X there exists a modulus of
continuity ω with the property that limt→+∞ ω(t) = +∞ and a constant M > 0 such that

‖G(x)−G(y)‖ ≤Mω(‖x− y‖), x, y ∈ E.

This shows that Theorem 2.40 solves the Whitney extension problems for C1 convex functions with
uniformly continuous derivatives in full generality.
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Chapter 3

C1,α extensions of convex functions in
superreflexive spaces

3.1 Moduli of smoothness and Pisier’s Renorming Theorem

In this chapter we show that we can even go beyond the Hilbertian case by proving that a result similar to
Theorem 2.40 holds for the class C1,α

conv(X) whenever (X, ‖ · ‖) is a superreflexive Banach space whose
norm ‖ · ‖ has modulus of smoothness of power type 1 + α, with α ∈ (0, 1]. Let us first recall some
elementary definitions.

Given two Banach spaces X and Y, let us denote

d(X,Y ) = inf{‖T‖‖T−1‖ : T : X → Y is an isomorphism },

with the convention inf(∅) = +∞.We will say that Y is finitely representable inX if for every subspace
M of Y of finite dimension and every ε > 0, there exists a subspaceN ofX such that d(M,N) ≤ 1+ε.

Definition 3.1. A Banach space X is said to be superreflexive if every Banach space Y which is finitely
representable in X is reflexive.

A very useful characterization of superreflexive Banach spaces is given by Pisier’s renorming Theo-
rem.

Theorem 3.2. [56, Theorem 3.1]. Let X be a Banach space. X is superreflexive if and only if there
exists an equivalent norm ‖ · ‖ on X such that ‖ · ‖ is uniformly smooth with modulus of smoothness of
power type p = 1 + α for some 0 < α ≤ 1.

For general reference about renorming properties of superreflexive spaces see, for instance [26, 33].

Throughout this chapter, and unless otherwise stated, X will denote a superreflexive Banach space,
‖ · ‖ an equivalent norm on X and ‖ · ‖∗ the dual norm of ‖ · ‖ on X∗. By Theorem 3.2, we may assume
that the norm ‖ · ‖ is uniformly smooth with modulus of smoothness of power type p = 1 + α for some
0 < α ≤ 1. Hence, there exists a constant C ≥ 2, depending only on this norm, such that

‖x+ h‖1+α + ‖x− h‖1+α − 2‖x‖1+α ≤ C‖h‖1+α for all x, h ∈ X. (3.1.1)

For a mapping G : E → X∗, where E is a subset of X, we will denote

Mα(G) = sup
x,y∈E, x 6=y

‖G(x)−G(y)‖∗
‖x− y‖α

.

By a 1-jet defined on E we mean a pair of functions (f,G), where f : E → R and G : E → X∗.
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3.2 C1,α convex extensions of jets by explicit formulas in superreflexive
spaces

We now give the definition of the suitable condition for C1,α convex extension, which we will see later
on is both necessary and sufficient.

Definition 3.3. Given an arbitrary subset E of X, and a 1-jet f : E → R, G : E → X∗, we will say
that (f,G) satisfies the condition (CW 1,α) on E with constant M > 0, provided that

f(x) ≥ f(y) +G(y)(x− y) +
α

(1 + α)M1/α
‖G(x)−G(y)‖1+ 1

α
∗ for all x, y ∈ E.

Note that this condition coincides with (CW 1,ω) of Definition 2.36 in Hilbert spaces in the case that

ω(t) = tα, because, in this case, the functionϕ of (2.8.1) isϕ(t) = 1
1+α t

1+α and thenϕ∗(t) = α
1+α t

1+
1
α .

Also, let us see that if a 1-jet (f,G) satisfies condition (CW 1,α), then G is α-Holder continuous.

Remark 3.4. If (f,G) satisfies (CW 1,α) on E with constant M > 0, then Mα(G) ≤
(

1+α
2α

)α
M.

Proof. Using inequality (CW 1,α) we obtain for all x, y ∈ E

f(x) ≥ f(y) +G(y)(x− y) +
α

(1 + α)M1/α
‖G(x)−G(y)‖1+ 1

α
∗ ,

f(y) ≥ f(x) +G(x)(y − x) +
α

(1 + α)M1/α
‖G(x)−G(y)‖1+ 1

α
∗ .

By summing both inequalities we obtain

‖G(x)−G(y)‖∗ ‖x− y‖ ≥ (G(x)−G(y)) (x− y) ≥ 2α

(1 + α)M1/α
‖G(x)−G(y)‖1+ 1

α
∗

which immediately implies the desired estimate.

We next prove that condition (CW 1,α) is indeed necessary for the existence of a C1,α convex exten-
sion in Banach spaces (not necessarily superreflexive).

Proposition 3.5. LetX be a Banach space, let f ∈ C1,α(X) be convex withMα(Df) ≤M, and assume
that f is not affine. Then (f,Df) satisfies the condition (CW 1,α) on X with constant M.

On the other hand, if f is affine and continuous, it is obvious that (f,Df) satisfies (CW 1,α) on every
E ⊂ X , for every M > 0.

Proof. Suppose that there exist different points x, y ∈ X such that

f(x)− f(y)−Df(y)(x− y) <
α

(1 + α)M
1
α

‖Df(x)−Df(y)‖1+ 1
α

∗ ,

and we will get a contradiction.
Case 1. Assume further that M = 1, f(y) = 0, and Df(y) = 0. By convexity this implies f(x) ≥ 0.
Then we have

0 ≤ f(x) ≤ α

1 + α
‖Df(x)‖1+ 1

α
∗ − r for some r > 0. (3.2.1)

Let us fix 0 < ε ≤ r
2

∥∥Df(x)
∥∥−(1+ 1

α)
∗ and pick vε ∈ X with ‖vε‖ = 1 and

Df(x)(vε) ≤ (ε− 1)‖Df(x)‖∗. (3.2.2)
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We define ϕ(t) = f(x + tvε) for every t ∈ R. We have ϕ(0) = f(x), ϕ′(0) = Df(x)(vε), and
ϕ′(t) = Df(x+ tvε)(vε). This implies that

|ϕ(t)− ϕ(0)− ϕ′(0)t| ≤
∫ t

0
sαds =

t1+α

1 + α

for every t ∈ R+, hence also that

ϕ(t) ≤ f(x) + tDf(x)(vε) +
t1+α

1 + α
for all t ∈ R+.

Using first (3.2.1) and then (3.2.2) we have

f
(
x+ ‖Df(x)‖1/α∗ vε

)
= ϕ

(
‖Df(x)‖1/α∗

)
≤ α

1 + α
‖Df(x)‖1+ 1

α
∗ − r + ‖Df(x)‖1/α∗ Df(x)(vε) +

1

1 + α
‖Df(x)‖1+ 1

α
∗

≤ −r + ε‖Df(x)‖1+ 1
α

∗ ≤ −r
2
< 0,

which is in contradiction with the assumptions that f is convex, f(y) = 0, and Df(y) = 0. This shows
that

f(x) ≥ α

1 + α
‖Df(x)‖1+ 1

α
∗ .

Case 2. Assume only that M = 1. Define g(z) = f(z)− f(y)−Df(y)(z − y) for every z ∈ X . Then
g(y) = 0 and Dg(y) = 0. By Case 1, we get

g(x) ≥ α

1 + α
‖Dg(x)‖1+ 1

α
∗ ,

and since Dg(x) = Df(x)−Df(y) the Proposition is thus proved in the case when M = 1.
Case 3. In the general case, we may assume M > 0 (the result is trivial for M = 0). Consider ψ = 1

M f ,
which satisfies the assumption of Case 2. Therefore

ψ(x)− ψ(y)−Dψ(y)(x− y) ≥ α

1 + α
‖Dψ(x)−Dψ(y)‖1+ 1

α
∗ ,

which is equivalent to the desired inequality.

We will make use of the following differentiability criterium for continuous convex functions.

Proposition 3.6. If f is a continuous convex function on X and

f(x+ h) + f(x− h)− 2f(x) ≤ C‖h‖1+α, for all x, h ∈ X,

then f is of class C1,α(X) and Mα(Df) ≤ 21+αC.

Proof. Similar to the proof of Proposition 2.34.

The main result of this chapter is the following.

Theorem 3.7. Given a 1-jet (f,G) defined on E satisfying the property (CW 1,α) with constant M on
E, the formula

F = conv(g), g(x) = inf
y∈E
{f(y) +G(y)(x− y) + M

1+α‖x− y‖
1+α}, x ∈ X,

defines a C1,α convex function with F|E = f , (DF )|E = G, and

Mα(DF ) ≤ 21+αC

1 + α
M,

where C is the constant of (3.1.1).
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Proof of Theorem 3.7. The general scheme of the proof is similar to that of Theorem 2.11. Let us first
recall Young’s inequality.

Proposition 3.8 (Young’s inequality). Let 1 < p, q <∞ with 1
p + 1

q = 1. Then

ab ≤ εap +
bq

q(εp)q/p
for all a, b, ε > 0.

One of the main steps of the proof of Theorem 3.7 is proving the following inequality, which essen-
tially tells us that the function g lies above every affine function x 7→ f(z) +G(z)(x− z), z ∈ E.

Lemma 3.9. We have

f(z) +G(z)(x− z) ≤ f(y) +G(y)(x− y) + M
1+α‖x− y‖

1+α

for every y, z ∈ E, x ∈ X.

Proof. Given y, z ∈ E, x ∈ X, condition (CW 1,α) with constant M implies

f(y) +G(y)(x− y) + M
1+α‖x− y‖

1+α

≥ f(z) +G(z)(y − z) + α
(1+α)M1/α ‖G(y)−G(z)‖1+ 1

α
∗

+G(y)(x− y) + M
1+α‖x− y‖

1+α

= f(z) +G(z)(x− z) + α
(1+α)M1/α ‖G(y)−G(z)‖1+ 1

α
∗

+ (G(z)−G(y))(y − x) + M
1+α‖x− y‖

1+α

≥ f(z) +G(z)(x− z)− ab+ M
1+αa

1+α + α
(1+α)M1/α b

1+ 1
α ,

where a = ‖y − x‖ and b = ‖G(z)−G(y)‖∗. By applying Proposition 3.8 with

p = 1 + α, q = 1 + 1
α ε = M

1+α ,

we obtain that
−ab+ M

1+αa
1+α + α

(1+α)M1/α b
1+ 1

α ≥ 0.

This proves the Lemma.

Observe that Lemma 3.9 shows that m ≤ g, where g is defined as in Theorem 3.7, and

m(x) := sup
z∈E
{f(z) +G(z)(x− z)}, x ∈ X.

Then, using the definition of g and m, we also have that f ≤ m ≤ g ≤ f on E. Thus g = f on E.

Lemma 3.10. We have

g(x+ h) + g(x− h)− 2g(x) ≤ CM

1 + α
‖h‖1+α for all x, h ∈ X,

where C is as in (3.1.1).

Proof. Given x, h ∈ X and ε > 0, by definition of g, we can pick y ∈ E with

g(x) ≥ f(y) +G(y)(x− y) + M
1+α‖x− y‖

1+α − ε.
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We then have

g(x+ h) + g(x− h)− 2g(x) ≤ f(y) +G(y)(x+ h− y) + M
1+α‖x+ h− y‖1+α

+ f(y) +G(y)(x− h− y) + M
1+α‖x− h− y‖

1+α

− 2
(
f(y) +G(y)(x− y) + M

1+α‖x− y‖
1+α
)

+ 2ε

= M
1+α

(
‖x+ h− y‖1+α + ‖x− h− y‖1+α − 2‖x− y‖1+α

)
+ 2ε

≤ CM

1 + α
‖h‖1+α + 2ε,

where the last inequality follows from inequality (3.1.1).

Then, by defining F = conv(g) (see definition (2.1.5)) and using Lemma 3.10, the same proof as
that of Theorem 2.10 lead us to the inequality.

F (x+ h) + F (x− h)− 2F (x) ≤ CM

1 + α
‖h‖1+α for all x, h ∈ X.

Because F is convex and continuous, by virtue of Proposition 3.6, we have that F ∈ C1,α(X) with

Mα(DF ) ≤ 21+αC

1 + α
M.

Finally, the same argument involving the function m as that at the end of Chapter 2, Section 2.3 shows
that F = f and DF = G on E.

3.3 Example in general Banach spaces

Let us finish this chapter with some comments and an example which show that we cannot expect the
above results to hold true for a general Banach space X , unless X is superreflexive.

On the one hand, we claim that a necessary condition for the validity of a Whitney extension theorem
of class C1,ω(X) for a Banach space X is that there is a smooth bump function whose derivative is ω-
continuous on X . Indeed, let C = {x ∈ X : ‖x‖ ≥ 1} ∪ {0}, and define f : C → R and G : C → X∗

by
f(x) = 0 if ‖x‖ ≥ 1, f(0) = 1, and G(x) = 0 for all x ∈ C.

Observe that for all x, y ∈ C,

|f(x)− f(y)−G(y)(x− y)| = |f(x)− f(y)| =


0 if x = y = 0
0 if x 6= 0 and y 6= 0
1 if x = 0 and y 6= 0
1 if x 6= 0 and y = 0

≤ ‖x− y‖2

and ‖G(x)−G(y)‖∗ = 0 ≤ ‖x− y‖. Thus, the jet (f,G) satisfies the assumptions (W̃ 1,1) (or, equiva-
lently, (W 1,1), by Remark 2.4) of the Whitney extension theorem. If a Whitney-type extension theorem
were true for X , then there would exist a C1,ω function F : X → R such that F (x) = 0 for ‖x‖ ≥ 1
and F (0) = 1. Then according to [26, Theorem V.3.2] the space X would be superreflexive.

It is unknown whether for every superreflexive Banach space X (other than a Hilbert space) a
Whitney-type extension theorem for the class C1,ω holds true at least for some modulus ω. It is also
unknown whether a Whitney-type extension theorem holds true for every class C1,ω(X) ifX is a Hilbert
space and ω is not linear. However the results of Chapter 2 provide some answers to analogous questions
for the classes C1,ω

conv(X).
On the other hand, one could ask whether superreflexivity of X is necessary in order to obtain

Whitney-type extension theorems for the classes C1,ω
conv(X), and wonder whether Banach spaces like c0,

with sufficiently many differentiable functions (and even with real-analytic equivalent norms), could
admit such Whitney-type theorems. The following example answers the second question in the negative.
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Example 3.11. Let X = c0 (the Banach space of all sequences of real numbers that converge to 0,
endowed with the supremum norm). Then for every modulus of continuity ω, there are discrete sets
C ⊂ X and 1-jets (f,G) with f : C → R, G : C → X∗ satisfying condition (CW 1,ω) on C, and such
that for no F ∈ C1,ω

conv(X) do we have F|C = f and (DF )|C = G.

Proof. Fix a modulus of continuity ω. Let {ej}∞j=1 be the canonical basis of X (that is to say e1 =
(1, 0, 0, . . .), e2 = (0, 1, 0, . . .), etc.), and let {e∗j}∞j=1 be the associated coordinate functionals; thus we
have that ‖ej‖ = 1, e∗i (ej) = δij , and ‖e∗j‖∗ = 1. Let

C = {±ej : j ∈ N} ∪ {0},

and define f : C → R and G : C → X∗ by

f(0) = 0, f(±ej) =
1

2
for all j ∈ N, and G(0) = 0, G(±ej) = ±e∗j for all j ∈ N.

Let us first check that

f(x)− f(y)−G(y)(x− y) ≥ 1

2
for all x, y ∈ C, x 6= y. (3.3.1)

Indeed, if y = 0 and x = ±ej , then f(y) = 0, G(y) = 0 and f(x) = 1
2 ; and the inequality follows

immediately. If x = 0 and y = ±ej , then

f(x)− f(y)−G(y)(x− y) = f(y) +G(y)(y) = −1

2
+ e∗j (ej) =

1

2
.

If x = εej and y = θei, where ε, θ ∈ {−1, 1} and i 6= j, then

f(x)− f(y)−G(y)(x− y) =
1

2
− 1

2
+ θe∗i (θe

∗
i − εe∗j ) = θ2 = 1 ≥ 1

2
.

We have thus shown inequality (3.3.1). On the other hand, taking M = 2
ω(1/4) , we have that

Mϕ∗
(

1

M
‖G(x)−G(y)‖∗

)
≤Mϕ

(
2

M

)
= M

∫ 2/M

0
ω−1(t)dt ≤ 2ω−1

(
2

M

)
=

1

2
.

Combining the above inequality with (3.3.1), we get that (f,G) satisfies condition (CW 1,ω) on C.
Assume now that there exists F ∈ C1,ω

conv(X) such that (F,DF ) extends the jet (f,G). If ‖x‖ = 1 then,
by taking j ∈ N such that |xj | = 1, we have, with y = sign(xj)ej , that

F (x) ≥ F (yj) +DF (yj)(x− yj) =
1

2
+ |xj | − 1 =

1

2
,

and by convexity it follows that F (x) ≥ 1/2 for all ‖x‖ ≥ 1, while F (0) = 0. Moreover F has the
following properties.

Claim 3.12. There exists M > 0 for which:

(i) ‖DF (x)−DF (y)‖∗ ≤Mω(‖x− y‖) for all x, y ∈ X.
(ii) ‖DF (x)‖∗ ≤Mω(1) for ‖x‖ ≤ 1.

(iii) |F (x)− F (y)| ≤ 2Mω(‖x− y‖) for all ‖x‖, ‖y‖ ≤ 1.

Proof of Claim 3.12. The first one is obvious from the fact that F is of class C1,ω(X). The second one
follows from (i) together with the fact thatDF (0) = 0. In order to prove (iii),we note that the concavity
of ω gives us that ω(1)‖x − y‖ ≤ 2ω

(
1
2‖x− y‖

)
whenever ‖x‖, ‖y‖ ≤ 1. Thus, using first the Mean

Value Theorem and then property (ii), it follows

|F (x)− F (y)| ≤Mω(1)‖x− y‖ ≤ 2ω

(
1

2
‖x− y‖

)
≤ 2Mω(‖x− y‖), for all ‖x‖, ‖y‖ ≤ 1.
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We now take a function h : R → [0, 1] of class C∞(R) such that h = 1 on (−∞, 0] and h = 0 on
[1
2 ,+∞). We have that h(j) = 0 on (−∞, 0] ∪ [1

2 ,+∞) for every j ≥ 0 and, in particular, h′ and h′′ are
bounded on R. Finally, let us define ϕ = h ◦F on X. From the properties of F and h, it is clear that ϕ is
of class C1(X) with 0 ≤ ϕ ≤ 1, ϕ(0) = 1 and ϕ(x) = 0, Dϕ(x) = 0 whenever ‖x‖ ≥ 1. Let us check
that, in fact, ϕ ∈ C1,ω(X). Let us denote by BX and SX the closed unit ball and the unit sphere of X
respectively. We fix x, y ∈ X and study three cases separately.
Case 1. x, y ∈ BX . We can write

Dϕ(x)−Dϕ(y) = h′(F (x))DF (x)− h′(F (y))DF (y)

= h′(F (y)) (DF (x)−DF (y)) +
(
h′(F (x))− h′(F (y))

)
DF (x),

which leads us to

‖Dϕ(x)−Dϕ(y)‖∗ ≤ |h′(F (y))|‖DF (x)−DF (y)‖∗ + |h′(F (x))− h′(F (y))|‖DF (x)‖∗. (3.3.2)

The first term is bounded above by M (supR |h′|)ω(‖x−y‖) by virtue of Claim 3.12 (i). For the second
one, we use the Mean Value Theorem for h′ and Claim 3.12 (ii) and (iii) to obtain

|h′(F (x))− h′(F (y))|‖DF (x)‖∗

≤Mω(1)

(
sup
R
|h′′|

)
|F (x)− F (y)| ≤ 2 ω(1)M2

(
sup
R
|h′′|

)
ω(‖x− y‖).

By plugging the last inequalities in (3.3.2), it follows

‖Dϕ(x)−Dϕ(y)‖∗ ≤M ′ω(‖x− y‖), where M ′ = M

(
sup
R
|h′|
)

+ 2 ω(1)M2

(
sup
R
|h′′|

)
.

Case 2. x, y /∈ BX . In this case it is obvious that ‖Dϕ(x) − Dϕ(y)‖∗ ≤ Mω(‖x − y‖) as Dϕ(x) =
Dϕ(y) = 0.
Case 3. x ∈ BX but y /∈ BX . We consider a point z ∈ [x, y] ∩ SX , where [x, y] denotes the segment
from x to y. It is clear that Dϕ(z) = Dϕ(y) = 0. Then applying Case 1 to x and z, we obtain

‖Dϕ(x)−Dϕ(y)‖∗ = ‖Dϕ(x)−Dϕ(z)‖∗ ≤M ′ω(‖x− z‖) ≤M ′ω(‖x− y‖).

We then have shown that ϕ is a bump function on X of class C1,ω(X). Again, using for instance [26,
Theorem V.3.2], X = c0 would be a superreflexive space, which is absurd.

Observe also that Proposition 3.5 shows that (CW 1,α) is a necessary condition for C1,α
conv(X) exten-

sion. The above example shows that in the case that X = c0 this condition is no longer sufficient, and
therefore any characterization of the class of 1-jets defined on subsets of c0 which admit C1,α

conv extensions
to c0 would have to involve some new conditions.
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Chapter 4

C1 extensions of convex functions on Rn

4.1 C1 convex extensions from compact subsets

Let us first recall Whitney’s Extension Theorem for C1. See [71, 64] for an explicit reference.

Theorem 4.1. Let E be a closed subset of Rn and let f : E → R, G : E → Rn be two functions with G
continuous. A necessary and sufficient condition for the existence of a function F ∈ C1(Rn) with F = f
and ∇F = G on E is that

lim
|z−y|→0+

f(z)− f(y)− 〈G(y), z − y〉
|z − y|

= 0 uniformly on y, z ∈ K (W 1)

for every compact subset K of E.

The extension F is constructed in the same way as (2.1.1), Chapter 2 for the classes C1,1 and C1,ω.

In this chapter we deal with a similar extension problem for the class of C1 convex functions: given
a closed subset E of Rn, a continuous mapping G : E → Rn and a function f : E → R, how can we
decide whether there is a convex function F ∈ C1(Rn) such that F|E = f and (∇F )|E = G?

Besides the very basic character of this problem, there are other reasons for wanting to solve this
kind of problem, as extension techniques for convex functions have natural applications in Analysis,
Differential Geometry, PDE theory (in particular Monge-Ampère equations), Economics, and Quantum
Computing. See the introductions of [43, 73] for background about convex extensions problems.

We will first focus our attention on the case when our domain E is compact, and we will not study
the problem for an arbitrary E until Section 4.6. Since for a function ϕ ∈ C1(Rn) and a compact set
E ⊂ Rn there always exists a modulus of continuity for the restriction (∇ϕ)|E , Theorem 2.40 provides
a solution to our C1 convex extension problem when E is compact. However, given such a 1-jet (f,G)
on a compact set E, unless ω(t) = t or one has a clue about what ω might do the job, in practice it may
be difficult to find a modulus of continuity ω such that (f,G) satisfies (CW 1,ω), and for this reason it is
also desirable to have a criterion for C1 convex extendibility which does not involve dealing with moduli
of continuity.

On the other hand, there is evidence suggesting that, if E is not assumed to be compact or G is not
uniformly continuous, this problem has a more complicated solution; see [60, Example 4], [67, Example
3.2], and Example 5.34 in Chapter 5. These examples show in particular that there exists a closed convex
set V ⊂ R2 with nonempty interior and a C∞ function f : R2 → R so that f is convex on an open
convex neighborhood of V and yet there is no convex function F : R2 → R such that F = f on V . Such
V and f may be defined for instance by

V = {(x, y) ∈ R2 : x > 0, xy ≥ 1},
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and
f(x, y) = −2

√
xy +

1

x+ 1
+

1

y + 1

for every (x, y) ∈ V . Nevertheless, we will show that there cannot be any such examples with V compact
(see Theorem 4.2 below).

If we are given a 1-jet (f,G) on E (that is, f : E :→ R and G : E → Rn ) such that G is continuous
and (f,G) satisfies condition (W 1) of Theorem 4.1, there always exists function F ∈ C1(Rn) such that
F = f and ∇F = G on E. In the special case that E has nonempty interior, if f : E → R is convex
and (f,G) satisfies (W 1), we will see that, without any further assumptions on (f,G), f always has a
convex C1 extension to all of Rn with (∇F )|E = G.

Theorem 4.2. Let E be a compact convex subset of Rn with non-empty interior. Let f : E → R be a
convex function, and G : E → Rn be a continuous mapping satisfying Whitney’s extension condition
(W 1) on E. Then there exists a convex function F ∈ C1(Rn) such that F|E = f and (∇F )|E = G.

However, if E and f are convex but int(E) is empty then, in order to obtain differentiable convex
extensions of f to all of Rn Whitney condition (W 1) is not enough and we will need to complement it
with a global geometrical condition.

Definition 4.3. Given a 1-jet (f,G) defined on E, we will say that (f,G) satisfies condition (CW 1) on
E provided that

f(x) = f(y) + 〈G(y), x− y〉 =⇒ G(x) = G(y), for all x, y ∈ E. (CW 1)

Observe that condition (CW 1) for a 1-jet (f,G) defined on E says that if there exist x, y ∈ E
such that the point (x, f(x)) ∈ Rn+1 belongs to the hyperplane Hy = {(p, z) ∈ Rn × R : z =
f(y) + 〈G(y), p− y〉}, then the hyperplane Hx = {(p, z) ∈ Rn ×R : z = f(x) + 〈G(x), p− x〉} has
the same linear part as Hy and therefore Hx = Hy because both contain the point (x, f(x)).

This condition (CW 1) together with (W 1) are necessary and sufficient for C1 convex extension
from convex compact subsets.

Theorem 4.4. Let E be a compact convex subset of Rn. Let f : E → R be a convex function, and
G : E → Rn be a continuous mapping. Then f has a convex, C1 extension F to all of Rn, with
∇F = G on E, if and only if f and G satisfy (W 1) and (CW 1) on E.

Furthermore, in the general case of a non-convex compact set E, we will just have to add another
global geometrical condition to (CW 1).

Definition 4.5. Given a 1-jet (f,G) defined on E, we will say that (f,G) satisfies condition (C) on E
provided that

f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E. (C)

Observe that the above condition says that the function f must lie above every putative tangent
f(y) + 〈G(y), · − y〉. Let us make a remark on condition (C) which will simplify the statement of our
main theorem.

Remark 4.6. If (f,G) satisfies condition (C) and G is continuous, then (f,G) satisfies Whitney’s con-
dition (W 1).

Proof. Thanks to condition (C), we can write

f(y) ≥ f(x) + 〈G(x), y − x〉 x, y ∈ E.

We thus have

0 ≤ f(x)− f(y)− 〈G(y), x− y〉
|x− y|

≤ 〈G(x)−G(y), x− y〉
|x− y|

≤ |G(x)−G(y)|, x, y ∈ E.

Since G is continuous and E is compact, the term |G(x)−G(y)| tends to 0 as |x− y| → 0+ uniformly
on x, y ∈ E. This proves that Whitney’s condition (W 1) is satisfied.
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Theorem 4.7. LetE be a compact (not necessarily convex) subset of Rn. Let f : E → R be an arbitrary
function, and G : E → Rn be a continuous mapping. Then f has a convex, C1 extension F to all of Rn,
with∇F = G on E, if and only if (f,G) satisfies the conditions (C) and (CW 1) on E.

Moreover, in the case that conditions (C) and (CW 1) are satisfied, the extension F can be taken to
be Lipschitz on Rn with

Lip(F ) = sup
x∈Rn

|∇F (x)| ≤ κ sup
y∈E
|G(y)|,

where κ is an absolute constant.

In particular, if F is the function of Theorem 4.7, assuming 0 ∈ E and we define

‖F‖1 := |F (0)|+ sup
x∈Rn

|∇F (x)|, (4.1.1)

we obtain an extension F of f such that

‖F‖1 ≤ κ inf{‖ϕ‖1 : ϕ ∈ C1(Rn), ϕ|E = f, (∇ϕ)|E = G}. (4.1.2)

Therefore the norm of our extension is nearly optimal in this case too.

It is worth noting that this kind of control of Lip(F ) in terms of supy∈E |G(y)| solely cannot be
obtained in general, as the following example shows.

Example 4.8. For every m ∈ N we define the 1-jet (fm, Gm) on the set E = {0, 1} ⊂ R by fm(0) =
0, fm(1) = m and Gm(0) = Gm(1) = 1. Then, for any C1(R) extension F of (fm, Gm) there exists
a point z ∈ (0, 1) for which F ′(z) = m by the Mean Value Theorem. Thus Lip(F ) = supR |F ′| ≥ m
while supE |G| = 1.

For 1-jets (f,G) not satisfying (C), the proof of Whitney’s extension theorem only permits to obtain
extensions (F,∇F ) (of jets (f,G) on E) which satisfy estimations of the type

sup
x∈Rn

|∇F (x)| ≤ k(n)

(
Lip(f) + sup

y∈E
|G(y)|

)

or of the type

sup
x∈Rn

|∇F (x)| ≤ k(n)

(
sup
y∈E
|f(y)|+ sup

y∈E
|G(y)|

)
.

On the other hand, in [50] M. Jiménez-Sevilla and L. Sánchez-González proved a generalization of the
Whitney extension Theorem for C1 to the setting of Banach separable spaces satisfying a condition
involving approximation of Lipschitz function by C1-smooth functions. It turns out that every separable
Hilbert space satisfies this property and then, in particular, it follows that if f : E → R and G : E → X
are functions defined on a closed subset E of a separable Hilbert space X such that G is continuous and
(f,G) satisfying Whitney’s condition (W 1) on E, then there exists an extension F of class C1(X) of
the 1-jet (f,G). Moreover, it is also shown in [50] that this extension F can be taken so as to satisfy

Lip(F ) ≤ κ∗
(

Lip(f) + sup
y∈E
‖G(y)‖∗

)
,

where κ∗ > 1 is constant which only depends on the space X and ‖ · ‖∗ denotes the norm on X∗.
Therefore, if we consider the Hilbert space X = `2(N), every euclidean space Rn can be seen as a
subspace of X and then, as a corollary of the results of [50], we can state the following theorem.
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Theorem 4.9 (Jiménez-Sevilla–Sánchez-González, [50]). There exists an absolute constant κ∗ > 1 for
which the following holds. Let n ≥ 1. Let E be a closed subset of Rn and let f : E → R, G : E → Rn
be two functions with G continuous. A necessary and sufficient condition for the existence of a function
F ∈ C1(Rn) with F = f and ∇F = G on E is that

lim
|z−y|→0+

f(z)− f(y)− 〈G(y), z − y〉
|z − y|

= 0 uniformly on y, z ∈ K (W 1)

for every compact subset K of E. Moreover the function F can be taken so as to satisfy

Lip(F ) ≤ κ∗
(

Lip(f) + sup
y∈E
|G(y)|

)
.

Observe that in Theorem 4.9, although the constant k∗ does not depend on the dimension n, the esti-
mation of Lip(F ) still depends on Lip(f),which, a priori, has nothing to do with ‖G‖∞ := supy∈E |G(y)|.
Nevertheless, let us see that, in the convex extension problem we are dealing with, condition (C) allows
us to estimate Lip(f) in terms of ‖G‖∞.

Remark 4.10. E be a compact subset of Rn and let f : E → R, G : E → Rn a be two functions with
G continuous and such that (f,G) satisfies condition (C) on E. Then Lip(f) ≤ ‖G‖∞.

Proof. Since (f,G) satisifies (C) we can write the inequalities

−‖G‖∞|x− y| ≤ 〈G(y), x− y〉 ≤ f(x)− f(y) ≤ 〈G(x), y − x〉 ≤ ‖G‖∞|x− y|

for every x, y ∈ E. This proves the desired estimation.

We will see in Section 4.2 below how Remark 4.10 allows us to obtain the estimation on Lip(F ) of
Theorem 4.7.

In the particular case when E is finite, Theorem 4.7 provides necessary and sufficient conditions for
interpolation of finite sets of data by C1 convex functions.

Corollary 4.11. Let S be a finite subset of Rn, and f : S → R be a function. Then there exists a convex
function F ∈ C1(Rn) with F = f on S if and only if there exists a mapping G : S → Rn such that f
and G satisfy conditions (C) and (CW 1) on S.

In [55, Theorem 14] it is proved that, for every finite set of strictly convex data in Rn there always
exists a C∞ convex function (or even a convex polynomial) that interpolates the given data. However, in
the case that the data are convex but not strictly convex, the above corollary seems to be new.

Theorem 4.2 is a consequence of Theorem 4.4 and of the following result.

Lemma 4.12. Let f ∈ C1(Rn), C ⊂ Rn be a compact convex set with nonempty interior, x0, y0 ∈ C.
Assume that f is convex on C and

f(x0) = f(y0) + 〈∇f(y0), x0 − y0〉.

Then∇f(x0) = ∇f(y0).

Proof.

Case 1. Suppose first that f(x0) = f(y0) = 0. We may of course assume that x0 6= y0 as well. Then we
also have 〈∇f(y0), x0 − y0〉 = 0. If we consider the C1 function ϕ(t) = f (y0 + t(x0 − y0)), we have
that ϕ is convex on the interval [0, 1] and ϕ′(0) = 0, hence 0 = ϕ(0) = mint∈[0,1] ϕ(t), and because
ϕ(0) = ϕ(1) and the set of minima of a convex function on a convex set is convex, we deduce that
ϕ(t) = 0 for all t ∈ [0, 1]. This shows that f is constant on the segment [x0, y0] and in particular we
have

〈∇f(z), z0 − z′0〉 = 0 for all z, z0, z
′
0 ∈ [x0, y0].
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Now pick a point a0 in the interior of C and a number r0 > 0 so that B(a0, r0) ⊂ int(C). Since C is a
compact convex body, every ray emanating from a point a ∈ B(a0, r0) intersects the boundary of C at
exactly one point. This implies that (even though the segment [x0, y0] might entirely lie on the boundary
∂C), for every a ∈ B(a0, r0), the interior of the triangle ∆a with vertices x0, a, y0, relative to the affine
plane spanned by these points, is contained in the interior of C; we will denote relint (∆a) ⊂ int(C).

Let p0 be the unique point in [x0, y0] such that |a0 − p0| = d (a0, [x0, y0]) (the distance to the
segment [x0, y0]), set w0 = a0 − p0, and denote va := a − p0 for each a ∈ B(a0, r0). Thus for every
a ∈ B(a0, r0) we can write va = ua + w0, where ua := a − a0 ∈ B(0, r0), and in particular we have
{va : a ∈ B(a0, r0)} = B(w0, r0).

Claim 4.13. For every z0, z
′
0 in the relative interior of the segment [x0, y0], we have∇f(z0) = ∇f(z′0).

Let us prove our claim. It is enough to show that 〈∇f(z0)−∇f(z′0), va〉 = 0 for every a ∈ B(a0, r0)
(because if a linear form vanishes on a set with nonempty interior, such as B(w0, r0), then it vanishes
everywhere). So take a ∈ B(a0, r0). Since z0 and z′0 are in the relative interior of the segment [x0, y0]
and relint (∆a) ⊂ int(C), there exists t0 > 0 such that z0 + tva, z

′
0 + tva ∈ int(C) for every t ∈ (0, t0].

If we had 〈∇f(z′0) − ∇f(z0), va〉 > 0 then, because f is convex on C and f(z0) = f(z′0) = 0,
〈∇f(z′0), z0 − z′0〉 = 0, we would get

f(z0 + tva) = f(z′0 + z0 − z′0 + tva) ≥ 〈∇f(z′0), z0 − z′0 + tva〉 = 〈∇f(z′0), tva〉,

hence

lim
t→0+

f(z0 + tva)

t
≥ 〈∇f(z′0), va〉 > 〈∇f(z0), va〉 = lim

t→0+

f(z0 + tva)

t
,

a contradiction. By interchanging the roles of z0, z
′
0, we see that the inequality 〈∇f(z′0)−∇f(z0), va〉 <

0 also leads to a contradiction. Therefore 〈∇f(z′0)−∇f(z0), va〉 = 0 and Claim 4.13 is proved.
Now, by using the continuity of∇f , we conclude that∇f(x0) = ∇f(y0).

Case 2. In the general situation, let us consider the function h defined by

h(x) = f(x)− f(y0)− 〈∇f(y0), x− y0〉, x ∈ Rn.

It is clear that h is convex on C, and h ∈ C1(Rn). We also have

∇h(x) = ∇f(x)−∇f(y0),

and in particular ∇h(y0) = 0. Besides, using the assumption that f(x0)− f(y0) = 〈∇f(y0), x0 − y0〉,
we have h(x0) = 0 = h(y0), and h(x0) − h(y0) = 〈∇h(y0), x0 − y0〉. Therefore we can apply Case 1
with h instead of f and we get that∇h(x0) = ∇h(y0) = 0, which implies that∇f(x0) = ∇f(y0).

From the above Lemma it is clear that (CW 1) is a necessary condition for a convex function f :
E → R (and a mapping G : E → Rn) to have a convex, C1 extension F to all of Rn with ∇F = G
on E, and also that if the jet (f,G) satisfies (W 1) and int(E) 6= ∅ then (f,G) automatically satisfies
(CW 1) on E as well. It is also obvious that Theorem 4.4 is an immediate consequence of Theorem 4.7,
and that the condition (C) is also necessary in Theorem 4.7. Thus, in order to prove Theorems 4.2, 4.4,
and 4.7 it will be sufficient to establish the if part of Theorem 4.7.

4.2 Proof of the results on compact subsets

In this section, we are going to prove the if part of Theorem 4.7. Consider a 1-jet (f,G) : E → R× Rn
defined on a compact subset E of Rn such that G is continuous and (f,G) satisfies conditions (C) and
(CW 1) on E. By Remark 4.6, (f,G) also satisfies condition Whitney’s condition (W 1) and then we can
apply Theorem 4.9 to obtain a function f̃ ∈ C1(Rn) such that (f̃ ,∇f̃) = (f,G) on E and

Lip(f̃) ≤ κ∗ (Lip(f) + ‖G‖∞) ,



82 Chapter 4. C1 extensions of convex functions on Rn

where κ∗ > 1 is an absolute constant. Moreover, we see from Remark 4.10 that Lip(f) ≤ ‖G‖∞
because (f,G) satisfies (C) on E. Thus we further have

Lip(f̃) ≤ 2κ∗‖G‖∞. (4.2.1)

Let us consider the function m := m(f,G) : Rn → R defined by

m(x) = sup
y∈E
{f(y) + 〈G(y), x− y〉}, x ∈ Rn. (4.2.2)

Since E is compact and the function y 7→ f(y) + 〈G(y), x− y〉 is continuous, it is obvious that m(x) is
well defined, and in fact the supremum is attained, for every x ∈ Rn. Furthermore, if we set

K := max
y∈E
|G(y)| (4.2.3)

then each affine function x 7→ f(y)+〈G(y), x−y〉 isK-Lipschitz, and thereforem, being the supremum
of a family of convex and K-Lipschitz functions, is convex and K-Lipschitz on Rn. Moreover, we have

m = f on E. (4.2.4)

Indeed, if x ∈ E then, because f satisfies (C) on E, we have f(x) ≥ f(y) + 〈G(y), x − y〉 for every
y ∈ E, hence m(x) ≤ f(x). On the other hand, we also have f(x) ≤ m(x) because of the definition of
m(x) and the fact that x ∈ E.

In the case when E is convex and has nonempty interior, it is clear that if h : Rn → R is convex
and h = f on E, then m ≤ h. Thus, in this case, m is the minimal convex extension of f to all of Rn,
which accounts for our choice of notation. However, if E is convex but has empty interior then there is
no minimal convex extension operator. We refer the interested reader to [60] for necessary and sufficient
conditions for m to be finite everywhere, in the situation when f : E → R is convex but not necessarily
everywhere differentiable.

If the functionm(f,G) were differentiable on Rn, there would be nothing else to say. Unfortunately,
it is not difficult to construct examples showing that m(f,G) need not be differentiable outside E (even
whenE is convex and (f,G) satisfies (CW 1), see Examples 4.21 and 4.22 of Section 4.3). Nevertheless,
a crucial step in our proof is the following fact: m is differentiable on E, provided that (f,G) satisfies
conditions (C) and (CW 1) on E.

Lemma 4.14. For each x0 ∈ E, the function m is differentiable at x0, with∇m(x0) = G(x0).

Proof. Notice that, by definition of m we have, for every x ∈ Rn,

〈G(x0), x− x0〉+m(x0) = 〈G(x0), x− x0〉+ f(x0) ≤ m(x).

Since m is convex, this means that G(x0) belongs to ∂m(x0) (the subdifferential of m at x0). If m were
not differentiable at x0 then there would exist a number ε > 0 and a sequence (hk) converging to 0 in
Rn such that

m(x0 + hk)−m(x0)− 〈G(x0), hk〉
|hk|

≥ ε for every k ∈ N. (4.2.5)

Because the sup defining m(x0 + hk) is attained, we obtain a sequence (yk) ⊂ E such that

m(x0 + hk) = f(yk) + 〈G(yk), x0 + hk − yk〉,

and by compactness of E we may assume, up to passing to a subsequence, that (yk) converges to some
point y0 ∈ E. Because f = m on E, and by continuity of f,G and m we then have

f(x0) = m(x0) = lim
k→∞

m(x0 + hk)

= lim
k→∞

(f(yk) + 〈G(yk), x0 + hk − yk〉) = f(y0) + 〈G(y0), x0 − y0〉,
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that is, f(x0) = f(y0) + 〈G(y0), x0 − y0〉. Since x0, y0 ∈ E and (f,G) satisfies (CW 1) on E, this
implies that G(x0) = G(y0). And because m(x0) ≥ f(yk) + 〈G(yk), x0 − yk〉 by definition of m, we
then have

m(x0 + hk)−m(x0)− 〈G(x0), hk〉
|hk|

≤ f(yk) + 〈G(yk), x0 + hk − yk〉 − f(yk)− 〈G(yk), x0 − yk〉 − 〈G(x0), hk〉
|hk|

=
〈G(yk)−G(x0), hk〉

|hk|
≤ |G(yk)−G(x0)| = |G(yk)−G(y0)|,

from which we deduce, using the continuity of G, that

lim sup
k→∞

m(x0 + hk)−m(x0)− 〈G(x0), hk〉
|hk|

≤ 0,

in contradiction with (4.2.5).

Now we proceed with the rest of the proof of Theorem 4.7. Our strategy will be to use the differen-
tiability of m on ∂E in order to construct a (not necessarily convex) differentiable function g such that
g = f and∇g = G on E, g ≥ m on Rn, and lim|x|→∞ g(x) =∞. Then we will define F as the convex
envelope of g, which will be of class C1(Rn) and (F,∇F ) will coincide with (f,G) on E.

For each ε > 0, let θε : R→ R be defined by

θε(t) =


0 if t ≤ 0

t2 if t ≤ K+ε
2

(K + ε)
(
t− K+ε

2

)
+
(
K+ε

2

)2
if t > K+ε

2

(4.2.6)

(recall that K = ‖G‖∞ ≤ Lip(f̃)). Observe that θε ∈ C1(R), Lip(θε) = K + ε. Now set

Φε(x) = θε (d(x,E)) , (4.2.7)

where d(x,E) stands for the distance from x to E, notice that Φε(x) = d(x,E)2 on an open neighbor-
hood of E, and define

Hε(x) = |f̃(x)−m(x)|+ 2Φε(x), x ∈ Rn.

Note that Lip(Φε) = Lip(θε) because d(·, E) is 1-Lipschitz, and therefore

Lip(Hε) ≤ Lip(f̃) +K + 2(K + ε) ≤ 4 Lip(f̃) + 2ε. (4.2.8)

Claim 4.15. Hε is differentiable on E, with∇Hε(x0) = 0 for every x0 ∈ E.

Proof. The function d(·, E)2 is obviously differentiable, with a null gradient, at x0, hence we only have
to see that |f̃ −m| is differentiable, with a null gradient, at x0. We have that m(x0) = f(x0) = f̃(x0)
by (4.2.4) and also∇m(x0) = G(x0) = ∇f̃(x0) by Lemma 4.14. This implies that

|f̃(x)−m(x)|
|x− x0|

=
|f̃(x)− f̃(x0)− 〈∇f̃(x0), x− x0〉|

|x− x0|
+
|m(x)−m(x0)− 〈∇m(x0), x− x0〉|

|x− x0|

tends to 0 as |x− x0| → 0+, which proves our Claim.

Now, because Φε is continuous and positive on Rn \E, using mollifiers and a partition of unity, one
can construct a function ϕε ∈ C∞(Rn \ E) such that

|ϕε(x)−Hε(x)| ≤ Φε(x) for every x ∈ Rn \ E, (4.2.9)
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and
Lip(ϕε) ≤ Lip(Hε) + ε (4.2.10)

(see for instance [47, Proposition 2.1] for a proof in the more general setting of Riemannian manifolds,
or [4] even for possibly infinite-dimensional Riemannian manifolds). Let us define ϕ̃ = ϕ̃ε : Rn → R
by

ϕ̃ =

{
ϕε(x) if x ∈ Rn \ E

0 if x ∈ E.

Claim 4.16. The function ϕ̃ is differentiable on Rn, and it satisfies∇ϕ̃(x0) = 0 for every x0 ∈ E.

Proof. It is obvious that ϕ̃ is differentiable on int(E) ∪ (Rn \ E). We also have ∇ϕ̃ = 0 on int(E),
trivially. We only have to check that ϕ̃ is differentiable, with a null gradient, on ∂E. If x0 ∈ ∂E we have
(recalling that Φε(x) = d(x,E)2 on a neighborhood of E) that

|ϕ̃(x)− ϕ̃(x0)|
|x− x0|

=
|ϕ̃(x)|
|x− x0|

≤ |Hε(x)|+ d(x,E)2

|x− x0|
→ 0

as |x− x0| → 0+, because both Hε and d(·, E)2 vanish at x0 and are differentiable, with null gradients,
at x0. Therefore ϕ̃ is differentiable at x0, with∇ϕ̃(x0) = 0.

Note also that
Lip(ϕ̃) = Lip(ϕε) ≤ Lip(Hε) + ε ≤ 4 Lip(f̃) + 3ε. (4.2.11)

Next we define
g = gε := f̃ + ϕ̃. (4.2.12)

The function g is differentiable on Rn, and coincides with f̃ = f on E. Moreover, we also have
∇g = ∇f̃ = G on E (because∇ϕ̃ = 0 on E). And, for x ∈ Rn \ E, we have

g(x) ≥ f̃(x) +H(x)− Φε(x) = f̃(x) + |f̃(x)−m(x)|+ Φε(x) ≥ m(x) + Φε(x).

This shows that g ≥ m. On the other hand, because m is K-Lipschitz, we have

m(x) ≥ m(0)−K|x|,

and because E is bounded, say E ⊂ B(0, R) for some R > 0, also

Φε(x) = (K + ε)d(x,E)− (K + ε)2

4

≥ (K + ε)d(x,B(0, R))− (K + ε)2

4
= (K + ε)

(
|x| −R− K + ε

4

)
for |x| ≥ R+ K+ε

2 . Hence

g(x) ≥ m(x) + Φε(x) ≥ m(0)−K|x|+ (K + ε)

(
|x| −R− K + ε

4

)
,

for |x| large enough, which implies
lim
|x|→∞

g(x) =∞.

Also, notice that according to (4.2.11) and the definition of g, we have

Lip(g) ≤ Lip(f̃) + Lip(ϕ̃) ≤ 5 Lip(f̃) + 3ε.

Now we will use a differentiability property of the convex envelope of a function ψ : Rn → R, defined
by

conv(ψ)(x) = sup{h(x) : h is convex, h ≤ ψ}.
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Another expression for conv(ψ), which follows from Carathéodory’s Theorem, is

conv(ψ)(x) = inf


n+1∑
j=1

λjψ(xj) : λj ≥ 0,

n+1∑
j=1

λj = 1, x =

n+1∑
j=1

λjxj

 ,

see [58, Corollary 17.1.5] for instance. The following result is a restatement of a particular case of the
main theorem in [51]; see also [48].

Theorem 4.17 (Kirchheim-Kristensen). If ψ : Rn → R is differentiable and lim|x|→∞ ψ(x) =∞, then
conv(ψ) ∈ C1(Rn).

Although not explicitly stated in that paper, the proof of [51] also shows that

Lip (conv(ψ)) ≤ Lip(ψ).

If we define F = conv(g) we thus get that F is convex on Rn and F ∈ C1(Rn). Moreover, thanks to
(4.2.1),

Lip(F ) ≤ Lip(g) ≤ 5 Lip(f̃) + 3ε ≤ 10κ∗ sup
y∈E
|G(y)|+ 3ε. (4.2.13)

Let us now check that F = f on E. Since m is convex on Rn and m ≤ g, we have that m ≤ F on Rn by
definition of conv(g). On the other hand, since g = f on E we have, for every convex function h with
h ≤ g, that h ≤ f on E, and therefore, for every y ∈ E,

F (y) = sup{h(y) : h is convex, h ≤ g} ≤ f(y) = m(y).

This shows that F (y) = f(y) for every y ∈ E. In order to see that we also have ∇F (y) = G(y)
for every y ∈ E, we use the following differentiability criterium, whose proof was given in Chapter 2,
Lemma 2.14.

Lemma 4.18. If φ : Rn → R is convex and ψ : Rn → R is differentiable at y ∈ Rn with φ ≤ ψ, and
φ(y) = ψ(y), then φ is differentiable at y, with∇φ(y) = ∇ψ(y).

Since we know that m ≤ F , m(y) = f(y) = F (y) for all y ∈ E, and F ∈ C1(Rn), it follows from
Lemma 4.18 (by taking φ = m and ψ = F ), and from Lemma 4.14, that

G(y) = ∇m(y) = ∇F (y) for all y ∈ E.

Finally, note that, inequality (4.2.13) implies (by assuming that ε ≤ κ∗‖G‖∞/3, which we may do) that

Lip(F ) ≤ 11 κ∗ sup
y∈E
|G(y)| (4.2.14)

and also, assuming 0 ∈ E, that

‖F‖1 ≤ 11κ∗ inf{‖ϕ‖1 : ϕ ∈ C1(Rn), ϕ|E = f, (∇ϕ)|E = G}. (4.2.15)

The proof of Theorem 4.7 is complete.

Remark 4.19. The function F provided by Theorem 4.7 can be taken so as to satisfy lim|x|→∞ F (x) =
∞.

Proof. We have seen in Section 4.2 that the extension F of Theorem 4.7 is defined as F = conv(g),
where g is defined in (4.2.12) and has the property that

g(x) ≥ m(x) + θε(d(x,E)), x ∈ Rn,
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where θε is defined in (4.2.6). If R > 0 is a number such that E ⊂ B(0, R), then, because θε is
nondecreasing,

g(x) ≥ m(x) + θε(d(x,B(0, R))), x ∈ Rn.

Notice that, since θε is convex and nondecreasing, c := m + θε(d(·, B(0, R)) is a convex function.
Moreover, if |x| ≥ R+ K+ε

2 , (here K denotes supy∈E |G(y)|) then

m(x) + θε(d(x,B(0, R))) ≥ m(0)−K|x|+ (K + ε)

(
|x| −R− K + ε

2

)
+

(
K + ε

2

)2

,

and the last term tends to∞ as |x| → ∞. Since F = conv(g) and c is a convex function with c ≤ g, we
must have F ≥ c, which implies that lim|x|→∞ F (x) =∞.

We finish this section by proving that a natural variation of condition (CW 1) allows us to stablish an
extension Theorem for C1 convex function from bounded (not necessarily closed) subsets of Rn.

Theorem 4.20. Let E be a bounded (not necessarily convex) subset of Rn. Let f : E → R be an
arbitrary function, and G : E → Rn be a bounded continuous mapping. Then f has a convex, C1

extension F to all of Rn, with∇F = G on E, if and only if (f,G) satisfies the following two conditions.

(i) f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

(ii) For every pair of sequences (xk)k, (yk)k ⊂ E, then

lim
k

(f(xk)− f(yk)− 〈G(yk), xk − yk〉) = 0 =⇒ lim
k
|G(xk)−G(yk)| = 0.

Moreover, in the case that both conditions are satisfied, the extension F can be taken so that

Lip(F ) = sup
x∈Rn

|∇F (x)| ≤ κ sup
y∈E
|G(y)|,

where κ is an absolute constant. Furthermore, F can be taken with the property that lim|x|→∞ F (x) =
+∞.

Proof.

Only if part: Assume that F is a convex function of class C1(Rn) such that (F,∇F ) agrees with (f,G)
on E. By convexity and differentiability of F, we have F (x) ≥ F (y) + 〈∇F (y), x − y〉 for every
x, y ∈ E, which clearly implies condition (i). Now, given two sequences (xk)k and (yk)k of E with

lim
k

(F (xk)− F (yk)− 〈∇F (yk), xk − yk〉) = 0,

suppose that (G(xk)−G(yk))k does not converge to 0. Then, after passing to subsequences, we may
and do assume that (xk)k converges to x and (yk)k converges to y for some x, y ∈ E and for some ε > 0
we have

|∇F (xk)−∇F (yk)| ≥ ε for every k ∈ N. (4.2.16)

The continuity of F and ∇F yields

F (x) = F (y) + 〈∇F (y), x− y〉.

Using the necessity of Theorem 4.7, that is, Lemma 4.12, we obtain that

lim
k
|∇F (xk)−∇F (yk)| = |∇F (x)−∇F (y)| = 0,

which contradicts (4.2.16). We have thus shown the necessity of condition (ii).
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If part: Let us first prove that f isK-Lipschitz onE withK = ‖G‖∞ = supy∈E |G(y)|.Using condition
(i), we can write the inequalities

〈G(y), x− y〉 ≤ f(x)− f(y) ≤ 〈G(x), x− y〉 x, y ∈ E.

It is then obvious that |f(x) − f(y)| ≤ K|x − y| for every x, y ∈ E. Let us now prove that G is
uniformly continuous on E. Indeed, let (xk)k and (yk)k two sequences on E with limk |xk − yk| = 0.
Using condition (i), we get

0 ≤ f(xk)− f(yk)− 〈G(yk), xk − yk〉 ≤ 〈G(xk)−G(yk), xy − yk〉 ≤ 2K|xk − yk|,

where the last term tends to 0 as k →∞. By condition (ii), we must have that limk |G(xk)−G(yk)| = 0,
which proves that G is uniformly continuous on E. Thus, both f and G can be uniquely extended with
continuity to the closure E of E. Notice that the continuity of f and G on E shows that

f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

Also, given two points x, y ∈ E such that f(x) = f(y) + 〈G(y), x − y〉, we can find two sequences
(xk)k and (yk)k on E with limk xk = x and limk yk = y. Again, the continuity of f and G on E leads
us to

lim
k

(f(xk)− f(yk)− 〈G(yk), xk − yk〉) = 0,

which in turn implies, by condition (ii), that

|G(x)−G(y)| = lim
k
|G(xk)−G(yk)| = 0.

That is G(x) = G(y). We have thus shown that the pair (f,G) satisfies conditions (C) and (CW 1) on
the compact set E of Rn. By Theorem 4.7, there exists a convex function F ∈ C1(Rn) with (F,∇F ) =
(f,G) on E. Moreover, F can be taken so that

sup
x∈Rn

|∇F (x)| ≤ κ sup
y∈E
|G(y)| = κ sup

y∈E
|G(y)|,

where κ is an absolute constant. Furthermore, in view of Remark 4.19, this function F can be taken with
the property that lim|x|→∞ F (x) = +∞.

4.3 Some relevant examples

In this section we will consider some examples relevant to the preceding results and proofs. We first
observe that the functions m(f) = m(f,∇f) in (4.2.2) need not be differentiable outside E, even in the
case when E is a convex body and f is C∞ on E. To see this, we provide two different examples.

Example 4.21. Let g be the function g(x, y) = max{x+ y− 1,−x+ y− 1, 1
3y}. Using for instance the

smooth maxima mentioned in Lemma 1.8, one can smooth away the edges of the graph of g produced
by the intersection of the plane z = 1

3y with the planes z = y ± x − 1, thus obtaining a smooth convex
function f defined on E := g−1(−∞, 0] ∩ {(x, y) : y ≥ −1}. However, m(f) will not be everywhere
differentiable, because for y ≥ 2 we have m(f)(x, y) = max{x + y − 1,−x + y − 1}, and this max
function is not smooth on the line x = 0.

Example 4.22. [72, Example 9] Let E = {(x, y) ∈ R2 : |x| ≤ 1, y ≤ 0} and

f(x, y) =


0 if y + |x| ≤ 0,

x2 + y2 if y − |x| ≥ 0,
1
2(|x|+ y)2 otherwise

Then f is a C1 convex function on R2 but m(f) is not differentiable at any point (0, y) with y > 0.
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The following example shows that when E has empty interior there are convex functions f : E → R
and continuous mappings G : E → Rn which satisfy (W 1) but do not satisfy (CW 1).

Example 4.23. Let E be the segment {0} × [0, 1] in R2, and f , G be defined by f(0, y) = 0 and
G(0, y) = (y, 0). If we define f̃(x, y) = xy then it is clear that f̃ is a C1 extension of f to R2 which
satisfies ∇f̃(0, y) = G(0, y) for (0, y) ∈ E. Therefore the 1-jet (f,G) satisfies Whitney’s extension
condition (W 1). However, for every (0, y), (0, y′) ∈ E, we have that

f(0, y)− f(0, y′)− 〈G(0, y′), (0, y)− (0, y′)〉 = 〈G(0, y′), (0, y′ − y)〉 = 〈(y′, 0), (0, y′ − y)〉 = 0

but G(0, y) = (y, 0) 6= (y′, 0) = G(0, y′) for every y, y′ ∈ [0, 1] with y 6= y′. Thus (f,G) does not
satisfy (CW 1) on E. In particular f does not have any convex C1 extension F to Rn with ∇F = G on
E.

Finally, let us mention that in Theorem 4.17 the condition of coercivity forψ (that is, lim|x|→∞ ψ(x) =
+∞) cannot be removed in general as shown by the next example due to J. Benoist and J-B. Hiriart-
Urruty in [14].

Example 4.24. The function ψ : R2 → R defined by ψ(x, y) =
√
x2 + e−y2 for all (x, y) ∈ R2

is of class C∞. Hoewever, the convex envelope conv(ψ) of ψ satisfies conv(ψ)(x, y) = |x| for every
(x, y) ∈ R2. That is, conv(ψ) is not differentiable.

4.4 Interpolation of compact subsets by boundaries of C1 convex bodies

In this section we present a geometrical application of Theorem 4.7 concerning characterizations of com-
pact subsetsK of Rn which can be interpolated by boundaries of C1 convex bodies (with prescribed unit
outer normals on K). This result may be compared to [43], where M. Ghomi showed how to construct
Cm smooth strongly convex bodies V with prescribed strongly convex submanifolds and tangent planes.
Theorem 4.29 below allows us to deal with arbitrary compacta instead of manifolds, and to drop the
strong convexity assumption. Unlike the C1,1 case, the oriented distance function to a convex body V
of class C1 is not necessarily of class C1 on a neighbourhood of ∂V, as M. C. Delfour and J. P. Zolesio
noted in [25, Remark 5.6]. For this reason we cannot make use of the tools in Subsection 2.4.1, Lemma
2.18 to construct C1 convex functions whose derivatives are equal (or, at least, are proportional) to the
outer unit normal nV on the boundary ∂V of a given convex body V. Instead we will make an intensive
use of the differentiability properties of the Minkowski functional associated with convex bodies con-
taining the origin as an interior point. In fact, we will define the outer unit normal of C1 convex bodies
in terms of the Minkowski functional.

4.4.1 The Minkowski functional. Elementary properties and differentiability

Definition 4.25. Given a nonempty subset V of a Hilbert space (X, ‖ · ‖) we define the Minkowski
functional of V by

µV (x) = inf{t ≥ 0 : x ∈ tV }, x ∈ X.

The following proposition sums up some well-known properties of the Minkowski functional asso-
ciated with convex subsets with nonempty interior. See [33, Chapter (II)] for details.

Proposition 4.26. If V ( X is convex with 0 ∈ int(V ) we have:

(1) 0 ≤ µV (x) < +∞ for all x ∈ X, and µV (0) = 0.

(2) µV = µint(V ) = µV .

(3) If 0 < t <∞, then µV (x) < t if and only if x ∈ t int(V ) = int(tV ).
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(4) µV is a positively homogeneous subadditive functional. In particular, µV is convex.

(5) {x ∈ X : µV (x) < 1} = int(V ) ⊂ V ⊂ V = {x ∈ X : µV (x) ≤ 1},

(6) If r > 0 is such that B(0, r) ⊂ V , then µV (x) ≤ r−1‖x‖ for all x ∈ X . Also,

(7) µV is r−1-Lipschitz, and

(8) µV (x)− 1 ≤ r−1d(x, V ) for all x ∈ X .

Suppose in addition that V ⊂ X is bounded and R > 0 is such that V ⊂ B(0, R).

(9) There exists R > 0 such that µV (x) ≥ R−1‖x‖ for all x ∈ X.

(10) For all x ∈ X, we have d(x, ∂V ) ≤ R|µV (x) − 1|. In particular d(x, V ) ≤ R(µV (x) − 1) if
x ∈ X \ V.

Now we study the differentiability of the Minskowski functional associated with convex bodies.

Proposition 4.27. Let F be a C1(X) convex function such that F (0) < 1. If V = {x ∈ X : F (x) ≤ 1},
then the Minkowski functional µV of V is of class C1(X \ µ−1

V (0)) and

∇µV (x) =
µV (x)〈

∇F
(

x
µV (x)

)
, x
〉∇F ( x

µV (x)

)
for all x ∈ X \ µ−1

V (0).

Proof. We know from Proposition 2.16 that V is a closed and convex with 0 ∈ int(V ) and that ∂V =
{x ∈ X : F (x) = 1}. The convexity of F gives

〈∇F (x), x〉 ≥ F (x)− F (0) > 0 for all x ∈ ∂V. (4.4.1)

Because µV is convex, in order to show that µV ∈ C1(X \ µ−1
V (0)) it is enough to check that µV is

differentiable at every x0 ∈ X \ µ−1
V (0). Let us distinguish two cases.

Case 1. Suppose first that x0 ∈ ∂V. Consider the function H(x, y) = F (y · x) − 1 for every (x, y) ∈
X×R. Since F is of classC1(X), the functionH is of classC1(X×R) and it is clear thatH(x0, 1) = 0
and DyH(x0, 1) = DF (x0)(x0) > 0 by (4.4.1). The Implicit Function Theorem provides an open
neighbourhood U ⊂ X of x0 and a unique function ϕ : U → R of class C1(U) such that ϕ(x0) = 1 and
F (ϕ(x) · x)− 1 = H(x, ϕ(x)) = 0 for every x ∈ U. Moreover, the derivative of ϕ at each x ∈ U is

Dϕ(x) =
−1

DyH(x, ϕ(x))
DxH(x, ϕ(x)) =

−ϕ(x)

DF (ϕ(x) · x)(x)
DF (ϕ(x) · x).

In particular

Dϕ(x0) =
−1

DF (x0)(x0)
DF (x0).

Obviously U can be chosen small enough so that ϕ and µV are strictly positive on U. Because F (ϕ(x) ·
x) = 1 on U, then ϕ(x) · x ∈ ∂V and 1 = µV (ϕ(x) · x) = ϕ(x)µV (x) for every x ∈ U. This shows that
µV = 1

ϕ on U and then µV is differentiable at x0 with

∇µV (x0) =
−1

ϕ2(x0)
∇ϕ(x0) = −∇ϕ(x0) =

1

〈∇F (x0), x0〉
∇F (x0).

Case 2. If x0 ∈ X \ µ−1
V (0) is arbitrary, using that x0

µV (x0) ∈ ∂V and that µV is positively homogeneous
we can write∣∣∣µV (x0 + h)− µV (x0)−

〈
∇µV

(
x0

µV (x0)

)
, h
〉∣∣∣

‖h‖

=

∣∣∣µV ( x0
µV (x0) + h

µV (x0)

)
− µV

(
x0

µV (x0)

)
−
〈
∇µV

(
x0

µV (x0)

)
, h
µV (x0)

〉∣∣∣∥∥∥ h
µV (x0)

∥∥∥ ,
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and the last term tends to 0 as ‖h‖ → 0+ by Case 1. This shows that µV is differentiable at x0 and

∇µV (x0) = ∇µV
(

x0

µV (x0)

)
=

µV (x0)〈
∇F

(
x0

µV (x0)

)
, x0

〉∇F ( x0

µV (x0)

)
.

4.4.2 An interpolation theorem for C1 compact convex bodies

Definition 4.28. We will say that a subset V ⊂ Rn is a compact convex body if V is compact and convex
with nonempty interior. If we further assume that 0 ∈ int(V ), we will say that V is of class C1 if its
Minkowski functional µV is of class C1 on Rn \ {0}. In this case, we define the outer unit normal to ∂V
by

nV (x) =
∇µV (x)

|∇µV (x)|
, x ∈ ∂V.

Finally, we will say that a vector u ∈ Sn−1 is outwardly normal to ∂V at a point y ∈ ∂V if u = nV (y).

Here and below Sn−1 denotes the unit sphere of Rn.Now we have all the ingredients we need to state
and prove our interpolation theorem for C1 compact convex bodies containing the origin as an interior
point. The pertinent conditions are:

(O) 〈N(y), y〉 > 0 for all y ∈ K;

(K) 〈N(y), x− y〉 ≤ 0 for all x, y ∈ K;

(KW1) 〈N(y), x− y〉 = 0 =⇒ N(x) = N(y) for all x, y ∈ K,

and our result for the class C1 then reads as follows.

Theorem 4.29. Let K be a compact subset of Rn, and let N : K → Sn−1 be a continuous mapping.
Then the following statements are equivalent.

1. There exists a C1 compact convex body V with 0 ∈ int(V ) and such that K ⊆ ∂V and N(y) is
outwardly normal to ∂V at y for every y ∈ K.

2. K and N satisfy conditions (O), (K), and (KW1).

Proof. (2) =⇒ (1): We set E = K ∪ {0}. Thanks to condition (O), continuity of N and compactness
of K, we can find a number α > 0 sufficiently close to 1 so that

0 < 1− α < min
y∈K
〈N(y), y〉. (4.4.2)

Notice in particular that 0 /∈ K. We now define a 1-jet (f,G) on E by

f(y) =

{
1 if y ∈ K
α if y = 0,

and G(y) =

{
N(y) if y ∈ K

0 if y = 0.

Because N is continuous, G is continuous as well and let us check that f and G satisfy conditions (C)
and (CW 1) of Theorem 4.7 on the set E. Given x, y ∈ E, we see from the definition of f and G that

f(x)− f(y)− 〈G(y), x− y〉 =


−〈N(y), x− y〉 if x, y ∈ K

1− α if x ∈ K, y = 0
α− 1 + 〈N(y), y〉 if x = 0, y ∈ K.

Using condition (K) in the case x, y ∈ K and the choice of α (see (4.4.2)) if x = 0 or y = 0, we obtain
that

f(x)− f(y)− 〈G(y), x− y〉 ≥ 0, x, y ∈ E.
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This shows that condition (C) is satisfied. Also, note that if x = 0 or y = 0, the above inequality is
in fact a strict inequality, which implies that condition (CW 1) is trivially satisfied in these cases. In the
case when x, y ∈ K, if we assume

−〈N(y), x− y〉 = f(x)− f(y)− 〈G(y), x− y〉 = 0,

then condition (KW1) implies thatG(x) = N(x) = N(y) = G(y).We have proved that (f,G) satisfies
condition (CW 1). Therefore, according to Theorem 4.7, there exists a convex function F ∈ C1(Rn)
such that F = f and∇F = G on E. Moreover, from Remark 4.19, the function F can be taken so as to
satisfy lim|x|→∞ F (x) =∞. If we define V = {x ∈ Rn : F (x) ≤ 1}, Proposition 2.16 tells us that V
is a compact convex body with 0 ∈ int(V ) (because F (0) = α < 1) and {x ∈ Rn : F (x) = 1} = ∂V.
Since F = f = 1 on K, we obtain that K ⊆ ∂V. Because F is of class C1(Rn) and, according to
Proposition 4.27, the Minkowski functional µV of V is of class C1(Rn \ µ−1

V (0)). Note, since V is
bounded, Proposition 4.26 (9) gives that µ−1

V (0) = {0}. We have thus shown that V is of class C1. In
fact, Proposition 4.27 tells us that the gradients∇F (x) and∇µV (x) are a positive multiple of each other.
This implies that, for each x ∈ K,

N(x) =
∇F (x)

|∇F (x)|
=
∇µV (x)

|∇µV (x)|
= nV (x),

which shows that N(x) is outwardly normal to ∂V at x.

(1) =⇒ (2): Let µV be the Minkowski functional of V . Define F : Rn → R by

F (x) = θ (µV (x)) , x ∈ Rn,

where θ : R → [0,+∞) is a C1 Lipschitz and increasing convex function with θ(t) = t2 whenever
|t| ≤ 2 and θ(t) = at whenever |t| ≥ 2, for a suitable a > 0. The Minkowski functional is Lipschitz
and convex because V is a convex body and this implies that F is Lipschitz. Also, because θ is convex
and increasing, F is convex as well. Since V is of class C1, the function µV is of C1(Rn \ {0}) and
then F ∈ C1(Rn \ {0}). Let us see that in fact F is differentiable at 0 with∇F (0) = 0. Indeed, because
0 ∈ int(V ), we can find r > 0 with B(0, r) ⊂ V, which implies that µV (x) ≤ r−1|x| for every x ∈ Rn.
This yields

lim
|x|→0

|F (x)− F (0)|
|x|

= lim
|x|→0

µ2
V (x)

|x|
≤ lim
|x|→0

r−1|x|µV (x)

|x|
= lim
|x|→0

µV (x) = 0.

Hence F is differentiable at 0 with∇F (0) = 0. By Theorem 4.7 we then have that F satisfies conditions
(C) and (CW 1) on ∂V . In addition, note that ∂V = µ−1

V (1) = F−1(1) and, in particular, F = 1 on K.
Besides,

∇F (x) = 2µV (x)∇µV (x) = 2∇µV (x) whenever x ∈ ∂V.

Using this together with the fact that K ⊆ ∂V and N(x) is outwardly normal to ∂V at x for every
x ∈ K, we have that

N(x) =
∇µV (x)

|∇µV (x)|
=
∇F (x)

|∇F (x)|
, x ∈ K.

Let us check that N and K satisfy conditions (O), (K) and (KW1). For every y ∈ K, the convexity of
F together with∇F (0) = 0 give

0 ≤ F (y)− F (0)− 〈∇F (0), y〉 ≤ 〈∇F (y)−∇F (0), y〉 = |∇F (y)|〈N(y), y〉

which clearly implies, that 〈N(y), y〉 ≥ 0 and if 〈N(y), y〉 = 0, then the above inequality yields F (y) =
0, which is a contradiction because y ∈ K ⊆ ∂V = F−1(1). Hence, condition (O) is satisfied. In order
to check condition (K), we consider two points x, y ∈ K and use condition (C) of F on K (that is, the
convexity of F ) to obtain

〈N(y), y−x〉 = |∇F (y)|−1 (−〈∇F (y), x− y〉) = |∇F (y)|−1 (F (x)− F (y)− 〈∇F (y), x− y〉) ≤ 0,
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which proves (K). Finally, if x, y ∈ K are such that 〈N(y), y − x〉 = 0, using the above identity we
have that

F (x)− F (y)− 〈∇F (y), x− y〉 = 0,

and then condition (CW 1) tells us

N(y) =
∇F (y)

|∇F (y)|
=
∇F (x)

|∇F (x)|
= N(x),

which shows the necessity of (KW1).

4.5 Convex functions and self-contracted curves

Very recently, in [29], E. Durand-Cartagena and A. Lemenant have applied Theorem 4.7 to find a char-
acterization of strongly self-contracted curves in Rn. If T ∈ (0,+∞], a differentiable curve γ : [0, T ]→
Rn is said to be strongly self-contracted if for every t, s ∈ [0, T ] with t < s and γ′(t) 6= 0 we have that

〈γ′(t), γ(s)− γ(t)〉 > 0.

It turns out that, assuming C1,α regularity, these curves are characterized to be solutions of the gradient
flow equation

γ′(t) = −∇f(γ(t)),

for some convex function f ∈ C1(Rn). The exact statement of this characterization is as follows.

Theorem 4.30. [29, Theorem 1.2]. Let γ : [0, L] → Rn be an arc-length parameterized curve of class
C1,α([0, L]) for some α ∈ (1

2 , 1]. Then γ is strongly self-contracted if and only if there exist a C1 convex
function f : Rn → R and a parametrization γ̃ : [0, T ]→ Rn of γ with T < +∞ such that

γ̃′(t) = −∇f(γ̃(t)), t ∈ [0, T ].

4.6 C1 convex extensions from arbitrary subsets

We are now going to give the solution to the following problem in full generality.

Problem 4.31. Given E a subset of Rn, and functions f : E → R and G : E → Rn , how can we
decide whether there is a convex function F ∈ C1(Rn) such that F (x) = f(x) and ∇F (x) = G(x) for
all x ∈ E?

In Section 4.1 we gave the solution to Problem 4.31 in the particular case that E is a compact (or
bounded) subset, see Theorem 4.7 (and Theorem 4.20). We have seen that in this special situation the
two necessary and sufficient conditions on a 1-jet (f,G) with G continuous that we obtained for C1

conv
extendibility are:

f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E (C)

(which ensures convexity), and

f(x) = f(y) + 〈G(y), x− y〉 =⇒ G(x) = G(y) for all x, y ∈ E (CW 1)

(which tells us that if two points of the graph of f lie on a line segment contained in a hyperplane
which we want to be tangent to the graph of an extension at one of the points, then our putative tangent
hyperplanes at both points must be the same). In fact, it is shown in Remark 4.6 that the continuity of G
plus conditions (C) imply Whitney’s condition (W 1).

In Section 4.1 we also gave an example showing that the above conditions are no longer sufficient
when E is not compact (even if E is an unbounded convex body). The reasons for this insufficiency can
be mainly classified into two kinds of difficulties that only arise if the set E is unbounded and G is not
uniformly continuous on E:
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1. There may be no convex extension of f to the whole of Rn.

2. Even when there are convex extensions of f defined on all of Rn, and even when some of these ex-
tensions are differentiable in some neighborhood of E, there may be no C1(Rn) convex extension
of f .

Let us show how one can overcome these difficulties by adding new necessary conditions to (C), (CW 1)
in order to obtain a complete solution to Problem 4.31.

As is perhaps inevitable, our solution to Problem 4.31 contains several technical conditions which
may be quite difficult to grasp at a first reading. For this reason we will reverse the logical order of the
exposition: we will start by providing some corollaries and examples. Only at last will the main theorem
be stated.

The first kind of complication we have mentioned is well understood thanks to [60], and is not
difficult to deal with: the requirement that

lim
k→∞

〈G(xk), xk〉 − f(xk)

|G(xk)|
= +∞ for every sequence (xk)k ⊂ E with lim

k→∞
|G(xk)| = +∞ (EX)

guarantees that there exist convex functions ϕ : Rn → R such that ϕ|E = f .
The second kind of difficulty, however, is of a subtler geometrical character, and is related, on the

one hand, to the rigid global behavior of convex functions (see Theorem 4.41 below) and, on the other
hand, to the fact that a differentiable (or even real-analytic) convex function f : Rn → R may have
what one can call corners at infinity. In a short while we will be giving a precise meaning to this vague
expression, but let us first ask ourselves this question: what would appear to be a natural generalization
of condition (CW 1) of Definition 4.3 to the noncompact setting? As a first guess it may be natural to
consider a replacement of (CW 1) with the following condition: if (xk)k, (zk)k are sequences in E then

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0 =⇒ lim
k→∞

|G(xk)−G(zk)| = 0. (4.6.1)

A natural variant of this condition is:

lim
k→∞

f(xk)− f(zk)− 〈G(zk), xk − zk〉
|xk − zk|

= 0 =⇒ lim
k→∞

|G(xk)−G(zk)| = 0,

and it is clear that both conditions are the same as (CW 1) if E is compact. However, if E is unbounded
none of these conditions is necessary for the existence of a convex function F ∈ C1(Rn) such that
(F,∇F ) = (f,G) on E, as the following example shows.

Example 4.32. Let f : R2 → R be defined by f(x, y) =
√
x2 + e−2y. This is a real analytic strictly

convex function on R2 and one can check that the Hessian D2f is strictly positive everywhere, see
Example 4.39 for details. We have

∇f(x, y) =

(
x√

x2 + e−2y
,− e−2y

√
x2 + e−2y

)
,

and by considering the sequences

zk =

(
1

k
, k

)
, xk = (0, k), k ∈ N,

we see that

lim
k→∞

f(xk)− f(zk)− 〈∇f(zk), xk − zk〉
|xk − zk|

= lim
k→∞

√
e−2k −

√
k−2 + e−2k + k−2

(
k−2 + e−2k

)−1/2

k−1

= lim
k→∞

√
k2e−2k −

√
1 + k2e−2k +

1√
1 + k2e−2k

= lim
k→∞

−1√
k2e−2k +

√
1 + k2e−2k

+
1√

1 + k2e−2k
= 0;
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which in our case implies

lim
k→∞

(f(xk)− f(zk)− 〈∇f(zk), xk − zk〉) = 0,

and yet we have

lim inf
k→∞

|∇f(xk)−∇f(zk)| ≥ lim
k→∞

∣∣∣∣ k−1

√
k−2 + e−2k

∣∣∣∣ = lim
k→∞

∣∣∣∣ 1√
1 + k2e−2k

∣∣∣∣ = 1 6= 0.

So our first guess turned out to be wrong, and we have to be more careful. In view of the above
example, and at least if we are looking for extensions (F,∇F ) with F ∈ C1(Rn) convex and essentially
coercive (that is, C1 convex extensions F (x) which, up to a linear perturbation, tend to ∞ as |x| goes
to infinity), it could make sense to restrict condition (4.6.1) to sequences (xk)k which are bounded. On
the other hand, if (G(zk))k is not bounded as well, then by using condition (EX), up to extracting a
subsequence, we would have

lim
k→∞

〈G(zk), zk〉 − f(zk)

|G(zk)|
=∞,

hence
〈G(zk), zk〉 − f(zk) = Mk|G(zk)|, with lim

k→∞
Mk =∞,

and it follows that

f(xk)− f(zk)− 〈G(zk), xk − zk〉 = f(xk)− f(zk) + 〈G(zk), zk〉 − 〈G(zk), xk〉
≥ f(xk) + (Mk − |xk|) |G(zk)| → ∞

because (f(xk))k and (xk)k are bounded and Mk →∞. Thus we have learned that we cannot have

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0

unless (G(xk))k is bounded. An educated guess for a good substitute of (CW 1) could then be to require
that

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0 =⇒ lim
k→∞

|G(xk)−G(zk)| = 0 (4.6.2)

for all sequences (xk)k and (zk)k in E such that (xk)k and (G(zk))k are bounded.

We will prove in Section 4.8 below that this new condition is necessary for the existence of a function
F which solves our problem. Now, if we add (4.6.2) to (EX) and (C), will this new set of conditions be
sufficient as well? The answer to this question depends on how large the set span{G(x)−G(y) : x, y ∈
E} is. If this set coincides with Rn then those conditions are sufficient, and otherwise they are not; this
is the content of the following easy (but especially useful) consequence of the main result of this section,
Theorem 4.43.

Corollary 4.33. Given an arbitrary subsetE of Rn and two functions f : E → R, G : E → Rn, assume
that the following conditions are satisfied.

(i) G is continuous and f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

(ii) If (xk)k ⊂ E is a sequence for which limk→∞ |G(xk)| = +∞, then

lim
k→∞

〈G(xk), xk〉 − f(xk)

|G(xk)|
= +∞.

(iii) If (xk)k, (zk)k are sequences in E such that (xk)k and (G(zk))k are bounded and

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

then limk→∞ |G(xk)−G(zk)| = 0.
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(iv) span ({G(x)−G(y) : x, y ∈ E}) = Rn.

Then there exists a convex function F : Rn → R of class C1 such that F|E = f , (∇F )|E = G, and F is
essentially coercive.

Here, by saying that F is essentially coercive we mean that there exists a linear function ` : Rn → R
such that

lim
|x|→∞

(F (x)− `(x)) =∞.

Although Corollary 4.33 is a consequence of Theorem 4.43 below, the proof of Theorem 4.20 can be
easily adapted to produce a simpler proof of Corollary 4.33.

By comparing Example 4.32 with Corollary 4.33 we may arrive at a remarkable conclusion: our
given jet (f,G) may well have some corners at infinity and, for C1 convex extension purposes, that will
not matter at all as long as the jet (f,G) forces all possible convex extensions to be essentially coercive
(equivalently, as long as span{G(x)−G(y) : x, y ∈ E} = Rn). Let us now explain what we mean by a
jet having a corner at infinity.

Definition 4.34. Let X be a proper linear subspace of Rn and let us denote by X⊥ its orthogonal
complement. We say that a jet (f,G) : E ⊂ Rn → R× Rn has a corner at infinity in a direction of X⊥

provided that there exist two sequences (xk)k, (zk)k in E such that, if PX : Rn → X is the orthogonal
projection, then we have that (PX(xk))k and (G(zk))k are bounded, limk→∞ |xk| =∞,

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

and yet
lim sup
k→∞

|G(xk)−G(zk)| > 0.

We will also say that jet (f,G) has a corner at infinity in the direction of the line {tv : t ∈ R} (where
v ∈ Rn \ {0}) provided that there exist sequences (xk)k, (zk)k satisfying the above properties with PX
being the orthogonal projection onto the hyperplane X perpendicular to v.

For instance, the function f of Example 4.32, when restricted to the sequences (xk)k, (zk)k defined
there, gives an instance of a jet that has a corner at infinity directed by the line x = 0, see Figure 4.1
below. Of course, the pair (f,∇f), unrestricted, provides another instance. In this case it is natural to
say that the function f itself has a corner at infinity. More pathological examples can be given in higher
dimensions.

Example 4.35. Consider the following two examples.

(1) Let 1 ≤ k ≤ n be an integer and define the function

f(x1, x2, . . . , xn) =

√√√√ k∑
j=1

x2
j +

n∑
j=k+1

e−2xj , x = (x1, . . . , xn) ∈ Rn. (4.6.3)

Then f is a convex function of class C∞ with strictly positive Hessian at every point, which has a corner
at infinity in the direction of ej for every j = k + 1, . . . , n and f is essentially coercive.

(2) Let n ≥ 3 and 2 ≤ k < n be integers and define the function

f(x1, . . . , xn) =

√√√√x2
1 +

k∑
j=2

e−2xj , x = (x1, . . . , xn) ∈ Rn. (4.6.4)

Then f is convex and of class C∞, f has a corner at infinity in the direction of ej , for every j = 2, . . . , k,
and is not essentially coercive. Nevertheless f is essentially k-coercive (meaning that f can be written
as f = c ◦ P , where P is the orthogonal projection onto a k-dimensional subspace of X of Rn and
c : X → R is essentially coercive).
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Proof.

(1) Let us first check that f is strictly convex on Rn. Given x = (x1, . . . , xn) ∈ Rn, the gradient of f at
x is

∇f(x) =
1

f(x)

(
x1, . . . , xk,−e−2xk+1 , . . . ,−e−2xn

)
. (4.6.5)

The second derivatives of f at x are

∂2f

∂x2
j

(x) =
1

f(x)3

 k∑
`=1, ` 6=j

x2
` +

n∑
`=k+1

e−2x`

 ,
∂2f

∂xi∂xj
(x) = − xixj

f(x)3
, 1 ≤ i, j ≤ k, i 6= j,

∂2f

∂x2
j

(x) =
e−2xj

f(x)3

(
2

k∑
`=1

x2
` + 2

n∑
`=k+1

e−2x` − e−2xj

)
, k + 1 ≤ j ≤ n,

∂2f

∂xi∂xj
(x) = −e

−2xie−2xj

f(x)3
, k + 1 ≤ i, j ≤ n, i 6= j,

∂2f

∂xi∂xj
(x) =

xie
−2xj

f(x)3
, k + 1 ≤ j ≤ n, 1 ≤ i ≤ k.

We thus have, for every v = (v1, . . . , vn) ∈ Rn with |v| = 1, that

D2f(x)(v2) =
n∑

i,j=1

∂2f

∂xi∂xj
(x)vivj =

n∑
j=1

∂2f

∂x2
j

(x)v2
j + 2

∑
1≤i<j≤n

∂2f

∂xi∂xj
(x)vivj

=
k∑
j=1

∂2f

∂x2
j

(x)v2
j + 2

∑
1≤i<j≤k

∂2f

∂xi∂xj
(x)vivj

+
n∑

j=k+1

∂2f

∂x2
j

(x)v2
j + 2

n∑
j=k+1

j−1∑
i=1

∂2f

∂xi∂xj
(x)vivj .

On the one hand

k∑
j=1

∂2f

∂x2
j

(x)v2
j + 2

∑
1≤i<j≤k

∂2f

∂xi∂xj
(x)vivj

=
1

f(x)3

 n∑
`=k+1

e−2x`

k∑
j=1

v2
j +

k∑
j=1

k∑
`=1, ` 6=j

v2
jx

2
` − 2

∑
1≤i<j≤k

xixjvivj


=

1

f(x)3

 n∑
`=k+1

e−2x`

k∑
j=1

v2
j +

∑
1≤i<j≤k

(v2
jx

2
i + v2

i x
2
j )− 2

∑
1≤i<j≤k

xixjvivj


=

1

f(x)3

 n∑
`=k+1

e−2x`

k∑
j=1

v2
j +

∑
1≤i<j≤k

(vjxi + vixj)
2

 ≥ ∑n
`=k+1 e

−2x`

f(x)3

k∑
j=1

v2
j .
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On the other hand,

n∑
j=k+1

∂2f

∂x2
j

(x)v2
j + 2

n∑
j=k+1

j−1∑
i=1

∂2f

∂xi∂xj
(x)vivj

=
n∑

j=k+1

∂2f

∂x2
j

(x)v2
j + 2

n∑
j=k+1

k∑
i=1

∂2f

∂xi∂xj
(x)vivj + 2

n∑
j=k+1

j−1∑
i=k+1

∂2f

∂xi∂xj
(x)vivj

=
1

f(x)3

[
n∑

j=k+1

e−2xj

(
2

k∑
`=1

x2
` + 2

n∑
`=k+1

e−2x` − e−2xj

)
v2
j

+ 2
n∑

j=k+1

k∑
i=1

e−2xjxivivj − 2
n∑

j=k+1

j−1∑
i=k+1

e−2xie−2xjvivj

]

=
1

f(x)3

[
n∑

j=k+1

e−2xj

(
2

k∑
`=1

x2
`v

2
j + 2

k∑
i=1

xivivj

)

+

n∑
j=k+1

e−2xj

e−2xjv2
j + 2

n∑
`=k+1, ` 6=j

e−2x`v2
j

− 2

n∑
j=k+1

j−1∑
i=k+1

e−2xie−2xjvivj

]
.

It is clear that the last term is greater than or equal to

1

f(x)3

[
n∑

j=k+1

e−2xj

(
2

k∑
`=1

x2
`v

2
j −

k∑
i=1

x2
i v

2
j −

k∑
i=1

v2
i

)

+
n∑

j=k+1

e−2xj

e−2xjv2
j + 2

n∑
`=k+1, ` 6=j

e−2x`v2
j −

j−1∑
i=k+1

e−2xiv2
i −

j−1∑
i=k+1

e−2xiv2
j

]

=
1

f(x)3

[
n∑

j=k+1

e−2xj

(
k∑
`=1

x2
`v

2
j −

k∑
i=1

v2
i

)

+

n∑
j=k+1

e−2xj

e−2xjv2
j +

n∑
`=k+1, ` 6=j

e−2x`v2
j +

n∑
`=j+1

e−x`v2
j −

j−1∑
i=k+1

e−2xiv2
i

]

≥ 1

f(x)3

[
−

n∑
j=k+1

e−2xj

k∑
i=1

v2
i +

n∑
j=k+1

e−2xj

e−2xjv2
j +

n∑
`=k+1, ` 6=j

e−2x`v2
j


+

n∑
j=k+1

n∑
`=j+1

e−2xje−2x`v2
j −

n∑
j=k+1

j−1∑
`=k+1

e−2x`e−2xjv2
`

]

=
1

f(x)3

[
−

n∑
j=k+1

e−2xj

k∑
i=1

v2
i +

n∑
j=k+1

e−2xj

e−2xjv2
j +

n∑
`=k+1, ` 6=j

e−2x`v2
j


+

n∑
j=k+1

n∑
`=j+1

e−2xje−2x`v2
j −

n∑
`=k+1

n∑
j=`+1

e−2x`e−2xjv2
`

]

=
1

f(x)3

− n∑
j=k+1

e−2xj

k∑
i=1

v2
i +

n∑
j=k+1

e−2xj

e−2xj +

n∑
`=k+1, ` 6=j

e−2x`

 v2
j





98 Chapter 4. C1 extensions of convex functions on Rn

If we have that vk+1 = · · · = vn = 0, then

D2f(x)(v2) =
k∑
j=1

∂2f

∂x2
j

(x)v2
j + 2

∑
1≤i<j≤k

∂2f

∂xi∂xj
(x)vivj =

∑n
`=k+1 e

−2x`

f(x)3

k∑
j=1

v2
j > 0.

Let us now assume (vk+1, . . . , vn) 6= 0. Then, then preceding inequalities yield

D2f(x)(v2) ≥
∑n

`=k+1 e
−2x`

f(x)3

k∑
j=1

v2
j

+
1

f(x)3

− n∑
j=k+1

e−2xj

k∑
i=1

v2
i +

n∑
j=k+1

e−2xj

e−2xj +

n∑
`=k+1, ` 6=j

e−2x`

 v2
j


=

1

f(x)3

 n∑
j=k+1

e−2xj

e−2xj +

n∑
`=k+1, ` 6=j

e−2x`

 v2
j

 > 0.

We have thus shown that f has strictly positive Hessian at each point of Rn and, in particular, f is
strictly convex on Rn. Let us now see that f is essentially coercive. We define the linear functional
` : Rn → R by `(x) = x1 + · · ·+ xk, for every x = (x1, . . . , xn) ∈ Rn. The convavity of the function
(0,+∞) 3 t 7→ t1/2 yields

f(x) + `(x) =

√√√√ k∑
j=1

nx2
j

n
+

n∑
j=k+1

ne−2xj

n
+ `(x) ≥ 1

n

 k∑
j=1

√
n|xj |+

n∑
j=k+1

√
ne−xj

+ `(x)

=
k∑
j=1

|xj |√
n

+
n∑

j=k+1

(
e−xj√
n

+ xj

)
, for every x = (x1, . . . , xn) ∈ Rn;

and it is clear that the last term defines a coercive function on Rn. Finally, let us prove that f has a corner
at infinity in every direction ej , j = k + 1, . . . , n. In order to do so, we fix j ∈ {k + 1, . . . , n}, denote
X the orthogonal complement of the line directed by ej and define sequences

x`j = `ej , z`j =
1

`
e1 + `ej , ` ∈ N.

If PX denotes the orthogonal projection onto X, it is obvious that the sequence (PX(x`j))` is identically
zero and, in particular, is bounded. Using (4.6.5), it follows that

f(x`j) = e−`, f(z`j) =

√
1

`2
+ e−2`,

∇f(x`j) = −2e−`ej , ∇f(z`j) =
1√

1
`2

+ e−2`

(
1

`
e1 − 2e−2`ej

)
, j ∈ N.

We observe that

∇f(z`j) =
1√

1
`2

+ e−2`

(
1

`
e1 − 2e−`ej

)
=

1√
1 + `2e−2`

e1 −
2e−2``√

1 + `2e−2`
ej , (4.6.6)

and then the sequence
(
∇f(z`j)

)
`

is clearly bounded. Also, we can write

lim
`

(
f(x`j)− f(z`j)− 〈∇f(z`j), x

`
j − z`j〉

)
= lim

`

(
e−` −

√
1

`2
+ e−2` +

1

`
√

1 + `2e−2`

)
= 0.
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On the other hand, (4.6.6) yields

|∇f(x`j)−∇f(z`j)| ≥
1√

1 + `2e−2`
,

which tends to 1 as ` goes to infinity. According to Definition 4.34, we have thus shown that f has a
corner at infinity in the direction ej .

(2) Let X be the subspace spanned by the set {e1, . . . , ek} and let P : Rn → X be the orthogonal
projection onto X. It is obvious that f can be written as f = c ◦ P, where c is the function c(y) =
f(y, 0, . . . , 0) for every y ∈ X. The function c defined on X is one of the examples of (1) and then c
is convex and essentially coercive on X. This implies that f is convex on Rn and k-essentially coercive.
Finally, given j ∈ {2, . . . , k}, let us denote by Yj the orthogonal complement of the line directed by ej
and define the sequences

x`j = `ej , z`j =
1

`
e1 + `ej , ` ∈ N.

It is clear that
(
PYj (x

`
j)
)
`

is identically zero. Since both sequences (x`j)` and (z`j)` are contained in X,

the calculations in (1) show that
(
∇c(z`j)

)
`

is bounded,

lim
`

(
c(x`j)− c(z`j)− 〈∇c(z`j), x`j − z`j〉

)
= 0 and lim inf

`
|∇f(x`j)−∇f(z`j)| ≥ 1.

Because f = c ◦ P and

∇f(x1, . . . , xn) = (∇c(x1, . . . , xk), 0, . . . , 0) , x = (x1, . . . , xn) ∈ Rn,

we obtain that f has a corner at infinity in the direction ej .

Figure 4.1: f(x, y) =
√
x2 + e−2y, (x, y) ∈ R2. This function has a corner at infinity directed by the

line x = 0 and it is essentially coercive.

In general it can be shown that the presence of a corner at infinity in the graph of a differentiable
convex function f : Rn → R forces essential k-coercivity of f , for some k ≥ 2, in a subspace of
directions containing the directions of the corner. This is a consequence of the main result of this section,
Theorem 4.43.

We will not explicitly use the notion of corner at infinity in our proofs. Our reasons for introducing
these objects are the facts that: 1) one way or another, corners at infinity will be to blame for most of the
predicaments and technicalities involved in any attempt to solve Problem 4.31; and 2) we firmly believe
that the reader will be more able to understand the statements and proofs of the following results once he
has been acquainted with this notion. As a matter of fact, the most technical conditions of Theorems 4.38
and 4.43 below can be rephrased more intuitively in terms of corners at infinity and essential coercivity
of data in the directions of those corners.

Unfortunately Corollary 4.33 does not provide a characterization of the 1-jets which admit essentially
coercive C1 convex extensions. This is due to the fact that a jet (f,G) defined on a setE may admit such
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an extension and yet span{G(x)−G(y) : x, y ∈ E} 6= Rn; that is to say, condition (iv) is not necessary,
as shown by the trivial example of the jet (f0, G0) with E0 = {0} ⊂ R2, f0(0) = 0, G0(0) = 0, which
admits a C1 convex and coercive extension given by (F0,∇F0), where F0(x, y) = x2 + y2.

Of course, a C1 convex extension problem for a given 1-jet (f,G) may have solutions which are not
essentially coercive; in fact it may happen that none of its solutions are essentially coercive. A sister of
Corollary 4.33 which provides a more general, but still partial solution to Problem 4.31, is the following.

Corollary 4.36. Given an arbitrary subsetE of Rn and two functions f : E → R, G : E → Rn, assume
that the following conditions are satisfied:

(i) G is continuous and f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

(ii) If (xk)k ⊂ E is a sequence for which limk→∞ |G(xk)| = +∞, then

lim
k→∞

〈G(xk), xk〉 − f(xk)

|G(xk)|
= +∞.

(iii) Let P = PY : Rn → Rn be the orthogonal projection onto Y := span{G(x)−G(y) : x, y ∈ E}.
If (xk)k, (zk)k are sequences in E such that (P (xk))k and (G(zk))k are bounded and

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

then limk→∞ |G(xk)−G(zk)| = 0.

Then there exists a convex function F : Rn → R of class C1 such that F|E = f and (∇F )|E = G.

Condition (iii) of the above corollary can be intuitively rephrased by saying that: 1) our jet satisfies a
natural generalization of condition (CW 1); and 2) (f,G) cannot have corners at infinity in any direction
contained in the orthogonal complement of the subspace Y = span{G(x)−G(y) : x, y ∈ E}.

It could be natural to hope for the conditions of Corollary 4.36 to be necessary as well, thus providing
a nice characterization of those 1-jets which admit C1 convex extensions. Unfortunately the solution to
Problem 4.31 is necessarily more complicated, as the following example shows.

Example 4.37. Let E1 = {(x, y) ∈ R2 : y = log |x|, |x| ∈ N ∪ { 1
n : n ∈ N}}, f1(x, y) = |x|,

G1(x, y) = (−1, 0) if x < 0, G1(x, y) = (1, 0) if x > 0. In this case we have

Y := span{G1(x, y)−G1(x′, y′) : (x, y), (x′, y′) ∈ E1} = R× {0},

and we will see in Example 4.39 that condition (iii) of Theorem 4.36 is not satisfied. However, we
will see that, for ε > 0 small enough, if we set E∗1 = E1 ∪ {(0, 1)}, f∗1 = f1 on E1, f∗1 (0, 1) = ε,
G∗1 = G1 on E1, and G∗1(0, 1) = (0, ε), then the conditions of Corollary 4.33 are satisfied for (f1, G1).
This implies that the problem of finding a C1 convex extension of the jet (f∗1 , G

∗
1) does have a solution,

and therefore the same is true for the jet (f1, G1).

This example shows that in some cases the C1 convex extension problem for a 1-jet (f,G) may be
geometrically underdetermined in the sense that we may not have been given enough differential data so
as to have condition (iii) of the above corollary satisfied with Y = span{G(x)−G(y) : x, y ∈ E}, and
yet it may be possible to find a few more jets (βj , wj) associated with finitely many points pj ∈ Rn \E,
j = 1, . . . ,m, so that, if we define E∗ = E ∪ {p1, . . . , pm} and extend the functions f and G from E to
E∗ by setting

f(xj) := βj , G(pj) := wj for j = 1, . . . ,m, (4.6.7)

then the new extension problem for (f,G) defined on E∗ does satisfy condition (iii) of Corollary 4.36.
Notice that, the larger Y grows, the weaker condition (iii) of Corollary 4.36 becomes.

We are now prepared to state a first version of our main result.
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Theorem 4.38. Given an arbitrary subset E of Rn and two functions f : E → R, G : E → Rn, the
following is true. There exists a convex function F : Rn → R of class C1 such that F|E = f , and
(∇F )|E = G, if and only if the following conditions are satisfied.

(i) G is continuous and f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

(ii) If (xk)k ⊂ E is a sequence for which limk→∞ |G(xk)| = +∞, then

lim
k→∞

〈G(xk), xk〉 − f(xk)

|G(xk)|
= +∞.

(iii) Let Y := span{G(x)−G(y) : x, y ∈ E}. There exists a linear subspaceX ⊇ Y such that, either
Y = X , or else, if we define k = dimY and d = dimX, and PX : Rn → Rn is the orthogonal
projection from Rn onto X , there exist points p1, . . . , pd−k ∈ Rn \E, numbers β1, . . . , βd−k ∈ R,
and vectors w1, . . . , wd−k ∈ Rn such that:

(a) X = span ({u− v : u, v ∈ G(E) ∪ {w1, . . . , wd−k}}) .
(b) βj > max1≤i 6=j≤d−k{βi + 〈wi, pj − pi〉} for all 1 ≤ j ≤ d− k.
(c) βj > supz∈E, |G(z)|≤N{f(z) + 〈G(z), pj − z〉} for all 1 ≤ j ≤ d− k and N ∈ N.
(d) infx∈E, |PX(x)|≤N{f(x)−max1≤j≤d−k{βj + 〈wj , x− pj〉}} > 0 for all N ∈ N.

(iv) If X and PX are as in (iii), and (xk)k, (zk)k are sequences in E such that (PX(xk))k and
(G(zk))k are bounded and

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

then limk→∞ |G(xk)−G(zk)| = 0.

As we see, the difference between Theorem 4.38 and Corollary 4.36 is in the technical condition
(iii), which can be informally summed up by saying that, whenever the jets (f(x), G(x)), x ∈ E, do not
provide us with enough differential data so that condition (iii) of Corollary 4.36 holds, there is enough
room in Rn \E to add finitely many new jets (βj , wj), associated with new points pj , j = 1, . . . , d− k,
in such a way that the new extension problem does satisfy the conditions of Corollary 4.36. Hence the
new extension problem will be one for which, even though there may be corners at infinity, those corners
at infinity will necessarily be directed by subspaces which are contained in the span of the putative
derivatives, and the new data will force essential coercivity of all possible extensions in the directions of
those corners.

In Section 4.10 below we will show that, in the particular case that G is bounded (and so we may
expect to find an F with a bounded gradient), these complicated conditions about compatibility of the
old and new data admit a much nicer geometrical reformulation, see Theorem 4.57 below.

Let us consider some examples that will hopefully offer further clarification of these comments.

Example 4.39. Consider the following 1-jets (fj , Gj) defined on subsets Ej of Rn:

1. E1 = {(x, y) ∈ R2 : y = log |x|, |x| ∈ N ∪ { 1
n : n ∈ N}}, f1(x, y) = |x|, G1(x, y) = (−1, 0) if

x < 0, G1(x, y) = (1, 0) if x > 0.

2. E2 = {(x, y) ∈ R2 : y = log |x|, |x| ∈ N ∪ { 1
n : n ∈ N}}, f2 = ϕ, G2 = ∇ϕ, where

ϕ(x, y) =
√
x2 + e−2y.

3. E3 = {(x, y, z) ∈ R3 : z = 0, y = log |x|, |x| ∈ N ∪ { 1
n : n ∈ N}}, f3 = ϕ, G3 = ∇ϕ, where

ϕ(x, y, z) =
√
x2 + e−2y.

4. E4 = E1 ∪ {(x, y) ∈ R2 : |x| ≥ 1}, f4(x, y) = |x|, G4(x, y) = (−1, 0) if x < 0, G4(x, y) =
(1, 0) if x > 0.
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We claim that:

(1) For the jet (f1, G1), and with the notation of Theorem 4.43, we have Y = R×{0}, but the smallest
possible X we can take is X = R2 (and all possible extensions F must be essentially coercive on
R2).

(2) For the jet (f2, G2) we have Y = R2, and all possible extensions F must be essentially coercive
on R2.

(3) For the jet (f3, G3) we have Y = R2 × {0}, and we can take either X = Y or X = R3.

(4) For the jet (f4, G4) we have Y = R×{0}, but one cannot apply Theorem 4.43 with any X . There
exists no F ∈ C1

conv(R2) such that (F,∇F ) extends (f4, G4).

Proof.

(1) It is clear that Y = span{G(x, y)−G(x′, y′) : (x, y), (x′, y′) ∈ E1} = Y ×{0}. Let us see that con-
dition (v) of Theorem 4.43 is not satisfied for X = Y. Indeed, the sequences zk = (1/k,− log k), z̃k =
(−1/k,− log k), k ∈ N, belong to E1 and

f(zk)− f(z̃k)− 〈G(z̃k), zk − z̃k〉 = 1
k −

1
k − 〈(−1, 0), ( 2

k , 0)〉 = 2
k

tends to 0 as k goes to infinity; but limk |G(zk)−G(z̃k)| = 2. This shows that we cannot apply Theorem
4.43 with X = Y. However, let us see that conditions (i) − (v) of Theorem 4.43 are fulfilled with
X = R2. The first condition (i) follows from the fact that the function ϕ(x, y) = |x| is convex on R2 and
for every (x, y) ∈ R2 with x 6= 0, the function ϕ is differentiable at (x, y) with∇ϕ(x, y) = (sign(x), 0).
Conditions (ii) and (iii) trivially hold. Let us now check condition (iv). We define β = e−1, p = (0, 1)
and w = (0, β). It is then clear that X = span{u− v : u, v ∈ G(E1) ∪ {w}}. We immediately see that
conditions (iv)(a) and (iv)(b) are satisfied. To check condition (iv)(c), take a point (x, y) ∈ E1 and
write

β−f(x, y)−〈G(x, y), p− (x, y)〉 = β−|x|−〈(sign(x), 0), (0, 1)− (x, y)〉 = β−|x|+x sign(x) = β.

In order to show that condition (iv)(d) is satisfied, we take a point (x, y) ∈ E1 and we write

f(x, y)− β − 〈w, (x, y)− p〉 = |x| − β − 〈(0, β), (x, y)− (0, 1)〉 = |x| − βy = |x| − e−1 log |x|.

The function (0,+∞) 3 t → t − e−1 log t attains a global minimum at t = e−1. This shows that
|t| − e−1 log |t| ≥ 2e−1 = 2β for every t 6= 0, which in turn implies that

f(x, y)− β − 〈w, (x, y)− p〉 ≥ 2β, for all (x, y) ∈ E1.

Finally, let us check that condition (v) is true for f,G and X = R2. Given two bounded sequences (zk)k
and (z̃k)k in E1, we write zk = (xk, log(xk)) and z̃k = (x̃k, log(z̃k)) for every k. This yields

f(zk)−f(z̃k)− 〈G(z̃k), zk − z̃k〉
= |xk| − |x̃k| − 〈(sign(x̃k), 0), zk − z̃k〉 = |xk| − sign(x̃k)xk = xk (sign(xk)− sign(x̃k)) ,

for every k. If we assume that

lim
k

(f(zk)− f(z̃k)− 〈G(z̃k), zk − z̃k〉) = 0,

the preceding equations lead us to that either (xk)k tends to 0 or else sign(xk) = sign(x̃k) whenever
k ≥ k0 for some k0. But limk xk = 0 implies that limk log |xk| = −∞ and the sequence (zk)k would be
unbounded, which is a contradiction. Then, we must have

lim
k
|G(zk)−G(z̃k)| = lim

k
| sign(xk)− sign(x̃k)| = 0,

which proves condition (v).
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(2) Let us see that the function ϕ(x, y) =
√
x2 + e−2y, for (x, y) ∈ R2 is a C∞ convex function on R2.

The function ϕ is clearly C∞ on R2 and, after elementary calculations, we obtain

∇ϕ(x, y) =

(
x√

x2 + e−2y
,
−e−2y

√
x2 + e−2y

)
, Hϕ(x, y) =

e−2y

(x2 + e−2y)3/2

(
1 x
x 2x2 + e−2y

)
for all (x, y) ∈ R2, where Hϕ(x, y) denotes the Hessian matrix of ϕ at the point (x, y). If follows
immediately that Hϕ is positive definite at every point, which implies that ϕ is convex (in fact, strictly
convex) on R2.On the other hand, the points (x, y) = (1, 0), (x′, y′) = (−1, 0) and (x′′, y′′) = (2, log 2)
belong to E2 and

∇ϕ(x, y)−∇ϕ(x′, y′) = (
√

2, 0),

∇ϕ(x, y)−∇ϕ(x′′, y′′) =
(

2−1/2 − 4(17)−1/2,−2−1/2 + 2−1(17)−1/2
)
.

This clearly implies that Y = span{G(x, y)−G(x′, y′) : (x, y), (x′, y′) ∈ E2} = R2. In particular, we
have that span{∇ϕ(x, y) − ∇ϕ(x′, y′) : (x, y), (x′, y′) ∈ R2} = R2, that is Xϕ = R2 (see Theorem
4.41 for notation). Thus we can use the only if part of Theorem 4.43 (which will be proved in Section
4.8) to obtain that (f2, G2) satisfies conditions (i)− (v) with X = R2.

(3) With identical calculations as for (f2, g2, E2) we obtain that Y = R2 × {0}. The function ϕ is a
C1 convex function on R3 with Xϕ = R2 × {0} and the only if part of Theorem 4.43 implies that
(f3, G3) satisfies conditions (i)−(v) withX = R2×{0}. On the other hand, if we consider the function
ψ(x, y, z) = ϕ(x, y, z) + z2 for every (x, y, z) ∈ R3, we see that ψ is C1 and convex on R3, with
Xψ = R3 and (ψ,∇ψ) = (f3, G3) on E3 too. Again, the only if part of Theorem 4.43 shows that the
1-jet (f3, G3) satisfies conditions (i)− (v) with X = R3.

(4) It is clear that Y = R × {0}. Using the same calculations as in the first example (note that E4

contains E1), we see that condition (v) of Theorem 4.43 is not satisfied with X = Y. On the other
hand, if X = R2, let us see that condition (iv) is not satisfied. Indeed, assume there exist a point
p = (p1, p2) ∈ R2 \ E4, a number β ∈ R and a vector w = (w1, w2) ∈ Rn such that conditions
(iv)(a)− (d) are satisfied with p, β and w. From condition (iv)(d), we must have

|x| − β − w1(x− p1)− w2(y − p2) = f(x, y)− β − 〈w, (x, y)− p〉 > 0 for every (x, y) ∈ E4.

Then, if we consider points in E4 of the form (1, y) the above inequality tells us that

1− β − w1(1− p1)− w2(y − p2) > 0 for every y ∈ R.

If we first let y → +∞ and then y → −∞, we obtain both w2 ≤ 0 and w2 ≥ 0, and then w2 = 0. This
implies that w ∈ R× {0}, which contradicts condition (iv)(a). Therefore, condition (iv) does not hold
with X = R2.

Even though Theorem 4.38 fully solves Problem 4.31, an important question (as coercivity of a
convex function may be relevant or even essential to a number of possible applications, e.g. in PDE
theory) remains open: how can we characterize those 1-jets (f,G) such that there exists an essentially
coercive convex function F ∈ C1(Rn) so that (F,∇F ) extends (f,G)? The answer is: those jets are the
jets which satisfy the conditions of Theorem 4.38 with X = Rn. More generally, one could ask for C1

convex extensions with prescribed global behavior (meaning extensions which are essentially coercive
only in some directions, and affine in others). This ties in with a question which will be extremely
important in our proofs: what is the global geometrical shape of the C1 convex extension we are trying
to build?

In this regard, it will be convenient for us to state a refinement of Theorem 4.38 which characterizes
the set of 1-jets admitting C1 convex extensions with a prescribed global behavior, and which requires
introducing some definitions and notation.
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Definition 4.40. Let Z be a real vector space, and P : Z → X be the orthogonal projection onto a
subspace X ⊆ Z. We will say that a function f defined on a subset E of Z is essentially P -coercive
provided that there exists a linear function ` : Z → R such that for every sequence (xk)k ⊂ E with
limk→∞ |P (xk)| =∞ one has

lim
k→∞

(f − `) (xk) =∞.

We will say that f is essentially coercive whenever f is essentially I-coercive, where I : Z → Z is the
identity mapping.

If X is a linear subspace of Rn, we will denote by PX : Rn → X the orthogonal projection, and
we will say that f : E → R is essentially coercive in the direction of X whenever f is essentially
PX -coercive.

We will also denote by X⊥ the orthogonal complement of X in Rn. For a subset V of Rn, span(V )
will stand for the linear subspace spanned by the vectors of V . Finally, we define C1

conv(Rn) as the set of
all functions f : Rn → R which are convex and of class C1.

In [1] essentially coercive convex functions were called properly convex, and some approximation
results, which fail for general convex functions, were shown to be true for this class of functions. The
following result was also implicitly proved in [1, Lemma 4.2]. Since this will be a very important
tool in the statements and proofs of all the results of this section, and because we have introduced new
terminology and added conclusions, we will provide a self-contained proof in Section 4.7 for the readers’
convenience.

Theorem 4.41. For every convex function f : Rn → R there exist a unique linear subspace Xf of Rn,
a unique vector vf ∈ X⊥f , and a unique essentially coercive convex function cf : Xf → R such that f
can be written in the form

f(x) = cf (PXf (x)) + 〈vf , x〉 for all x ∈ Rn.

Moreover, if Y is a linear subspace of Rn such that f is essentially coercive in the direction of Y , then
Y ⊆ Xf .

The following Proposition shows that the directions Xf given by these decompositions are stable by
approximation.

Proposition 4.42. With the notation of the preceding theorem, if f, g : Rn → R are convex functions
and A is a positive number such that f(x) ≤ g(x) +A for all x ∈ Rn, then Xf ⊆ Xg.

In particular, if |f − g| ≤ A then Xf = Xg.

Proof. The inequality f(x) ≤ g(x) +A and the essential coercivity of f in the direction Xf implies that
g is essentially coercive in the direction Xf . Then Xf ⊆ Xg by the last part of Theorem 4.41.

We are finally ready to state the announced refinement of Theorem 4.38 which characterizes pre-
cisely which 1-jets (f,G) admit extensions (F,∇F ) such that F ∈ C1

conv(Rn) and XF coincides with a
prescribed linear subspace X of Rn.

Theorem 4.43. Given an arbitrary subsetE of Rn, a linear subspaceX ⊂ Rn, the orthogonal projection
P := PX : Rn → X , and two functions f : E → R, G : E → Rn, the following is true. There exists a
convex function F : Rn → R of class C1 such that F|E = f , (∇F )|E = G, and XF = X , if and only if
the following conditions are satisfied.

(i) G is continuous and f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

(ii) If (xk)k ⊂ E is a sequence for which limk→∞ |G(xk)| = +∞, then

lim
k→∞

〈G(xk), xk〉 − f(xk)

|G(xk)|
= +∞.
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(iii) Y := span ({G(x)−G(y) : x, y ∈ E}) ⊆ X .

(iv) If Y 6= X and we define k = dimY and d = dimX , there exist points p1, . . . , pd−k ∈ Rn \ E,
numbers β1, . . . , βd−k ∈ R, and vectors w1, . . . , wd−k ∈ Rn such that:

(a) X = span ({u− v : u, v ∈ G(E) ∪ {w1, . . . , wd−k}}) .
(b) βj > max1≤i 6=j≤d−k{βi + 〈wi, pj − pi〉} for all 1 ≤ j ≤ d− k.
(c) βj > supz∈E, |G(z)|≤N{f(z) + 〈G(z), pj − z〉} for all 1 ≤ j ≤ d− k and N ∈ N.
(d) infx∈E, |P (x)|≤N{f(x)−max1≤j≤d−k{βj + 〈wj , x− pj〉}} > 0 for all N ∈ N.

(v) If (xk)k, (zk)k are sequences in E such that (P (xk))k and (G(zk))k are bounded and

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

then limk→∞ |G(xk)−G(zk)| = 0.

In particular, by considering the case that X = Rn, we obtain a characterization of the 1-jets which
admit C1 convex extensions F such that XF = Rn, that is, C1 convex extensions which are essentially
coercive in Rn.

It is clear that Theorem 4.38 and Corollaries 4.33 and 4.36 are immediate consequences of the above
theorem. The proof of Theorem 4.43 will be given in Sections 4.8 and 4.9.

Remark 4.44. In practice, if Y 6= X and we are able to calculate (or at least appropriately estimate) the
minimal convex extension of the jet (f,G), defined by

m(x) = m(f,G)(x) = sup
y∈E
{f(y) + 〈G(y), x− y〉},

then a natural way to check condition (iv) is as follows. Define, for each u ∈ X , p ∈ Rn, β ∈ R, the
sets

S(m,u, p, β) = {x ∈ Rn : m(x) < β + 〈u, x− p〉},

and consider vectors {u1, . . . , ud−k} such that X = span ({u− v : u, v ∈ G(E) ∪ {u1, . . . , ud−k}}) .
Find p1 ∈ Rn \ E, β1 ∈ R such that S(m,u1, p1, β1) 6= ∅ and

m(x) ≥ β1 + 〈u1, x− p1〉+ r for all x ∈ E,

for some r > 0. Also, find q1 ∈ S(m,u1, p1, β1) sufficiently close to p1 such that

m(q1) ≤ β1 + 〈u1, q1 − p1〉 − r′ and |〈u1, p1 − q1〉| ≤
r′

2
,

for some r′ > 0 with r′ ≤ r. Then set E∗1 = E ∪ {q1}, and define f∗1 := E∗1 → R, G∗1 : E∗1 → Rn by

f∗1 (q1) = β1, f
∗
1 (x) = f(x) if x ∈ E; G∗1(q1) = u1, G

∗
1(x) = G(x) if x ∈ E.

Notice that the new putative tangent hyperplane h(x) = β1 + 〈G∗1(q1), x− q1〉 that we have added to our
problem lies strictly below the graph of the old function f. Indeed, because f = m on E, we have for all
x ∈ E :

f(x)− f∗1 (q1)− 〈G∗1(q1), x− q1〉 = m(x)− β1 − 〈u1, x− p1〉+ 〈u1, q1 − p1〉

≥ r + 〈u1, q1 − p1〉 ≥
r

2
.

On the other hand the old hyperplanes x 7→ f(y) + 〈G(y), x − y〉, y ∈ E, lie strictly below the point
(q1, f

∗
1 (q1)), as for all y ∈ E we have

f∗1 (q1)− f(y)− 〈G(y), q1 − y〉 ≥ β1 −m(q1) ≥ r′ + 〈u1, p1 − q1〉 ≥
r′

2
.
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Next, for the jet (f∗1 , G
∗
1) defined on E∗1 we consider the analogous C1

conv extension problem. Now we
have that

Y1 := span{G∗1(x)−G∗1(y) : x, y ∈ E∗1}

has dimension k + 1 and contains Y . Proceeding as before we consider the minimal function

m1(x) = m(f∗1 , G
∗
1)(x)

and find p2, q2 ∈ Rn, β2 ∈ R with the same properties as p1, q1, β1 with respect to E∗1 instead of E.
Then we set E∗2 = E∗1 ∪ {q2} and define f∗2 := E∗2 → R, G∗2 : E∗2 → Rn by

f∗2 (q2) = β2, f
∗
1 (x) = f∗1 (x) if x ∈ E∗1 ; G∗2(q2) = u2, G

∗
2(x) = G∗1(x) if x ∈ E∗1 .

By continuing the process in this manner we will obtain, in d − k steps, points qj , vectors wj = uj and
numbers βj , j = 1, . . . , d− k, satisfying condition (iv) of Theorem 4.43.

4.7 Global behaviour of convex functions

In this section, we shall prove Theorem 4.41 as well as some properties related to the subspace Xf

mentioned in that theorem which will be crucial in the proof of Theorem 4.43. Let us first recall some
terminology from [1]. We say that a function C : Rn → R is a k-dimensional corner function on Rn if
it is of the form

C = max{ `1 + b1, `2 + b2, . . . , `k + bk },

where the `j : Rn → R are linear functions such that the functions Lj : Rn+1 = Rn × R → R defined
by Lj(x, xn+1) = xn+1 − `j(x), 1 ≤ j ≤ k, are linearly independent in (Rn+1)∗, and the bj are in R.
This is equivalent to saying that the functions {`2 − `1, . . . , `k − `1} are linearly independent in (Rn)∗.

We also say that a convex function f : Rn → R is supported by C at a point x ∈ Rn provided we
have C ≤ f on Rn and C(x) = f(x).

Let us first study the essential coercivity of corner functions, which will be helpful in the proof of
Theorem 4.41.

Lemma 4.45. Every (k + 1)-dimensional corner function on Rn is essentially PX -coercive, where
PX : Rn → X denotes the orthogonal projection onto a k-dimensional subspace X of Rn. In fact,
if `1, . . . , `k+1 ∈ (Rn)∗ and b1, . . . , bk+1 ∈ R are such that {`j − `1}k+1

j=2 are linearly independent in
(Rn)∗ and C = max1≤j≤k+1{`j + bj}, then C is essentially PX -coercive, where

X =

k+1⋂
j=2

ker(`j − `1)

⊥ .
Proof. Let C be a (k + 1)-dimensional corner function and let `1, . . . , `k+1 ∈ (Rn)∗, b1, . . . , bk+1 ∈ R
and X as in the statement. For every j = 1, . . . , k+ 1 we denote by vj the unique vector of Rn such that
`j(x) = 〈vj , x〉 for every x ∈ Rn. Hence, the function C can be written as

C(x) = max{〈v1, x〉+ b1, . . . , 〈vk+1, x〉+ bk+1}, x ∈ Rn,

where the vectors v1, . . . , vk+1 ∈ Rn satisfy that {v2− v1, . . . , vk+1− v1} is linearly independent in Rn
and X = span{v2 − v1, . . . , vk+1 − v1}. Let us denote

uj = v1 − vj , j = 2, . . . , k + 1, and v = λ

k+1∑
i=1

vi, λ =
1

k + 1
.
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Note that X = span{u2, . . . , uk+1}. We now write, for every x ∈ Rn,

C(x)− 〈v, x〉 = max

{
〈vj , x〉 − λ

k+1∑
i=1

〈vi, x〉+ bj : j = 1, . . . , k + 1

}

= max

{
〈vj − v1, x〉+ λ

k+1∑
i=1

〈v1 − vi, x〉+ bj : j = 1, . . . , k + 1

}

= max

{
〈vj − v1, x〉+ λ

k+1∑
i=2

〈v1 − vi, x〉+ bj : j = 1, . . . , k + 1

}

= max

{
λ

k+1∑
i=2

〈ui, x〉+ b1,−〈uj , x〉+ λ

k+1∑
i=2

〈ui, x〉+ bj : j = 2, . . . , k + 1

}
.

For every i ∈ {2, . . . , k + 1} we have that 〈ui, x〉 = 〈ui, PX(x)〉 because ui ∈ X. This allows us to
write

C(x) = c(PX(x)) + 〈v, x〉, x ∈ Rn, where,

c(y) = max

{
λ
k+1∑
i=2

〈ui, y〉+ b1,−〈uj , y〉+ λ

k+1∑
i=2

〈ui, y〉+ bj : j = 2, . . . , k + 1

}
, y ∈ X. (4.7.1)

The function c is obviously a convex function on X (in fact, a corner function on X) and let us see that
c is coercive on X. For the sake of contradiction, let (y`)` be a sequence on X with lim` |y`| = +∞
such that (c(y`))` is bounded above. Here | · | denotes the Euclidean norm on X (the restriction of the
Euclidean norm | · | on Rn to X). If we define

‖y‖ := max{|〈u2, y〉|, . . . , |〈uk+1, y〉|}, y ∈ X,

the fact that X = span{u2, . . . , uk+1} tells us that ‖ · ‖ is a norm on X, which is necessarily equivalent
to the Euclidean norm | · | on X. This implies that lim` ‖y`‖ = +∞ and then we can find a subsequence
of (y`)`, which we will keep denoting by (y`)`, such that, for every j = 2, . . . , k + 1, the sequence
(〈uj , y`〉)` either tends to +∞ or tends to −∞ or else is bounded. Also, we have that lim` |〈uj , y`〉| =
+∞ for at least one j ∈ {2, . . . , k + 1}. We set

J+ = {j ∈ {2, . . . , k+ 1} : lim
`
〈uj , y`〉 = +∞}, J− = {j ∈ {2, . . . , k+ 1} : lim

`
〈uj , y`〉 = −∞}.

The preceding observations show that J+ ∪ J− is nonempty. Assume first that J− = ∅. Then each
sequence (〈ui, y`〉)` , i = 2, . . . k + 1, is bounded below and there is some j∗ ∈ J+. We thus have from
(4.7.1) that

c(y`) ≥ λ
k+1∑
i=2

〈ui, y`〉+ b1 ≥
1

2
〈uj∗ , y`〉 for ` large enough.

This implies that lim` c(y`) = +∞, which contradicts that (c(y`))` is bounded above. Assume now that
J− 6= ∅ and set m = card(J−) ≤ k. Let α ∈ R be a constant such that

λ
∑
i/∈J−
〈ui, y`〉+ min

j=2,...,k+1
bj ≥ α for every `.

Using again (4.7.1) we can write

c(y`) ≥ max
j∈J−

{
−〈uj , y`〉+λ

∑
i∈J−
〈ui, y`〉+λ

∑
i/∈J−
〈ui, y`〉+bj

}
≥ α+max

j∈J−

{
−〈uj , y`〉+λ

∑
i∈J−
〈ui, y`〉

}
;
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and thanks to the trivial inequality max(a1, . . . , am) ≥ 1
m (a1 + · · ·+ am) (which holds for all real

numbers a1, . . . , am), the above term is greater than or equal to

1

m

∑
j∈J−

−〈uj , y`〉+mλ
∑
i∈J−
〈ui, y`〉

 =
1

m

∑
j∈J−

− (1−mλ) 〈uj , y`〉

 .

Because mλ = m
k+1 is strictly smaller than 1, the last term tends to +∞ as ` → +∞, which implies

that lim` c(y`) = +∞, a contradiction. Therefore c must be coercive and this completes the proof of our
Lemma.

Let us now prove that, assuming that a convex function f admits a decomposition such as that of
Theorem 4.41, then the subspace Xf is uniquely determined in terms of the subdifferentials of f. In
order to do so, we use the following auxiliar lemma, which is important by itself.

Lemma 4.46. Let f : Rn → R be a convex function such that f admits a decomposition f = c ◦ PX +
〈v, ·〉, where PX : Rn → X is the orthogonal projection onto X, c : X → Rn is convex and essentially
coercive and v ∈ Rn. Given x ∈ Rn and η ∈ ∂f(x), we have η − v ∈ X and η − v ∈ ∂c(PX(x)).

Proof. Suppose that x ∈ Rn and η ∈ ∂f(x) but η−v /∈ X. Then we can find w ∈ X⊥ with 〈η−v, w〉 =
1. It follows from f = c ◦ PX + 〈v, ·〉 that

〈η, w〉 ≤ f(x+ w)− f(x) = c(PX(x+ w)) + 〈v, x+ w〉 − c(PX(x))− 〈v, x〉 = 〈v, w〉.

This implies that 〈η − v, w〉 ≤ 0, a contradiction. This shows that η − v ∈ X. Now, let z ∈ X and
x ∈ Rn. We have

c(z)− c(PX(x)) = f(z)− 〈v, z〉 − f(x) + 〈v, x〉 ≥ 〈η − v, z − x〉 = 〈η − v, z − PX(x)〉.

Therefore, η − v ∈ ∂c(PX(x)).

Lemma 4.47. Let f : Rn → R be a convex function and assume that f can be written as f = c ◦ PX +
〈v, ·〉, where PX : Rn → X is the orthogonal projection onto the subspace X of Rn, c : X → R is
convex and essentially coercive and v ∈ Rn. Then

X = span{ξx − ξy : ξx ∈ ∂f(x), ξy ∈ ∂f(y), x, y ∈ Rn}.

In particular, if f is differentiable on Rn, then

X = span{∇f(x)−∇f(y) : x, y ∈ Rn}.

Proof. Let us denote by Z the subspace of the right side term. Given two points x, y ∈ Rn and ξx ∈
∂f(x), ξy ∈ ∂f(y), we know by Lemma 4.46 that ξx − v and ξy − v belong to X, which implies that
ξx − ξy ∈ X. This shows that Z ⊆ X. In order to prove that X ⊆ Z, assume that there exists some
w ∈ X \{0} with w ⊥ Z. We take x0 ∈ Rn and ξt ∈ ∂f(x0 + tw) for every t ∈ R, that is, ξ0 ∈ ∂f(x0).
Thus ξ0 − ξt ∈ Z for every t ∈ R and then

0 ≤ f(x0 + tw)− f(x0)− 〈ξ0, tw〉 ≤ 〈ξt − ξ0, tw〉 = 0,

that is, f(x0 + tw) = f(x0) + 〈ξ0, tw〉 for every t ∈ R. The decomposition f = c ◦ PX + 〈v, ·〉 of f
yields

c (PX(x0) + tw) = f(x0 + tw)− 〈v, x0 + tw〉 = f(x0) + 〈ξ0, w〉 − 〈v, x0 + tw〉, t ∈ R,

which is an affine function on R and contradicts the fact that c is essentially coercive on X. Therefore
we must have X = Z.
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Finally, let us prove that if our convex function to be decomposed as in Theorem 4.41 is given by a
supremum of a (possible infinite) family of affine functions, then the subspace of the decomposition can
be written in terms of the linear parts of these affine functions. These will be very useful in the proof of
the if part of Theorem 4.43.

Lemma 4.48. Let f : E → R and G : E → Rn two mappings defined on a subset E of Rn satisfying
that f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E. Consider the function

m(x) = sup
y∈E
{f(y) + 〈G(y), x− y〉}, x ∈ Rn,

and assume thatm(x) is finite for every x ∈ Rn and thatm admits the decompositionm = c◦PX+〈v, ·〉,
where PX : Rn → X is the orthogonal projection onto the subspace X of Rn, c : X → Rn is convex
and essentially coercive, and v ∈ Rn. Then X = span{G(x)−G(y) : x, y ∈ E}.

Proof. Let us denote Z = span{G(x)−G(y) : x, y ∈ E}. By definition of m, it is clear that m(x) =
f(x) for every x ∈ E. Moreover, G(x) ∈ ∂m(x) for every x ∈ E. By Lemma 4.47, G(x)−G(y) ∈ X
for every x, y ∈ E, which proves that Z ⊆ X. Now, if X 6= Z, we can take a vector w ∈ X \ {0} such
that w ⊥ Z. If we consider a point x0 ∈ E we obtain, for all t ∈ R, that

m(x0 + tw)−m(x0)− 〈G(x0), tw〉 = m(x0 + tw)− f(x0)− 〈G(x0), tw〉
= sup

z∈E
{f(z)− f(x0) + 〈G(z)−G(x0), tw〉+ 〈G(z), x0 − z〉}

= sup
z∈E
{f(z)− f(x0) + 〈G(z), x0 − z〉} ≤ 0.

Because G(x0) ∈ ∂m(x0), we also have m(x0 + tw)−m(x0)− 〈G(x0), tw〉 ≥ 0, which implies

c(PX(x0) + tw) = m(x0 + tw)− 〈v, x0 + tw〉 = m(x0)− 〈v, x0〉+ 〈G(x0)− v, tw〉

for all t ∈ R, and in particular the function R 3 t 7→ c(PX(x0) + tw) cannot be essentially coercive,
contradicting the essentiall coercivity of c. Therefore we must have X = Z.

Once we have established all these properties, let us prove Theorem 4.41.

Proof of Theorem 4.41. Let f : Rn → R be a convex function and let us show that f admits a decompo-
sition f = c◦PX + 〈v, ·〉, where PX is the orthogonal projection onto the subspaceX of Rn, c : X → R
is convex and essentially coercive and v ∈ X⊥. Let us study two cases separately.

Case 1. We will first assume that f is differentiable (and therefore of class C1, since f is convex). If f
is affine, say f(x) = a〈u, x〉 + b, then the result is trivially true with X = {0}, c(0) = b, and v = au.
On the other hand, if f is essentially coercive then the result also holds obviously with X = Rn, v = 0,
and c = f . So we may assume that f is neither affine nor essentially coercive. In particular there exist
x0, y0 ∈ Rn with Df(x0) 6= Df(y0). It is then clear that L1(x, xn+1) = xn+1 − Df(x0)(x) and
L2(x, xn+1) = xn+1−Df(y0)(x) are two linearly independent linear functions on (Rn+1)∗, hence f is
supported at x0 by the two-dimensional corner

Rn 3 x 7→ max{f(x0) +Df(x0)(x− x0), f(y0) +Df(y0)(x− y0)}.

Let us then define k as the greatest integer so that f is supported at x0 by a (k + 1)-dimensional cor-
ner. The assumption together with Lemma 4.45 give 1 ≤ k < n. Then we also have that there exist
`1, . . . , `k+1 ∈ (Rn)∗ and b1, . . . , bk+1 ∈ R such that {`j − `1}k+1

j=2 are linearly independent in (Rn)∗

and the corner function C = max1≤j≤k+1{`j + bj} supports f at x0. The subspace
⋂k+1
j=2 ker (`j −

`1) has dimension n − k and then we can find linearly independent vectors w1, . . . , wn−k such that⋂k+1
j=2 ker (`j − `1) = span{w1, . . . , wn−k}. We now claim

d

dt
(f − `1)(y + twq) = 0 for all y ∈ Rn, t ∈ R, q = 1, . . . , n− k. (4.7.2)
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Indeed, assume that there exist y ∈ Rn, t0 ∈ R and q ∈ {1, . . . , n − k} such that d
dt(f − `1)(y +

twq)|t=t0 6= 0. It follows that (Df(y+t0wq)−`1)(wq) 6= 0,which in turn implies thatDf(y+t0wq)−`1
is linearly independent with {`j − `1}k+1

j=2 because wq ∈
⋂k+1
j=2 ker (`j − `1). Therefore, by convexity of

f, the function

x 7→ max{`1(x) + b1, . . . , `k+1(x) + bk+1, Df(y + t0wq)(x− y − t0wq) + f(y + t0wq)}

is a (k + 2)-dimensional corner supporting f at x0, which contradicts the choice of k. This proves that
(4.7.2) is true and then the Mean Value Theorem yields

(f−`1)

y +
n−k∑
j=1

tjwj

 = (f−`1)

y +
n−k∑
j=2

tjwj

 = · · · = (f−`1)(y+ tn−kwn−k) = (f−`1)(y)

(4.7.3)
for every y ∈ Rn and t1, . . . , tn−k ∈ R. Let PX be the orthogonal projection of Rn onto the subspace
X := span{w1, . . . , wn−k}⊥. We may define

c̃(z) = (f − `1)(z) for all z ∈ X,

which obviously is a convex function. For every x ∈ Rn, we can write

x = PX(x) + PX⊥(x) = PX(x) +
n−k∑
j=1

tjwj for some t1, . . . , tn−k ∈ R

and then (4.7.3) gives (f − `1)(x) = c̃(PX(x)). Now let us write

`1(x) = 〈u, x〉+ 〈v, x〉 for all x ∈ Rn,

where u ∈ X and v ∈ X⊥. We then have

f(x) = c(PX(x)) + 〈v, x〉 for all x ∈ Rn,

where c : X → R is defined by
c(x) = c̃(x) + 〈u, x〉.

Finally, let us see that c is essentially coercive on X. Since C = max1≤j≤k+1{`j + bj} is a (k + 1)-
dimensional corner function and X⊥ =

⋂k+1
j=2 Ker (`j − `1), Lemma 4.45 tells us that C is essentially

PX -coercive, that is, the restriction of C to X is essentially coercive on X. Besides,

c(x) = f(x)− 〈v, x〉 = f(x) ≥ C(x) for every x ∈ X,

and therefore c is essentially coercive on X.

Case 2. In the case that f : Rn → R is convex but not everywhere differentiable, we can use [1,
Corollary 1.3] in order to find a C1 (or even C∞) convex function g : Rn → R such that f − 1 ≤ g ≤ f
on Rn. Then we may apply Case 1 in order to find a subspace X ⊆ Rn, an essentially coercive convex
function c : X → R and a vector v ∈ X⊥ such that

g(z) = c(PX(z)) + 〈v, z〉

for all z ∈ Rn, where PX : Rn → X is the orthogonal projection. Given x ∈ X and ξ ∈ X⊥, the
function

R 3 t 7→ g(x+ tξ) = c(PX(x)) + 〈v, ξ〉t+ 〈v, x〉

is affine. Since f ≤ g + 1 and f is convex, the subdifferentials of the function R 3 t 7→ f(x+ tξ) must
coincide with 〈v, ξ〉. In other words, the function R 3 t 7→ f(x+ tξ) is affine and with linear part equal
to 〈v, ξ〉. This shows that

f(x+ tξ) = f(x) + t〈v, ξ〉
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for every x ∈ X , ξ ∈ X⊥ and t ∈ R. Hence, by writing z ∈ Rn as z = PX(z) + PX⊥(z) and bearing
in mind that v ∈ X⊥ we obtain

f(z) = f(PX(z)) + 〈v, PX⊥(z)〉 = ϕ(PX(z)) + 〈v, z〉 for all z ∈ Rn,

where ϕ : X → R is defined by ϕ(x) = f(x) for all x ∈ X . Moreover, because g ≤ ϕ on X and g
is essentially PX -coercive it is clear that ϕ is essentially coercive on X. This shows the existence of the
decomposition in the statement.

Now let us see that this decomposition is unique. In order to do so, let f : Rn → R be convex and
assume that we have two subspaces Z1, Z2, two convex and essentially coercive functions ϕ1 : Z1 →
R, ϕ2 : Z2 → R and two vectors ξ1 ∈ Z⊥1 , ξ2 ∈ Z⊥2 for which

f(x) = ϕ1(PZ1(x)) + 〈ξ1, x〉, (4.7.4)

and

f(x) = ϕ2(PZ2(x)) + 〈ξ2, x〉, (4.7.5)

for every x ∈ Rn. Thanks to Lemma 4.47 we know that both Z1 and Z2 must coincide with

span{ξx − ξy : ξx ∈ ∂f(x), ξy ∈ ∂f(y), x, y ∈ Rn},

in particular Z1 = Z2. Next, let us see that ξ1 = ξ2. If we set x = 0, then (4.7.4) and (4.7.5) yield
ϕ1(0) = f(0) = ϕ2(0) and then, for every v ∈ Z⊥1 , we have

ϕ1(0) + 〈ξ1, v〉 = f(v) = ϕ2(0) + 〈ξ2, v〉 = ϕ1(0) + 〈ξ2, v〉,

which implies that 〈ξ1, v〉 = 〈ξ2, v〉 for all v ∈ Z⊥1 . Because ξ1, ξ2 ∈ Z⊥1 this shows that ξ1 = ξ2. Once
we know that Z1 = Z2 and ξ1 = ξ2, it immediately follows from (4.7.4) and (4.7.5) that ϕ1 = ϕ2. This
shows that the decomposition is unique.

Finally let us prove that if f is essentially coercive in the direction of a subspace Y then Y ⊆ Xf .
So, let us assume that there exists a linear form ` on Rn such that f(x) − `(x) → ∞ as |PY (x)| → ∞
but Y * Xf . Then there exists a vector ξ ∈ X⊥f \ Y ⊥ and this implies that the function

R 3 t 7→ f(tξ)− `(tξ) = c(PXf (tξ)) + t〈v, ξ〉 − `(ξ)t = c(0) + t〈v, ξ〉 − `(ξ)t (4.7.6)

is affine. Since ξ /∈ Y ⊥, then |PY (ξ)| > 0 and |PY (tξ)| → ∞ as |t| → ∞, which implies that
f(tξ) − `(tξ) → ∞ as |t| → ∞ by the assumption on f. This contradicts the fact that the function of
(4.7.6) is affine. Therefore we must have Y = Xf . The proof of Theorem 4.41 is thus complete.

4.8 Proving the necessity of the conditions

We start with the proof of Theorem 4.43. In this section we are going to prove the only if part. So, let F
be a convex function of class C1(Rn) such that (F,∇F ) extends (f,G) from E, and XF = X. Let us
check that conditions (i)− (v) are satisfied for (f,G) and X.

4.8.1 Condition (i)

The inequality f(x)− f(y)− 〈G(y), x− y〉 ≥ 0 for all x, y ∈ E follows from the fact that F is convex
and differentiable with (F,∇F ) = (f,G) on E.
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4.8.2 Condition (ii)

Assume that (|∇F (xk)|)k tends to +∞ for a sequence (xk)k ⊂ Rn but

〈∇F (xk), xk〉 − F (xk)

|∇F (xk)|

does not go to +∞. Then, passing to a subsequence, we may assume that there exists M > 0 such that
〈∇F (xk), xk〉 − F (xk) ≤ M |∇F (xk)| for all k. We denote zk = 2M ∇F (xk)

|∇F (xk)| . By convexity, we have,
for all k, that

0 ≤ F (zk)− F (xk)− 〈∇F (xk), zk − xk〉 ≤ F (zk)−M |∇F (xk)|,

which contradicts the assumption that |∇F (xk)| → ∞.

4.8.3 Condition (iii)

Making use of Theorem 4.41 and bearing in mind thatXF = X, we can write F = c◦PX +〈v, ·〉, where
PX : Rn → X is the orthogonal projection onto the subspace X, the function c : X → R is convex and
essentially coercive on X , and v ⊥ X. Because F is differentiable on Rn and c = F − 〈v, ·〉 on X, the
function c is differentiable on X and ∇F (x) = ∇c(PX(x)) + v for all x ∈ Rn. Since F = G on E, we
get that

G(x)−G(y) = ∇F (x)−∇F (y) = ∇c(PX(x))−∇c(PX(y)) ∈ X, for all x, y ∈ E.

4.8.4 Condition (v)

Let us consider sequences (xk)k, (zk)k on E such that (PX(xk))k and (∇F (zk))k are bounded and

lim
k→∞

(F (xk)− F (zk)− 〈∇F (zk), xk − zk〉) = 0. (4.8.1)

Suppose that |∇F (xk)−∇F (zk)| does not converge to 0. Then, using that (PX(xk))k is bounded, there
exist some x0 ∈ X and ε > 0 for which, possibly after passing to a subsequence, PX(xk) converges to
x0 and |∇F (xk)−∇F (zk)| ≥ ε for every k. By using the decomposition F = c ◦PX + 〈v, ·〉 and some
elementary properties of orthogonal projections together with (4.8.1) we obtain

lim
k→∞

(c(PX(xk))− c(PX(zk))− 〈∇c(PX(zk)), PX(xk)− PX(zk)〉) = 0.

Since∇F (y)− v = ∇c(PX(y)) for all y ∈ Rn we have that (∇c(PX(zk)))k is bounded and

|∇c(PX(xk))−∇c(PX(zk))| ≥ ε

for every k. Additionally

lim
k→∞

(c(x0)− c(PX(zk))− 〈∇c(PX(zk)), x0 − PX(zk)〉) = 0.

The contradiction follows from the lemma below.

Lemma 4.49. Let h : X → R be a differentiable convex function, x0 ∈ X , and (yk)k be a sequence in
X such that (∇h(yk))k is bounded and

lim
k→∞

(h(x0)− h(yk)− 〈∇h(yk), x0 − yk〉) = 0.

Then limk→∞ |∇h(x0)−∇h(yk)| = 0.
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Proof. Suppose not. Then, up to extracting a subsequence, we would have |∇h(x0)−∇h(yk)| ≥ ε, for
some positive ε and for every k. Now, for every k, we set

αk := h(x0)− h(yk)− 〈∇h(yk), x0 − yk〉, vk :=
∇h(yk)−∇h(x0)

|∇h(yk)−∇h(x0)|
.

In Lemma 4.12 it is proved that αk = 0 implies |∇h(x0) − ∇h(yk)| = 0, which is absurd. Thus we
must have αk > 0 for every k. By convexity we have

√
αk〈∇h(x0 +

√
αkvk), vk〉 ≥ h(x0 +

√
αkvk)− h(x0)

≥ h(yk) + 〈∇h(yk), x0 +
√
αkvk − yk〉 − h(x0)

= −αk +
√
αk〈∇h(yk), vk〉

for all k. Hence, we obtain

〈∇h(x0 +
√
αkvk)−∇h(x0), vk〉 ≥ −

√
αk + |∇h(yk)−∇h(x0)| ≥ −

√
αk + ε.

But the above inequality is impossible, as∇h is continuous and αk → 0.

4.8.5 Condition (iv)

By applying Theorem 4.41 we may write

F (x) = c(PX(x)) + 〈v, x〉,

with c : X → R convex and essentially coercive, and v ⊥ X . And from Lemma 4.47

X = span{∇F (x)−∇F (y) : x, y ∈ Rn}.

Let us denote Y := span{∇F (x) − ∇F (y) : x, y ∈ E} ⊂ X and assume that Y 6= X. Let k and
d denote the dimensions of Y and X respectively. We can find points x0, x1, . . . , xk ∈ E such that
Y = span{∇F (xj)−∇F (x0) : j = 1, . . . , k}. We claim that there exists p1 ∈ Rn such that∇F (p1)−
∇F (x0) /∈ Y. Indeed, otherwise we would have that ∇F (p) − ∇F (x0) ∈ Y for all p ∈ Rn, which
implies that

∇F (p)−∇F (q) = (∇F (p)−∇F (x0))− (∇F (q)−∇F (x0)) ∈ Y, for all p, q ∈ Rn.

This is a contradiction since X 6= Y. Then the subspace Y1 spanned by Y and the vector ∇F (p1) −
∇F (x0) has dimension k + 1. If d = k + 1, we are done. If d > k + 1, using the same argument
as above, we can find a point p2 ∈ Rn such that ∇F (p2) − ∇F (x0) /∈ Y1. By induction, we obtain
points p1, . . . , pd−k ∈ Rn such that the set {∇F (pj) − ∇F (x0)}d−kj=1 is linearly independent and X =
Y ⊕ span{∇F (pj)−∇F (x0) : j = 1, . . . , d− k}, which shows that

X = span {u− w : u,w ∈ ∇F (E) ∪ {∇F (p1), . . . ,∇F (pd−k)} } .

This shows the necessity of (iv)(a). Obviously we have ∇F (pj) − ∇F (x0) ∈ X \ Y for all j =
1, . . . , d− k, and we claim that

pj ∈ Rn \ E for all j = 1, . . . , d− k.

Indeed, if there exists a sequence (q`)` ⊂ E with (q`)` → pj for some j = 1, . . . , d − k, then, because
Y is closed and ∇F is continuous, ∇F (pj) − ∇F (x0) = lim` (∇F (q`)−∇F (x0)) ∈ Y, which is a
contradiction. By the (already shown) necessity of condition (v), applied withE∗ = E∪{p1, . . . , pd−k}
in place of E, we have that

lim
`→∞

|∇F (x`)−∇F (z`)| = 0 (4.8.2)
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whenever (x`)`, (z`)` are sequences in E∗ such that (PX(x`))` and (∇F (z`))` are bounded and

lim
`→∞

(F (x`)− F (z`)− 〈∇F (z`), x` − z`〉) = 0.

But the fact that dist(∇F (pj) − ∇F (x0), Y ) > 0 for each j = 1, . . . , d − k prevents the limiting
condition (4.8.2) from holding true with (z`)` ⊂ {p1, . . . , pd−k} and (x`)` ⊂ E. This implies that the
inequalities

F (pj) ≥ F (pi) + 〈∇F (pi), pj − pi〉, 1 ≤ i, j ≤ d− k, i 6= j,

F (pj) ≥ sup
z∈E,|∇F (z)|≤N

{F (z) + 〈∇F (z), pj − z〉}, 1 ≤ j ≤ d− k, N ∈ N,

F (x) ≥ F (pj) + 〈∇F (pj), x− pj〉, 1 ≤ j ≤ d− k, x ∈ Rn,

which generally hold by convexity of F , must all be strict. Moreover, the last of these inequalities,
together with (4.8.2), also implies that

inf
x∈E, |PX(x)|≤N

{F (x)− max
1≤j≤d−k

{F (pj) + 〈∇F (pj), x− pj〉}} > 0

for all N ∈ N. Setting wj = ∇F (pj) and βj = F (pj), j = 1, . . . , d − k, this shows the necessity of
(iv)(b)− (d).

4.9 Proving the sufficiency of the conditions

We are now going to prove the if part of Theorem 4.43. So, let us assume that E is an arbitrary subset
and that (f,G) and X satisfy conditions (i)− (v) of Theorem 4.43.

First of all, with the notation of condition (iv), if Y 6= X , we define

E∗ = E ∪ {p1, . . . , pd−k}

and extend the functions f and G to E∗ by setting

f(pj) := βj , G(pj) := wj for j = 1, . . . , d− k. (4.9.1)

If Y = X , we just set E∗ = E and ignore any reference to the points pj and their companions wj and
βj in what follows.

Lemma 4.50. We have:

(1) X = span ({G(x)−G(y) : x, y ∈ E∗}) .

(2) There exists r > 0 such that f(pi)− f(pj)− 〈G(pj), pi − pj〉 ≥ r for all 1 ≤ i 6= j ≤ d− k.

(3) For every N ∈ N, there exists rN > 0 with f(pi) − f(z) − 〈G(z), pi − z〉 ≥ rN for all z ∈ E
with |G(z)| ≤ N and all 1 ≤ i ≤ d− k.

(4) For every N ∈ N, there exists rN > 0 with f(x) − f(pi) − 〈G(pi), x − pi〉 ≥ rN for all x ∈ E
with |PX(x)| ≤ N and all 1 ≤ i ≤ d− k.

Proof. This follows immediately from condition (iv) and the definitions of (4.9.1).

Lemma 4.51. The jet (f,G) defined on E∗ satisfies the inequalities of the assumption (i) on E∗, that is,

f(x) ≥ f(y) + 〈G(y), x− y〉, x, y ∈ E∗.

Moreover, if (xk)k, (zk)k are sequences in E∗ such that (PX(xk))k and (G(zk))k are bounded, then

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0 =⇒ lim
k→∞

|G(xk)−G(zk)| = 0.
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Proof. Suppose that (xk)k, (zk)k are sequences in E∗ such that (PX(xk))k and (G(zk))k are bounded
and limk→∞ (f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0. In view of Lemma 4.50 (2), (3) and (4), it is
immediate that there exists k0 such that either there is some 1 ≤ i ≤ d − k with xk = zk = pi for all
k ≥ k0 or else xk, zk ∈ E for all k ≥ k0. In the first case, the conclusion is trivial. In the second case,
limk→∞ |G(xk)−G(zk)| = 0 follows from condition (v) of Theorem 4.43.

We now consider the minimal convex extension of the jet (f,G) from E∗, defined by

m(x) = m(f,G,E∗)(x) := sup
y∈E∗
{f(y) + 〈G(y), x− y〉}, x ∈ Rn.

It is clear that m, being the supremum of a family of affine functions, is a convex function on Rn. In fact,
we have the following.

Lemma 4.52. m(x) is finite for every x ∈ Rn. In addition, m = f on E∗ and G(x) ∈ ∂m(x) for all
x ∈ E∗.

Here ∂m(x) := {ξ ∈ Rn : m(y) ≥ m(x) + 〈ξ, y − x〉 for all y ∈ Rn} is the subdifferential of m at
x.

Proof. Fix a point z0 ∈ E∗. For any given point x ∈ Rn it is clear that there exists a sequence (yk)k
(possibly stationary) in E∗ such that

f(z0) + 〈G(z0), x− z0〉 ≤ f(yk) + 〈G(yk), x− yk〉 for all k,

and f(yk) + 〈G(yk), x − yk〉 → m(x) as k → ∞. On the other hand, by the first statement of Lemma
4.51, we have

f(yk) + 〈G(yk), x− yk〉 ≤ f(z0) + 〈G(yk), yk − z0〉+ 〈G(yk), x− yk〉 = f(z0) + 〈G(yk), x− z0〉.

for every k. Then it is clear that m(x) < +∞ when (G(yk))k is a bounded sequence. We next
show that this sequence can never be unbounded. Indeed, in such case, by the condition (ii) in The-
orem 4.43 (which obviously holds with E∗ in place of E), we would have a subsequence for which
limk→∞ |G(yk)| = +∞ which in turn implies

lim
k→∞

〈G(yk), yk〉 − f(yk)

|G(yk)|
= +∞.

Hence, by the assumption on (yk)k we would have

f(yk)− 〈G(yk), yk〉
|G(yk)|

≥ f(z0) + 〈G(z0), x− z0〉
|G(yk)|

−
〈 G(yk)

|G(yk)|
, x
〉
.

Since limk→∞ |G(yk)| = +∞, the right-hand term is bounded below, and this leads to a contradiction.
Therefore m(x) < +∞ for all x ∈ Rn. In addition, by using the definition of m and the first statement
of Lemma 4.51 for the jet (f,G), we obtain that m = f on E∗ and that G(x) belongs to ∂m(x) for all
x ∈ E∗.

Making use of Theorem 4.41, we can write

m = c ◦ PXm + 〈v, ·〉 on Rn,

where c : Xm → R is convex and essentially coercive on Xm and v ⊥ Xm. Thanks to the first part of
Lemma 4.51, we can apply Lemma 4.48 to obtain that Xm = span{G(x)−G(y) : x, y ∈ E∗}, which
in turn coincides with X by virtue of Lemma 4.50 (1). We thus have Xm = X and

m = c ◦ PX + 〈v, ·〉 on Rn. (4.9.2)

By combining Lemma 4.46 with the second part of Lemma 4.52 we obtain that

G(x)− v ∈ ∂c(PX(x)) ⊂ X for all x ∈ E∗. (4.9.3)

We are now going to study the differentiability of the function c.
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Lemma 4.53. The function c is differentiable on PX(E∗), and, if y ∈ PX(E∗), then∇c(y) = G(x)−v,
where x ∈ E∗ is such that PX(x) = y.

Proof. Let us suppose that c is not differentiable at some y0 ∈ PX(E∗). Then, by the convexity of c on
X, we may assume that there exist a sequence (hk)k ⊂ X with |hk| ↘ 0 and a number ε > 0 such that

ε ≤ c(y0 + hk) + c(y0 − hk)− 2c(y0)

|hk|
for all k.

We now consider sequences (yk)k ⊂ PX(E∗) and (xk)k ⊂ E∗ with

PX(xk) = yk and yk → y0.

In particular, the sequence (PX(xk))k is bounded. Since each hk belongs to X, we can use (4.9.2) to
rewrite the last inequality as

ε ≤ m(y0 + hk) +m(y0 − hk)− 2m(y0)

|hk|
for all k. (4.9.4)

By the definition of m we can pick two sequences (zk)k, (z̃k)k ⊂ E∗ with the following properties:

m(y0 + hk) ≥ f(zk) + 〈G(zk), y0 + hk − zk〉 ≥ m(y0 + hk)−
|hk|
2k

,

m(y0 − hk) ≥ f(z̃k) + 〈G(z̃k), y0 − hk − z̃k〉 ≥ m(y0 − hk)−
|hk|
2k

for every k. We claim that (G(zk))k must be bounded. Indeed, otherwise, possibly after passing to a
subsequence and using condition (ii) of Theorem 4.43, we would obtain that

lim
k→∞

|G(zk)| = lim
k→∞

〈G(zk), zk〉 − f(zk)

|G(zk)|
= +∞.

Due to the choice of (zk)k we must have

m(y0) = lim
k→∞

(f(zk) + 〈G(zk), x0 + hk − zk〉)

= lim
k→∞

|G(zk)|
(
f(zk)− 〈G(zk), zk〉

|G(zk)|
+
〈 G(zk)

|G(zk)|
, x0 + hk

〉)
= −∞,

which is absurd. Similarly one can show that (G(z̃k))k is bounded. Now we write

f(xk)−f(zk)− 〈G(zk), xk − zk〉
= f(xk)− 〈v, xk〉 − (m(y0 + kk)− 〈v, y0 + hk〉)

+m(y0 + hk)− f(zk)− 〈G(zk), y0 + hk − zk〉
+ 〈G(zk)− v, y0 + hk − xk〉.

By (4.9.2), the first term in the sum equals c(PX(xk)) − c(y0 + hk), which converges to 0 because
PX(xk) → y0 and c is continuous. Thanks to the choice of the sequence (zk)k, the second term also
converges to 0. From (4.9.3), we have G(zk) − v ∈ X for all k, and then the third term in the sum is
actually 〈G(zk)−v, y0−PX(xk)+hk〉,which converges to 0, as (G(zk))k is bounded and PX(xk)→ y0.
We then have

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

where (PX(xk))k and (G(zk))k are bounded sequences. We obtain from the second part of Lemma 4.51
that limk→∞ |G(xk)−G(zk)| = 0, and similarly one can show that limk→∞ |G(xk)−G(z̃k)| = 0. This
obviously implies

lim
k→∞

|G(zk)−G(z̃k)| = 0. (4.9.5)
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By the choice of the sequences (zk)k, (z̃k)k and by inequality (4.9.4) we have, for every k,

ε ≤ f(zk) + 〈G(zk), y0 + hk − zk〉
|hk|

+
f(z̃k) + 〈G(z̃k), y0 − hk − z̃k〉

|hk|

− f(zk) + 〈G(zk), y0 − zk〉+ f(z̃k) + 〈G(z̃k), y0 − z̃k〉
|hk|

=
〈
G(zk)−G(z̃k),

hk
|hk|

〉
+

1

2k−1
≤ |G(zk)−G(z̃k)|+

1

2k−1
.

Then (4.9.5) leads us to a contradiction. We conclude that c is differentiable on PX(E∗).

We now prove the second part of the lemma. Consider y ∈ PX(E∗) and x ∈ E∗ with PX(x) = y.
Using (4.9.3), we have G(x) − v ∈ ∂c(y). Because c is differentiable at y, we further obtain that
G(x)− v = ∇c(y).

In order to complete the proof of Theorem 4.43, we will need the following lemma.

Lemma 4.54. Let h : X → R be a convex and coercive function such that h is differentiable on a closed
subset A of X. There exists H ∈ C1(X) convex and coercive such that H = h and ∇H = ∇h on A.

Proof. Since h is convex, its gradient ∇h is continuous on A (see [58, Corollary 24.5.1] for instance).
Then, for all x, y ∈ A, we have

0 ≤ h(x)− h(y)− 〈∇h(y), x− y〉
|x− y|

≤
〈
∇h(x)−∇h(y),

x− y
|x− y|

〉
≤ |∇h(x)−∇h(y)|,

where the last term tends to 0 as |x− y| → 0 uniformly on x, y ∈ K for every compact subset K of A.
This shows that the pair (h,∇h) defined on A satisfies the conditions of the classical Whitney Extension
Theorem for C1 functions, see Theorem 4.1. Therefore, there exists a function h̃ ∈ C1(X) such that
h̃ = h and ∇h̃ = ∇h on A. We now define

φ(x) := |h(x)− h̃(x)|+ 2d(x,A)2, x ∈ X. (4.9.6)

Claim 4.55. The function φ is differentiable on A, with∇φ(x0) = 0 for every x0 ∈ A.

Proof. The function d(·, A)2 is obviously differentiable, with a null gradient, at every x0 ∈ A. Since
h̃ = h and ∇h̃ = ∇h on A, the same argument as in the proof of Claim 4.15 shows that |h − h̃| is
differentiable, with a null gradient, at every x0 ∈ A.

Now, because d(·, A)2 is continuous and positive on X \ A, according to Whitney’s approximation
theorem [71] we can find a function ϕ ∈ C∞(X \A) such that

|ϕ(x)− φ(x)| ≤ d(x,A)2 for every x ∈ X \A. (4.9.7)

Let us define ϕ̃ : X → R by ϕ̃ = ϕ on X \A and ϕ̃ = 0 on A.

Claim 4.56. The function ϕ̃ is differentiable on X and∇ϕ̃ = 0 on A.

Proof. It is obvious that ϕ̃ is differentiable on int(A) ∪ (X \A) and ∇ϕ̃ = 0 on int(A). We only have
to check that ϕ̃ is differentiable on ∂A. If x0 ∈ ∂A we have

|ϕ̃(x)− ϕ̃(x0)|
|x− x0|

=
|ϕ̃(x)|
|x− x0|

≤ |φ(x)|+ d(x,A)2

|x− x0|
→ 0

as |x−x0| → 0+, because both φ and d(·, A)2 vanish at x0 and are differentiable, with null gradients, at
x0. Therefore ϕ̃ is differentiable at x0, with∇ϕ̃(x0) = 0.



118 Chapter 4. C1 extensions of convex functions on Rn

Now we set
g := h̃+ ϕ̃

on X . It is clear that g = h on A. Also, by Claim 4.56, g is differentiable on X with ∇g = ∇h on A.
By combining (4.9.6) and (4.9.7) we obtain that

g(x) ≥ h̃(x) + φ(x)− d(x,A)2 ≥ h(x) for all x ∈ X \A.

Therefore g ≥ h on X and in particular g is coercive on X , because so is h, by assumption. We next
consider the convex envelope of g. If we define

H = conv(g)

we immediately get by Theorem 4.17, that H is convex on X and H ∈ C1(X). By the definition of H
we have that h ≤ H ≤ g on X, which implies that H is coercive. Also, because g = h on A, we have
that H = h on A. Since h is convex and H is differentiable on X with h = H on A and h ≤ H on X,
Lemma 2.14 shows that∇H = ∇h on A. This completes the proof of Lemma 4.54.

Now we are able to finish the proof of Theorem 4.43. Setting A := PX(E∗), we see from Lemma
4.53 that c is differentiable on A. Moreover, since c : X → R is convex and essentially coercive on X,
there exists η ∈ X such that h := c− 〈η, ·〉 is convex, differentiable on A and coercive on X. Applying
Lemma 4.54 to h, we obtain H ∈ C1(X) convex and coercive on X with (H,∇H) = (h,∇h) on
A. Thus, the function ϕ := H + 〈η, ·〉 is convex, essentially coercive on X and of class C1(X) with
(ϕ,∇ϕ) = (c,∇c) on A. We next show that F := ϕ ◦ PX + 〈v, ·〉 is the desired extension of (f,G).
Since ϕ is C1(X) and convex, it is clear that F is C1(Rn) and convex as well. Bearing in mind Theorem
4.41 and the fact that ϕ is essentially coercive, it follows that XF = X. Also, since ϕ(y) = c(y) for
y ∈ PX(E), we obtain from (4.9.2) and Lemma 4.52 that

F (x) = ϕ(PX(x)) + 〈v, x〉 = c(PX(x)) + 〈v, x〉 = m(x) = f(x).

Finally, from the second part of Lemma 4.53, we have, for all x ∈ E, that

∇F (x) = ∇ϕ(PX(x)) + v = G(x)− v + v = G(x).

The proof of Theorem 4.43 is complete.

4.10 A C1 extension theorem for Lipschitz convex functions

In the special case that the function G of Theorem 4.43 is bounded, one should expect to find Lipschitz
convex functions F ∈ C1(Rn) such that (F,∇F ) extends (f,G) and Lip(F ) . ‖G‖∞. As we have
observed in Section 4.1, this kind of control of Lip(F ) in terms of supy∈E |G(y)| solely cannot be
obtained, in general, for nonconvex jets, but it is possible in the convex case, at least when E is bounded;
see Theorem 4.20. The next result tells us that this is indeed feasible, and moreover shows that the
technical conditions of (iv) in Theorem 4.43 can be replaced (just in this Lipschitz case) by a nicer
geometric condition which tells us that the complement of the closure of E in Rn contains the union of
a certain finite collection of cones.

Theorem 4.57. Given an arbitrary subsetE of Rn, a linear subspaceX ⊂ Rn, the orthogonal projection
P := PX : Rn → X , and two functions f : E → R, G : E → Rn, the following is true. There exists a
Lipschitz convex function F : Rn → R of class C1 such that F|E = f , (∇F )|E = G, and XF = X , if
and only if the following conditions are satisfied.

(i) G is continuous and bounded and f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

(ii) Y := span ({G(x)−G(y) : x, y ∈ E}) ⊆ X .
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(iii) If Y 6= X and we define k = dimY and d = dimX , there exist points p1, . . . , pd−k ∈ Rn \ E,
a number ε ∈ (0, 1), and linearly independent normalized vectors w1, . . . , wd−k ∈ X ∩ Y ⊥ such
that, for every j = 1, . . . , d− k, the cone Vj := {x ∈ Rn : ε〈wj , x− pj〉 ≥ |PY (x− pj)|} does
not contain any point of E. Here PY : Rn → Y denotes the orthogonal projection onto Y .

(iv) If (xk)k, (zk)k are sequences in E such that (PX(xk))k is bounded and

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

then limk→∞ |G(xk)−G(zk)| = 0.

Moreover, there exists an absolute constant κ > 0 such that, whenever these conditions are satisfied, the
extension F can be taken so that

Lip(F ) = sup
x∈Rn

|∇F (x)| ≤ κ sup
y∈E
|G(y)|.

Remark 4.58. If E is a bounded subset, and we have a 1-jet (f,G) on E satisfying the conditions
of Theorem 4.20, then conditions (ii), (iii) and (iv) of Theorem 4.57 are trivially satisfied with any
subspace X containing Y. This shows that, in this case, for any X containing Y := span{G(x)−G(y) :
x, y ∈ E}, the extension F can be taken so that XF = X.

A consequence of Theorem 4.57 is the following corollary.

Corollary 4.59. Given an arbitrary subset E of Rn and two functions f : E → R, G : E → Rn, let us
denote by PX : Rn → X the orthogonal projection onto the subspace X = span{G(x)−G(y) : x, y ∈
E}. There exists a Lipschitz convex function F : Rn → R of class C1 such that F|E = f , (∇F )|E = G,
and XF = X , if and only if the following conditions are satisfied.

(i) G is continuous and bounded and f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E.

(ii) If (xk)k, (zk)k are sequences in E such that (PX(xk))k is bounded and

lim
k→∞

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

then limk→∞ |G(xk)−G(zk)| = 0.

4.11 Necessity of the conditions for C1 convex Lipschitz extensions

In this section we are going to prove the only if part of Theorem 4.57. So, let F be a Lipschitz convex
function of class C1(Rn) with (F,∇F ) = (f,G) on E and XF = X and let us see that (f,G) and X
satisfy conditions (i)− (iv) on the set E. Also, we learn from Lemma 4.47 that

XF = span{∇F (x)−∇F (y) : x, y ∈ Rn}.

We already know from Section 4.8 that conditions (i), (ii) and (iv) are necessary for the existence of a
convex function F ∈ C1(Rn) with (f,G) = (F,∇F ) on E and XF = X. Let us prove that condition
(iii) is satisfied as well. If Lip(F ) = 0 then F is constant, so we have X = XF = {0} = Y , and
condition (iii) is trivially satisfied. Otherwise we have X = XF 6= {0}, and assuming that Y 6= X we
may find points x0, x1, . . . , xk ∈ E and p1, . . . , pd−k ∈ Rn \ E such that

Y = span{G(xj)−G(x0) : j = 1, . . . , k},

∇F (pj)−G(x0) ∈ X \ Y for every j = 1, . . . , d− k

and the set {∇F (pj) − G(x0) : j = 1, . . . , d − k} is linearly independent. Now we define, for each
j = 1, . . . , d − k, the subspace Yj spanned by Y and the vector ∇F (pj) − G(x0). Obviously we can
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find wj ∈ Yj ∩ Y ⊥ with |wj | = 1 and Yj = Y ⊕ [wj ], for every j = 1, . . . , d− k. Moreover, wj can be
taken so that

µj := 〈∇F (pj)−G(x0), wj〉 > 0, for all j = 1, . . . , d− k.

Let us take ε > 0 small enough so that

ε <
µj

2 Lip(F ) + 2‖G‖∞
for all j = 1, . . . , d− k.

Note that, because µj ≤ 2 Lip(F ) for each j, we have that ε < 1. Now, assume that there exists some
x ∈ E with x ∈ Vj := {x ∈ Rn : ε〈wj , x− pj〉 ≥ |PY (x− pj)|} for some j = 1, . . . , d− k. Using the
convexity of F we can write

F (x)− F (pj)− 〈∇F (pj), x− pj〉
≤ 〈∇F (x)−∇F (pj), x− pj〉 = 〈∇F (x)−G(x0), x− pj〉+ 〈G(x0)−∇F (pj), x− pj〉
= 〈∇F (x)−G(x0), x− pj〉 − µj〈wj , x− pj〉+ 〈PY (G(x0)−∇F (pj)), x− pj〉.

Since we are assuming that x ∈ E, the continuity of ∇F yields ∇F (x) − G(x0) ∈ Y. Then, the last
term coincides with

〈∇F (x)−G(x0), PY (x− pj)〉 − µj〈wj , x− pj〉+ 〈PY (G(x0)−∇F (pj)), PY (x− pj)〉
≤ (2‖G‖∞ + 2 Lip(F )) |PY (x− pj)| − µj〈wj , x− pj〉 ≤ 0,

where the last inequality follows from the definition of ε and the fact that x ∈ Vj . We have thus shown
that

F (x)− F (pj)− 〈∇F (pj), x− pj〉 = 0.

By condition (CW 1) (see Definition 4.3 and Lemma 4.12) we must have ∇F (pj) = ∇F (x), where
x ∈ E. It then follows that ∇F (pj) − G(x0) = ∇F (x) − G(x0) ∈ Y, which contradicts the choice of
pj . Therefore E and

⋃d−k
j=1 Vj are disjoint.

4.12 Sufficiency of the conditions for C1 convex Lipschitz extensions

Let us denote by m the minimal convex extension of the jet 1-jet (f,G) from E, that is

m(x) = sup
y∈E
{f(y) + 〈G(y), x− y〉}, x ∈ Rn.

Because G is bounded, the function m is a supremum of ‖G‖∞-Lipschitz convex functions on Rn and
therefore m is convex and ‖G‖∞-Lipschitz as well. In particular, the supremum defining m(x) is finite
for every x ∈ Rn. By Theorem 4.41, we can write

m = c ◦ PXm + 〈v, ·〉,

where v ∈ Rn and c : Xm → R is a coercive convex function. Moreover, we know from Lemma 4.48
that Xm = Y = span{G(x)−G(y) : x, y ∈ E} and therefore

m = c ◦ PY + 〈v, ·〉. (4.12.1)

Let us prove some properties of m, c and v.

Lemma 4.60. Let us define K = ‖G‖∞ = supy∈E |G(y)|. We have that:

(1) The function m is K-Lipschitz on Rn.

(2) The vector v belongs to the subdifferential of m at some point y0 ∈ Y , and |v| ≤ K.
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(3) There exist points x1, . . . , xk ∈ E such that {G(xj)− v}kj=1 is a basis of Y.

(4) The function c is 2K-Lipschitz on Y.

(5) There exist numbers 0 < α ≤ 2K and β ∈ R such that c(y) ≥ α|y|+ β for every y ∈ Y .

Proof.

(1) As we have said before, the function m is a supremum of K-Lipschitz affine functions on Rn and
therefore m is K-Lipschitz as well.

(2) Since c is coercive on Y, the function c attains a global minimum. Thus there exists a point y0 ∈ Y
with c(y) ≥ c(y0) for every y ∈ Y. We then have, for every x ∈ Rn, that

m(x) = c(PY (x)) + 〈v, x〉 ≥ c(y0) + 〈v, x〉 = c(y0) + 〈v, y0〉+ 〈v, x− y0〉 = m(y0) + 〈v, x− y0〉,

which implies that v ∈ ∂m(y0). Since m is K-Lipschitz, we obtain, for every x ∈ Rn,

K|x− y0|+m(y0) ≥ m(x) ≥ m(y0) + 〈v, x− y0〉,

which implies that 〈v, x−y0|x−y0|〉 ≤ K, for every x ∈ Rn \ {y0}. This shows that |v| ≤ K.

(3) Recall that η − v ∈ Y for every η ∈ ∂m(x) by virtue of Lemma 4.46. In particular we have
G(x) − v ∈ Y for every x ∈ E. Let us take some x1 ∈ Y with G(x1) − v 6= 0. If dim(Y ) = 1, there
is nothing to say. If dim(Y ) > 1, we claim that there exists some x2 ∈ E such that G(x2) − v and
G(x1) − v are linearly independent. Indeed, assume that G(x) − v and G(x1) − v are proportional for
every x ∈ E. Then we would have for every x, y ∈ E that

G(x)−G(y) = (G(x)− v) + (v −G(y))

is proportional to G(x1) − v, hence dim(Y ) = 1, a contradiction. Using repeteadly this argument we
obtain (3).

(4) This follows at once from (1), (2), and the fact that c = m− 〈v, ·〉 on Y .

(5) We first claim that there exist two positive numbers α and r such that c(y) ≥ α|y| whenever y ∈ Y
is such that |y| ≥ r. Indeed, otherwise we can find a sequence (y`)` ∈ Y with

|y`| ≥ ` and c(y`) ≤
1

`
|y`| for every ` ∈ N.

By convexity of c we obtain

c

(
`

|y`|
y`

)
≤ `

|y`|
c(y`) +

(
1− `

|y`|

)
c(0) ≤ 1 +

(
1− `

|y`|

)
c(0) ≤ 1 + c(0).

But the sequence
(

`
|y`|y`

)
`

clearly converges to∞, and the coercivity of c implies that lim` c
(

`
|y`|y`

)
=

+∞, which contradicts the above inequality. Thus there exists α, r > 0 with

c(y) ≥ α|y| whenever |y| ≥ r.

Now, if |y| ≤ r, we can write

c(y) ≥ inf
B(0,r)

c = αr + inf
B(0,r)

c− αr ≥ α|y|+
(

inf
B(0,r)

c− αr
)
,

where B(0, r) denotes the closed ball centered at 0 and with radius r on Y. If we set

β = min
{

inf
B(0,r)

c− αr, 0
}
,

we obviously have c(y) ≥ α|y|+ β for every y ∈ Y. Now, because c is 2K-Lipschitz, we have that

c(0) + 2K|y| ≥ c(y) ≥ α|y|+ β, y ∈ Y.

This clearly implies that α ≤ 2K.
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4.12.1 Defining new data

Let us consider w1, . . . , wd−k ∈ Y ⊥ ∩ X, ε ∈ (0, 1), p1, . . . , pd−k and V1, . . . , Vd−k as in condition
(iii) of Theorem 4.57. Using the constants α and β of Lemma 4.60 (5), we consider a positive T > 0
large enough so that

(ε α)T ≥ 2− β − max
j=1,...,d−k

{α|PY (pj)|+m(pj)− 〈v, pj〉}

and

(ε α)T min
1≤i 6=j≤d−k

{1− 〈wi, wj〉} ≥ 1 + max
1≤i,j≤d−k

{c(PY (pj))− c(PY (pi)) + εα〈wj , pi − pj〉}.

Note that, since the vectors {wi}d−ki=1 have norm equal to 1, we have 〈wi, wj〉 = 1 if and only if wi = wj ,
which is equivalent (as the vectors {w1, . . . , wd−k} are linearly independent) to i = j. So, it is clear that
we can find a positive T > 0 satisfying both inequalities. We define the following new data:

qj = pj + Twj , f(qj) = m(qj) + 1, G(qj) = v + εαwj , j = 1, . . . , d− k. (4.12.2)

Note that qi = qj if and only if pi − pj = T (wj − wi). Since wi 6= wj whenever i 6= j, it is clear
that we can take T large enough so that the points qi and qj are distinct if i 6= j. On the other hand,
because each wj is orthogonal to Y, we immediately see that qj ∈ Vj and, in particular, qj /∈ E for every
j = 1, . . . , d− k.
Lemma 4.61. The following inequalities are satisfied.

(1) f(qj)− f(x)− 〈G(x), qj − x〉 ≥ 1 for every x ∈ E, j = 1, . . . , d− k.

(2) f(x)− f(qj)− 〈G(qj), x− qj〉 ≥ 1 for every x ∈ E, j = 1, . . . , d− k.

(3) f(qi)− f(qj)− 〈G(qj), qi − qj〉 ≥ 1 for every 1 ≤ i 6= j ≤ d− k.
Proof.

(1) Since f(qj) = m(qj) + 1, the definition of m leads us to

f(qj)− f(x)− 〈G(x), qj − x〉 = m(qj)− f(x)− 〈G(x), qj − x〉+ 1 ≥ 1,

for x ∈ E, j = 1, . . . , d− k.
(2) We fix x ∈ E and j = 1, . . . , d− k. The decomposition of m yields

m(qj) = c(PY (pj) + PY (Twj)) + 〈v, qj〉 = c(PY (pj)) + 〈v, qj〉 = m(pj) + 〈v, qj − pj〉.

We obtain from this the following:

f(x)− f(qj)− 〈G(qj), x− qj〉 = m(x)−m(pj) + 〈v, pj − qj〉 − 〈G(qj), x− qj〉 − 1

= c ◦ (PY (x)) + 〈v, x〉 −m(pj) + 〈v, pj − qj〉 − 〈v + εαwj , x− qj〉 − 1

= c ◦ (PY (x))−m(pj) + 〈v, pj〉 − εα〈wj , x− qj〉 − 1

= c ◦ (PY (x))−m(pj) + 〈v, pj〉 − εα〈wj , x− pj〉 − εα〈wj , pj − qj〉 − 1

= c ◦ (PY (x))−m(pj) + 〈v, pj〉 − εα〈wj , x− pj〉+ εαT − 1.

Now, using Lemma 4.60 (5), the last term is greater than or equal to

α|PY (x)|+ β −m(pj) + 〈v, pj〉 − εα〈wj , x− pj〉+ εαT − 1

≥ α|PY (x− pj)| − α|PY (pj)|+ β −m(pj) + 〈v, pj〉 − εα〈wj , x− pj〉+ εαT − 1

≥ α|PY (x− pj)| − εα〈wj , x− pj〉+ 1,

where the last inequality follows from the choice of T. Now, since x ∈ E, the condition (iii) tells us that
x does not belong to the cone Vj , which implies that the last term is greater than or equal to

εα〈wj , x− pj〉 − εα〈wj , x− pj〉+ 1 = 1.

This establishes the inequalities of (2).
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(3) Consider 1 ≤ i 6= j ≤ d− k. Notice that

f(qi)−f(qj) = c(PY (pi+Twi))−c(PY (pj+Twj))+〈v, qi−qj〉 = c(PY (pi))−c(PY (pj))+〈v, qi−qj〉.

This implies

f(qi)− f(qj)− 〈G(qj), qi − qj〉 = c(PY (pi))− c(PY (pj)) + 〈v, qi − qj〉 − 〈v + ε α wj , qi − qj〉
= c(PY (pi))− c(PY (pj))− ε α〈wj , pi − pj + T (wi − wj)〉
= c(PY (pi))− c(PY (pj))− ε α〈wj , pi − pj〉+ ε α T (1− 〈wi, wj〉) ≥ 1,

where the last inequality follows from the choice of T.

4.12.2 Properties of the new jet

We now define the set E∗ = E ∪ {q1, . . . , qd−k}. Note that we have already extended the definition of
(f,G) to E∗.

Lemma 4.62. We have that:

(1) X = span{G(x)−G(y) : x, y ∈ E∗}.

(2) G is continuous on E∗ and f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E∗.

(3) |G(x)| ≤ 3K for every x ∈ E∗.

(4) If (x`)`, (z`)` are sequences in E∗ such that (PX(x`))` is bounded and

lim
`→∞

(f(x`)− f(z`)− 〈G(z`), x` − z`〉) = 0,

then lim`→∞ |G(x`)−G(z`)| = 0.

Proof.

(1) By Lemma 4.60 (3), there are points x1, . . . , xk ∈ E with Y = span{G(xj) − v : j = 1, . . . , k},
where v is that of (4.12.1). Since the vectors w1, . . . , wd−k are linearly independent, the definitions of
(4.12.2) show that

span{G(qj)− v : j = 1, . . . , d− k} = span{(ε α)wj : j = 1, . . . , d− k} = X ∩ Y ⊥.

We thus have that

X = span{G(x1)− v, . . . , G(xk)− v,G(q1)− v, . . . , G(qd−k)− v}.

For every two points x, y ∈ E∗, we can write

G(x)−G(y) = (G(x)− v)− (G(y)− v),

but notice that G(z) − v ∈ Y = span{G(xi) − v}ki=1 for every z ∈ E and obviously G(z) − v ∈
span{G(qj)−v}d−kj=1 if z ∈ E∗\E. This implies thatG(x)−G(y) ∈ X for every x, y ∈ E∗. Conversely,
if z ∈ E∗, we can write

G(z)− v = (G(z)−G(x1)) + (G(x1)− v),

where the first term belongs to span{G(x) − G(y) : x, y ∈ E∗} and the second one belongs to
Y = span{G(x)−G(y) : x, y ∈ E}. We conclude that X = span{G(x)−G(y) : x, y ∈ E∗}.



124 Chapter 4. C1 extensions of convex functions on Rn

(2) The points q1, . . . , qd−k are distinct and none of them belong to E. Because G is continuous on E,G
is in fact continuous on E∗. Condition (i) of Theorem 4.57 together with Lemma 4.61 tell us that

f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E∗.

(3) From (4.12.2), G(qj) = v + (ε α)wj , for j = 1, . . . , d− k. Now Lemma 4.60 tells us that |v| ≤ K
and α ≤ 2K, where K denotes supy∈E |G(y)|. Since ε ∈ (0, 1) and the vectors wj have norm equal to
1, we can write |G(pj)| ≤ |v|+ α ≤ 3K.

(4) Suppose that(x`)`, (z`)` are sequences in E∗ such that (PX(x`))k is bounded and

lim
`→∞

(f(x`)− f(z`)− 〈G(z`), x` − z`〉) = 0.

In view of Lemma 4.61, it is immediate that there exists `0 such that either there is some 1 ≤ j ≤ d− k
with x` = z` = qj for all ` ≥ `0 or else x`, z` ∈ E for all ` ≥ `0. In the first case, the conclusion
is trivial. In the second case, lim`→∞ |G(x`) − G(z`)| = 0 follows from condition (iv) of Theorem
4.57.

We now define m∗(x) = supy∈E∗{f(y) + 〈G(y), x− y〉} for every x ∈ Rn. We learnt from Lemma
4.48 thatXm∗ = span{G(x)−G(y) : x, y ∈ E∗}. And from Lemma 4.62 (1), Xm∗ = X. The function
m∗ is convex and using Lemma 4.62 (2) it is clear that m∗ = f on E∗. Also, for every x ∈ E∗, we have
that G(x) ∈ ∂m∗(x) and, by virtue of Lemma 4.62 (3), m∗ is 3K-Lipschitz on Rn. The function m∗

has the decomposition
m∗ = c∗ ◦ PX + 〈v∗, ·〉 on Rn, (4.12.3)

where c∗ : X → R is convex and coercive on X , and v∗ ∈ Rn. With the same proof as that of Lemma
4.60 (2), we see that v∗ ∈ ∂m∗(z0) for some z0 ∈ X, the function c∗ is 6K-Lipschitz and |v∗| ≤ 3K.
We study the differentiability of c∗ in the following lemma.

Lemma 4.63. The function c∗ is differentiable on PX(E∗), and, if y ∈ PX(E∗), then∇c∗(y) = G(x)−
v∗, where x ∈ E∗ is such that PX(x) = y.

Proof. Thanks to Lemma 4.62 (4) we can repeat the proof of Lemma 4.53, which proved the result for
the general (not necessarily Lipschitz) case.

4.12.3 Construction of the extension

Lemma 4.64. Let h : X → R be a convex, Lipschitz and coercive function such that h is differentiable
on a closed subsetA ofX. There existsH ∈ C1(X) convex, Lipschitz and coercive such thatH = h and
∇H = ∇h on A. Moreover, H can be taken so that Lip(H) ≤ κ0 Lip(h), where κ0 > 1 is an absolute
constant.

Proof. We are going to use the ideas of the proof of Theorem 4.7 (see Section 4.2) and of the proof of
Lemma 4.54. Since h is convex, its gradient∇h is continuous on A. Then, for all x, y ∈ A, we have

0 ≤ h(x)− h(y)− 〈∇h(y), x− y〉
|x− y|

≤
〈
∇h(x)−∇h(y),

x− y
|x− y|

〉
≤ |∇h(x)−∇h(y)|,

where the last term tends to 0 as |x − y| → 0+ uniformly on x, y ∈ K for every compact subset K
of A. This shows that the pair (h,∇h) defined on A satisfies the conditions of the classical Whitney
Extension Theorem for C1 functions. If we use Theorem 4.9 instead of Theorem 4.1, we obtain a
function h̃ ∈ C1(X) such that h̃ = h, ∇h̃ = ∇h on A and we can arrange Lip(h̃) ≤ κ∗ Lip(h), where
κ∗ > 1 is an absolute constant.
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Let us denote L = Lip(h). For each ε > 0, let θε : R→ R be defined by

θε(t) =


0 if t ≤ 0

t2 if t ≤ L+ε
2

(L+ ε)
(
t− L+ε

2

)
+
(
L+ε

2

)2
if t > L+ε

2 .

Observe that θε ∈ C1(R), Lip(θε) = L+ ε. Now set

Φε(x) = θε (d(x,A)) ,

where d(x,A) stands for the distance from x to A, notice that Φε(x) = d(x,A)2 on an open neighbor-
hood of A, and define

Hε(x) = |h̃(x)− h(x)|+ 2Φε(x).

Note that Lip(Φε) = Lip(θε) because d(·, A) is 1-Lipschitz, and therefore

Lip(Hε) ≤ Lip(h̃) + L+ 2(L+ ε) ≤ (3 + κ∗)L+ 2ε. (4.12.4)

Claim 4.65. Hε is differentiable on A, with∇Hε(x) = 0 for every x ∈ A.

Proof. The proof is the same as that of Claim 4.55.

Now, because Φε is continuous and positive on X \ A, by using mollifiers and a partition of unity,
one can construct a function ϕε ∈ C∞(X \A) such that

|ϕε(x)−Hε(x)| ≤ Φε(x) for every x ∈ X \A, (4.12.5)

and
Lip(ϕε) ≤ Lip(Hε) + ε. (4.12.6)

Let us define ϕ̃ = ϕ̃ε : X → R by

ϕ̃(x) =

{
ϕε(x) if x ∈ X \A

0 if x ∈ A.

Claim 4.66. The function ϕ̃ is differentiable on X and it satisfies∇ϕ̃(x0) = 0 for every x0 ∈ A.

Proof. The proof is the same as that of Claim 4.56.

Note also that
Lip(ϕ̃) = Lip(ϕε) ≤ Lip(Hε) + ε ≤ (3 + κ)L+ 3ε. (4.12.7)

Next we define
g = gε := h̃+ ϕ̃. (4.12.8)

The function g is differentiable on X , and coincides with h on A. Moreover, we also have ∇g = ∇h on
A (because∇ϕ̃ = 0 on A). And, for x ∈ X \A, we have

g(x) ≥ h̃(x) +Hε(x)− Φε(x) = h̃(x) + |h(x)− h̃(x)|+ Φε(x) ≥ h(x) + Φε(x).

This shows that g ≥ h, which in turn implies that g is coercive. Also, notice that according to (4.12.7)
and the definition of g, we have

Lip(g) ≤ Lip(h̃) + Lip(ϕ̃) ≤ κ∗L+ (3 + κ∗)L+ 3ε = (3 + 2κ∗)L+ 3ε. (4.12.9)

If we define H = conv(g) we thus get, thanks to Theorem 4.17, that H is convex on X and H ∈
C1(X), with

Lip(H) ≤ Lip(g) ≤ (3 + 2κ∗)L+ 3ε. (4.12.10)

Thus, we can take ε small enough so that Lip(H) ≤ 2κ0L, where κ0 = 3+2κ∗. Finally, we know (using
Lemma 2.14) that H = h and ∇H = ∇h on A. Also, because h is a coercive convex function, we have
that H ≥ h is coercive as well. This completes the proof of Lemma 4.64.
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Now we are able to finish the proof of Theorem 4.57. Setting A := PX(E∗), we see from Lemma
4.63 that c∗ is differentiable on A. Moreover, since c∗ : X → R is convex and coercive on X, Lemma
4.64 provides us with a Lipschitz, convex and coercive functionH of class C1(X) such that (H,∇H) =
(c∗,∇c∗) on A and

Lip(H) ≤ κ0 Lip(c∗) ≤ 6MK,

where κ0 is the absolute constant of Lemma 4.64. Recall that K denotes supy∈E |G(y)|. We next show
that F := H ◦ PX + 〈v∗, ·〉 is the desired extension of (f,G). Since H is C1(X) and convex, it is clear
that F is C1(Rn) and convex as well. Because H is coercive on X, it follows (using Theorem 4.41) that
XF = X. Also, since H(y) = c∗(y) for y ∈ PX(E), we obtain from (4.12.3) that

F (x) = H(PX(x)) + 〈v∗, x〉 = c∗(PX(x)) + 〈v∗, x〉 = m∗(x) = f(x).

Additionally, from the second part of Lemma 4.63, we have, for all x ∈ E, that

∇F (x) = ∇H(PX(x)) + v∗ = G(x)− v∗ + v∗ = G(x).

Finally, note that

Lip(F ) ≤ Lip(H) + |v∗| ≤ 6κ0K + 3K = (6κ0 + 3)K = (6κ0 + 3) sup
y∈E
|G(y)|.

The proof of Theorem 4.57 is complete

4.13 Interpolation of arbitrary subsets by boundaries ofC1 convex bodies

Finally, let us turn our attention to a geometrical problem which is closely related to our results.

Problem 4.67. Given an arbitrary subset E of Rn and a unitary vector field N : E → Rn, what
conditions will be necessary and sufficient in order to guarantee the existence of a convex hypersurface
M of class C1 with the properties that E ⊂M and N(x) is normal to M at each x ∈ E?.

As we have already mentioned, this question is equivalent to ask: given an arbitrary subset E of a
Hilbert space X and a collection H of affine hyperplanes of X such that every H ∈ H passes through a
point xH ∈ E, what conditions are necessary and sufficient for the existence of aC1 convex hypersurface
S in X such that H is tangent to S at xH for every H ∈ H?

This is a problem which we solved in Section 4.4 in the case that E is a compact subset. Now, with
the help of Theorem 4.57, we are able to give the solution to Problem 4.67 in full generality.

Definition 4.68. We say that a subset V of Rn is a (possibly unbounded) convex body provided that V is
closed and convex, with nonempty interior. Assuming that 0 ∈ int(V ), we will say that V is of class C1

provided that its Minkowski functional

µV (x) = inf{λ > 0 : 1
λx ∈ V }

is of class C1 on the open set Rn \ µ−1
V (0). The outer unit normal nV of V is defined by

nV (x) =
1

|∇µV (x)|
∇µV (x), x ∈ ∂V.

Finally, we will say that a vector u ∈ Sn−1 is outwardly normal to ∂V at a point y ∈ ∂V if u = nV (y).

Recall that Sn−1 denotes the unit sphere of Rn.

Theorem 4.69. Let E be an arbitrary subset of Rn, N : E → Sn−1 a continuous mapping, X a linear
subspace of Rn, and P : Rn → X the orthogonal projection. Then there exists a (possibly unbounded)
convex body V of class C1 such that E ⊂ ∂V , 0 ∈ int(V ), N(x) = nV (x) for all x ∈ E, and
X = span (nV (∂V )), if and only if the following conditions are satisfied.
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1. 〈N(y), x− y〉 ≤ 0 for all x, y ∈ E.

2. For all sequences (xk)k, (zk)k contained in E with (P (xk))k bounded, we have that

lim
k→∞
〈N(zk), xk − zk〉 = 0 =⇒ lim

k→∞
|N(zk)−N(xk)| = 0.

3. 0 < infy∈E〈N(y), y〉.

4. Denoting d = dim(X), Y = span(N(E)), ` = dim(Y ), we have that Y ⊆ X , and if Y 6= X
and PY : Rn → Y is the orthogonal projection then there exist linearly independent normalized
vectors w1, . . . , wd−` ∈ X ∩ Y ⊥, points p1, . . . , pd−` ∈ Rn, and a number ε ∈ (0, 1) such that

(
E ∪ {0}

)
∩

d−⋃̀
j=1

Vj

 = ∅,

where Vj := {x ∈ Rn : ε〈wj , x− pj〉 ≥ |PY (x− pj)|} for every j = 1, . . . , d− `.

Proof. Let us assume first that there exists such a convex body V , and let us check that N and P = PX :
Rn → X satisfy conditions (1)− (4). Define F : Rn → R by

F (x) = θ (µV (x)) , x ∈ Rn,

where θ : R → [0,+∞) is a C1 Lipschitz and increasing convex function with θ(t) = t2 whenever
|t| ≤ 2 and θ(t) = at whenever |t| ≥ 2, for a suitable a > 0. Because V is a convex body with
0 ∈ int(V ), the Minkowski functional µV of V Lipschitz and convex thanks to Proposition 4.26; and
this implies that F is Lipschitz. Also, because θ is convex and increasing, F is convex as well. In
addition, note that ∂V = µ−1

V (1) = F−1(1), and in particular F = 1 on E. Since V is of class C1, the
function µV is of class C1

(
Rn \ µ−1

V (0)
)

and then F is C1(Rn \ µ−1
V (0)). Let us see that in fact F is

differentiable with null gradient at all points of µ−1
V (0). Indeed, because 0 ∈ int(V ), we can find r > 0

with
B(0, r) ⊂ int(V ), (4.13.1)

where B(0, r) denotes the closed ball centered at 0 and with radius r. Then µV is r−1-Lipschitz on Rn
by Proposition 4.26 and for every x0 ∈ µ−1

V (0) we have F (x0) = 0 and

lim
x→x0

|F (x)− F (x0)|
|x− x0|

= lim
x→x0

µ2
V (x)

|x− x0|
≤ lim

x→x0

r−2|x− x0|2

|x− x0|
= 0.

We have thus shown that F is differentiable on Rn. Moreover, the gradient of F is given by

∇F (x) =


0 if µV (x) = 0,

2µV (x)∇µV (x) if 0 < µV (x) ≤ 2,
a∇µV (x) if µV (x) ≥ 2.

This shows that∇F (x) is a positive multiple of∇µV (x) for every x ∈ Rn \ µ−1
V (0) and then

nV (x) =
∇µV (x)

|∇µV (x)|
=
∇F (x)

|∇F (x)|
, x ∈ ∂V,

N(x) =
∇F (x)

|∇F (x)|
, x ∈ E.

Using∇F (0) = 0 together with Lemma 4.47 it follows

XF = span{∇F (x)−∇F (y) : x, y ∈ Rn} = span{∇F (x) : x ∈ Rn} = span{∇µV (x) : x ∈ Rn}
= span{∇µV (x) : x ∈ ∂V } = span{nV (x) : x ∈ ∂V } = X.
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Therefore (F,∇F ) satisfies conditions (i) − (iv) of Theorem 4.57 on the set E∗ := E ∪ {0} with
projection P = PX : Rn → X . Then condition (1) follows from (i) and the fact that F = 1 on E.
In order to check (2), take two sequences (xk)k, (zk)k contained in E with (P (xk))k bounded. Now
suppose that

lim
k→∞
〈N(zk), xk − zk〉 = 0.

Then we also have, using F (xk) = 1 = F (zk), that

lim
k→∞

(F (xk)− F (zk)− 〈∇F (zk), xk − zk〉) = 0,

and according to (iv) of Theorem 4.57 we obtain

lim
k→∞

|∇F (xk)−∇F (zk)| = 0. (4.13.2)

Suppose, seeking a contradiction that we do not have limk→∞ |N(xk)−N(zk)| = 0. Then, after possibly
passing to subsequences, we may assume that there exists some ε > 0 such that

|N(xk)−N(zk)| ≥ ε for all k ∈ N.

Since F (xk) = 1, F (0) = 0 and ∇F (xk) ∈ X, the convexity of F yields

0 ≤ F (0)− F (xk)− 〈∇F (xk),−xk〉 = −1 + 〈∇F (xk), xk〉 = −1 + 〈∇F (xk), P (xk)〉

and this shows that infk |∇F (xk)| > 0. Thanks to (4.13.2), we have infk |∇F (zk)| > 0 too and both
(∇F (xk))k and (∇F (zk))k are bounded above because F is Lipschitz. So we may assume, possibly
after extracting subsequences again, that (∇F (xk))k and (∇F (zk))k converge, respectively, to vectors
ξ, η ∈ Rn \ {0}. By (4.13.2) we then get ξ = η, hence also

ε ≤ |N(xk)−N(zk)| =
∣∣∣∣ ∇F (xk)

|∇F (xk)|
− ∇F (zk)

|∇F (zk)|

∣∣∣∣→ ∣∣∣∣ ξ|ξ| − η

|η|

∣∣∣∣ = 0,

a contradiction.
Let us now check (3). Consider r > 0 as in (4.13.1). If y ∈ E ⊆ ∂V is parallel to N(y), then

〈N(y), y〉 = |y| ≥ r. Otherwise, by convexity of V , the triangle of vertices 0, rN(y) and y, with
angles α, β, γ at those vertices, is contained in V . So is the triangle of vertices 0, rN(y), p, where
p is the intersection of the line segment [0, y] with the line L = {rN(y) + tv : t ∈ R}, where v is
perpendicular to N(y) in the plane span{y,N(y)} (see Figure 4.2 below). Then we have that |p| < |y|,
and |p| cosα = r, hence

〈N(y), y〉 = |y| cosα > |p| cosα = r > 0.

Figure 4.2
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Finally condition (4) follows immediately from (iii) of Theorem 4.57 applied with E∗ = E ∪ {0}
(and from the fact that∇F (0) = 0).

Conversely, assume thatN : E → Sn−1 and P = PX : Rn → X satisfy conditions (1)−(4), and let
us construct a suitable V with the help of Theorem 4.57. Thanks to condition (3), we can choose r > 0
with

0 < r < inf
y∈E
〈N(y), y〉, (4.13.3)

and then we define E∗ = E ∪ {0}, f : E∗ → R, G : E∗ → Rn by

f(x) =

{
1 if x ∈ E
0 if x = 0,

and G(x) =

{
2
rN(x) if x ∈ E

0 if x = 0.

It is clear that condition (3) implies that dist(0, E) > 0, hence the continuity of G on E∗ follows
immediately from the continuity of N on E. We need to prove that the 1-jet (f,G) satisfies on E∗

conditions (i)− (iv) of Theorem 4.57 with PX . Let us first check that

f(x)− f(y)− 〈G(y), x− y〉 ≥ 0 for all x, y ∈ E∗.

Indeed, if x, y ∈ E, then

f(x)− f(y)− 〈G(y), x− y〉 = 〈G(y), y − x〉 =
2

r
〈N(y), y − x〉,

which is nonnegative by condition (1). The situation when x ∈ E and y = 0 is trivial because

f(x)− f(y)− 〈G(y), x− y〉 = 1.

Finally, if x = 0 and y ∈ E we have

f(x)− f(y)− 〈G(y), x− y〉 = f(0)− f(y)− 〈G(y), 0− y〉 = −1 +
2

r
〈N(y), y〉 ≥ 1, (4.13.4)

by virtue of (4.13.3). Therefore condition (i) of Theorem 4.57 is fulfilled. Condition (ii) of Theorem
4.57 follows from (4) and from the fact that G(0) = 0 because

Y = span{N(x) : x ∈ E} = span{G(x) : x ∈ E} = span{G(x)−G(y) : x, y ∈ E∗}.

On the other hand it is clear that (iii) follows immediately from (4). It only remains for us to check (iv).
Consider two sequences (xk)k and (zk)k in E∗ such that (PX(xk))k is bounded. In the case that both
(xk)k and (zk)k belong to E, we have that

f(xk)− f(zk)− 〈G(zk), xk − zk〉 = 〈G(zk), zk − xk〉 =
2

r
〈N(zk), zk − xk〉

for every k. If we have that

lim
k

(f(xk)− f(zk)− 〈G(zk), xk − zk〉) = 0,

then limk〈N(zk), zk − xk〉 = 0 and condition (2) yields

lim
k
|G(xk)−G(zk)| =

2

r
lim
k
|N(xk)−N(zk)| = 0,

which proves condition (iv) in this case. In the case that xk = 0 for every k and (zk)k belongs to E, the
same calculations as in (4.13.4) lead us to

f(xk)− f(zk)− 〈G(zk), xk − zk〉 ≥ 1,
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and then condition (iv) is trivially satisfied in this case. We have thus shown that condition (iv) is
satisfied. Thus we may apply Theorem 4.57 in order to find a Lipschitz convex function F ∈ C1(Rn)
such that (F,∇F ) extends the jet (f,G), and, with the notation of Theorem 4.41, XF = X. In fact,
from the proof of Theorem 4.57 (more precisely, from Lemma 4.60 and Subsection 4.12.1), we know
that there are points q1, . . . , qd−` ∈ Rn, a vector v ∈ ∂m(y0) with y0 ∈ Y and a positive constant λ such
that ∇F (qi) = v + λwi for every i = 1, . . . , d− `. Here m denotes the function

m(x) = sup
y∈E∗
{f(y) + 〈G(y), x− y〉}, x ∈ Rn.

We also learnt from Section 4.12 that Y = span{G(x) − G(y) : x, y ∈ E∗} coincides with Xm, the
subspace associated with the decomposition of m provided by Theorem 4.41. This subspace Xm can be
also written as

Y = Xm = span{ξx − ξy : ξx ∈ ∂m(x), ξy ∈ ∂m(y), x, y ∈ Rn}

by virtue of Lemma 4.47. Since G(0) = 0, we have that 0 ∈ ∂m(0) and then, because v ∈ ∂m(y0),
the vector v belongs to Xm = Y. Recall that Y denotes the subspace span(N(E)) and coincides with
span(G(E)). Because dim(X) = d,dim(Y ) = ` and w1, . . . , wd−` ∈ X∩Y ⊥ are linearly independent,
all these observations lead us to

X = span (G(E) ∪ {w1, . . . , wd−`})
= span (G(E) ∪ {v + λw1, . . . , v + λwd−`}) = span (∇F (E) ∪ {∇F (q1), . . . ,∇F (qd−`)}) .

(4.13.5)

Moreover, from Lemma 4.61, we have that

F (qi) ≥ f(0) + 〈G(0), qi〉+ 1 = 1, for all i = 1, . . . , d− `. (4.13.6)

We then define V = F−1((−∞, 1]). According to Proposition 2.16, V is closed and convex and, because
F (0) = 0 < 1, 0 ∈ int(V ).Hence V is a convex body. In addition, it is clear thatE ⊂ ∂V as F = f = 1
on E. Also, because F is of class C1(Rn) and, according to Proposition 4.27, the Minkowski functional
µV of V is of class C1(Rn \ µ−1

V (0)). This shows that V is of class C1. In fact, Proposition 4.27 tells us
that the gradient∇F (x) is a positive multiple of∇µV (x) for every x ∈ Rn \ µ−1

V (0). This implies that

nV (x) =
∇µV (x)

|∇µV (x)|
=
∇F (x)

|∇F (x)|
, x ∈ ∂V,

and then

N(x) =
G(x)

|G(x)|
=
∇F (x)

|∇F (x)|
= nV (x), x ∈ E.

Thus N(x) is outwardly normal to ∂V at x. Finally, let us show that X = span(nV (∂V )). Proposition
4.27 says that ∇F (x) and ∇F

(
x

µV (x)

)
are proportional to ∇µV (x) and ∇µV

(
x

µV (x)

)
respectively

and that ∇µV (x) = ∇µV
(

x
µV (x)

)
. That is, ∇F (x) is proportional to ∇F

(
x

µV (x)

)
for every x ∈

Rn \ µ−1
V (0). This shows that

span(nV (∂V )) = span{∇F (x) : x ∈ ∂V } = span{∇F (x) : x ∈ Rn \ µ−1
V (0)} (4.13.7)

Thanks to (4.13.6), the points q1, . . . , qd−` do not belong to int(V ) and then µV (qi) ≥ 1 for every
i = 1, . . . , d− `. The fact that µV = 1 on E together with (4.13.5) yields

X = span (∇F (E) ∪ {∇F (q1), . . . ,∇F (qd−`)}) ⊆ span{∇F (x) : x ∈ Rn \ µ−1
V (0)}.

Finally, Lemma 4.47 and the fact that ∇F (0) = 0 imply that X = XF = span{∇F (x) : x ∈ Rn},
which shows that span(nV (∂V )) = X by virtue of (4.13.7).
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In the case that X = span(N(E)), the preceding result takes on a much simpler form.

Corollary 4.70. Let E be an arbitrary subset of Rn, N : E → Sn−1 a continuous mapping, X a linear
subspace of Rn such that X = span(N(E)), and P : Rn → X the orthogonal projection. Then there
exists a (possibly unbounded) convex body V of class C1 such thatE ⊂ ∂V , 0 ∈ int(V ),N(x) = nV (x)
for all x ∈ E, and X = span (nV (∂V )), if and only if the following conditions are satisfied:

1. 〈N(y), x− y〉 ≤ 0 for all x, y ∈ E.

2. For all sequences (xk)k, (zk)k contained in E with (P (xk))k bounded, we have that

lim
k→∞
〈N(zk), xk − zk〉 = 0 =⇒ lim

k→∞
|N(zk)−N(xk)| = 0.

3. 0 < infy∈E〈N(y), y〉.

Proof. It follows immediately from Theorem 4.69.

4.14 The problem in the setting of Hilbert spaces

It is natural to wonder whether it is possible to establish a Whitney Extension Theorem for C1 convex
functions similar to Theorems 4.7, 4.20 or 4.43 in the setting of infinite dimensional Hilbert Spaces.
In Chapter 2 we solved this question for the class of C1 convex functions with uniformly continuous
derivatives, see the comments in Remark 2.45. In this section we show that there exist bounded, smooth
convex functions defined on an open neighborhood of a closed ball in X := `

(R)
2 , the space of square

summable real valued sequences, which have no continuous convex extensions to all ofX . This indicates
that even for the best possible convex domain and the best class of differentiability of the jet, we should
look for new conditions (stronger than (CW 1)) in order to solve the C1 convex extension problem for
1-jets in separable Hilbert spaces.

Let us denote by C the closed unit ball of X. The natural complexification of the space is XC = `2.
Also let U = {x ∈ X : ‖x‖ < 2}, UC = {x ∈ XC : ‖x‖ < 2}, and SX = {x ∈ X : ‖x‖ = 1}.

Example 4.71. There exists a function F : U → R such that

(i) F is real analytic on U ;

(ii) F is convex on U with D2F (x)(v2) ≥ 1 for every x ∈ U , v ∈ SX ;

(iii) F is bounded on C, and

(iv) F|C has no continuous convex extension to the whole space X.

Proof. Let {en}n∈N be the canonical basis of X , and consider the sequence of vectors {ẽn}n≥2 ⊂ C
defined as follows:

ẽn =
1

2
e1 +

√
3

2
en, n ≥ 2.

For every n ≥ 2, we define the linear functional hn ∈ X∗ by hn(x) = 〈x, ẽn〉 for all x ∈ X. Equiv-
alently, for every x = (xn)n≥1 ∈ X, we have hn(x) = 1

2x1 +
√

3
2 xn for every n ≥ 2. Now let us

define
f : U −→ R

x 7−→
∑∞

n=2(hn(x))2n,

or equivalently f(x) =
∑

n≥2

(
1
2x1 +

√
3

2 xn

)2n
for all x = (xn)n ∈ U. Let us first check that f is

well defined. Given x ∈ U, take r = 2 − |x1| > 0. Because x ∈ `(R)
2 , there is some n0 ∈ N such that
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|xn| ≤ r
2
√

3
whenever n ≥ n0. Therefore, if n ≥ n0, we have∣∣∣∣12x1 +

√
3

2
xn

∣∣∣∣ ≤ 1

2
|x1|+

√
3

2
|xn| =

1

2
(2− r) +

√
3

2
|xn|

≤ 1

2
(2− r) +

r

4
= 1− r

4
=: λ.

Since λ < 1, ∑
n≥n0

∣∣∣∣12x1 +

√
3

2
xn

∣∣∣∣2n ≤ ∑
n≥n0

λ2n

converges and this shows that f(x) is finite.

Claim 4.72. f is bounded above by M := 49
24 on C.

Proof. Given x ∈ C, and x = (xn)n≥1, since
∑

n≥1 x
2
n ≤ 1, we have that

∑
n≥2 x

2
n ≤ 1 − x2

1; and

this implies that there is at most one coordinate N ≥ 2 such that x2
N >

1−x21
2 . Hence, the rest of the

coordinates satisfy

|xn| ≤
√

1− x2
1

2
for every n ≥ 2 with n 6= N.

And, of course, |xN | ≤
√

1− x2
1. This yields

f(x) ≤
∑
n≥2

(
1

2
|x1|+

√
3

2
|xn|

)2n

=

(
1

2
|x1|+

√
3

2
|xN |

)2N

+
∑

n≥2, n 6=N

(
1

2
|x1|+

√
3

2
|xn|

)2n

≤

(
1

2
|x1|+

√
3

2

√
1− x2

1

)2N

+
∑

n≥2, n 6=N

(
1

2
|x1|+

√
3

2

√
1− x2

1

2

)2n

.

In order to get a bound for the first sum in the last term, we consider the function g(t) = t
2 +

√
3

2

√
1− t2

for t ∈ [0, 1]. A simple calculation shows that g has a maximum at t = 1
2 and then g(t) ≤ g(1/2) = 1

for all t ∈ [0, 1]. Therefore (
1

2
|x1|+

√
3

2

√
1− x2

1

)2N

≤ 1.

The second sum can be bounded as follows. Take h(t) = t
2 +
√

3
2

√
1−t2√

2
, t ∈ [0, 1]. This function h attains

a maximum at t =
√

2
5 . Hence h(t) ≤ h

(√
2
5

)
=
√

5
8 , for every t ∈ [0, 1], which in turn implies

(
1

2
|x1|+

√
3

2

√
1− x2

1

2

)2n

≤

(√
5

8

)2n

=

(
5

8

)n
for all n ≥ 2, n 6= N.

Therefore, f(x) ≤ 1 +
∑

n≥2, n 6=N
(

5
8

)n ≤ 1 +
∑

n≥2

(
5
8

)n
= 49

24 .

Claim 4.73. f is real analytic on U.

Proof. Consider the complex function

f̃ : UC −→ C

z 7−→
∑∞

n=2

(
1
2z1 +

√
3

2 zn

)2n
.

Obviously the restriction of f̃ to U is the function f, and we can see that f̃ is well defined with the same
calculations as we made above for f. Of course it is enough to prove that f̃ is holomorphic on UC, for



4.14. The problem in the setting of Hilbert spaces 133

which in turn it is enough to check that, given z ∈ UC there are r > 0 and a sequence {Mn}n≥2 of
positive numbers such that∑

n≥2

Mn < +∞ and
∣∣∣∣12y1 +

√
3

2
yn

∣∣∣∣2n ≤Mn for all y ∈ BC(z, r) ⊆ UC, n ≥ 2,

whereBC(z, r) = {y ∈ XC : ‖z−y‖ ≤ r}. Indeed, fix z ∈ UC.We take r > 0 such thatBC(z, r) ⊂ UC
with ‖z‖ + r < 2 and r ≤ 2−|z1|

4(1+
√

3)
. Find n0 ∈ N such that |zn| ≤ 2−|z1|

2
√

3
whenever n ≥ n0. Of course

these r > 0 and n0 ∈ N only depend on z. Define the numbers

λn =

 1 +
√

3 if 2 ≤ n ≤ n0 − 1,
6 + |z1|

8
if n ≥ n0,

and Mn = λ2n
n for all n ≥ 2. Since |z1| < 2, the sum

∑
n≥2Mn converges. If y ∈ BC(z, r), with

y = (yn)n≥1, then |yn| ≤ r + |zn| for every n ≥ 1. Therefore, if n ≥ n0, because |zn| ≤ 2−|z1|
2
√

3
and

r ≤ 2−|z1|
4(1+

√
3)

we have∣∣∣∣12y1 +

√
3

2
yn

∣∣∣∣ ≤ 1

2
|y1|+

√
3

2
|yn| ≤

1

2
(|z1|+ r) +

√
3

2
(|zn|+ r)

≤ 1 +
√

3

2

2− |z1|
4(1 +

√
3)

+
|z1|+ 1

2(2− |z1|)
2

= λn.

And for integers 2 ≤ n ≤ n0− 1, we have the obvious inequality
∣∣1

2y1 +
√

3
2 yn

∣∣ ≤ 1 +
√

3 = λn. Hence∣∣∣∣12y1 +

√
3

2
yn

∣∣∣∣2n ≤Mn for every n ≥ 2

and this proves our statement.

Now, the convexity of f can be checked as follows. The function fn = gn ◦ hn, being hn a linear
functional and R 3 t → gn(t) = t2n a convex function for all n ≥ 2, is convex on U, and f, being the
sum of convex functions, is convex on U as well. Now define F := f + N, where N : X → R is the
function defined by N(x) = ‖x‖2

2 for all x ∈ X. Since X is a Hilbert space, the function N is analytic
on X. Of course N is bounded on C and D2N(x)(v2) = ‖v‖2 = 1 for all v ∈ SX and all x ∈ X.
Hence F is real analytic, is bounded on C and, since f is convex and differentiable, D2F (x)(v2) =
D2f(x)(v2) + D2N(x)(v2) ≥ 1 for all x ∈ U and all v ∈ SX . We then have proved (i), (ii) and (iii)
of our Theorem.

In order to prove (iv), consider the minimal convex extension of F ,

mC(F )(x) = sup
y∈C
{F (y) + 〈∇F (y), x− y〉}, x ∈ X.

Observe that (iv) will be proved as soon as we find points x ∈ X with mC(F )(x) = +∞. We next
prove that in fact mC(F ) = +∞ for all x of the form x = re1, with r > 2. So fix r > 2 and x = re1.
For any k ≥ 2 and n ≥ 2 we inmediately see that 〈ẽn, ẽk〉 = 1/4 for n 6= k and 〈ẽk, ẽk〉 = 1. Then

f(ẽk) = 1 +
∑

n≥2, n 6=k

(
1

4

)2n

and N(ẽk) =
1

2
, k ≥ 2.

Since f is analytic, we can calculate its derivatives by differentiating the series term by term, and then

〈∇f(ẽk), v〉 =
∑
n≥2

2n〈ẽk, ẽn〉2n−1〈v, ẽn〉 =
∑

n≥2, n 6=k
2n

(
1

4

)2n−1

〈v, ẽn〉+ 2k 〈v, ẽk〉
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for every v ∈ X and k ≥ 2. On the other hand, 〈∇N(ẽk), v〉 = 〈ẽk, v〉 for all v ∈ X. For v = x − ẽk,
we have

〈v, ẽn〉 =

〈
re1,

1

2
e1 +

√
3

2
en

〉
− 〈ẽk, ẽn〉 =

r

2
−
{

1 if n = k,
1
4 if n 6= k.

Gathering the above inequalities we obtain, for k ≥ 2,

F (ẽk) + 〈∇F (ẽk), x− ẽk〉 = f(ẽk) +N(ẽk) + 〈∇f(ẽk), x− ẽk〉+ 〈∇N(ẽk), x− ẽk〉

= 1 +
∑

n≥2, n 6=k

(
1

4

)2n

+
1

2
+

∑
n≥2, n 6=k

2n

(
1

4

)2n−1(r
2
− 1

4

)
+ 2k

(r
2
− 1
)

+
(r

2
− 1
)

≥ k(r − 2);

and the last term tends to +∞ as k goes to +∞. We have thus proved that mC(F )(x) = +∞ for those
points x ∈ X of the form x = re1, r > 2.

4.15 Convex functions and Lusin properties

Very recently, in [7], D. Azagra and P. Hajłasz have found an interesting application of Corollary 4.33
concerning the Lusin property for convex functions.

If Ln denotes the Lebesgue’s measure on Rn, we will say that a convex function f : Rn → R has a
Lusin property of type C1

conv(Rn) if for every ε > 0 there exists a convex function g ∈ C1(Rn) such that
Ln ({x ∈ Rn : f(x) 6= g(x)}) < ε. In [7] the following characterization of convex functions satisfying
this property is proved.

Theorem 4.74 (Azagra-Hajłasz). Let f : Rn → R be a convex function. Then f has a Lusin property of
type C1

conv(Rn) if and only if:

1. either f is essentially coercive,

2. or else f is already of class C1, in which case taking g = f is the unique choice.
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Chapter 5

Cm extensions of convex functions on Rn

5.1 Whitney’s Extension Theorem for Cm

The fundamental starting point for our extension results is the classical Whitney Extension Theorem for
Cm, see [71].

Theorem 5.1 (Whitney’s Extension Theorem for Cm). Let m be a positive integer, C ⊂ Rn be a closed
subset of Rn and {fα}|α|≤m a family of real valued functions defined on C. Let us write

fα(x) =
∑

|β|≤m−|α|

fα+β(y)

β!
(x− y)β +Rα(x, y)

for all x, y ∈ C and every multi-index α with |α| ≤ m. Then there exists a function F : Rn → R of class
Cm(Rn) such that ∂αF = fα on C for every |α| ≤ m if and only if

lim
|x−y|→0

|Rα(x, y)|
|x− y|m−|α|

= 0 uniformly on x, y ∈ K (Wm)

for every compact subset K of C and all |α| ≤ m.

Note that for every multi-index α = (α1, . . . , αn) ∈ (N∪{0})n of Rn,we denote |α| = α1+· · ·+αn,
the order of α, and α! = α1! · · ·αn!. Also, given a vector x = (x1, . . . , xn) ∈ Rn we denote xα =
xα1

1 · · ·xαnn . Finally, by ∂αF we mean

∂αF =
∂|α|f

(∂x1)α1 · · · (∂xn)αn
, α = (α1, . . . , αn).

The extension F of Theorem 5.1 can be explicitly defined by means of the formula

F (x) =

{
f(x) if x ∈ C∑

k

(∑
|α|≤m

fα(pk)
α! (x− pk)α

)
ϕk(x) if x ∈ Rn \ C,

(5.1.1)

where each pk is a point of C which minimizes the distance of C to the cube Qk, {Qk}k are the Whitney
cubes of the complement of C and {ϕk}k is the Whitney partition of unity associated with {Qk}k. See
Propositions 2.2 and 2.3 for notation and terminology.

Equivalently Whitney’s Extension Theorem for Cm can be formulated in terms of families of poly-
nomials of degree up to m.

Theorem 5.2. Let C be a closed subset of Rn, and m ∈ N. If {Pmy }y∈C is a family of polynomials
of degree less than or equal to m, a necessary and sufficient condition on the family {Pmy }y∈C for the
existence of a function F : Rn → R of class Cm(Rn) with Jmy F = Pmy for every y ∈ C is that

lim
δ→0+

ρm(K, δ) = 0 for each compact subset K of C, (Wm)
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where

ρm(K, δ) = sup

{
‖DjPmy (z)−DjPmz (z)‖

|y − z|m−j
: j = 0, . . . ,m, y, z ∈ K, 0 < |y − z| ≤ δ

}
.

Here Jmy F, denotes the Taylor polynomial of order m of F at y. Also, for every j ∈ {0, . . . ,m} and
every y, z ∈ A we denote

‖DjPmy (z)‖ = sup
u1,...,uj ∈ Sn−1

|DjPmy (z)(u1, . . . , uj)|,

where Sn−1 is the unit sphere of Rn. Let us briefly explain why Theorems 5.1 and 5.2 are equivalent. If
we are given a family of functions {fα}|α|≤m defined on a closed subset C of Rn, then we can define for
each y ∈ C a polynomial Pmy of degree less than equal to m by setting

Pmy (x) =
∑
|β|≤m

fβ(y)

β!
(x− y)β, x ∈ Rn.

We thus have that ∂αPmx (x) = fα(x) for every x ∈ C. Conversely if we are provided with a family
of polynomials {Pmy }y∈C of degree less than or equal to m, then we can define, for each multi-index α
with |α| ≤ m, the function fα on C via fα(x) = ∂αPmx (x) for every x ∈ C; and we have the identity.

Pmy (x) =
∑
|β|≤m

∂βPmy (y)

β!
(x− y)β =

∑
|β|≤m

fβ(y)

β!
(x− y)β, x ∈ Rn, y ∈ C.

Therefore if we are given either a family of functions {fα}|α|≤m on C or a family of polynomials
{Pmy }y∈C of degree up to m, with the above remarks we have that∣∣∣∣∣fα(x)−

∑
|β|≤m−|α|

fα+β(y)

β!
(x− y)β

∣∣∣∣∣ = |∂αPmx (x)− ∂αPmy (x)|

for every multi-index α with |α| ≤ m and every x, y ∈ C. This clearly shows the equivalence between
both (Wm) conditions of Theorems 5.1 and 5.2.

Furthermore, we can give an equivalent version of the Whitney’s Extension Theorem in terms of
symmetric k-linear forms. Given an integer k ≥ 0, by a symmetric k-linear form A on Rn, we un-
derstand a mapping A : (Rn)k → R such that A is linear on each coordinate and A(v1, . . . , vk) =
A(vσ(1), . . . , vσ(k)) for every permutation σ : {1, . . . , k} → {1, . . . , k} and all v1, . . . , vk ∈ Rn. In the
trivial case k = 0, by a k-linear form we merely understand a real number. The vector space of all the
symmetric k-linear forms on Rn will be denoted by Lk(Rn,R).

Theorem 5.3. Let C be a closed subset of Rn, and m ∈ N. Assume that we are given a family of
functions {Ak}mk=0, where Ak : C → Lk(Rn,R) for every k = 0, . . . ,m. Then, a necessary and
sufficient condition on the family {Ak}mk=0 for the existence of a function F : Rn → R of class Cm(Rn)
with DkF = Ak on C is that for every compact subset K of C and every k = 0, . . . ,m

lim
|y−z|→0+

∥∥∥∥Ak(z)−∑m−k
`=0

1
`!Ak+`(y)(z − y)`

∥∥∥∥
|y − z|m−k

= 0 uniformly on y, z ∈ K, (Wm)

where we denote ‖L‖ = supv1,...,vk∈Sn−1 |L(v1, . . . , vk)| for every L ∈ Lk(Rn,R).
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If we are given a family of polynomials {Pmy }y∈C of degree up to m, then we can construct a family
{Ak}mk=0, Ak : C → Lk(Rn,R), by setting Ak(y) = DkPmy (y) and Taylor’s theorem gives us

DkPmy (x) =
m−k∑
`=0

1

`!
Dk+`Pmy (y)(x− y)` =

m−k∑
`=0

1

`!
Ak+`(y)(x− y)`, x ∈ Rn, y ∈ C.

Conversely, if we have a family {Ak}mk=0, where each Ak is a Lk(Rn,R)-valued function defined on C,
then we can define for every y ∈ C a polynomial Pmy of degree less than or equal to m via the formula

Pmy (x) =
m∑
`=0

1

`!
A`(y)(x− y)`, x ∈ Rn,

and therefore DkPmy (y) = Ak(y) for every k = 0, . . . ,m and every y ∈ C. In view of this remarks, it is
clear that Theorems 5.2 and 5.3 are equivalent.

From now on, by a m-jet on a closed subset C of Rn we will understand either a family of real-
valued functions {fα}|α|≤m defined on C satisfying condition (Wm) of Theorem 5.1, or a family of
polynomials {Pmy }y∈C of degree less than or equal to m satisfying condition (Wm) of Theorem 5.2,
or a family {Ak}mk=0 of functions defined on C such that each Ak is Lk(Rn,R)-valued and satisfies
condition (Wm) of Theorem 5.3.

5.2 The Cm convex extension problem for jets

It is natural to wonder what further conditions (if any) on am-jet {fα}|α|≤m, m ≥ 2, defined on a closed
subset C would be necessary and sufficient to ensure that the extension F of Theorem 5.1 can be taken
to be convex. This is a problem that we were able to solve for the C1,ω class on Hilbert or superreflexive
spaces in Chapters 2 and 3 and for the C1 class on Rn in Chapter 4. As in those cases, we cannot expect
that a construction similar to Whitney’s (5.1.1) provides a solution because partitions of unity destroy the
possible convexity of our jet on C. Here, by convexity of a jet we understand that the jet can be extended
to a Cm function f on Rn whose second derivative D2F is semidefinite positive at every point of C. Of
course, if C is convex, this implies that f is convex on C.

Unlike the C1 and C1,ω cases, if the domain C is not assumed to be convex, the problem seems to
have a much more complicated solution. For instance, if our domain C is finite, a natural approach to
construct a Cm convex extension of a m-jet which has a semidefinite positive Hessian on C, would be
to imitate some of the ideas of the proof Theorem 4.7 for the C1 class. That is, if we are able to find a
Cm(Rn) (not necessarily convex) function g which extends our jet from C and lies above the minimal
convex extension

m(x) := max
y∈C

{
f0(y) +

∑
|α|=1

fα(y)(x− y)α

}
, x ∈ Rn,

then we consider f = conv(g), that is, the convex envelope of g (see (2.1.5)). We saw in Theorems 2.10
and 4.17 that the convex envelope of a differentiable function is of class C1,1 whenever the derivative
of the function is uniformly continuous or of class C1 whenever the function is coercive. Unfortunately
these results concerning the differentiabilty of convex envelopes are optimal and, no matter what order
of smoothness the function f could have, the best possible class of differentiability we can obtain with
this tool is C1 or C1,1. To see this, let us consider the following example.

Example 5.4. Let C = {−1, 1} and define f0(x) = f1(x) = 0 and f2(x) = 1 for every x ∈ C.
The function g(x) = 1

8(x2 − 1)2, x ∈ R, is a C∞ extension of the jet (f0, f1, f2) from C and g
lies above the function identically zero, the minimal convex extension of the jet. However, the convex
envelope f = conv(g) of g is the function f(x) = 1

8(x2 − 1)2 whenever |x| ≥ 1 and f = 0 on
[−1, 1]; which is of class C1 but it is not of class C2. In fact, there is no convex function F of class
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C2(R) such that F = f0, F
′ = f1 and F ′′ = f2 on C. Indeed, any convex extension F of class

C2(R) of the 2-jet (f0, f1, f2) is necessarily equal to 0 on the interval [−1, 1] because F ′ must satisfy
0 = F ′(−1) ≤ F ′(t) ≤ F ′(1) = 0 for every t ∈ [−1, 1]. Therefore F ′′+(−1) = F ′′−(1) = 0 and F ′′ does
not extend f2.

In view of the existence of this kind of examples even in the one dimensional case and for finite
domains, we will restrict our attention to the problem when the domain is closed and convex. On the
other hand, if C is not assumed to be compact, we need to deal with the problem that ourm-jet may have
corners at infinity (see Definition 4.34) because these geometrical phenomena persist no matter what
order of differentiability our jet could have, as we saw in Example 4.35. For this reason, it is reasonable
not to study the problem for unbounded closed domains until we have a full solution to the problem when
our domain is compact, as we did in Chapter 4 for the class C1.

Therefore, at least in a first approach to the problem, it seems reasonable to assume that C is convex
and compact, which we will do in the rest of this chapter, and ask ourselves if our extension problem can
always be solved in this relatively simple case.

The problem of extending convex functions f which are the restriction of a Cm (not necessarily
convex function) to a convex function of class Cm was considered by M. Ghomi [44] and M. Yan [73].
A consequence of their results is that, under the assumption that f has a strictly positive Hessian on the
boundary ∂C, there always exists a function F ∈ Cm(Rn) such that F is convex and F = f on C.
See also [43, 45, 21] for related problems. Observe that for a nonconvex domain C, Example 5.4 above
shows that the requirement that our jet has strictly positive hessian on C (meaning that the jet admits a
Cm extension with positive definite second derivative at every point of C) does not ensure the existence
of Cm convex extensions. The situation does not improve if C is convex but unbounded. Indeed, a
modification of [60, Example 4], which will be presented in Section 5.9 below, shows that there exist
strongly convex functions f which have smooth convex extensions to small open neighborhoods of C,
but no convex extensions to Rn. Therefore the results by M. Ghomi [44] and M. Yan [73] for functions
with strictly positive Hessian on the boundary of the domain are no longer true if the domain is not
assumed to be a convex compactum.

Of course, strict positiveness of the Hessian is a very strong condition which is far from being nec-
essary, and it would be desirable to get rid of this requirement altogether, if possible. However, some
other assumptions must be made in its place, at least when m ≥ 3, as already in one dimension there are
examples of C3 convex functions g defined on compact intervals I which cannot be extended to C3(J)
convex functions for any open interval J containing I . To see this, let us consider a couple of examples.

Example 5.5. We claim the following.

(1) The function g(x) = x2 − x3 defined for x ∈ I := [0, 1
3 ] satisfies Whitney’s condition (Wm)

for every m ∈ N and g′′ ≥ 0 on I but there is no C3 convex extensions of g to any open interval
containing I.

(2) The above example generalizes to arbitrary dimension n by considering for instance

f(x1, . . . , xn) = x2
1 + · · ·+ x2

n − x3
1, (x1, . . . , xn) ∈ B(0, 1/3). (5.2.1)

The function f has semidefinite positive Hessian at every point of the ball B(0, 1/3) and satisfies
Whitney conditions (Wm) of every order on B(0, 1

3), but there is no C3 convex extension of f to
any open neighbourhood of B(0, 1/3).

Proof. The function g of (1) admits a C∞ extension to all of R and then g satisfies Whitney’s conditions
of every order. Also, we have that g′′(x) = 2− 6x for every x ∈ I and g′′′ = −6 on I. This shows that
g′′ ≥ 0 on I and any convex C3 extension h : J → R of g to an open interval J containing I must satisfy
that h′′′ < 0 on a neighbourhood of the point x = 1/3. Since h′′(1/3) = g′′(1/3) = 0, we obtain, by
virtue of the Mean Value Theorem, that

h′′(x) = h′′′(zx)(x− 1
3), for some zx ∈ (1/3, x), and all x > 1/3, x ∈ J.
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In view of the above remarks about h, the values h′′′(zx) are negative if x is close enough to 1/3. This
implies that h′′ < 0 on some open interval contained in J, which contradicts the convexity of h on J.

In particular these examples show that the condition D2f ≥ 0 on C is not sufficient to ensure the
existence of a convex function F ∈ Cm(Rn) such that F = f on C for any m ≥ 3. Therefore, we
should look for new conditions on the derivatives of f on C (beyond D2f ≥ 0 on C) that are necessary
and sufficient to guarantee that f has a Cm convex extension F to all of Rn.

5.3 New conditions for the Cm convex extension problem

Let us introduce new conditions for the Cm convex extension problem for m-jets.

Definition 5.6 ((CWm) condition for m-jets). Let m ∈ N, m ≥ 2 and C a compact subset of Rn.
We will say that a family of polynomials {Pmy }y∈C of degree up to m satisfies the condition (CWm)
provided that

lim inf
t→0+

1

tm−2

(
D2Pmy (y)(v2) + · · ·+ tm−2

(m− 2)!
D2Pmy (y)(wm−2, v2)

)
≥ 0 (CWm)

uniformly on y ∈ C,w, v ∈ Sn−1. This of course means that for every ε > 0 there exists tε > 0 such that

D2Pmy (y)(v2) + t D3Pmy (y)(w, v2) + · · ·+ tm−2

(m− 2)!
DmPmy (y)(wm−2, v2) ≥ −εtm−2

for all y ∈ C, v, w ∈ Sn−1, 0 < t ≤ tε.
We will also say that {Pmy }y∈C satisfies (CWm) with a strict inequality if there are some η > 0 and

t0 > 0 such that

D2Pmy (y)(v2) + t D3Pmy (y)(w, v2) + · · ·+ tm−2

(m− 2)!
DmPmy (y)(wm−2, v2) ≥ ηtm−2

for all y ∈ C, v, w ∈ Sn−1, 0 < t ≤ t0.

Observe that for m = 2, the above condition (CW 2) merely says that D2P 2
y (y)(v2) ≥ 0 for every

y ∈ C and every v ∈ Sn−1.

Definition 5.7 ((CWm) condition for functions). We will say that a function F : Rn → R of class Cm

satisfies condition (CWm) on a compact subset C provided

lim inf
t→0+

1

tm−2

(
D2F (y)(v2) + · · ·+ tm−2

(m− 2)!
DmF (y)(wm−2, v2)

)
≥ 0 (CWm)

uniformly on y ∈ C,w, v ∈ Sn−1

We will also say that F satisfies (CWm) with a strict inequality on C if there are some η > 0 and
t0 > 0 such that

D2F (y)(v2) + t D3F (y)(w, v2) + · · ·+ tm−2

(m− 2)!
DmF (y)(wm−2, v2) ≥ ηtm−2

for all y ∈ C, v, w ∈ Sn−1, 0 < t ≤ t0.

Since for a function F of class Cm(Rn) and a subset C of Rn, the family of polynomials {Jmy F}y∈C
(where each Jmy F denotes the Taylor polynomial ofF of orderm at the point y) satisfies thatDm(Jmy F )(y) =
DmF (y) for every y ∈ C; the condition (CWm) on C for F given in Definition 5.7 is equivalent to
condition (CWm) on C for the family {Jmy F}y∈C given in Definition 5.6. An equivalent definition of
condition (CWm) for k-linear forms instead of polynomials or functions is the following.
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Definition 5.8 ((CWm) condition for linears forms). Given a family of functions {Ak}mk=0 defined on a
compact subset C such that each Ak is Lk(Rn,R)-valued, we will say that {Ak}mk=0 satisfies condition
(CWm) on C provided that

lim inf
t→0+

1

tm−2

(
A2(y)(v2) + · · ·+ tm−2

(m− 2)!
Am(y)(wm−2, v2)

)
≥ 0 (CWm)

uniformly on y ∈ C,w, v ∈ Sn−1

We will also say that {Ak}mk=0 satisfies (CWm) with a strict inequality on C if there are some η > 0
and t0 > 0 such that

A2(y)(v2) + t A3(y)(w, v2) + · · ·+ tm−2

(m− 2)!
Am(y)(wm−2, v2) ≥ ηtm−2

for all y ∈ C, v, w ∈ Sn−1, 0 < t ≤ t0.

Note that, for m = 2, the condition (CWm) above merely says that A2(y) is semidefinite positive
for every y ∈ C.

Let us now prove that condition (CWm) is a necessary condition on a family of polynomials {Pmy }y∈C
of degree up tom for the existence of a convex function F of classCm with Jmy F = Pmy for every y ∈ C.
In view of the comment subsequent to Definition 5.7 , this is equivalent to proving that any convex Cm

function F satisfies condition (CWm) (in the sense of Definition 5.7) on every compact convex subset
of Rn.

Lemma 5.9. Let F : Rn → R be a function of class Cm, m ≥ 2, such that F is convex on a neigbour-
hood of a convex compact subset C. Then F satisfies condition (CWm) on C.

Proof. Let U be a convex open subset of Rn with C ⊂ U and such that F is convex on U. By continuity
of F, we further have that F is convex on the closure U on U. Since F is of class Cm, we must have
D2F (x)(v2) ≥ 0 for every x ∈ U , v ∈ Sn−1. By the compactness of C, there are points z1, . . . , zN ∈ C
and positive numbers r1, . . . , rN such that

C ⊆
N⋃
j=1

B(zj , rj) ⊂
N⋃
j=1

B(zj , 2rj) ⊂ U, (5.3.1)

where each B(zj , rj) is the closed ball centered at zj and radius rj . Let us consider 0 < t ≤ min{rj :
j = 1, . . . , N}. If y ∈ C and w ∈ Sn−1, then y belongs to some ball B(zj , rj) by virtue of (5.3.1), and
hence y + tw ∈ B(rj , 2rj) ⊂ U. This implies that D2F (y + tw)(v2) ≥ 0 for every v ∈ Sn−1. Making
use of Taylor’s Theorem for the second derivative D2F of F at the point y, we obtain that

0 ≤ D2F (y + tw)(v2)

= D2F (y)(v2) + t D3F (y)(w, v2) + · · ·+ tm−2

(m− 2)!
DmF (y)(wm−2, v2) +Rm(t, y, v, w),

where, by compactness of C,

lim
t→0+

Rm(t, y, v, w)

tm−2
= 0 uniformly on y ∈ C,w, v ∈ Sn−1.

We have thus shown that

lim inf
t→0+

1

tm−2

(
D2F (y)(v2) + · · ·+ tm−2

(m− 2)!
DmF (y)(wm−2, v2)

)
≥ 0

uniformly on y ∈ C,w, v ∈ Sn−1, that is, F satisfies condition (CWm) on C.
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The relation between the conditions (CWm) and (CWm+1) is given in the following remark.

Remark 5.10. Let C be a compact subset of Rn. Assume that {Pm+1
y }y∈C satisfies (Wm+1) and

(CWm+1) on C for some m ≥ 2. Then {Pmy }y∈C satisfies (CWm) on C too, where each Pmy is
obtained from Pm+1

y by discarding its (m+ 1)-homogeneous terms.

Proof. Since the family of polynomials {Pm+1
y }y∈C satisfies condition (CWm+1) on C, given ε > 0,

we can find a positive tε ≤ 1 such that

Q(Pm+1
y , t, v, w)

:=
D2Pm+1

y (y)(v2) + tD3Pm+1
y (y)(w, v2) + · · ·+ tm−1

(m−1)!D
m+1Pm+1

y (y)(wm−1, v2)

tm−1
≥ −ε

2
.

for every 0 < t ≤ tε, y ∈ C, v, w ∈ Rn with |v| = |w| = 1. On the other hand, Whitney’s condition
(Wm+1) for the family {Pm+1

y }y∈C tells us that there exists r > 0 such that

‖Dm+1Pm+1
z (z)−Dm+1Pm+1

y (z)‖ ≤ 1 whenever |y − z| ≤ r, y, z ∈ C.

Thus, because C is compact, supz∈C ‖Dm+1Pm+1
z (z)‖ is finite and then we can choose tε so that

0 < tε ≤
ε

2
(
1 + supz∈C ‖Dm+1Pm+1

z (z)‖
) .

Since we have

Pm+1
y (x) =

m+1∑
k=0

1

k!
DkPm+1

y (y)(x− y)k, x ∈ Rn, y ∈ C,

each polynomial Pmy can be written as

Pmy (x) =
m∑
k=0

1

k!
DkPm+1

y (y)(x− y)k, x ∈ Rn, y ∈ C

and then DkPmy (y) = DkPm+1
y (y) for every k = 0, . . . ,m and every y ∈ C. Using the preceding

observations it follows that for every 0 < t ≤ tε, y ∈ C, v, w ∈ Rn with |v| = |w| = 1,

Q(Pmy , t, v, w) : =
D2Pmy (y)(v2) + tD3Pmy (y)(w, v2) + · · ·+ tm−2

(m−2)!D
mPmy (y)(wm−2, v2)

tm−2

=
D2Pm+1

y (y)(v2) + tD3Pm+1
y (y)(w, v2) + · · ·+ tm−2

(m−2)!D
mPm+1

y (y)(wm−2, v2)

tm−2

= tQ(Pm+1
y , t, v, w)− t

(m− 1)!
Dm+1Pm+1

y (y)(wm−2, v2)

≥ −ε
2
t− t sup

z∈C
‖Dm+1Pm+1

z (z)‖ ≥ −ε
2
t− ε

2
t = −εt ≥ −ε.

Therefore the family of polynomials {Pmy }y∈C satisfies condition (CWm) on C.

We are now going to make some observations on the formulation of the condition (CWm) when the
convex compact set C has nonempty interior.

Remark 5.11. IfC ⊂ Rn is compact and convex with nonempty interior and we have a function f : C →
R, then, because the interior of C is dense on C, the derivativesDjF of any extension F ∈ Cm(Rn) of f
are uniquely determined by the values of f on C. Thus, if there exists a family {Pmy }y∈C of polynomials
of degree up to m with Pmy (y) = f(y) for every y ∈ C and satisfying Whitney’s condition (Wm) on C,
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this family is unique. Therefore, in the case that C has nonempty interior, the condition (CWm) on C
for may be reformulated as follows

lim inf
t→0+

1

tm−2

(
D2f(y)(v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2)

)
≥ 0 (CWm)

uniformly on y ∈ C,w, v ∈ Sn−1, understanding that Djf denotes the derivative of order j at y of any
Cm extension of f to Rn.

In view of the above remark, one might then think that for our convex extension problem, by consid-
ering the relative interior of the convex compact set C, there would be no loss of generality in assuming
that C has nonempty interior (and therefore considering that (CWm) holds only for v, w in the linear
span of the directions y − y′ with y, y′ ∈ C). However, since we are looking for convex analogues
of the classical Whitney’s extension theorem (which deals with prescribing differential data as well as
extending functions) such an approach would make us lose some valuable insight about the question as
to what extent one can prescribe values and derivatives of convex functions on a given compact convex
set with empty interior. Indeed, for a convex compact set C with empty interior and a convex function
f : C → R, there are infinitely many convex functions F : C → R with very different derivatives on C
and such that F = f on C. Let us look, for instance, at the extreme situation in which C is a singleton,
say C = {0}. One of our results in this chapter (see Theorem 5.24 below) implies that, for any m ≥ 2
and any polynomial P of degree up to m such that

lim inf
t→0+

D2P (0)(v2) + · · ·+ tm−2

(m−2)!D
mP (0)(wm−2, v2)

tm−2
≥ 0

uniformly on v, w ∈ Sn−1, there exists a convex function F of class Cm such that the Taylor polynomial
of F of order m at 0 is P . Consequently, there are many degrees of freedom in prescribing derivatives of
convex functions of class Cm at a given point.

On the other hand, if C is a convex compact set with nonempty interior (what is usually called a
convex body) and f : C → R is a convex function which has a (not necessarily convex) Cm extension to
an open neighbourhood of C, then it is clear that f automatically satisfies D2f(x) ≥ 0 on the interior of
C, that is f satisfies (CW 2) on the interior of C. Conversely, if f satisfies (CW 2) on the interior of C
then it immediately follows, using Taylor’s theorem, that D2f(x) is positive semidefinite for all x in the
open convex set int(C), hence f is convex on int(C), and by continuity we infer that f is also convex on
C.

Remark 5.12. The above observation together with Remark 5.9 show that if C is a convex compact
subset of Rn with nonempty interior, m ∈ N,m ≥ 2, and {Pmy }y∈C is a family of polynomials of degree
up to m, then a necessary condition for the existence of a convex function F of class Cm(Rn) with
Jmy F = Pmy for every y ∈ C is that

1. {Pmy }y∈C satisfies (Wm) on C and (CWm) on ∂C and D2Pmy (y)(v2) ≥ 0 for every y ∈ int(C)
and every v ∈ Sn−1; or equivalently:

2. {Pmy }y∈C satisfies (Wm) on C and (CWm) on ∂C and the function C 3 y 7→ Pmy (y) is convex.

Remark 5.13. One might wonder whether the conditions (CWm) could be deduced from the condition
D2f ≥ 0 on C, at least in the case that C has nonempty interior. The answer is negative: the function f
defined in (5.2.1) satisfies D2f ≥ 0 on the ball C = B(0, 1/3) but f does not satisfy condition (CW 3).

Proof. The function f is defined on C = B(0, 1/3) by f(x) = x2
1 + x2

2 + · · · + x2
n − x3

1. The second
derivative of f is

D2f(x) =

n∑
i=1

∂2f

∂x2
i

(x)e∗i ⊗ e∗i = (2− 6x1)e∗1 ⊗ e∗1 +

n∑
i=2

2e∗i ⊗ e∗i ,
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where each e∗i denotes the linear function (x1, . . . , xn) 7→ xi. We have, for every v = (v1, . . . , vn) ∈ Rn
with |v| = 1, that

D2f(x)(v2) = (2− 6x1)v2
1 +

n∑
i=2

2v2
i ≥ 0 for every x ∈ C.

The third derivative of f is given by the expression

D3f(x) = −6 e∗1 ⊗ e∗1 ⊗ e∗1,

and then, for every v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn with |v| = |w| = 1,

D3f(x)(w, v2) = −6v2
1w1, x ∈ C.

We thus have, for every t > 0, y = (y1, . . . , yn) ∈ ∂C, v, w ∈ Rn with |v| = |w| = 1, that

D2f(y)(v3) + tD3f(y)(w, v2)

t
=

(2− 6y1)v2
1 +

∑n
i=2 2v2

i − 6tv2
1w1

t
.

If we take y = 1
3e1 and v = w = e1, the above expression is equal to −6 for every t > 0. In particular,

f does not satisfy condition (CW 3) on ∂C.

5.4 Cm convex extensions from compact convex subsets

The best we have been able to obtain for general compact convex subsets if the following.

Theorem 5.14. Let C be a compact convex subset of Rn. Let m ∈ N with m ≥ n + 3, and let
{Pmy }y∈C be a family of polynomials of degree less than or equal to m. Assume that {Pmy }y∈C satisfies
conditions (Wm) and (CWm) on C. Then there exists a convex function F ∈ Cm−n−1(Rn) such that
Jm−n−1
y F = Pm−n−1

y for every y ∈ C, where each Pm−n−1
y denotes the polynomial obtained from Pmy

by discarding its homogeneous terms of degree greater than m− n− 1.
On the other hand, if C has nonempty interior and {Pmy }y∈C satisfies conditions (Wm) on C and

(CWm) on ∂C, and the function C 3 y 7→ Pmy (y) is convex, then there exists a Cm−n−1(Rn) convex
function F , with Jm−n−1

y F = Pm−n−1
y for every y ∈ C.

The above result is probably not optimal, at least in the case when C has nonempty interior. If
C has empty interior then conditions (CWm) and (Wm) are not sufficient for a family {Pmy }y∈C of
polynomials of degree less than or equal to m to have a Cm convex extension to Rn, as we will see in
Example 5.35 in Section 5.9 below. In fact, this example shows that one cannot expect to find smooth
convex extensions of jets satisfying (Wm) and (CWm) on C without losing at least two orders of
smoothness. However, it is conceivable that these conditions (CWm) might be sufficient in the case
when C has nonempty interior. In Chapter 6, we will prove an optimal result for functions of class C∞.

Throughout the rest of this section we will give the proof of Theorem 5.14. Since the family
{Pmy }y∈C satisfies Whitney’s condition (Wm) on C, we may assume that there exists a function f :
Rn → R of class Cm such that Jmy f = Pmy for every y ∈ C and f satisfies condition (CWm) on C
in the sense of Definition 5.7. Observe that, in view of Remark 5.10, we have that D2f(x)(v2) ≥ 0 for
every x ∈ C and every v ∈ Sn−1. On the other hand, if C has nonempty interior and we assume that the
family {Pmy }y∈C satisfies condition (CWm) only on ∂C and also that the function C 3 y 7→ Pmy (y) is
convex, then the function f is convex on C, which implies that D2f(x)(v2) ≥ 0 for every x ∈ C and
every v ∈ Sn−1 because C has nonempy interior. This indicates that with either of the two conditions of
Theorem 5.14 (for arbitrary compact convex sets or for compact convex bodies), the function f satisfies

f satisfies (CWm) on ∂C and D2f(x)(v2) ≥ 0, x ∈ C, v ∈ Sn−1. (5.4.1)

Moreover, multiplying f by a suitable bump function we can also assume that f has support contained
on C +B(0, 2). We will split the proof into several subsections.
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5.4.1 Idea of the proof.

Let us give a rough sketch of the proof of Theorem 5.14 so as to guide the reader through the in-
evitable technicalities. This proof has two main parts. In the first part we will estimate the possible
lack of convexity of f outside C by using conditions (CWm), Lemma 5.15. In fact, we will construct
a nondecreasing continuous function ω : R → [0,+∞) such that ω ≥ 0, ω−1(0) = (−∞, 0], and
min|v|=1D

2f(x)(v2) ≥ −ω(d(x,C))d(x,C)m−2 for every x ∈ Rn. In the second part of the proof
we will compensate the lack of convexity of f outside C with the construction of a C2 function ψ(Rn)
such that ψ ≥ 0, ψ−1(0) = C, and min|v|=1D

2ψ(x)(v2) ≥ 2ω(d(x,C))d(x,C)m−2 on Rn. Then, by
setting F := f + ψ we will conclude the proof of Theorem 5.14. We will see that the highest order of
differentiability we can obtain for the function ψ is m− n− 1. However, we will use a similar plan for
the proof of Theorem 5.27 (and for the proof of Theorem 6.11 of Chapter 6), and we will see that, in
these cases, we can obtain smoothness of order m− 1 for the corresponding function ψ.

There are many ways to construct such a function ψ. For an arbitrary compact convex subset, the
essential point is to write C as an intersection of a family of half-spaces, and then to make a weighted
sum, or an integral, of suitable convex functions composed with the linear forms that provide those
half-spaces. If the sequence of linear forms is appropiately distributed, in the weighted sum approach,
or if one uses a measure equivalent to the standard measure on Sn−1, in the integral approach, then the
different functions ψ produced by these methods will have equivalent convexity properties. See [2] for an
instance of the weighted sum approach, and [45, Proposition 2.1] for the integral approach. Of course our
situation is more complicated than that of these references, as we need to find quantitative estimations of
the convexity of ψ outside C which are good enough to outweigh our previous estimations of the lack of
convexity of f outside C. It turns out that, in the present Cm case, this goal can be achieved with either
method of construction of ψ. Here we will follow the integral approach of Ghomi’s in [45, Proposition
2.1], as it will lead us to easier calculations.

5.4.2 The function ω

Lemma 5.15. There exists a non decreasing continuous function ω : [0,+∞)→ [0,+∞) with ω(0) = 0
such that

D2f(x)(v2) ≥ −ω(d(x,C))d(x,C)m−2 for all x ∈ Rn, v ∈ Sn−1.

Proof. Let us denote

Qm(t, y, v, w) =
D2f(y)(v2) + · · ·+ tm−2

(m−2)!D
mf(y)(wm−2, v2)

tm−2

for all t > 0, y ∈ ∂C, v, w ∈ Sn−1 and

εm(t) = sup
{z∈Rn, z′∈∂C, |z−z′|≤t}

‖Dmf(z)−Dmf(z′)‖.

By using condition (CWm) and uniform continuity of Dmf , given a positive integer p, there exists
rp > 0 such that

Qm(t, y, v, w) ≥ − 1

2p
and εm(t) ≤ 1

2p
(5.4.2)

for every y ∈ ∂C, v, w ∈ Sn−1 and 0 < t ≤ rp. We may suppose that this sequence {rp}p≥1 is strictly
decreasing to 0. Since the derivatives of f up to order m are bounded on Rn we can find a constant
M > 1 such that

εm(t)−Qm(t, y, v, w) ≤M for all y ∈ ∂C, v, w ∈ Sn−1, t ≥ r1. (5.4.3)

Now, given x ∈ Rn \ C and v ∈ Sn−1, we denote by y ∈ ∂C the metric projection of x onto C, w =
(x− y)/|x− y| and t = d(x,C). By Taylor’s theorem and the definition of Qm and εm, we have

D2f(x)(v2) ≥ tm−2Qm(t, y, v, w)− tm−2εm(t) = −tm−2 (εm(t)−Qm(t, y, v, w)) .
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We define ω : [0,+∞)→ [0,+∞) by setting

ω(0) = 0, ω(rp) =
1

p− 1
p ≥ 2, ω(r1) = M,

ω affine on each [rp+1, rp] p ≥ 1, ω(t) = M t ≥ r1.

Since the sequence {rp}p≥1 is strictly decreasing to 0, it is clear that ω is a non decreasing continuous
function such that ω(t) ≥ 1

p for every t ≥ rp+1 and every p ≥ 2, and that ω(t) ≥ 1 for every t ≥ r2.
Using inequalities (5.4.2) and (5.4.3) we deduce that

D2f(x)(v2) ≥ −Mtm−2 for t ≥ r1

D2f(x)(v2) ≥ −1

p
tm−2 for t ≤ rp, p ∈ N

and by the properties of ω we conclude

D2f(x)(v2) ≥ −ω(d(x,C))d(x,C)m−2 for every x ∈ Rn \ C, v ∈ Sn−1,

where the above inequality trivially extends to x ∈ C thanks to (5.4.1).

5.4.3 The function ϕ

Using the function ω defined in Lemma 5.15, we introduce the function

g(t) =

{ ∫ t
0

∫ t2
0 · · ·

∫ tm−n−1

0 ω(2m−n−2s)ds dtm−n−1 · · · dt2 if t > 0
0 if t ≤ 0,

(5.4.4)

Since ω is continuous, the function g is of class Cm−n−1(R) with g(k)(0) = 0 for every 1 ≤ k ≤
m − n − 1. In addition, g−1(0) = (−∞, 0] and g′′(t) > 0 for all t > 0. In particular, g is convex on R
and positive, with a strictly positive second derivative, on (0,+∞).

Now, for every vector w ∈ Sn−1, define h(w) = maxz∈C〈z, w〉, the support function of C (for
information about support functions of convex sets, see [58] for instance). Since C is compact, it is clear
that the function h is Lipschitz on Sn−1 with Lipschitz constant equal to diam(C) and then, in particular,
h is continuous. We also define the function

φ : Sn−1 × Rn −→ R
(w, x) 7−→ φ(w, x) = g(〈x,w〉 − h(w)).

For every w = (w1, . . . , wn) ∈ Sn−1, the function φ(w, ·) is of class Cm−n−1(Rn) because so is g, and
for every multi-index α = (α1, . . . , αn) with |α| ≤ m− n− 1, we have

∂α

∂xα
φ(w, x) = g(|α|)(〈x,w〉 − h(w))wα,

where |α| = α1 + · · · + αn and wα = wα1
1 · · ·wαnn . In addition, we note that when x ∈ C, we have

〈x,w〉 ≤ h(w) for every w ∈ Sn−1. Therefore, the properties of g and its derivatives imply that φ(w, ·)
is a function of class Cm−n−1(Rn) whose derivatives of order less than or equal tom−n−1 and φ(w, ·)
itself vanish on C for every w ∈ Sn−1. Moreover, the function φ(w, ·), being a composition of a convex
function with a non-decreasing convex function, is convex as well.
Finally, we define the function ϕ : Rn → R as follows:

ϕ(x) =

∫
Sn−1

φ(w, x) dw for every x ∈ Rn.

Here the integral is taken with respect to the (n−1)-dimensional Hausdorff measureHn−1 on the sphere
Sn−1. For information about integration with respect to Hausdorff measures, see [35] for instance. In
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the case n = 1, recall that Hn−1 = H0 is the counting measure on S0 = {−1, 1} and then ϕ =
φ(−1, ·) + φ(1, ·). Anyhow, in Section 5.6 below we will see that, in the one dimensional case, the
statement and the proof of Theorem 5.14 can be very much improved and simplified and we will not need
to deal with these functions φ and ϕ, see Proposition 5.25. By the properties of φ,we see that ϕ = 0 onC
and ϕ is convex on Rn. Because φ(w, ·) is of class Cm−n−1(Rn), the derivatives (w, x) 7→ ∂α

∂xαφ(w, x)
are continuous for every multi-index α with |α| ≤ m − n − 1, and Sn−1 is compact, it follows from
standard results on differentiation under the integral sign that the function ϕ is of class Cm−n−1(Rn) as
well and that ∂αϕ(x) = 0 for every x ∈ C and every multi-index α with |α| ≤ m − n − 1. In other
words, Jm−n−1

x ϕ = 0 for all x ∈ C. The second derivative of ϕ is

D2ϕ(x)(v2) =

∫
Sn−1

g′′(〈x,w〉 − h(w))〈w, v〉2 dw, x ∈ Rn, v ∈ Sn−1. (5.4.5)

5.4.4 Selection of angles and directions

Given x ∈ Rn \ C and v ∈ Sn−1 we will now find a region W = W (x, v) of Sn−1 of sufficient
volume (depending only, and conveniently, on d(x,C)) on which we have good lower estimates for
g′′(〈x,w〉 − h(w))〈w, v〉2. This will involve a careful selection of angles and directions.

Fix a point x ∈ Rn \ C, let xC be the metric projection of x onto the compact convex C, and set

ux =
1

|x− xC |
(x− xC),

and

αx =
d(x,C)

d(x,C) + diam(C)
.

Lemma 5.16. With the above notation we have 〈x, ux〉 − h(ux) = d(x,C) and

d(x,C) ≥ 〈x,w〉 − h(w) ≥ 1

2
d(x,C)

for all w ∈ Sn−1 such that ŵ ux ∈
[
αx
3 ,

αx
2

]
.

Here ŵ ux denotes the length of the shortest geodesic (or angle) between w and ux in Sn−1.

Proof. Let us check that 〈x, ux〉 − h(ux) = d(x,C). Suppose that there exist z ∈ C and η ∈ R with
〈x − z, ux〉 ≤ |x − xC | − η and denote zt = xC + t(z − xC) for all t ∈ R. We immediately see that
zt ∈ C whenever t ∈ [0, 1]. Also, if we define the function f(t) = |zt − x|2 for t ∈ R it is obvious that
f ∈ C∞(R). Moreover, we can write

f(t) = 〈xC − x+ t(z − xC), xC − x+ t(z − xC)〉 = t2|z − xC |2 + 2t〈xC − x, z − xC〉+ |xC − x|2.

We see from this that f ′(t) = 2t|z − xC |2 + 2〈xC − x, z − xC〉 and, in particular,

f ′(0) = 2〈xC − x, z − xC〉 = 2(〈xC − x, z − x〉+ 〈xC − x, x− xC〉)
= −2|xC − x| (〈ux, z − x〉+ |xC − x|) ≤ −2η|x− xC |2 < 0.

Thus there exists ε ∈ (0, 1) such that

|zt − x|2 = f(t) < f(0) = |x− xC |2 for all t ∈ (0, ε),

and this contradicts the fact that xC is a point of C which minimizes the distance of C to the point z. For
the second part, given w ∈ Sn−1 with ŵ ux ∈

[
αx
3 ,

αx
2

]
, let us denote θ = ŵ ux. Since C is compact, we
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can find ξ ∈ C such that h(w) = 〈ξ, w〉. Using that 〈x, ux〉 − h(ux) = |x− xC | and |w − ux| ≤ θ, we
have

〈x,w〉 − h(w) = 〈x,w − ux〉+ |x− xC |+ h(ux)− h(w)

≥ 〈x,w − ux〉+ |x− xC |+ 〈ξ, ux − w〉
= 〈x− ξ, w − ux〉+ |x− xC |
≥ − (diam(C) + |x− xC |) θ + |x− xC |

≥ − (diam(C) + |x− xC |)
αx
2

+ |x− xC |

=
1

2
|x− xC |.

The other inequality, d(x,C) ≥ 〈x,w〉 − h(w) follows from

〈x,w〉 − h(w) = 〈x,w〉 − sup
z∈C
〈z, w〉 ≤ 〈x− xC , w〉 ≤ |x− xC | = d(x,C).

The region W ⊂ Sn−1 that we need will be a hyperspherical cap on the sphere Sn−1, that is, the
portion of the sphere between two paralell hyperplanes. An hyperspherical can be also seen as the set of
pointsw in the sphere Sn−1 such thatw forms an angle between β1 and β2 with a given pointw0 ∈ Sn−1,
where 0 ≤ β1 < β2 ≤ π. The following proposition gives us an explicit value for the Hausdorff measure
Hn−1 of hyperspherical caps on Sn−1.

Proposition 5.17. Let 0 < β < π
2 and w0 ∈ Sn−1, where n ≥ 2. The Hausdorff measure Hn−1 on the

sphere Sn−1 of the hyperspherical cap A =
{
w ∈ Sn−1 : ŵ w0 ∈ [0, β]

}
, is

Hn−1(A) = Hn−2(Sn−2)

∫ β

0
sinn−2(t)dt,

whereHn−2 denotes the (n− 2)-dimensional Hausdorff measure on the sphere Sn−2 of Rn−1.

Proof. If d ≥ 2 is an integer, from [35, Chapter 3, pg. 250] we deduce that, for every Hd−1-measurable
subset B of Sd−1,

Ld(B∗) =

∫ +∞

0
rd−1

∫
Sd−1

χB∗(ru) dHd−1(u)dr =

∫ +∞

0
rd−1dr

∫
Sd−1

χB(w) dHd−1(w) =
1

d
Hd−1(B),

(5.4.6)
where B∗ = {tu : t ∈ [0, 1], u ∈ B}, χB and χB∗ denote the characteristic functions of B and B∗

respectively and Ld denotes the Lebesgue measure on Rd. If we set B = Sd−1, then B∗ is the closed
unit ball Bd(0, 1) of Rd and (5.4.6) gives Hd−1(Sd−1) = dLd(Bd(0, 1)). We consider the standard
hyperspherical coordinates on Rd. That is, we set Ud = (0,+∞) × Qd−1, where Qd−1 = (0, π)d−2 ×
(−π, π) and Ψd = (Ψ1

d, . . . ,Ψ
d
d) : Ud → R, where

Ψ1
d(r, φ) = r cosφ1

Ψ2
d(r, φ) = r sinφ1 cosφ2

...
Ψd−1
d (r, φ) = r sinφ1 sinφ2 · · · sinφd−2 cosφd−1

Ψd
d(r, φ) = r sinφ1 sinφ2 · · · sinφd−2 sinφd−1,

(5.4.7)

for every (r, φ) = (r, φ1, . . . , φd−1) ∈ Ud. The image of Ud is Ψd(Ud) = Rd \ {x = (x1, . . . , xd) ∈
Rd : xd = 0, xd−1 ≤ 0} and Ψd : Ud → Ψ(Ud) is a diffeomorphism of class C∞ with jacobian JΨd

equal to

JΨd (r, φ) = rd−1J∗d−1(φ), J∗d−1(φ) =
d−2∏
j=1

sind−j−1 (φj) , for every (r, φ) ∈ Ud. (5.4.8)
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Since the set {x = (x1, . . . , xd) ∈ Rd : xd = 0, xd−1 ≤ 0} has Ld measure equal to zero, we can write

Ld(Bd(0, 1)) =

∫
Ψ−1
d (Bd(0,1))

|JΨd(r, φ)|drdφ =

∫ 1

0
rd−1dr

∫
Qd−1

J∗d−1(φ)dφ =
1

d

∫
Qd−1

J∗d−1(φ)dφ,

where the last integral is taken with respect to the Lebesgue measure Ld−1 on the cube Qd−1. We thus
have

Hd−1(Sd−1) = dLd(Bd(0, 1)) =

∫
Qd−1

J∗d−1(φ)dφ, for every d ≥ 2. (5.4.9)

Now we use (5.4.6) for d = n, B equal to our hyperspherical capA andB∗ = A∗ = {tw : t ∈ [0, 1], w ∈
A} to obtain Hn−1(A) = nLn(A∗). Since the Lebesgue measure is invariant under isometries, we may
and do assume that A∗ = {tw : t ∈ [0, 1], ŵ e1 ∈ [0, β]}, where e1 = (1, 0, 0, . . .). Bearing in
mind the parametrization of (5.4.7), observe that a point (r, φ) of Un belongs to Ψ−1

n (A∗) if and only if
(r, φ2, . . . , φn−1) ∈ [0, 1]×Qd−2 and φ1 ∈ [0, β]. Then (5.4.8) gives

Hn−1(A) = nLn(A∗) = n

∫
Ψ−1
n (A∗)

|JΨn (r, φ) |drdφ = n

∫
Ψ−1
n (A∗)
rn−1J∗d−1(φ)drdφ

= n

∫
Ψ−1
n (A∗)
rn−1J∗d−2(φ2, . . . , φd−1) sin(φ1)n−2drdφ

=

∫ 1

0
nrn−1dr

∫ β

0
sinn−2(φ1)dφ1

∫
Qd−2

J∗d−2(φ2, . . . , φd−1)dφ2 . . . dφn−1

=

∫ β

0
sinn−2(t)dt

∫
Qd−2

J∗d−2 = Hn−2(Sn−2)

∫ β

0
sinn−2(t)dt,

where the last equation follows from (5.4.9). This proves the assertion.

Finally we construct the desired region W. See Figure 5.1 below for a picture on R2.

Lemma 5.18. Given any v ∈ Sn−1 with 〈ux, v〉 ≥ 0, there exists a vector w0 = w0(x, v) ∈ Sn−1 such
that if we define

W = Wx,v :=
{
w ∈ Sn−1 : ŵ w0 ∈

[
0,
αx
12

]}
,

then:

(1) For every w ∈W, we have ûx w ∈
[
αx
3 ,

αx
2

]
.

(2) For every w ∈W, we have 〈w, v〉 ≥ sin(αx3 ).

(3) Hn−1(W ) ≥ V (n)αn−1
x , where V (n) > 0 is a constant depending only on the dimension n.

Proof. We prove (1) and (2) at the same time by studying two cases separately.
Case 1. ux 6= v. Take an w0 in the unit circle of the plane spanned by the vectors ux and v, in such a
way that ŵ0 ux = 5αx

12 , and that the arc in that circle joining ux with w0 has the same orientation as the
arc joining ux with v. Set W = {w ∈ Sn−1 : ŵ w0 ∈ [0, αx12 ]} and let w ∈W .
First, recalling that the angles shorter than π give the usual distance between points of Sn−1, we may use
the triangle inequality to estimate

ûx w ≤ ûx w0 + ŵ0 w ≤
5αx
12

+
αx
12

=
αx
2

and

ûx w ≥ ûx w0 − ŵ0 w ≥
5αx
12
− αx

12
=
αx
3
,
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that is ûx w ∈
[
αx
3 ,

αx
2

]
. It only remains to see that 〈w, v〉 ≥ sin(αx/3) for all w ∈ W. First, it is clear

that v̂ w0 ≤ π
2 −

5αx
12 . Now, for an arbitrary w ∈W, we have

v̂ w ≤ v̂ w0 + ŵ0 w ≤
π

2
− 5αx

12
+
αx
12

=
π

2
− αx

3
.

Therefore 〈v, w〉 = cos(v̂ w) ≥ cos(π2 −
αx
3 ) = sin αx

3 .
Case 2. ux = v. Take w0 in the sphere Sn−1 such that ŵ0 ux = 5αx

12 . If we define

W =
{
w ∈ Sn−1 : ŵ w0 ∈

[
0,
αx
12

]}
,

following the same estimations as in Case 1 we obtain ûx w ∈ [αx3 ,
αx
2 ] for every w ∈ W. And we

conclude that 〈w, v〉 = 〈w, ux〉 ≥ sin αx
3 .

Let us now prove (3).Note that for those angles β such that 0 ≤ β ≤ αx
12 ≤

π
3 , it is clear that sinβ ≥ 1

2β.
Thanks to Proposition 5.17 we obtain

Hn−1(W ) = Hn−2(Sn−2)

∫ αx/12

0
sinn−2(β)dβ ≥ Hn−2(Sn−2)

∫ αx/12

0

(
1
2β
)n−2

dβ

=
αn−1
x Hn−2(Sn−2)

(12)n−1(n− 1)2n−2
=
αn−1
x Hn−2(Sn−2)

12(n− 1)(24)n−2
= V (n)αn−1

x ,

where

V (n) =
Hn−2(Sn−2)

12(n− 1)(24)n−2

for every n ≥ 2. This proves (3).

Figure 5.1: The spherical cap W = W (x, v) of Lemma 5.18 in two dimensions.

5.4.5 A convex extension on a neighbourhood of the domain

Let us denote

k(n,m,C) =
V (n)

36 · 22+3+···+(m−n−2)(1 + diam(C))n+1
,

where V (n) is the constant of Lemma 5.18.
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Lemma 5.19. Consider the function H = f + 2
k(n,m,C)ϕ defined on Rn. Then, for every x ∈ Rn such

that d(x,C) ≤ 1, and for every v ∈ Sn−1, we have

D2H(x)(v2) ≥ 0

with strict inequality whenever 0 < d(x,C) ≤ 1. Also, the function H is of class Cm−n−1(Rn) with
H = f on C and Jm−n−1

y H = Pm−n−1
y for all y ∈ C.

Proof. If x ∈ C there is nothing to prove because ϕ is convex on Rn andD2f(x) ≥ 0 for every v ∈ Sn−1

by (5.4.1). We now claim that

D2ϕ(x)(v2) > 0 for every x ∈ Rn \ C, v ∈ Sn−1. (5.4.10)

Indeed, if x ∈ Rn \C and v ∈ Sn−1 is a direction, then Lemma 5.16 provides an open subset Ux of Sn−1

such that 〈x,w〉 − h(w) > 0 for every w ∈ Ux. Obviously, there is an open subset Vx of Ux for which
〈v, w〉 6= 0 for every w ∈ Ux. It follows by the properties of the function g and equation (5.4.5) that

D2ϕ(x)(v2) ≥
∫
Vx

g′′ (〈x,w〉 − h(w)) 〈v, w〉2dw > 0,

which proves our Claim. Once we have checked this, suppose that x ∈ Rn \ C with d(x,C) ≤ 1 and
denote

t := d(x,C).

Fix also a direction v ∈ Sn−1. Since D2H(x)(v2) = D2H(x)((−v)2), we may suppose that 〈v, ux〉 ≥
0, where ux = (x−xC)/|x−xC | and xC is the metric projection of x onto C. Let us consider the angle
α = αx and the subset W = Wx,v of Sn−1 as in Lemmas 5.16 and 5.18 respectively. By Lemma 5.18
(2) we know that 〈v, w〉 ≥ sin

(
α
3

)
whenever w ∈W. It then follows from the identity (5.4.5) that

D2ϕ(x)(v2) ≥
∫
W
g′′(〈x,w〉 − h(w)) sin2

(α
3

)
dw.

Since t ≤ 1, the angle α satisfies

α =
t

t+ diam(C)
≥ t

1 + diam(C)
.

For any w ∈ W, Lemma 5.18 (1) gives that ûx w ∈
[
α
3 ,

α
2

]
and; on the other hand, Lemma 5.16 says

that, in this case,
t

2
≤ 〈x,w〉 − h(w) ≤ t

Because g′′ is non decreasing, we have that

g′′(〈x,w〉 − h(w)) ≥ g′′
(
t

2

)
for all w ∈W.

These estimations lead us to

D2ϕ(x)(v2) ≥ Hn−1(W )g′′
(
t

2

)
sin2

(α
3

)
.

Note that Lemma 5.18 (3) also shows that there exists a positive constant V (n) only depending on n
such that Hn−1(W ) ≥ V (n)αn−1. Because α ≤ 1, we must have sin2

(
α
3

)
≥ α2

36 and then the Hessian
of ϕ at x on the direction v satisfies

D2ϕ(x)(v2) ≥ V (n)

36

(
t

1 + diam(C)

)n+1

g′′
(
t

2

)
. (5.4.11)
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We next give a lower bound for g′′(t/2). By the construction of g we have

g′′(t/2) =

∫ t/2

0

∫ t2

0
· · ·
∫ tm−n−3

0
ω(2m−n−2s)ds dtm−n−3 · · · dt2,

where, in the special case m = n + 3, the above expression means g′′(t/2) = ω(t). Using that ω is
nonnegative and nondecreasing we may estimate:

g′′(t/2) ≥
∫ t/2

t/4

∫ t2

0
· · ·
∫ tm−n−3

0
ω(2m−n−2s)ds dtm−n−3 · · · dt2

≥ t

4

∫ t/4

0

∫ t2

0
· · ·
∫ tm−n−4

0
ω(2m−n−2s)ds dtm−n−4 · · · dt2

≥ t

4
· t

8

∫ t/8

0

∫ t2

0
· · ·
∫ tm−n−5

0
ω(2m−n−2s)ds dtm−n−5 · · · dt2

≥ t

4
· t

8
· · · t

2m−n−3
· t

2m−n−2
ω(t) =

tm−n−3

22+3+···+(m−n−2)
ω(t).

By plugging this estimation in (5.4.11), we obtain that

D2ϕ(x)(v2) ≥ k(n,m,C)tm−2ω(t) > 0.

On the other hand, Lemma 5.15 implies that

D2f(x)(v2) ≥ −ω(t)tm−2.

Therefore, the function H = f + 2
k(n,m,C)ϕ satisfies D2H(x)(v2) ≥ 0 on the neighbourhood {x ∈ Rn :

d(x,C) ≤ 1} of C, with strict inequality whenever 0 < d(x,C) ≤ 1. Finally, since ϕ ∈ Cm−n−1(Rn)
with Jm−n−1

y ϕ = 0 for every y ∈ C, we also have that the function H is of class Cm−n−1(Rn) with
H = f on C and Jm−n−1

y H = Jm−n−1
y f = Pm−n−1

y for all y ∈ C.

5.4.6 Conclusion of the proof: convexity of the extension on Rn.

To complete the proof of Theorem 5.14 we only have to change the funcion H of Lemma 5.19 slightly.

Lemma 5.20. There exists a number a > 0 such that the function F := f+aϕ is of class Cm−n−1(Rn),
concides with f on C, satisfies Jm−n−1

y F = Pm−n−1
y for every y ∈ C, is convex on Rn, and has a

strictly positive Hessian on Rn \ C.

Proof. Let us denote ψ = 2
k(n,m,C)ϕ, where k(n,m,C) is that of Subsection 5.4.5. We recall that f = 0

outside C + B(0, 2). Since C1 := {x ∈ Rn : 1 ≤ d(x,C) ≤ 2} is a compact subset where ψ has a
strictly positive Hessian (see inequality (5.4.10)), and using again that f has compact support, we can
find M ≥ 1 such that

sup
x∈Rn, v∈Sn−1

|D2f(x)(v2)| ≤M and inf
x∈C1, v∈Sn−1

D2ψ(x)(v2) ≥ 1

M
. (5.4.12)

Let us takeA = 2M2 and F = f +Aψ. If d(x,C) ≤ 1 (this includes the situation x ∈ C) and v ∈ Sn−1

we have, by Lemma 5.19, that

D2F (x)(v2) = 2M2D2ψ(x)(v2) +D2f(x)(v2) ≥ D2ψ(x)(v2) +D2f(x)(v2) ≥ 0.

In the case when d(x,C) ∈ [1, 2], given any |v| = 1, the inequalities of (5.4.12) lead us to

D2F (x)(v2) = 2M2D2ψ(x)(v2) +D2f(x)(v2) ≥ 2M −M = M > 0.

Finally, in the region {x ∈ Rn : d(x,C) > 2}, we have that f = 0. Hence

D2F (x)(v2) = 2M2D2ψ(x)(v2) > 0

thanks to (5.4.10). Therefore, by setting a = 2A/k(n,m,C), we get that F = f + Aψ = f + aϕ is of
class Cm−n−1(Rn), satisfies F (y) = f(y) and Jm−n−1

y F = Jm−n−1
y f = Pm−n−1

y for every y ∈ C,
and D2F (x) ≥ 0 on Rn with strict inequality on Rn \ C. In particular, F is convex on Rn.
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5.5 Assuming a strict inequality on the boundary

We are going to show that, in the special case when condition (CW k) is satisfied with a strict inequality
for some k, the problem becomes much easier to solve, because in this situation f must be convex on a
neighbourhood of C, and then we may use the following proposition.

Proposition 5.21. Let m ∈ N. If C ⊂ Rn is compact, and if there exists an open convex neighbourhood
U of C such that f : U → R is Cm and convex, then there exists a convex function F ∈ Cm(Rn) such
that F = f on C.

Proof. Because f is of class Cm(U) and U is an open neighbourhood of C, the derivatives of f up to
order m satisfy Whitney condition (Wm) on the closure of an intermediate open convex neighbourhood
V of C, that is, C ⊂ V ⊂ V ⊂ U. Thus Whitney’s Extension Theorem provides an extension of
class Cm(Rn), which we keep denoting by f, and f is convex on this open neighbourhood V of C.
Furthermore, by compactness of ∂C, it is clear that we can find points z1, . . . , zN ∈ ∂C and positive
numbers r1, . . . , rN such that

∂C ⊂
N⋃
j=1

B(zj , rj),
N⋃
j=1

B(zj , 2rj) ⊂ V.

If we take r = min{r1, . . . , rN}, then the setC+B(0, r) is contained in V because for every x = z+w,
where z ∈ ∂C and |w| ≤ r, we can find some j ∈ {1, . . . , N} with |z − zj | ≤ rj , which shows that

|x− zj | ≤ |x− z|+ |z − zj | ≤ r + rj ≤ 2rj .

We thus have obtained that C + B(0, r) is a neighbourhood of C where f is convex. Also, observe that
multiplying by a suitable bump function, we may and do assume that f has compact support contained
in C + B(0, 2r). In a similar way to the proof of Theorem 5.14, we are going to construct a function
ϕ : Rn → [0,+∞) of class Cm such that ϕ−1(0) = C and D2ϕ is strictly positive on Rn \C. Consider
a function δ : R → [0,+∞) of class C∞ such that δ = 0 on (−∞, 0] and δ > 0 on (0,+∞). Then the
function

g(t) =

∫ t

0

∫ s

0
δ(u) duds, t ∈ R,

is a C∞ nonnegative function with g = 0 on (−∞, 0], g > 0 on (0,+∞) and g′′ = δ > 0 on (0,+∞).
We next consider the function h(w) = supz∈C〈z, w〉 and define the function

ϕ(x) =

∫
Sn−1

g (〈x,w〉 − h(w)) dw, x ∈ Rn.

With the same arguments as in Subsection 5.4.3, we obtain that ϕ is a nonnegative function of class
Cm(Rn) (in fact, of class C∞(Rn)) with ϕ−1(0) = C. Then second derivative of ϕ is

D2ϕ(x)(v2) =

∫
Sn−1

g′′ (〈x,w〉 − h(w)) 〈v, w〉2dw, x ∈ Rn, v ∈ Sn−1.

It is then clear that D2ϕ is semidefinite positive on Rn and, using the same calculations as in the proof
of Lemma 5.19 (see inequality (5.4.10)) we obtain that D2ϕ is definite positive on Rn \ C. Because f
is convex on the set C + B(0, r), it is clear that the function f + ϕ is convex on C + B(0, r) and has
strictly positive Hessian on the set {x ∈ Rn : 0 < d(x,C) ≤ r}. With the same proof as that of Lemma
5.20 it follows that multypling ϕ by a positive constant a > 0 big enough, the function f + aϕ is convex
and of class Cm on Rn, and coincides with f on C.

It is worth noting that, in the above Proposition, the assumption that C is compact cannot be removed
in general. In Example 5.34 below we will present an smooth convex function defined in a closed subset
of Rn which has a strictly positive Hessian and admits an smooth convex extension to a neighbourhood
of its domain and yet it does not admit a convex extension to all of Rn.

As a straightforward consequence of Proposition 5.21 we obtain the following.
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Corollary 5.22. Let m ∈ N, m ≥ 2. Let C be a convex compact subset of Rn, and let f : C → R be
a convex function having a (not necessarily convex) Cm extension to an open neighbourhood of C. If f
satisfies (CW k) with a strict inequality on C for some 2 ≤ k ≤ m, then there exists a convex function
F ∈ Cm(Rn) such that F = f on C.

Proof. Since f satisfies (CW k) with a strict inequality on C (see Definition 5.7), there exists some
t0 > 0 such that

D2f(y)(v2) + t D3f(y)(w, v2) + · · ·+ tk−2

(k − 2)!
Dkf(y)(wk−2, v2) ≥ ηtk−2

for all y ∈ C, w, v ∈ Sn−1, 0 < t ≤ t0 and, on the other hand, by Taylor’s theorem and uniform
continuity of Dmf ,

D2f(y + tw)(v2)

= D2f(y)(v2) + t D3f(y)(w, v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2) +Rm(t, y, v, w),

where

lim
t→0+

Rm(t, y, v, w)

tm−2
= 0 uniformly on y ∈ C,w, v ∈ Sn−1.

We may assume t0 ≤ 1. Then we may also find t′0 ∈ (0, t0) such that Rm(t, y, v, w) ≥ −η
2 t
m−2 for all

y ∈ C, w, v ∈ Sn−1, 0 < t ≤ t′0, and it follows that

D2f(y + tw)(v2) ≥ η

2
tm−2

for all y ∈ C, w, v ∈ Sn−1, 0 < t ≤ t′0. This implies that D2f(x)(v2) ≥ 0 for all v ∈ Sn−1 whenever
d(x,C) ≤ t′0, and therefore that f is convex on U := {x ∈ Rn : d(x,C) < t′0}. Our corollary then
follows from Proposition 5.21.

The easiest instance of application of this corollary is of course when f has a strictly positive Hessian
on ∂C, in which case we recover the aforementioned consequence of the results of M. Ghomi’s [44] and
M. Yan’s [73].

Let us also note that in this case f automatically satisfies (CW p) for all the rest of p’s.

Proposition 5.23. Let m ∈ N, m ≥ 2. If f ∈ Cm(Rn) satisfies (CW k) with a strict inequality on ∂C
for some k ≥ 2, then f satisfies (CW p) with a strict inequality on ∂C for every p ∈ {2, . . . ,m}.

Proof. Obviously we can assume that k < m. There exists δ > 0 and 0 < t0 ≤ 1 such that

Qk(f, y, t, v, w) :=
D2f(y)(v2) + tD3f(y)(w, v2) + · · ·+ tk−2

(k−2)!D
kf(y)(wk−2, v2)

tk−2
≥ η

for all 0 < t ≤ t0, y ∈ ∂C and v, w ∈ Rn with |v| = |w| = 1. On the other hand, since the derivatives
Dkf, k = 0, . . . ,m, are continuous andC is compact, supz∈C ‖Djf(z)‖ is finite for every j = 0, . . . ,m
and we can choose t0 small enough so that

t0 ≤
η

2
(
1 + supz∈C, j=0,...,m ‖Djf(z)‖

) .
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Then we can write

D2f(y)(v2) + tD3f(y)(w, v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2)

= tk−2Qk(f, y, t, v, w) +
tk−1

(k − 1)!
Dk+1f(y)(wk−1, v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2)

≥ ηtk−2 +
tk−1

(k − 1)!
Dk+1f(y)(wk−1, v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2)

≥ tk−2

(
η − t sup

z∈C, j=0,...,m
‖Djf(z)‖

)
≥ tk−2 η

2
,

for 0 < t ≤ t0, y ∈ ∂C, v, w ∈ Rn with |v| = |w| = 1. Therefore the function f satisfies condition
(CWm) with strict inequality on ∂C.

5.6 The two easiest situations

5.6.1 The case when the domain is a singleton

Let us prove that, when the domain is a singleton, condition (CWm) is necessary and sufficient for the
Cm convex extension problem. Note that por a point x0 ∈ R and a polynomial P of degree up to m on
Rn, the fact that P satisfies (CWm) on C = {x0} means that

lim inf
t→0+

1

tm−2

(
D2P (x0)(v2) + tD3P (x0)(w, v2) + · · · tm−2

(m− 2)!
DmP (x0)(wm−2, v2)

)
≥ 0

uniformly on v, w ∈ Sn−1.

Theorem 5.24. LetC = {x0},where x0 is a point of Rn. Letm ≥ 2 an integer and let P be a polynomial
of degree less than or equal to m. There exists a convex function F ∈ Cm(Rn) such that Jmx0F = P if
and only if P satisfies the condition (CWm) at the point x0.

Proof. We will essentially repeat the strategy of the proof of Theorem 5.14. Because C = {x0}, the
polynomial P trivially satifies Whitney’s condition (Wm) at the point x0 and then we may and do
assume that there exists a function f (not necessarily convex) of class Cm(Rn) such that Jmx0f = P.
Also, because f satisfies condition (CWm) on C = {x0}, Lemma 5.15 provides us with a continuous
non decreasing function ω : [0,+∞)→ [0,+∞) with ω(0) = 0 and

D2f(x)(v2) ≥ −ω(|x− x0|)|x− x0|m−2 x ∈ Rn, v ∈ Sn−1.

As in the proof of Theorem 5.14, we consider the functions

g(t) =

{ ∫ t
0

∫ t2
0 · · ·

∫ tm
0 ω

(
2m−1s

)
ds dtm · · · dt2 if t > 0

0 if t ≤ 0,

ϕ(x) =

∫
Sn−1

g(〈x,w〉 − h(w)) dw, x ∈ Rn.

Since ω is continuous, the function g is of class Cm(R) with g(k)(0) = 0 for every 1 ≤ k ≤ m. The
same arguments and calculations of Subsection 5.4.3 allow us to deduce that ϕ is of class Cm(Rn) with
ϕ−1(0) = C and Jmx0ϕ = 0. Given x ∈ Rn \ {x0} with t := |x− x0| ≤ 1 and a direction v ∈ Sn−1, we
learn from Subsection 5.4.6 that

D2ϕ(x)(v2) ≥ Hn−1(Wx,v)g
′′
(
t

2

)
sin2

(αx
3

)
.
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Here
αx :=

t

t+ diam(C)

and Wx,v is defined in Lemma 5.18 with Hn−1(Wx,α) ≥ V (n)αn−1, where V (n) is positive and only
depends on n. Since C is a singleton, we obviously have that αx = 1 for every point x ∈ Rn \ {x0}. We
thus have the estimation

D2ϕ(x)(v2) ≥ V (n) sin2

(
1

3

)
g′′
(
t

2

)
.

In order to estimate the term g′′
(
t
2

)
, we make similar calculations as that of Subsection 5.4.6 to obtain

g′′
(
t

2

)
≥ t

4
· t

8
· · · t

2m−2
· t

2m−1
ω(t) =

tm−2

22+3+···+(m−1)
ω(t).

This implies that

D2ϕ(x)(v2) ≥
V (n) sin2

(
1
3

)
22+3+···+(m−1)

ω(|x− x0|)|x− x0|m−2,

for every x ∈ Rn and every direction v ∈ Sn−1. Using the same argument as at the end of Subsection
5.4.6, we construct a convex function F ∈ Cm(Rn) with Jmx0F = P.

5.6.2 The one dimensional case

In dimension n = 1 the boundary of every compact interval I has only two points and there are only
two directions in which to differentiate. Hence Definition 5.7 of condition (CWm) can be very much
simplified and this allows us to stablish an if and only if theorem for Cm convex extensions of convex
functions.

Proposition 5.25. Let I be a closed interval in R, and m ∈ N with m ≥ 2. Let f : I → R be a convex
function of class Cm in the interior of I , and assume that f has one-sided derivatives of order up to
m, denoted by f (k)(a+) and f (k)(b−), at the extreme points of I . Then f has a convex extension F of
class Cm(R) with F (k)(a) = f (k)(a+) and F (k)(b) = f (k)(b−) if and only if the first (if any) non-zero
derivative which occurs in the finite sequence {f (2)(b−), f (3)(b−), . . . , f (m)(b−)} is positive and of even
order, and similarly for {f (2)(a+), f (3)(a+), . . . , f (m)(a+)}.

Proof. Let F be a convex function of class Cm(R). Given any point x ∈ R, we claim that either
F (2)(x) = F (3)(x) = · · · = F (m)(x) = 0 or else the first non-zero derivative of the finite sequence
{F (2)(x), F (3)(x), . . . , F (m)(x)} is positive and of even order. Let 2 ≤ k ≤ m the order of the first
non-zero derivative. Indeed, if k = 2, then F (k)(x) > 0 by convexity and we are done. Assume that
k > 2. We have that

F (2)(x) = · · · = F (k−1)(x) = 0 and F (k)(x) 6= 0. (5.6.1)

By continuity of F (k), there exists some δ such that if |x−z| ≤ δ then F (k)(z) 6= 0 and sign(F (k)(z)) =
sign(F (k)(x)). Combining (5.6.1) with Taylor’s theorem, we obtain, for any y ∈ R with 0 ≤ |y−x| ≤ δ,
a point z ∈ (x, y) such that

F (y) = F (x) + F ′(x)(y − x) +
F (k)(z)

k!
(y − x)k.

Since F is convex, it follows that F (k)(z)(y−x)k ≥ 0. And because 0 < |x− z| < |x− y| ≤ δ we have
that F (k)(z)(y − x)k > 0 and

sign(F (k)(x)) = sign(F (k)(z)) = sign((y − x)k) whenever 0 < |x− y| ≤ δ.

This implies that k is even and F (k)(x) > 0. We then have proved our claim. Now, assume also that
F = f on I = [a, b] and F (k)(a) = f (k)(a+) and F (k)(b) = f (k)(b−) for every k = 0, . . . ,m. If follows
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immediately that the first (if any) non-zero derivative in the finite sequence {f (k)(b−)}mk=2 is positive and
of even order, and similarly for {f (k)(a+)}mk=2.

Conversely, assume that the first (if any) non-zero derivative in the finite sequences {f (k)(b−)}mk=2

and {f (k)(a+)}mk=2 are positive and of even order. The function defined by

F (x) =


f(x) if x ∈ [a, b]

f(a) + f ′(a+)(x− a) + 1
2f

(2)(a+)(x− a)2 + · · ·+ 1
m!f

(m)(a+)(x− a)m if x ≤ a
f(b) + f ′(b−)(x− b) + 1

2f
(2)(b−)(x− b)2 + · · ·+ 1

m!f
(m)(b−)(x− b)m if x ≥ b

is of class Cm(R) with F = f on (a, b) and F (k)(a) = f (k)(a+), F (k)(b) = f (k)(b−) for all k =
0, . . . ,m. Since f is convex on [a, b], the second derivative F ′′ of F is nonnegative on [a, b]. We are
now going to prove that there exists a function F of class Cm(R) with F (j)

= F (j) on (−∞, b] for all
j = 0, . . . ,m and F has nonnegative second derivative on [a,+∞). If f (2)(b−) = · · · = f (m)(b−) = 0,
then F (x) = f(b) + f ′(b−)(x− b) for all x ≥ b and, in particular, F ′′(x) = 0 on the interval [a,+∞).
Thus, in this case, it is enough to take F = F. Now assume that 2 ≤ k ≤ m is the order of the first
non-zero term in {f (j)(b−)}mj=2. By assumption k is even and f (k)(b−) > 0. It follows from Taylor’s
theorem that

F ′′(x) =
1

(k − 2)!
f (k)(b−)(x− b)k−2 + · · ·+ 1

(m− 2)!
f (m)(b−)(x− b)m−2

= (x− b)k−2

(
1

(k − 2)!
f (k)(b−) + · · ·+ 1

(m− 2)!
f (m)(b−)(x− b)m−k−2

)
,

for x ≥ b. Thus there exists some δ > 0 such that F ′′(x) > 0 whenever b ≤ x ≤ b+ δ. Now we pick a
nonnegative function g ∈ C∞(R) such that g = 0 on (−∞, b+ δ/2] and g > 0 on (b+ δ/2,+∞). Then
the function h : R→ R defined by

h(x) =

{ ∫ x
0

∫ t
0 g(s)ds dt if x > b+ δ

2

0 if x ≤ b+ δ
2

is also nonnegative and of class C∞(R) with h = 0 on (−∞, b+ δ
2 ] and h′′ = g on R. By the properties

of g we see that h′′ ≥ 0 on R, which implies that h is convex, and h′′ > 0 on [b + δ/2,+∞). We also
consider a function θ : R→ [0, 1] of class C∞ with θ = 1 on (−∞, b+ δ] and θ = 0 on [b+ 2δ,+∞).

The function F̃ = θF is of class Cm(R) with ˜F (j) = F (j) on (−∞, b + δ] for all j = 0, . . . ,m and
F̃ = 0 on [b+ 2δ,+∞). Since h′′ is strictly positive on [b+ δ, b+ 2δ], we can define

A =
1 + sup{1 + |F̃ ′′| : x ∈ [b+ δ, b+ 2δ]}

inf{h′′ : x ∈ [b+ δ, b+ 2δ]}
> 0. (5.6.2)

We consider the function F = F̃+Ah on R. It is clear that F is of classCm(R) with F (j)
= F̃ (j) = F (j)

on (−∞, b + δ/2] for all j = 0, . . . ,m. This shows that F ′′ ≥ 0 on [a, b + δ/2]. On the interval
[b+ δ/2, b+ δ] we have that F ′′ = F ′′ +Ag′′ ≥ F ′′ > 0. By virtue of (5.6.2) we can write

F
′′

= F̃ ′′ +Ah′′ ≥ F̃ ′′ + 1 + |F̃ ′′| ≥ 1 on [b+ δ, b+ 2δ].

Finally, F ′′ = Ah′′ > 0 on [b + 2δ,+∞). In conclusion, the function F is of class Cm(R) with
F

(j)
= F (j) on (−∞, b] for all j = 0, . . . ,m and F has nonnegative second derivative on [a,+∞).

By repeating the same arguments with the function F instead of F at the extreme point a, we obtain a

function F ∈ Cm(R) with F
(j)

= F (j) on [a, b] for all j = 0, . . . ,m and F
′′
≥ 0 on R. In particular, F

is convex, F = f on (a, b) and F
(j)

(a) = f (j)(a+), F
(j)

(b) = f (j)(b−) for all j = 0, . . . ,m.
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5.7 Assuming further conditions on the domain: almost optimal results

In this section we find a class of relatively nice convex bodies for which Theorem 5.14 can be very much
improved.

5.7.1 Definition of (FIO) body of class Cm

Definition 5.26 (FIOm bodies). Given an integerm ≥ 2, we will say that a subsetC of Rn is an ovaloid
of class Cm if there exist M > 0 and a function ψ : Rn → R such that

(i) ψ is of class Cm(Rn).

(ii) D2ψ(x)(v2) ≥M for all x ∈ Rn and for all v ∈ Sn−1.

(iii) C = ψ−1 ((−∞, 1]) .

We will also say that a set C is (FIOm), or an FIO body of class Cm, if C is the intersection of a finite
family of ovaloids of class Cm.

By restricting our attention to the class of (FIO) bodies, we can find convex extensions of functions
satisfying (Wm) and (CWm) with a loss of just one order of smoothness.

Theorem 5.27. Let C be a convex subset of Rn. Let m ∈ N with m ≥ 3, and let {Pmy }y∈C be a
family of polynomials of degree less than or equal to m. Assume that C is (FIOm−1) and that the family
{Pmy }y∈C satisfies (Wm) on C, (CWm) on ∂C and the function C 3 y 7→ Pmy (y) is convex. Then
there exists a convex function F ∈ Cm−1(Rn) such that Jm−1

y F = Pm−1
y for every y ∈ C, where each

Pm−1
y is obtained from Pmy by discarding its homogeneous terms of order m.

We will give the proof of Theorem 5.27 into several subsections. The idea of the proof is similar to
that of Theorem 5.14 (see Subsection 5.4.1); but, in this case, the function ψ which compensates the lack
of convexity of any Cm (not necessarily convex) extension of the family {Pmy }y∈C is essentially given
by the functions ψj’s defining the ovaloids Cj’s (see definition 5.26), where C =

⋂N
j=1Cj . Nevertheless

we will need to prove several properties of these functions ψj’s and their derivatives.

5.7.2 Sublevel sets of strongly convex functions

Here we gather some elementary properties of ovaloids that we will need in the proof of Theorem 5.27.

Proposition 5.28. Suppose that ψ : Rn → R is a convex function of class Cm(Rn), with m ≥ 2, such
that there exists a constant M > 0 with D2ψ(x)(v2) ≥ M for all x ∈ Rn and for all v ∈ Sn−1. If we
denote C = {x ∈ Rn : ψ(x) ≤ 1}, then the following is true.

(1) C is a convex compact set, ∂C = {x ∈ Rn : ψ(x) = 1} and int(C) = {x ∈ Rn : ψ(x) < 1}.

(2) If int(C) = ∅, then C is a singleton.

If we further assume that int(C) 6= ∅ then we also have:

(3) ∇ψ does not vanish on ∂C and ∂C is a one-codimensional manifold of class Cm.

(4) ψ attains a unique minimum in int(C).

(5) There is a constant β > 0 such that

ψ(x)− 1 ≥ βd(x,C) for every x ∈ Rn \ C.

Proof.
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(1) It is clear that C, being a sublevel set of the continuous function ψ, is a closed subset. In order to
see that C is also bounded, let us check that ψ is a coercive function, that is, lim|x|→∞ ψ(x) = +∞.
Consider a sequence (xk)k ⊂ Rn with limk |xk| = +∞ and fix a point x0 ∈ Rn. By Taylor’s theorem,
there exists, for every k ≥ 1, a point zk ∈ [xk, x0] such that

ψ(xk) = ψ(x0) + 〈∇ψ(x0), xk − x0〉+
1

2
D2ψ(zk)(xk − x0)2.

This leads us to

ψ(xk) ≥ −|ψ(x0)| − |∇ψ(x0)||xk − x0|+
1

2
M |xk − x0|2, k ≥ 1,

which in turn implies, because limk |yk − x| = +∞, that limk ψ(yk) = +∞. This proves the coercivity
of ψ. Now it is clear that C is a bounded subset because otherwise we would have a sequence (xk)k with
limk |xk| = +∞ but ψ(xk) ≤ 1 for all k, contradicting the coercivity of ψ. The convexity of C follows
from the convexity (in fact, strong convexity) of ψ on Rn. In order to prove that int(C) = {x ∈ Rn :
ψ(x) < 1}, observe that for every x ∈ int(C), we can find a line segment [y, z] contained in int(C)
such that x ∈ (y, z), that is, x = λz + (1− λ)y for some λ ∈ (0, 1). The strict convexity of ψ allows us
to write

ψ(x) < λψ(z) + (1− λ)ψ(y) ≤ λ+ (1− λ) = 1.

We thus have that int(C) ⊂ {x ∈ Rn : ψ(x) < 1} and the converse inclusion is a consequence of the
continuity of ψ. The fact that ∂C = {x ∈ Rn : ψ(x) = 1} follows immediately.

(2) Assume that int(C) = ∅ and that there are two points x, y ∈ C with x 6= y. Using (1), it is clear that
C = {x ∈ Rn : ψ(x) = 1}. By convexity of C, the point z = x+y

2 belongs to C. Because ψ is strictly
(in fact, strongly) convex on Rn, we obtain

1 = ψ(z) <
1

2
ψ(x) +

1

2
ψ(y) = 1,

which is absurd.

(3) By replacing the smoothness C1 with Cm, it follows immediately from Proposition 2.16.

(4) Because ψ is continuous and C is a compact subset, the function ψ attains a local minimum in C.
Since ψ is a convex function on Rn, this local minimum is in fact a global one. Moreover, because ψ
is strictly convex, this minimum is attained at a unique point, say x0 ∈ C. But x0 /∈ ∂C by (4), which
implies that x0 ∈ int(C).

(5) We learn from (3) that ∇ψ 6= 0 on ∂C. Then, by the compactness of ∂C and the continuity of
∇ψ, we can find β > 0 such that |∇ψ(x)| ≥ β for all x ∈ ∂C. If x /∈ C, by taking xC ∈ ∂C with
|x− xC | = d(x,C), the convexity of ψ leads us to

ψ(x)− 1 = ψ(x)− ψ(xC) ≥ 〈∇ψ(xC), x− xC〉.

By Proposition 2.16, ∇ψ(xC) is a positive multiple of x − xC and then the last product coincides with
|∇ψ(xC)||x− xC | ≥ βd(x,C).

5.7.3 The distance to the intersection of convex sets

For the proof of Theorem 5.27 we will need to estimate the distance to a finite intersection of convex
subsets in terms of the supremum of the distances to each subset. In order to do this, we will momentarily
make use of some properties of the Minkowski functional asociated to convex subsets.

Proposition 5.29. If C ⊆ X is convex with 0 ∈ int(C) we have:

(1) If C =
⋂N
k=1Ck, where each Ck is a convex subset with 0 ∈ intC then µC = max1≤k≤N µCk .
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Suppose in addition that C ⊂ X is bounded.

(2) If C =
⋂N
k=1Ck, where each Ck is convex and bounded with 0 ∈ int(C), we have

max
1≤k≤N

d(x,Ck) ≤ d(x,C) ≤ R

r
max

1≤k≤N
d(x,Ck) for all x ∈ X,

whenever r,R > 0 are such that B(0, r) ⊆ C ⊆ B(0, R).

(3) If C =
⋂N
k=1Ck, where each Ck is convex and bounded with int(C) 6= ∅, but not necessarily

0 ∈ int(C), we have

max
1≤k≤N

d(x,Ck) ≤ d(x,C) ≤ R

r
max

1≤k≤N
d(x,Ck) for all x ∈ X,

where r,R > 0 are such that B(x0, r) ⊆ C ⊆ B(x0, R) and x0 ∈ int(C).

Proof.

(1) By Proposition 4.26 (3) we have that µC(x) < t if and only if x ∈ t int(C) = t
⋂N
j=1 int(Cj). This

is equivalent to µCj (x) < t for every j = 1, . . . , N, that is, max{µCj (x) : j = 1, . . . , N} < t. This
proves that µC = max1≤k≤N µCk .

(2) When x ∈ C there is nothing to prove. If x /∈ C, using Proposition 4.26 (8) and (10) we obtain

d(x,C) ≤ R (µC(x)− 1) = R

(
max

1≤k≤N
µCk(x)− 1

)
= R

(
max

1≤k≤N
(µCk(x)− 1)

)
.

By (2), the last term is less than or equal to R
r max1≤k≤N d(x,Ck).

(3) After a translation, the same proof as in (2) holds.

5.7.4 Proof of the extension result for (FIO) bodies

First of all, let us make a small remark.

Remark 5.30. If a set C is (FIOm), (see Definition 5.26), then either C has nonempty interior or C is
a single point.

Proof. LetC =
⋂N
j=1Cj ,where eachCj is an ovaloid of classCm. Suppose that int(C) =

⋂N
j=1 int(Cj) =

∅, and let us show that C is a single point. Indeed, assuming that there exist x, y ∈ C with x 6= y, the
point z = x+y

2 belongs to C by convexity. On the other hand, we have that z /∈ Cj \ int(Cj) for
some j ∈ {1, . . . , N}, which implies that ψj(z) = 1. Also, because x, y ∈ Cj , we obviously have
ψj(x), ψj(y) ≤ 1. Bearing in mind that ψj is a strictly convex function on Rn, we obtain

1 = ψj(z) <
1

2
ψj(x) +

1

2
ψj(y) ≤ 1,

which is absurd.

In view of the above Remark, we may thus suppose that C has nonempty interior, as the result
follows immediately from Theorem 5.24 in the case that C is a singleton. We are now ready to complete
the proof of Theorem 5.27.

Fixm ∈ N withm ≥ 3 and suppose thatC is (FIOm−1) with nonempty interior. Since the family of
polynomials {Pmy }y∈C satisfies Whitney’s condition (Wm) or order m, we may assume that there exists
some f ∈ Cm(Rn) satisfying the property (CWm) on ∂C, D2f(x) is semidefinite positive for every
x ∈ C and Jmy f = Pmy for every y ∈ C. According to Definition 5.26, we can write C =

⋂N
j=1Cj ,

where for each 1 ≤ j ≤ N there are Mj > 0 and a function ψj : Rn → R of class Cm−1(Rn)
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such that Cj = ψ−1
j (−∞, 1] and D2ψj(x)(v2) ≥ Mj for all x ∈ Rn and v ∈ Sn−1. Let us denote

M = min{Mj : 1 ≤ j ≤ N}. By Proposition 5.28 (5), for each j ∈ {1, . . . , N}, the set Cj is a
convex compactum and there is a constant βj > 0 with ψj(x) − 1 ≥ βjd(x,Cj) whenever x /∈ Cj .
Set β = min{βj : j = 1, . . . , N}. Using Proposition 5.29 (3), we obtain L > 0 with d(x,C) ≤
Lmax1≤j≤N d(x,Cj) for all x ∈ Rn. To sum up, we have found positive constants L, β,M satisfying

d(x,C) ≤ L max
1≤j≤N

d(x,Cj) for all x ∈ Rn; (5.7.1)

ψj(x)− 1 ≥ βd(x,Cj) for all x /∈ Cj , 1 ≤ j ≤ N ; (5.7.2)

D2ψj(x)(v2) ≥M for all x ∈ Rn, v ∈ Sn−1, 1 ≤ j ≤ N. (5.7.3)

Since f : Rn → R satisfies (CWm) onC, the estimation given in Lemma 5.15 involving the function
ω holds for f. For these positive constants L, β > 0, we define the following functions

g(t) =

{ ∫ t
0

∫ t2
0 · · ·

∫ tm−1

0 ω
(
2m−2s

)
ds dtm−1 · · · dt2 if t > 0

0 if t ≤ 0,

h(t) = g(Lβ−1t), t ∈ R,

and

ϕ(x) =

N∑
j=1

h(ψj(x)− 1), x ∈ Rn.

It is clear that g ∈ Cm−1(R) with g(k)(0) = 0 for all 0 ≤ k ≤ m− 1. By the definition of the ψ’s and h,
we have that ϕ−1(0) = C and ϕ ∈ Cm−1(Rn). It is clear that every partial derivative ∂αϕ is a sum of
functions all of them multiplied by derivatives of the form h(`)(ψj − 1) and then, because h(k) = 0 for
every 0 ≤ k ≤ m − 1 and ψj = 1 on C, we have that ∂αϕ(x) = 0 for all x ∈ C and all |α| ≤ m − 1,
that is, Jm−1

x ϕ = 0 for all x ∈ C. A simple calculation and the fact that g′′ ≥ 0 lead us to

D2ϕ(x)(v2) =

N∑
j=1

h′′(ψj(x)− 1)〈∇ψj(x), v〉2 +

N∑
j=1

h′(ψj(x)− 1)D2ψj(x)(v2)

≥
N∑
j=1

h′(ψj(x)− 1)D2ψj(x)(v2),

for every x ∈ Rn and every v ∈ Sn−1. Now, we study the convexity of ϕ outside of C. Fix x ∈ Rn \ C
and v ∈ Sn−1. From (5.7.3) we deduce

D2ϕ(x)(v2) ≥
N∑
j=1

h′(ψj(x)− 1)D2ψj(x)(v2) ≥M
N∑
j=1

h′(ψj(x)− 1).

But the above sum is greater than or equal to Mh′(ψj(x) − 1), where we consider an index j := jx
with d(x,Cj) = max1≤i≤N d(x,Ci). Of course, for this index j, we have that x /∈ Cj . This implies
ψj(x) > 1 and therefore

D2ϕ(x)(v2) ≥Mh′(ψj(x)− 1) = MLβ−1g′(Lβ−1(ψj(x)− 1)).

Using inequalities (5.7.2) and (5.7.1) and the choice of j, we obtain

ψj(x)− 1 ≥ βd(x,Cj) ≥ βL−1d(x,C).

The above inequality and the fact that g′ is non decreasing imply that

g′(Lβ−1(ψj(x)− 1)) ≥ g′(d(x,C)) = g′(t),
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where t := d(x,C). Recalling that ω is nonnegative and nondecreasing, we obtain

g′(t) =

∫ t

0

∫ t2

0
· · ·
∫ tm−2

0
ω
(
2m−2s

)
ds dtm−2 · · · dt2

≥
∫ t

t/2

∫ t2

0
· · ·
∫ tm−2

0
ω(2m−2s)ds dtm−2 · · · dt2

≥ t

2

∫ t/2

0

∫ t2

0
· · ·
∫ tm−3

0
ω(2m−2s)ds dtm−3 · · · dt2

≥ t

2
· t

4

∫ t/4

0

∫ t2

0
· · ·
∫ tm−4

0
ω(2m−2s)ds dtm−4 · · · dt2

≥ t

2
· t

4
· · · t

2m−3

∫ t/2m−3

0
ω(2m−2s)ds

≥ t

2
· t

4
· · · t

2m−3
· t

2m−2
ω(t) =

tm−2

21+2+3+···+(m−2)
ω(t).

Therefore
D2ϕ(x)(v2) ≥MLβ−1g′(t) = k(n,m,C)tm−2ω(t),

where

k(n,m,C) :=
MLβ−1

21+2+3+···+(m−2)
.

On the other hand, Lemma 5.15 gives us the following inequality:

D2f(x)(v2) ≥ −ω(t)tm−2.

Hence F := f+ 2
k(n,m,C)ϕ has a strictly positive Hessian on Rn\C, is of classCm−1(Rn), and coincides

with f on C. Since Jm−1
x ϕ = 0 for all x ∈ C, we have that Jm−1

x F = Jm−1
x f = Pm−1

x for all x ∈ C.
Because f is convex on C and the extension F is differentiable, we have that F is convex in Rn. The
proof of Theorem 5.27 is complete.

5.8 Relation between (CW 2) and (CW 1)

It is natural to ask whether conditions (CWm) defined on this chapter for compact convex domains
imply the condition (CW 1) defined in Chapter 4 for C1 convex extensions of functions. As we saw
in Theorem 4.4, condition (CW 1) together with condition (C) (which is automatically fulfilled if we
assume that our function f is convex on the domain) are necessary and sufficient conditions on a 1-jet for
having a C1 convex extension from a compact convex domain. We are now going to prove that (CW 2)
implies (CW 1) on compact convex subsets.

Proposition 5.31. Let E be a closed convex subset of Rn and f : Rn → R a function of class C2(Rn)
such that f satisfies the condition (CW 2) on E and

M := sup{D2f(x)(v2) : |v| = 1, x ∈ E} < +∞. (5.8.1)

Then M〈∇f(x)−∇f(y), x− y〉 ≥ |∇f(x)−∇f(y)|2 for all x, y ∈ E.

Proof. Given two symmetric linear operators A,B : Rn → Rn, by A ≤ B we mean that

A(v2) := vtAv ≤ vtBv =: B(v2) for all v ∈ Rn, |v| = 1.

Let us fix x ∈ E. The fact that f satisfies (CW 2) on E together with (5.8.1) lead us to 0 ≤ D2f(x) ≤
MI, where I : Rn → Rn is the identity map. It immediately follows that

−MI ≤ 2D2f(x)−MI ≤MI,
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which in turn implies
|(2D2f(x)−MI)(v2)| ≤M for all |v| = 1.

Recall that, for a selfadjoint linear operator A : Rn → Rn, we have the identity

‖A‖ := sup{|A(v)| : |v| = 1} = sup{
∣∣A(v2)

∣∣ : |v| = 1}.

We then have shown that ‖2D2f(x) −MI‖ ≤ M. Now, we fix x, y ∈ E and v ∈ Rn with |v| = 1.
Since E is convex and ∇f is differentiable on Rn, we can use the mean value theorem to obtain some
z ∈ E for which〈

(2∇f(x)−Mx)− (2∇f(y)−My), v
〉

=
〈
(2D2f(z)−MI)(v), x− y

〉
≤M |x− y|.

Beacuse |v| = 1 is arbitrary, the above inequality shows that 2∇f −MI : Rn → Rn is M -Lipschitz on
E. Thus, for every x, y ∈ E, we have

M2|x− y|2 ≥
∣∣(2∇f(x)−Mx)− (2∇f(y)−My)|2 =

∣∣2(∇f(x)−∇f(y))−M(x− y)
∣∣2

= 4|∇f(x)−∇f(y)|2 +M2|x− y|2 − 4M〈∇f(x)−∇f(y), x− y〉.

This immediately implies the desired inequality.

Lemma 5.32. Suppose that f : Rn → R is a function of class C2(Rn) such that f satisfies (CW 2) on a
compact convex subset E of Rn. Then (f,∇f) satisfies condition (CW 1) on E, that is,

f(x) = f(y) + 〈∇f(y), x− y〉 =⇒ ∇f(x) = ∇f(y), for every x, y ∈ E.

Proof. Given x, y ∈ E with f(x) = f(y) + 〈∇f(y), x− y〉, we need to prove that∇f(x) = ∇f(y).
Case 1. We first suppose that f(y) = 0 and ∇f(y) = 0. We thus have f(x) = 0. The fact that D2f
is positive semidefinite implies in particular that f is convex on E. Therefore, if we define h(t) =
f(tx+ (1− t)y) for all t ∈ R, we see that h is of class C2(R) and h is convex on [0, 1] with h(0) = 0 =
h(1) = h′(0) = 0. By convexity and differentiability we must have h = 0 on [0, 1], which implies that
〈∇f(x), x− y〉 = h′(1) = 0. Hence we get that 〈∇f(x)−∇f(y), x− y〉 = 0. Since E is compact and
D2f is continuous, inequality (5.8.1) holds for some M ≥ 0. According to Proposition 5.31 we have
∇f(x) = ∇f(y).
Case 2. Let f(y) and ∇f(y) be arbitrary. Defining g(z) = f(z) − f(y) − 〈∇f(y), z − y〉 for all
z ∈ Rn, we have that g(x) = g(y) = 0 and ∇g(y) = 0. Since f satisfies (CW 2) on E, it is clear
that g satisfies (CW 2) on E as well. According to Case 1, we have ∇g(x) = 0, which is equivalent to
∇f(x) = ∇f(y). This proves the lemma.

Thanks to Lemma 5.32, we obtain the following corollary which tells us that if we assume condition
(CW 2) on a compact convex subset, then at least we always have a C1 convex extension to all of Rn.
We will use the formulation of Whitney’s extension theorem for linear forms rather than the formulation
for polynomials, see Theorem 5.3.

Corollary 5.33. Let C be a compact convex subset of Rn. Let f : C → R, G : C → (Rn)∗ and
H : C → L2(Rn,R) be three functions such that (f,G,H) satisfies Whitney’s condition (W 2). If H(y)
is semidefinite positive for every y ∈ C, then there exists a convex function F ∈ C1(Rn) with F = f
and DF = G on E.

Proof. Recall that condition (CW 2) on the set C for a 2-jet (f,G,H) merely says that H(y)(v2) ≥ 0
for every v ∈ Sn−1 and every y ∈ C. By Whitney’s Extension Theorem (see Theorem 5.3), we may and
do assume that f is extended to a (not necessarily convex) function of class C2(Rn) with Df = G and
D2f = H on C. On the other hand, we have that D2f(x)(v2) = H(x)(v2) ≥ 0 for every x ∈ C and
every v ∈ Sn−1. Hence, according to Lemma 5.32, (f,∇f) satisfies condition (CW 1) on C. Also, since
f is convex on C and f is differentiable, then

f(x) ≥ f(y) + 〈∇f(y), x− y〉 x, y ∈ C;

which shows that (f,∇f) satisfies condition (C) on C. Therefore, Theorem 4.4 provides us with a
convex function F of class C1 such that F = f and ∇F = ∇f on E.
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5.9 Remarks and Counterexamples

The following example is a variation of [60, Example 4] and shows that Theorem 5.14 fails if we drop the
assumption that C be compact, even in the presence of strictly positive Hessians. Moreover, this proves
that, in contrast to Proposition 5.21, the fact that f has a smooth convex extension to an open convex
neighbourhood of C does not imply that f can be extended to a convex function on Rn.

Example 5.34. Let C = {(x, y) ∈ R2 : x > 0, xy ≥ 1}, and define

f(x, y) = −2
√
xy +

1

x+ 1
+

1

y + 1

for every (x, y) ∈ C. The set C is convex and closed, with a nonempty interior. Let us extend the
definition of f to the set B = {(x, y) ∈ R2 : x, y ≥ 0} by setting f(x, y) = −2

√
xy + 1

x+1 + 1
y+1

for all (x, y) ∈ B. It is clear tha f is of class C∞ on the interior int(B) of B and the first and second
derivatives of f are

∇f(x, y) =

(
−x−

1
2 y

1
2 − 1

(x+ 1)2
, −x

1
2 y−

1
2 − 1

(y + 1)2

)
.

and

Hf (x, y) =

(
1
2x
− 3

2 y
1
2 + 2

(x+1)2
−1

2x
− 1

2 y−
1
2

−1
2x
− 1

2 y−
1
2

1
2x

1
2 y−

3
2 + 2

(y+1)2

)
for every (x, y) ∈ int(B). It is then clear that f has a strictly positive Hessian on int(B). In particular,
f is convex on int(B) and then, by continuity of f on B, f is convex on B. We claim that f does not
have any convex extension to all of R2. In order to prove this it is sufficient to see that, for instance,
mC(f)(−1,−1) =∞, where mC(f) is the minimal convex extension of f from C, defined by

mC(f)(x, y) = sup
(u,v)∈C

{f(u, v) + 〈∇f(u, v), (x, y)− (u, v)〉}, for all (x, y) ∈ C.

As a matter of fact, we are going to see that mC(f)(x, y) =∞ for every (x, y) ∈ R2 such that x < 0 or
y < 0. Considering the curve γ(t) = (t, 1

t ), t > 0, which parameterizes the boundary of C, we have

mC(f)(x, y) ≥ f
(
t, 1
t

)
+ 〈∇f

(
t, 1
t

)
, (x− t, y − 1

t )〉

= −2 +
1

t
+

1

1 + t−1
− (x− t)

(
1

t
+

1

(1 + t)2

)
− (y − t−1)

(
t+

1

(1 + t−1)2

)
= 1− x

t
− yt− yt2 − 2t+ x

(1 + t)2

for every t > 0. By letting t → 0+ when x < 0 and t → +∞ if y < 0, we obtain that the above term
tends to +∞, which shows that mC(f)(x, y) = +∞.

The following example shows that if C has empty interior then one cannot expect to find smooth
convex extensions (of functions satisfying (Wm) and (CWm) on C) without experiencing a certain
loss of differentiability. The example also shows that in R2 this loss amounts to at least two orders of
smoothness, and that the situation does not improve as m grows large (unless m =∞, as we will see in
the next chapter, Chapter 6).

Example 5.35. Consider the function θ(y) = 1−cos(2πy)
2π , y ∈ R. Clearly, θ ∈ C∞(R), with θ(0) =

θ(1) = 0, θ(1/2) = 1
π and θ′(y) = sin(2πy). Let m ≥ 2 be an even integer and and define h(x, y) =

θ(y)xm, (x, y) ∈ R2. Let C := {0} × [0, 1]. We have Dkh = 0 on C for all k ∈ {0, . . . ,m− 1}, and

Dmh(x, y) = m!θ(y)e∗1

m︷ ︸︸ ︷
⊗ · · ·⊗ e∗1 for (x, y) ∈ C

(here e∗1 denotes the linear function (x1, x2) 7→ x1). Therefore Dmh(0, 0) = Dmh(0, 1) = 0, and
Dmh(0, 1

2) = m!
π e
∗
1 ⊗ · · · ⊗ e∗1. We claim the following.
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(1) There is no convex function F ∈ Cm(R2) such that DkF = Dkh on C for k ∈ {0, . . . ,m}.

(2) h satisfies conditions (W k) for every order k and (CWm+1) (and in particular (CWm) too) on C.

(3) h does not satisfy condition (CWm+2) on C.

Proof. The statement (1) follows immediately from the following remark.

Remark 5.36. If m ≥ 2, there exists no convex function f ∈ Cm(R2) such that Dkf(0, y) = 0 for
all k ∈ {0, . . . ,m − 1}, y ∈ [0, 1], and such that Dmf(0, 0) = Dmf(0, 1) = 0 and Dmf(0, 1

2) =
Ae∗1 ⊗ · · · ⊗ e∗1, where A > 0 is a constant.

Proof of Remark 5.36. For the sake of contradiction, suppose there is such an f . Using Taylor’s theorem
we have

f(x, y) =
1

m!
Dmf(0, y0)(x, y − y0)m +R(x, y, y0) (x, y) ∈ R2, y0 ∈ [0, 1],

where
R(x, y)

|(x, y − y0)|m
→ 0 as (x, y) → (0, y0), uniformly on y0 ∈ [0, 1]. Fix 0 < ε < A

2m! , and take

δ = δ(ε) > 0 such that if y0 ∈ [0, 1] and (x, y) ∈ R2 satisfy (x2 + (y − y0)2)1/2 ≤ δ then∣∣∣∣f(x, y)− 1

m!
Dmf(0, y0)(x, y − y0)m

∣∣∣∣ = |R(x, y)| ≤ ε(x2 + (y − y0)2)
m
2 .

Evaluating for y = y0 = 1/2 we obtain∣∣∣f(x, 1
2)−Ax

m

m!

∣∣∣ ≤ ε|x|m, if |x| ≤ δ.

For y = y0 ∈ {0, 1} and |x| ≤ δ we get

max{|f(x, 0)|, |f(x, 1)|} ≤ ε|x|m.

Fix x0 > 0 with x0 ≤ δ. We then have

f(x0,
1
2) ≥ Ax

m
0

m!
− εxm0 > 2εxm0 − εxm0 = εxm0 ≥ max{f(x0, 0), f(x0, 1)}.

This implies that [0, 1] 3 t 7→ ϕ(t) = f(x0, t) satisfies ϕ(1
2) > 1

2ϕ(0) + 1
2ϕ(1), and in particular f

cannot be convex.

Let us now prove (2). For any function g : Rn → R, which is k times differentiable at some point
x ∈ Rn, we will compute the derivative Dkg(x) of g at x via the formula

Dkg(x) =

n∑
i1,...,ik=1

∂kg

∂xi1 · · · ∂xik
(x) e∗i1 ⊗ · · · ⊗ e

∗
ik
, (5.9.1)

where each e∗ij denotes the linear function (x1, . . . , xn) 7→ xij .Of course, because h is of classC∞(R2),

h satisfies condition (W k) for every k on the set C. Let us check that h satisfies (CWm+1) on C. We
must see that, given ε > 0 there exists tε > 0 such that

Qm+1(y, t, v, w) =

1
(m−2)!D

mh(0, y)(v2, wm−2) + t
(m−1)!D

m+1h(0, y)(v2, wm−1)

t
≥ −ε,

for every y ∈ [0, 1], v, w ∈ S1, 0 < t ≤ tε. With the help of (5.9.1) we obtain

Dmh(0, y)(v2, wm−2) =

2∑
i1,...,im=1

∂mh

∂xi1 · · · ∂xim
(0, y) vi1vi2wi3 · · ·wim
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where x1 and x2 stand for the variables x and y respectively. Because ∂kh
∂xk

(0, y) = 0 whenever k 6= m,
it is clear that the only possible nonzero term in the above sum is that in which the m-tuple (i1, . . . , im)
satisfies i1 = · · · = im = 1. This shows that

Dmh(0, y)(v2, wm−2) =
∂mh

∂xm
(0, y)v2

1w
m−2
1 = m! θ(y)v2

1w
m−2
1 (5.9.2)

For the derivatives of order m+ 1, we use again (5.9.1) to obtain

Dm+1h(0, y)(v2, wm−1) =
2∑

i1,...,im+1=1

∂m+1h

∂xi1 · · · ∂xim+1

(0, y) vi1vi2wi3 · · ·wim+1

Since ∂kh
∂xk

(0, y) = 0 whenever k 6= m, it is clear that the only possible nonzero terms in the above
sum are those whose (m+ 1)-tuple (i1, . . . , im+1) contains m 1’s and one 2’s. Among these admissible
tuples, let us study two cases separately. In the case when i1 = i2 = 1, the (m− 1)-tuple (i3, . . . , im+1)
must contain (m − 2) 1’s and one 2’s and the product vi1vi2wi3 · · ·wim+1 coincides with v2

1w
m−2
1 w2.

Observe that there are (m− 1) possible (m+ 1)-tuples (i1, . . . , im+1) satisfying this. In the case when
(i1, i2) 6= (1, 1), we must have i3 = · · · = im+1 = 1 and the product vi1vi2wi3 · · ·wim+1 coincides
with v1v2w

m−1
1 . Note that there only 2 possible (m+ 1)-tuples (i1, . . . , im+1) satisfying this. All these

observations lead us to

Dm+1h(0, y)(v2, wm−1) =
∂m+1h

∂xm∂y
(0, y)

[
(m− 1)v2

1w
m−2
1 w2 + 2v1v2w

m−1
1

]
= m! θ′(y)

[
(m− 1)v2

1w
m−2
1 w2 + 2v1v2w

m−1
1

]
. (5.9.3)

For our given ε > 0, let us fix tε such that

0 < tε ≤ min

(
1,

ε

4π(2m+ 3)(m+ 1)m(m− 1)

)
.

Take y ∈ [0, 1], v, w ∈ S1 and 0 < t ≤ tε. We have

Qm+1(y, t, v, w) :=
1

t

[
m!

(m− 2)!
θ(y)v2

1w
m−2
1 +

m!

(m− 1)!
tθ′(y)

(
(m− 1)v2

1w
m−2
1 w2 + 2v1v2w

m−1
1

)]
.

Since m is even, we have wm−2
1 ≥ 0, and we obtain from the preceding equation that

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2

t

(
θ(y)|v1| − (m+ 1)t|θ′(y)|

)
. (5.9.4)

Let us now distinguish the following cases.
Case 1. Assume y ∈ [1

4 ,
3
4 ]. Then 2πy ∈ [π2 ,

3π
2 ]. Therefore cos(2πy) ≤ 0, which implies θ(y) ≥ 1

2π .
Since we always have |θ′(y)| = | sin(2πy)| ≤ 1, it follows from (5.9.4) that

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2

t

(
|v1|
2π
− (m+ 1)t

)
.

Subcase 1.1. Assume |v1| ≥ 2π(m+ 1)t. Then it is clear that Qm+1(y, t, v, w) ≥ 0 ≥ −ε.
Subcase 1.2. Assume 2π(m+ 1)t2 ≤ |v1| ≤ 2π(m+ 1)t. Then, since |w1|, t, 1− t ≤ 1, we obtain

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2

t

(
(m+ 1)t2 − (m+ 1)t

)
= (m+ 1)m(m− 1)|v1||w1|m−2(t− 1) ≥ −2π(m+ 1)2m(m− 1)t|w1|m−2(1− t)
≥ −2πt(m+ 1)2m(m− 1) ≥ −2πtε(m+ 1)2m(m− 1) ≥ −ε.
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Subcase 1.3. Assume |v1| ≤ 2π(m+ 1)t2. We have

Qm+1(y, t, v, w) ≥ −m(m− 1)|v1||w1|m−2

t

(
(m+ 1)t− |v1|

2π

)
≥ −2πm(m− 1)(m+ 1)t2|w1|m−2

t

(
m+ 1 +

1

2π

)
≥ −2π(m+ 1)m(m− 1)(m+ 2) t

≥ −2π(m+ 1)m(m− 1)(m+ 2) tε ≥ −ε.

Case 2. Assume y ∈ [0, 1
4). Then πy ∈ [0, π4 ) and 2πy ∈ [0, π2 ). We have

θ(y) =
1− cos(2πy)

2π
=

sin2(πy)

π
.

On the other hand,
|θ′(y)| = | sin(2πy)| = sin(2πy) = 2 sin(πy) cos(πy).

By substituting in (5.9.4), we get

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2

t

(
sin2(πy)|v1|

π
− (m+ 1) sin(2πy)t

)
=
m(m− 1)|v1||w1|m−2 sin(πy)

t

(
sin(πy)|v1|

π
− 2(m+ 1) cos(πy)t

)
.

Subcase 2.1. Assume sin(πy)|v1| ≥ 2π(m+ 1) cos(πy)t. Then obviously Qm+1(y, t, v, w) ≥ 0 ≥ −ε.
Subcase 2.2. Assume 2π(m+ 1) cos(πy)t2 ≤ sin(πy)|v1| ≤ 2π(m+ 1) cos(πy)t. We have

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2 sin(πy)2(m+ 1) cos(πy)(t− 1),

whose absolute value is less than or equal to

2(m+ 1)m(m− 1)|v1| sin(πy) ≤ 4π(m+ 1)2m(m− 1) cos(πy)t

≤ 4π(m+ 1)2m(m− 1)t ≤ 4π(m+ 1)2m(m− 1)tε ≤ ε.

This shows that Qm+1(y, t, v, w) ≥ −ε.
Subcase 2.3. Assume sin(πy)|v1| ≤ 2π(m+ 1) cos(πy)t2. Recall that

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2 sin(πy)

t

(
sin(πy)|v1|

π
− 2(m+ 1) cos(πy)t

)
.

The absolute value of the last term is less than or equal to

m(m− 1)|v1| sin(πy)
(

1
π + 2(m+ 1)

)
t

≤ m(m− 1)2π(m+ 1) cos(πy)t2(1 + 2(m+ 1))

t
≤ 2π(m+ 1)m(m− 1)(2m+ 3)t ≤ 2π(2m+ 3)(m+ 1)m(m− 1)tε ≤ ε.

Hence Qm+1(y, t, v, w) ≥ −ε.
Case 3. Assume finally that y ∈ (3

4 , 1]. Take z = 1− y. Clearly cos(2πz) = cos(2πy), and sin(2πz) =
− sin(2πy). Therefore θ(z) = θ(y) and |θ′(y)| = |θ′(z)|, hence

Qm+1(y, t, v, w) ≥ m(m− 1)|v1||w1|m−2

t

(
θ(y)|v1| − (m+ 1)t|θ′(y)|

)
=
m(m− 1)|v1||w1|m−2

t

(
θ(z)|v1| − (m+ 1)t|θ′(z)|

)
,

and since z ∈ [0, 1
4), we can apply Case 2 with z instead of y to obtain Qm+1(y, t, v, w) ≥ −ε.

We have thus shown the statement (2).
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Finally, let us prove statement (3). For every y ∈ [0, 1], v, w ∈ S1, we obtain from (5.9.1) that

Dm+2h(0, y)(v2, wm) =

2∑
i1,...,im+2=1

∂m+2h

∂xi1 · · · ∂xim+2

(0, y)vi1vi2wi3 . . . wim+2 ,

where x1 and x2 stands for the variables x and y respectively. If we set v = (0, 1) and w = (1, 0), the
only possible nonzero term is that for which the (m + 2)-tuple (i1, . . . , im+2) satisfies i1 = i2 = 2 and
i3 = · · · = im+2 = 1. This shows that

Dm+2h(0, y)(v2, wm) =
∂m+2h

∂xm∂y2
(0, y) v2

2w
m
1 = m! θ′′(y) (5.9.5)

Combining (5.9.2), (5.9.3) and (5.9.5) we get

Qm+2(y, t, v, w)

:=
1

tm

(
D2h(0, y)(v2) + · · ·+ tm−1

(m− 1)!
Dm+1h(0, y)(v2, wm−1) +

tm

m!
Dm+2h(0, y)(v2, wm)

)
=
m(m− 1)θ(y)v2

1w
m−2
1

t2
+

(m− 1)θ′(y)
(
(m− 1)v2

1w
m−2
1 w2 + 2v1v2w

m−1
1

)
t

+ θ′′(y) = θ′′(y).

But the function θ′′(y) = 2π cos(2πy) is strictly negative on the interval
(

1
4 ,

3
4

)
and so isQm+2(y, t, v, w)

on that interval. Therefore, condition (CWm+2) is not satisfied for h on C.
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Chapter 6

C∞ extensions of convex functions on Rn.

6.1 Whitney’s Extension Theorem for C∞

The Whitney’s Extension Theorem for C∞ reads as follows.

Theorem 6.1 (Whitney’s Extension Theorem for C∞). Let C ⊂ Rn be a closed subset of Rn and
{fα}α∈(N∪{0})n an infinite family of real valued functions defined on C. Let us write, for every positive
integer m ≥ 0,

fα(x) =
∑

|β|≤m−|α|

fα+β(y)

β!
(x− y)β +Rmα (x, y)

for all x, y ∈ C and every multi-index α with |α| ≤ m. Then there exists a function F : Rn → R of class
C∞(Rn) such that ∂αF = fα on C for every multi-index α if and only for every m ≥ 0,

lim
|x−y|→0

|Rmα (x, y)|
|x− y|m−|α|

= 0 uniformly on x, y ∈ K

for every compact subset K of C and all |α| ≤ m.

An infinite family of real valued functions {fα}α∈(N∪{0})n defined on C is called a ∞-jet on C.
Observe that Theorem 6.1 essentially says that a ∞-jet {fα}α∈(N∪{0})n defined on C has a extension
F ∈ C∞(Rn), that is, ∂αF = fα on C for every multi-index α, if and only if the m-jet {fα}|α|≤m
satisfies condition (Wm) of Theorem 5.1 on C for every m ≥ 0. If {Qk}k are the Whitney cubes of
Rn \C (see Proposition 2.2), pk denotes a point of C which minimizes the distance of C to the cube Qk
and {ϕk}k is the Whitney partition of unity associated with {Qk}k (see Proposition 2.3), the function F
of Theorem 6.1 can be defined via the formula

F (x) =

{
f(x) if x ∈ C∑

k

(∑
|α|≤νk

fα(pk)
α! (x− pk)α

)
ϕk(x) if x ∈ Rn \ C,

(6.1.1)

where (νk)k is an strictly increasing sequence of integers carefully chosen and depending on the functions
{fα}α∈N∪{0}, on the set C and on the dimension n. An explicit exposition of this construction is given
in [71].

Let us also restate Theorem 6.1 in terms of families of polynomials.

Definition 6.2. Given a closed subsetC of Rn,we will say that a family of polynomials {Pmy }y∈C,m∈N∪{0}
with deg(Pmy ) ≤ m for every y ∈ C and every m ∈ N ∪ {0}, is a compatible family of polynomials
for C∞ extension if for every k ≥ j the polynomial P jy is the Taylor polynomial of order j at y of the
polynomial P ky for every y ∈ C.
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Theorem 6.3. Let C be a closed subset of Rn and let {Pmy }y∈C,m∈N∪{0} be a compatible family of
polynomials for C∞ extension with deg(Pmy ) ≤ m for every y ∈ C and everym ∈ N∪{0}. There exists
a function F ∈ C∞(Rn) with Jmy F = Pmy for every m ∈ N ∪ {0} and every y ∈ C if and only if for
each m ∈ N the subfamily {Pmy }y∈C satisfies Whitney’s condition (Wm) of order m of Theorem 5.2.
We will abreviate this by saying that the compatible family {Pmy }y∈C,m∈N∪{0} satisfies condition (W∞)
on C.

Similarly, Whitney’s Extension Theorem for C∞ can be reformulated in terms of k-linear forms.

Theorem 6.4. Let C be a closed subset of Rn and let {Am}m∈N∪{0} be a family of functions defined on
C such that each Am is Lm(Rn,R)-valued. There exists a function F ∈ C∞(Rn) with DmF = Am
on C for every m ∈ N ∪ {0} if and only if for each m ∈ N the subfamily {Ak}mk=0 satisfies Whitney’s
condition (Wm) of Theorem 5.3. We will abreviate this by saying that the family {Am}m∈N∪{0} satisfies
condition (W∞) on C.

With the same arguments as in Chapter 5, Section 5.1, one can see that Theorems 6.1, 6.3 and 6.4 are
equivalent.

6.2 C∞ convex extension theorem

We are now going to present our main result for smooth convex extension of jets. We saw in Chapter 5
that condition (CWm) of Definitions 5.6, 5.7 and 5.8 is necessary for Cm convex extension but is not
sufficient in general, as we learnt from Example 5.35. Nonetheless, for m = ∞ we are able to prove an
if and only if theorem from compact convex subset (possibly of empty interior).

Let us now define the suitable condition forC∞ convex extension. Similar to theCm case (see Chap-
ter 5, Section 5.3) we are going to give several (equivalent) definitions in terms of functions, polynomials
and linear forms.

Definition 6.5 (Condition (CW∞)). Let C be a compact subset of Rn and let {Pmy }y∈C,m∈N∪{0} be
a compatible family of polynomials for C∞ extension with deg(Pmy ) ≤ m for every y ∈ C and every
m ∈ N ∪ {0}. We will say that the family {Pmy }y∈C,m∈N∪{0} satisfies condition (CW∞) on C provided
that, for each m ≥ 2, every subfamily {Pmy }y∈C satisfies condition (CWm) of Definition 5.6, that is,
for each m ≥ 2,

lim inf
t→0+

1

tm−2

(
D2Pmy (y)(v2) + tD3Pmy (y)(w, v2) + · · ·+ tm−2

(m− 2)!
DmPmy (y)(wm−2, v2)

)
≥ 0

uniformly on y ∈ C, v, w ∈ Sn−1.

Definition 6.6 ((CW∞) condition for functions). We will say that a function F : Rn → R of class C∞

satisfies condition (CW∞) on a compact subset C provided that F satisfies, for every m ≥ 2, condition
(CWm) on C in the sense of Definition 5.7

Since for a function F of class C∞(Rn) and a subset C of Rn, the family {Jmy F}y∈C, m∈N∪{0}
(where each Jmy F denotes the Taylor polynomial ofF of orderm at the point y) satisfies thatDm(Jmy F )(y) =
DmF (y) for every y ∈ C and every m ∈ N∪{0}, the condition (CW∞) on C for F given in Definition
6.6 is equivalent to condition (CW∞) on C for the family {Jmy F}y∈C, m∈N∪{0} given in Definition 6.5.
Finally, let us give the corresponding definition in terms on k-linear forms.

Definition 6.7 ((CW∞) condition for linears forms). Given an infinite family of functions {Am}m∈N∪{0}
defined on a compact subset C such that each Am is Lm(Rn,R)-valued, we will say that {Am}m∈N∪{0}
satisfies condition (CW∞) on C provided that each subfamily {Ak}mk=0, m ≥ 2, satisfies condition
(CWm) on C in the sense of Definition 5.8.
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It is clear that the three above definitions are equivalent. Let us first see that this condition is necessary
for C∞ convex extension.

Lemma 6.8. Let F : Rn → R be a function of class C∞(Rn) such that F is convex on an open
neighbourhood of a compact convex subset C of Rn. Then F satisfies condition (CW∞) on C.

Proof. Using Lemma 5.9 we obtain that F satisfies condition (CWm) on C for every m ≥ 2, that is F
satisfies (CW∞) on C.

From Remark 5.12 and Definition 6.5 we immediately observe the following.

Remark 6.9. If C is a convex compact subset of Rn with nonempty interior and {Pmy }y∈C, m∈N∪{0} is
a compatible family of polynomials for C∞ extension, then a necessary condition for the existence of a
convex function F of class C∞(Rn) with Jmy F = Pmy for every y ∈ C and every m ∈ N ∪ {0} is that:

1. {Pmy }y∈C, m∈N∪{0} satisfies (W∞) on C and (CW∞) on ∂C and D2Pmy (y)(v2) ≥ 0 for every
y ∈ int(C) and every v ∈ Sn−1 and every m ≥ 2,

or equivalently:

2. {Pmy }y∈C, m∈N∪{0} satisfies (W∞) on C and (CW∞) on ∂C and each function C 3 y 7→
Pmy (y), m ≥ 2, is convex.

Let us also see that condition (CW k) with a strict inequality for some k (see Definition 5.6) auto-
matically implies condition (CW∞).

Proposition 6.10. If C is a compact subset of Rn and the family {Pmy }y∈C,m∈N∪{0} satisfies (W∞) on
C and there exists some integer k > 2 for which the subfamily {P ky }y∈C satisfies condition (CW k) on
C with a strict inequality, then {Pmy }y∈C,m∈N∪{0} satisfies condition (CW∞).

Proof. It immediately follows from Proposition 5.23 that each subfamily {Pmy }y∈C , m ≥ 2, satisfies
condition (CWm) (in fact, with a strict inequality) on C, that is, {Pmy }y∈C,m∈N∪{0} satisfies (CW∞)
on C.

We are now ready to present the main result of this chapter.

Theorem 6.11. Let C be a compact convex subset of Rn. Let {Pmy }y∈C,m∈N∪{0} be a compatible family
of polynomials for C∞ extension. Then there exists a convex function F : Rn → R of class C∞ with
Jmy F = Pmy for every y ∈ C and m ∈ N ∪ {0}, if and only if the family {Pmy }y∈C,m∈N∪{0} satisfies
(W∞) and (CW∞) on C.

Moreover, if C has nonempty interior, then there exists a convex function F : Rn → R of class C∞

with Jmy F = Pmy for every y ∈ C and m ∈ N ∪ {0}, if and only if {Pmy }y∈C,m∈N∪{0} satisfies (W∞)
on C, (CW∞) on ∂C and the function C 3 y 7→ Pmy (y) is convex for every m ≥ 2.

An equivalent reformulation of this result is the following.

Theorem 6.12. Let C be a compact convex subset of Rn. Let {Am}m∈N∪{0} be a family of functions
defined on C such that each Am is Lm(Rn,R)-valued. Then there exists a convex function F : Rn → R
of class C∞ with DmF = Am on C for every m ∈ N∪{0} if and only if {Am}m∈N∪{0} satisfies (W∞)
and (CW∞) on C.

Moreover, if C has nonempty interior, then there exists a convex function F : Rn → R of class
C∞ with DmF = Am on C for every m ∈ N ∪ {0} if and only if {Am}m∈N∪{0} satisfies (W∞) on
C, (CW∞) on ∂C and A2(y) is semidefinite positive for every y ∈ C.
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6.3 Proof of the main theorem

In this section we will prove Theorem 6.11. The only if part of the Theorem follows immediately from
Lemma 6.8. On the other hand, if C has nonempty interior, Remark 6.9 tells us that the conditions
(W∞) on C, (CW∞) on ∂C and that C 3 C 7→ Pmy (y) is convex for each m ≥ 2 are necessary for the
existence of such a function F. Obviously, the major effort goes in proving the if part of the Theorem.

First of all, by using Whitney’s extension theorem (see Theorem 6.3) we may and do assume that
there exists a function f ∈ C∞(Rn), with Jmy f = Pmy for all m ∈ N and all y ∈ C, and that f satisfies
condition (CWm) on C for every m ≥ 2 in the sense of Definition 6.6. On the other hand, if C has
nonempty interior and we assume that the family {Pmy }y∈C, m∈N∪{0} satisfies conditions (CWm) for
every m ≥ 2 only on ∂C and also that each function C 3 y 7→ Pmy (y), m ≥ 2 is convex, then the
function f is convex on C, which in turn implies that D2f(x)(v2) ≥ 0 for every x ∈ C and every
v ∈ Sn−1 because C has nonempy interior. This indicates that with either of the two sets of conditions of
Theorem 6.11 (for arbitrary compact convex sets or for compact convex bodies), the function f satisfies

f satisfies (CW∞) on ∂C and D2f(x)(v2) ≥ 0, x ∈ C, v ∈ Sn−1. (6.3.1)

Since C is compact, multiplying f by a suitable bump function of class C∞, we may also assume
that f has a compact support contained in C +B(0, 2).

6.3.1 Sketch of the proof.

We will follow a plan of proof similar to that of Theorem 5.14, see Subsection 5.4.1. However, we warn
the reader that what we now say we are going to do is not exactly what we will actually do. Our proof
could be rewritten to match this sketch exactly, but at the cost of adding further technicalities, which
we do not feel would be pertinent. This proof has two main parts. In the first part we will estimate
the possible lack of convexity of f outside C by using condition (CW∞), that is Lemma 6.13. In fact,
using a Whitney partition of unity, and some ideas from the proof of the Whitney extension theorem
in the C∞ case, we will construct a function η ∈ C∞(R) such that η ≥ 0, η−1(0) = (−∞, 0], and
min|v|=1D

2f(x)(v2) ≥ −η (d(x,C)) for every x ∈ Rn and every v ∈ Sn−1. In the second part of
the proof we will compensate the lack of convexity of f outside C with the construction of a function
ψ ∈ C∞(Rn) such that ψ ≥ 0, ψ−1(0) = C, and min|v|=1D

2ψ(x)(v2) ≥ 2η (d(x,C)). Then, by
setting F := f + ψ we will conclude the proof of Theorem 6.11.

As in the proof of Theorem 5.14, in order to construct such a function ψ, we will write C as an inter-
section of a family of half-spaces, and then we make an integral of suitable convex functions composed
with the linear forms that provide those half-spaces.

6.3.2 Lower estimates for the Hessian of f.

We next show how the assumption of conditions (CWm) for every m ≥ 2 implies a lower bound for the
Hessian of f in terms of the distance to C.

Lemma 6.13. Given m ∈ N there exists a number rm > 0 such that

D2f(x)(v2) ≥ −d(x,C)m−2 whenever d(x,C) ≤ rm and v ∈ Sn−1.

Proof. Let us fix m ∈ N. If x ∈ C, the desired inequality follows immediately thanks to (6.3.1). Now,
given x ∈ Rn \ C, |v| = 1, t := d(x,C), let y be the unique point of ∂C with the property that
d(x,C) = |x− y|. Take w = (x− y)/|x− y|. We have y = x+ tw. By Taylor’s Theorem, we can write

D2f(x)(v2) =D2f(y)(v2) + t D3f(y)(w, v2) + · · ·+ tm−2

(m− 2)!
Dmf(y)(wm−2, v2)

+
tm−2

(m− 2)!

[
Dmf(y + sw)(wm−2, v2)−Dmf(y)(wm−2, v2)

]
,
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for some s ∈ [0, t]. Since f satisfies condition (CWm) on ∂C (see (6.3.1)), there exists a positive number
rm, independent of y, v and w, for which

inf
0<r≤rm

D
2f(y)(v2) + rD3f(y)(w, v2) + · · ·+ rm−2

(m−2)!D
mf(y)(wm−2, v2)

rm−2

 ≥ −1

2
.

Thus, for 0 < t ≤ rm,

D2f(x)(v2) ≥ − t
m−2

2
+

tm−2

(m− 2)!

[
Dmf(y + sw)(wm−2, v2)−Dmf(y)(wm−2, v2)

]
.

On the other hand, if s ∈ [0, t], we can write

Dmf(y + sw)(wm−2, v2)−Dmf(y)(wm−2, v2) ≤ ‖Dmf(x+ sw)−Dmf(y)‖,

where we denote ‖A‖ := supu1,...,um∈Sn−1 |A(u1, . . . , um)|, for every symmetric m-linear form A on
Rn. Moreover, the above expression is smaller than or equal to

εm(t) := sup
{z∈Rn, z′∈∂C, |z−z′|≤t}

‖Dmf(z)−Dmf(z′)‖.

Since Dmf is uniformly continuous, there is r′m > 0 such that if 0 < r ≤ r′m, then εm(r) ≤ 1
2 (in fact

we have limr→0+ εm(r) = 0). Therefore, if we suppose 0 < t ≤ min{rm, r′m}, we obtain

D2f(x)(v)2 ≥ − t
m−2

2
− tm−2

(m− 2)!
εm(t) ≥ −tm−2.

6.3.3 A Whitney partition of unity on (0,+∞)

For all k ∈ Z, we define the closed intervals

Ik = [2k, 2k+1], I∗k =

[
3

4
2k,

9

8
2k+1

]
.

Obviously (0,+∞) =
⋃
k∈Z Ik. We note that Ik and I∗k have the same midpoint and `(I∗k) = 3

2`(Ik),
where `(Ik) = 2k denotes the length of Ik. In other words, the interval I∗k is Ik expanded by the factor
3/2.

Proposition 6.14. The intervals Ik, I∗k satisfy:

1. If t ∈ I∗k , then
3

4
`(Ik) ≤ t ≤

9

4
`(Ik).

2. If I∗k and I∗j are not disjoint, then

1

2
`(Ik) ≤ `(Ij) ≤ 2`(Ik).

3. Given any t > 0, there exists an open neighbourhood Ut ⊂ (0,+∞) of t such that Ut intersects at
most 2 intervals of the collection {I∗k}k∈Z.

Proof.
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1. If t ∈ I∗k = [3
42k, 9

82k+1], we have `(Ik) = 2k and

3

4
`(Ik) ≤ t ≤

9

8
2k+1 =

9

4
`(Ik).

2. First of all, we note that I∗k ∩ I∗k+2 = ∅ for all k ∈ Z. Indeed,

sup(I∗k) =
9

8
2k+1 =

9

16
2k+2 <

3

4
2k+2 = inf(I∗k+2).

This shows that if two intervals of the family {I∗k}k∈Z are not disjoint, then their indices must be two
consecutive integers. Hence, if I∗k and I∗j are not disjoint, because `(Ik) = 2k and `(Ij) = 2j , we
immediately obtain

1

2
`(Ik) ≤ `(Ij) ≤ 2`(Ik).

3. Fix t > 0 and k ∈ Z with t ∈ Ik. Then int(I∗k) is an open neighborhood of t and, thanks to the
preceding remark, I∗k cannot intersect I∗k−2 or I∗k+2. Thus I∗k can only intersect with some of the intervals
I∗k−1, I

∗
k or I∗k+1. Now we claim that either I∗k contains an open neighborhood of t which can only

intersect with I∗k or I∗k−1 or else I∗k contains an open neighborhood of t which can only intersect with I∗k
or I∗k+1. To check this, let us study two cases.
Suppose first that 2k ≤ t ≤ 9

82k. Set Ut = (t− 2k

8 , t+ 2k

8 ). If t′ ∈ Ut, then

inf(I∗k) =
3

4
2k < 2k − 2k

8
≤ t− 2k

8
< t′ < t+

2k

8
≤ 10

8
2k <

3

4
2k+1 = inf(I∗k+1) < sup(I∗k).

This shows that Ut ⊂ int(I∗k) and that Ut and I∗k+1 are disjoint. Thus Ut can only intersect with I∗k−1 or
I∗k .

Now, we suppose that 9
82k < t ≤ 2k+1. If we take δ = min{t− 9

82k, 2k+1

8 } and set Ut = (t− δ, t+ δ),
we have for all t′ ∈ Ut :

inf(I∗k) < sup(I∗k−1) =
9

8
2k ≤ t− δ < t′ < t+ δ ≤ 9

8
2k+1 = sup(I∗k).

Hence Ut ⊂ int(I∗k) and that Ut and I∗k−1 are disjoint. Thus Ut can only intersect I∗k+1 or I∗k .

This is a special case of the decomposition of an open set in Whitney’s cubes, see Proposition 2.2
for instance. In the one dimensional case things are much simpler and, for instance, one may replace the
number N = 12 in Proposition 2.2 with the number 2. Anyhow, dealing with the number 12 instead of
2 would have no harmful effect in our proof.

We now relabel the families {Ik}k and {I∗k}k, k ∈ Z, as sequences indexed by k ∈ N, so we will
write {Ik}k≥1 and {I∗k}k≥1. For every k ≥ 1, we will denote by tk and `k the midpoint and the length
of Ik, respectively.

Next we recall how to define a Whitney partition of unity subordinated to the intervals I∗k . Let us
take a bump function θ0 ∈ C∞(R) with 0 ≤ θ0 ≤ 1, θ0 = 1 on [−1/2, 1/2]; and θ0 = 0 on R\ (−3

4 ,
3
4).

For every k, we define the function θk by

θk(t) = θ0

(
t− tk
`k

)
, t ∈ R.

It is clear that θk ∈ C∞(R), that 0 ≤ θk ≤ 1, that θk = 1 on Ik, and that θk = 0 outside int(I∗k).
Now we consider the function Φ =

∑
k≥1 θk defined on (0,+∞). Using Proposition 6.14, every point

t > 0 has an open neighbourhood which is contained in (0,+∞) and intersects at most two of the
intervals {I∗k}k. Since supp(θk) ⊂ I∗k , the sum defining Φ has only two terms and therefore Φ is of
class C∞. For the same reason, Φ(t) =

∑
I∗k3t

θk(t) ≤ 2, for t > 0. On the other hand, every t > 0
must be contained in some Ik, where the function θk takes the constant value 1, so we have 1 ≤ Φ ≤ 2.
These properties allow us to define, on (0,∞), the functions θ∗k = θk

Φ . These are C∞ functions satisfying∑
k θ
∗
k = 1, 0 ≤ θ∗k ≤ 1, and supp(θ∗k) ⊆ I∗k . Less elementary, but crucial, is the following property.

See [71, 64] for a proof in the more general setting of Rn.
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Proposition 6.15. For every j ∈ N ∪ {0}, there exist positive constants Aj , A′j , A
′′
j such that, for all

t > 0 and k ≥ 1,

(1) |θ(j)
k (t)| ≤ A′j`

−j
k .

(2) If t ∈ I∗k , then |Φ(j)(t)| ≤ A′′j `
−j
k .

(3) |(θ∗k)(j)(t)| ≤ Aj`−jk .

Proof. For the case j = 0 it is enough to take A0 = A′0 = 1 and A′′0 = 2. For j ≥ 1, we let us check the
three inequalities separately.
(1) Since supp(θ0) is compact, there exists A′j > 0 with |θ(j)

0 (t)| ≤ A′j for all t > 0. Given k ≥ 1, we
have

θ
(j)
k (t) =

1

`jk
θ

(j)
0

(
t− tk
`k

)
,

and therefore |θ(j)
k (t)| ≤ A′j`

−j
k .

(2) If t ∈ I∗k and i ∈ N are such that t ∈ I∗i , then we have 1
2`k ≤ `i ≤ 2`k by virtue of Proposition 6.14.

Then inequality (1) yields

|Φ(j)(t)| =
∣∣∣∣∑
I∗i 3t

θ
(j)
i (t)

∣∣∣∣ ≤∑
I∗i 3t

A′j`
−j
i ≤

∑
I∗i 3t

A′j

(
1

2
`k

)−j
.

Because in the above sum there are at most 2 nonzero terms, we have |Φ(j)(t)| ≤ 2A′j
`−jk
2−j

= A′′j `
−j
k ,

where A′′j := 2j+1.
(3) Since supp(θ∗k) ⊆ I∗k , we may and do assume that t ∈ I∗k . Let us prove this statement by induction
on j. For j = 1, note that (Φθ∗k)

′ = θ′k. Thus we have

(θ∗k)
′ =

θ′k − θ∗kΦ′

Φ
.

The facts that 0 ≤ θ∗k ≤ 1 and Φ ≥ 1 together with statements (1) and (2) lead us to

|(θ∗k)′(t)| ≤
|θ′k(t)|+ |θ∗k(t)||Φ′(t)|

|Φ(t)|
≤ A′1`−1

k +A′′1`
−1
k = A1`

−1
k ,

where A1 := A′1 + A′′1. Now, let us suppose that, for every 1 ≤ l ≤ j, there exist Al > 0 such as in
inequality (3). We next use Leibniz’s rule in order to compute the (j + 1)-th derivative of θ∗kΦ = θk and
then we write separately the (j + 1)-th derivative of θ∗k and the rest of the sum to obtain

Φ(θ∗k)
(j+1) +

j∑
l=0

(
j + 1

l

)
(θ∗k)

(l)Φ(j+1−l) = θj+1
k .

Using first the fact that Φ ≥ 1 and then inequalities (1) and (2) together with the induction hypothesis,
we can estimate |(θ∗k)(j+1)(t)| in the following way:

|(θ∗k)(j+1)(t)| ≤ |θ(j+1)
k (t)|+

j∑
l=0

(
j + 1

l

)
|(θ∗k)(l)(t)||Φ(j+1−l)(t)|

≤ A′j+1`
−(j+1)
k +

j∑
l=0

(
j + 1

l

)
Al`
−l
k A

′′
j+1−l`

−(j+1−l)
k = Aj+1`

−(j+1)
k ,

where Aj+1 := A′j+1 +
∑j

l=0

(
j+1
l

)
AlA

′′
j+1−l. This concludes the proof of (3).
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6.3.4 The sequence {δp}p and the function ε

Let us consider the numbers rm of Lemma 6.13. It is clear that we can construct a sequence {δp}p of
positive numbers satisfying

δp ≤min

{
rp+2,

1

(p+ 2)!

}
, for p ≥ 1

δp <
δp−1

2
, for p ≥ 2.

Of course the sequence {δp}p is strictly decreasing to 0. Now, for every k we define a positive integer
γk as follows. In the case that `k ≥ δ1, we set γk = 1. In the opposite case, `k < δ1, we take γk as the
unique positive integer for which

δγk+1 ≤ `k < δγk .

Finally let us define:

ε(t) =

{ ∑
k≥1 t

γkθ∗k(t) if t > 0,

0 if t ≤ 0.

In the following lemma we show that ε is of class C∞ on R and satisfies an additional property which
will be important in Subsection 6.3.6.

Lemma 6.16. The function ε satisfies the following properties.

(1) ε is of class C∞(R) and satisfies ε(j)(0) = 0 for every j ∈ N ∪ {0}.

(2) If 0 < t ≤ δ4 and q ∈ N are such that δq+1 ≤ t < δq and t
2 ≤ s ≤ t, then ε(2s) ≥ tq+2.

Proof. For the first statement, we immediately see that ε−1(0) = (−∞, 0], that ε > 0 on (0,+∞) and
that ε ∈ C∞(R \ {0}). In order to prove the differentiability of ε at t = 0 and that all the derivatives of
ε at t = 0 are 0, it is sufficient to prove that for all j ∈ N ∪ {0},

lim
t→0+

|ε(j)(t)|
t

= 0.

To check this, fix j ∈ N ∪ {0} and η > 0 and take

t̃j := min

{
η

2Bj4j(j + 1)!
, δj+5

}
, where Bj = max{Al : 0 ≤ l ≤ j}.

Recall that the numbers Al are those given by Proposition 6.15. Let 0 < t ≤ t̃j . Due to the fact that
{δp}p is strictly decreasing, we can find a unique positive integer q such that δq+1 ≤ t < δq, and because
t ≤ δj+5 < δ1, we must have q ≥ j + 4. Now, if k is such that t ∈ I∗k , Proposition 6.14 tells us that

`k ≤
4

3
t < 2t ≤ 2δj+5 < δ1,

and using the definition of γk, we have

δγk+1 ≤ `k ≤
4

3
t < 2t < 2δq < δq−1.

The above inequalities imply that γk + 1 > q − 1, that is γk ≥ q − 1. In particular γk ≥ j + 3. On the
other hand, using Proposition 6.14 again, we obtain:

δγk > `k ≥
4t

9
≥ t

4
≥ δq+1

4
> δq+3,



6.3. Proof of the main theorem 177

so γk ≤ q + 2.
If we use Leibniz’s Rule, we obtain

ε(j)(t) =
∑
k≥1

j∑
l=0

(
j

l

)
dl

dtl
(tγk)(θ∗k)

(j−l)(t),

and since γk ≥ j + 3 for those k such that t ∈ I∗k , we can write

|ε(j)(t)|
t

=
∣∣∑
I∗k3t

j∑
l=0

(
j

l

)
γk!

(γk − l)!
tγk−l−1(θ∗k)

(j−l)(t)
∣∣ ≤∑

I∗k3t

j∑
l=0

j! γk! t
γk−l−1Aj−l`

l−j
k .

Now, by Proposition 6.14 we know that `k ≥ 4
9 t ≥

1
4 t. Moreover, because γk ≤ q + 2, we have

γk! ≤ (q + 2)! and the last sum is smaller than or equal to

∑
I∗k3t

j∑
l=0

j! (q + 2)! tγk−l−1 Aj−l
tl−j

4l−j
.

Writing tγk−l−1 = t2tγk−l−3 ≤ t δq tγk−l−3, this sum is smaller than or equal to

∑
I∗k3t

j∑
l=0

j! (q + 2)! t δq t
γk−l−3Aj−l

tl−j

4l−j
≤

4jj!Bj
∑
I∗k3t

j∑
l=0

(q + 2)!δq t
γk−j−3

 t.

Bearing in mind that t ≤ δj+5 < 1 and γk ≥ j + 3, we must have tγk−j−3 ≤ 1. By construction of the
sequence {δp}p we have that (q + 2)! δq ≤ 1, and using that the sum

∑
I∗k3t

has at most 2 terms, we
obtain

|ε(j)(t)|
t

≤ 4j(j + 1)j! 2Bjt ≤ 4j(j + 1)! 2Bj t̃j ≤ η.

This completes the proof of statement (1).
Now we prove the second statement. First of all, we note that δq+1 ≤ t ≤ 2s ≤ 2t < 2δq < δq−1, and in
particular q ≥ 3. Let us suppose that 2s ∈ I∗k . Using Proposition 6.14,

δγk+1 ≤ `k ≤
4

3
(2s) < 2(2s) < 2δq−1 < δq−2,

that is γk ≥ q − 2. If we use Proposition 6.14 again,

δγk > `k ≥
4(2s)

9
≥ (2s)

4
≥ δq+1

4
> δq+3,

and then γk ≤ q + 2.
Finally, note that 2s ≤ 2t < δq−1 < δ1 < 1, and due to the fact that γk ≤ q + 2 for those k such that
2s ∈ I∗k , we have that (2s)q+2 ≤ (2s)γk . This allows us to obtain the desired inequality:

tq+2 ≤ (2s)q+2 =
∑
I∗k32s

(2s)q+2θ∗k(2s) ≤
∑
I∗k32s

(2s)γkθ∗k(2s) = ε(2s).
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6.3.5 The function ϕ

As we said in Subsection 6.3.1 we need to construct a function ϕwhich compensates the lack of convexity
of f given by Lemma 6.13. We begin by defining

ε̃(t) =

 ε(2t)

tn+3
if t > 0

0 if t ≤ 0.

Since ε ∈ C∞(R), with ε(j)(0) = 0 for all j ∈ N ∪ {0}, we have that ε̃ ∈ C∞(R) and ε̃(j)(0) = 0 for
all j ∈ N ∪ {0} as well. Now, let us consider the function

g(t) =

{ ∫ t
0

∫ s
0 ε̃(r)dr ds if t > 0

0 if t ≤ 0.

It is clear that g ∈ C∞(R) and g(j)(0) = 0 for all j ∈ N ∪ {0}. In addition, g−1(0) = (−∞, 0] and
g′′(t) = ε̃(t) > 0 for all t > 0. In particular, g is convex on R and positive, with a strictly positive second
derivative on (0,+∞).
Now, for every vector w ∈ Sn−1, define h(w) = maxz∈C〈z, w〉, the support function of C. We also
define the function

φ : Sn−1 × Rn −→ R
(w, x) 7−→ φ(w, x) = g(〈x,w〉 − h(w)).

Using similar arguments as in Chapter 5, Subsection 5.4.3 it follows that φ(w, ·) is a function of class
C∞(Rn) whose derivatives of all order and φ(w, ·) itself vanish on C for every w ∈ Sn−1. Moreover,
the function φ(w, ·), being a composition of a convex function with a non-decreasing convex function, is
convex as well. Finally, we define the function ϕ : Rn → R as follows:

ϕ(x) =

∫
Sn−1

φ(w, x) dw for every x ∈ Rn.

We have that ϕ−1(0) = C and that ϕ is convex on Rn. Because φ(w, ·) is in C∞(Rn), the derivatives
(w, x) 7→ ∂α

∂xαφ(w, x) are continuous for every multi-index α, and Sn−1 is compact, it follows from
standard results on differentiation under the integral sign that the function ϕ is of class C∞(Rn) as well,
and that ∂αϕ(x) = 0 for every x ∈ C and every multi-index α. In other words, Jmx ϕ = 0 for all
m ∈ N ∪ {0} and all x ∈ C. Besides, the second derivative of ϕ is

D2ϕ(x)(v2) =

∫
Sn−1

g′′(〈x,w〉 − h(w))〈w, v〉2 dw, x ∈ Rn, v ∈ Sn−1.

6.3.6 A smooth convex extension on a neighbourhood of the domain

In the same spirit as in the proof of Theorem 5.14, Subsection 5.4.5, we are going to compensate the
lack of convexity of our function f with the function ϕ that we have just constructed. Using the constant
V (n), obtained in Lemma 5.18, define

C(n) =
V (n)

36(1 + diam(C))n+1
.

Lemma 6.17. With the notation of Subsection 6.3.4, consider the function H = f + 2
C(n)ϕ defined on

Rn, and take r = δ4. Then, for every x ∈ Rn such that t := d(x,C) ≤ r, and for every v ∈ Sn−1, we
have

D2H(x)(v2) ≥ tq,

where q is the unique positive integer such that δq+1 ≤ t < δq.
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Proof. As we saw in the proof of Lemma 5.19, we have that

D2ϕ(x)(v2) > 0 for every x ∈ Rn \ C, v ∈ Sn−1. (6.3.2)

Now, fix x, t, v, q as in the statement. If x ∈ C there is nothing to prove because ϕ is convex on Rn and
D2f(x) ≥ 0 by (6.3.1). Let us now suppose that x ∈ Rn \ C. Since D2H(x)(v2) = D2H(x)((−v)2),
we may suppose that 〈v, ux〉 ≥ 0, where

ux =
1

|x− xC |
(x− xC)

and xC ∈ ∂C is the metric projection of x onto C. Take the angle αx and the set W = W (x, v) as in
Lemmas 5.16 and 5.18 respectively. By the construction of ϕ, we have

D2ϕ(x)(v2) =

∫
Sn−1

ε̃(〈x,w〉 − h(w))〈w, v〉2 dw ≥
∫
W
ε̃(〈x,w〉 − h(w))〈w, v〉2 dw > 0, (6.3.3)

and for w ∈W, Lemma 5.18 gives us that ŵ ux ∈
[
αx
3 ,

αx
2

]
; on the other hand Lemma 5.16 says that, in

this case,
t

2
≤ 〈x,w〉 − h(w) ≤ t ≤ δ4.

Using the second statement of Lemma 6.16 we obtain

ε̃(〈x,w〉 − h(w)) =
ε(2(〈x,w〉 − h(w)))

(〈x,w〉 − h(w))n+3
≥ tq+2

(〈x,w〉 − h(w))n+3
≥ tq+2

tn+3
=

tq

tn+1
.

On the other hand, due to Lemma 5.18 the product 〈v, w〉 is greater than or equal to sin(αx3 ) for all
w ∈W. By combining the preceding inequalities, we get

D2ϕ(x)(v2) ≥ tq

tn+1
sin2

(αx
3

)
Hn−1(W ).

By the third part of Lemma 5.18, the last term is greater or equal than

tq

tn+1
sin2

(αx
3

)
V (n)αn−1

x ,

where V (n) is a positive constant only depending on n. Since αx ≤ 1, we have that sin(αx3 ) ≥ 1
2
αx
3 , so

we obtain

D2ϕ(x)(v2) ≥ tq

tn+1

α2
x

36
V (n)αn−1

x =
tq

tn+1

αn+1
x

36
V (n).

Moreover, we have

αx =
t

t+ diam(C)
≥ t

1 + diam(C)
,

because t ≤ r = δ4 < 1. Gathering these inequalities, we get

D2ϕ(x)(v2) ≥ tq

tn+1

tn+1

36(1 + diam(C))n+1
V (n) = C(n)tq.

Finally, due to the construction of the sequence {δp}p, (see Subsection 6.3.4) we have d(x,C) = t <
δq ≤ rq+2, hence Lemma 6.13 ensures that

D2f(x)(v2) ≥ −tq.

Therefore
D2H(x)(v2) = D2f(x)(v2) +

2

C(n)
D2ϕ(x)(v2) ≥ −tq + 2tq = tq.

Since Jmy ϕ = 0 for y ∈ C and each m ∈ N ∪ {0}, we have proved that H is of class C∞(Rn),
H = f on C, Jmy H = Jmy f = Pmy for every y ∈ C and every m ∈ N, and H has a strictly positive
Hessian on the set {x ∈ Rn : 0 < d(x,C) ≤ r}.
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6.3.7 Conclusion of the proof: convexity of the extension on Rn

To complete the proof of Theorem 6.11 we only have to change the funcion H slightly.

Lemma 6.18. There exists a number a > 0 such that the function F := f + aϕ is of class C∞(Rn),
concides with f on C, satisfies Jmy F = Pmy for every y ∈ C, m ∈ N, is convex on Rn, and has a strictly
positive Hessian on Rn \ C.

Proof. Let us denote ψ = 2
C(n)ϕ. We recall that f = 0 outside C + B(0, 2). Take r > 0 as in Lemma

6.17. Since Cr := {x ∈ Rn : r ≤ d(x,C) ≤ 2} is a compact subset where ψ has a strictly positive
Hessian (see inequality (6.3.2)), and using again that f has compact support, we can find M ≥ 1 such
that

sup
x∈Rn, v∈Sn−1

|D2f(x)(v2)| ≤M and inf
x∈Cr, v∈Sn−1

D2ψ(x)(v2) ≥ 1

M
. (6.3.4)

Let us take A = 2M2 and F = f +Aψ. If d(x,C) ≤ r (this includes the situation x ∈ C) and v ∈ Sn−1

we have, by Lemma 6.17, that

D2F (x)(v2) = 2M2D2ψ(x)(v2) +D2f(x)(v2) ≥ D2ψ(x)(v2) +D2f(x)(v2) ≥ 0.

In the case when d(x,C) ∈ [r, 2], given any |v| = 1, the inequalities of (6.3.4) yield

D2F (x)(v2) = 2M2D2ψ(x)(v2) +D2f(x)(v2) ≥ 2M −M = M > 0.

Finally, in the region {x ∈ Rn : d(x,C) > 2}, we have that f = 0. Hence

D2F (x)(v2) = 2M2D2ψ(x)(v2) > 0

by virtue of (6.3.2). Therefore, by setting a = 2A/C(n), we get that the function F = f+Aψ = f+aϕ
is of class C∞(Rn), satisfies F (y) = f(y) and Jmy F = Pmy for every y ∈ C, m ∈ N, and has a
nonnegative Hessian on Rn. This proves that F is convex on Rn. In fact, the Hessian of f is strictly
positive on Rn \ C.



181

Bibliography

[1] D. Azagra, Global and fine approximation of convex functions, Proc. Lond. Math. Soc. (3) 107
(2013), no. 4, 799–824.

[2] D. Azagra and J. Ferrera, Every closed convex set is the set of minimizers of some C∞ smooth convex
function, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3687–3692.

[3] D. Azagra and J. Ferrera, Inf-convolution and regularization of convex functions on Riemannian
manifolds of nonpositive curvature, Rev. Mat. Complut. 19 (2006), no. 2, 323–345.

[4] D. Azagra, J. Ferrera, F. López-Mesas and Y. Rangel, Smooth approximation of Lipschitz functions
on Riemannian manifolds, J. Math. Anal. Appl. 326 (2007), 1370–1378.

[5] D. Azagra and J. Ferrera, Regularization by sup–inf convolutions on Riemannian manifolds: An
extension of Lasry–Lions theorem to manifolds of bounded curvature, J. Math. Anal. Appl. 423
(2015), 994–1024.

[6] D. Azagra, R. Fry and L. Keener, Smooth extensions of functions on separable Banach spaces, Math.
Ann. 347, 2 (2010), 285–297.

[7] D. Azagra and P. Hajłasz, Lusin-type properties of convex functions, preprint, 2017.

[8] D. Azagra, E. Le Gruyer and C. Mudarra, Explicit formulas for C1,1 and C1,ω
conv extensions of 1-jets

in Hilbert and superreflexive spaces, J. Funct. Anal. 274 (2018), 3003–3032.

[9] D. Azagra and C. Mudarra, Global approximation of convex functions by differentiable convex func-
tions on Banach spaces, J. Convex Anal. 22 (2015), 1197–1205.

[10] D. Azagra and C. Mudarra, An Extension Theorem for convex functions of class C1,1 on Hilbert
spaces, J. Math. Anal. Appl. 446 (2017), 1167–1182.

[11] D. Azagra and C. Mudarra, Whitney Extension Theorems for convex functions of the classes C1 and
C1,ω, Proc. London Math. Soc. 114 (2017), no.1, 133–158.

[12] D. Azagra and C. Mudarra, Global geometry and C1 convex extensions of 1-jets, Analysis & PDE,
12 (2019) no. 4, 1065–1099.

[13] D. Azagra and C. Mudarra, Smooth convex extensions of convex functions, Calc. Var. Partial. Differ.
Equ. (2019), 58:84. https://doi.org/10.1007/s00526-019-1542-z

[14] J. Benoist and J.-B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a func-
tion?, SIAM J. Math. Anal. 27 (6) (1996) 1661–1679.

[15] E. Bierstone, P. Milman and W. Pawłucki, Differentiable functions defined in closed sets. A problem
of Whitney, Invent. Math. 151 (2003), 329–352.

[16] E. Bierstone, P. Milman and W. Pawłucki, Higher order tangents and Fefferman’s paper on Whit-
ney’s extension problem, Ann. Math. 164 (2006), 361–370.



182 BIBLIOGRAPHY

[17] J. M. Borwein, S. Fitzpatrick and J. Vanderwerff, Examples of convex functions and classifications
of normed spaces, J. Convex Anal. 1 (1994), no. 1, 61–73.

[18] J. M. Borwein, V. Montesinos and J. Vanderwerff, Boundedness, differentiability and extensions of
convex functions, J. Convex Anal. 13 (2006), 587–602.

[19] J. M. Borwein and J. Vanderwerff, Convex functions: constructions, characterizations and coun-
terexamples, Encyclopedia of Mathematics and its Applications, 109. Cambridge University Press,
Cambridge, 2010.

[20] Y. Brudnyi and P. Shvartsman, Whitney’s extension problem for multivariate C1,ω-functions, Trans.
Am. Math. Soc. 353 (2001), 2487–2512.

[21] O. Bucicovschi and J. Lebl, On the continuity and regularity of convex extensions, J. Convex Anal.
20 (2013), no. 4, 1113–1126.

[22] M. Cepedello, On regularization in superreflexive Banach spaces by infimal convolution formulas,
Studia Math. 129 (1998), 265–284.

[23] B. Dacorogna and W. Gangbo, Extension theorems for a vector valued maps, J. Math. Pure Appl.
85 (2006), 313–344.

[24] A. Daniilidis, M. Haddou, E. Le Gruyer and O. Ley, Explicit formulas for C1,1 Glaeser-Whitney
extensions of 1-fields in Hilbert spaces, Proc. Amer. Math. Soc. 146 (2018), 4487–4495.

[25] M. C. Delfour and J. P. Zolésio, Shape analysis via oriented distance functions, J. Funct. Anal. 123,
129–201 (1994).

[26] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces. Pitman
Monographs and Surveys in Pure and Applied Mathematics, 64. Longman Scientific & Technical,
Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.

[27] R. Deville, V. Fonf and P. Hájek, Analytic and Ck approximations of norms in separable Banach
spaces, Studia Math. 120 (1996), no. 1, 61–74.

[28] R. Deville, V. Fonf and P. Hájek, Analytic and polyhedral approximation of convex bodies in sepa-
rable polyhedral Banach spaces, Israel J. Math. 105 (1998), 139–154.

[29] E. Durand-Cartagena and A. Lemenant, Self-contracted curves are gradient flows of convex func-
tions, Proc. Amer. Math. Soc. 147 (2019), 2517–2531.

[30] J. Ferrera, An introduction to nonsmooth analysis, Elsevier/Academic Press, Amsterdam, 2014,
ISBN 978-0-12-800731-0.

[31] J. Ferrera and J. Gómez Gil, Whitney’s theorem: A nonsmooth version, J. Math. Anal. Appl. 431
(2015), 633–647.

[32] P. Hájek and J. Talponen, Smooth approximations of norms in separable Banach spaces, Quart. J.
Math. 65, 3 (2014), 957–969.

[33] M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach space theory. The basis for
linear and nonlinear analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.
Springer, New York, 2011.

[34] M. Fabian, P. Hájek and J. Vanderwerff, On Smooth variational principles in Banach spaces, J.
Math. Anal. Appl. 197 (1996) no 1, 153–172.

[35] H. Federer, Geometric measure theory, Springer-Verlag New York Inc., New York, 1969.



BIBLIOGRAPHY 183

[36] C. Fefferman, A sharp form of Whitney’s extension theorem, Ann. of Math. (2) 161 (2005), no. 1,
509–577.

[37] C. Fefferman, Whitney’s extension problem for Cm, Ann. of Math. (2) 164 (2006), no. 1, 313–359.

[38] C. Fefferman, Whitney’s extension problems and interpolation of data, Bull. Amer. Math. Soc.
(N.S.) 46 (2009), no. 2, 207–220.

[39] C. Fefferman, A. Israel and G. K. Luli, Sobolev extension by linear operators, J. Amer. Math. Soc.
27 (2014), no. 1, 69–145.

[40] C. Fefferman, A. Israel and G. K. Luli, Finiteness principles for smooth selection, Geom. Funct.
Anal. 26 (2016), no. 2, 422–477.

[41] C. Fefferman, A. Israel and G. K. Luli, Interpolation of data by smooth nonnegative functions, Rev.
Mat. Iberoam. 33 (2017), no. 1, 305–324.

[42] R. Fry, Approximation by functions with bounded derivative on Banach spaces, Bull. Aust. Math.
Soc. 69 (2004), 125–131.

[43] M. Ghomi, Strictly convex submanifolds and hypersurfaces of positive curvature, J. Differential
Geom. 57 (2001), 239–271.

[44] M. Ghomi, The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc. 130
(2002) no. 8, 2255–2259.

[45] M. Ghomi, Optimal smoothing for convex polytopes, Bull. London Math. Soc. 36 (2004), 483–492.

[46] G. Glaeser, Etudes de quelques algèbres tayloriennes, J. d’Analyse 6 (1958), 1–124.

[47] R. E. Greene and H. Wu, C∞ convex functions and manifolds of positive curvature, Acta Math. 137
(1976), no. 3-4, 209–245.

[48] A. Griewank and P. J. Rabier, On the smoothness of convex envelopes, Trans. Amer. Math. Soc. 322
(1990) 691–709.

[49] A. Israel, A bounded linear extension operator for L2
p(R2), Ann. of Math. (2) 178 (2013), no. 1,

183–230.

[50] M. Jiménez-Sevilla and L. Sánchez-González, On smooth extensions of vector-valued functions
defined on closed subsets of Banach spaces, Math. Ann. 355 (2013), no. 4, 1201–1219.

[51] B. Kirchheim and J. Kristensen, Differentiability of convex envelopes, C. R. Acad. Sci. Paris Sér. I
Math. 333 (2001), no. 8, 725–728.

[52] M. D. Kirszbraun, Über die zusammenziehenden und Lipschitzschen Transformationen, Fund.
Math. 22 (1934), 77–108.

[53] E. Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space,
Geom. Funct. Anal 19(4) (2009), 1101–1118.

[54] E. Le Gruyer and Thanh-Viet Phan, Sup-Inf explicit formulas for minimal Lipschitz extensions for
1-fields on Rn, J. Math. Anal. Appl. 424 (2015), 1161–1185.

[55] B. Mulansky and M. Neamtu, Interpolation and approximation from convex sets, J. Approx. Theory
92 (1998), no. 1, 82–100.

[56] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 236–350.



184 BIBLIOGRAPHY

[57] R. A. Poliquin, T. Rockaellar and L. Thibault, Local differentiability of distance functions, Trans.
Amer. Math. Soc. 352 (2000), no. 11, 5231–5249.

[58] T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970.

[59] R.T. Rockafellar and R.J.-B. Wets, Variational analysis. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], 317. Springer-Verlag, Berlin, 1998.

[60] K. Schulz and B. Schwartz, Finite extensions of convex functions, Math. Operationsforsch. Statist.
Ser. Optim. 10 (1979), no. 4, 501–509.

[61] P. Shvartsman, Sobolev W 1,p spaces on closed subsets of Rn, Adv. Math. 220 (2009) 1842–1922.

[62] P. Shvartsman, Sobolev L2
p-functions on closed subsets of R2, Adv. Math. 252 (2014), 22–113.

[63] P.A.N. Smith, Counterexamples to smoothing convex functions, Canad. Math. Bull. 29 (1986), no.
3, 308–313.

[64] E. Stein, Singular integrals and differentiability properties of functions, Princeton, University Press,
1970.

[65] T. Strömberg, The operation of infimal convolution, Dissertationes Math. (Rozprawy Mat.) 352
(1996), 58 pp.

[66] F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math.,
67 No. 1 (1945), 83–93.

[67] L. Veselý and L. Zajícek, On extensions of d.c. functions and convex functions, J. Convex Anal. 17
(2010), no. 2, 427–440.

[68] A. A. Vladimirov, J. E. Nesterov, and J. N. Cekanov, Uniformly convex functionals, Vestnik
Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., 3 (1978), 12–23.

[69] A. Herbert-Voss, M. J. Hirn and F. McCollum, Computing minimal Interpolants in C1,1(Rd), Rev.
Mat. Iberoamericana 33 (2017), 29–66.

[70] J. C. Wells, Differentiable functions on Banach spaces with Lipschitz derivatives, J. Differential
Geometry 8 (1973), 135–152.

[71] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer.
Math. Soc. 36 (1934), 63–89.

[72] U. Würker, Properties of some convex marginal functions without constant rank regularity, In: Kall,
P; Lüthi, H.-J. (ed.): Operations Research Proceedings 1998, Selected Papers of the International
Conference on Operations Research Zürich, August 31-September 3, 1998, 73–82.

[73] M. Yan, Extension of Convex Function, J. Convex Anal. 21 (2014) no. 4, 965–987.

[74] C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344–374.

[75] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co. Inc.,
River Edge, NJ, 2002.


	Resumen
	Introduction
	C1 approximation of convex functions on Banach spaces
	Introduction and main results
	Proof of the C1 approximation theorem
	A characterization of Banach spaces with separable duals

	C1, extensions of convex functions in Hilbert Spaces
	The C1,1 and C1,1conv extension problem for jets
	The C1,conv extension problem for jets
	Optimal C1,1 convex extensions of jets by explicit formulas in Hilbert spaces
	Interpolation of arbitrary subsets by boundaries of C1,1 convex bodies
	The oriented distance function to convex subsets
	An interpolation theorem for C1,1 convex hypersurfaces

	Sup-inf explicit formulas of C1,1 convex extensions on Rn
	Optimal C1,1 extensions of jets by explicit formulas in Hilbert spaces
	Kirszbraun's Extension Theorem
	C1, convex extensions of jets by explicit formulas in Hilbert spaces

	C1, extensions of convex functions in superreflexive spaces
	Moduli of smoothness and Pisier's Renorming Theorem
	C1, convex extensions of jets by explicit formulas in superreflexive spaces
	Example in general Banach spaces

	C1 extensions of convex functions on Rn
	C1 convex extensions from compact subsets
	Proof of the results on compact subsets
	Some relevant examples
	Interpolation of compact subsets by boundaries of C1 convex bodies
	The Minkowski functional. Elementary properties and differentiability
	An interpolation theorem for C1 compact convex bodies

	Convex functions and self-contracted curves
	C1 convex extensions from arbitrary subsets
	Global behaviour of convex functions
	Proving the necessity of the conditions
	Condition (i)
	Condition (ii)
	Condition (iii)
	Condition (v)
	Condition (iv)

	Proving the sufficiency of the conditions
	A C1 extension theorem for Lipschitz convex functions
	Necessity of the conditions for C1 convex Lipschitz extensions
	Sufficiency of the conditions for C1 convex Lipschitz extensions
	Defining new data
	Properties of the new jet
	Construction of the extension

	Interpolation of arbitrary subsets by boundaries of C1 convex bodies
	The problem in the setting of Hilbert spaces
	Convex functions and Lusin properties

	Cm extensions of convex functions on Rn
	Whitney's Extension Theorem for Cm
	The Cm convex extension problem for jets
	New conditions for the Cm convex extension problem
	Cm convex extensions from compact convex subsets
	Idea of the proof.
	The function 
	The function 
	Selection of angles and directions
	A convex extension on a neighbourhood of the domain
	Conclusion of the proof: convexity of the extension on Rn.

	Assuming a strict inequality on the boundary
	The two easiest situations
	The case when the domain is a singleton
	The one dimensional case

	Assuming further conditions on the domain: almost optimal results
	Definition of (FIO) body of class Cm
	Sublevel sets of strongly convex functions
	The distance to the intersection of convex sets
	Proof of the extension result for (FIO) bodies

	Relation between (CW2) and (CW1)
	Remarks and Counterexamples

	C extensions of convex functions on Rn.
	Whitney's Extension Theorem for C
	C convex extension theorem
	Proof of the main theorem
	Sketch of the proof.
	Lower estimates for the Hessian of f.
	A Whitney partition of unity on (0,+)
	The sequence "4266308 p "5267309 p and the function 
	The function 
	A smooth convex extension on a neighbourhood of the domain
	Conclusion of the proof: convexity of the extension on Rn


	Bibliography

