
ON THE EXTENSION OF MUCKENHOUPT WEIGHTS IN METRIC SPACES

EMMA-KAROLIINA KURKI AND CARLOS MUDARRA

Abstract. A theorem by Wolff states that weights defined on a measurable subset of Rn and
satisfying a Muckenhoupt-type condition can be extended into the whole space as Muckenhoupt
weights of the same class. We give a complete and self-contained proof of this theorem generalized
into metric measure spaces supporting a doubling measure. Related to the extension problem, we
also show estimates for Muckenhoupt weights on Whitney chains in the metric setting.

1. Introduction

On a metric space X with a doubling measure, the familiar Muckenhoupt class Ap consists
precisely of those weights for which the Hardy-Littlewood maximal operator maps the weighted
space Lp(X,w dµ) onto itself. In addition to Ap weights being ubiquitous in harmonic analysis,
weighted norm inequalities have applications in the study of regularity of certain partial differential
equations. In order to deduce weighted Poincaré inequalities using the theory of global weights, we
would like to extend Muckenhoupt weights defined on subsets to the entire space.

Our main result is the following theorem that provides an abstract starting point for the inves-
tigation of extensions. It is the generalization to a metric-space context of a result due to Thomas
H. Wolff. The result in Rn supposedly originates in an elusive preprint titled “Restrictions of Ap
weights”, that to our knowledge remains unpublished. An outline of the Euclidean proof can be
found in [9], Theorem 5.6. However, the metric setting brings about technical challenges that are
not present in the Euclidean case.
Theorem 1.1. Let X be a complete metric space with a doubling measure, E ⊂ X a measurable set
with µ(E) > 0, and w a weight on E. Then, for 1 < p <∞, the following statements are equivalent.

(i) There exists a weight W ∈ Ap(X) such that W = w a. e. on E;
(ii) There exists an ε > 0 such that

sup
B⊂X
B ball

(
1

µ(B)

∫
B∩E

w1+ε dµ

)(
1

µ(B)

∫
B∩E

(
1

w1+ε

) 1
p−1

dµ

)p−1
<∞. (1)

In addition, whenever p = 1, the condition (ii) takes the following form: There exists a constant
C > 0 such that

1

µ(B)

∫
B∩E

w1+ε dµ ≤ C ess inf
B∩E

w1+ε
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for every ball B ⊂ X.

In Section 2 below, we present a complete and self-contained proof of Wolff’s extension theorem
(above and Theorem 2.13) for measurable sets in a metric space supporting a doubling measure.
Comparing (ii) to the classical Ap condition, it is clear that we need to deal with weights and
maximal functions restricted to arbitrary measurable subsets E ⊂ X. We have chosen to call these
classes induced Ap weights; see Definition 2.1 below. It is not obvious at the outset whether all
properties of globally defined weights hold true for this class as well.

Like the corresponding proof in Rn, our proof relies on a factorization theorem, which in turn
is based on the boundedness of the maximal operator. In particular, we need to show that the
restricted maximal function is bounded on Lp(E,w) when the weight w belongs to the induced Aq
class for some q < p (Theorem 2.6). The proofs of this theorem in the whole space are based either
on Calderón-Zygmund decompositions on cubes (when X = Rn) or on Vitali-type coverings of the
distributional sets of the maximal function. It is not clear how to adapt these arguments when E
is an arbitrary subset, because of the simple fact that the relative balls E ∩ B do not necessarily
satisfy a doubling condition, i. e., µ(E ∩ 5B) or w(E ∩ 5B) are not comparable to µ(E ∩ B) or
w(E ∩B) in general.

The reader might wonder why we need to assume the Muckenhoupt-type condition (1) for w1+ε

instead of simply stating the corresponding condition for w. A Muckenhoupt weight W ∈ Ap(X)
in the whole space always satisfies a self-improving property in the sense that W 1+ε also belongs
to Ap(X) for a suitable ε depending on the characteristic Ap constant of W (Lemma 2.12). This
is a consequence of the fact that global Muckenhoupt weights satisfy a reverse Hölder inequality
(RHI; Proposition 2.11). As a result, one is free to apply Gehring’s lemma to obtain the desired
self-improving inequality. However, it is unclear whether the induced classes of weights satisfy a
RHI, since it is yet again impossible to control the measures of the relative balls B ∩E in terms of
those of B. Even when the measure is positive, µ(B∩E) might be too small in comparison to µ(B),
unless we tighten our assumptions on the set E. This technicality destroys our ability to compute
the averaged integrals that would lead to the RHI.

For an early treatment of harmonic analysis in metric spaces, see [6]. Muckenhoupt weights in
particular are discussed in [12] and [28]. A solid reference to the theory, albeit in Rn, is [9]. For
recent results concerning reverse Hölder inequalities for A∞ weights or strong Ap weights, as well
as versions of the Gehring lemma in various spaces, see the articles [1–3,7, 8, 19, 20,22–24,26].

In Sections 3 and 4, we turn to an intended application of Theorem 1.1. This theorem gives a
necessary and sufficient condition for the existence of an extension. One might ask what are the
subsets E and weights w that satisfy (1) and consequently possess an extension to the entire space.
Peter J. Holden [17], working in Rn, has verified (1) for weights in Ap(E) under additional geometric
assumptions on the set E. We made an effort to reproduce Holden’s argument in the metric setting,
yet were not able to reach the point where we could apply Theorem 1.1. However, we believe that
our findings are of independent interest and value for future research. In particular, Lemma 4.4
states that the weights of balls on a Whitney chain are comparable as long as we are able to control
the length of the chain. In [17], this lemma is used to recover the Euclidean equivalent of Theorem
1.1 (ii).

2. The extension theorem

The results in this section apply in a complete metric measure space (X, d , µ). In addition, we
assume that the nontrivial Borel regular measure µ satisfies the doubling condition: there exists a
constant Cd = Cd(µ) > 1 only depending on µ such that

0 < µ (2B) ≤ Cdµ (B) <∞ (2)
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for all balls B ⊂ X. The constant Cd is spoken of as the doubling constant. In particular, we assume
that every ball in X has positive and finite measure. An argument involving the Vitali covering
lemma shows that X is separable and that every ball is totally bounded. This implies that X is
locally compact and proper, which in turn means that every closed and bounded subset of X is
compact.

A ball is determined by its center x and radius r and denoted B = B(x, r) = {y ∈ X :d(x, y) < r},
where the center and radius are left out when not relevant to the discussion. Observe that in general,
the center and the radius of a ball B are not uniquely determined by B as a set. We use the notation
rad(B) = r when B = B(x, r) and, at times, cB = B(x, cr) for the ball dilated by a constant c.

For any two nonnegative numbers A and B, if there exists a constant C ∈ (0,∞) such that A ≤
CB, we write A . B. Furthermore, we write A ≈ B whenever there exist constants C1, C2 ∈ (0,∞)
such that C1A ≤ B ≤ C2A. This notation is used where the exact magnitude of the constants is
not of interest.

Whenever E ⊂ X is a measurable subset and the function f is integrable on every compact subset
of E we say that f is locally integrable on E, denoted f ∈ L1

loc(E). If the measure ν is absolutely
continuous with respect to µ and if there exists a nonnegative locally integrable function w such
that dν = w dµ, we call ν a weighted measure with respect to µ, and w a weight. [28] In practice, we
assume w to be positive almost everywhere in E. For any measurable subsets F ⊂ E and a weight
w on E, we write w(F ) =

∫
F w dµ.

For the purposes of Theorem 2.13, we introduce the following classes of induced Muckenhoupt
weights on a subset, which we denote by Ãp.

Definition 2.1. On a metric space X, let E ⊂ X be a measurable subset with µ(E) > 0. Let w be
a weight on E. If 1 < p <∞, we say that w ∈ Ãp(E) whenever

JwKp = sup
B⊂X
B ball

(
1

µ(B)

∫
B∩E

w dµ

)(
1

µ(B)

∫
B∩E

(
1

w

) 1
p−1

dµ

)p−1
<∞. (3)

If p = 1, we define Ã1(E) as the class of weights w for which there exists C > 0 with
1

µ(B)

∫
B∩E

w dµ ≤ C ess inf
B∩E

w (4)

for every ball B ⊂ X. We denote by JwK1 the infimum of the C > 0 for which the inequality (4)
holds.

Observe that conditions (3) and (4) imply that w is integrable on each B ∩ E, where B ⊂ X is
a ball. Whenever E = X, the above classes coincide with Muckenhoupt weights as usually defined.
In this case we will denote them by Ap(X) and A1(X), respectively. Notice that it is not possible
to reduce (3) to the Ap(X) condition e. g. by replacing w with XEw.

Definition 2.2. The Hardy-Littlewood maximal function is defined by

Mf(x) = sup
B3x

1

µ(B)

∫
B
|f | dµ,

where X is a metric space, B ⊂ X are balls and f ∈ L1
loc(X). Whenever E ⊂ X is a measurable

set and x ∈ E, we also define a maximal function relative to the set E by

mEf(x) = sup
B3x

1

µ(B)

∫
B∩E
|f | dµ.

In the following we verify a number of propositions regarding the Ãp classes, leading to the proof
of the extension theorem. These correspond to well-known results for Ap weights in Rn. While the
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proofs are based on those in Ap(Rn), we have chosen to present them in full, because our notion of
induced weights along with the metric setting presents some difficulties that do not appear in Rn.

Throughout the rest of this section (X, d, µ) will denote a complete metric measure space, with the
measure µ satisfying doubling condition (2) and thus all the properties mentioned at the beginning
of the section.

To begin with, the following proposition is a generalization of a well-known result for A1(Rn);
see [13], p. 502.

Proposition 2.3. Let E ⊂ X be a measurable set with µ(E) > 0. If w ∈ Ã1(E), then w(x) ≤
mEw(x) ≤ JwK1w(x) for almost every x ∈ E.

Proof. The first inequality is a consequence of the Lebesgue differentiation theorem for µ. For a
proof of this classical theorem in a metric space with a doubling measure see [15], p. 4. As for the
second one, let A = {x ∈ E :mEw(x) > JwK1w(x)}. We aim to show that µ(A) = 0. Because X
is separable, there exists a dense sequence of points {zk}k in X. Define a countable collection of
balls F = {B(zk, q) : k ≥ 1, q ∈ Q+}. Then, for every x ∈ A, there exist a δ ∈ (0, 1) and a ball
B = B(z, r) 3 x such that

JwK1w(x) < (1− δ) 1

µ(B)

∫
B∩E

w dµ.

For every ε ∈ (0, 1) denote Bε = B(z, (1−ε)r). Because w is integrable on B∩E, by the absolute
continuity of the Lebesgue integral there exists an η > 0 such that if F ⊂ B is measurable and
µ(F ) ≤ η, then

∫
F∩E w ≤ δ

∫
B∩E w. If ε ∈ (0, 1) is small enough so that x ∈ Bε and µ (B \Bε) ≤ η,

then
∫
(B\Bε)∩E w ≤ δ

∫
B∩E w. Let B

′ = B(z′, q), where z′ ∈ {zk}k and q ∈ Q+ are chosen so that
d(z, z′) < εr/4 and (1 − 3ε/4)r < q < (1 − ε/4)r. The triangle inequality gives the inclusions
Bε ⊂ B′ ⊂ B, implying that x ∈ B′ and

∫
(B\B′)∩E w ≤ δ

∫
B∩E w. It follows that∫

B∩E
w dµ =

∫
B′∩E

w dµ+

∫
(B\B′)∩E

w dµ ≤
∫
B′∩E

w dµ+ δ

∫
B∩E

w dµ

which, recalling that w ∈ Ã1(E), yields

JwK1w(x) < (1− δ) 1

µ(B)

∫
B∩E

w dµ <
1

µ(B′)

∫
B′∩E

w dµ ≤ JwK1 ess inf
B′∩E

w.

We have shown that w(x) < ess infB′∩E w, which means that x belongs to the set DB′ = {y ∈
B′ ∩ E : w(y) < ess infB′∩E w}, where µ(DB′) = 0. Hence A ⊂

⋃
B′∈F DB′ , which is a countable

union of sets of measure zero. �

We remark that the above proposition remains true if the maximal function mE is defined by
taking a supremum over closed balls instead. The proof is similar, except that the absolute continuity
of the Lebesgue integral is not needed.

The next lemma follows from Proposition 2.3, and is needed in the proof of Theorem 2.13 below.

Lemma 2.4. For a measurable set E ⊂ X with µ(E) > 0 and a weight w ∈ Ã1(E), the function
wXE is in L1

loc(X) and its maximal function M(wXE) is finite at almost every point of X. Here
wXE is the function in X that coincides with w on E and vanishes outside E.

Proof. It is immediate that wXE ∈ L1
loc(X) because

∫
B∩E w is finite for every ball B ⊂ X. As for

the second statement, Proposition 2.3 implies that M(wXE)(x) = mEw(x) <∞ for a. e. x ∈ E. It
remains to verify that M(wXE) <∞ on X \ E. Defining

A = {y ∈ E :mEw(y) ≤ JwK1w(y) <∞},
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Proposition 2.3 shows that µ(E \ A) = 0, and therefore M(wXE) = M(wXA) on X. For a. e.
x ∈ X \A, the Lebesgue differentiation theorem states that

lim
B3x

r(B)→0

1

µ(B)

∫
B
wXA dµ = wXA(x) = 0,

and thus there exists a radius rx > 0 such that

sup
B3x

r(B)≤rx

1

µ(B)

∫
B
wXA dµ ≤ 1.

For almost every x /∈ A, we estimate the averages over balls B such that x ∈ B, r(B) > rx,
and B ∩ A 6= ∅. For such a ball B it clearly holds that d(x,A) ≤ 2r(B), and consequently
r(B) ≥ max{rx, d(x,A)/2}. Also, there exists a point y0 = y0(x) ∈ A such that d(x, y0) <
max{rx, 2d(x,A)}. Denoting by z the center of B, we have

d(y0, z) ≤ d(y0, x) + d(x, z) < max{rx, 2 d(x,A)}+ r(B) ≤ 4r(B) + r(B) = 5r(B),

and hence y0 ∈ 5B. Using the doubling condition for µ and the definition of A, we obtain
1

µ(B)

∫
B
wXA dµ ≤ C(Cd)

1

µ(5B)

∫
5B
wXA dµ ≤ C(Cd) sup

B′3y0

1

µ(B′)

∫
B′∩A

w dµ ≤ C(Cd) JwK1w(y0).

We conclude that M(wXA)(x) <∞ for almost every x ∈ X. �

In the following two technical lemmas, we will not be using the fact that the measure is doubling.

Lemma 2.5. Let E ⊂ X be a measurable set with µ(E) > 0. If p, q > 1, v ∈ Ãp(E), and
0 ≤ δ ≤ min{1, (q − 1)(p − 1)−1}, then vδ ∈ Ãq(E) with

q
vδ

y
q
≤ JvKδp. Also, if q ≥ 1, v ∈ Ã1(E),

and δ ∈ [0, 1], then vδ ∈ Ãq(E) with
q
vδ

y
q
≤ JvKδ1. In particular, Ãp(E) ⊂ Ãq(E) for every

1 ≤ p ≤ q.

Proof. We will use the following basic estimate. Let A ⊂ X be measurable, 0 ≤ s ≤ 1, and
h ∈ L1(A). Then it follows from Hölder’s inequality that∫

A
hs dµ ≤ µ(A)1−s

(∫
A
hdµ

)s
. (5)

Since the exponents δ and δ(p− 1)(q − 1)−1 are in [0, 1], we can apply (5) to obtain∫
B∩E

vδ dµ ≤ µ(B ∩ E)1−δ
(∫

B∩E
v dµ

)δ
, (6)

∫
B∩E

(
1

vδ

) 1
q−1

dµ =

∫
B∩E

(
1

v

) δ(p−1)
(q−1)(p−1)

dµ ≤ µ(B ∩ E)
1− δ(p−1)

q−1

(∫
B∩E

(
1

v

) 1
p−1

dµ

) δ(p−1)
q−1

. (7)

Since the exponents 1− δ and (q − 1)− δ(p− 1) are nonnegative, we have µ(B ∩E)1−δ ≤ µ(B)1−δ

and µ(B ∩ E)1−δ(p−1)(q−1)
−1 ≤ µ(B)1−δ(p−1)(q−1)

−1
. Then (6) and (7) lead to

1

µ(B)q

∫
B∩E

vδ dµ

(∫
B∩E

(
1

vδ

) 1
q−1

dµ

)q−1

≤ µ(B)q−δp

µ(B)q

(∫
B∩E

v dµ

)δ (∫
B∩E

(
1

v

) 1
p−1

dµ

)δ(p−1)
≤ JvKδp ,
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which proves the statement for p > 1. In the case δ ∈ [0, 1], v ∈ Ã1(E), and q > 1, using first (5)
and then the definition of Ã1(E) we can write

1

µ(B)q

∫
B∩E

vδ dµ

(∫
B∩E

(
1

vδ

) 1
q−1

dµ

)q−1
≤ µ(B ∩ E)1−δ

µ(B)q

(∫
B∩E

v dµ

)δ µ(B ∩ E)q−1

ess infB∩E vδ

≤ JvKδ1

(
µ(B ∩ E)

µ(B)

)q−δ
≤ JvKδ1 ,

where we have used the fact that δ ≤ 1. For q = 1, the result follows immediately from (5). �

Lemma 2.6. Let E ⊂ X be a measurable set with µ(E) > 0. If 1 ≤ q < ∞, v ∈ Ãq(E) and
g ∈ Lq(E, v), then for every ball B ⊂ X we have

v(B ∩ E)

(
1

µ(B)

∫
B∩E
|g| dµ

)q
≤ JvKq

∫
B∩E
|g|q v dµ.

Proof. We may and do assume g ≥ 0. In the case q > 1, applying Hölder’s inequality we readily
obtain(

1

µ(B)

∫
B∩E

g dµ

)q
≤ 1

µ(B)q

∫
B∩E

gqv dµ

(∫
B∩E

(
1

v

) 1
q−1

dµ

)q−1
≤

JvKq
v(B ∩ E)

∫
B∩E

gqv dµ.

When q = 1, the assertion follows immediately from the definition of Ã1(E) (4). �

The Hardy-Littlewood maximal function is well known to satisfy a weak type inequality. The
following lemma provides a version for the maximal function relative to a subset. Notice that by
letting E = X, we recover the classical result.

Proposition 2.7. Let E ⊂ X be a measurable set with µ(E) > 0. Furthermore, let 1 ≤ q < ∞,
v ∈ Ãq(E), f ∈ Lq(E, v), and t > 0. Then

v ({x ∈ E :mEf(x) > t}) ≤ Ct−q
∫
E
|f |q v dµ,

where the constant C only depends on q, JvKq, and the doubling constant Cd(µ).

Proof. We may assume f ≥ 0.We restrict the supremum defining the maximal function to balls with
radius no greater than R, and denote the resulting function by mR

Ef. Once we show the estimate
for mR

E , the statement will follow by the monotone convergence theorem.
For every x ∈ Et = {x ∈ E :mR

Ef(x) > t}, there is a ball Bx 3 x such that rad(Bx) ≤ R and∫
Bx∩E f dµ > tµ(Bx). The set Et is contained in

⋃
x∈Et Bx ∩E. Since the space X is separable, by

the Vitali covering lemma we can find a disjoint sequence of balls {Bj}j belonging to this collection
such that

⋃
x∈Et Bx ⊂

⋃
j 5Bj . Now let us write∫

Et

v dµ ≤
∫
⋃
j(5Bj∩E)

v dµ ≤
∑
j

∫
5Bj∩E

v dµ. (8)

For each j, we apply Lemma 2.6 with B = 5Bj and g = fXBj∩E to deduce that the sum (8) is
smaller than

JvKq
∑
j

∫
5Bj∩E

gqv dµ

(
1

µ(5Bj)

∫
5Bj∩E

g dµ

)−q
= JvKq

∑
j

∫
Bj∩E

f qv dµ

(
1

µ(5Bj)

∫
Bj∩E

f dµ

)−q
.
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By the choice of the balls Bx, this in turn is smaller than

JvKq
∑
j

∫
Bj∩E

f qv dµ

(
tµ(Bj)

µ(5Bj)

)−q
≤ JvKq C(q, Cd)t

−q
∫
⋃
j Bj∩E

f qv dµ ≤ Ct−q
∫
E
f qv dµ,

where we have applied the doubling property of µ. �

We next show a strong-type estimate for the maximal function mE restricted to E, in the space
Lp(E, v), provided v is an induced Muckenhoupt weight of a higher class.

Proposition 2.8. Let E ⊂ X be a measurable set with µ(E) > 0, 1 ≤ q < p, v ∈ Ãq(E), and
f ∈ Lp(E, v). Then ∫

E
(mEf)

pv dµ ≤ C
∫
E
|f |p v dµ,

where the constant C depends only on p, q, JvKq, and the doubling constant Cd(µ).

Proof. For simplicity, we again assume that f ≥ 0, and proceed to write

f = fX{f>t/2} + fX{f≤t/2} = ft + fX{f≤t/2}.

Using the subadditivity of the maximal functionmE , we have that mEf ≤ mE(ft)+t/2, from which
it is clear that the set {x ∈ E :mEf(x) > t} is contained in {x ∈ E :mEft(x) > t/2}. Combining
this observation with Cavalieri’s principle for the measure v dµ, and then using Proposition 2.7 for
q and ft, we arrive at∫

E
(mEf)(x)

pv(x) dµ(x) ≤ p
∫ ∞
0

tp−1v ({x ∈ E :mEft(x) > t/2}) dt

≤ C
∫ ∞
0

tp−q−1
∫
E
ft(x)

qv(x) dµ(x) dt = C

∫ ∞
0

tp−q−1
∫
{x∈E:f(x)>t/2}

f(x)qv(x) dµ(x) dt

= C

∫
E
f(x)qv(x)

∫ 2f(x)

0
tp−q−1 dtdµ(x) ≤ C

∫
E
f(x)pv(x) dµ(x),

where C depends on p, q, JvKq, and Cd(µ). �

The following factorization theorem will be one of the main ingredients in the proof of Theorem
1.1.

Proposition 2.9. Let E ⊂ X be a measurable set with µ(E) > 0, p > 1, and v a weight on E such
that vr ∈ Ãp(E) for some r > 1. Then there exist weights v1, v2 ∈ Ã1(E) such that v = v1v

1−p
2 .

Proof. Writing q1 = r−1(p − 1) + 1, we have 1 < q1 < p and, by virtue of Lemma 2.5, v =

(vr)1/r ∈ Ãq1(E) with JvKq1 ≤ JvrK1/rp . Also, by the hypothesis, the weight (v−r)1/(p−1) belongs
to Ãp′(E) with

q
(v−r)1/(p−1)

y
p′

= JvrK1/(p−1)p , where p′ is the conjugate exponent of p. Applying

again Lemma 2.5 for q2 = r−1(p′ − 1) + 1 and δ = r−1, we have that v−1/(p−1) ∈ Ãq2(E) and
q
v−1/(p−1)

y
q2
≤

q
(v−r)1/(p−1)

y1/r
p′
≤ JvrK1/r(p−1)p . Notice that q1 < p and q2 < p′.

Proposition 2.8 applied first with v and q1, and then with v−1/(p−1) and q2, yields that mE is
a bounded operator both in Lp(E, v) and Lp

′ (
E, v−1/(p−1)

)
, with norms bounded by constants

depending only on r, p, and JvrKp .
Let v be as per the hypothesis and p ≥ 2, and

Tf =
(
v
− 1
pmE

(
v

1
p f

p
p′
)) p′

p
+ v

1
pmE

(
v
− 1
p f
)
.

7



This is a bounded operator in Lp(E), which can be verified by applying Proposition 2.8:∫
E

(
v
− 1
pmE

(
v

1
p f

p
p′
)) p′

p
·p
dµ =

∫
E
mE

(
v

1
p f

p
p′
)p′

v
− 1
p−1 dµ .

∫
E
v
p′
p |f |p v−

1
p−1 dµ =

∫
E
|f |p dµ,

∫
E

(
v

1
pmE

(
v
− 1
p f
))p

dµ =

∫
E
mE

(
v
− 1
p f
)p
v dµ(x) .

∫
E
|f |p dµ.

Fix f ∈ Lp(E) and set η =
∑∞

k=1 (2c)
−k T kf . The series converges absolutely, and by the com-

pleteness of Lp(E), we conclude that η ∈ Lp(E). The operator T is subadditive since p/p′ ≥ 1,
so

Tη ≤
∞∑
k=1

(2c)−k T k+1f =
∞∑
k=2

(2c)1−k T kf ≤ 2cη.

It follows that the weights

v1 = v
1
p η

p
p′ , v2 = v

− 1
p η

are in Ã1(E), because

mEv1 ≤ mE(v
1
p η

p
p′ ) + v

1
p

(
v

1
pmE

(
v
− 1
p η
)) p

p′ ≤ v
1
p (Tη)

p
p′ ≤ (2c)

p
p′ v

1
p η

p
p′ = (2c)

p
p′ v1,

mEv2 = mE

(
v
− 1
p η
)
≤ v−

1
p

(
v
− 1
pmE

(
v

1
p η

p
p′
)) p′

p
+mE

(
v
− 1
p η
)
= v

− 1
pTη ≤ v−

1
p 2cη = 2cv2.

In the case 1 < p < 2, we instead factorize v1−p′ = v1v
1−p′
2 as above, and raise this equation to

the power 1/(1− p′). �

The following proposition is one half of the Coifman-Rochberg characterisation of A1 weights.
We will not be needing the reverse statement.

Proposition 2.10. Let 0 < ε < 1, g a nonnegative function such that g, g−1 ∈ L∞(X), and
f ∈ L1

loc(X) a nonnegative function such that Mf <∞ a. e. in X. Then, the weight g (Mf)ε = w
belongs to A1(X).

Proof. Since g, g−1 ∈ L∞(X), it is enough to show that for every ball B ⊂ X and x ∈ B
1

µ(B)

∫
B
(Mf)ε dµ ≤ C(Mf)(x)ε, (9)

where the constant C depends on ε and the doubling constant Cd. For a ball B ⊂ X, write
f = fX4B + f (1−X4B) = f1 + f2. Then, owing to subadditivity of the maximal function, we have

(Mf)ε ≤ (Mf1)
ε + (Mf2)

ε .

Each term is estimated separately. Beginning with (Mf1)
ε, by Cavalieri’s principle we have

1

µ(B)

∫
B
(Mf1)(y)

ε dµ(y) =
1

µ(B)

∫ ∞
0

εtε−1µ ({y ∈ B :Mf1(y) > t}) dt

=
1

µ(B)

(∫ a

0
· · ·+

∫ ∞
a
· · ·
)
. (10)

The first of these integrals can be estimated simply by

1

µ(B)

∫ a

0
εtε−1µ ({y ∈ B :Mf1(y) > t}) dt ≤ 1

µ(B)

∫ a

0
εtε−1µ (B) dt = aε.

8



As for the second, Proposition 2.7 applied with E = X for f1 ∈ L1(X) has it that

1

µ(B)

∫ ∞
a

εtε−1µ ({y ∈ B :Mf1(y) > t}) dt ≤ 1

µ(B)

∫ ∞
a

εtε−1µ ({y ∈ X :Mf1(y) > t}) dt

≤ 1

µ(B)

∫ ∞
a

εtε−1 · C(µ)
t

∫
X
|f1(y)| dµ(y) dt =

C(µ)ε

1− ε
aε−1

1

µ(B)

∫
4B
|f(y)| dµ(y).

We choose a = µ(B)−1
∫
4B |f | dµ and combine the two parts. We may and do assume that a

is positive, as otherwise f = 0 on B and the desired inequality follows immediately. Then (10)
becomes

1

µ(B)

∫
B
(Mf1)(y)

ε dµ(y) ≤
(

1

µ(B)

∫
4B
|f(y)| dµ(y)

)ε(
1 +

C(µ)ε

1− ε

)
=

(
1 +

C(µ)ε

1− ε

)(
µ(4B)

µ(B)

1

µ(4B)

∫
4B
|f(y)| dµ(y)

)ε
≤ C(µ, ε)

(
1

µ(4B)

∫
4B
|f(y)| dµ(y)

)ε
≤ C(Mf)(x)ε,

where we have used the fact that µ satisfies the doubling condition (2).
On to (Mf2)

ε. Let x, y ∈ B = B(z, r) and let B′ = B(z′, r′) be another ball containing y.
Assume first that there exists a point p ∈ B′ \ 4B. We claim that r ≤ r′. Indeed, otherwise we have
d(y, p) ≤ 2r′ ≤ 2r and

d(y, z) ≥ d(z, p)− d(p, y) ≥ 4r − 2r = 2r > r,

implying that y /∈ B, a contradiction. Using that r ≤ r′, we have for any q ∈ B

d(q, z′) ≤ d(q, y) + d(y, z′) ≤ 2r′ + r′ = 3r′,

which shows that B ⊂ 4B′. In particular x ∈ 4B′ and we can write

1

µ(B′)

∫
B′
|f2| dµ ≤

C(µ)

µ(4B′)

∫
4B′
|f2| dµ ≤ C sup

B3x

1

µ(B)

∫
B
|f | dµ = C(Mf)(x).

In the case B′ ⊂ 4B, we have that
∫
B′ |f2| dµ = 0, and the preceding estimate trivially holds. In

both cases, the right-hand side does not depend on the choice of y, and we have

Mf2(y) = sup
B3y

1

µ(B)

∫
B
|f2| dµ ≤ C(Mf)(x),

which completes the proof of the proposition. �

In order to show that (i) implies (ii) in Theorem 1.1, we are going to need the self-improving
property of classical Ap(X) weights. This is Lemma 2.12, which is straightforward to prove with
the following reverse Hölder inequality at hand.

Proposition 2.11. Let 1 ≤ p < ∞, and w ∈ Ap(X). Then there exist constants δ > 0 and
0 < C <∞ such that for all balls B ⊂ X we have(

1

µ(B)

∫
B
w1+δ dµ

) 1
1+δ

≤ C 1

µ(B)

∫
B
w dµ. (11)

For a proof of Proposition 2.11 see [28], Theorem I.15.

Lemma 2.12. Let w ∈ Ap(X) with 1 ≤ p <∞. There exists an ε > 0 such that w1+ε ∈ Ap(X).
9



Proof. Let ε > 0 be such that w satisfies the reverse Hölder inequality (11) with δ = ε. If p = 1,
applying the said inequality (11) and the A1 condition (14) of w we have for any ball B ⊂ X

1

µ(B)

∫
B
w1+ε dµ ≤ C

(
1

µ(B)

∫
B
w dµ

)1+ε

≤ C
(
ess inf
B

w
)1+ε ≤ C ess inf

B
w1+ε,

which implies that w1+ε ∈ A1(X).
As for p > 1 we start by observing that, as a consequence of Jensen’s inequality, if a weight v

satisfies (11) for some δ > 0, then v safisfies the same inequality for every 0 < δ′ ≤ δ. It immediately
follows from the Ap condition (3) with E = X that w1−p′ ∈ Ap′(X) with 1

p + 1
p′ = 1. As a

consequence, we obtain that both w and w1−p′ satisfy a reverse Hölder inequality (11) for ε > 0
small enough. Together with the fact that w ∈ Ap(X), this implies

1

µ(B)

∫
B
w1+ε dµ

(
1

µ(B)

∫
B
w
− 1+ε
p−1 dµ

)p−1
≤ C

(
1

µ(B)

∫
B
w dµ

)1+ε( 1

µ(B)

∫
B
w
− 1
p−1 dµ

)(1+ε)(p−1)
≤ C JwK1+εp ,

which is the Ap(X) condition for w1+ε. �

We are now ready to prove our main result, Theorem 1.1.

Theorem 2.13. Let X be a complete metric space with a doubling measure, E ⊂ X a measurable
set with µ(E) > 0, and w a weight on E. Then, for 1 ≤ p < ∞, the following statements are
equivalent.

(i) There exists a weight W ∈ Ap(X) such that W = w a. e. on E;
(ii) There exists an ε > 0 such that w1+ε ∈ Ãp(E).

Proof. The implication (i) ⇒ (ii) follows from Lemma 2.12. Because W ∈ Ap(X) for a given
1 ≤ p <∞, there exists an ε > 0 such that W 1+ε ∈ Ap(X). Assume first that p > 1. Then, for all
balls B ⊂ X, (

1

µ(B)

∫
B∩E

w1+ε dµ

)(
1

µ(B)

∫
B∩E

w
1+ε
1−p dµ

)p−1
=

(
1

µ(B)

∫
B∩E

W 1+ε dµ

)(
1

µ(B)

∫
B∩E

W
1+ε
1−p dµ

)p−1
≤
(

1

µ(B)

∫
B
W 1+ε dµ

)(
1

µ(B)

∫
B
W

1+ε
1−p dµ

)p−1
≤ C.

If p = 1, it is enough to write
1

µ(B)

∫
B∩E

w1+ε dµ ≤ 1

µ(B)

∫
B
W 1+ε dµ ≤ C ess inf

B
W 1+ε ≤ C ess inf

B∩E
W 1+ε = C ess inf

B∩E
w1+ε.

Next, let us prove (ii) ⇒ (i). Let us define the weight v = w1+ ε
2 on E. Consider first the case

p > 1. Because w1+ε ∈ Ãp(E), it is clear that v satisfies the hypothesis of Proposition 2.9, so we
can write v = v1v

1−p
2 on E, where v1, v2 ∈ Ã1(E). Next, we define

Vi =M (XEvi)δ , i ∈ {1, 2} , δ = 1

1 + ε
2

,

where M is the Hardy–Littlewood maximal function, and XEvi is the function in X that coincides
with vi on E and vanishes outside E. These are weights in A1(X) as per Lemma 2.4 and Proposition

10



2.10. Then, V1V
1−p
2 is again an Ap(X) weight such that

V1V
1−p
2 =

(
mEv1 (mEv2)

1−p
)δ

on E, with the maximal function mE restricted to E as per Definition 2.2. The fact that v1, v2 ∈
Ã1(E) implies that there is a constant C = max{Jv1K1 , Jv2K1} such that vi ≤ mEvi ≤ Cvi, i = 1, 2,
almost everywhere on E (Proposition 2.3). Thus there exist nonnegative functions gi, i = 1, 2, such
that gi, g−1i ∈ L∞(X) and gimEvi = vi almost every where on E. Defining g = gδ1g

δ(p−1)
2 we see

that g, g−1 ∈ L∞(X), g > 0, and

g(x)V1(x)V2(x)
1−p =

(
v1(x)v2(x)

1−p)δ = v(x)δ = w(x)

for almost every x ∈ E. The weight W = gV1V
1−p
2 is in Ap(X) and satisfies W = w a. e. on E.

Finally, if p = 1, we reproduce the above argument taking v1 as v and discarding the weight
v2. �

3. Balls and chains

The aim of this section is to collect several preparatory results concerning balls in a metric space
with a doubling measure. Our reason to delve into the geometry of Whitney-type balls is that
they can be used to give estimates for Muckenhoupt weights over chains. In particular, Lemma 3.8
is needed to prove Lemma 4.4 in the next section, which in turn is an integral part of Holden’s
argument in [17]. We have found it necessary to provide an explicit proof of Lemma 3.8, as we
could not locate one in the literature.

While most results in this section do not require any additional assumptions, on occasion we need
to assume the existence of geodesics joining every pair of points. To cite an example of geodesic
spaces relevant to partial differential equations, Corollary 8.3.16 in [16] states that a complete,
doubling metric space that supports a Poincaré inequality admits a geodesic metric that is bilipschitz
equivalent to the underlying metric, with constant depending on the doubling constant of the
measure and the data of the Poincaré inequality.

We say that a complete metric space (X, d) is a geodesic space provided that any two points
x, y ∈ X can be joined by a continuous, rectifiable curve γ : [a, b] → X with d(x, y) = `(γ), where
`(γ) denotes the length of γ. A rectifiable curve γ : [a, b] → X satisfying `(γ) = d(γ(a), γ(b)) is
called a geodesic on X. Note that for a general rectifiable curve γ : [a, b] → X, we always have the
inequality `(γ) ≥ d(γ(a), γ(b)).

We will invoke the following well-known property of geodesics: if [a′, b′] ⊂ [a, b], the subarc γ|[a′,b′]
of the geodesic γ : [a, b]→ X is a geodesic too. Hence, for any three points γ(ti) on the geodesic γ
such that a ≤ t0 < t1 < t2 ≤ b, the triangle inequality for d becomes an equality:

d(γ(t0), γ(t2)) = d(γ(t0), γ(t1)) + d(γ(t1), γ(t2)).

Slightly abusing notation, we write γ|[x1,x2] to mean γ|[t1,t2] whenever γ(ti) = xi, i = 1, 2.

Throughout the rest of this section, we will assume that (X, d, µ) is a complete metric measure
space such that µ satisfies the doubling condition (2). Also, when using the notation A ≈ B or
A . B for any two real numbers A,B, we understand that the constants involved may depend on
the doubling constant Cd(µ).

We begin by showing two lemmas in metric geometry for future reference. In the first one, the
measure does not play any role.

Lemma 3.1. Let X be a geodesic space, and B, B′ any two balls in X. Assume that rad(B) .
rad(B′) and that B′ contains the center of B. Then there exists a ball B′′ ⊂ B ∩B′ with rad(B′′) ≈
rad(B).
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Proof. By assumption, there is a constant 0 < a ≤ 1 such that a rad(B) ≤ rad(B′). In the first
place, assume that d(z, z′) ≤ 1

2 rad(B). Let z and z′ denote the centers of B and B′ respectively.
In this case, define B′′ as the ball centered at z′ and of radius a

4 rad(B). Since a rad(B) ≤ rad(B′),
it is obvious that B′′ ⊂ B′. On the other hand, for any x ∈ B′′ we can write

d(x, z) ≤ d(x, z′) + d(z′, z) ≤ a
4 rad(B) + 1

2 rad(B) < 1
4 rad(B) + 1

2 rad(B) < rad(B),

which shows that B′′ ⊂ B, and we also have rad(B′′) = a
4 rad(B) ≈ rad(B).

Consider then the case d(z, z′) > 1
2 rad(B). Let γ be a continuous curve joining z and z′ with

`(γ) = d(z, z′). Because 1
2 rad(B) < d(z, z′) ≤ rad(B), there exists a point p ∈ γ such that

d(p, z) = 1
2 rad(B). Let q ∈ γ be the midpoint between z and p, that is, d(z, q) = d(q, p) = 1

2 d(z, p).
We define B′′ as the ball centered at q and radius 1

2 d(z, q). For any x ∈ B
′′ we have

d(x, z) ≤ d(x, q) + d(q, z) ≤ 1
2 d(z, q) + d(q, z) < 2 d(z, q) = d(z, p) = 1

2 rad(B).

This shows that B′′ ⊂ B. To verify that B′′ ⊂ B′, notice first that d(z, q) + d(q, z′) = d(z, z′) as
subarcs of the geodesic γ. Now, for any x ∈ B′′, write

d(x, z′) ≤ d(x, q) + d(q, z′) ≤ 1
2 d(z, q) + d(q, z′) < d(z, z′) ≤ rad(B′),

whereby we conclude that B′′ ⊂ B ∩B′. Finally, because d(z, p) = 1
2 rad(B), we have

rad(B′′) = 1
2 d(z, q) =

1
4 d(z, p) =

1
8 rad(B),

which completes the proof of the lemma. �

Lemma 3.2. Let B,B′ ⊂ X any two balls such that rad(B) ≈ rad(B′) and d(p, p′) . rad(B) for
some p ∈ B, p′ ∈ B′. Then µ(B) ≈ µ(B′).

Proof. Let zB denote the center of B. For any x ∈ B′ we have

d(x, zB) ≤ d(x, p′) + d(p′, p) + d(p, zB) ≤ 2 rad(B′) + 2 d(B,B′) + rad(B) . rad(B).

As a result, there exists a constant 1 ≤ λ < ∞ such that d(x, zB) ≤ λ rad(B) for every q ∈ B′,
which means that B′ ⊂ λB and therefore µ(B′) ≤ µ(λB). But µ(λB) . µ(B) because the measure
is doubling, so µ(B′) . µ(B). Reversing the roles of B and B′ gives the inequality in the other
direction. �

For our Whitney decomposition we follow Lemma 2.8 in [14], whose proof is based on ideas from
[27, Lemma 2] and [6, Theorem 1.3]. See also [29, Lemma 5] and [12, Lemma 1.3.3].

Lemma 3.3. Let D ⊂ X be an open, nonempty, proper subset of X. Then there exists a collection
W(D) = {Bk = B(xk, rk)}k of balls with the following properties:

(i) the balls {B(xk, rk/4)}k are pairwise disjoint and
⋃
k Bk =

⋃
k 2Bk = D;

(ii) 2 radBk ≤ d (x,X \D) ≤ 6 radBk for every x ∈ 2Bk;
(iii) for each B ∈ W(D), there are at most N = N(Cd) <∞ balls in W(D) that intersect B.

Furthermore, let B1, B2 ∈ W(D) such that B1 ∩B2 6= ∅. We have
(iv) 1

4 radB1 ≤ radB2 ≤ 4 radB1;
(v) µ(B1) ≈ µ(B2).

�

Properties (iv) and (v) are not explicitly stated in [14, Lemma 2.8], but they are direct conse-
quences of (ii) and Lemma 3.2. The next lemma pertains to balls whose radius is comparable to
their distance from the boundary. This, of course, includes but is not limited to actual Whitney
balls.
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Lemma 3.4. Let D ⊂ X be open and proper, and B ⊂ D a ball such that rad(B) ≈ d(B,X \D).
Then

(i) if B′ ∈ W(D) and B′ ∩B 6= ∅, then rad(B) ≈ rad(B′);
(ii) there are at most N = N(Cd) <∞ Whitney balls on D intersecting B;
(iii) Assume further that X is a geodesic space. If B′ ∈ W(D) and B′ contains the center of B,

then there exists a ball B′′ ⊂ B ∩B′ such that rad(B′′) ≈ rad(B) and µ(B′′) ≈ µ(B).
Proof. (i) Let y ∈ B ∩B′. Since B′ is a Whitney ball, we have that

rad(B′) ≤ d(B′, ∂D) ≤ d(y,X \D) ≤ diam(B) + d(B,X \D) ≈ rad(B).

Similarly, we obtain rad(B′) & rad(B).
(ii) Let B = {R : R ∈ W(D), R ∩ B 6= ∅} and let N denote the cardinal of B. Let us write B =
{Bi}Ni=1. By claim (i) we have that rad(Bi) ≈ rad(B) for each i, and by Lemma 3.2 µ(Bi) ≈ µ(B)
for every i. Thus there exists a constant λ ≥ 1 such that

N⋃
i=1

Bi ⊆ λB.

The Bi being Whitney balls, the collection {14Bi}i is pairwise disjoint. Also, observe that µ
(
1
4Bi
)
≈

µ(Bi) ≈ µ(B) for each i. Since we obviously have the inclusion
⋃N
i=1

1
4Bi ⊆ λB, we may write

µ(B) & µ(λB) ≥ µ

(
N⋃
i=1

1
4Bi

)
=

N∑
i=1

µ(14Bi) &
N∑
i=1

µ(B) = Nµ(B).

This proves that N is bounded above by a constant only depending on the doubling constant.
(iii) We know from (i) above that r(B) ≈ r(B′). Lemma 3.1 provides a ball B′′ ⊂ B ∩B′ such that
r(B′′) ≈ r(B) ≈ r(B′). The statement for measures then follows from Lemma 3.2. �

By a domain D of X we understand a nonempty proper open subset of X with the property that
every two points in D can be joined by a rectifiable curve entirely contained in D.

Definition 3.5. Let D ⊂ X be a domain, k ∈ {0, 1, 2, . . .}, and Bj ∈ W(D) for j = 0, . . . , k. We
say that

C(B0, Bk) = (B0, . . . , Bk)

is a (Whitney) chain joining B0 to Bk, if Bj ∩ Bj−1 6= ∅ for every j ∈ {1, . . . , k}. In this case, we
say that k is the length of the chain C(B0, Bk). The length of the shortest chain in D from B0 to
Bk is denoted by k̃D(B0, Bk). Because there is no possibility of confusion, we drop the subscript D
from now on.

We will be measuring distances in D in terms of the quasihyperbolic metric, which was introduced
by Gehring in the 1970s to study quasiconformal mappings in Rn; see [11] and [10].

Definition 3.6. Let X be a geodesic space. For a domain D ⊂ X and two points x1, x2 ∈ D, the
quasihyperbolic distance between them is

kD(x1, x2) = inf
γ

∫
γ

ds

d(y, ∂D)
,

where the infimum is taken over all rectifiable curves γ ⊂ D with endpoints x1 and x2. The
quantity kD satisfies the axioms of a metric on D ×D. A rectifiable curve γ : [0, 1]→ D is called a
quasihyperbolic geodesic if, for each pair of points y1, y2 ∈ γ, it holds that

kD(y1, y2) =

∫
γ|[y1,y2]

ds

d(y, ∂D)
.
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If E1, E2 are subsets of D, we define kD(E1, E2) = infx1∈E1, x2∈E2 kD(x1, x2). As there is no risk
of ambiguity, we will leave out the subscript D in the following.

It is easy to see that the quasihyperbolic diameter of any Whitney-like ball is bounded, which is
the content of the following lemma.

Lemma 3.7. Assume further that X is a geodesic space and let D ⊂ X be a domain. If B ⊂ D is
a ball such that d(B, ∂D) ≈ rad(B), then k(x, y) ≤ C for any two points x, y ∈ B.

Proof. Let z denote the center of B, and let γ ⊂ B be a rectifiable curve connecting z and x such
that `(γ|[z,x]) = d(z, x). Then

k(z, x) ≤
∫
γ|[z,x]

ds

d(y, ∂D)
.
∫
γ|[z,x]

ds

rad(B)
=
`(γ|[z,x])
rad(B)

≤ C.

Similarly we obtain k(z, y) ≤ C, and the triangle inequality implies k(x, y) ≤ C. �

The next lemma establishes an equivalence between shortest Whitney chains and quasihyperbolic
distance. It is essentially contained in the proof of Lemma 9 in [29]. For a detailed proof of the
corresponding lemma in Rn, see Proposition 6.1 in [18]. Notice that if the space X is geodesic and
D ⊂ X is a proper subset, the distance functions d(·, ∂D) and d(·, X \D) coincide over D. We are
then allowed to use Lemmas 3.3 and 3.4 with the distance d(·, ∂D) instead of d(·, X \D).

Lemma 3.8. Assume further that X is a geodesic space. Let D ⊂ X be a domain and Bi =

B(xi, ri) ∈ W(D), i = 1, 2. Then k̃(B1, B2) ≈ k(x1, x2).

Proof. Let M = k̃(B1, B2) be the length of the shortest Whitney chain joining B1 to B2. In the
case x1 = x2, both quantities amount to zero and there is nothing to prove. Suppose now x1 and
x2 are distinct points. First, we prove k̃(B1, B2) . k(x1, x2). Denote by γ the quasihyperbolic
geodesic joining x1 and x2, and take z to be an arbitrary point on γ. Of all the Whitney balls
containing z, we choose the one with the smallest radius, say, B = B(x, r). Consider the ball Bz
centered at z and with radius r. It is clear that Bz ⊂ 2B, and thus Bz is contained in D with
d(Bz, ∂D) ≥ d(2B, ∂D) ≥ r by virtue of Lemma 3.3 (ii). Also, by the properties of the Whitney
decomposition (Lemma 3.3 (ii)), we have

d(Bz, ∂D) ≤ d(z, ∂D) ≤ d(B, ∂D) + diam(B) ≤ 8r,

and we conclude that d(Bz, ∂D) ≈ rad(Bz) = r.
Let γz be a subarc of γ∩Bz passing through z and of maximal length. We claim that `(γz) ≥ C1r

at all times. Whenever γ is not entirely contained in Bz, by the continuity of γ, there exists a
point q ∈ γz such that d(q, z) > r/2. Then we have `(γz) ≥ d(q, z) = r/2. In the case γ ⊂ Bz,
by the properties of the Whitney decomposition there exists a constant 0 < c < 1 such that
`(γz) = `(γ) ≥ d(x1, x2) ≥ cr1. Furthermore, Lemma 3.4 (i) gives r ≈ r1 and consequently
`(γz) ≥ C1r. Recalling that γz ⊂ Bz and d(z, ∂D) ≤ 8r, in all cases it holds that∫

γz

dl

d(y, ∂D)
≥ `(γz)

r + d(z, ∂D)
≥ C1r

9r
≥ C2. (12)

Next, we cover the geodesic γ by balls {Bzi}i, with the points {zi}i ⊂ γ chosen so that every point
is contained in at most two balls Bzi . Among these collections we choose the one with the smallest
cardinality, saym = #{Bzi}. For any z ∈ γ, Lemma 3.4 (ii) shows that there are at most C Whitney
balls intersecting Bz. Now let M1 be the minimal number of Whitney balls needed to cover

⋃
iBzi ,

and denote this collection by F . Clearly M1 ≥M , because M was the length of the shortest chain
joining B1 and B2. Also, we have that #F = M1 and, by minimality, for every B ∈ F there is at
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least one i such that B ∩Bzi 6= ∅. Therefore, we have that F ⊂
⋃
i{B ∈ W(D) :B ∩Bzi 6= ∅} and

M1 = #F ≤ #

(
m⋃
i=1

{B ∈ WD :B ∩Bzi 6= ∅}

)
≤

m∑
i=1

#{B ∈ WD :B ∩Bzi 6= ∅} ≤ Cm.

We obtain Cm ≥M1 ≥M. Now, denoting γi = γ ∩Bzi and applying (12) on each of these subarcs,
we obtain the estimate

k(x1, x2) =

∫
γ

dl

d(y, ∂D)
≥ 1

2

m∑
i=1

∫
γi

dl

d(y, ∂D)
≥ mC2

2
≥ C2

2C
M = C3k̃(B1, B2).

As for the inequality in the other direction, take the the shortest chain C =
(
B1, B2, . . . , BM

)
connecting B1 = B1 = B(x1, r1) and B2 = BM = B(xM , rM ). For every j ∈ {1, . . . ,M − 1}, take a
point pj in Bj ∩Bj+1. We have k(xj , pj) ≤ C and k(xj+1, pj) ≤ C owing to Lemma 3.7. Using the
triangle inequality repeatedly, we obtain

k(x1, x2) = k(x1, xM ) ≤
M−1∑
j=1

(
k(xj , pj) + k(pj , x

j+1)
)
≤ 2C(M − 1) .M = k̃(B1, B2),

whereby the statement is proven. �

4. Estimates for weights on Whitney chains

In a metric measure space X we call a domain D ⊂ X an extension domain for the Muckenhoupt
class Ap, if whenever w ∈ Ap(D) there exists a W ∈ Ap(X) such that W = w a. e. on D. Holden
[17] gives certain sufficient conditions for extension domains in Rn. Holden’s strategy of proof is
to verify Wolff’s condition (1) by propagating estimates on cubes along Whitney chains. In this
final section we adapt [17, Lemma 2] into the metric setting, resulting in Lemma 4.4 below. In
Holden’s Euclidean argument, [17, Lemma 2] is used to estimate integrals over each cube in a
dyadic decomposition of Q ∩ E in terms of integrals over cubes arising from Holden’s assumptions
that enjoy additional good properties.

To put the extension problem in context, it is instructive to outline the situation regarding the
space of functions of bounded mean oscillation (BMO). These are intimately related to Muckenhoupt
weights: whenever a weight w belongs to Ap, then logw is of bounded mean oscillation. Conversely,
whenever f ∈ BMO, then exp(δf) ∈ Ap for small enough δ. Peter W. Jones [21] has shown that
extension domains for BMO functions in the Euclidean space Rn are precisely uniform domains,
that can be characterized in terms of the quasihyperbolic metric. Vodop’yanov and Greshnov
[29] extended Jones’ characterization to metric spaces supporting a doubling measure. Recently,
Butaev and Dafni [5] proved the analogue of Jones’ characterization for functions of vanishing mean
oscillation in Rn.

For Muckenhoupt weights, the question remains open. Some examples and counterexamples
concerning necessary or sufficient conditions for extension domains for Ap are discussed by Holden
[17] and Koskela in his corresponding review [25].

For the purposes of this section we need to introduce classical Ap weights defined on a subset.
Compare this to Definition 2.1. By L1

loc(D) we denote the class of functions that are integrable on
every compact subset of D.

Definition 4.1. Let D ⊂ X be a nonempty open subset in a metric space X, and 1 < p <∞. An
a. e. positive function w ∈ L1

loc(D) is called a Muckenhoupt Ap weight in D, denoted w ∈ Ap(D), if

[w]p = sup
B⊂D

(
1

µ(B)

∫
B
w dµ

)(
1

µ(B)

∫
B
w
− 1
p−1 dµ

)p−1
<∞. (13)
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The supremum is taken over all balls B ⊂ D. For p = 1, a nonnegative function w ∈ L1
loc(D)

belongs to A1(D) if there exists a constant C > 0 such that for all balls B ⊂ D
1

µ(B)

∫
B
w dµ ≤ C ess inf

B
w. (14)

We denote by [w]1 the infimum of the C > 0 for which the inequality (14) holds.

Provided that the underlying measure µ satisfies a doubling condition and w is an Ap weight,
the weighted measure w dµ satisfies the doubling condition for balls B such that 2B ⊂ D. This
property follows from statement (ii) of the next lemma, that collects some estimates for weights on
balls and chains. Throughout the rest of the section, we will assume that (X, d, µ) is a complete
metric measure space such that µ satisfies (2).

Lemma 4.2. Let D ⊂ X be an open proper subset, and w ∈ Ap(D) with 1 ≤ p <∞.
(i) If the ball B ⊂ D, then

1

µ(B)

∫
B
w dµ ≤ [w]p exp

(
1

µ(B)

∫
B
logw dµ

)
.

(ii) If B is a ball in D and E ⊂ B is a measurable subset with µ(E) > 0, then∫
B
w dµ ≤ [w]p

(
µ(B)

µ(E)

)p ∫
E
w dµ.

(iii) (the A∞ condition) There exist constants 0 < Cw, δ(w) <∞, depending only on the doubling
constant Cd(µ) and the weight w, such that for all balls B ⊂ D and all measurable subsets
E ⊂ B we have

w(E)

w(B)
≤ Cw

(
µ(E)

µ(B)

)δ(w)
.

(iv) Assume further that D is a domain. If B1, B2 ∈ W(D), then
1

µ(B1)

∫
B1

w dµ ≤ exp
(
Ck̃(B1, B2)

) 1

µ(B2)

∫
B2

w dµ,

where C is a constant only depending on Cd, p, and [w]p .

Proof. To prove (i), we may assume that p > 1 because A1(D) ⊂ A2(D). Now, the inequality (i) fol-
lows from the Ap condition (Definition 4.1). Indeed, notice that the function t 7→ exp

(
−t(p− 1)−1

)
is convex, and apply Jensen’s inequality:

[w]p ≥
(

1

µ(B)

∫
B
w dµ

)(
1

µ(B)

∫
B
exp (logw)

− 1
p−1 dµ

)p−1
≥
(

1

µ(B)

∫
B
w dµ

)
exp

(
1

µ(B)

∫
B
logw dµ

)− 1
p−1

(p−1)
.

When p > 1, the statement (ii) is a consequence of the Ap condition (Definition 4.1):

1

µ(B)

∫
B
w dµ ≤ [w]p

(
1

µ(B)

∫
B1

w
− 1
p−1 dµ

)−(p−1)
≤ [w]p

(
µ(E)

µ(B)

)−(p−1)( 1

µ(E)

∫
E
w
− 1
p−1 dµ

)−(p−1)
≤ [w]p

(
µ(B)

µ(E)

)p−1 1

µ(E)

∫
E
w dµ,
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where the last estimate follows from Hölder’s inequality. Besides, when p = 1, w ∈ A1(D) implies

1

µ(B)

∫
B
w dµ ≤ [w]1 ess inf

B
w ≤ [w]1 ess inf

E
w ≤

[w]1
µ(E)

∫
E
w dµ.

For a proof of the A∞ condition (iii) we refer to [28], Theorem I.15. There, the weights are
globally defined in X, but the proof for weights in Ap(D) is exactly the same. Indeed, provided that
w satisfies a reverse Hölder inequality with exponent 1 + δ over balls B ⊂ D (compare Proposition
2.11), using it and the classical Hölder inequality we have∫

E
w dµ ≤ µ(E)

δ
1+δ

(∫
B
w1+δ dµ

) 1
1+δ

≤ C
(
µ(E)

µ(B)

) δ
1+δ
∫
B
w dµ

for all balls B ⊂ D and all measurable subsets E ⊂ B. The fact that w satisfies a reverse Hölder
inequality can be proven using a version of Gehring’s lemma for weights in Ap(D), whose proof is
similar to that for Ap(X) weights because in Definition 4.1 we only consider balls that are entirely
contained in D. A proof of Gehring’s lemma for Ap(X) weights can be found in [4], p. 77.

Finally, let us prove (iv). Let Bj = B(pj , rj) and Bj+1 = B(pj+1, rj+1) be two consecutive balls
in the chain C(B1, B2). Then Bj ∩ Bj+1 6= ∅. To begin with, we show that there is a constant C
such that ∫

Bj+1

w dµ ≤ C
∫
Bj

w dµ. (15)

To this effect, let y ∈ Bj ∩Bj+1 and suppose first that d(y, pj+1) <
1
8rj+1. For any z ∈ X, we have

d(z, pj) ≤ d(z, pj+1) + d(pj , y) + d(y, pj+1) < d(z, pj+1) + rj +
1
8rj+1.

Letting z ∈ 1
8Bj+1 = B

(
pj+1,

1
8rj+1

)
in the above and applying (iv) of Lemma 3.3, we have

d(z, pj) <
1
8rj+1 + rj +

1
8rj+1 ≤ 1

4 · 4rj + rj = 2rj ,

which shows that 1
8Bj+1 ⊂ 2Bj ⊂ D as guaranteed by (i) of Lemma 3.3. Using (ii) of the current

lemma and the fact that µ is doubling, we may write∫
Bj+1

w dµ . [w]p

(
µ(Bj+1)

µ(18Bj+1)

)p ∫
1
8
Bj+1

w dµ . [w]p

∫
1
8
Bj+1

w dµ

≤ [w]p

∫
2Bj

w dµ . [w]p

(
µ(2Bj)

µ(Bj)

)p ∫
Bj

w dµ . [w]p

∫
Bj

w dµ,

which proves (15).
Now suppose that d(y, pj+1) ≥ 1

8r(Bj+1). The balls B∗j+1 = B(y, 18rj+1) and 1
8Bj+1 have the

same radius and d(y, pj+1) ≈ 1
8rj+1. Then, by Lemma 3.2 and the doubling condition (2), it holds

that
µ(B∗j+1) ≈ µ

(
1
8Bj+1

)
≈ µ(Bj+1).

Using the triangle inequality, Lemma 3.3 (iv), and the fact that y ∈ Bj ∩Bj+1, we easily obtain for
a z ∈ B∗j+1

d(z, pj+1) ≤ d(z, y) + d(y, pj+1) ≤ 1
8rj+1 + rj+1 < 2rj+1,

d(z, pj) ≤ d(z, y) + d(y, pj) ≤ 1
8rj+1 + rj ≤ 3

2rj < 2rj ,
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which implies that B∗j+1 ⊂ 2Bj+1 ∩ 2Bj . Applying (ii) of the current lemma, we conclude that∫
Bj+1

w dµ ≤
∫
2Bj+1

w dµ . [w]p

(
µ(2Bj+1)

µ(B∗j+1)

)p ∫
B∗j+1

w dµ . [w]p

∫
B∗j+1

w dµ

≤ [w]p

∫
2Bj

w dµ . [w]p

(
2Bj)

µ(Bj)

)p ∫
Bj

w dµ . [w]p

∫
Bj

w dµ.

Thus, in any case we have
∫
Bj+1

w dµ . [w]p
∫
Bj
w dµ. Reversing the roles of Bj and Bj+1, we obtain∫

Bj
w dµ ≈

∫
Bj+1

w dµ, where the constants involved depend on p, the doubling constant, and [w]p .

Furthermore, by Lemma 3.3 (v), there exists a constant C1 such that

1

µ(Bj)

∫
Bj

w dµ ≤ C1
1

µ(Bj+1)

∫
Bj+1

w dµ.

Recalling that k̃(B1, B2) is the number of balls in W(D) in the shortest chain from B1 to B2, we
apply this recursively to obtain

1

µ(B1)

∫
B1

w dµ ≤ C k̃(B1,B2)
1

1

µ(B2)

∫
B2

w dµ.

Choose C = logC1 to get the desired expression. �

Remark 4.3. In the proof of property (iv) above, we in fact showed that whenever µ is doubling
and w ∈ Ap(D), then for any two Whitney balls B1, B2 ∈ W(D) such that B1 ∩ B2 6= ∅ it holds
that

∫
B1
w ≈

∫
B2
w. Statement (ii) is a “reverse A∞ condition” that follows immediately from the

Ap condition. Namely, whenever E ⊂ B, then

µ(E)

µ(B)
≤ C(w)

(
w(E)

w(B)

) 1
p

.

Lemma 4.4. Assume further that X is a geodesic space and let D ⊂ X be a domain, w ∈ Ap(D)
with 1 ≤ p <∞, C a constant possibly depending on Cd, and B1, B2 ⊂ D balls satisfying

(i) d(Bi, ∂D) ≈ rad(Bi), i = 1, 2,
(ii) k(B1, B2) ≤ C.

Then ∫
B1

w dµ ≈
∫
B2

w dµ,

where the constants involved depend on C, Cd, p, and [w]p .

Proof. Let B′i = B(z′i, r
′
i) ∈ W(D), i = 1, 2, contain the centers of B1 = B(z1, r1) and B2 = B(z2, r2)

respectively. Lemma 3.4 (iii) guarantees that there exist balls B′′i ⊂ Bi ∩ B′i, i = 1, 2, such that
rad(B′′i ) ≈ rad(B′i) ≈ rad(Bi) and µ(B′′i ) ≈ µ(B′i) ≈ µ(Bi).

Furthermore, it holds that k(z′1, z′2) ≤ C. To see this, let x1, x2 be points contained in B1 and
B2 respectively such that k(x1, x2) ≤ k(B1, B2) + C. Using the triangle inequality for k we have

k(z′1, z
′
2) ≤ k(z′1, z1) + k(z1, x1) + k(x1, x2) + k(x2, z2) + k(z2, z

′
2).

Observe that zi ∈ B′i, xi ∈ Bi, and k(x1, x2) ≤ 2C. By Lemma 3.7, the quasihyperbolic diameters
of the balls Bi and B′i are uniformly bounded, and we have

k(z′1, z
′
2) ≤ C1.
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Also, by Lemma 3.8, we have k(z′1, z′2) ≈ k̃(B′1, B
′
2) and thus k̃(B′1, B′2) . C1. With these remarks,

Lemma 4.2 (ii) allows us to estimate

1

µ(B1)

∫
B1

w dµ .

(
µ(B1)

µ(B′′1 )

)p−1 1

µ(B′′1 )

∫
B′′1

w dµ (16)

.
µ(B′1)

µ(B′′1 )

1

µ(B′1)

∫
B′1

w dµ

.
1

µ(B′1)

∫
B′1

w dµ (17)

.
1

µ(B′2)

∫
B′2

w dµ (18)

.

(
µ(B′2)

µ(B′′2 )

)p−1 1

µ(B′′2 )

∫
B′′2

w dµ (19)

.
1

µ(B′′2 )

∫
B′′2

w dµ (20)

.
1

µ(B2)

∫
B2

w dµ.

Line (16) follows from the fact that the measure w dµ is doubling, while (18) and (19) are Lemma
4.2 (iv) and (ii), respectively. On lines (17) and (20) we used the fact that µ(B′′i ) ≈ µ(B′i) ≈ µ(Bi).

Finally, if
(
B′1 = B0, . . . , BN = B′2

)
is the shortest Whitney chain connecting B′1 and B′2, we

have that N . C by the previous arguments. Since each pair of consecutive balls (Bj−1, Bj) in the
chain has nonempty intersection, we have rad(Bj−1) ≈ rad(Bj) by Lemma 3.3(iv) and therefore
rad(B0) ≈ rad(Bj) ≈ rad(BN ) for every for every j = 1, . . . , N, because N . C. Moreover, if
pj ∈ Bj−1 ∩Bj , the triangle inequality gives

d(p0, pN ) ≤
N∑
j=1

d(pj−1, pj) ≤
N∑
j=1

2 rad(Bj−1) . rad(BN ).

It follows from Lemma 3.2 that µ(B′1) ≈ µ(B′2), which in turn implies µ(B1) ≈ µ(B2). We conclude
that ∫

B1

w dµ .
∫
B2

w dµ

and, swapping the roles of B1 and B2, the inequality in the other direction. �
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