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Abstract—Multiplicative updates have been widely used in
approximative Nonnegative Matrix Factorization (NMF) opti-
mization because they are convenient to deploy. Their con-
vergence proof is usually based on the minimization of an
auxiliary upper-bounding function, the construction of which
however remains specific and only available for limited types
of dissimilarity measures. Here we make significant progress in
developing convergent multiplicative algorithms for NMF. First,
we propose a general approach to derive the auxiliary function
for a wide variety of NMF problems, as long as the approximation
objective can be expressed as a finite sum of monomials with real
exponents. Multiplicative algorithms with theoretical guarantee
of monotonically decreasing objective function sequence can thus
be obtained. The solutions of NMF based on most commonly
used dissimilarity measures such asα- and β-divergence as well
as many other more comprehensive divergences can be derived
by the new unified principle. Second, our method is extended to
a non-separable case that includes e.g.γ-divergence and Ŕenyi
divergence. Third, we develop multiplicative algorithms for NMF
using second-order approximative factorizations, in which each
factorizing matrix may appear twice. Preliminary numerical
experiments demonstrate that the multiplicative algorithms de-
veloped using the proposed procedure can achieve satisfactory
KKT optimality. We also demonstrate NMF problems where
algorithms by the conventional method fail to guarantee descent
at each iteration but those by our principle are immune to such
violation.

Index Terms—multiplicative, nonnegative, matrix factoriza-
tion, divergence, optimization.

I. I NTRODUCTION

NONNEGATIVE Matrix Factorization (NMF) has at-
tracted a lot of research effort in the past decade. Since

Lee and Seung [1], [2] advocated the use of nonnegativity
constraint in approximative matrix factorization with twocon-
venient algorithms, much progress has been made by adopting
various dissimilarity measures, approximation schemes, and
constraints to this problem (e.g. [3], [4], [5], [6], [7], [8], [9],
[10]). NMF has also been successfully applied in many fields,
including text, speech, music, bioinformatics, neuroinformat-
ics, etc. (e.g. [11], [8], [12], [13]). See [14] for a survey.

When computing the low-rank factorization, many existing
NMF algorithms employ multiplicative updates where the new
estimate is obtained by element-wise product with nonnegative
factors. A generic principle for forming the multiplying factors
is widely used: the gradient of the approximation error with
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respect to one of the factorizing matrices is first computed and
then the sums of positive and unsigned negative terms of the
gradient are respectively placed in the numerator and denom-
inator of a ratio. The same principle can in turn be applied
to the other factorizing matrices. The resulting multiplicative
update rules have some advantages over conventional additive
gradient descent approach. Firstly, the rules naturally maintain
the nonnegativity of the factorizing matrices without any
extra projection steps. Secondly, the fixed-point algorithm that
iteratively applies the update rule requires no user-specified
parameters such as the learning step size, which facilitates
its implementation and applications. Though recently faster
additive optimization methods for particular NMF objectives,
especially for the least-square errors, have been developed
(e.g. [15], [13], [16], [17]), multiplicative updates as a more
convenient optimization method are still widely adopted by
many NMF applications.

The above heuristic principle was previously justified by
using the Karush-Kuhn-Tucker (KKT) conditions [5], [6] or
the natural gradients [18]. However, these justifications cannot
provide theoretical guarantee that the resulting updates will
monotonically decrease the approximation error. A counter-
example is the NMF based on theα-divergence. On the other
hand, it is known that some multiplicative update rules which
do guarantee monotonicity do not use this form of multiplying
with ratios, for example, the NMF based on the dual I-
divergence (see e.g. [5]).

To obtain a theoretical guarantee of the monotonic decrease,
a commonly used method is to construct an auxiliary func-
tion that globally upper bounds the objective, and then the
multiplicative update should minimize the auxiliary function.
Previously the construction of such an auxiliary function
seemed to be challenging and only successful for a few types
of objectives. For example, Lee and Seung employed two
different inequalities for NMF based on the Euclidean distance
and the I-divergence, respectively, where the first approach
uses an inequality for the positive quadratic term, while
the second one uses the Jensen inequality on the logarithm
function.

Recently, two unifying methods have been introduced that
make further use of convexity and employ the Jensen inequal-
ity beyond the logarithm. Dhillon and Sra [5] presented a
general auxiliary function for Bregman divergences between
the approximationX̂ and the inputX, i.e. Dφ(X||X̂) or
Dφ(X̂||X). Their method is nevertheless only applicable to
particular Bregman divergences, especially the latter case
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Dφ(X̂||X). In another work [6], Cichocki et al. proposed
multiplicative update rules for the family ofα-divergences,
except the dual I-divergence, by using convexity of theα-
function.

Despite these efforts, there are a number of problems
remaining. Firstly, there are many NMF objectives that are
not convex, for example theβ-divergence with very large (or
very small)β [4], [14]. Then these two methods do not apply.
Secondly, even for convex objectives, the above approaches
may still fail because they require that the derivative of the
underlying convex function must be decomposable. Otherwise
the solution of the stationary point equation in general hasno
analytical form; see Eq. 3.3 in [5] for an example. Moreover,
the monotonicity proofs for objectives that are non-separable
over matrix elements, for example theγ-divergence [19] and
Rényi divergence are still lacking.

To address such problems, we present here a novel uni-
fied procedure for developing multiplicative NMF algorithms.
After this introductory part and a brief review in the next
section, we propose in Section III a much more general
principle for deriving multiplicative update rules that guarantee
monotonically decreasing approximation errors. Our method
works for any separable NMF objective as long as it can be
expressed as a finite sum of monomials with real exponents.
With such expressions, all we need for most commonly used
NMF objectives are two well-known inequalities based on the
convexity or concavity of each monomial. For comprehensive
objectives that comprise more than two convex monomials,
we introduce a novel inequality by which one can merge the
monomials into two terms. Using this generic principle, we
derive the ensuing multiplicative update rules with theoretical
monotonicity guarantee for a large number of objectives with
various divergence measures. Our rules match all the existing
ones whose monotonicity has been earlier proven in literature
using a number of specific approaches. Furthermore, novel
rules for many other NMF problems can be obtained.

In Section IV, the proposed technique is extended to a
non-separable case where the power operation appears over
the sum of approximating matrix elements. As a result, the
multiplicative update rules as well as their auxiliary functions
of most existing NMF optimization problems can be derived
using the proposed principle, including theα-divergence,β-
divergence and all their special cases. Furthermore, many
new multiplicative update rules with theoretical guarantee are
given for NMF based onγ-divergence and Ŕenyi divergence,
their special cases including normalized Kullback-Leibler di-
vergence, and some other more comprehensive approximation
error measures.

In Section V, we generalize the proposed principle to NMF
using quadratic factorizations where a factorizing matrixmay
appear twice in the approximation. This may be useful e.g. in
the graph isomorphism problem. A multitude of multiplicative
algorithms with monotonicity guarantee for both symmetric
and asymmetric quadratic NMF problems can be obtained.

Finally, empirical results in Section VI show that (1) most
multiplicative algorithms derived by using our method can
asymptotically achieve the KKT optimality; (2) there exist
NMF problems where multiplicative algorithms by the con-

ventional heuristic principle can cause undesired increase of
approximation error, whereas those by our method always
guarantee descent. In Section VII we conclude the paper and
discuss the future work.

II. N ONNEGATIVE MATRIX FACTORIZATION AND

MULTIPLICATIVE UPDATES

Given an input matrixX ∈ R
m×n
+ , Nonnegative Matrix

Factorization (NMF) seeks its low-rank approximation in the
form X̂ = WH, whereW ∈ R

m×r
+ and H ∈ R

r×n
+ , with

r < min(m,n). Besides the linear factorization where each
factorizing matrix only appears once in the approximation,
the factorization can be of higher-order where each factorizing
matrix may appear more than once (see Section V).

The approximation error between the input matrix and
its approximation can be measured by various divergences
D(X||X̂). Typical measures include the Euclidean distance
(Frobenius norm) and the non-normalized Kullback-Leibler
divergence (I-divergence). NMF was later generalized to other
divergences such asα-divergence [6],β-divergence [4], [20],
Csisźar divergences [21] and Bregman divergences [5]. More
example divergences are summarized in Table IV. For brevity,
in this paper we only consider minimization over the matrix
W, while exactly the same technique can be applied to
other factorizing matrices in a very similar way, leading to
alternating minimization algorithms. In the derivation, we use
W, Wnew, and W̃ to distinguish the current estimate, the
new estimate and the variable, respectively. Accordingly,we
also useX̃ in place of X̂ wherever we emphasize that the
approximation contains the variable.

The conventional gradient descent method does not work
for the NMF problem because the updated estimate after each
iteration is not necessarily nonnegative. Projecting the estimate
back to the positive hyper-quadrant is therefore needed after
each update. Line search by a number of objective evaluations
is often needed to guarantee descent after each update, which
can be expensive for NMF problems and thus only works for
a few particular types of objectives (e.g. [15], [16], [17]).

Using multiplicative updates is a more convenient optimiza-
tion method for NMF, because it can be easily adapted from
the gradient while naturally maintaining the nonnegativity. It
requires no extra efforts to tune learning parameters such as
the step size.

Let ∇ be the gradient of the approximation objective func-
tion with respect toW, and denote by∇+ and∇− the sums
of positive and unsigned negative terms, i.e.∇ = ∇+ −∇−.
It used to be common belief that the multiplicative update

W new
ik =Wik

∇−
ik

∇+
ik

, (1)

can minimize the NMF objectives (see e.g. [22]). The above
update rule is connected to the steepest gradient descent
methodW new

ik = Wik − µik
(
∇+
ik −∇−

ik

)
by assuming that

each matrix element has its own learning rateµik =Wik/∇
+
ik.

A recent similar justification [18] interprets the multiplicative
update rule as a natural gradient descent with a unitary
learning rate, where the underlying Riemannian manifold is
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defined by the tensor[G(W)]ijkl = δijδkl
∇

+

ik

Wik
, with δij the

Kronecker delta. Yet another way to suggest the principle (1)
is by rearranging the Karush-Kuhn-Tucker (K.K.T.) conditions
(∇+ −∇−)ikWik = 0 [5], [6]. However, actually none of
the above justifications can provide theoretical guaranteethat
the resulting updates will monotonically decrease the objec-
tive function. Counter-examples includeDα(X||WH) and
DEU(X||WWTX) (see Table IV), where the updates using
Eq. (1) may increase the approximation error. Furthermore,
it is known that some multiplicative update rules which do
guarantee monotonicity do not take the form of Eq. (1), for
example, the one forDI(WH||X).

The monotonicity guarantee is very important for fixed-
point algorithms in non-convex optimization problems, in-
cluding the multiplicative updates and also e.g. the well-
known Expectation-Maximization method. It is a basic fact
that a lower-bounded monotonically decreasing sequence is
convergent. Since the NMF approximation error is generally
lower-bounded by zero, the proof of objective convergence
in NMF is reduced to finding the theoretical guarantee of
monotonicity. Unless otherwise stated, the term “convergence”
in this paper generally refers to theobjective function conver-
genceor, equivalently, the monotonic decrease of the NMF
approximation error. Numerical experiments for checking the
point convergence, or the optimality conditions of the points
of convergence, are provided in Section VI-A.

Currently the auxiliary function technique [2] is the most
widely accepted approach for monotonicity proof of multi-
plicative updates. Given an objective functionJ (W) to be
minimized,G(W,U) is called an auxiliary function if it is
a tight upper bound ofJ (W), i.e.G(W,U) ≥ J (W), and
G(W,W) = J (W) for anyW andU. Define

Wnew = argmin
W̃

G(W̃,W). (2)

By construction,J (W) = G(W,W) ≥ G(Wnew,W) ≥
G(Wnew,Wnew) = J (Wnew), where the first inequality is the
result of minimization and the second comes from the upper
bound. Iteratively applying the update rule (2) thus results in
a monotonically decreasing sequence ofJ . Besides the tight
upper bound, it is often desired that the minimization (2) has
a closed-form solution. In particular, setting∂G/∂W̃ = 0
should lead to the iterative update rule in analysis. The above
technique is also namedMajorization-Minimization(MM) in
the optimization literature (see e.g. [23]). Another related
generic principle isDifference of Convex functions(DC)
programming (see e.g. [24]). Especially, as a requirement for
NMF problems, the factorizing matrices after applying the
update rule should maintain the nonnegativity.

The majorization or construction of such an auxiliary func-
tion, however, has not been a trivial task so far. Though
generic for a wide range of optimization tasks, there is,
however, no specific principle in the MM or DC literature
for deriving the auxiliary function by exploiting the structure
and constraint of NMF problems. Improper majorization may
lead to comprehensive programming steps instead of simple
multiplicative update rules that are easy to implement. Another
plausible approach is to construct a quadratic upper-bound

by using the Lipschitz constant if the NMF objective is a
C2 function, though the resulting updates are often very
slow and require extra steps to maintain the nonnegativity.
Some specific methods have been used in particular NMF
objectives, for example, the fourth and fifth inequalities given
in Appendix A for the quadratic terms (e.g. [2], [10], [25], [9]),
the Jensen inequality on the logarithm [2] orα-function [6],
and the Concave-Convex Procedure (CCCP) for majorizing
β-divergence [26], [20].

In the following we present a common principle that not
only unifies the above proofs but also is easily generalized to
other unproven objectives or higher-order factorizations. As
a result, our method turns the auxiliary function construction
that seemingly requires intense intelligent work into a simple
symbolic manipulation procedure.

III. M ULTIPLICATIVE ALGORITHMS FOR SEPARABLE

DIVERGENCES

Before going into details, we need generalized definitions
of monomials and polynomials. In this work, a monomial
with real-valued exponent, ormonomialby short, of the scalar
variablez is of the formazb wherea andb can take any real
value, without restriction to nonnegative integers. A sum of a
(finite) number of monomials is called a (finite)generalized
polynomial.

NMF objectives that can be expressed in the generalized
polynomial form have two nice properties: 1) individual mono-
mials, denoted by

ωd(X̃ij) = fdijX̃
τd
ij , (3)

are either convex or concave with respect tõW and thus can
easily be upper-bounded; 2) an exponential is multiplicatively
decomposable, i.e.(xy)τ = xτyτ , which is critical in deriving
the multiplicative update rule. We thus apply a two-step strat-
egy for obtaining a multiplicative algorithm with monotonic
objective convergence: first, we construct individual upper-
bounds for each monomial according to its convexity or
concavity; second, the auxiliary function is obtained by merg-
ing individual upper-bounds to monomials of two different
exponents.

The finite generalized polynomial form covers a large
variety of separable dissimilarity measures used in NMF,
for example, the Euclidean distance (Frobenius norm), the I-
divergence (non-normalized Kullback-Leibler divergence), the
dual I-divergence, the Hellinger distance, the Itakura-Saito
divergence, the Log-Quad cost, as well as many other unnamed
Csisźar divergences and Bregman divergences. Some example
objectives and their finite generalized polynomials are shown
in Table IV.

Many information-theoretic divergences involve the loga-
rithm function. We can unify it to our generalized polynomial
form by using the limit

ln z = lim
ǫ→0+

zǫ − 1

ǫ
. (4)

Notice that limits in0+ and 0− are the same. We use the
former to remove the convexity ambiguity. In this way, the
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logarithm can be decomposed into two monomials where the
first contains an infinitesimal positive exponent. Because most
existing divergences that contain the logarithm are smooth
with respect to both the factorizing matrix̃W and ǫ > 0,
we can safely exchange the order of the logarithm limit
and the derivative with respect tõW. In other words, the
deriving procedure is standard, after rewriting the logarithm as
monomials. Upon upper-bounding and taking derivative with

respect tõW, the limit operator lim
ǫ→0+

1

ǫ
{·} is applied to obtain

the gradient of the auxiliary function.
Next we formally show that multiplicative algorithms with

monotonicity guarantee always exist as long as the approxima-
tion objective function is separable over matrix elements and
can be expressed as a sum of a finite number of monomials
with real-valued exponents.

A. The auxiliary upper bounding function

Theorem 1:Denote X̃ = W̃H, 2 ≤ p < ∞, τd ∈ R,
d = 1, . . . , p andfdij constants independent of̃W. Suppose

1) the approximation objective is separable over indicesi
and j, i.e.

D
(
X||X̃

)
=

p∑

d=1

m∑

i=1

n∑

j=1

fdijX̃
τd
ij + constant; (5)

2) there is at least one non-zero stationary point ofD with
respect toW̃; and

3) ∀ i, k, Wik > 0.

There are real numbersψmax andψmin (ψmax> ψmin) such that

G(W̃,W) =
∑

ik


Wik

ψmax

(
W̃ik

Wik

)ψmax

∇+
ik

−
Wik

ψmin

(
W̃ik

Wik

)ψmin

∇−
ik


+ constant, (6)

is an auxiliary upper-bounding function ofD
(
X||X̃

)
, where

∇+ and∇− are the sums of positive and unsigned negative
terms of∇, the gradient of the divergence with respect tõW

at the current estimateW, respectively (i.e.∇ = ∇+ −∇−).
Proof:

Step 1: Upper-bounding individual monomials

The objective function in the form (5) is a sum of either
convex or concave monomials. Theconcavemonomials can
be upper bounded by using the first-order Taylor expansion at
the current estimate:

∑

ij

ωd(X̃ij) ≤
∑

ik

∂dikW̃ik + constant, (7)

where

∂dik ,
∂
∑
ab ωd(X̃ab)

∂W̃ik

∣∣∣∣∣
W̃=W

=
∑

j

fdijτd (WH)
τd−1
ij Hkj .

(8)

For convexmonomials, we introduceλijk =
WikHkj

(WH)ij
and

then obtain their upper bound by using the Jensen inequality:

∑

ij

ωd(X̃ij) ≤
∑

ij

fdij
∑

k

λijk

(
W̃ikHkj

λijk

)τd

=
∑

ik

Wik

τd
∂dik

(
W̃ik

Wik

)τd
. (9)

Step 2: Combining individual upper-bounds
A total upper-bounding function can be obtained by sum-

ming up individual ones obtained from the previous subsec-
tion. For p = 2 and τ1 6= τ2, their sum already forms an
auxiliary function of the form given in Theorem 1. This is
the case for most existing NMF algorithms based e.g.α-
divergence [6],β-divergence [26], and their special cases.

However, when there are more than two monomials with
distinct exponents, the summed upper-bound does not have
the form given in Theorem 1. An example is the Log-Quad
cost shown in Table IV. It is generally difficult to solve the
equation by setting the derivative of the summed upper-bound
to zero. The complexity of analytical form of the roots grows
drastically when the number of such monomials increases and
therefore does not lead to desired multiplicative update rules.

We therefore consider merging the individual upper-bounds
into an upper-bounding function that contains monomials of
only two different exponents such that the derivation can
continue with thep = 2 case. The merging is implemented
by further upper-bounding the monomials. In Appendix B we
prove the following result:

Lemma 2:Assume cxa convex. Thencxa ≤ acx
b

b +
c
(
1− a

b

)
if one of the following holds:

1) a > 1 anda < b,
2) a < 1 anda > b,
3) a = 1, c > 0 anda < b,
4) a = 1, c < 0 anda > b.

The equality holds if and only ifx = 1.
For our merging purpose, notice that all individual upper-

bounding monomials are convex and have the form

Wik∂dik
ψd

(
W̃ik

Wik

)ψd

(10)

whereψd = τd for the convex upper-bounds andψd = 1 for
the concave upper-bounds. We can then further upper bound
these individual monomials according to the cases in Lemma 2
as follows. Denoteψmax andψmin the maximum and minimum
of {ψd}

p
d=1, respectively.

• Up-Merging (UM): for 1) ψd > 1 or 3) ψd = 1 and
Wik∂dik/ψd > 0, up to some additive constant,

Wik∂dik
ψd

(
W̃ik

Wik

)ψd

≤
Wik∂dik
ψmax

(
W̃ik

Wik

)ψmax

. (11)

• Down-Merging(DM): for 2) ψd < 1 or 4) ψd = 1 and
Wik∂dik/ψd < 0, up to some additive constant,

Wik∂dik
ψd

(
W̃ik

Wik

)ψd

≤
Wik∂dik
ψmin

(
W̃ik

Wik

)ψmin

. (12)
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Because the individual upper-bounding monomials are con-
vex, we have∂dik > 0 if d ∈ UM and ∂dik < 0 if
d ∈ DM. Moreover, by such assignment, UM and DM cases
must both be present. Otherwise the gradient∇ik =

∑
dik ∂dik

would be always positive (or always negative) for allW and
(i, k), which makes the origin the only stationary point and
therefore contradicts the second theorem assumption. We thus
obtain the auxiliary function (6) with∇+

ik =
∑
d∈UM ∂dik and

∇−
ik = −

∑
d∈DM ∂dik.

Finally, all upper bounds used in the above steps come from
one of the five inequalities given in Appendix A. It is worth
to notice that all these upper-bounds are tight atW̃ = W, i.e.
G(W,W) = J (W). Therefore, the ultimate upper bound
does form an auxiliary function.

B. The multiplicative update rule

The derivative of the auxiliary function (6) with respect to
W̃ik is given by

∂G(W̃,W)

∂W̃ik

=

(
W̃ik

Wik

)ψmax−1

∇+
ik −

(
W̃ik

Wik

)ψmin−1

∇−
ik.

(13)

For most cases, setting this derivative to zero yields the update
rule

W new
ik =Wik

(
∇−
ik

∇+
ik

)η
(14)

whereη = 1/(ψmax− ψmin).
An exception is when the logarithm limit (4) is applied and

lim
ǫ→0+

(ψmax− ψmin) = 0. In this case the limit of the derivative

(13) has the form0
0 . We thus apply the L’Ĥopital’s rule [27,

pages 201-202] to obtain the limit before setting it to zero.
See Section D-B for an example on the dual I-divergence.

The multiplicative update rule (14) also guarantees strictly
positive descent as long as the current estimate is not a
stationary point. OtherwiseW will remain unchanged due to
Wik = 0 or ∇ik = 0 for all (i, k).

Corollary 3: If W is not a stationary point ofJ (W), then
for Eq. (14),J (Wnew) < J (W).

Proof: BecauseG is tangent toJ at W, which is not
a stationary point ofJ , W is not a stationary point ofG
either. Meanwhile,Wnew as the stationary point also achieves
the minimum ofG becauseG is a convex function inW̃.
Then by Theorem 1,J (W) = G(W,W) > G(Wnew,W) ≥
G(Wnew,Wnew) = J (Wnew).

Besides the generalized monomials, there are two mild
assumptions in Theorem 1: one requires that the objective
has at least one non-trivial local minimum and the other
constrains thatW contains no zero entries such thatG is
well-defined. The latter assumption is commonly needed by
all multiplicative algorithms because multiplicative updates
make no changes to zero entries. This requirement in practice
can be easily fulfilled by positively initializing factorizing
matrices such that everything on the right-hand side of Eq.
(14) generally remains positive, and so does the updatedW.

C. Summary of the derivation procedure

The principle of deriving a multiplicative update rule and the
corresponding auxiliary function of a given separable objective
is summarized as the following procedure.

1) Transform the objective function into the form of finite
generalized polynomials. Use the limit form (4) wher-
ever the objective comprises the logarithm.

2) Upper bound each monomial according to their con-
cavity or convexity by using their first-order Taylor
expansion (7) or the Jensen inequality (9), respectively.

3) If there are three or more individual upper-bounds,
combine them into two monomials using (11) or (12)
according to their exponents. Form the auxiliary func-
tion.

4) Take the derivative of the auxiliary function with respect
to the factorizing matrix variable.

5) Apply the logarithm limit if needed. Employ L’Ĥopital’s
rule when the limit has the form00 .

6) Obtain the multiplicative update rule by setting the
derivative to zero.

In Appendix D, we present the derivation details of five
example multiplicative update rules for readers’ better under-
standing of the deriving procedure.

It is interesting to see that the derived rules using our generic
principlematch all existing oneswhose objective monotonicity
has been theoretically proven using other specific approaches
[2], [5], [6], [4], [20]. For other separable divergences listed
in Table IV, the multiplicative update rules take the form in
Eq. (14) withη = 1 for Log-Quad cost andη = 1/(α−β+1)
for αβ-Bregman divergence. The corresponding update rules
for the examples is given in Table V.

A couple of remarks should be addressed for the resulting
exponentη in Eq. (14). Firstly, althoughη plays a role similar
to step size, it has two distinguishing properties from the
conventional methods such as exponentiated gradient descent
(see e.g. [28]): (1) users need no extra effort to tuneη, as it is
uniquely determined by the NMF objective and our proof pro-
cedure; (2)η is not required to approach zero for monotonicity
guarantee, as shown by the examples in Appendix D. This is
a major difference between our multiplicative algorithms and
the conventional exponential gradient descent method because
in the latter method, to our knowledge, there is no means
to obtain a constant learning rate that guarantees monotonic
objective decrease and one has to choose a very small step size
to avoid monotonicity violation. This advantage also provides
the base for an acceleration strategy using adaptive exponents,
for example, to use more aggressive exponents and switch back
to the safe choice whenever ascent occurs (see e.g. [29]).

Secondly,η actually defines the upper bound of a safe
interval of exponents that guarantee monotonicity given our
mild assumption and majorization steps based on convex-
ity/concavity. That is, the update rule (14) still makes the
objective function converge whenη is replaced with a smaller
positiveη∗. To see this, one can apply an even further upper
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bound

Wik∂dik
ψmax

(
W̃ik

Wik

)ψmax

≤
Wik∂dik
ψ∗

(
W̃ik

Wik

)ψ∗

(15)

with ψ∗ > ψmax. This leads to a multiplicative update rule
similar to (14) except the exponentη = 1

ψmax−ψmin
changes to

η∗ = 1
ψ∗−ψmin

, which is still an update rule with monotonicity
guarantee. Similar looser bounding can be applied by replacing
ψmin to obtain the same result. Nevertheless, a smaller expo-
nent corresponds to more conservative multiplicative learning
steps, which often leads to slower descent speed in practice. In
this sense,η is the most aggressive and safe constant exponent
provided by our method.

Note that unlike the heuristic rule (1), there is no ambiguity
when decomposing the gradient into positive and negative
parts in our method. The decomposition is uniquely deter-
mined by the proposed procedure. If one adds and subtracts
the same positive constant to the gradient, the resulting multi-
plicative update rule essentially requires a looser upper bound
and thus leads to slower convergence.

IV. A NON-SEPARABLE CASE

We also consider a non-separable case

D(X||X̃) =
∑

d

Ωd


∑

ij

gdijX̃
φd

ij


 (16)

whereΩd(z) = νd · z
τd with νd, τd, gdij and φd constants

independent ofW̃. A typical example is the family ofγ-
divergences, with the original or normalized Kullback-Leibler
divergence as its special case whenγ → 0.

When Ωd(z) is concave with respect toz, the term can
be upper bounded by its first-order Taylor expansion at∑
ab gdabX̂

φd

ab : up to some additive constant,

Ωd


∑

ij

gdijX̃
φd

ij


 ≤


∑

ij

gdijX̃
φd

ij


Ω′

d

(
∑

ab

gdabX̂
φd

ab

)

=
∑

ij

fdijX̃
φd

ij , (17)

wherefdij , νdτdgdij ·
(∑

ab gdabX̂
φd

ab

)τd−1

.

When Ωd(z) is convex with respect toz, we can write

θdij =
gdijX̂

φd
ij∑

ab gdabX̂
φd
ab

and apply Jensen’s inequality to obtain

the upper bound

Ωd


∑

ij

gdijX̃
φd

ij


 ≤

∑

ij

θdijΩd

(
gdijX̃

φd

ij

θdij

)

=
∑

ij

fdijX̃
φdτd
ij , (18)

wherefdij , νdgdijX̂
φd(1−τd)
ij

(∑
ab gdabX̂

φd

ab

)τd−1

.
We can see that both convex and concave cases reduce to

the same form for the separable objectives and thus continue
with the same procedure in Section III. For the non-separable

divergences in Table (IV), we obtain the multiplicative update
rules in the form Eq. (14) withη = 1 for Kullback-Leibler
divergence,η = 1/(1 + γ) for γ-divergence whenγ > 0,
η = 1/(1 − γ) when γ < 0, η = 1/ρ for Rényi divergence
whenρ > 1, andη = 1 for 0 < ρ < 1.

Here we only present exponentials on the matrix sum
for notational brevity, while the same technique can easily
be applied to the cases of row-wise or column-wise sums.
Objectives that are not separable overd in Eq. (5) can be
handled in a similar way.

V. QUADRATIC FACTORIZATIONS

The previous discussion focused on the linear factorization
X ≈ WH, where the factorizing matrixW (or H) appears
only once in the factorizing expression. There exist other NMF
problems in which a factorizing matrix may appear twice,
which we call Quadratic Nonnegative Matrix Factorization
(QNMF).

The Quadratic NMF has a wide range of applications.
For example, theProjective Nonnegative Matrix Factorization
(PNMF) is able to achieve high sparseness in both feature
extraction and sample clustering [30], [31], [32]. Other appli-
cations include the graph isomorphism problem if the sparsity
(or orthogonality) ofW is enforced [33], as well as parameter
estimation of hidden Markov chains [34].

Here we focus on two typical factorization forms of QNMF:
(1) the asymmetric form (AQNMF)X ≈ WWTY and (2)
the symmetric form (SQNMF)X ≈ WYWT . Note that
other forms of quadratic factorization, e.g.X ≈ YWWT ,
can equivalently be transformed to AQNMF or SQNMF. Here
Y can be (i) a constant, for instanceY = X that leads to
PNMF andY = I that leads toSymmetric NMF(see e.g.
[10]), (ii) an abbreviation for the product of other factorizing
matrices that only appear once in the approximation, or (iii)
shorthand for recursively defined quadratic factorizations, for
instanceY = XUUT that leads toX ≈ WWTXUUT .

The quadratic factorizations usually give rise to more dif-
ficult optimization problems. As an example, consider the
PNMF based on Euclidean distance:

minimize
W≥0

‖X−WWTX‖2F , (19)

where the objective function is quartic with respect toW and
therefore cannot be upper-bounded by the quadratic functions
that were earlier proposed in [2], [10]. One must find an
auxiliary function of at least the fourth power. To our knowl-
edge, there has been no general principle of developing mul-
tiplicative algorithms with monotonicity guarantee for QNMF
problems such as (19).

Our novel method now provides a straightforward way to
include the second-order factorizations. Here we only show
the derivation procedure for the symmetric and separable case,
which can similarly be applied to the asymmetric and/or non-
separable cases. Denote

∂dik =

∂
∑

ab

ωd

(
X̃ab

)

∂W̃ik

∣∣∣∣∣
W̃=W

=
∑

jl

(
S
(d)
ijkl + S

(d)
jilk

)
Wjl,

(20)
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where S(d)
ijkl = τdfdij

(
WYWT

)τd−1

ij
Ykl. We divide the

monomials into the following four categories, each of which
can be tightly upper-bounded (see Appendix C for derivation
details).
(Case 1) For concave monomials andS(d)

ijkl > 0

∑

ij

ωd

(
X̃ij

)
≤
∑

ik

Wik∂dik
2

(
W̃ik

Wik

)2

+ constant. (21)

(Case 2) For concave monomials andS(d)
ijkl < 0,

∑

ij

ωd

(
X̃ij

)
≤ lim
ε→0+

∑

ik

Wik∂dik
ε

(
W̃ik

Wik

)ε
+ constant.

(22)

(Case 3) For convex monomials andfdij > 0,

∑

ij

ωd(X̃ij) ≤
∑

ik

Wik∂dik
2τd

(
W̃ik

Wik

)2τd

. (23)

(Case 4) For convex monomials andfdij < 0

∑

ij

ωd

(
X̃ij

)
≤ lim
ε→0+

∑

ik

Wik∂dik
ε

(
W̃ik

Wik

)ε
+ constant.

(24)

Particularly, whenS(d)
ijkl + S

(d)
jilk is negative semi-definite,

i.e.
∑
ijkl

(
S
(d)
ijkl + S

(d)
jilk

)
UikUjl ≤ 0 for any U ∈ R

n×n,
we have a tighter upper bound using the first-order Taylor
expansion:
(Case 2a) For concave monomials andS

(d)
ijkl+S

(d)
jilk is negative

semi-definite,
∑

ij

ωd

(
X̃ij

)
≤
∑

ik

∂dikW̃ik + constant. (25)

(Case 4a) For convex monomials andS(d)
ijkl+S

(d)
jilk is negative

semi-definite,

∑

ij

ωd

(
X̃ij

)
≤
∑

ik

Wik∂dik
τd

(
W̃ik

Wik

)τd
+ constant. (26)

The resulting individual upper bounds of all the above cases
are in the form of Eq. (10). The derivation can therefore
proceed to the combining step in Section III-A and onwards
in the same way as for the linear factorization.

As examples, we present the multiplicative update rules for
QNMF based onα-divergence,β-divergence,γ-divergence
and Ŕenyi divergence. These families of divergences cover
most commonly used dissimilarity measures, for example,
the squared Euclidean distance (β = 1), Hellinger distance
(α = 0.5), χ2-divergence (α = 2), I-divergence (α → 1 or
β → 0), dual I-divergence (α → 0), Itakura-Saito divergence
(β → −1) and Kullback-Leibler divergence (γ → 0 or ρ→ 1).

In general, the multiplicative update rules take the following
forms:

• for AQNMF

W new
ik =Wik

[(
QYTW +YQTW

)
ik

(PYTW +YPTW)ik
· θ

]η
, (27)

TABLE I
NOTATIONS IN THE MULTIPLICATIVE UPDATE RULES OFQNMF BASED ON

α-, β-, γ-, AND ρ- (RÉNYI) DIVERGENCES, WHERE X̂ = WW
T
Y FOR

AQNMF AND X̂ = WYW
T FOR SQNMF.

Pij Qij θ η

α 1
Xα

ij

X̂α
ij

1

1

2α
α ∈ (1,+∞)

1

2
α ∈ (0, 1)

1

2α− 2
α ∈ (−∞, 0)

β X̂β
ij

Xij

X̂1−β
ij

1

1

2 + 2β
β ∈ (0,+∞)

1

2− 2β
β ∈ (−∞, 0)

γ X̂γ
ij

Xij

X̂1−γ
ij

∑

ab

X̂γ+1

ab

∑

ab

XabX̂
γ
ab

1

2 + 2γ
γ ∈ (0,+∞)

1

2− 2γ
γ ∈ (−∞, 0)

ρ 1
Xρ

ij

X̂ρ
ij

∑

ab

X̂ab

∑

ab

Xρ
ab
X̂1−ρ

ab

1

2ρ
ρ ∈ (1,∞)

1

2
ρ ∈ (0, 1)

• for SQNMF

W new
ik =Wik

[(
QWYT +QTWY

)
ik

(PWYT +PTWY)ik
· θ

]η
, (28)

whereP, Q, θ, andη are specified in Table I. For example,
the rule for SQNMF based on the squared Euclidean distance
(β → 1) reads

W new
ik =Wik

[ (
XWYT +XTWY

)
ik

(WYWTWYT +WYTWTWY)ik

]1/4
.

(29)

As an exception, the update rules for the dual I-divergence
take a different form

W new
ik =Wik exp

[
1

2

(
QYTW +YQTW

)
ik

(PYTW +YPTW)ik

]
, (30)

W new
ik =Wik exp

[
1

2

(
QWYT +QTWY

)
ik

(PWYT +PTWY)ik

]
(31)

for AQNMF and SQNMF respectively, withPij = 1 and

Qij = ln
(
Xij/X̂ij

)
.

VI. EXPERIMENTS

A. KKT optimality of the multiplicative algorithms

In the above we have rigorously proven that the objective is
monotonically decreasing in NMF. Because the approximation
error is lower-bounded by zero, the monotonicity directly
implies that the objective evolution is convergent.

Another type of convergence, concerning the KKT optimal-
ity of the converged points, is of interest in the optimization
field. Particularly, the KKT optimality in linear NMF refersto
the satisfaction of the following conditions: for alli, k

1) (feasibility): Wik ≥ 0 andHik ≥ 0,
2) (stationarity): ∇W,ik ≥ 0, and∇H,ik ≥ 0
3) (complementary slackness) Wik∇W,ik = 0,

andHik∇H,ik = 0.
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TABLE II
V IOLATION EXTENTS OF THE SLACKNESS CONDITION IN LINEARNMF,

(A) FORW AND (B) FORH, AND IN PNMF (C).

(A)
iris ecoli5 swimmer

Euclidean 9e-11±1e-26 2e-10±0 6e-07±0
I 2e-10±0 9e-16±1e-31 1e-11±0
dual-I 1e+01±0 3e+00±5e-16 1e+02±0
Itakura-Saito 7e-14±1e-29 2e-15±0 2e-09±5e-09
Log-Quad 3e-07±6e-23 8e-12±2e-27 0±0
KL 7e-15±8e-31 2e-15±4e-31 0±0

(B)
iris ecoli5 swimmer

Euclidean 3e-09±0 9e-09±2e-24 4e-07±6e-23
I 1e-09±0 2e-14±3e-30 1e-12±0
dual-I 4e+02±6e-14 1e+02±3e-14 4e+01±7e-15
Itakura-Saito 1e-12±2e-28 4e-14±0 9e-10±2e-09
Log-Quad 5e-06±0 3e-10±0 0±0
KL 0±0 4e-13±5e-29 0±0

(C)
iris ecoli5 swimmer

Euclidean 1e-03±0 2e-06±0 1e-13±1e-29
I 2e-05±4e-21 1e-06±0 2e-13±0
dual-I 4e+01±7e-15 1e+01±2e-15 9e+02±1e-13
Itakura-Saito 3e-07±6e-23 4e-04±6e-20 0±0
Log-Quad 3e-04±6e-20 7e-06±2e-21 0±0
KL 2e-05±0 1e-06±2e-22 0±0

Similar optimality conditions apply to the quadratic NMF, e.g.
the matrixW and its associated gradient in PNMF.

The first condition obviously holds for multiplicative up-
dates as long as the factorizing matrices are nonnegatively
initialized. In our practice, the stationarity is easily checked
and also valid for all multiplicative algorithms after sufficiently
long runs. The major question that remains is the complemen-
tary slackness.

Usually multiplicative algorithms operate on positive fac-
torizing matrices. In this setting, the complementary slackness
can only hold in an asymptotic manner. The rigorous proof
of such asymptotic convergence is difficult and only available
for some particular divergences (see e.g. [35]).

In this section we provide the numerical results for
checking the complementary slackness. The extent of viola-
tion of the condition is measured by

∑
ik |Wik∇W,ik| and∑

ik |Hik∇H,ik| for W andH, respectively.
We have used three publicly available datasets: two of them,

iris andecoli are collected from the UCI repository1, and the
swimmerdataset [36] consists of 256 binary images depicting
moving parts of swimmers. The dimensions of the datasets
are150× 4, 327× 7, and1024× 256, respectively. To avoid
numerical errors, we add a small positive number (e.g.10−16)
to each denominator and to each logarithm in the update
rules. Each multiplicative algorithm has been run at least106

iterations and repeated 100 times. The resulting means and
standard deviations of the violation extent are shown in Table
II (A)-(B). We also did the same experiments for PNMF and
the results are shown in Table II (C).

From these results, we can see that most multiplicative
algorithms achieve zero or nearly zero violation of comple-
mentary slackness, compared to the averages of non-zero

1http://archive.ics.uci.edu/ml/
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Fig. 1. Objective evolutions of (left) NMF and (right) SNMF using
multiplicative update rules by the old and new principles.

entries of the input matrix, which are 3.46, 0.48, and 0.06,
respectively. One exception is the dual-I divergence, where the
converged points do not fulfill the complementary slackness
condition for all datasets. The violation can be explained by
the fixed-points of its multiplicative algorithm, which aregiven

by Wik exp

(
∇

−

W,ik

∇
+

W,ik

)
= Wik for the matrix W in linear

NMF, i.e.Wik → 0 or
∇

−

W,ik

∇
+

W,ik

= 0 with positive initialization.

The latter condition has no connection to the complementary
slackness. By contrast, other multiplicative algorithms using

Eq. (14), have fixed-pointsWik → 0 or
∇

−

W,ik

∇
+

W,ik

= 1, which is

consistent to the complementary slackness if∇+
W,ik > 0.

B. Comparison to the conventional principle

Conventionally, multiplying factors in the multiplicative
update rules are formed by putting the positive part of the
gradient to the denominator and the unsigned negative part to
the numerator. However, such multiplicative updates cannot
guarantee monotonic decrease of the approximation error after
each iteration. In this section we show descent violation ex-
amples for both linear and quadratic NMF problems, whereas
the multiplicative algorithms obtained by our new principle
can completely avoid such violations.

We perform the comparison on NMF based onαβ-Bregman
divergence (α = 10 and β = 0.5) and Symmetric NMF
(SNMF) based on Ŕenyi divergence (ρ = 2). We selected these
two problems because they cover both linear and quadratic
factorization cases. In addition, these problems have not been
solved by any previously existing methods, which demon-
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TABLE III
PERCENTAGE OF DESCENT VIOLATION IN(A) NMF AND (B) SNMF.

(A)
method synthetic iris faces
old 49.98±0.12 1.75±8.68 50.00±0.02
old (alternation) 0.70±4.72 0.06±0.05 0.13±0.08
new 0.00±0.00 0.00±0.00 0.00±0.00

(B)
method synthetic strike football
old 68.14±6.70 10.70±1.27 20.64±4.97
new 0.00±0.00 0.00±0.00 0.00±0.00

strates that our principle can easily be extended to new NMF
problems.

For each of the above problems, we have tested the com-
pared multiplicative algorithms on three datasets. For linear
NMF, we have used (syn) a synthetic nonnegative matrix
generated by the Matlab commandrand(50,30), (iris) a dataset
containing 4 nonnegative measurements of 150 iris plants,
and (faces) the inner part of the ORL facial images [37]
(400×644). For SNMF, we have used (syn) a synthetic nonneg-
ative matrix generated by symmetrizingrand(50,50), (strike)
and (football)2, two real-world undirected graph adjacency
matrices of sizes24 and115.

The objective function evolutions are shown in Figure 1.
In order to illustrate the descent violation more clearly, we
only present the curves for linear NMF iterations onW
with fixed H. It can be seen that for both NMF problems,
the multiplicative algorithms by the conventional principle
may cause undesired ascent after each update. The resulting
objectives are far away from the local minimum in four out
of six selected datasets. In contrast, the multiplicative update
rules obtained by our new principle produce decreasing curves
in all demonstrated experiments.

We ran each experiment 100 times with different starting
points and recorded the numbers of objective increase. We
then obtained a violation percentage by dividing the numbers
with the length of the run. The resulting means and standard
deviations across 100 runs are shown in Table III, from which
we can see that it is quite common for the conventional method
to yield a violation. Alternating the updates forW and H

can reduce the violation times, though objective increasing
still happens for the multiplicative algorithms obtained by the
conventional principle. One may even alternate among updates
of individual entries ofW or H to achieve descent in practice,
though it is slow and still lacks theoretical guarantee. By
contrast, the multiplicative algorithms by our new principle,
as expected, produce zero violation in all experiments.

VII. D ISCUSSION

We have presented a generic principle for deriving multi-
plicative update rules, as well a proof of the convergence of
their objective function, that applies for a large variety of linear
and quadratic nonnegative matrix factorization problems.The
proposed principle only requires that the NMF approximation
objective function can be written as a sum of a finite number of

2http://www.cise.ufl.edu/research/sparse/matrices/index.html

monomials, a mild assumption that holds for many commonly
used approximation error measures, as shown by the many
examples given here. As a result, our method turns the
derivation that seemingly requires intense mathematical work
into a routine exercise that could be even readily automated
using symbolic mathematics software.

There exist divergences that are not covered by our method.
Some approximation objectives cannot be expressed as a sum
of a finite number of monomials, for example the Relative
Jensen-Shannon divergence and the Arimoto distance (see e.g.
Chapter 2 of [14]). For such objectives, the resulting exponent
of the multiplying factor will become infinitesimal when
applying the proposed procedure. This problem is however
much alleviated in practice by using approximations with finite
expansions. Usually the resulting multiplicative updatescan
still effectively decrease the original objective. Another type
of excluded divergences are some constrained ones such as the
Bit entropic loss [14, page 99]. The fixed-point optimization
of such comprehensive objectives is still an open problem.

We have presented a unified principle with mild generic
assumptions. In practice, in any specific case, the update
rules can be further improved by ad hoc methods with more
properties of the specific NMF objective considered. For
example, when finding individual upper-bounds for the PNMF
based on the squared Euclidean distance, one can make use
of the positive semi-definiteness ofXXT and thus apply
Case 2a instead of Case 2 in Step 2 (see Appendix D-D).
This consequently leads to a multiplicative update rule with
exponent1/3 instead of1/4. Another speedup example for
NMF based on the squared Euclidean distance can be found
in [38].

Here we mainly focus on the convergence or monotonic
decrease of the objective function. Rigorous proof on conver-
gence to stationary points has recently been investigated by
other researchers. Lin presented a proof that a slightly mod-
ified multiplicative algorithm for NMF based on the squared
Euclidean distance can achieve KKT optimality conditions
[35]. More recently, Badeau et al. proposed to examine the
asymptotic convergence behavior of multiplicative updates
by using the Lyapunov stability theory [39]. Their result
shows that ifη in our generic algorithm is small enough,
multiplicative updates are asymptotically stable, namely, can
arrive at a local minimum after sufficiently many iterations.
However, the upper-bound ofη with such stability is difficult
to compute in general. Furthermore, little is known about
the stability when alternation among factorizing matricesis
applied.

NMF optimization problems are usually non-convex. Global
optimum is not guaranteed unless extra constraints are im-
posed. Considerable initialization or pre-training can effec-
tively avoid poor local minima. Typical initialization methods
include PCA/SVD, clustering, and Gabor wavelets (see e.g.
[40], [41], [42, Section 9.2.1]).

Another important and still open problem is how to select
among various divergences. This strongly depends on the na-
ture of the data to be analyzed, for instance, noise, outliers, and
data types. For particular parameterized families of divergence,
usually there is some trade-off when adjusting the divergence



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. XX, XXXXXX XXXX 10

parameter. For example, a largeβ or γ leads to more robust
but less efficient estimation. More details on these trade-offs
can be found in [43], [44] and references therein. Automatic
selection of the divergence parameters generally requiresextra
information or criterion, for example, ground truth data [45]
or cross-validations with a fixed reference parameter [46].
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APPENDIX A
UPPER-BOUNDS USED IN THE DERIVATIONS

1) For a real convex functionf and positive constants
a1, a2, . . . , am,

f
(
aTx

)
≤
∑

i

aiyi
aTy

f

(
xi
yi
aTy

)
.

This upper-bound is due to the Jensen’s inequality.
2) A real concave functionf is upper-bounded by its linear

or first-order Taylor expansion:

f(x) ≤f(y) + (x− y)T∇ = xT∇+ constant,

where∇ = ∂f(x)
∂x

∣∣∣
x=y

.

3) For x > 0, y > 0, a < b, z = x/y, we have
za − 1

a
≤

zb − 1

b
, becauseh(t) =

zt − 1

t
is mono-

tonically increasing forz > 0.
4) ForA ∈ R

m×m
+ , x ∈ R

m
+ , y ∈ R

m
+

xTAx ≤
∑

i

x2i
2yi

(
Ay +ATy

)
i

This upper-bound has been proven in [2], [10] by writing
xi = yiui.

5) ForA ∈ R
m×m
+ , x ∈ R

m
+ , y ∈ R

m
+

−xTAx ≤ −
1

2

∑

ij

(Aij +Aji)yiyj

(
1 + log

xixj
yiyj

)

This upper-bound is due to the inequality1+ log z ≤ z
for z > 0 and was first used in [47].

Remarks:

• For notational brevity we only write the upper-bounds in
the vectorial form. The same bounds also hold for the
matrix case.

• All the above upper-bounds are tight wherex = y or
x = y.

• The third upper-bound is new and unseen in the previous
literature for NMF proofs. Notice that it includes the
inequality 1 + log z < z for z > 0 as its a special case
by writing the logarithm into the limit form Eq. (4).

APPENDIX B
PROOF OFLEMMA 2

Proof: The inequality obviously holds whena = 0 or

c = 0. Otherwise, by
xa − 1

a
≤
xb − 1

b
we have the following

results: 1) Whena > 1, we havec ≥ 0 becausecxa is convex.

With a < b, xa ≤ a
xb

b
+ 1−

a

b
⇒ cxa ≤ ac

xb

b
+ c
(
1−

a

b

)
.

2) When0 < a < 1, we havec ≤ 0 becausecxa is convex.

With a > b, xa ≥ a
xb

b
+ 1−

a

b
⇒ cxa ≤ ac

xb

b
+ c
(
1−

a

b

)
.

When a < 0, we havec ≥ 0 becausecxa is convex. Then
with a > b, xa ≤ ax

b

b +1− a
b ⇒ cxa ≤ acx

b

b + c
(
1− a

b

)
. 3)

and 4) are complementary cases for linear monomials which
are similarly proven according to the sign ofc.

APPENDIX C
UPPER BOUNDING QUADRATIC MONOMIALS

For concave monomials,

∑

ij

ωd

(
X̃ij

)
≤
∑

ij

X̃ij
∂
∑
ab fdabX̃

τd
ab

∂X̃ij

∣∣∣∣∣
X̃=X̂

+ constant

=
∑

ijkl

W̃ikW̃jlS
(d)
ijkl + constant

=
1

2

∑

ijkl

W̃ikW̃jl

(
S
(d)
ijkl + S

(d)
jilk

)
+ constant.

The last step is due to the exchanges of summation indices:
i↔ j andk ↔ l. We do not assume symmetry onS(d).
(Case 1) up to some additive constant

∑

ij

ωd

(
X̃ij

)
≤
∑

ik

W̃ 2
ik

2Wik

∑

jl

(
S
(d)
ijkl + S

(d)
jilk

)
Wjl.

(Case 2) up to some additive constant

∑

ij

ωd

(
X̃ij

)
≤

1

2

∑

ijkl

(
S
(d)
ijkl + S

(d)
jilk

)
WikWjl ln

W̃ikW̃jl

WikWjl
.

(Case 2a)
∑

ij

ωd

(
X̃ij

)
≤
∑

ik

W̃ik

∑

jl

(
S
(d)
ijkl + S

(d)
jilk

)
Wjl + constant.

For convex monomials, withζijkl =
WikWjlYkl

(WYWT )ij

∑

ij

ωd

(
X̃ij

)
≤
∑

ijkl

ζijkl · ωd

(
W̃ikW̃jlYkl

ζijkl

)

=
1

2τd

∑

ijkl

ṼdikṼdjl

(
S
(d)
ijkl + S

(d)
jilk

)
,

whereṼdik = W̃ τd
ikW

1−τd
ik andVdik =Wik.

(Case 3)

∑

ij

ωd(X̃ij) ≤
∑

ik

Ṽ 2
dik

2τdVdik

∑

jl

(
S
(d)
ijkl + S

(d)
jilk

)
Vdjl.

(Case 4) Up to some additive constant,

∑

ij

ωd

(
X̃ij

)
≤

1

2τd

∑

ijkl

(
S
(d)
ijkl + S

(d)
jilk

)
VdikVdjl ln

ṼdikṼdjl
VdikVdjl

.
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(Case 4a) Up to some additive constant,
∑

ij

ωd

(
X̃ij

)
≤
∑

ik

Ṽdikτ
−1
d

∑

jl

(
S
(d)
ijkl + S

(d)
jilk

)
Vdjl.

APPENDIX D
EXAMPLE DERIVATIONS OF MULTIPLICATIVE ALGORITHMS

Here we present the concrete derivations of the rules and
auxiliary functions for five selected approximation objectives,
three for NMF and two for PNMF. Note that the main purpose
of the derivations here is not to generate new algorithms.
Instead, they respectively demonstrate the following aspects
of the principle proposed in Sections III-V: (1) the use of
concavity or convexity of individual monomials, (2) how
to handle objectives that comprise logarithm, (3) merging
individual upper-bounds, (4) quadratic factorization, and (5)
non-separable objectives.

A. NMF based onβ-divergence

A similar procedure can be found in [26], [20]. Denote
D

(1)
ij = 1

1+β X̂
β+1
ij andD(2)

ij = − 1
βXijX̂

β
ij . There are three

cases: (1) Whenβ > 1, D(1)
ij is convex with respect tôXij

while D(2)
ij is concave. Therefore the auxiliary function is

∑

ik


W̃

β+1
ik

W β
ik

1

1 + β

∑

j

(WH)
β
ij Hkj

−W̃ik

∑

j

Xij (WH)
β−1
ij Hkj


+ constant,

whose derivative with respect tõWik is
(
W̃ik

Wik

)β∑

j

(WH)
β
ij Hkj −

∑

j

Xij (WH)
β−1
ij Hkj .

Setting the above derivative to zero leads to

W new
ik =Wik

(∑
j Xij (WH)

β−1
ij Hkj

∑
j (WH)

β
ij Hkj

) 1
β

.

(2) When0 ≤ β ≤ 1, bothD(1)
ij andD(2)

ij are convex with
respect toX̂ij . Therefore the auxiliary function is

∑

ik


W̃

β+1
ik

W β
ik

1

1 + β

∑

j

(WH)
β
ij Hkj

−
W̃ β
ik

W β−1
ik

1

β

∑

j

Xij (WH)
β−1
ij Hkj


+ constant,

whose derivative with respect tõWik is
(
W̃ik

Wik

)β∑

j

(WH)
β
ij Hkj

−

(
W̃ik

Wik

)β−1∑

j

Xij (WH)
β−1
ij Hkj .

Setting the above derivative to zero leads to

W new
ik =Wik

∑
j Xij (WH)

β−1
ij Hkj

∑
j (WH)

β
ij Hkj

,

which is identical to the update rule derived in [4].
(3) Whenβ < 0, β 6= −1, D(1)

ij is concave with respect to

X̂ij while D(2)
ij is convex. Therefore the auxiliary function is

∑

ik


W̃ik

∑

j

(WH)
β
ij Hkj −

W̃ β
ik

W β−1
ik

1

β

∑

j

Xij (WH)
β−1
ij Hkj


 ,

whose derivative with respect tõWik is

∑

j

(WH)
β
ij Hkj −

(
W̃ik

Wik

)β−1∑

j

Xij (WH)
β−1
ij Hkj .

Setting the above derivative to zero leads to

W new
ik =Wik

(∑
j Xij (WH)

β−1
ij Hkj

∑
j (WH)

β
ij Hkj

) 1
1−β

.

B. NMF based on dual I-divergence

The monomials are convex and linear respectively. There-
fore the auxiliary function according to Eqs. (7) and (9) is

lim
ǫ→0+

1

ǫ

∑

ik


W̃ 1+ǫ

ik W−ǫ
ik

∑

j

X−ǫ
ij (WH)

ǫ
ij Hkj

−(1 + ǫ)W̃ik

∑

j

Hkj


+ constant,

whose derivative with respect tõWik

lim
ǫ→0+

1

ǫ


(1 + ǫ)

(
W̃ik

Wik

)ǫ∑

j

Z−ǫ
ij Hkj − (1 + ǫ)

∑

j

Hkj


 .

with Zij = Xij/ (WH)ij . Because the derivative has the
form 0

0 , we apply L’Hôpital’s rule to obtain the limit (calculate
derivatives of both numerator and denominator w.r.tǫ):

lim
ǫ→0+



(
W̃ik

Wik

)ǫ∑

j

Z−ǫ
ij Hkj

+(1 + ǫ)

(
W̃ik

Wik

)ǫ
ln

(
W̃ik

Wik

)
∑

j

Z−ǫ
ij Hkj

−(1 + ǫ)

(
W̃ik

Wik

)ǫ∑

j

Z−ǫ
ij lnZijHkj −

∑

j

Hkj




= ln

(
W̃ik

Wik

)
∑

j

Hkj −
∑

j

lnZijHkj .

Setting the above derivative to zero, we obtain the update rule:

W new
ik =Wik exp

(∑
j lnZijHkj∑

j Hkj

)
,

which is identical to the one proven in [5].
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C. NMF based on Log-Quad cost

The monomials are convex, linear, linear, and convex,
respectively. Therefore the auxiliary function before merging
terms is

lim
ǫ→0+

1

ǫ

∑

ik


−W 1−ǫ

ik W̃ ǫ
ik

∑

j

Zij (WH)
ǫ
ij Hkj




+
∑

ik

W̃ik

∑

j

Hkj

− 2
∑

ik

W̃ik

(
XHT

)
ik
+
∑

ik

W̃ 2
ik

Wik

(
WHHT

)
ik
+ constant.

and after merging it becomes

∑

ik

W̃ 2
ik

2Wik


∑

j

Hkj + 2
(
WHHT

)
ik




− lim
ǫ→0+

1

ǫ

∑

ik

W̃ ǫ
ik

W ǫ−1
ik


∑

j

Zij (WH)
ǫ
ij Hkj + 2ǫ

(
XHT

)
ik




up to some additive constant. The derivative of the above
auxiliary function with respect tõWik is

W̃ik

Wik


∑

j

Hkj + 2
(
WHHT

)
ik




−
Wik

W̃ik


∑

j

ZijHkj + 2
(
XHT

)
ik


 .

Setting the above derivative to zero leads to the multiplicative
update rule

W new
ik =Wik

√
(ZHT + 2XHT )ik∑
j Hkj + 2 (WHHT )ik

.

D. PNMF based on Euclidean distance

The first monomial belongs to Case 2a and the second to
Case 3. Therefore the auxiliary function is

−
∑

ik

W̃ik

(
2XXTW

)
ik

+
∑

ik

W̃ 4
ik

4W 3
ik

(
WWTXXTW +XXTWWTW

)
ik

up to some additive constant. Setting its derivative to zero
leads to the multiplicative update rule

W new
ik =Wik

[
2
(
XXTW

)
ik

(WWTXXTW +XXTWWTW)ik

]1/3
,

which resembles the one given in [30], [32] except the cubic
root. Notice that the old rule itself does not necessarily
minimize the objective and must be accompanied with an extra
normalization [30] or stabilization step [32] while the new
update rule can guarantee monotonic decrease.

E. PNMF based on Kullback-Leibler divergence

The first term is separable, while the second term is non-
separable and concave with respect to

∑
ij X̃ij . Therefore the

upper-bounding separable function is

lim
ǫ→0+

1

ǫ

∑

ij


−XijX̂

ǫ
ij + ǫ

(
∑

ab

X̂ab

)ǫ−1

X̂ij


+ constant.

Regardless the constant, the two term of the separable
upper-bounding function belong to Cases 4 and 1. Therefore
the auxiliary function is

−
1

2

∑

aik

BaiWakWik ln W̃akW̃ik

+

(
∑

ab

(
WWTX

)
ab

)−1∑

ik

W̃ 2
ik

2Wik

∑

a

CiaWak + constant,

whereB = XXT andC = BWWT +WWTB. Setting its
derivative to zero leads to the update rule

W new
ik =Wik

√
(BW)ik
(CW)ik

∑

ab

(WH)ab.
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TABLE IV

EXAMPLE APPROXIMATION OBJECTIVES AND THEIR GENERALIZED POLYNOMIAL FORM

name definition generalized polynomial form (+constant)

Euclidean
distance

DEU(X||X̂) =
∑
ij

(
Xij − X̂ij

)2 ∑
ij

(
−2XijX̂ij + X̂2

ij

)

I-divergence DI(X||X̂) =
∑
ij

(
Xij ln

Xij

X̂ij

−Xij + X̂ij

)
lim
ǫ→0+

1

ǫ

∑

ij

(
−XijX̂

ǫ
ij + ǫX̂ij

)

Dual
I-divergence

DI(X̂||X) =
∑
ij

(
X̂ij ln

X̂ij

Xij
− X̂ij +Xij

)
lim
ǫ→0+

1

ǫ

∑

ij

(
X−ǫ
ij X̂

1+ǫ
ij − (1 + ǫ) X̂ij

)

Itakura-Saito
divergence

DIS(X||X̂) =
∑
ij

(
− ln

(
Xij

X̂ij

)
+

Xij

X̂ij

− 1
)

lim
ǫ→0+

1

ǫ

∑

ij

(
−Xǫ

ijX̂
−ǫ
ij + ǫXijX̂

−1
ij

)

α-divergence Dα(X||X̂) = 1
α(1−α)

∑

ij

(
αXij + (1− α)X̂ij −Xα

ijX̂
1−α
ij

) ∑
ij

(
− 1
α(1−α)X

α
ijX̂

1−α
ij + 1

αX̂ij

)

β-divergence Dβ(X||X̂) =
∑

ij

(
Xij

Xβ
ij − X̂β

ij

β
−
Xβ+1
ij − X̂β+1

ij

β + 1

)
∑
ij

(
1

1+β X̂
β+1
ij − 1

βXijX̂
β
ij

)

Log-Quad cost DLQ(X||X̂) = DEU(X||X̂) +DI(X||X̂) lim
ǫ→0+

1

ǫ

∑

ij

(
−XijX̂

ǫ
ij + ǫX̂ij − 2ǫXijX̂ij + ǫX̂2

ij

)

αβ-Bregman
divergence

Dφαβ(X||X̂) =
∑

ij

φ(Xij)− φ(X̂ij)− φ′(X̂ij)(Xij − X̂ij),

whereφ(z) = zα − zβ , α ≥ 1, and0 < β < 1

∑

ij

[
(α− 1)X̂α

ij − (β − 1)X̂β
ij

−αXijX̂
α−1
ij + βXijX̂

β−1
ij

]

Kullback-Leibler
divergence

DKL (X||X̂) =
∑

ij

Xij ln
Xij

X̂ij/
∑
ab X̂ab

, where
∑
ij Xij = 1 lim

ǫ→0+

1

ǫ


−

∑

ij

XijX̂
ǫ
ij +


∑

ij

X̂ij



ǫ


γ-divergence Dγ(X||X̂) =
1

γ(1 + γ)


ln


∑

ij

X1+γ
ij


+ γ ln


∑

ij

X̂1+γ
ij




−(1 + γ) ln


∑

ij

XijX̂
γ
ij






lim
ǫ→0+

1

ǫ




(∑
ij X̂

1+γ
ij

)ǫ

1 + γ
−

(∑
ij XijX̂

γ
ij

)ǫ

γ




Rényi divergence Dρ(X||X̂) =
1

ρ− 1
ln


∑

ij

(
Xij∑
abXab

)ρ(
X̂ij∑
ab X̂ab

)1−ρ

,

whereρ > 0

lim
ǫ→0+

1

ǫ




(∑
ij X

ρ
ijX̂

1−ρ
ij

)ǫ

ρ− 1
+


∑

ij

X̂ij



ǫ

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TABLE V
MULTIPLICATIVE UPDATE RULES FORNMF OBJECTIVES INTABLE IV OF THE PAPER USING THE PROPOSED PRINCIPLE, WHEREZij = Xij/ (WH)ij

objective update rule forW

Euclidean distance W new
ik =Wik

(XHT )
ik

(WHHT )ik

I-divergence W new
ik =Wik

(ZHT )
ik∑

j Hkj

dual I-divergence W new
ik =Wik exp

(∑
j(lnZij)Hkj∑

j Hkj

)

Itakura-Saito divergence W new
ik =Wik

√∑
j Xij(WH)−2

ij Hkj∑
j(WH)−1

ij Hkj

α-divergence W new
ik =





Wik

(∑
j Z

α
ijHkj∑

j Hkj

) 1
α

for α 6= 0

Wik exp
(∑

j(lnZij)Hkj∑
j Hkj

)
for α→ 0

β-divergence W new
ik =Wik

[∑
j Xij(WH)β−1

ij Hkj∑
j(WH)βijHkj

]η
, whereη =





1/β for β > 1
1 for 0 < β ≤ 1
1/(1− β) for β < 0

Log-Quad cost W new
ik =Wik

√
(ZHT+2XHT )ik∑
j Hkj+2(WHHT )ik

αβ-Bregman divergence W new
ik =Wik

[
α(α−1)

∑
j Xij(WH)α−2

ij Hkj+β(1−β)
∑

j Xij(WH)β−2

ij Hkj

α(α−1)
∑

j(WH)α−1

ij Hkj+β(1−β)
∑

j(WH)β−1

ij Hkj

] 1
α−β+1

Kullback-Leibler divergence W new
ik =Wik

(ZHT )
ik∑

j Hkj

∑
ab (WH)ab

γ-divergence W new
ik =Wik

[∑
j Xij(WH)γ−1

ij Hkj∑
j(WH)γijHkj

∑
ab(WH)1+γ

ab∑
abXab(WH)γ

ab

]η
, whereη =

{
1/(1 + γ) for γ > 0
1/(1− γ) for γ < 0

Rényi divergence W new
ik =Wik

[∑
j Z

r
ijHkj∑

j Hkj

∑
ab(WH)ab∑

abX
r
ab

(WH)1−r
ab

]η
, whereη =

{
1/r for r > 1
1 for 0 < r < 1
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