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APPROXIMATION IN HÖLDER SPACES

CARLOS MUDARRA AND TUOMAS OIKARI

Abstract. We introduce new vanishing subspaces of the homogeneous Hölder space Ċ0,ω(X,Y ),
in the generality of a doubling modulus ω and normed spaces X and Y. For many couples X,Y,

we show these vanishing subspaces to completely characterize those Hölder functions that admit
approximations, in the Hölder seminorm, by smooth, Lipschitz and boundedly supported functions.
Beyond the intrinsic interest of these results, we also present connections to bi-parameter harmonic
analysis on the Euclidean space and in particular to compactness of the bi-commutator.

1. Introduction and main results

1.1. Introduction. We consider normed spaces X,Y and moduli of continuity ω and study the
Hölder spaces Ċ0,ω(X,Y ) that consist of those functions f : X → Y for which

‖f‖Ċ0,ω(X,Y ) = sup
x,y∈X
x 6=y

‖f(x)− f(y)‖Y
ω(‖x− y‖X)

<∞.

We establish various full characterizations of approximability in the class Ċ0,ω(X,Y ) by Lipschitz,

smooth and boundedly supported functions in terms of three vanishing subspaces of Ċ0,ω(X,Y )
that demand vanishing behaviour of the Hölder norm of functions on small, large and far away
scales. We will define these subspaces soon, but before that we make a few general observations.

First of all, if Y is a Banach space, then so is Ċ0,ω(X,Y ), when equipped with the norm

|||f |||C0,ω(X,Y ) = ‖f‖Ċ0,ω(X,Y ) + ‖f(0)‖Y . (1)

Dropping the term ‖f(0)‖Y , the seminorm ‖ · ‖Ċ0,ω(X,Y ) becomes a norm when the functions are

identified with equivalence classes modulo additive constants. In the particular case ω(t) = tα, α ∈
(0, 1), we recover the Hölder spaces Ċ0,α(X,Y ). Moreover, provided ω is any reasonable continuity

moduli – at least ω(t) → 0, as t → 0 – the spaces Ċ0,ω(X,Y ) become subspaces of uniformly
continuous functions.

The theory of uniform approximation of continuous functions by smooth functions has been
extensively studied and developed in the last decades. For instance, when X is a Hilbert space,
Lasry and Lions [20] showed that Lipschitz real-valued functions can be uniformly approximated
by C1,1 Lipschitz functions. If X is moreover separable, then a theorem of Moulis [24] allows
these approximations to be upgraded to C∞ approximations. Later, Cepedello-Boiso [5] obtained
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several results concerning C1 or C1,α approximation of uniformly continuous functions in super-
reflexive Banach spaces X – see also our Theorem 3.10 below and the very recent work of Johanis
[19], that contribute to this line of research. Then, Hájek and Johanis [13] proved that when X is
separable with a Ck smooth and Lipschitz bump, and either X or Y is super-reflexive, then uniformly
continuous mappings admit approximations by Ck maps that are still uniformly continuous. Lastly,
we mention the real-analytic approximations of Azagra, Fry, and Keener [2] when X is a Banach
space with a separating polynomial; then, Lipschitz real-valued functions on X can be uniformly
approximated by real analytic Lipschitz functions. For more background references on smoothness
and renorming on Banach spaces, and the related approximation results, we refer to the monographs
[4], by Benyamini and Lindenstrauss; [8], by Deville, Godefroy, and Zizler; and [13], by Hájek and
Johanis.

In the present article, we prove full characterizations of approximation with Hölder type rate of
convergence taking the place of uniform convergence. We note that these two types of convergence
do not follow from each other; see Appendix A for a detailed comparison with simple observations
and examples. Our main result is best described as the recognition of the vanishing scales small,
large and far (below) as precisely the concept that allows a complete description of the closure

of smooth, Lipschitz and boundedly supported functions with respect to the Ċ0,ω seminorm. We
notate

oscωδ (f) = sup
x 6=y∈X

‖x−y‖X=δ

‖f(x)− f(y)‖Y
ω(‖x− y‖X)

, oscω(x,y)(f) =
‖f(x)− f(y)‖Y
ω(‖x− y‖X)

,

and then define these three vanishing scales as

V̇
0,ω
small(X,Y ) =

{

f : X → Y : lim
δ→0

oscωδ (f) = 0
}

,

V̇
0,ω
large(X,Y ) =

{

f : X → Y : lim
δ→∞

oscωδ (f) = 0
}

,

V̇
0,ω
far (X,Y ) =

{

f : X → Y : lim
δ→∞

sup
min(‖x‖,‖y‖)>δ

oscω(x,y)(f) = 0
}

.

Definition 1.1. For each scale Γ ∈ {small, large, far}, set

V̇C
0,ω
Γ (X,Y ) = V̇

0,ω
Γ (X,Y ) ∩ Ċ0,ω(X,Y ),

V̇C
0,ω

(X,Y ) = V̇C
0,ω
small(X,Y ) ∩ V̇C

0,ω
far (X,Y ) ∩ V̇C

0,ω
large(X,Y ).

If Y is a Banach space, then so are all of V̇C
0,ω
Γ (X,Y ) as spaces of modulo additive constant

equivalence classes; for full details, see Remark 2.1 below. From now on, whenever no confusion is
possible, we start dropping the source and target spaces from the norms and simplify notation with
‖x‖X = ‖x‖ and ‖f(x)‖Y = |f(x)|; in the same way, we write Ċ0,ω(X,Y ) = Ċ0,ω(X) = Ċ0,ω, and
so on.

We assume our moduli ω to be non-decreasing and satisfy

lim
t→0

ω(t) = 0, lim
t→∞

ω(t) = ∞, (2)

lim
t→0

t/ω(t) = 0, (3)

ω(2t) ≤ Cdbω(t), for t ∈ (0,∞), (4)

where the doubling constant Cdb > 1. This is a big class of moduli that in particular covers the
Hölder modulus α(t) := tα, when α ∈ (0, 1), but of course other more exotic moduli are also covered.

The classes V̇C
0,α
small are also called the little Hölder spaces. These are important in the study of

Lipschitz algebras in metric spaces, and we refer to the monograph by Weaver [28, Chapters 4
and 8] for a background. See also the recent monograph by D. Mitrea, I. Mitrea, and M. Mitrea
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[23, Chapter 3] for a detailed exposition of the Hölder spaces in the setting of Ahlfors regular sets
and their connection with functions of vanishing mean oscillation.

Notation. We denote A . B, if A ≤ CB for some constant C > 0 depending only on an underlying
function space that is fixed relative to ongoing considerations. For example, C could depend on the
modulus ω, or the dimension n in the case X = R

n. Then A ∼ B, if A . B and B . A. Subscripts
or variables on constants and quantifiers Ca, C(a),.a indicate their dependence on those subscripts.

1.2. Main results. We begin by stating a result without any smoothness on approximations by
functions with bounded support. Many of our later results build on this one.

Theorem 1.2. Let X,Y be normed spaces, the modulus ω satisfy (2), (3) and (4). Then, there
holds that

V̇C
0,ω

(X,Y ) = V̇C
0,ω
small(X,Y ) ∩ Cbs(X,Y )

Ċ0,ω(X,Y )

.

Here and below, for any C(X,Y ) ⊂ Ċ0,ω(X,Y ), we denote by C(X,Y )
Ċ0,ω(X,Y )

the closure of

C(X,Y ) under the Ċ0,ω(X,Y ) seminorm. We refer here to the family of those f ∈ Ċ0,ω(X,Y ) for
which there exists a sequence {fn}n ⊂ C(X,Y ) so that limn ‖fn − f‖Ċ0,ω(X,Y ) = 0. The subscripted

set Cbs(X,Y ) consists of boundedly supported functions in C(X,Y ). In Theorem 1.2 Cbs(X,Y )

denotes continuous functions with bounded support. In particular, the functions in V̇C
0,ω
small(X,Y )

are continuous, and the intersection with Cbs(X,Y ) gives the approximations bounded support.
While Theorem 1.2 does not provide any smoothness, it turns out to be a crucial step in our other

theorems. For instance, letting X = R
n and Y be a Banach space, Theorem 1.2 coupled with a

mollification argument gives C∞
bs (R

n, Y ) approximations, this is Theorem 1.6 below. Both of these
theorems will be proved in Section 2.

Our results are not confined to functions with a finite-dimensional source X, and letting Y = R,

we prove smooth and Lipschitz approximation for the classes V̇C
0,ω
small(X,R) and V̇C

0,ω
(X,R). (The

corresponding approximations for Cn-valued functions in place of R-valued then follow after splitting
into the coordinate functions and then each of these to the real and imaginary parts.) In particular,
with X being a separable normed space, we have the following general result.

Theorem 1.3. Let k ∈ N ∪ {∞} and X be a separable normed space admitting a Ck and Lipschitz
bump function. Then, for a modulus ω satisfying (2), (3) and (4), the following hold:

(i) Ck(X) ∩ Lip(X) ∩ Ċ0,ω(X)
Ċ0,ω(X)

= V̇C
0,ω
small(X),

(ii) Ck
bs(X) ∩ Lip(X)

Ċ0,ω(X)
= V̇C

0,ω
(X).

Notice that, together with the Ck order of smoothness, Theorem 1.3 guarantees Lipschitz ap-
proximations. In particular, any separable normed space X with an equivalent norm of class Ck

satisfies the assumption of Theorem 1.3, see Remark 3.6. Moreover, when X is a separable Hilbert
space, one can arrange C∞ smooth approximations, thus obtaining an infinite dimensional version
of Theorem 1.6, see Corollary 3.7. We will restate Theorem 1.3 and prove it in Subsection 3.1.

Another class of spaces X on which we obtain smooth approximations are super-reflexive Banach
spaces. A theorem of Pisier [26] says that any super-reflexive space admits a renorming with modulus
of smoothness of power type 1 + α, for some α ∈ (0, 1] – see (35) below for the precise formulation.
These spaces contain the Hilbert (separable or not) spaces, together with many of the classical
Banach function spaces, such as the Lp spaces, with 1 < p <∞; see Remark 3.11. In the following

theorem we establish C1,α and Lipschitz approximations for the classes V̇C
0,ω

(X) and V̇C
0,ω
small(X).
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Theorem 1.4. Let X be a super-reflexive space that admits a renorming with modulus of smoothness
of power type 1+α, α ∈ (0, 1]. Then, for a modulus ω satisfying (2), (3) and (4), the following hold:

(i) C1,α(X) ∩ Lip(X) ∩ Ċ0,ω(X)
Ċ0,ω(X)

= V̇C
0,ω
small(X),

(ii) C1,α
bs (X)

Ċ0,ω(X)
= V̇C

0,ω
(X).

In Remark 3.11, we will see that in Hilbert spaces and in Lp spaces, with p ≥ 2, Theorem 1.4
yields C1,1 approximations, i.e., C1 functions with Lipschitz first derivatives.

Finally, for mappings f : X → Y, where Y is an arbitrary Banach space, in Subsection 3.3 we
obtain C∞ smooth approximations in the case where X is a space of the form X = c0(A).

Theorem 1.5. For an arbitrary set of indices A, let X = c0(A), and let Y be a Banach space.
Then, for any modulus ω satisfying (2), (3) and (4), the following hold:

(i) C∞(X,Y ) ∩ V̇C
0,ω
small(X,Y )

Ċ0,ω(X,Y )

= V̇C
0,ω
small(X,Y ),

(ii) C∞
bs (X,Y ) ∩ V̇C

0,ω
(X,Y )

Ċ0,ω(X,Y )

= V̇C
0,ω

(X,Y ).

Theorem 1.5 will be restated and proved in Subsection 3.3, see Theorem 3.12. There, we will also
show that the approximations can be taken to be Lipschitz in the case Y = R.

1.3. Applications on the Euclidean space. In the previous section we presented results that
guarantee nice approximations, provided we know pointwise vanishing type conditions. When X =
R
n, we present formulations of these results in terms of mean oscillations type conditions, that

are very convenient when studying the boundedness and compactness of commutators of Calderón-
Zygmund operators (CZOs). In the one parameter setting our results recover important components
to the theory, but from a more general approach. In the bi-parameter setting our results have very
recently found applications by Martikainen and the second named author [21] in the study of the
compactness of the bi-commutator. We describe all of this in full detail below, but to not get too
far ahead of ourselves, let us begin by recapping boundedness and compactness characterizations of
commutators in the one-parameter setting.

For a non-degenerate CZO T on R
n, a function b ∈ L1

loc(R
n,C) (symbol of the commutator) and

exponents p, q ∈ (1,∞), the commutator has the following mapping properties

‖[b, T ]‖Lp(Rn)→Lq(Rn) ∼ ‖b‖Xp,q(Rn), (5)

where the space Xp,q(Rn) is determined as follows. Given p, q ∈ (1,∞), denote by α(p, q) and
r(p, q) the exponents uniquely determined through the relations α(p, q)/n = 1/p − 1/q and 1/q =
1/r(p, q) + 1/p. Then, Xp,q(Rn) is the space of bounded mean oscillations BMO(Rn), when p =

q; the fractional BMO space BMOα(p,q)(Rn), when p < q; and the Lebesgue space Lr(p,q)(Rn)

modulo additive constants L̇r(p,q)(Rn), when p > q. (The reader can recover the definitions of the
spaces BMO,BMOα from Definition 1.7 below with the “moduli” t 7→ t0 and t 7→ tα, respectively.)
Emphasizing the recognition of the correct function spaces Xp,q(Rn) to which the symbol belongs,
the result (5) is due to Nehari [25] (n = 1) and Coifman, Rochberg, Weiss [6] (n ≥ 2), when q = p;
due to Janson [18], when q > p; and due to Hytönen [16], when q < p. We also refer the reader
to the introductory section of [16] for precise definitions and a fuller history of what was outlined
above. Next, we describe the corresponding off-diagonal compactness characterization.

When α(p, q) > 1, Ċ0,α(p,q)(Rn) consists of the constant functions and the commutator is bounded
iff it is the zero operator (hence compact, in particular). Thus: for compactness only those exponents
p, q that result in α(p, q) ≤ 1 are interesting to study. When α(p, q) = 1 it is the case [11, Theorem
1.7. & 1.8.] that the commutator is compact iff it is the zero operator, again. Now for all p, q ∈
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(1,∞) such that α(p, q) < 1, there holds that

[b, T ] ∈ K (Lp(Rn), Lq(Rn)) ⇔ b ∈ Y p,q(Rn) := C∞
c (Rn)

Xp,q(Rn)
. (6)

The characterization (6) is due to Uchiyama [27], when p = q; due to Guo, He, Wu and Yang [11],
when q > p; and due to Hytönen, Li, Tao and Yang [17], when q < p.When q > p and α(p, q) ∈ (0, 1),

a result of Meyer’s [22] states that BMOα(p,q)(Rn) = Ċ0,α(p,q)(Rn). Thus, the following Theorem 1.6
provides, in particular, a new characterization of the space Y p,q(Rn) in (6).

Theorem 1.6. Let Y be a Banach space and the modulus ω satisfy (2), (3) and (4). Then,

V̇C
0,ω

(Rn, Y ) = C∞
c (Rn, Y )

Ċ0,ω(Rn,Y )
.

To obtain the implications “ ⇒ ” in (6) it is very useful to have a description of Y p,q(Rn), in
the cases q ≥ p, in terms of some vanishing mean oscillation (VMO) criteria. Such VMO criteria
(Definition 1.8, below) usually follow immediately from the existence of approximations, but to
establish approximations from VMO criteria is delicate. Recall that in the previous section we
established existence of approximations beginning from some pointwise vanishing criteria V̇C. Below,
as Theorem 1.9, we provide the correspondence between these VMO and the V̇C type criterions,
which allows us, when X = R

n, to reformulate all of our results, among them Theorem 1.6, in terms
of mean oscillations.

1.4. Formulation as mean oscillation conditions.

Definition 1.7. Let ω be a modulus and Y a Banach space. Then, BMOω(Rn, Y ) consists of those
f ∈ L1

loc(R
n, Y ) locally Bochner integrable functions for which

‖f‖BMOω(Rn) = sup
Q

Oω(f ;Q) <∞, Oω(f ;Q) =
1

ω(ℓ(Q))

 

Q
|f − 〈f〉Q|Y ,

where the supremum is taken over all cubes in R
n.

Definition 1.8. Let ω be a modulus and Y a Banach space and define the vanishing scales

VMOω
small(R

n, Y ) =
{

f ∈ BMOω(Rn, Y ) : lim
δ→0

sup
ℓ(Q)=δ

Oω(f ;Q) = 0
}

,

VMOω
large(R

n, Y ) =
{

f ∈ BMOω(Rn, Y ) : lim
δ→∞

sup
ℓ(Q)=δ

Oω(f ;Q) = 0
}

,

VMOω
far(R

n, Y ) =
{

f ∈ BMOω(Rn, Y ) : lim
δ→∞

sup
d(Q,0)>δ

Oω(f ;Q) = 0
}

,

where the suprema are taken over all cubes. Then, define

VMOω(Rn, Y ) = VMOω
small(R

n, Y ) ∩VMOω
far(R

n, Y ) ∩VMOω
large(R

n, Y ).

We continue by noting that the approximation VMO(Rn) = C∞
c (Rn)

BMO(Rn)
was already present

in the classical work of Uchiyama [27]. Uchiyama’s construction does not easily translate to the

case α ∈ (0, 1) and thus in [11] a non-trivial approximation for VMOα(Rn) = C∞
c (Rn)

BMOα(Rn)

was provided that relies, more or less, on the existence of dyadic grids on the underlying space R
n

(as does Uchiyama’s original approximation) and a careful construction using these grids. Such a
construction, when X is an arbitrary normed space, has no hope of working, simply because there
is no grid available. Therefore, one more fact of our Theorem 1.6, in particular of its proof, is that
it provides a conceptually easier approximation that uses only basic mollification and a carefully
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chosen truncation of the support. To make the connection with the mean oscillations and the
pointwise conditions, we assume the following summability condition

[ω]∗ := sup
s>0

1

ω(s)

ˆ s

0
ω(t)

dt

t
<∞. (7)

Theorem 1.9. Let Y be a Banach space and the modulus ω satisfy (4) and (7). Then,

‖ · ‖Ċ0,ω(Rn,Y ) .n,Cdb
[ω]∗‖ · ‖BMOω(Rn,Y ), ‖ · ‖BMOω(Rn,Y ) .n,Cdb

[ω]∗‖ · ‖Ċ0,ω(Rn,Y ). (8)

Moreover, if in addition ω(∞) = ∞, then for each scale Γ ∈ {small, far, large}, we have

V̇C
0,ω
Γ (Rn, Y ) = VMOω

Γ(R
n, Y ), V̇C

0,ω
(Rn, Y ) = VMOω(Rn, Y ). (9)

The proof-idea of Theorem 1.9 goes back to Meyers [22], who obtained a version of the bounds
(8) with the modulus tα, for α > 0. The condition (7) appears new, but we recognize that it is
a natural summability condition, after all. The identification (9) is completely new. Combining
Theorems 1.6 and 1.9, we immediately obtain the following.

Theorem 1.10. Let Y be a Banach space and the modulus ω satisfy (2), (3), (4) and (7). Then,

VMOω(Rn, Y ) = C∞
c (Rn, Y )

BMOω(Rn,Y )
.

1.5. Applications to compactness of the bi-commutator. Banach space valued operators and
function spaces often appear in bi-parameter harmonic analysis. Then, it is maybe no surprise that
the Banach valued Theorems (1.6), 1.10 and 1.9 have already found applications to bi-parameter
harmonic analysis in the recent work [21]. We turn to the details.

We now consider R
n = R

n1 ×R
n2 as a bi-parameter space, take non-degenerate CZOs Ti on R

ni

and b ∈ L1
loc(R

n,C). Then, the operator of interest, the bi-commutator, is

[T2, [b, T1]] = T2[b, T1]− [b, T1]T2 = T2bT1 − T2T1b− bT1T2 + T1bT2,

where Ti acts on the variable xi. The product BMO upper bound for the Lp → Lp boundedness of
the bi-commutator was first obtained with the Hilbert transforms in Ferguson, Sadosky [10], and
in full generality of completely arbitrary CZOs later by Dalenc, Ou [7]. The corresponding lower
bound in terms of product BMO for special singular integrals (Hilbert/Riesz transforms) has a
somewhat complicated history. While the product BMO is still believed to be the characterizing
condition, the existing proofs have been reported to have a gap, see e.g. [1,9,15], and to the best of
our knowledge a fix has not yet been published. The existence of this gap adds considerable interest
to all natural questions involving the bi-commutator.

Now, in place of considering Lp-to-Lp bounds it is natural to consider mixed Lp1(Lp2)-to-Lq1(Lq2)
bounds, where we allow qi 6= pi, this was done recently in [1, Theorem 1.1.]. The exponents that
directly connect with our work are those for which βi := ni(1/pi − 1/qi) ≥ 0 and βi > 0 for some
i = 1, 2, which we assume here and below. Then, the bi-parameter space to characterize mixed
Lp1(Lp2)-to-Lq1(Lq2) boundedness turned out to be

‖b‖BMOβ1,β2(Rn) = sup
R=I1×I2

Oβ1,β2(b, I1 × I2)

= sup
R=I1×I2

ℓ(I1)
−β1

 

I1

ℓ(I2)
−β2

 

I2

|b(x1, x2)− 〈b(x1, ·)〉I2 − 〈b(·, x2)〉I1 + 〈b〉I1×I2 |dx2 dx1.

The space BMOβ1,β2(Rn) is in fact a BMO-valued or Ċ0,α-valued Hölder space , see [1, Section 3].
Then, very recently [21, Theorem 1.1.] the corresponding Lp1(Lp2)-to-Lq1(Lq2) compactness was
characterized through the VMO analogue VMOβ1,β2(Rn). Moreover, as a corollary of these truly
mixed norm compactness characterizations the natural product BMO condition in the non-mixed
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Lp → Lp case was attained as a sufficient condition. One of the crucial theorems in [21] is the
following theorem, which is, in fact, a corollary of the approximations developed in this article.

Theorem 1.11. Let βi ∈ [0, 1) and βi > 0 for some i = 1, 2, then

VMOβ1,β2(Rn) = C∞
c (Rn)

BMOβ1,β2(Rn)
.

Theorem 1.11 is a bi-parameter analogue of Theorem 1.10 (with Y = C), where in at least one
parameter we have a vanishing Hölder type behaviour. The proof of Theorem 1.11 is split between
the current article and [21]. Indeed, we record here a quantitative version of Theorem 1.6 in the
body-text after the proof of Theorem 1.6 as Corollary 2.5; then, assuming Corollary 2.5, Theorem
1.11 is proved in [21, Section 3.].

Acknowledgements. C. M. was supported by the grant no. 334466 of the Research Council
of Norway, “Fourier Methods and Multiplicative Analysis”. T.O. was supported by the Finnish
Academy of Science and Letters, and by the MICINN (Spain) grant no. PID2020-114167GB-I00.

2. Bounded support approximation

In this section we prove Theorem 1.2 and then show how to obtain from this Theorem 1.6 and
then Corollary 2.5. After these, at the end of this section, we prove Theorem 1.9. Recall that we
simplify notation by denoting ‖x‖X = ‖x‖ and ‖f(x)‖Y = |f(x)|. We begin with a simple remark.

Remark 2.1. For normed spaces X and Y, and Γ ∈ {small, large, far}, the set V̇C
0,ω
Γ (X,Y ) is closed

with respect to the Ċ0,ω-seminorm, meaning that if a sequence of functions (fn)n ⊂ V̇C
0,ω
Γ (X,Y )

converges to an f ∈ Ċ0,ω(X,Y ), then f ∈ V̇C
0,ω
Γ (X,Y ) as well. Indeed, for any ε > 0, we find n ∈ N

so that ‖f − fn‖Ċ0,ω ≤ ε. Then, for any two distinct points x, y ∈ X, we write

|f(x)− f(y)|
ω(‖x− y‖) ≤ |fn(x)− fn(y)|

ω(‖x− y‖) +
|(f − fn)(x)− (f − fn)(y)|

ω(‖x− y‖)

≤ |fn(x)− fn(y)|
ω(‖x− y‖) + ‖f − fn‖Ċ0,ω(X,Y ) ≤

|fn(x)− fn(y)|
ω(‖x− y‖) + ε.

Since fn ∈ V̇C
0,ω
Γ (X,Y ), the above clearly implies f ∈ V̇C

0,ω
Γ (X,Y ).

Consequently, in the case where Y is a Banach space, (V̇C
0,ω
Γ (X,Y ), ‖ · ‖Ċ0,ω(X,Y )) is a Banach

space of modulo constant equivalence classes.

The following two lemmas will be very useful.

Lemma 2.2. Let X,Y be arbitrary normed spaces. Let ω satisfy (2) and (4). Then, we have

V̇C
0,ω
far (X,Y ) =

{

f ∈ Ċ0,ω(X,Y ) : lim
δ→∞

sup
max(‖x‖,‖y‖)>δ

oscω(x,y)(f) = 0
}

.

Proof. Only the inclusion ⊂ is not immediate; let f ∈ V̇C
0,ω
far (X,Y ) and ε > 0. Let M = M(ε)

be such that if y, z ∈ X and ‖y‖, ‖z‖ ≥ M, then |f(y) − f(z)| ≤ εω(‖y − z‖). Now we consider
arbitrary x, y ∈ X, and assume ‖y‖ > R, for certain R≫M to be specified later. If ‖x‖ > M, then
we are done by how we fixed M above. So suppose that x ∈ B(0,M). Take a point z ∈ [x, y] with
‖z‖ =M. By ‖x‖, ‖z‖ ≤M and ‖y‖, ‖z‖ ≥M,

|f(x)− f(y)|
ω(‖x− y‖) ≤ |f(x)− f(z)|

ω(‖x− y‖) +
|f(z)− f(y)|
ω(‖z − y‖) · ω(‖z − y‖)

ω(‖x− y‖)

≤
‖f‖Ċ0,ω(X)ω(‖x− z‖)

ω(‖x− y‖) + ε ≤
‖f‖Ċ0,ω(X)ω(2M)

ω(‖x− y‖) + ε.

(10)
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To control the above term, note that if ‖y‖ > R ≫ M, then we have ‖x − y‖ ≥ R/2 because
‖x‖ ≤ M. Also, by condition limt→∞ ω(t) = ∞, we find R = R(M,ε) so that ω(2M) ≤ εω(R).
Therefore, since ‖y‖ ≥ R, using the doubling condition (4) we conclude

RHS (10) ≤
‖f‖Ċ0,ω(X)ω(2M)

ω(R/2)
+ ε ≤

‖f‖Ċ0,ω(X)ω(2M)

C−1
db ω(R)

+ ε ≤ (1 + Cdb‖f‖Ċ0,ω(X))ε.

�

Lemma 2.3. Let X,Y be arbitrary normed spaces. Let ω be non-decreasing and satisfy (4). Let
τ : X → X be Lipschitz. Then,

V̇C
0,ω
small(X,Y ) ◦ τ ⊂ V̇C

0,ω
small(X,Y ).

Proof. Let ε > 0 and we need to show that if r is taken sufficiently small, then

‖f ◦ τ‖Ċ0,ω
r (X,Y ) := sup

x 6=y∈X
‖x−y‖<r

|(f ◦ τ)(x)− (f ◦ τ)(y)|
ω(‖x− y‖) ≤ ε. (11)

Let us denote ε(r) := ‖f‖Ċ0,ω
r

so that ε(r) → 0 as r → 0. Let ‖x − y‖ < r and by ω being

non-decreasing and doubling we bound

|(f ◦ τ)(x)− (f ◦ τ)(y)|
ω(‖x− y‖) =

|f(τ(x))− f(τ(y))|
ω(‖τ(x) − τ(y)‖)

ω(‖τ(x) − τ(y)‖)
ω(‖x− y‖)

≤ ε(Lip(τ)r) · C(Cdb,Lip(τ)),

and the right-hand side tends to zero as r does. �

Proof of Theorem 1.2. First, note that if f ∈ V̇C
0,ω
small(X,Y ) and has bounded support, then, by

property (3) of ω, f belongs to V̇C
0,ω

(X,Y ). Since V̇C
0,ω

(X,Y ) is closed under limits with respect

to the seminorm Ċ0,ω, as per Remark 2.1, the inclusion “ ⊂ ” holds true.

To prove the reverse (much more complicated) inclusion, let f ∈ V̇C
0,ω

and ε > 0. By Lemma
2.2 we find two parameters 0 < r ≪ R such that

sup
x 6=y∈X
‖x−y‖≤r

|f(x)− f(y)|
ω(‖x− y‖) ≤ ε, (12)

and

sup
x∈B(0,R)c

sup
y∈X

|f(x)− f(y)|
ω(‖x− y‖) ≤ ε. (13)

We consider an auxiliary parameter M ≫ R and the following function

τ = τM : X → B(0,M), τ(x) =















x, ‖x‖ < M,
(

2M−‖x‖
M

)2
x, M ≤ ‖x‖ < 2M,

0, ‖x‖ ≥ 2M.

(14)

We next show that if r is small enough and R,M are large enough then

f ◦ τ ∈ V̇C
0,ω
small, ‖f − f ◦ τ‖Ċ0,ω . ε. (15)

Notice that f ◦ τ − f(0) is zero outside B(0, 2M), and hence f ◦ τ has bounded support. (Recall

that Ċ0,ω is defined modulo constant equivalence classes.) To actually verify the claims of (15) we
begin checking some properties of the function τ.
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First, we verify

‖τ(x) − τ(z)‖ ≤ 5‖x− z‖ for all x, z ∈ X, (16)

and in particular by doing so, Lemma 2.3 implies the left claim on the line (15). Indeed, for points
x, z ∈ B(0, 2M) \B(0,M), the definition of τ and the triangle inequality give

‖τ(x) − τ(z)‖ ≤
∣

∣

∣

(

2− ‖x‖
M

)2 −
(

2− ‖z‖
M

)2
∣

∣

∣
‖z‖ +

(

2− ‖x‖
M

)2‖x− z‖

≤
(

2− ‖x‖
M

+ 2− ‖z‖
M

)‖x− z‖
M

‖z‖+
(

2− ‖x‖
M

)2‖x− z‖

≤
(

4− 2M

M

)‖x− z‖
M

(2M) +
(

2− M

M

)2‖x− z‖ = 5‖x− z‖,

(17)

where in the second bound we used the basic identity a2 − b2 = (a − b)(a + b). As τ is obviously
1-Lipschitz in the sets B(0,M) and B(0, 2M)c, and τ is continuous in X, we deduce (16) for all
x, z ∈ X.

Then we show the following contraction property:
{

x ∈ B(0,M)c, τ(x), τ(z) ∈ B(0, R)
}

=⇒ ‖τ(x) − τ(z)‖ . Rθ(M)‖x− z‖, (18)

where θ : (0,∞) → (0,∞) is a function satisfying limM→∞ θ(M) = 0, whose definition will be
specified while we next check the truth of the implication1. If ‖x− z‖ > M/2, then we have

‖τ(x) − τ(z)‖ ≤ 2R < 2R
‖x− z‖
M/2

= 4R θ1(M)‖x− z‖, θ1(M) :=
1

M
.

So next assume that z ∈ B(x,M/2). Since R ≪ M and τ(z) ∈ B(0, R), by the definition of τ we
must have necessarily ‖z‖ > M. Thus, it remains to show that

{

x, z ∈ B(0,M)c, τ(x), τ(z) ∈ B(0, R)
}

=⇒ ‖τ(x)− τ(z)‖ . Rθ(M)‖x− z‖, (19)

which is symmetric with respect to both variables x, z. Notice that if x, z ∈ B(0, 2M)c, then the
left-hand side of the claimed estimate is zero. Assume that x, z ∈ B(0, 2M) \B(0,M) and we make
the following observation. By τ(x) ∈ B(0, R) and x ∈ B(0,M)c, there holds that

∥

∥

∥

(

2M − ‖x‖
M

)2

x
∥

∥

∥
≤ R =⇒

∣

∣

∣

2M − ‖x‖
M

∣

∣

∣
≤

√

R

‖x‖ ≤
√

R

M
=

√
Rθ2(M), θ2(M) :=

1√
M
,

and the same bound is valid for the variable z. Thus, by (17) we obtain

‖τ(x)− τ(z)‖ ≤
(

2− ‖x‖
M

+ 2− ‖z‖
M

)‖x− z‖
M

‖z‖+
(

2− ‖x‖
M

)2
‖x− z‖

≤
(

4

√

R

M
+
R

M

)

‖x− z‖ ≤ 5Rθ2(M)‖x − z‖.

As the last case, suppose that z ∈ B(0, 2M)c. This case follows by the continuity of τ and the
previous case. Indeed, taking a point y ∈ [x, z] with ‖y‖ = 2M, by the previous case applied for x
and y, and bearing in mind that τ(z) = τ(y) = 0, we deduce

‖τ(x)− τ(z)‖ = ‖τ(x)− τ(y)‖ ≤ 5R θ2(M)‖x− y‖ ≤ 5R θ2(M)‖x− z‖.
All in all, we have now shown that (18) is valid with the function θ : (0,∞) → (0,∞) given by

θ(M) :=
1√
M

≥ 1

2
(θ1(M) + θ2(M)). (20)

1We remark that (18) would not be true, if we replaced the power 2 in the definition (14) of τ by the power 1.
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Now, let us denote g := f ◦ τ ∈ V̇C
0,ω
small and let r′ > 0 be such that

‖g‖
Ċ0,ω

r′
:= sup

x 6=y∈X
‖x−y‖<r′

|g(x)− g(y)|
ω(‖x− y‖) ≤ ε. (21)

By (12), the fact that Lip(τ) ≤ 5 (see (16)), and the proof of Lemma 2.3, this new r′ > 0 can be
taken to be an absolute multiple of the r in (12). Therefore, we may and do assume that both (12)
and (21) hold for the same r = r(ε), which is of course independent of R and M.

Next we show that

sup
x∈B(0,M)c

sup
z∈X

|g(x)− g(z)|
ω(‖x− z‖) . ε, (22)

provided M is large enough. By (21), it is enough to estimate (22) only at those couples x, z with
‖x − z‖ ≥ r. Fix a point x ∈ B(0,M)c and we distinguish into cases. If τ(x) ∈ B(0, R)c, then by
(13) and ω being non-decreasing and doubling we obtain

|g(x)− g(z)| = |f(τ(x))− f(τ(z))|

≤
(

sup
u∈B(0,R)c

sup
v∈X

|f(u)− f(v)|
ω(‖u− v‖)

)

ω(‖τ(x)− τ(z)‖) .Cdb
εω(‖x− z‖). (23)

The case τ(z) ∈ B(0, R)c is symmetrical.
Now consider τ(x), τ(z) ∈ B(0, R) and we split into subcases. But first observe that for those

x, z with ‖x− z‖ ≥M1/4, using that f ∈ Ċ0,ω we can write

|g(x)− g(z)| = |f(τ(x))− f(τ(z))| ≤ ‖f‖Ċ0,ωω(|τ(x)− τ(z)|) ≤ ‖f‖Ċ0,ωω(2R).

Provided that M = M(ε,R) is large enough, the condition ω(∞) = ∞ says that the last term can

be made smaller than εω(M1/4) ≤ εω(‖x − z‖), and thus (22) holds for these x and z. Therefore,

during the rest of the verification of (22) we can assume that ‖x− z‖ ≤M1/4, whenever needed.
Notice also that in the case x, z ∈ X\B(0, 2M) there is nothing to prove, as then g(x) = g(z) = 0.
Thus, we can assume that both x, z ∈ B(0, 10M). In this case we bound

|g(x)− g(z)| = |f(τ(x))− f(τ(z))|
. ‖f‖Ċ0,ω(B(0,2R))ω(‖τ(x)− τ(z)‖) . ω(‖τ(x) − τ(z)‖). (24)

Let θx,z(M) be defined by the identity

‖τ(x)− τ(z)‖ =: θx,z(M)‖x− z‖, θx,z(M) . R/
√
M,

where the bound follows by (18) and (20). By the condition limt→0 ω(t) = 0, we choose M =

M(ε, r,R) sufficiently large so that ω(RM−1/4) ≤ εω(r). Since we are assuming r ≤ ‖x−z‖ ≤M1/4,
we obtain

RHS (24) = ω(θx,z(M)‖x − z‖) .Cdb
ω
( R√

M
‖x− z‖

)

≤ ω
( R√

M
M1/4

)

≤ εω(r) ≤ εω(‖x− z‖).
(25)

Chaining the estimates (24) and (25), we have shown (22) for x, z as in the present case.
Finally we consider the case τ(x), τ(z) ∈ B(0, R), and x ∈ B(0, 2M) \ B(0,M) and z ∈ X \

B(0, 10M). We pick an auxiliary point y such that |y| = 2M. Using τ(z) = τ(y) = 0, the bound
(25) (valid by x, y ∈ B(0, 10M)) and that ω is non-decreasing we obtain

|g(x) − g(z)| = |g(x) − g(y)| ≤ ‖f‖Ċ0,ω(X)ω(‖τ(x) − τ(y)‖) . εω(‖x− y‖) ≤ εω(‖x− z‖),
10



which is a bound of the correct form. The case τ(x), τ(z) ∈ B(0, R) and z ∈ B(0, 2M) and
x ∈ X \B(0, 10M) is symmetrical to the last one.

We now fix the parameters M ≫ R≫ r so that both (21) and (22) hold. Then, we show the right
claim on the line (15). If x, z ∈ B(0,M) there is nothing to prove, since τ(x) = x and τ(z) = z.
Finally, we check that

sup
x∈B(0,M)c

sup
z∈Rn

|(f − g)(x) − (f − g)(z)|
ω(‖x− z‖)

≤ sup
x∈B(0,M)c

sup
z∈X

|f(x)− f(z)|
ω(‖x− z‖) + sup

x∈B(0,M)c
sup
z∈X

|g(x) − g(z)|
ω(‖x− z‖) . ε,

and hence have now shown both claims on the line (15). �

We next show how to easily upgrade the above bounded support approximation into a compact
and smooth approximation on X = R

n, but Y is allowed to be an arbitrary Banach space.

Proof of Theorem 1.6. Let f ∈ V̇C
0,ω

(Rn, Y ) and by Theorem 1.2 find g ∈ V̇C
0,ω
small(R

n, Y ) with
bounded support such that ‖f − g‖Ċ0,ω(Rn,Y ) < ε. Let r > 0 and 0 ≤ ηr ∈ C∞

c (B(0, r)) be a

standard real-valued smooth bump in R
n with

´

Rn ηr = 1, and we define hr := g ∗ ηr, where the
integral is understood in the Bochner sense. Notice that hr is compactly supported, as g is, and
smooth hr ∈ C∞(Rn, Y ) as a smooth mollification. Provided that |u| ≤ δ, there holds uniformly in
r that

|hr(x+ u)− hr(x)| =
∣

∣

∣

ˆ

Rn

ηr(y)(g(x + u+ y) + g(x+ y)) dy
∣

∣

∣
≤ ‖g‖Ċ0,ω

δ
ω(|u|),

and hence we find δ > 0 so that, uniformly in r, we have ‖g− hr‖Ċ0,ω
δ

≤ ‖g‖
Ċ0,ω

δ
+ ‖hr‖Ċ0,ω

δ
≤ ε. To

deal with the scales ≥ δ we argue as follows. Observe that g ∈ V̇C
0,ω
small is uniformly continuous, by

limt→0 ω(t) = 0, and thus the approximation hr := g ∗ ηr converges uniformly to g, as r → 0. We
let r = r(δ) be so small that ‖g − hr‖∞ ≤ 1

2εω(δ). Then, for |x− y| > δ, there holds that

‖(g − hr)(x)− (g − hr)(y)‖ ≤ 2‖g − hr‖∞ ≤ εω(δ) ≤ εω(|x− y|),

by ω being non-decreasing. This concludes the proof of V̇C
0,ω

(Rn, Y ) ⊂ C∞
c (Rn, Y )

Ċ0,ω(Rn,Y )
.

For the reverse inclusion “ ⊃ ”, simply notice that by the Mean Value Inequality, C∞
c (Rn, Y ) ⊂

Lipbs(R
n, Y ). We remind that this inequality holds for smooth Y -valued functions, as a consequence

of the Hahn-Banach theorem on Y. Also, by (3) there holds that Lipbs(R
n, Y ) ⊂ V̇C

0,ω
(Rn, Y ). As

V̇C
0,ω

(Rn, Y ) is closed with respect to Ċ0,ω limits, by Remark 2.1, we are done. �

Next, we record a quantitative version of Theorem 1.6 to be used in the proof of Theorem 1.11
in [21]. While Corollary 2.5 below is one the key elements in applications to the bi-commutator in
[21], it plays no further role in the present article.

Definition 2.4. For a subset G of V̇C
0,ω

(Rn, Y ), we write G ⊂u V̇C
0,ω

(Rn, Y ) (with “u” for

uniformly) provided that G is equibounded in the Ċ0,ω seminorm, and that for all ε > 0, there
exists t > 0 such that if |x− y| < t or |x| > t−1 or |y| > t−1, then

sup
g∈G

|g(x) − g(y)|
ω(|x− y|) < ε.

By an inspection of the above proofs, the reader convinces themselves that the following is true.

Corollary 2.5. Let Y be a Banach space and the modulus ω satisfy (2) and (4). Let G ⊂u

V̇C
0,ω

(Rn, Y ). Then,
11



• for all L > 0 we have G ◦ τL ⊂u V̇C
0,ω

(Rn, Y ),

• for all L,L′ > 0 we have (G ◦ τL) ∗ ηL′ ⊂u V̇C
0,ω

(Rn, Y ),
• for all M =M(ε) > 0 sufficiently large

sup
f∈G

‖f − f ◦ τM‖
Ċ

0,ω
(Rn,Y )

≤ ε, (26)

• for all K = K(M,ε) > 0 sufficiently large

sup
f∈G

‖f ◦ τM − (f ◦ τM ) ∗ η1/K‖
Ċ

0,ω
(Rn,Y )

≤ ε. (27)

Proving approximations with a more general normed space X and Y = R (or Y = C) is a delicate
task and this is the content of the next Section 3. But before that, we finish this section by proving
the connection between pointwise and mean oscillation type conditions.

Proof of Theorem 1.9. We first prove that the norms are equivalent. So fix an arbitrary cube Q ∈ Q
and estimate

 

Q
|f(x)− 〈f〉Q|Y dx ≤

 

Q

 

Q
|f(x)− f(y)|Y dxdy ≤ ‖f‖Ċ0,ω(Rn,Y )

 

Q

 

Q
ω(|x− y|) dxdy

and we continue the bound with
 

Q

 

Q
ω(|x− y|) dxdy .n,Cdb

ω(ℓ(Q)), (28)

thus we obtain ‖f‖Ċ0,ω(Rn,Y ) &n,Cdb
‖f‖BMOω(Rn,Y ).

For the other direction, let x, z ∈ R
n be arbitrary and let Q0 ⊂ R

n be a cube containing both
x and y such that ℓ(Q0) = |x− y|. Consider the dyadic descendants of Q0 (achieved by iteratively
halving the sides) and for every k ∈ N∪{0} let Qk(x) be the descendant of Q0 of sidelength 2−kℓ(Q0)
that contains the point x. Similarly, we define Qk(y) for each k. By the continuity of f : Rn → Y,
we write

f(x)− f(y) =
(

∞
∑

k=0

〈f〉Qk+1(x) − 〈f〉Qk(x)

)

−
(

∞
∑

k=0

〈f〉Qk+1(y) − 〈f〉Qk(y)

)

. (29)

Both sums are estimated identically, so consider the first:

∣

∣

∣

∞
∑

k=0

〈f〉Qk+1(x) − 〈f〉Qk(x)

∣

∣

∣

Y
.n

∞
∑

k=0

 

Qk(x)
|f − 〈f〉Qk(x)|Y ≤ ‖f‖BMOω(Rn,Y )

∞
∑

k=0

ω(ℓ(Qk(x)))

and we continue the bound, using that ω is non-decreasing in the first bound, with

∞
∑

k=0

ω(ℓ(Qk(x))) =

∞
∑

k=0

ℓ(Qk(x))
ω(ℓ(Qk(x)))

ℓ(Qk(x))
≤ 2

ˆ ℓ(Q0)

0

ω(t)

t
dt . [ω]∗ω(ℓ(Q0)),

and, since ω(ℓ(Q0)) = ω(|x− y|), we have shown that ‖f‖Ċ0,ω(Rn,Y ) .n [ω]∗‖f‖BMOω(Rn,Y ).

It is clear that the above argument gives V̇C
0,ω
Γ (Rn, Y ) = VMOω

Γ(R
n, Y ) when Γ = small, as

well as the inclusion V̇C
0,ω
Γ (Rn, Y ) ⊂ VMOω

Γ(R
n, Y ) for Γ = far . The reverse inclusion “ ⊃ ” for

Γ = far can be seen as follows. Let R > 0 be such that if d(Q, 0) > R, then Oω(f,Q) ≤ ε. Let
|x|, |y| > R both be far from the origin. Using the structure of the Euclidean space, clearly there
exists a dimensional constant N(n) and points and cubes {zk, Qk}Nk=1 such that z0 = x, zN = y and
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zk, zk+1 ∈ Qk and d(Qk, 0) ≥ R and ℓ(Qk) = |zk − zk+1|. Thus, by the chain of inequalities that led
us to the right estimate for (29), we obtain

|f(x)− f(y)|Y ≤
N
∑

k=1

|f(zk)− f(zk+1)|Y . [ω]∗ε
N
∑

k=1

ω(ℓ(Qk)) . εω(|x− y|),

which concludes the proof of the inclusion V̇C
0,ω
Γ (Rn, Y ) ⊃ VMOω

Γ(R
n, Y ).

For Γ = large, a further argument is needed for both inclusions. We begin by showing that

V̇C
0,ω
large(R

n, Y ) ⊃ VMOω
large(R

n, Y ). Let f ∈ VMOω
large(R

n, Y ), and ε > 0, and let K ∈ N be such

that if ℓ(Q) ≥ 2K , then Oω(f ;Q) ≤ ε. Let N ≫ K be a large integer to be specified later, and
suppose x, y ∈ R

n are so that |x − y| ≥ 2N . Let M ≥ N be so that 2M ≤ |x− y| ≤ 2M+1, and let
Q0 be a cube containing both x, y and with ℓ(Q0) = |x − y|. Then, again considering the left sum
in the expansion (29), we bound

∣

∣

∣

∞
∑

k=0

〈f〉Qk+1(x) − 〈f〉Qk(x)

∣

∣

∣

Y
≤

(

M−K
∑

k=0

+

∞
∑

k=M−K+1

)

|〈f〉Qk+1(x) − 〈f〉Qk(x)|Y

.n ε

M−K
∑

k=0

ω(ℓ(Qk(x))) + sup
ℓ(Q)≤2K

Oω(f ;Q)

∞
∑

k=M−K+1

ω(ℓ(Qk(x)))

.Cdb
ε

ˆ 2M+1

2K

ω(t)

t
dt+ sup

ℓ(Q)≤2K
Oω(f ;Q)

ˆ 2K

0

ω(t)

t
dt

.Cdb

[

ε
( 1

ω(2M+1)

ˆ 2M+1

2K

ω(t)

t
dt
)

+
ω(2K)

ω(2M+1)
sup

ℓ(Q)≤2K
Oω(f ;Q)

( 1

ω(2K)

ˆ 2K

0

ω(t)

t
dt
)]

ω(ℓ(Q0))

.
[

ε[ω]∗ +
ω(2K)

ω(2N+1)
‖f‖BMOω(Rn,Y )[ω]∗

]

ω(|x− y|).

By the condition ω(∞) = ∞, we choose N large enough and bound the bracketed term from above
by ≤ 2ε[ω]∗. Repeating the same proof with y in place of x, we control the right sum on the line

(29) and thus obtain |f(x)− f(y)| ≤ 4ε[ω]∗ω(|x− y|), that is, f ∈ V̇C
0,ω
large(R

n, Y ).

Then, we show that V̇C
0,ω
large(R

n, Y ) ⊂ VMOω
large(R

n, Y ). Let f ∈ V̇C
0,ω
large(R

n, Y ), ε > 0, and

R > 0 be such that oscωδ (f) ≤ ε, if δ ≥ R. Let M ≫ R be a large constant, which we will specify
later, and Q ∈ Q a cube such that ℓ(Q) ≥M. For every y ∈ Q, denote by QR(y) the cube centered
at y and of diam(QR(y)) = R. Then, we have

 

Q

ˆ

Q
|f(x)− f(y)|Y dxdy =

 

Q

(

ˆ

Q\QR(y)
+

ˆ

Q∩QR(y)

)

|f(x)− f(y)|Y dxdy

≤ ε

 

Q

ˆ

Q\QR(y)
ω(|x− y|) dxdy + sup

δ≤R
oscωδ (f)

 

Q

ˆ

Q∩QR(y)
ω(|x− y|) dxdy

≤
[

ε

 

Q

 

Q
ω(|x− y|) dxdy + sup

δ≤R
oscωδ (f)

 

Q

1

|Q|

ˆ

QR(y)
ω(|x− y|) dxdy

]

|Q|.
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By repeating the bound (28), the left term in the square bracket is bounded from above by .n,Cdb

εω(ℓ(Q)), which is a bound of the correct form. For the right term we bound

.n ‖f‖Ċ0,ω(Rn,Y )

(

R

ℓ(Q)

)n

ω(R) ≤ ‖f‖Ċ0,ω(Rn,Y )ω(R) ≤ εω(ℓ(Q));

as ω(∞) = ∞, and M is chosen sufficiently large. �

3. Approximation in infinite dimensional spaces

In this section we study smooth approximations in Banach spaces with respect to the Ċ0,ω

seminorm. In Subsections 3.1 and 3.2 we establish results for real-valued functions f : X → R,
where the approximating functions are not only Ck or C1,α smooth but also Lipschitz and with
bounded support. In the last Subsection 3.3 we obtain C∞ smooth approximations of Banach-
valued mappings f : c0(A) → Y, that are not necessarily Lipschitz, but have bounded support and

belong to V̇C
0,ω

(X,Y ). As a corollary, we deduce C∞ and V̇C
0,ω

and approximations with bounded

support for all V̇C
0,ω

functions defined on R
n and with values in any Banach space.

As we mentioned in the introduction, for general background on smooth analysis on Banach
spaces, including smooth renomings and approximations, we refer the reader to the monographs
[4] by Benyamini and Lindenstrauss; [8] by Deville, Godefroy, and Zizler; and [13] by Hájek and
Johanis.

Assumptions on the modulus. Throughout this whole Section 3 we assume that the modulus satisfies
all the assumptions of Theorem 1.2, i.e. ω is non-decreasing and satisfies (2), (3) and (4).

Notation and basic definitions. By Lip(X) we denote the class of real-valued Lipschitz functions (not
necessarily bounded) on X. We say that g : X → R is L-Lipschitz provided that |g(x) − g(y)| ≤
L‖x− y‖ for every x, y ∈ X, and we denote the minimal Lipschitz constant of g by Lip(g).

We will denote by X∗ the (continuous) dual of X, and the dual norm in X∗ by ‖ · ‖∗, that is,

‖Λ‖∗ := sup{|Λ(v)| : ‖v‖ ≤ 1},
for every Λ ∈ X∗.

When speaking of differentiability of functions or mappings f : X → Y , we always mean differ-
entiability in the Fréchet sense. We say, of course, that f is of class Ck(X,Y ), when f has Fréchet
derivatives up to order k, and those derivatives are continuous on X.

Also, we say that a norm ‖ · ‖ on X is of class Ck if ‖ · ‖ ∈ Ck(X \ {0}), for k ∈ N ∪ {∞}.
For any class of functions C(X,Y ), the subscripted set Cbs(X,Y ) consists of functions h : X → Y

of class C that have bounded support, meaning that there exists R > 0 so that h(x) = 0 for every
x ∈ X \B(0, R).

Finally, a bump function h : X → Y is a non-zero function with bounded support.

3.1. Lipschitz and smooth approximations. In a real normed space X, we consider real-valued

functions “f” of the class V̇C
0,ω

(X,R), the last abbreviated by V̇C
0,ω

(X). By Theorem 1.2 these

functions “f” can be approximated by functions, say “g”, of class V̇C
0,ω
small(X) with bounded sup-

port, in the Ċ0,ω(X) seminorm. Our goal is to further approximate these functions “g” by Lipschitz
functions (whose regularity will vary depending on the smoothness properties of X) with bounded
support. In approximating “g” a crucial step is to reduce the problem to the problem of approximat-
ing Lipschitz functions by smooth Lipschitz functions with good control on the Lipschitz constants.
The main results of this subsection are Theorem 3.3, valid for arbitrary normed spaces, and The-
orem 3.5, valid for separable normed spaces X with a fixed degree of smoothness. The proofs of
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these two Theorems 3.3 and 3.5 employ several technical lemma, which will be reused in the later
Subsections 3.2 and 3.3.

We begin by proving these technical lemmas and for this purpose, it will be useful to consider
the minimal modulus of continuity of a function f : X → R, i.e.,

ωf (t) := sup{|f(x)− f(y)| : ‖x− y‖ ≤ t}, t > 0.

Note that ωf : [0,∞] → [0,∞] is non-decreasing, and if f is uniformly continuous, then limt→0 ωf (t) =

0. Moreover, if f ∈ Ċ0,ω(X), then ωf ≤ ‖f‖Ċ0,ω(X)ω, and especially ωf (t) is finite at every t, but,

in general, ω and ωf are incomparable. Furthermore, since X is a normed space, it is easy to see
that ωf is sub-additive, i.e. ωf(s + t) ≤ ωf (t) + ωf (s) for all t, s > 0. This implies

ωf (t) ≤ 2t ωf (1), for all t ≥ 1. (30)

Lemma 3.1. Let X be a normed space and f ∈ V̇C
0,ω
small(X). Then, there exists a sequence (fn)n ⊂

Lip(X) of functions converging to f in the Ċ0,ω(X)-seminorm. Moreover, if f has bounded support,
the sequence can be taken (fn)n ⊂ Lipbs(X) to have bounded supports.

Proof. As f ∈ V̇C
0,ω
small(X), by the comments preceding the present lemma, the minimal modulus of

continuity ωf is sub-additive and satisfies ωf (t) → 0, as t → 0; then, it is a known result that the
sequence

fn(x) = inf
y∈X

{f(y) + n‖x− y‖}, x ∈ X,

converges uniformly to f in X and each fn is n-Lipschitz; for a proof see e.g. [14, p. 408].
Now, let us see that ‖f − fn‖Ċ0,ω(X) → 0, as n → ∞. Indeed, given ε > 0 there exists δ > 0

so that ‖x − z‖ ≤ δ implies |f(x) − f(z)| ≤ εω(‖x − z‖). Let us take N ∈ N large enough so that
supX |f − fn| ≤ εω(δ) for each n ≥ N. Using that ω is non-decreasing, this gives the estimate

|(f − fn)(x)− (f − fn)(z)| ≤ 2‖f − fn‖∞ ≤ εω(δ) ≤ εω(‖x− z‖),
whenever ‖x− z‖ ≥ δ, n ≥ N.

Now, for fixed x, z ∈ X such that ‖x−z‖ ≤ δ, we proceed as follows. Given η > 0, let y = y(x, n, f, η)
be so that

fn(x) ≥ f(y) + n‖x− y‖ − η.

This choice of y and the definition of fn yield

(f − fn)(x)− (f − fn)(z) ≤ f(x)− f(y)− n‖x− y‖+ η − f(z) + fn(z)

≤ f(x)− f(y)− n‖x− y‖+ η − f(z) + f(y + z − x) + n‖z − (y + z − x)‖
≤ f(x)− f(z)− (f(y)− f(y + z − x)) + η ≤ εω(‖x− z‖) + εω(‖x − z‖) + η.

Letting η → 0, we get

(f − fn)(x)− (f − fn)(z) ≤ 2εω(‖x− z‖).
The same argument swapping x and z,gives |(f − fn)(x) − (f − fn)(z)| ≤ 2εω(‖x − z‖), for every
n ∈ N. We conclude that ‖f − fn‖Ċ0,ω(X) ≤ 2ε, for n ≥ N.

For the assertion concerning the boundedness of the supports, we may assume that f(y) = 0,
whenever ‖y‖ ≥ R, for some R > 0. We will localize the infimum defining fn. For each y ∈ X, it

follows from the definition of fn, and the fact that f ∈ Ċ0,ωf (X), that

f(y) + n‖x− y‖ ≥ f(x)− ‖f‖
Ċ

0,ωf (X)
ωf (‖x− y‖) + n‖x− y‖

≥ fn(x)− ‖f‖
Ċ

0,ωf (X)
ωf (‖x− y‖) + n‖x− y‖. (31)
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Using property (30) of the minimal modulus of continuity ωf , it follows that, for n large enough (but
depending only on ‖f‖

Ċ
0,ωf (X)

), RHS(31) > fn(x), provided that ‖x− y‖ > 1. These observations

show that the infimum defining fn(x) is restricted to B(x, 1) :

fn(x) = inf
y∈B(x,1)

{f(y) + n‖x− y‖}, x ∈ X.

Now, if ‖x‖ ≥ R+ 1, then ‖y‖ ≥ R, and so f(y) = 0, whenever y ∈ B(x, 1). Thus, by the previous
formula, we deduce fn(x) = infy∈B(x,1){n‖x− y‖} = 0, which shows that fn has bounded support,
for n large enough.

�

In the following lemma we show that a uniform approximation by Lipschitz functions with con-
trolled Lipschitz constants yields a Ċ0,ω(X) approximation.

Lemma 3.2. Let f : X → R and (fn)n ⊂ Lip(X) be a sequence such that lim supn Lip(fn) < ∞
and fn converges to f uniformly on X. Then, lim supn ‖fn − f‖Ċ0,ω(X) = 0.

Proof. By passing to a subsequence, we may assume that L := supn Lip(fn) < ∞. Then, f is
Lipschitz on X, with Lip(f) ≤ L. Given ε > 0, by limt→0 t/ω(t) = 0, we find δ > 0 so that

t

ω(t)
≤ ε

1 + L
, whenever t ≤ δ.

Let N ∈ N be such that supX |fn − f | ≤ εω(δ) for all n ≥ N. Because f and each fn is L-Lipschitz,
for any two distinct points x, z ∈ X with ‖x− z‖ ≤ δ, we have

max

{ |f(x)− f(z)|
ω(‖x− z‖) ,

|fn(x)− fn(z)|
ω(‖x− z‖)

}

≤ L
‖x− z‖

ω(‖x− z‖) ≤ ε;

then, triangle inequality gives

|(f − fn)(x)− (f − fn)(z)|
ω(‖x− z‖) ≤ |f(x)− f(z)|

ω(‖x− z‖) +
|fn(x)− fn(z)|
ω(‖x− z‖) ≤ 2ε.

And for scales ‖x− z‖ ≥ δ, observe that for n ≥ N, using that ω is non-decreasing, we have

|(f − fn)(x) − (f − fn)(z)| ≤ 2 sup
X

|f − fn| ≤ 2εω(δ) ≤ 2εω(‖x − z‖).

�

We are now ready to prove our first main Theorem 3.3 on Lipschitz approximations. It does not
involve smoothness, but holds in any normed space and will be a key ingredient in the proofs of
Theorems 3.10 and 3.12 of later sections.

Theorem 3.3 (Lipschitz approximation of V̇C
0,ω

). Let X be a normed space. Then, the following
hold:

(i) Lip(X) ∩ Ċ0,ω(X)
Ċ0,ω(X)

= V̇C
0,ω
small(X),

(ii) Lipbs(X)
Ċ0,ω(X)

= V̇C
0,ω

(X).

Proof.
(i) The inclusion “ ⊂ ” follows immediately from Lemma 3.1. For the converse inclusion “ ⊃ ”, we

observe that condition (3) gives Lip(X) ∩ Ċ0,ω(X) ⊂ V̇C
0,ω
small(X), and then recall that V̇C

0,ω
small(X)

is closed.
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(ii) By Theorem 1.2 we know that if f ∈ V̇C
0,ω

(X), and ε > 0, we can find g ∈ V̇C
0,ω

(X) with
bounded support and ‖f − g‖Ċ0,ω(X) ≤ ε. Then, Lemma 3.1 provides us with h ∈ Lipbs(X) so that

‖h− g‖Ċ0,ω(X) ≤ ε, and therefore ‖f − h‖Ċ0,ω(X) ≤ 2ε; this shows the inclusion “ ⊃ ”.

For the converse implication “ ⊂ ”, it is enough to observe that Lipbs(X) ⊂ V̇C
0,ω

(X) and that

V̇C
0,ω

(X) is a closed subspace of Ċ0,ω(X); see Remark 2.1. �

Performing smooth approximations in the appropriate Banach spaces will require more work. We
first show that if a normed space X has a Ck and Lipschitz bump function, from now on a Ck ∩Lip
bump, then a Ck ∩ Lip approximation with uniformly bounded Lipschitz constants, of a Lipschitz
function g with bounded support, can be upgraded to a Ck ∩ Lip approximation with uniformly
bounded Lipschitz constants and bounded supports.

Lemma 3.4. Let k ∈ N ∪ {∞} be fixed and let X be a normed space that admits a Ck ∩ Lip bump.
Let g ∈ Lip(X) and (gn)n ⊂ Ck(X) ∩ Lip(X) be a sequence of functions converging uniformly to g
on X, and with lim supn Lip(gn) <∞.

Then, if g has bounded support, there exists a sequence (hn)n ⊂ Ck(X) ∩ Lip(X) with bounded
supports that converge to g uniformly (on X) and moreover lim supn Lip(hn) <∞.

Proof. Let g be as in the assumption, and let R > 0 be so that g = 0 outside the ball B(0, R).We first
construct a suitable bump that decays from one to zero over the annular region B(0, λR)\B(0, 2R),
for a certain λ > 2 to be fixed later. Since X admits a Ck ∩ Lip bump, by [8, Proposition II, 5.1]
there exist a constant 0 < a < 1 and a function ψ : X → [0,∞) so that ψ ∈ Lip(X) ∩ Ck(X \ {0})
and

a‖x‖ ≤ ψ(x) ≤ ‖x‖, x ∈ X. (32)

The statement and proof of [8, Proposition II, 5.1] are written for k = 1, but they clearly hold true
for k ∈ N ∪ {∞} as well. Now, pick a function θ : R → [0, 1] so that θ ∈ C∞(R) ∩ Lip(R), and
θ(t) = 1, whenever t ≤ 2R, and θ(t) = 0, whenever t ≥ 4R. Then, define a bump function by

ϕ : X → R, ϕ(x) = θ(ψ(x)), x ∈ X. (33)

By the properties of θ and ψ, it is immediate that ϕ ∈ Ck(X) ∩ Lip(X), and that ϕ takes values
in [0, 1]. Also, if ‖x‖ ≤ 2R, one has ψ(x) ≤ 2R by (32), and thus ϕ(x) = θ(ψ(x)) = 1. Similary, we
deduce that ϕ(x) = θ(ψ(x)) = 0 for those x ∈ X such that ‖x‖ ≥ 4R/a =: λ.

Now, by assumption we can find a sequence (gn)n ⊂ Ck(X) ∩ Lip(X) converging uniformly to g
on X, and, after passing to a subsequence, with the property supn Lip(gn) < ∞. Define hn := ϕgn
for each n ∈ N, where ϕ is as in (33). Since ϕ vanishes outside the ball B(0, 4R/a), the function gn
has bounded support. Also,

|hn(x)− g(x)| = |ϕ(x)gn(x)− g(x)| ≤ |ϕ(x) − 1||gn(x)|+ |gn(x)− g(x)|. (34)

The second term in the sum converges to 0 uniformly on x. For the first term, note that if ‖x‖ ≤ 2R,
then ϕ(x) = 1, and so |ϕ(x) − 1||gn(x)| = 0. When ‖x‖ ≥ 2R, we have limn |gn(x)| = |g(x)| = 0,
uniformly on those x, by the bounded support of g. Since also ϕ takes values in [0, 1], we conclude
that the first term tends uniformly to 0 as n→ ∞. Now we have shown that

lim
n→∞

sup
x∈X

|hn(x)− g(x)| → 0.

Concerning the regularity of hn, note that obviously hn ∈ Ck(X) because both ϕ and gn are of
class Ck. To verify that lim supn Lip(hn) <∞, we estimate the derivative of hn by

‖Dhn(x)‖∗ ≤ ϕ(x)‖Dgn(x)‖∗ + |gn(x)|‖Dϕ(x)‖∗ ≤ Lip(gn) + Lip(ϕ)(sup
X

|gn − g|+ sup
X

|g|).
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Then Lip(gn) ≤ supm Lip(gm), supX |gn − g| → 0, and supX |g| < ∞ because g is Lipschitz with
bounded support. This shows lim supn Lip(hn) <∞. �

Now, we combine Lemmas 3.1, 3.2, Theorem 3.3, and Lemma 3.4, with an approximation result
for separable spaces that admit a Ck ∩Lip bump, and obtain our most general theorem concerning

approximation of V̇C
0,ω

functions by Ck ∩ Lip functions in separable spaces.

Theorem 3.5 (Smooth approximation in separable spaces). Let k ∈ N ∪ {∞} and let X be a
separable normed space admitting a Ck ∩ Lip bump. Then, the following hold:

(i) Ck(X) ∩ Lip(X) ∩ Ċ0,ω(X)
Ċ0,ω(X)

= V̇C
0,ω
small(X),

(ii) Ck
bs(X) ∩ Lip(X)

Ċ0,ω(X)
= V̇C

0,ω
(X).

Proof.

(i) Let f ∈ V̇C
0,ω
small(X) and ε > 0. By Lemma 3.1 we find an approximation g ∈ Lip(X) so that

‖f − g‖Ċ0,ω(X) ≤ ε. Now, since g : X → R is a Lipschitz function, and X has a Ck ∩Lip bump, as a

consequence of a result of Hájek and Johanis [13, Corollary 15] (here we use that X is separable),
we find a sequence (gn)n of Ck ∩ Lip functions converging uniformly to g such that Lip(gn) ≤
λLip(g), for all n, and for some absolute constant λ > 0 that may depend on the space X. Since
obviously the function g and the sequence (gn)n satisfy all the assumptions of Lemma 3.2, and hence
limn ‖gn−g‖Ċ0,ω(X) = 0, completing the proof of the inclusion “ ⊃ ”. For the reverse inclusion recall

that the assumption t/ω(t) → 0, as t → 0, guarantees that Lip(X) ∩ Ċ0,ω(X) ⊂ V̇C
0,ω
small(X); and

V̇C
0,ω
small(X) is a closed subspace of Ċ0,ω(X).

(ii) Assume that f ∈ V̇C
0,ω

(X) and let ε > 0. According to Theorem 1.2 we find g ∈ Lip(X) with
bounded support so that ‖f −g‖Ċ0,ω(X) ≤ ε. Now, let (gn)n be the sequence we used in part (i) (but

associated with this new g), and then Lemma 3.4 guarantees a Ck∩Lip approximation with bounded
support (hn)n so that limn supX |hn − g| = 0 and lim supn Lip(hn) <∞. Now, we apply Lemma 3.2
to deduce that limn ‖hn− g‖Ċ0,ω(X) = 0 as well. Thus we pick some h ∈ (hn)n ⊂ Ck(X)∩Lipbs(X)

such that ‖g − h‖Ċ0,ω(X) ≤ ε, which in turn implies

‖f − h‖Ċ0,ω(X) ≤ ‖f − g‖Ċ0,ω(X) + ‖g − h‖Ċ0,ω(X) ≤ 2ε.

Thus we have shown the inclusion “ ⊃ ”. For the converse inclusion “ ⊂ ”, it is enough to observe

again (as we did at the end of the proof of Theorem 3.3) that Lipbs(X) ⊂ V̇C
0,ω

(X) and that

V̇C
0,ω

(X) is a closed subspace of Ċ0,ω(X), again, by Remark 2.1.
�

Remark 3.6. Clarifications and remarks concerning Theorem 3.5 and its proof.

(1) If X is a separable Banach space with an equivalent norm of class Ck, then Theorem 3.5
applies for X and k. Indeed, denote such an equivalent norm by ψ : X → R; and we can
assume that ψ satisfies the inequalities on the line (32). As ψ ∈ Ck(X \ {0}), and since ψ
is subadditive in X, it is clear that ψ is 1-Lipschitz (with respect to the original norm ‖ · ‖)
on X. If we now pick θ : R → [0, 1] of class C∞ ∩ Lip, with θ = 1 on (−∞, 1/2] and θ = 0
on [1,+∞), it is easy to see that the composition θ ◦ ψ defines a Ck ∩ Lip bump function
on X. Thus, we are in assumptions of Theorem 3.5 for X and k.

(2) Let us now recall the smoothness of the canonical, or equivalent, norms of some classical
separable spaces. The canonical norms of the spaces X = ℓp or Lp, for 1 < p <∞, have the
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following order of smoothness k = k(p) :

k(p) =











∞ if p is even,

p− 1, if p is odd,

⌊p⌋ , if p is not an integer.

Also, for a compact metric space K which is scattered, let C(K) be the Banach space con-
sisting of real-valued continuous functions on K, equipped with the supremum norm. Then
C(K) admits an equivalent C∞-norm. Recall that a set S is scattered if every nonempty
subset of S contains a (relatively) isolated point. We refer the reader to [8, Theorems V.1.1
and V.1.8] for detailed proofs and statements of these theorems. Then, according to point
(1) above, Theorem 3.5 applies for X = Lp, ℓp with kp as above, and for X = C(K) with
K countable and k = ∞.

(3) For X = c0, see Section 3.3 below, Theorem 3.5 also holds for k = ∞, but for this particular
X, we will obtain much more in Theorem 3.12 below.

(4) In the proof of Theorem 3.5 we employed [13, Corollary 15] for our real-valued functions, but
this result holds for target spaces Y = B0(V ) (real-valued functions f in a topological space
V with f(v) → 0 as v → v0, for some fixed v0 ∈ V ); or Y = Cu(P ) (uniformly continuous
bounded functions on a metric space P ). Naturally, the particular case Y = R is covered
by these spaces, e.g., when Y = Cu(P ) for P = {0} ⊂ R.

Now, as a corollary of Theorem 3.5, we provide C∞ ∩ Lip approximation of V̇C
0,ω

(X) functions
for separable Hilbert spaces X. In particular, notice that this extends Theorem 1.6 to infinite
dimensions.

Corollary 3.7. Let X be a separable Hilbert space. Then, the following hold:

(i) C∞(X) ∩ Lip(X) ∩ Ċ0,ω(X)
Ċ0,ω(X)

= V̇C
0,ω
small(X),

(ii) C∞
bs (X) ∩ Lip(X)

Ċ0,ω(X)
= V̇C

0,ω
(X).

Proof. Both statements (i) and (ii) follow immediately from Theorem 3.5, since a Hilbert space
always admits a C∞∩Lip bump. For the sake of completeness, we exhibit an elementary construction
of such a bump.

The function ψ : X → R given by x 7→ ψ(x) = ‖x‖2 is of class C∞(X) with the Fréchet
derivative Dψ(x) : X → R, at every x ∈ X, given by Dψ(x)(v) = 〈2x, v〉 for all v ∈ X. Take a
function θ : R → [0, 1] of class C∞(R) ∩ Lip(R) with θ(t) = 1 for all t ≤ 1/2 and θ(t) = 0 for all
t ≥ 1. Then, the map ϕ = θ ◦ψ : X → [0, 1] is of class C∞(X) with ϕ(x) = 1 for all ‖x‖ ≤ 1/2 and
ϕ(x) = 0 for all ‖x‖ ≥ 1. Also, the Fréchet derivative of ϕ satisfies

‖Dϕ(x)‖∗ = ‖θ′(ψ(x))XB(0,1)(x)2x‖∗ ≤ 2Lip(θ),

showing that ϕ is Lipschitz on X. Therefore, ϕ is a C∞ ∩ Lip bump on X. �

3.2. Approximation in super-reflexive spaces. Let us now approximate real-valued functions

of the classes V̇C
0,ω
small(X) and V̇C

0,ω
(X) over a super-reflexive Banach space X. We remind that X

is super-reflexive if every Banach space Y that is finitely representable into X is reflexive. According
to Pisier’s renorming theorem [26], a Banach space X is super-reflexive if and only if X admits a
renorming (which we keep denoting by ‖·‖), an exponent α ∈ (0, 1], and a constant C > 0 for which

‖x+ h‖1+α + ‖x− h‖1+α − 2‖x‖1+α ≤ C‖h‖1+α, for all x, h ∈ X. (35)

See also [4, pp. 412–413] for a proof of this equivalence. This property is often rephrased by saying
that X admits a renorming with modulus of smoothness of power type 1 + α. Since the function

19



x 7→ ψ(x) = ‖x‖1+α is convex and continuous on X, then (35) implies that ψ is of class C1,α(X);
and with ‖Dψ‖Ċ0,α(X,X∗) .α,C 1; see [8, Lemma V.3.5].

We remind that a function f : X → R belongs to the class C1,α(X) if f is Fréchet differentiable at
every point x ∈ X and the Fréchet derivative Df : X → X∗ is α-Hölder continuous on X, namely,
that

‖Df‖Ċ0,α(X,X∗) := sup

{‖Df(x)−Df(y)‖∗
‖x− y‖α : x, y ∈ X, x 6= y

}

<∞.

In Hilbert spaces the Lasry–Lions regularization theorem (see [20] or [13, p. 408]) provides uniform
approximation of Lipschitz functions by C1,1 ∩ Lip functions. Cepedello-Boiso [5, Theorem 1] used
an ingenious variant of the Lasry-Lions technique to obtain uniform approximation of Lipschitz
functions in super-reflexive spaces by C1 functions whose derivatives are α-Hölder on bounded
subsets, but not globally on X. These approximations are, of course, Lipschitz on bounded sets,
but not globally Lipschitz. However, for our purposes, we need to approximate Lipschitz functions
uniformly by globally C1,α∩Lip functions, and we need a good control on the Lipschitz constants of
the approximations. In Theorem 3.8(2) below, we have obtained uniform approximations that are
globally C1,α and globally Lipschitz on X, preserving the Lipschitz constants up to a multiplicative
factor depending only on α and X. In the proof, we use a recent result on C1,ω extensions for jets
[3] to construct C1,α bump functions with all the properties stated in part (1) of Theorem 3.8. This
is combined with a method of Hájek and Johanis [13, Proposition 1] to glue up a suitable sequence
of these bumps. Both parts (1) and (2) in Theorem 3.8 are interesting to the theory of smooth

approximation, and also will be essential for the approximation of V̇C
0,ω

functions.
Let us mention that, after making the first version of this article public, it has come to our

attention that part (2) of Theorem 3.8 was very recently discovered by Johanis [19] too, by means
of a different proof. A benefit of Johanis’ proof is that it provides the sharp constant κ = 1. Since we
only need an absolute control on κ for our purposes, and since we consider part (1) of independent
interest as well, we have chosen to include our original proof of Theorem 3.8(2).

Theorem 3.8. Let X be a super-reflexive space, let α ∈ (0, 1] and C > 0 be so that a renorming of
‖ · ‖ of X satisfies (35). Then, there exists a constant κ ≥ 1 depending only on α and C for which
the following hold.

(1) For every set S ⊂ X there exists hS : X → [0, 1] of class C1,α(X) ∩ Lip(X) so that:
hS(x) = 0, for every x ∈ S;
hS(x) = 1, whenever d(x, S) ≥ 1;
DhS(x) = 0, for every x ∈ S ∪ {y ∈ X : d(y, S) ≥ 1}; and

Lip(hS) + ‖DhS‖Ċ0,α(X,X∗) ≤ κ.

(2) Given an L-Lipschitz function g : X → R and ε > 0, there exists h ∈ C1,α(X) so that h is
κL-Lipschitz, and supX |g − h| ≤ ε.

Proof of Theorem 3.8.
(1) In the cases S = ∅ or {d(·, S) ≥ 1} = ∅, we simply take hS ≡ 1 in the first case, and hS ≡ 0 in
the latter. Assume from now on that both sets are nonempty. On the set

E := S ∪ {x ∈ X : d(x, S) ≥ 1},
we define a 1-jet (f,G) : E → R×X∗ by setting

f(x) = 0, if x ∈ S; f(x) = 1, if d(x, S) ≥ 1; G(x) = 0, for all x ∈ E.

By separating into cases, it is immediate to verify the existence of M =M(α) > 0 for which

f(y) +G(y)(x − y)− f(z)−G(z)(x− z) ≤ M

1 + α

(

‖x− y‖1+α + ‖x− z‖1+α
)

,
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for all y, z ∈ E, x ∈ X; indeed, G(y) = G(z) = 0 is the zero functional, and for f(y) − f(z), by
symmetry, it is enough to verify the case y ∈ S and d(z, S) ≥ 1 and x ∈ X arbitrary, but this case
is clear by inspection, since

f(y)− f(z) = 1 ≤ ‖y − z‖ ≤ ‖y − z‖1+α ≤ M

1 + α

(

‖x− y‖1+α + ‖x− z‖1+α
)

.

Thus, applying [3, Theorem 4.1], there exists a constant κ0 = κ0(α,C), and a function F : X → R

of class C1,α, bounded and Lipschitz, with

‖F‖∞ + Lip(F ) + ‖DF‖Ċ0,α(X,X∗) ≤ κ0M =: κ1, (36)

and so that F = f and DF = G = 0 on E. Although [3, Theorem 4.1] is formulated for Hilbert
spaces, it generalizes immediately to super-reflexive Banach spaces satisfying property (35), as
pointed out in [3, Remark 4.7]; see also [3, Theorem 1.9]. Let us examine the extension formula
F , since we need some of its properties. At the same time, for the reader’s convenience, we sketch
some of the key steps in the proof of [3, Theorem 4.1]. With M as above,

M∗ := max
{

3
(

‖f‖∞ + ‖G‖∞
)

,
M

1 + α

}

,

and the functions m, g : X → R by

m(x) := max
{

− 2
(

‖f‖∞ + ‖G‖∞
)

, sup
z∈E

{

f(z) +G(z)(x − z)−M∗‖x− z‖1+α
}}

,

g(x) := min
{

2
(

‖f‖∞ + ‖G‖∞
)

, inf
y∈E

{

f(y) +G(y)(x − y) +M∗‖x− y‖1+α
}}

.

For a suitable number A (depending only on α and C), F is defined to be the AM∗t1+α-strongly
paraconvex envelope of g, that is,

F (x) := sup{h(x) : h is AM∗t1+α-strongly paraconvex, and h ≤ g on X}, x ∈ X.
As defined in [3], a function h : ψ → R is Lt1+α-strongly paraconvex, for L > 0, if

ψ(λu+ (1− λ)v)− λψ(u) − (1− λ)ψ(v) ≤ λ(1− λ)L‖u− v‖1+α, u, v ∈ X, λ ∈ [0, 1].

By the comment just after formula (35), the function u 7→ ψ(u) := −‖u‖1+α is C1,α, and their
Fréchet derivativeDψ satisfies ‖Dψ‖Ċ0,α(X,X∗) ≤ B(α,C). Thus, using the Fundamental Theorem of

Calculus and some elementary computations, ψ is At1+α-strongly paraconvex for some A = A(α,C);
see the argument near the end of [3, the proof of Lemma 3.6]. It turns out that then both m and
(−g) are AM∗tα-strongly paraconvex. Also, m ≤ g on X, and these properties permit to prove the
regularity F ∈ C1,α(X), along with (36) and that (F,DF ) = (f,G) on E. See [3, Theorems 1.9 and
4.1] for further explanations and details of these concepts and their proofs. Now, by the definition
of F, the pointwise relation

m(x) ≤ F (x) ≤ g(x), x ∈ X,

holds true. Since G ≡ 0 and ‖f‖∞ = 1, the definition of m and g and this estimate imply that
−2 ≤ F ≤ 2 on X. It only remains to slightly modify F so that the final function hS takes values
in [0, 1].

To do so, we pick a bump θ : R → [0, 1] of class C∞(R) ∩ C1,α(R) ∩ Lip(R) with θ(t) = 0 for
t ≤ 0 and t ≥ 2, and θ(1) = 1. Define hS := θ ◦ F : X → [0, 1]. It is immediate that hS(x) = 0
for every x ∈ S, hS(x) = 1 if d(x, S) ≥ 1, and that DhS = 0 on E. Since F is κ1-Lipschitz,
hS is Lip(θ)κ1-Lipschitz. Finally, using the facts that Lip(F ) + ‖DF‖Ċ0,α(X,X∗) ≤ κ1 and that

Lip(θ) + ‖θ′‖Ċ0,α(R) ≤ c(α) for some c(α) > 0, it is an easy exercise to verify that

‖DhS‖Ċ0,α(X,X∗) ≤ ‖θ′‖Ċ0,α(R) Lip(F )
α + Lip(θ)‖DF‖Ċ0,α(X,X∗) ≤ κ(α, κ1).

Therefore, we can find κ = κ(α,C) for which hS satisfies all the properties stated in (1).
21



(2) Let g : X → R be L-Lipschitz, and ε > 0. We will now apply part (1) for a suitable sequence
of sets to obtain the desired approximation. In order to do so, we use the same construction as in
[13, Proposition 1], replacing the C1-separating functions from there with those we just obtained in
part (1).

Define g̃(x) = ε−1g(εx/L), for all x ∈ X, and note that g̃ is 1-Lipschitz. Now, we define the
set Sn = {x ∈ X : g̃(x) ≥ n}, for each integer n ∈ Z. Note that Sn+1 ⊂ Sn, and also, because
g̃ is 1-Lipschitz, one has that d(X \ Sn, Sn+1) ≥ 1 for every n ∈ Z. Now, for each subset Sn, let
hSn : X → [0, 1] be the function from (1). Define now hn = 1− hSn+1

for every n, and also

h(x) =
∞
∑

n=0

hn(x) +
−1
∑

n=−∞

(hn(x)− 1), x ∈ X.

Each hn is C1 and κ-Lipschitz, hn = 1 on Sn+1, and hn(x) = 0 if d(x, Sn+1) ≥ 1. As proven in
[13, Proposition 1], h : X → R is a well-defined κ-Lipschitz and C1 function, with supX |h− g̃| ≤ 1.
Moreover, the sums defining h are locally finite, meaning that for every x ∈ X, there exists Nx ∈ N,
and a ball B(x, rx) so that

h(z) =

max{|m|,Nx}
∑

n=0

hn(z) +

−1
∑

n=−max{|m|,Nx}

(hn(z)− 1), z ∈ B(x, rx), m ∈ Z. (37)

The relation (37) will allow us to differentiate the sums defining h term by term locally around
every x ∈ X.

Let us now prove that h ∈ C1,α(X) with ‖Dh‖Ċ0,α(X,X∗) ≤ 2κ. Recalling that by definition

DhSn+1
(x) = 0 whenever x ∈ Sn+1 ∪ {x ∈ X : d(x, Sn+1) ≥ 1}, it is immediate from the definition

hn := 1− hSn+1
that

Dhn = 0 on Sn+1 ∪ {x ∈ X : d(x, Sn+1) ≥ 1}, n ∈ Z.

Note that this implies Dhn = 0 on X \ Sn, as d(X \ Sn, Sn+1) ≥ 1. These observations together
with the continuity of Dhn give

Dhn = 0 on Sn+1 ∪X \ Sn, n ∈ Z. (38)

Also, we claim that

Dh(x) = Dhm(x), whenever x ∈ Sm \ Sm+1, m ∈ Z. (39)

Indeed, let x ∈ Sm \ Sm+1. For those n ≥ m + 1, we have x /∈ Sn and thus Dhn(x) = 0, e.g., by
virtue of (38). And for those n ≤ m − 1, we have x ∈ Sn+1 and so Dhn(x) = 0. In other words,
Dhn(x) = 0 for n 6= m. It then follows by (37) and evaluating at x ∈ Sm \ Sm+1 that

Dh(x) =

max{|m|,Nx}
∑

n=0

Dhn(x) +
−1
∑

n=−max{|m|,Nx}

Dhn(x) = Dhm(x).

This proves the claim (39).
Now given x, y ∈ X, let m ∈ Z and l ∈ N∪{0} be so that x ∈ Sm \Sm+1 and y ∈ Sm+l \Sm+l+1,

and we show the α-Hölder estimate for ‖Dh(x) −Dh(y)‖∗.
In the case l = 0, we have x, y ∈ Sm \ Sm+1, and so it suffices to apply (39) and the fact that

‖Dhm‖Ċ0,α(X,X∗) ≤ κ.

Assume now l ≥ 1. By the connectedness of [x, y] and x 6∈ Sm+l and y ∈ Sm+l, the segment [x, y]

must intersect the boundary of Sm+l. Let z ∈ [x, y]∩Sm+l ∩X \ Sm+l. In particular, z ∈ X \ Sm+l,
and by (38), this implies Dhm+l(z) = 0. Also, observe that y ∈ Sm+l ⊂ Sm+1, and so Dhm(y) = 0,
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again by (38). Using first (39), then Dhm(y) = Dhm+l(z) = 0, and finally that ‖Dhn‖Ċ0,α(X,X∗) ≤ κ

for all n ∈ Z, we conclude that

‖Dh(x) −Dh(y)‖∗ = ‖Dhm(x)−Dhm+l(y)‖∗
≤ ‖Dhm(x)−Dhm(y)‖∗ + ‖Dhm+l(z)−Dhm+l(y)‖∗
≤ κ (‖x− y‖α + ‖z − y‖α) ≤ 2κ‖x− y‖α.

By symmetry, we can swap the roles of x and y, and thus we have shown that h ∈ C1,α(X).

Finally, rescaling the function h by h̃(x) = εh(xL/ε) and noting that g(x) = εg̃(xL/ε), we see

that h̃ ∈ C1,α(X) with supX |h̃− g| ≤ ε and Lip(h̃) ≤ LLip(h) ≤ κL. �

We will use the following elementary fact.

Remark 3.9. If U, V are normed spaces, and ψ : U → V is Lipschitz and bounded, then ψ is
α-Hölder for every α ∈ (0, 1].

A consequence of Theorem 3.8, in combination with our results from previous sections, is the

following C1,α ∩ Lip approximation of V̇C
0,ω

functions in super-reflexive spaces. Note that, unlike
in Theorem 3.5, X may be nonseparable.

Theorem 3.10 (Approximation in super-reflexive spaces). Let X be a super-reflexive space, and
let α ∈ (0, 1] and C > 0 be so that a renorming of ‖ · ‖ of X satisfies (35). Then the following hold:

(i) C1,α(X) ∩ Lip(X) ∩ Ċ0,ω(X)
Ċ0,ω(X)

= V̇C
0,ω
small(X),

(ii) C1,α
bs (X)

Ċ0,ω(X)
= V̇C

0,ω
(X).

Notice that the modulus ω is independent of α. Also, the approximations in part (ii) are Lipschitz.
Indeed, as the derivative is α-Hölder and boundedly supported, it is in particular bounded and this
implies that the function is Lipschitz.

Proof.

(i) Let f ∈ V̇C
0,ω
small(X) and ε > 0. Applying Lemma 3.1, we can find a function g ∈ Lip(X) so

that ‖f − g‖Ċ0,ω(X) ≤ ε. Now, by Theorem 3.8(2), there is a sequence (gn) of Lip(X) ∩ C1,α(X)

functions with supn Lip(gn) ≤ κLip(g), and limn supX |g − gn| = 0. Therefore Lemma 3.2 yields
that limn ‖gn − g‖Ċ0,ω(X) = 0, and taking some gn from the sequence with ‖gn − g‖Ċ0,ω(X) ≤ ε, we

conclude the inclusion “ ⊃ ” of (i). The reverse inclusion follows by noting that Lip(X)∩ Ċ0,ω(X) ⊂
V̇C

0,ω
small(X), by the condition (3), and that V̇C

0,ω
small(X) is a closed subspace of Ċ0,ω(X).

(ii) Let f ∈ V̇C
0,ω

(X) and ε > 0. By Theorem 3.3 we find g ∈ Lip(X) with bounded support so that
‖f − g‖Ċ0,ω(X) ≤ ε. With R > 0 so that g(x) = 0 for ‖x‖ ≥ R, we use Theorem 3.8(1) to obtain a

Lip(X) ∩ C1,α(X) function ϕ : X → [0, 1] with ϕ = 1 on B(0, 2R) and ϕ = 0 on X \B(0, 2R + 1).
If (gn)n is the approximating function for g from part (i), we define hn = ϕgn. Obviously each
hn ∈ C1(X) and also has bounded support, and moreover the properties ‖hn − g‖∞ → 0 and
lim supn Lip(hn) <∞ hold and are checked exactly as in the proof of Lemma 3.4, see the line (34).
So, it only remains to verify that hn has α-Hölder derivative, at least, for n large enough. Write,

Dhn(x) = gn(x)Dϕ(x) + ϕ(x)Dgn(x)

and let us prove that both terms define an α-Hölder function.
For the first function x 7→ gn(x)Dϕ(x), let us observe that, for n large enough, one has supX |gn| ≤

1+supX |g|, as gn converges uniformly on X to g. Hence, by Remark 3.9, gn is α-Hölder continuous
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on X. Then, we write

‖gn(x)Dϕ(x) − gn(z)Dϕ(z)‖∗
≤ |gn(x)|‖Dϕ(x) −Dϕ(z)‖∗ + |gn(x)− gn(z)|‖Dϕ(z)‖∗
≤ sup

X
|gn|‖Dϕ‖Ċ0,α(X,X∗)‖x− z‖α + ‖gn‖Ċ0,α(X,R)‖x− z‖α sup

X
‖Dϕ‖∗.

All the factors that multiply the term ‖x− z‖α are finite by the properties of ϕ and gn.
As concerns the second function x 7→ ϕ(x)Dgn(x), its α-Hölder continuity is verified in a very

similar way, this time using Remark 3.9 for ϕ and that Dgn is bounded (as gn is Lipschitz) and
α-Hölder continuous.

We conclude that (hn)n → g uniformly, with (hn)n ∈ C1,α
bs (X) and lim supn Lip(hn) < ∞. By

Lemma 3.2, we have ‖hn − g‖Ċ0,ω(X) → 0 as well. Therefore, we can find h ∈ C1,α
bs (X) with

‖h− g‖Ċ0,ω(X) ≤ ε, and thus ‖h− f‖Ċ0,ω(X) ≤ 2ε.

We have shown the inclusion V̇C
0,ω

(X) ⊂ C1,α
bs (X)

Ċ0,ω(X)
. For the reverse inclusion, observe that

if f ∈ C1,α
bs (X), then Df : X → X∗ is α-Hölder and with bounded support, and so Df is bounded

in X. Because Lipschitz functions with bounded support are contained in V̇C
0,ω

(X), which is closed

under limits with respect to the Ċ0,ω(X) seminorm, the reverse inclusion holds. �

Remark 3.11. We exhibit some examples of classical spaces that are covered by Theorem 3.10.

(1) If X = Lp, for 1 < p <∞, then (35) holds for αp = p − 1 when p ≤ 2 and for αp = 1 when
p ≥ 2; for a proof see [8, Corollary V.1.2]. By Theorem 3.10, this gives rise to approximations

of V̇C
0,ω
small(X) and V̇C

0,ω
(X) by Lipschitz functions of class C1,αp(X).

(2) If X is a Hilbert space (separable or not), then (35) holds as an identity for α = 1 and
C = 2 (the parallelogram law), and so Theorem 3.10 gives C1,1 approximations:

(i) V̇C
0,ω
small(X) = C1,1(X) ∩ Lip(X) ∩ Ċ0,ω(X)

Ċ0,ω(X)
,

(ii) V̇C
0,ω

(X) = C1,1
bs (X)

Ċ0,ω(X)
.

3.3. Approximation of Banach-valued mappings from c0. For an arbitrary set of indices A,
the space c0(A) consists of those elements x = (xα)α∈A ∈ R

A such that for every ε > 0, there exists
a finite subset S = Sx ⊂ A so that |xα| ≤ ε, whenever α ∈ A \ S. We equip c0(A) with the norm
‖(xα)α∈A‖∞ := supα∈A |xα| and this results in a Banach space.

Given x = (xα)α∈A and α ∈ A, we denote the projection (x)β = ((xα)α∈A)β := xβ ∈ R; and for
every finite subset S ⊂ A, we denote

PS : c0(A) → c00(A), PS(x) =
∑

α∈S

xαeα,

where eα is the element of c0(A) that satisfies (eα)β = δα,β, for every β ∈ A.
Theorem 3.12 (Approximation in c0(A)). For an arbitrary set of indices A, let X = c0(A), and
let Y be a Banach space. Then, the following hold:

(i) C∞(X,Y ) ∩ V̇C
0,ω
small(X,Y )

Ċ0,ω(X,Y )

= V̇C
0,ω
small(X,Y ),

(ii) C∞
bs (X,Y ) ∩ V̇C

0,ω
(X,Y )

Ċ0,ω(X,Y )

= V̇C
0,ω

(X,Y ).

Moreover, in the particular case Y = R, the approximation can be taken to be Lipschitz:

(i) C∞(X) ∩ Lip(X) ∩ Ċ0,ω(X)
Ċ0,ω(X)

= V̇C
0,ω
small(X),
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(ii) C∞
bs (X) ∩ Lip(X)

Ċ0,ω(X)
= V̇C

0,ω
(X).

One step in our proof of Theorem 3.12 will rely on the construction by Hájek and Johanis
[12, Theorem 1] (stated for Lipschitz functions), to obtain the C∞ approximation on c0(A). However,

the verification Ċ0,ω convergence after our V̇C
0,ω
small condition will require more work.

Following [12] we first construct an approximation that locally depends only on a finite number
of coordinates.

Lemma 3.13. Let f ∈ V̇C
0,ω
small(X,Y ) and ε > 0. Then, there exists g ∈ V̇C

0,ω
small(X,Y ) and r > 0

so that ‖g− f‖Ċ0,ω(X,Y ) ≤ ε, and for every x ∈ X, there exists a finite subset S = Sx of A for which

g(z) = g(PS(z)), whenever z ∈ B(x, r).
Moreover, if f has bounded support (resp. Lipschitz), then the above g has bounded supported

(resp. Lipschitz) too.

Proof. Let f ∈ V̇C
0,ω
small(X,Y ) and ε > 0, let δ > 0 be so that

sup
‖u−v‖≤δ

‖f(u)− f(v)‖Y
ω(‖u− v‖) ≤ ε

2
. (40)

By ω(0) = 0, we find r > 0 so that 2ω(r)‖f‖Ċ0,ω(X,Y ) ≤ εω(δ). Let us define

ϕ : R → R, ϕ(t) =







t+ r if t ≤ −r,
0 if −r ≤ t ≤ r,

t− r if t ≥ r,

and
φ : X → X, φ(x) = φ((xα)α∈A) = (ϕ(xα))α∈A.

As clearly ϕ is 1-Lipschitz, it is immediate that φ is 1-Lipschitz. Also, it is immediate that ‖f − f ◦
φ‖Y ≤ ω(r)‖f‖Ċ0,ω(X,Y ). Defining g := f ◦ φ, we have g ∈ V̇C

0,ω
small(X,Y ), by virtue of Lemma 2.3.

If x, z ∈ X are such that ‖x− z‖ ≤ δ, then ‖φ(x)− φ(z)‖ ≤ δ and so

‖g(x) − g(z)‖Y = ‖f(φ(x)) − f(φ(z))‖Y ≤ ε

2
ω(‖φ(x) − φ(z)‖) ≤ ε

2
ω(‖x− z‖).

This estimate, in combination with (40), yields,

sup
‖x−z‖≤δ

‖(f − g)(x)− (f − g)(z)‖Y
ω(‖x− z‖) ≤ ε

2
+
ε

2
= ε.

On the other hand, the choice of r permits to estimate by

sup
‖x−z‖≥δ

‖(f − g)(x) − (f − g)(z)‖Y
ω(‖x− z‖) ≤ 2‖f − g‖∞

ω(δ)
≤

2ω(r)‖f‖Ċ0,ω(X,Y )

ω(δ)
≤ ε.

We have shown that ‖f − g‖Ċ0,ω(X,Y ) ≤ ε.

Now, if x ∈ X = c0(A), then (by definition) there exists a finite subset S = Sx such that if
α ∈ A \ S, then |xα| ≤ r/2. Then, for z ∈ B(x, r/2) and for each α ∈ A \ S it follows that
|zα| ≤ r, implying that ϕ(zα) = 0. It follows for z ∈ B(x, r/2) that φ(z) = φ(PS(z)) and hence that
g(z) = g(PS(z)).

For the second part, suppose there exists R > 0 so that f(x) = 0 for all ‖x‖ ≥ R. If ‖z‖ ≥ R+ r,
then |zα0

| ≥ R+ r for some α0 ∈ A. Consequently

‖φ(z)‖ = sup
α∈A

|ϕ(zα)| ≥ |ϕ(zα0
)| ≥ |zα0

| − r ≥ R,

and thus g(z) = f(φ(z)) = 0. Finally, if f is Lipschitz, then clearly g = f ◦ φ is Lipschitz.
�
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Proof of Theorem 3.12. In the proof of part (i), by Lemma 3.13, given a fixed r > 0, it is enough

to approximate functions g ∈ V̇C
0,ω
small(X,Y ) with the property that for every x ∈ X, there exists

finite Sx ⊂ A such that g(z) = g(PSx(z)), for all z ∈ B(x, 2r).
Given ε, let δ > 0 be so that

‖g(u) − g(v)‖Y ≤ εω(‖u− v‖), whenever ‖u− v‖ ≤ δ. (41)

Moreover, for 0 < η < min(r, ε) small enough (more precisely, so that ω(η) ≤ εω(δ)/(1+‖g‖Ċ0,ω )),
let θ : R → R be an even C∞ smooth non-negative function such that

´

R
θ = 1 and θ = 0 on

R \ [−η, η]. For every finite set F ⊂ A, and x ∈ X, we define the Bochner integral

hF (x) :=

ˆ

[−η,η]|F |

g
(

x−
∑

α∈F

tαeα

)

∏

α∈F

θ(tα) dλ|F |(t), (42)

where λ|F | is the Lebesgue measure on R
|F |.

Because g(z) = g(PSx(z)) for all z ∈ B(x, 2r), the fact that η < r implies that hSx = hSx ◦ PSx

on the ball B(x, r). Therefore

hSx(z) =

ˆ

[−η,η]|Sx|
g
(

PSx(z)−
∑

α∈Sx

tαeα

)

∏

α∈Sx

θ(tα) dλ|Sx|(t), z ∈ B(x, r).

Since g ∈ Ċ0,ω(X,Y ) and PSx is 1-Lipschitz, the function z 7→ (g ◦ PSx)(z) belongs to Ċ0,ω(X,Y ),
implying that z 7→ (g ◦ PSx)(z) is uniformly continuous on X. Therefore, by the previous formula,
B(x, r) ∋ z 7→ hSx(z) is a finite dimensional smooth mollification (in the Bochner sense) with a
uniformly continuous mapping, which shows that hSx ∈ C∞(B(x, r), Y ). Moreover, using Fubini’s
theorem, one can easily check that if F ⊂ A is finite and F ⊃ Sx, then also hF = hSx on B(x, r).
This enables us to define the desired mapping h : X → Y in the following manner. Given x ∈ X, let
Sx ⊂ A be the subset described above, and define h(x) := hSx(x). Moreover, ordering the collection
of finite subsets F(A) of A by inclusion, the pointwise limit of the net {hS}S∈F(A) is exactly h.

Now, for every fixed ball B(x, r) and z ∈ B(x, r), let F = Sx ∪Sz. By the definition of h and the
above mentioned properties, we derive

h(z) = hSz(z) = hF (z) = hSx(z).

Since z 7→ hSx(z) is of class C∞(B(x, r), Y ), the above yields h ∈ C∞(X,Y ). All these properties
were stated and proved in [12, Lemma 6].

We next show that h ∈ V̇C
0,ω
small(X,Y ). Given any two points x, z ∈ X, let Sx, Sz ⊂ A be the

finite subsets associated with x and z, and set S = Sx ∪ Sz. Since h(x) = hS(x) and h(z) = hS(z)
we have

‖h(x) − h(z)‖Y =
∥

∥

∥

ˆ

[−η,η]|S|

(

g
(

x−
∑

α∈S

tαeα
)

− g
(

z −
∑

α∈S

tαeα
)

)

∏

α∈S

θ(tα) dλ|S|(t)
∥

∥

∥

Y

≤
ˆ

[−η,η]|S|

∥

∥

∥
g
(

x−
∑

α∈S

tαeα
)

− g
(

z −
∑

α∈S

tαeα
)

∥

∥

∥

Y

∏

α∈S

θ(tα) dλ|S|(t)

≤ sup
u,v∈X,

‖u−v‖=‖x−z‖

‖g(u) − g(v)‖Y ,

(43)

bearing in mind that
´

[−η,η]|S|

∏

α∈S θ(tα) dλ|S|(t) = 1. It follows immediately from the bound (43)

that ‖h‖Ċ0,ω(X,Y ) ≤ ‖g‖Ċ0,ω(X,Y ) and h ∈ V̇C
0,ω
small(X,Y ). Now if ‖x − z‖ ≤ δ, then together (43)

and (41) give

‖(g − h)(x) − (g − h)(z)‖Y ≤ ‖g(x) − g(z)‖Y + ‖h(x) − h(z)‖Y ≤ 2εω(‖x − z‖).
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Hence to verify ‖g− h‖Ċ0,ω(X,Y ) ≤ 2ε, it remains to check the case ‖x− z‖ ≥ δ. To do so, let us see

that supX ‖g − h‖ ≤ εω(δ). Indeed, if x ∈ X and S = Sx, then again h(x) = hSx(x), and we obtain

‖h(x)− g(x)‖Y ≤
ˆ

[−η,η]|S|

∥

∥

∥
g
(

x−
∑

α∈S

tαeα

)

− g(x)
∥

∥

∥

Y

∏

α∈S

θ(tα) dλ|S|(t)

≤ ‖g‖Ċ0,ω(X,Y )

ˆ

[−η,η]|S|

ω
(∥

∥

∥

∑

α∈S

tαeα

∥

∥

∥

)

∏

α∈S

θ(tα) dλ|S|(t)

≤ ‖g‖Ċ0,ω(X,Y )ω(η) ≤ εω(δ),

where we chose η small enough in the beginning of the proof for the last bound to hold. Now, if
x, z ∈ X are such that ‖x− z‖ ≥ δ, then

‖(g − h)(x) − (g − h)(z)‖ ≤ 2 sup
X

‖g − h‖ ≤ 2εω(δ) ≤ 2εω(‖x − z‖).

We conclude that ‖g − h‖Ċ0,ω(X,Y ) ≤ 2ε and complete the proof of Theorem 3.12(i).

For part (ii), given f ∈ V̇C
0,ω

(X,Y ), by Theorem 1.2, we approximate f , in the Ċ0,ω(X,Y )-

seminorm by a g ∈ V̇C
0,ω
small(X,Y ) with bounded support. By Lemma 3.13, we can assume that for

every x ∈ X there exists a finite S = Sx such that g = g ◦ PS on B(x, r), and for a uniform fixed
r > 0. Let us next check that the approximation h from part (i) has bounded support. Let R > 0
be so that g is zero on X \B(0, R). Assume that ‖x‖ ≥ R+ η. There exists a finite set S = Sx ⊂ A
so that h(x) = hS(x). Now, for t = (tα)α∈S ∈ [−η, η]|S|, there holds that

∥

∥

∥
x−

∑

α∈S

tαeα

∥

∥

∥
≥ ‖x‖ −

∥

∥

∥

∑

α∈S

tαeα

∥

∥

∥
≥ ‖x‖ − η ≥ R

and thus

h(x) = hS(x) =

ˆ

[−η,η]|S|

g
(

x−
∑

α∈S

tαeα

)

∏

α∈S

θ(tα) dλ|S|(t) = 0.

The proof of Theorem 3.12(ii) is now complete.

Finally, in the particular case Y = R, let us establish the desired Lipschitz approximations. Let

f ∈ V̇C
0,ω
small(X) be the function to be approximated. By Theorem 3.3 we can assume that f is

Lipschitz, and by Lemma 3.13, there is a Lipschitz approximation g of f , with g locally depending
only on a finite number of coordinates around each ball of fixed radius r > 0. Repeating the
construction of h ∈ C∞(X, ), we immediately see from the estimate (43), that h is Lipschitz, and

in fact Lip(h) ≤ Lip(g). Because any Lipschitz mapping in Ċ0,ω(X) belongs to V̇C
0,ω
small(X), by the

condition (3), the identity in (i) now follows at once.

As for approximation of an f ∈ V̇C
0,ω

(X), we apply Theorem 3.3 to reduce matters to f ∈
Lipbs(X). Then the function g of Lemma 3.13 can be taken Lipschitz and with bounded support, and
so can the function h we constructed in (i) and (ii) of the present theorem. Thus h ∈ C∞

bs (X)∩Lip(X)

approximates f in the Ċ0,ω(X) seminorm. Because any Lipschitz mapping with bounded support

belongs to V̇C
0,ω

(X), the identity in (ii) now follows at once.
�

For the particular case of A = {1, . . . , n}, c0(A) becomes R
n with the supremum norm, which

is of course equivalent with the usual Euclidean setting. Theorem 3.12 then has the following
consequence.

Corollary 3.14. Let Y be an arbitrary Banach space. Then:

(i) C∞(Rn, Y ) ∩ Ċ0,ω(Rn, Y )
Ċ0,ω(Rn,Y )

= V̇C
0,ω
small(R

n, Y ),
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(ii) C∞
c (Rn, Y )

Ċ0,ω(Rn,Y )
= V̇C

0,ω
(Rn, Y ).

Appendix A. Comparison of Ċ0,ω and uniform convergence

We begin with a remark concerning the two types of convergences we are dealing with. We will
refer to the norm ||| · |||C0,ω(X,Y ) defined in (1).

Remark A.1. Let X and Y be normed spaces and ω any modulus of continuity. Suppose that a
sequence of functions (fn)n ⊂ Ċ0,ω(X,Y ) converges to f, with respect to the norm ||| · |||C0,ω(X,Y ).
Then also fn → f uniformly on bounded subsets of X.

Indeed, let B a bounded subset of X. Given ε > 0, let N be so that |||fn − f |||C0,ω(X,Y ) ≤
ε/(1 + ω(diam(B))) for all n ≥ N. Then, for those n ≥ N, and x ∈ B, we can write

|f(x)− fn(x)| ≤ |f(0)− fn(0)| + |(f − fn)(x)− (f − fn)(0)|
≤ (1 + ω(‖x‖)) |||fn − f |||C0,ω(X,Y ) ≤ (1 + ω(diam(B))) |||fn − f |||C0,ω(X,Y ) ≤ ε.

However, the convergence in Ċ0,ω does not imply global uniform convergence, even if we assume
that the pertinent sequence of functions is globally uniformly bounded, as the next example shows.

Example A.2. Let ω be of the form ω(t) = tα, with 0 < α ≤ 1. Define fn : R → R as the continuous
function given by fn = 0 on (−∞, 0]∪ [2n,+∞), fn(n) = 1, and fn affine on both [0, n] and [n, 2n].
It is immediate that ‖fn‖∞ ≤ 1 for all n, and that (fn)n does not converge to 0 uniformly on R.

However, one has fn → 0 in the Ċ0,ω(R) sense. This easily follows after observing that

sup
n≤s<t≤2n

|fn(t)− fn(s)|
ω(|t− s|) = sup

0≤s<t≤n

|fn(t)− fn(s)|
ω(|t− s|) = sup

0≤s<t≤n

1

n

t− s

(t− s)α
=

1

nα
.

Finally, we next show that the converse to Remark A.1 is false, by providing a sequence (fn)n ⊂
Ċ0,ω and f ∈ Ċ0,ω so that fn converges uniformly on R, and fn does not converge to f in the
‖ · ‖Ċ0,ω norm on bouded subsets.

Example A.3. Define f = 0 on R and the continuous functions fn : R → [0, 1] given by

fn(t) =



















1/
√
n, t = 0,

affine, t ∈ [0, 1/n],

0, t ≥ 1/n,

fn(−t), t ≤ 0.

Then supt∈R |fn(t)| = 1/
√
n, yielding ‖fn − f‖∞ → 0. Also, each fn is

√
n-Lipschitz:

|fn(0)− fn(1/n)|
|0− 1/n| =

1/
√
n

1/n
=

√
n.

Because fn is bounded, then fn ∈ Ċ0,ω(R) for all moduli ω that satisfy limt→0 t/ω(t) <∞.
However, if ω(t) = tα with α ∈ (1/2, 1], then limn ‖fn − f‖Ċ0,ω([0,1]) = ∞, since

lim
n

‖fn − f‖Ċ0,ω([0,1]) ≥ lim
n

|fn(0) − fn(1/n)|
ω(|0 − 1/n|) = lim

n
nα−

1

2 = ∞.
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