TMM4175 Polymer Composites

Home About Python Links Next Previous Table of Contents

Strain

Strains are measures of deformation gradients where the tensorial strain components in a coordinate system $x,y,z$ is expressed as:

\begin{equation} \begin{aligned} &\varepsilon_{xx}=\frac{du}{dx} && \varepsilon_{yy}=\frac{dv}{dy} && \varepsilon_{zz}=\frac{dw}{dz} \\ &\varepsilon_{xy}=\frac{1}{2}\big(\frac{du}{dy}+\frac{dv}{dx}\big) && \varepsilon_{xz}=\frac{1}{2}\big(\frac{du}{dz}+\frac{dw}{dx}\big) && \varepsilon_{yz}=\frac{1}{2}\big(\frac{dv}{dz}+\frac{dw}{dy}\big) \end{aligned} \tag{1} \end{equation}

where $u,v$ and $w$ are displacements in $x,y$ and $z$ directions.

The strain tensor written as a matrix is:

\begin{equation} \boldsymbol{\varepsilon}= \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{xy} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_{zz} \end{bmatrix} \tag{2} \end{equation}

Observe that the strain tensor is symmetric and consists of 6 independent components.

We will generally be using engineering strains in this course, and introduce $\gamma_{ij}$ as notation for engineering shear strains and a reduced index notation for normal enginnering strains (i.e., $\varepsilon_{ii}=\varepsilon_i$). The relation between engineering strains and tensorial strains are

\begin{equation} \begin{bmatrix} \varepsilon_{x} & \gamma_{xy} & \gamma_{xz} \\ \gamma_{xy} & \varepsilon_{y} & \gamma_{yz} \\ \gamma_{xz} & \gamma_{yz} & \varepsilon_{z} \end{bmatrix}= \begin{bmatrix} \varepsilon_{xx} & 2\varepsilon_{xy} & 2\varepsilon_{xz} \\ 2\varepsilon_{xy} & \varepsilon_{yy} & 2\varepsilon_{yz} \\ 2\varepsilon_{xz} & 2\varepsilon_{yz} & \varepsilon_{zz} \end{bmatrix} \tag{3} \end{equation}

Hence, the engineering strains expressed by displacements $u,v$ and $w$ in in the $x,y$ and $z$ directions become

\begin{equation} \begin{aligned} &\varepsilon_x=\frac{du}{dx} && \varepsilon_y=\frac{dv}{dy} && \varepsilon_z=\frac{dw}{dz} \\ &\gamma_{xy}=\frac{du}{dy}+\frac{dv}{dx} && \gamma_{xz}=\frac{du}{dz}+\frac{dw}{dx} && \gamma_{yz}=\frac{dv}{dz}+\frac{dw}{dy} \end{aligned} \tag{4} \end{equation}

Example:

Consider a linear displacement field representing a plane strain case ($ \varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0 $):

\begin{aligned} &u(x,y,z) = c_1 x + c_2 y \\ &v(x,y,z) = c_3 x + c_4 y \\ &w(x,y,z) = 0 \end{aligned}

Then,

\begin{aligned} &\varepsilon_x=\frac{du}{dx}=c_1 && \varepsilon_y=\frac{dv}{dy}=c_4 && \varepsilon_z=\frac{dw}{dz}=0\\ &\gamma_{xy}=\frac{du}{dy}+\frac{dv}{dx}=c_2+c_3 && \gamma_{xz}=\frac{du}{dz}+\frac{dw}{dx}=0 && \gamma_{yz}=\frac{dv}{dz}+\frac{dw}{dy}=0 \end{aligned}

Hence,

\begin{aligned} &u = \varepsilon_x x + \frac{1}{2}\gamma_{xy} y \\ &v = \frac{1}{2}\gamma_{xy} x + \varepsilon_y y \\ &w = 0 \end{aligned}

Illustrations (the source code of the function is found in the Plot gallery):

In [1]:
from plotlib import illustrateStrains
%matplotlib inline
In [2]:
illustrateStrains( ex=0.003, ey=-0.001, exy=0, scaleFactor=100)
In [3]:
illustrateStrains( ex=0, ey=0, exy=0.003, scaleFactor=100)
In [4]:
illustrateStrains(ex=0.005, ey=-0.002, exy=-0.002, scaleFactor=100)

References and further readings

  1. Hibbeler, R.C., and Kai Beng Yap. Mechanics of Materials. Harlow: Pearson, 2018.
  2. Herakovich, Carl T. Mechanics of Fibrous Composites. New York: Wiley, 1998.
  3. Daniel, Isaac M., and Ori Ishai. Engineering Mechanics of Composite Materials. 2nd ed. New York: Oxford University Press, 2006.
  4. Kollár, Lázló P., and George S. Springer. Mechanics of Composite Structures. Cambridge: Cambridge University Press, 2003.

Disclaimer:This site is about polymer composites, designed for educational purposes. Consumption and use of any sort & kind is solely at your own risk.
Fair use: I spent some time making all the pages, and even the figures and illustrations are my own creations. Obviously, you may steal whatever you find useful here, but please show decency and give some acknowledgment if or when copying. Thanks! Contact me: nils.p.vedvik@ntnu.no www.ntnu.edu/employees/nils.p.vedvik

Copyright 2021, All right reserved, I guess.