Welcome on the ECCE-6 CDROM.

Conference logo

European Congress of Chemical Engineering - 6
Copenhagen 16-21 September 2007

Abstract 3383 - Numerical Investigations of Fluid Flow and Lateral Fluid dispersion in Bounded Granular Beds in Cylindrical Coordinates System

Numerical Investigations of Fluid Flow and Lateral Fluid dispersion in Bounded Granular Beds in Cylindrical Coordinates System

Advancing the chemical engineering fundamentals

Transport Phenomena in Porous/Granular Media (T2-7P)

Dr Azita Soleymani
Lappeenranta University of Technology
Chemical Technology Department
Chemical Technology Department
Lappeenranta University of Technology
53851 Lappeenranta
Finland
Finland

Keywords: porous media, direct numerical simulation, Green function, dispersion, turbulence

Azita Soleymani* and Ilkka Turunen
Department of Chemical Technology, Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta, Finland





Abstract- Results are presented from a numerical study examining the flow of a viscous, incompressible fluid through random packing of nonoverlapping spheres at moderate Reynolds numbers , spanning a wide range of flow conditions for porous media. By using a laminar model including inertial terms and assuming rough walls, numerical solutions of the Navier-Stokes equations in three-dimensional porous packed beds resulted in dimensionless pressure drops in excellent agreement with those reported in a previous study. This observation suggests that no transition to turbulence could occur in the range of Reynolds number studied. For flows in the Forchheimer regime, numerical results are presented of the lateral dispersivity of solute continuously injected into a three-dimensional bounded granular bed at moderate Peclet numbers. In addition to numerical calculations, to describe the concentration profile of solute an approximate solution for mass transport equation in a bounded granular bed in cylindrical coordinates system is proposed. Lateral fluid dispersion coefficients are then calculated by comparing the concentration profiles obtained from numerical and analytical methods. Comparing the present numerical results with data available in the literature, no evidence has been found to support the speculations by others for a transition from laminar to turbulent regimes in porous media at a critical Reynolds number.

Presented Monday 17, 13:30 to 15:00, in session Transport Phenomena in Porous/Granular Media (T2-7P).

Conference logo