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TRACES OF VANISHING HÖLDER SPACES

KAUSHIK MOHANTA, CARLOS MUDARRA, AND TUOMAS OIKARI

Abstract. For an arbitrary subset E ⊂ R
n and a modulus of continuity ω, we define the subspaces

of vanishing jets V̇J
m,ω

Γ (E) of the jet spaces J̇
m,ω

(E), for the vanishing scales Γ ∈ {small, large, far},
and up to order m ∈ N∪{0}. We show that each Γ-vanishing jet of order m is obtained by restricting
a globally defined function whose mth derivative is in the Γ-vanishing Hölder space. This amounts
to proving that the linear Whitney extension operator preserves separately each of the vanishing
scales from E to the whole ambient space R

n.

Further results will soon appear in a second version of this manuscript.

1. Introduction and main results

1.1. Introduction. The vanishing Hölder spaces V̇C
ω

Γ(X,Y ), for scales Γ ∈ {small, large, far}, for
Banach spaces X,Y, and for moduli of continuity ω (that cover the setting considered in this article),
were recognized by the two last named authors [14] as the correct concept that provides a complete

description of those Hölder functions Ċ0,ω(X,Y ) approximable by Lipschitz or smooth or boundedly

supported test functions. In this article we continue to study the scales V̇C
ω

Γ(R
n, Y ), with X = R

n

and Y an arbitrary normed space.

We are interested in understanding when a given vanishing scale restricted to a proper subset
E ⊂ R

n, admits a bounded linear extension operator L : V̇C
ω

Γ(E,Y ) → V̇C
ω

Γ(R
n, Y ) to the whole

ambient space. Our answer is that for a completely arbitrary subset E ⊂ R
n, a single linear bounded

extension operator exists and works simultaneously for all the scales Γ ∈ {small, large, far}. We use
the classical Whitney extension operator.

Without much added complexity in the proofs, we do not only consider the possibility of extending
the function itself, but also its putative derivatives. In particular, we provide a full description of
exactly when a jet A ∈ J̇

m,ω
(E,Y ) is obtained by restricting a function F ∈ Ċm,ω

Γ (Rn, Y ). This

amounts to showing that the Whitney extension operator maps the vanishing jet spaces J̇
m,ω

Γ (E,Y )

to Ċm,ω
Γ (Rn, Y ), i.e. preserves separately each of the vanishing scales; see Section 1.2 for the precise

definitions and statements of these results.

One perspective to our results is as follows. The scale of Hölder spaces Ċ0,ω can be seen to
measure the smoothness of a function relative to any fixed modulus ω(t) > 0, and when ω(t) = 0
the space BMO of bounded mean oscillations is often substituted as the zeroth order smoothness
measure. As opposed to real-valued Hölder functions Ċ0,ω(E), with E ⊂ R

n arbitrary, being

extendable to the whole ambient space Ċ0,ω(Rn), for example by the infimal convolution formulae
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x 7→ infy∈E{f(y) +Mω(|x − y|)}, this is far from being true for functions in BMO. Indeed, given
a connected open set (a domain) Ω ⊂ R

n, a classical theorem of Jones [12] tells us that a bounded
linear extension operator L : BMO(Ω) → BMO(Rn) exists if and only if Ω is uniform. With BMO,
geometry of the domain appears naturally. A recent result of Dalia and Gafni [4, Theorem 3.]
(see also [5]) extends Jone’s result by providing a single bounded extension operator on BMO(Ω)
and also on several of its subspaces determined by approximability by nice functions, or by having
appropriate vanishing mean oscillations. Our results are in the same spirit as Butaev’s and Gafni’s,
but opposed to Jones’; we consider vanishing subspaces, but get rid of all geometry by reintroducing
an order of smoothness ω(t) > 0.

Secondly, it follows from our results that a single bounded extension operator exists for the
intersection V̇C

ω
of the three vanishing scales. In particular, for the Hölder moduli α(t) := tα,

for α ∈ (0, 1), [14, Theorem 1.13.] states that V̇C
α
(Rn) = VMOα(Rn), where the latter fractional

vanishing mean oscillation space was originally introduced by Guo et al. [11, Theorem 1.7.] as the
space that characterizes fractional compactness of commutators of singular integrals. (We remind
that VMOα = CMOα for Guo et al.) Hence the study of vanishing Hölder scales is also motivated

by the needs of singular integrals. The classes V̇C
0,α
small are also called the little Hölder spaces. These

are fundamental in the study of Lipschitz algebras in metric spaces; we refer to the monographs by
Weaver [17, Chapters 4 and 8], and for an exposition of these little Hölder spaces in the setting of
Ahlfors regular sets we refer to D. Mitrea, I. Mitrea, and M. Mitrea [13, Chapter 3].

For the extension of Ċ0,ω mappings between subsets of Hilbert spaces, preserving the Ċ0,ω-
seminorms, see Grünbaum and Zarantonello [10], and the monograph [2] by Benyamini and Linden-
strauss. Concerning classical (and fundamental) results on Cm,ω extension of jets in R

n, we refer to
the work of Whitney [18] and Glaeser [9]. For Whitney-type extensions of jets generated by Sobolev
functions in R

n, see, for instance, the recent paper of Shvartsman [15]. For infinite dimensional
results on C1,ω extension of jets, see the recent paper [1] by Azagra and the second named author of
the present paper. For extension results for functions (instead of jets) of order Cm or Cm,ω, or for
Sobolev functions, see for instance the papers by Brudnyi and Shvartsman [3], by Fefferman [6, 7],
by Fefferman, Israel and Luli [8].

Acknowledgements. K.M. was supported by the Academy of Finland grant no. 21000054221.
C.M. was supported by grant no. 334466 of the Research Council of Norway, “Fourier Methods and
Multiplicative Analysis”. T.O. was supported by the Finnish Academy of Science and Letters, and
by the MICINN (Spain) grant no. PID2020-114167GB-I00.

1.2. Basic definitions and main results.

Definition 1.1. Let ω : (0,∞) → (0,∞) be a modulus of continuity, E ⊂ R
n an arbitrary set,

m ∈ N ∪ {0}, and V a normed space. By an m-jet on E (to V ) we simply understand a family
of m + 1 functions {Ak : E → Lk(Rn, V )}mk=0. For us Lk(Rn, V ) denotes the vector space of all

symmetric k-linear mappings from R
n to V , and the norm we are using on Lk(Rn, V ) is the one

given by

‖T‖ := sup{‖T (u1, . . . , uk)‖V : u1, . . . , uk ∈ S
n−1}.

Then we define the trace jet space of Ċm,ω(Rn, V ) to E, denoted by J̇
m,ω

(E,V ), as the vector
space of all m-jets {Ak}

m
k=0 on E so that

‖{Ak}
m
k=0‖J̇m,ω

(E,V )

:= sup

{
‖Ak(x)−

∑m−k
j=0

1
j!Ak+j(y)(x− y)j‖

ω(|x− y|)|x− y|m−k
: x, y ∈ E, k = 0, . . . ,m

}
< ∞.

(1)
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It is clear that ‖ · ‖J̇m,ω
(E,V ) defines a seminorm on J̇

m,ω
(E,V ), and it can be made an actual

norm if we fix a point x0 ∈ E and define

|||{Ak}
m
k=0|||Jm,ω(E,V ) := ‖{Ak}

m
k=0‖J̇m,ω

(E,V ) + max
k=0,...,m

‖Ak(x0)‖.

Moreover, if V is a Banach space, this norm is complete, and
(
Jm,ω(E,V ), ||| · |||Jm,ω(E,V )

)
becomes

a Banach space.

Remark 1.2. In the case m = 0, the trace space J̇
0,ω

(E,V ) coincides with the homogeneous Hölder

space Ċ0,ω(E,V ), consisting of those f : E → V such that

‖f‖Ċ0,ω(E,V ) = sup
x 6=y
x,y∈E

‖f(x)− f(y)‖

ω(|x− y|)
< ∞.

Let us now look at functions that are defined everywhere in R
n.

Definition 1.3. Let ω : (0,∞) → (0,∞) be a modulus of continuity, m ∈ N∪{0}, and V a normed

space. Then Ċm,ω(Rn, V ) consists of those F : Rn → V of class Cm(Rn, V ) so that

‖F‖Ċm,ω(Rn,V ) = sup
x 6=y

x,y∈Rn

‖DmF (x)−DmF (y)‖

ω(|x− y|)
< ∞.

Here DmF : Rn → Lm(Rn, V ) denotes the mth (total) derivative of F. Under basic assumptions
on the modulus ω, a version of Whitney’s extension theorem says that every m-jet {Ak}

m
k=0 ∈

J̇
m,ω

(E,V ) is the restriction of some F ∈ Ċm,ω(Rn, V ) to E, in the sense that

DkF (y) = Ak(y), y ∈ E, k = 0, . . . ,m.

We recall the construction of the Whitney extension operator and give appropriate references in
Section 3.

In this article, we are insterested in subclasses of the space Ċm,ω(Rn, V ) given by the following
vanishing conditions.

Definition 1.4. Let ω : (0,∞) → (0,∞) be a modulus of continuity, m ∈ N∪ {0}, n ∈ N, and V a
normed space. We define the vanishing scales

V̇C
m,ω

small(R
n, V ) :=

{
F ∈ Ċm,ω(Rn, V ) : lim

δ→0
sup

x 6=y∈E
|x−y|≤δ

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0

}
,

V̇C
m,ω

large(R
n, V ) :=

{
F ∈ Ċm,ω(Rn, V ) : lim

δ→∞
sup

x 6=y∈E
|x−y|≥δ

‖DmF (x)−DmF (y)‖

ω(|x− z|)
= 0

}
,

V̇C
m,ω

far (Rn, V ) :=
{
F ∈ Ċm,ω(Rn, V ) : lim

δ→∞
sup

min(|x|,|y|)>δ

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0

}
.

Finally we take the intersection of all the scales,

V̇C
m,ω

(Rn, V ) := V̇C
m,ω

small(R
n, V ) ∩ V̇C

m,ω

far (Rn, V ) ∩ V̇C
m,ω

large(R
n, V ).

Problem 1.5. Given an m-jet {Ak : E → Lk(Rn, V )}mk=0 on E, what necessary and sufficient

conditions guarantee the existence of F ∈ V̇C
m,ω

Γ (Rn, V ) so that DkF restricted to E agrees with
Ak, for each k = 0, . . . ,m?

3



The answer to this problem is in the following definition. For an m-jet {Ak}
m
k=0 ∈ J̇

m,ω
(E,V ),

let us denote

R ({Ak}
m
k=0, x, y) := max

0≤k≤m

‖Ak(x)−
∑m−k

j=0
1
j!Ak+j(y)(x− y)j‖

|x− y|m−k
, x, y ∈ E. (2)

We show that the solution equals to assuming that the jet {Ak}
m
k=0 ∈ V̇J

m,ω
(E,V ) vanishes in an

appropriate manner, as described in the next definition.

Definition 1.6. Let ω : (0,∞) → (0,∞) be a modulus of continuity, E ⊂ R
n an arbitrary set,

m ∈ N ∪ {0}, and V a normed space. We define the vanishing subspaces of jets

V̇J
m,ω

small(E,V ) :=
{
{Ak}

m
k=0 ∈ J̇

m,ω
(E,V ) : lim

δ→0
sup

x 6=y∈E
|x−y|≤δ

R ({Ak}
m
k=0, x, y)

ω(|x− y|)
= 0

}
,

V̇J
m,ω

large(E,V ) :=
{
{Ak}

m
k=0 ∈ J̇

m,ω
(E,V ) : lim

δ→∞
sup

x 6=y∈E
|x−y|≥δ

R ({Ak}
m
k=0, x, y)

ω(|x− y|)
= 0

}
,

V̇J
m,ω

far (E,V ) :=
{
{Ak}

m
k=0 ∈ J̇

m,ω
(E,V ) : lim

δ→∞
sup

min(|x|,|y|)≥δ

R ({Ak}
m
k=0, x, y)

ω(|x− y|)
= 0

}
.

And we define the intersection of the three,

V̇J
m,ω

(E,V ) := V̇J
m,ω

small(E,V ) ∩ V̇J
m,ω

large(E,V ) ∩ V̇J
m,ω

far (E,V ).

Our assumptions on the moduli are as follows. We always assume that ω is non-decreasing and
satisfies

lim
t→0

ω(t) = 0, and
s

ω(s)
≤ Cω

t

ω(t)
, whenever 0 < s ≤ t < ∞, (3)

where Cω > 0 is a fixed constant. We will also eventually assume the conditions

lim
t→0

t

ω(t)
= 0, (4)

lim
t→∞

ω(t) = ∞, (5)

to deal with the small, and large and far scales, respectively. The following is our main result.

Theorem 1.7. Let ω be a modulus of continuity satisfying (3), E ⊂ R
n an arbitrary set, m ∈

N ∪ {0}, and V a Banach space. For an m-jet {Ak}
m
k=0 ∈ J̇

m,ω
(E,V ), the following hold.

(i) Provided that (4) is satisfied, the jet {Ak}
m
k=0 admits an extension F ∈ V̇C

m,ω

small(R
n, V ) if

and only if {Ak}
m
k=0 ∈ V̇J

m,ω

small(E,V ).
(ii) Provided that (5) is satisfied, and Γ ∈ {large, far}, the jet {Ak}

m
k=0 admits an extension

F ∈ V̇C
m,ω

Γ (E,V ) if and only if {Ak}
m
k=0 ∈ V̇J

m,ω

Γ (Rn, V ).

Consequently:

(iii) Assuming both (4) and (5), the jet {Ak}
m
k=0 admits an extension F ∈ V̇C

m,ω
(Rn, V ) if and

only if {Ak}
m
k=0 ∈ V̇C

m,ω
(E,V ).

Moreover, when E is closed, the result holds when V is merely a normed space, and these extensions
can be defined via the linear Whitney extension operator.

In the particular case m = 0, we deduce the following.

Corollary 1.8. Let ω be a modulus of continuity satisfying (3), E ⊂ R
n be an arbitrary set and V

a Banach space.
4



(i) Provided that (4) is satisfied, then f ∈ Ċ0,ω(E,V ) admits an extension F ∈ V̇C
0,ω
small(R

n, V )

if and only if f ∈ V̇C
0,ω
small(E,V ).

(ii) Provided that (5) is satisfied, and Γ ∈ {large, far}, then f ∈ Ċ0,ω(E,V ) admits and extension

F ∈ V̇C
0,ω
Γ (Rn, V ) if and only if f ∈ V̇C

0,ω
Γ (E,V ).

Consequently:

(iii) Consequently, assuming both (4) and (5), then f ∈ Ċ0,ω(E,V ) admits an extension F ∈

V̇C
0,ω

(Rn, V ) if and only if f ∈ V̇C
0,ω

(E,V ).

Combining Corollary 1.8 with the approximations of globally defined functions [14, Corollary
3.14.] obtained by the last two named authors we deduce the following.

Corollary 1.9. Let ω be a modulus of continuity satisfying (3), (4) and (5). Let E ⊂ R
n and V a

normed space with either E closed or V Banach.

• If f ∈ V̇C
0,ω
small(E,V ) and ε > 0, there exists G ∈ C∞(Rn;V ) ∩ Ċ0,ω(Rn, V ) such that

‖f −G|E‖Ċ0,ω(E,V ) < ε, ‖G‖Ċ0,ω(Rn,V ) . ‖f‖Ċ0,ω(E,V ).

• If f ∈ V̇C
0,ω

(E,V ) and ε > 0, there exists G ∈ C∞
c (Rn;V ) ∩ Ċ0,ω(Rn, V ) such that

‖f −G|E‖Ċ0,ω(E,V ) < ε, ‖G‖Ċ0,ω(Rn,V ) . ‖f‖Ċ0,ω(E,V ).

2. Necessity of Theorem 1.7

In this section, we give the proof of the “only if” parts of Theorem 1.7. We begin with the
following elementary observation.

Remark 2.1. If A ∈ J̇
m,ω

(E,V ), then for every r > 1, one has

max
0≤k≤m

sup
z∈E, |z|≤r

‖Ak(z)‖ ≤ C(r,m, ω,A, E) < ∞.

Proof. Write, for each z ∈ E ∩B(0, r) and z0 ∈ E be arbitrary,

‖Ak(z)‖ ≤
∥∥∥Ak(z)−

m−k∑

j=0

1

j!
Ak+j(z0)(z − z0)

j
∥∥∥+ ‖

m−k∑

j=0

1

j!
Ak+j(z0)(z − z0)

j
∥∥∥

≤ ‖A‖J̇m,ω
(E,V )|z − z0|

m−kω(|z − z0|) + C(A, z0,m) max
0≤j≤m

|z − z0|
j

. (r + |z0|)
m−k (ω(r + |z0|) + C(A, z0,m)) .

�

The following lemma will be used both in this and the next section.

Lemma 2.2. Let ω satisfy (5), E ⊂ R
n be arbitrary, m ∈ N ∪ {0}, and V a normed space. Then,

we have

V̇J
m,ω

far (E,V ) =
{
A ∈ J̇

m,ω
(E,V ) : lim

δ→∞
sup

x 6=y∈E
max(|x|,|y|)≥δ

R (A, x, y)

ω(|x− y|)
= 0

}
.

Proof. Let A = {Ak}
m
k=0 ∈ V̇J

m,ω
(E,V ) and ε > 0. Let M = M(ε) be such that if u, v ∈ E and

|u|, |v| > M, then

R (A, u, v) < εω(|u− v|).
5



Now we consider arbitrary x, y ∈ E, let K ≫ M be a large parameter that we will determine later,
and let us assume

max(|x|, |y|) ≥ K ≫ M ≥ min(|x|, |y|). (6)

Notice also that the condition V̇J
m,ω

far (E,V ) is not vaguous if and only if E is unbounded. So for
each M > 0, there is z ∈ E \B(0,M) (independent of x and y). Assume further that K ≫ |z| from
now on. Bearing in mind that x, y satisfy (6), we start by checking the case |x| ≥ K, and |y| ≤ M
first. Because of the properties of K, M, x, y, and z, it is clear that

|y − z| ≤ |x− y| and C−1|x− y| ≤ |x− z| ≤ C|x− y|; (7)

for some absolute constant C. Now, using that x, z ∈ E \ B(0,M), the relations (7) and Remark
2.1, we have, for every 0 ≤ k ≤ m,

∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(y)(x− y)j

∥∥∥

≤
∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(z)(x − z)j

∥∥∥+
∥∥∥
m−k∑

j=0

1

j!
Ak+j(z)

(
(y − z)j − (x− z)j

) ∥∥∥

≤ ε|x− z|m−k ω(|x− z|) + C(m) max
0≤j≤m−k

sup
B(0,|z|)

‖Ak+j‖
(
|y − z|j + |x− z|j

)
,

.Cω ,m,E,‖A‖
V̇J

m,ω
(E,V )

ε|x− y|m−kω(|x− y|) + C(|z|,A)|x− y|m−k. (8)

Since K was so that K ≫ |z|, we assume that K is large to guarantee C(|z|,A) ≤ εω(K). Thus
C(|z|,A) .Cω εω(|x− y|), and from (8), we derive the bound

∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(y)(x− y)j

∥∥∥ . ε|x− y|m−kω(|x− y|), k = 0, . . . ,m. (9)

Dividing by the term |x− y|m−kω(|x− y|), and taking the maximum among k = 0, . . . ,m, we arrive
at R(A, x, y)/ω(|x − y|) . ε.

Let us now study the (non-symmetric) case |y| ≥ K, and |x| ≤ M. Let us write

∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(y)(x− y)j

∥∥∥

≤
∥∥∥
m−k∑

j=0

1

j!

(
Ak+j(y)−

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l

)
(x− y)j

∥∥∥

+
∥∥∥Ak(x)−

m−k∑

j=0

1

j!

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l(x− y)j

∥∥∥

.m

m−k∑

j=0

∥∥∥Ak+j(y)−

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l

∥∥∥|x− y|j + max
1≤l≤m

sup
|u|≤M

‖Al(u)‖|x− y|m−k. (10)

For the first term in (10), we use the estimates (9) for each j = 0, . . . ,m − k, but swapping the
roles of x and y (note that the estimates of (9) were obtained for |x| ≥ K and |y| ≤ M). We thus

6



obtain, for K large enough that

m−k∑

j=0

∥∥∥Ak+j(y)−

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l

∥∥∥|x− y|j

.

m−k∑

j=0

ε|x− y|m−k−jω(|x− y|)|x− y|j .m ε|x− y|m−kω(|x− y|).

As for the second term in (10), recall that K ≫ M and so, bearing in mind property (5) and
Remark 2.1, we can say that max1≤l≤m sup|u|≤M ‖Al(u)‖ ≤ εω(K) .Cω εω(|x − y|). Dividing by

|x− y|m−kω(|x− y|) and combining the above two cases, we conclude that

R(A, x, y)

ω(|x− y|)
= max

0≤k≤m

‖Ak(x)−
∑m−k

j=0
1
j!Ak+j(y)(x− y)j‖

|x− y|m−kω(|x− y|)
. ε,

as desired. �

So, let us assume that F ∈ V̇C
m,ω

Γ (Rn, V ) and prove that the restriction of F to E satisfies the
properties from Definition 1.6. While the proof in the case Γ = small is immediate from Taylor’s
theorem, for the scales Γ = large and Γ = far, we need to study a couple of subcases separately.

The case Γ = small. Because F ∈ Ċm,ω(Rn, V ) we use Taylor’s theorem to write, for each couple
x, y ∈ R

n of distinct points, and each k = 0, . . . ,m:

‖DkF (x)−
∑m−k

j=0
1
j!D

k+jF (y)(x− y)j‖

ω(|x− y|)|x− y|m−k
≤

1

(m− k)!
sup

z∈[x,y]

‖DmF (z)−DmF (y)‖

ω(|x− y|)
. (11)

One can continue the estimate (11) by using that DmF ∈ Ċ0,ω(Rn, V ), thus deducing that the resc-

triction of {F,DF, . . . ,DmF} to E defines an m-jet in J̇
m,ω

(E,V ). To show that those restrictions

actually belong to V̇J
m,ω

small(E,V ) is also very easy: because F ∈ V̇C
m,ω

small(R
n, V ), given ε > 0 there

exists δ > 0 so that

‖DmF (u)−DmF (v)‖ ≤ εω(|u− v|), |u− v| ≤ δ.

Thus, assuming that |x− y| ≤ δ, and as obviously then |z− y| ≤ δ for each z ∈ [x, y], the right hand
side of (11) is bounded from above by C(m)ε.

The case Γ = large. Here we assume (5) for ω and that F ∈ V̇C
m,ω

large(R
n, V ), and estimate (11) in

the following manner. For any ε > 0, let R > 0 so that |u− v| ≥ R implies ‖DmF (u)−DmF (v)‖ ≤
εω(|u − v|). Let us assume that |x − y| ≥ M, where M ≫ R and its value will be specified in a
moment. For those z ∈ [x, y] so that |z − y| ≥ R, it is enough to write

‖DmF (z) −DmF (y)‖

ω(|x− y|)
≤ ε

ω(|z − y|)

ω(|x− y|)
≤ ε.

For those z ∈ [x, y] with |z − y| < R, we see that

‖DmF (z)−DmF (y)‖

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(|z − y|)

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(R)

ω(|x− y|)
.

Due to the assumption (5), if M ≫ R is large enough, then |x− y| ≥ M implies that the last term
can be made smaller than ε. This shows that the jet given by the restriction of {F,DF, . . . ,DmF}

to E belongs to V̇J
m,ω

large(E,V ).
7



The case Γ = far. Again we assume (5) for ω and that F ∈ V̇C
m,ω

far (Rn, V ). Applying Lemma 2.2

for DmF ∈ V̇C
0,ω
far (R

n,Lm(Rn, V )), it follows that for every ε > 0 there exists R > 0 so that if
u, v ∈ R

n with |u| ≥ R, then

‖DmF (u)−DmF (v)‖

ω(|u− v|)
≤ ε. (12)

Let x, y ∈ R
n are such that |x|, |y| ≥ M , for certain M ≫ R that we will determine later. Let

z ∈ [x, y] be as on the right-hand side of (11). In the case where max(|y|, |z|) ≥ R, then

‖DmF (z) −DmF (y)‖ ≤ εω(|y − z|) ≤ εω(|x− y|),

by the bound (12). And when |y|, |z| < R, we can estimate as in the case Γ = large:

‖DmF (z)−DmF (y)‖

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(|z − y|)

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(2R)

ω(|x− y|)
.

Since |x − y| ≥ M − R, using condition (5), we can choose M ≫ R large enough so that the last
term is smaller than ε. Thus, we have the desired estimate for all possible z ∈ [x, y], and so (11)

gives that the restriction of {F,DF, . . . ,DmF} to E belongs to V̇J
m,ω

far (E,V ).

3. Sufficiency of Theorem 1.7

This section is devoted to the “if parts” of Theorem 1.7. We extend a jet from J̇
m,ω

(E,V ) to

a Ċm,ω(Rn, V ) function while simultaneously preserving a given vanishing scale. As before, our
modulus ω : (0,∞) → (0,∞) is non-decreasing, with limt→0 ω(t) = 0, and such that

s

ω(s)
≤ Cω

t

ω(t)
, whenever 0 < s ≤ t < ∞, (13)

for some Cω > 0; or equivalently that

ω(λt) ≤ Cωλω(t), for all λ ≥ 1, t > 0. (14)

The first reduction in the extension Problem 1.5 is to notice that the unique continuous extension
Ā of A ∈ V̇J

m,ω

Γ (E,V ) to the closure Ē of E satisfies

‖Ā‖J̇m,ω
(E,V ) = ‖A‖J̇m,ω

(E,V ), and Ā ∈ V̇J
m,ω

Γ (Ē, V ), (15)

for each scale Γ ∈ {small, far, large}.
Indeed, this is possible since we are assuming that V is a Banach space, and thus the functions

Ak ∈ (A1, . . . , Am) ∈ A of a jet map Cauchy sequences of E to Cauchy sequences of Lk(Rn, V ).
Since V is Banach, so is Lm(Rn, V ). Thus if {xj} is Cauchy in E with a limit x̄ ∈ Ē, then

{Am(xj)} is Cauchy in Lm(Rn, V ), by the estimate

‖Am(xj)−Am(xi)‖ . ‖A‖J̇m,ω
(E,V )ω(|xj − xi|) → 0, min(i, j) → ∞.

Thus the limit Ām(x̄) := Am(x̄) ∈ Lm(Rn, V ) is uniquely determined and in this way we extend
Am to Ē. Now the extension of the case k = m− 1, i.e. Am−1 as Ām−1, follows by recursing from
the case k = m above and the definition of (1).

Thus for the extension problem, we can assume that E ⊂ R
n is closed. In fact, only here we need

the completeness of V. Thus, if the given set E ⊂ R
n is closed, Theorem 1.7 holds for V a normed

space.
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Whitney partition of unity. We begin by recalling the main properties of the Whitney decomposition
of an open set into cubes. For a closed set E, the Whitney cubes associated with the open set Rn\E
is a collection Q of dyadic cubes with the following properties:

• There holds that
⋃

Q∈QQ = R
n \E.

• For every Q ∈ Q, there holds that d(Q,E) ≤ diam(Q) ≤ 4d(Q,E).
• If Q,Q′ ∈ Q are two distinct cubes, then int(Q) ∩ int(Q′) = ∅.

To construct a C∞ partition of unity associated with these cubes, for each Q ∈ Q denote Q∗ := 9/8Q
and let pQ ∈ E be a point (not necessarily unique) for which d(E,Q) = d(pQ, Q). A C∞-Whitney
partition of unity is, in particular, a collection of functions {ϕQ : Q ∈ Q} such that each ϕQ is
supported on Q∗. Many relevant properties hold for these families of cubes and functions, and we
refer to [16, Chapter VI] for a detailed exposition of this topic.

Proposition 3.1. The Whitney partition of unity satisfies the following properties.

(i) There holds that ⋃

Q∈Q

Q =
⋃

Q∈Q

Q∗ = R
n \ E.

(ii) There exists a dimensional constant N(n) > 0 so that
∑

Q∈Q

1Q∗ ≤ N(n);

i.e. every x ∈ R
n \E is contained in a neighbourhood that intersects at most N(n) cubes of

the family {Q∗ : Q ∈ Q}.
(iii) There exists an absolute constant C > 0 so that for all cubes Q ∈ Q there holds that

|pQ − y| ≤ C|x− y|, whenever x ∈ Q∗, y ∈ E.

(iv) For each Q ∈ Q, there holds that

0 ≤ ϕQ ≤ 1Q∗ , ϕQ ∈ C∞(Rn).

(v) Partition of unity: for all x ∈ R
n \ E, there holds that

∑

Q∈Q

ϕQ(x) =
∑

Q :Q∗∋x

ϕQ(x) = 1,
∑

Q∈Q

DkϕQ(x) = 0, k ∈ N.

Notice that the latter follows from the first and (ii).
(vi) For each k ∈ N, there exists a constant C(n, k) so that for all Q ∈ Q and z ∈ Q∗, there

holds that

‖DkϕQ(z)‖ ≤ C(n, k)d(z,E)−k .

Now, given a jet A = {Ak}
m
k=0 ∈ J̇

m,ω
(E,V ) and a point y ∈ E, we define the polynomial

PA
y : Rn → V, PA

y (x) =
m∑

k=0

1

k!
Ak(y)(x− y)k, x ∈ R

n.

And with these, the Whitney extension operator

W(A)(x) =




A0(x), x ∈ E,∑
Q∈Q

ϕQ(x)P
A
pQ

(x), x ∈ R
n \ E. (16)
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Using the properties (ii) and (iv), it is easy to see that Wf ∈ C∞(Rn \E), and for every multi-index
α ∈ (N ∪ {0})n, the α-partial derivative Dα(Wf) : Rn \E → V is given by

Dα(W(A))(x) =
∑

Q∈Q

∑

β≤α

(
α

β

)
DβϕQ(x)D

α−βPA
pQ

(x), x ∈ R
n \ E. (17)

Naturally, for any function G : Rn → V, the β-partial derivative DβG(x) at x ∈ R
n is defined as

DβG(x) =
∂|β|G

∂xβ1
1 · · · ∂xβn

n

(x) = D|β|G(x)(e1,
β1. . ., e1, . . . , en,

βn. . ., en),

where ei is the ith unit vector.

A classical result is that for a V = R valued m-jet A ∈ J̇
m,ω

(E,V ), there holds that

W(A) ∈ Ċm,ω(Rn, V ), ‖W(A)‖Ċm,ω(Rn,V ) ≤ κ(n,m,Cω)‖A‖J̇m,ω
(E,V ), (18)

for a constant κ(n,m,Cω) depending only on n, m, and the constant Cω from (13). A proof can
be found in [16, Chapter VI, p.175]. However, a small modification of the arguments therein shows

that (18) is satisfied for all A ∈ J̇
m,ω

(E,V ), with an arbitrary normed space V.

Nevertheless, it seems very far from elementary to determine the action of the Whitney extension
operator (16) over the three vanishing scales. For each scale, we study pairs (x, y) and their relative
position with respect to E and |x− y|. Although this separation into cases will be the same for each
scale, we split the proof of Theorem 1.7 into three parts, with each of the scales presenting its own
particular difficulties.

During the proof we will fix an m-jet A ∈ V̇J
m,ω

Γ (E,V ), whose norm ‖A‖J̇m,ω
(E,V ) < ∞ is

considered to be an absolute constant. Moreover, we indicate the dependence on the dimension or
on the order of smoothness m in some estimates by including subscripts, e.g. .n, .m, .n,m . The
same applies for the constant Cω associated with the modulus ω from (13). Thus, when using the
notation A . B, the constant C involved in the estimate A ≤ C · B is allowed to depend on n, m,
‖A‖J̇m,ω

(E,V ) and Cω.

To simplify notation, we denote by F := W(A) the Whitney Extension (16) and also Py = PA
y ,

for each y ∈ E.
We will use several times the estimates of the following Lemma 3.2, which are implicitly proved

in [16].

Lemma 3.2. Let y ∈ E. Let x ∈ R
n\E and ξ = ξ(x) ∈ E be a point that minimizes d(x,E) = |x−ξ|.

Then,

(a) ‖DmF (x)−Am(y)‖ .m,n

∑
Q∗∋x

(
R(A, y, pQ) +R(A, ξ, pQ)

)
,

(b) ‖Dm+1F (x)‖ .m,n

∑
Q∗∋xR(A, ξ, pQ)|x− ξ|−1.

Proof.
(a) Using multi-index notation, the polynomials Py, y ∈ E, can be expressed as

Py(x) :=
m∑

k=0

1

k!
Ak(y)(x− y)k =

∑

|β|≤m

1

β!
Aβ(y)(x− y)β , (19)

where the Aβs are defined as follows. For any multi-index β = (β1, . . . , βn) ∈ (N ∪ {0})n of order
|β| :=

∑
j βj ≤ m, and y ∈ E, we set

Aβ(y) := A|β|(y)(e1,
β1. . ., e1, . . . , en,

βn. . ., en); (20)

where ei is the ith unit vector. Also, for any such β and z = (z1, . . . , zn) ∈ R
n, we denote

zβ = zβ1
1 · · · zβn

n .
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The second identity in (19) follows from the symmetry and the k-linearity of the Aks’ and a basic
combinatorial argument. Thus, for every multi-index α ∈ (N ∪ {0})n of order |α| = m, one has
DαPy(x) = Aα(y), for every x ∈ R

n and y ∈ E. Now, to show the point (a) it is enough to show
that for each multi-index α of order |α| = m, there holds that

‖DαF (x)−Aα(y)‖ .m,n

∑

Q∗∋x

(
R(A, y, pQ) +R(A, ξ, pQ)

)
. (21)

Then, using the multilinearity of DmF (x)−Am(y), the bound (a) follows.
Also, by property (v),

∑
QDγϕQ(x) = 0 for any multi-index γ with |γ| ≥ 1. These observations

and formula (17) permit to write, for x ∈ R
n \E, y ∈ E, and for a multi-index α of order |α| = m :

DαF (x)−Aα(y) =
∑

Q

Dα(ϕQ · PpQ)(x)−Aα(y) =
∑

Q

ϕQ(x) (Aα(pQ)−Aα(y))+

+
∑

Q

∑

β≤α, β 6=α

(
α

β

)
Dα−βϕQ(x)

(
DβPpQ(x)−DβPξ(x)

)
.

The first term is estimated using the definition of R(A, ·, ·) (2):
∥∥∥
∑

Q

ϕQ(x) (Aα(pQ)−Aα(y))
∥∥∥ ≤

∑

Q∗∋x

‖Aα(pQ)−Aα(y)‖ ≤
∑

Q∗∋x

R(A, y, pQ).

For the second term, we take into account that the polynomials PpQ − Pξ have degree up to m,
and so, for |β| ≤ m,

DβPpQ(x)−DβPξ(x) =
∑

|γ|≤m−|β|

1

γ!

[
Dβ+γ(PpQ − Pξ)(ξ)

]
(x− ξ)γ

=
∑

|γ|≤m−|β|

1

γ!

[
Dβ+γPpQ(ξ)−Aβ+γ(ξ)

]
(x− ξ)γ

=
∑

|γ|≤m−|β|

1

γ!




∑

|δ|≤m−|β+γ|

1

δ!
Aδ+β+γ(pQ)(ξ − pQ)

δ −Aβ+γ(ξ)


 (x− ξ)γ .

Now from the formula (2), it follows that

‖DβPpQ(x)−DβPξ(x)‖ ≤

m−|β|∑

j=0

R(A, ξ, pQ)|ξ − pQ|
m−|β|−j|x− ξ|j . (22)

This estimate and property (vi), and also |α| = m, lead us to

∥∥∥
∑

Q

∑

β≤α, β 6=α

(
α

β

)
Dα−βϕQ(x)

(
DβPpQ(x)−DβPξ(x)

) ∥∥∥

≤ C(n,m)
∑

Q∗∋x

∑

β≤α, β 6=α

|x− ξ|−(m−|β|)‖DβPpQ(x)−DβPξ(x)‖

≤ C(n,m)
∑

Q∗∋x

R(A, ξ, pQ)
m−1∑

k=0

m−k∑

j=0

(
|ξ − pQ|

|x− ξ|

)m−k−j

≤ C(n,m)
∑

Q∗∋x

R(A, ξ, pQ), (23)

where in the last bound we used that |ξ − pQ| ≤ C|x− ξ|, for an absolute constant C, by (iii).
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(b) The proof is very similar to that of (a). Since the polynomials have degree up to m, if α is a
multi-index with order |α| = m+ 1, then

DαF (x) =
∑

Q

∑

β≤α,|β|≤m

(
α

β

)
Dα−βϕQ(x)D

βPpQ(x)

=
∑

Q

∑

β≤α,|β|≤m

(
α

β

)
Dα−βϕQ(x)

(
DβPpQ(x)−DβPξ(x)

)
.

By the estimate (22), the arguments that led us to (23) and to the conclusion of (a), we derive

‖DαF (x)‖ ≤ C(n,m)
∑

Q∗∋x

m∑

k=0

∑

|β|=k

|x− ξ|−(m+1−k)‖DβPpQ(x)−DβPξ(x)‖

≤ C(n,m)
∑

Q∗∋x

R(A, ξ, pQ)|x− ξ|−1.

Then, using the multilinearity of Dm+1F (x) the bound (b) follows. �

Proof of Theorem 1.7 for Γ = small. Given A ∈ V̇J
m,ω

small(E,V ), we show that F ∈ V̇C
m,ω

small(R
n, V ),

i.e. that

lim
|x−y|→0

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0,

uniformly on x, y ∈ R
n. Denote

S(t) := sup

{
R(A, u, v)

ω(|u− v|)
: u, v ∈ E, 0 < |u− v| ≤ t

}
, (24)

understanding that S(t) = 0 if there is no such couple u, v ∈ E with 0 < |u− v| ≤ t. We have that
S(t) → 0 as t → 0 and S(t) ≤ ‖A‖J̇m,ω

(E,V ). We distinguish three possible situations for any couple

of distinct points x, y ∈ R
n, where at least one of them is outside E.

Case 1. Assume x ∈ R
n \ E and y ∈ E.

We will use property (iii), which tells us that if x ∈ Q∗, then |pQ − y| ≤ C|x − y|, for some
absolute constant C > 0. Let ξ = ξ(x) ∈ E minimize d(x,E) = |x− ξ|. Together with Lemma 3.2,
and the definition of S, we find that

‖DmF (x)−DmF (y)‖ = ‖DmF (x)−Am(y)‖

.
∑

Q∗∋x

(
R(A, y, pQ) +R(A, ξ, pQ)

)

≤
∑

Q∗∋x

(S(|y − pQ|)ω(|y − pQ|) + S(|ξ − pQ|)ω(|ξ − pQ|))

.n S(C|x− y|)ω(|x− y|),

where we used property (14) of ω in the last inequality. Therefore

‖DmF (x)−DmF (y)‖

ω(|x− y|)
. S(C|x− y|), (25)

and the right-hand side tends to zero as |x− y| → 0.

Case 2. Assume that x, y ∈ R
n \ E and d([x, y], E) ≤ |x − y|. Pick z ∈ [x, y] and p ∈ E

minimizing d([x, y], E) = |z − p|. Then,

|x− p| ≤ |x− z|+ |z − p| ≤ |x− y|+ |x− y| = 2|x− y|
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and the same holds for |y − p|. Then |x− p|, |y − p| ≤ 2|x− y| and applying the estimate (25) from
Case 1 (for x ∈ R

n \ E and p ∈ E, and for y ∈ R
n \ E and p ∈ E) we obtain,

‖DmF (x)−DmF (y)‖ ≤ ‖DmF (x)−DmF (p)‖+ ‖DmF (p)−DmF (y)‖

. S(2C|x− y|)ω(2|x − y|),

which is a bound of the correct form.

Case 3. Assume x, y ∈ R
n \ E, and d([x, y], E) ≥ |x − y|. Here we use the assumption

limt→0 t/ω(t) = 0.
Let us begin with a computation for arbitrary z ∈ R

n \E. Let ξ = ξ(z) ∈ E minimize d(z,E) =
|z − ξ|. Then, by the formula (16) and the properties (iii), (v) and (vi) we have

‖Dm+1F (z)‖ .
∑

Q∗∋z

R(A, ξ, pQ)

|z − ξ|
≤

∑

Q∗∋z

ω(|pQ − ξ|) S(|pQ − ξ|)

d(z,E)
.n

ω(d(z,E)) S(C d(z,E))

d(z,E)
.

In the last inequality, together with (iii), we used the fact that every point of Rn \ E is contained
in at most N(n) cubes Q∗ as well as property (14) of ω. As DmF is differentiable on R

n \ E and
the segment [x, y] lies outside E, by the mean value inequality (for normed-valued mappings) and
the above estimate we obtain

‖DmF (x)−DmF (y)‖

ω(|x− y|)
≤

|x− y|

ω(|x− y|)
sup

z∈[x,y]
‖Dm+1F (z)‖ .n sup

z∈[x,y]
Uz(x, y); (26)

where

Uz(x, y) :=
|x− y|

ω(|x− y|)

ω(d(z,E))

d(z,E)
S(C d(z,E)).

Now we fix z ∈ [x, y] and we consider the behaviour of d(z,E) as |x − y| tends to zero. By
limt→0 S(t) = 0, we have the following: for any ε > 0, let δ > 0 be so that S(t) ≤ ε, whenever t ≤ δ.
First, if C d(z,E) ≤ δ, then by |x− y| ≤ d(z,E) and property (13) for ω, we obtain

Uz(x, y) . S(C d(z,E)) ≤ ε.

On the other hand, if C d(z,E) ≥ δ, we use the property (13) of ω and that S ≤ ‖A‖J̇m,ω
(E,V ) to

bound

Uz(x, y) .δ
|x− y|

ω(|x− y|)
· 1 · ‖A‖J̇m,ω

(E,V ) .
|x− y|

ω(|x− y|)
;

now the right-hand side tends to zero as |x− y| tends to 0, by the condition (4). We conclude from
the above cases and (26) that ‖DmF (x)−DmF (y)‖/ω(|x − y|) → 0 as |x− y| → 0, uniformly. �

Proof of Theorem 1.7 for Γ = large. Let A ∈ V̇J
m,ω

large(E,V ) and we show that F ∈ V̇C
m,ω

large(R
n, V ).

Denote

L(t) := sup

{
R(A, u, v)

ω(|u− v|)
: u, v ∈ E, |u− v| ≥ t

}
,

so that L(t) ≤ ‖A‖J̇m,ω
(E,V ), L is non-increasing, and L(t) → 0 as t → ∞. We understand S(t) = 0

when there are no u, v ∈ E with |u− v| ≥ t.

Case 1. Let x ∈ R
n \ E and y ∈ E.

For each cube Q ∈ Q so that x ∈ Q∗, we have |pQ − y| ≤ C|x − y| for an absolute constant
C; see (iii). Let ξ = ξ(x) ∈ E minimize d(x,E) = |x − ξ|. In this case, although we are letting
|x− y| → ∞, we do not know whether |pQ − y| or |pQ − ξ| are large or not. Therefore, we need to
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study the behaviour of |pQ − z|, for z ∈ {y, ξ} as |x− y| → ∞. If |pQ − z| ≤ M (for a constant M
that we will specify in a moment), then we have the bound

R(A, z, pQ)

ω(|x− y|)
≤ ‖A‖J̇m,ω

(E,V )

ω(|z − pQ|)

ω(|x− y|)
.

ω(M)

ω(|x− y|)
. (27)

On the other hand, if |pQ − z| ≥ M, then L(|pQ − z|) ≤ L(M) and so

R(A, z, pQ)

ω(|x− y|)
≤ L(|pQ − z|)

ω(|pQ − z|)

ω(|x− y|)
≤ L(M)

ω(C|x− y|)

ω(|x− y|)
. L(M). (28)

We have used that if z ∈ {y, ξ}, then |pQ − z| ≤ C|x− z| ≤ C|x− y|, by virtue of (iii). Now, given
ε > 0, we choose M > 0 large enough so that L(M) ≤ ε. Using ω(∞) = ∞, we find K > M such
that ω(|x− y|) ≥ ε−1ω(M), provided that |x− y| ≥ K. Thus the bounds (27) and (28) tell us that
regardless of the size of |pQ − z|, we have

R(A, z, pQ)

ω(|x− y|)
. ε, z ∈ {y, ξ}. (29)

From the bound (29) and Lemma 3.2, we obtain

‖DmF (x)−DmF (y)‖

ω(|x− y|)
.

∑

Q∗∋x

(
R(A, y, pQ)

ω(|x− y|)
+

R(A, ξ, pQ)

ω(|x− y|)

)
.n ε,

whenever |x− y| ≥ K.

Case 2. Assume x, y ∈ R
n \ E, and d([x, y], E) ≤ |x − y|. Let p = p(x, y) ∈ E minimize

d([x, y], E). Then, again, |x−p|, |y−p| ≤ 2|x−y|. Similarly, we saw already in Case 1 the following:
given ε > 0, there exists M > 0 (independent of x ∈ R

n \ E and p ∈ E) such that: if |x− p| ≥ M,
then

‖DmF (x)−DmF (p)‖ ≤ εω(|x− p|) ≤ εω(2|x − y|) . εω(|x− y|). (30)

Now, consider |x− p| ≤ M and let K > 0 be so large that εω(K) > ω(M). Now if also |x− y| ≥ K,
then we have

‖DmF (x)−DmF (p)‖ ≤ ‖F‖Ċm,ω(Rn,V )ω(|x− p|) . ω(M) ≤ εω(K) ≤ εω(|x− y|). (31)

We used above the fact that the Whitney extension is a bounded operator. Combining (30) and
(31), we obtain

sup
|x−y|>K

‖DmF (x)−DmF (p)‖

ω(|x− y|)
. ε. (32)

And the same bound holds with y in place of x; thus by triangle inequality,

sup
|x−y|>K

‖DmF (x)−DmF (y)‖

ω(|x− y|)

≤ sup
|x−y|>K

‖DmF (x)−DmF (p)‖

ω(|x− y|)
+ sup

|x−y|>K

‖DmF (p)−DmF (y)‖

ω(|x− y|)
. ε.

Case 3. Assume x, y ∈ R
n \ E and d([x, y], E) > |x− y|.

For any ε > 0, let M > 0 be so that L(M) ≤ ε and also choose K ≫ M so that εω(K) ≥ ω(M).
For any two points u, v ∈ E, we have either R(A, u, v) ≤ εω(|u − v|) (when |u − v| ≥ M) or
R(A, u, v) ≤ ‖A‖V̇J

m,ω
(E,V )ω(M) (when |u− v| ≤ M). In other words,

R(A, u, v) . max{εω(|u− v|), ω(M)}, for all u, v ∈ E. (33)
14



Let z ∈ [x, y] and let ξ = ξ(z) ∈ E minimize d(z,E) = |z − ξ|. Employing first Lemma 3.2, then
(33), and finally property (ii), we derive

‖Dm+1F (z)‖ .n

∑

Q∗∋z

R(A, ξ, pQ)

d(z,E)
.n max

Q∈Q :Q∗∋z

R(A, ξ, pQ)

d(z,E)
(34)

≤ max
Q∈Q :Q∗∋z

max{εω(|pQ − ξ|), ω(M)}

d(z,E)
.n

max{εω(d(z,E)), ω(M)}

d(z,E)
. (35)

We used the fact that when z ∈ Q∗, then |pQ − ξ| ≤ C|z − ξ|. Then (35) and the mean value
inequality (for normed-valued mappings) give

‖DmF (x)−DmF (y)‖

ω(|x− y|)
≤

|x− y|

ω(|x− y|)
sup

z∈[x,y]
‖Dm+1F (z)‖

.n sup
z∈[x,y]

|x− y|

ω(|x− y|)

max{εω(d(z,E)), ω(M)}

d(z,E)
.

(36)

By property (13) of ω and d(z,E) ≥ |x− y|, for all z ∈ [x, y], we continue bounding,

RHS (36) . sup
z∈[x,y]

max

{
ε,

|x− y|

ω(|x− y|)

ω(M)

d(z,E)

}
≤ max

{
ε,

ω(M)

ω(|x− y|)

}
. (37)

Recalling that εω(K) ≥ ω(M) we conclude

sup
|x−y|>K

‖DmF (x)−DmF (y)‖

ω(|x− y|)
. sup

|x−y|>K

max

{
ε,

ω(M)

ω(|x− y|)

}
≤ ε.

�

Proof of Theorem 1.7 when Γ = far. Here we assume that ω(∞) = ∞. We denote

D(t) := sup

{
R(A, u, v)

ω(|u− v|)
: u, v ∈ E, max(|u|, |v|) ≥ t

}
,

so that D(t) ≤ ‖A‖J̇m,ω
(E,V ) and D is non-increasing, and moreover, thanks to Lemma 2.2, that

D(t) → 0 as t → ∞. We show that

lim
K→∞

sup
x,y∈Rn

min(|x|,|y|)≥K

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0.

Case 1. Let x ∈ R
n \ E, y ∈ E. Given ε > 0, let M > 0 be such that D(M) ≤ ε. We

consider |x| ≥ K ≫ M for a large constant K to be soon determined. Let ξ = ξ(x) ∈ E minimize
d(x,E) = |x−ξ|. Applying Lemma 3.2 and bearing in mind the property (ii), we find a cube Qx ∈ Q
with x ∈ (Qx)

∗, and z ∈ {ξ, y} so that

‖DmF (x)−DmF (y)‖

ω(|x− y|)
≤

∑
Q∗∋xR(A, y, pQ) +R(A, ξ, pQ)

ω(|x− y|)
.n

R(A, z, pQx)

ω(|x− y|)

≤ min{D(|pQx |),D(|z|), ‖A‖J̇m,ω
(E,V )}

ω(|pQx − z|)

ω(|x− y|)
. (38)

The last inequality is a consequence of the definition of D(t). Now, if either |pQx | ≥ M or
|z| ≥ M, the minimum in the term (38) is smaller than ε due to the choice of M. And because
|pQx−z| ≤ C|x−y| for an absolute constant C > 0 (see (iii)); we conclude that (38) is bounded by an
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absolute multiple of ε in this particular case. And if |pQx| ≤ M and |z| ≤ M, then |pQx − z| ≤ 2M,
and so ω(|pQx − z|) . ω(M) and we bound

RHS (38) .
ω(M)

ω(||x| −M |)
.

ω(M)

ω (K −M)
.

By ω(∞) = ∞ the right-hand side is smaller than ε provided that K ≫ M is taken sufficiently
large.

Case 2. Assume x, y ∈ R
n \ E and d([x, y], E) ≤ |x− y|.

Let ε > 0 and let R > 0 be as in Case 1. Suppose that |x|, |y| ≥ K. Let p ∈ E be such that
d([x, y], E) = d([x, y], p), and then |x− p|, |y − p| ≤ 2|x− y|, as we have already seen several times.
By Case 1 applied to the pairs of points x ∈ R

n \ E, p ∈ E and y ∈ R
n \E, p ∈ E, we have

‖DmF (x)−DmF (p)‖ . εω(|x− p|), ‖DmF (y)−DmF (p)‖ . εω(|y − p|).

Thus the claim follows by triangle inequality.
Case 3. Assume x, y ∈ R

n \ E and d([x, y], E) ≥ |x− y|.
Let ε > 0, and K ≫ M be the parameters we used in Case 1. Note that we can enlarge K if

necessary so as to satisfy

K ≥ 2M and ω(M) ≤ εω(K). (39)

Note that condition (5) guarantees the existence of such K. Let us also assume that |x| ≥ K.
Following the lines (34) and (36), we find z ∈ [x, y], a point ξ = ξ(z) ∈ E minimizing d(z,E) =
|z − ξ|, and a cube Qz ∈ Q with z ∈ Q∗ so that

‖DmF (x)−DmF (y)‖

ω(|x− y|)
.n

|x− y|

ω(|x− y|)

R(A, ξ, pQz)

d(z,E)
. (40)

First of all, observe that when |ξ| ≥ M or |pQz | ≥ M , then R(A, ξ, pQz) ≤ εω(|ξ − pQz |), with
|ξ − pQz | ≤ C|ξ − z| = Cd(z,E). Thus, in this particular subcase, using (13) we can estimate

RHS (40) .
|x− y|

ω(|x− y|)

ω(d(z,E))

d(z,E)
ε .Cω ε. (41)

Therefore, we will assume from now on that |ξ|, |pQz | ≤ M. Now, we look at the last numerator
in (40); observe that, by the definition of R(A, ξ, pQz), and the fact that F extends the jet A from

E to R
n, we can find some k ∈ {0, . . . ,m} and some ξ̃ ∈ [ξ, pQz ] so that

R(A, ξ, pQz) ≤
‖Ak(ξ)−

∑m−k
j=0

1
j!Ak+j(pQz)(ξ − pQz)‖

|ξ − pQz |
m−k

=
‖DkF (ξ)−

∑m−k
j=0

1
j!D

k+jF (pQz)(ξ − pQz)‖

|ξ − pQz |
m−k

. ‖DmF (ξ̃)−DmF (pQz)‖. (42)

Now, since F ∈ Ċm,ω(Rn, V ) with ‖F‖Ċm,ω(Rn,V ) .n,m,Cω ‖A‖J̇m,ω
(E,V ), and |ξ̃−pQz | ≤ |ξ−pQz | ≤

2M, we can combine the estimates (40) and (42) to derive

‖DmF (x)−DmF (y)‖

ω(|x− y|)
.n,m,Cω

|x− y|

ω(|x− y|)

‖DmF (ξ̃)−DmF (pQz)‖

d(z,E)

.‖A‖
J̇
m,ω

(E,V )

|x− y|

ω(|x− y|)

ω(|ξ̃ − pQz |)

d(z,E)
.Cω

|x− y|

ω(|x− y|)

ω(M)

d(z,E)
. (43)

To complete the proof, observe that (39) gives

d(z,E) = |z − ξ| ≥ |z| − |ξ| ≥ K −M ≥ K/2,
16



and ω(M) ≤ εω(K) .Cω εω(d(z,E)). By plugging this estimate into RHS(43) we obtain

‖DmF (x)−DmF (y)‖

ω(|x− y|)
.

|x− y|

ω(|x− y|)

ω(d(z,E))

d(z,E)
ε .Cω ε;

the last ibound being a consequence of (13) and |x− y| ≤ d(z,E).
�
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