TMM4175 Polymer Composites

Home About Python Links Next Previous Table of Contents

Thermal expansion

The thermally induced strains $\boldsymbol{\varepsilon}_ {th}$ divided by the change in temperature $\Delta T$ is called the material's coefficients of thermal expansion $\boldsymbol{\alpha}$. A general anisotropic material has six coefficients:

\begin{equation} \boldsymbol{\alpha}= \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_{23} \\ \alpha_{13} \\ \alpha_{12} \end{bmatrix}= \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}_{th} \frac{1}{\Delta T} \tag{1} \end{equation}

Hence, the thermally induced strain is

\begin{equation} \boldsymbol{\varepsilon}_{th}=\boldsymbol{\alpha}\Delta T \tag{2} \end{equation}

The total strain is the sum of thermal strain and mechanical strain:

\begin{equation} \boldsymbol{\varepsilon}=\mathbf{S}\boldsymbol{\sigma} + \boldsymbol{\alpha}\Delta T \tag{3} \end{equation}

Solving for stress:

\begin{equation} \boldsymbol{\sigma} = \mathbf{C}(\boldsymbol{\varepsilon} - \boldsymbol{\alpha}\Delta T ) \tag{4} \end{equation}

Hence, the relations for general anisotropic materials are:

\begin{equation} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{bmatrix}= \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{45} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}- \Delta T \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_{23} \\ \alpha_{13} \\ \alpha_{12} \end{bmatrix} \end{bmatrix} \tag{5} \end{equation}

Due to the symmetry of orthotropic materials, the coefficients $\alpha_{23},\alpha_{13},\alpha_{12}$ are all zero and the stiffness matrix has only nine independent elastic constants:

\begin{equation} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{bmatrix}= \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}- \Delta T \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \tag{6} \end{equation}

Example

The temperature is increased by 100$^\circ$C while the total strain is kept zero. Compute the stress for the unidirectional Kevlar-49/Epoxy material read from the Material library.

In [1]:
import matlib
m = matlib.get('Kevlar-49/Epoxy')
display(m)
{'name': 'Kevlar-49/Epoxy',
 'units': 'MPa-mm-Mg',
 'type': 'UD',
 'fiber': 'Kevlar-49',
 'Vf': 0.55,
 'rho': 1.4e-09,
 'description': 'Typical UD Kevlar-49/Epoxy from TMM4175',
 'E1': 73000,
 'E2': 5000,
 'E3': 5000,
 'v12': 0.35,
 'v13': 0.35,
 'v23': 0.45,
 'G12': 2200,
 'G13': 2200,
 'G23': 1700,
 'a1': -1e-06,
 'a2': 5e-05,
 'a3': 5e-05,
 'XT': 1400,
 'YT': 20,
 'ZT': 20,
 'XC': 300,
 'YC': 120,
 'ZC': 120,
 'S12': 40,
 'S13': 40,
 'S23': 20,
 'f12': -0.5,
 'f13': -0.5,
 'f23': -0.5}
In [2]:
import numpy as np
from compositelib import S3D, C3D

C=C3D(m)

dT = 100

strain = np.array([0,0,0,0,0,0])

CTE = np.array([ m['a1'], m['a2'], m['a3'], 0, 0, 0 ])

thermalstrain=dT*CTE

mechanicalstrain=strain-thermalstrain

stress=np.dot(C,mechanicalstrain)

print('Thermally induced stresses:')
print(np.array2string(stress, precision=3, suppress_small=True, separator='  ', floatmode='maxprec') )
Thermally induced stresses:
[-25.29   -46.557  -46.557    0.       0.       0.   ]

References and further readings

  1. Herakovich, Carl T. Mechanics of Fibrous Composites. New York: Wiley, 1998.
  2. Daniel, Isaac M., and Ori Ishai. Engineering Mechanics of Composite Materials. 2nd ed. New York: Oxford University Press, 2006.
  3. Kollár, Lázló P., and George S. Springer. Mechanics of Composite Structures. Cambridge: Cambridge University Press, 2003.

Disclaimer:This site is about polymer composites, designed for educational purposes. Consumption and use of any sort & kind is solely at your own risk.
Fair use: I spent some time making all the pages, and even the figures and illustrations are my own creations. Obviously, you may steal whatever you find useful here, but please show decency and give some acknowledgment if or when copying. Thanks! Contact me: nils.p.vedvik@ntnu.no www.ntnu.edu/employees/nils.p.vedvik

Copyright 2021, All right reserved, I guess.