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Unified Development of Multiplicative Algorithms
for Linear and Quadratic Nonnegative Matrix
Factorization
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Abstract—Multiplicative updates have been widely used in respect to one of the factorizing matrices is first computeti a
approximative Nonnegative Matrix Factorization (NMF) opti-  then the sums of positive and unsigned negative terms of the
mization because they are convenient to deploy. Their con- gragient are respectively placed in the numerator and denom

vergence proof is usually based on the minimization of an : ¢ f tio. Th inciol in t b lied
auxiliary upper-bounding function, the construction of which 'M&lor o a ratio. 1he same principie can in turn be applie

however remains specific and only available for limited types tO the other factorizing matrices. The resulting multiatice
of dissimilarity measures. Here we make significant progress in update rules have some advantages over conventionalvedditi
developing convergent multiplicative algorithms for NMF. First,  gradient descent approach. Firstly, the rules naturallitaia
we propose a general approach to derive the auxiliary function the nonnegativity of the factorizing matrices without any

for a wide variety of NMF problems, as long as the approximation e . - .
objective can be expressed as a finite sum of monomials with real extra projection steps. Secondly, the fixed-point algarithat

exponents. Multiplicative algorithms with theoretical guarantee iteratively applies the update rule requires no user-$pe(ci

of monotonically decreasing objective function sequence can tsu parameters such as the learning step size, which facditate
be obtained. The solutions of NMF based on most commonly jts implementation and applications. Though recently efast
used dissimilarity measures such as- and §-divergence as well additive optimization methods for particular NMF objeetiy

as many other more comprehensive divergences can be derived iallv for the least h b devel
by the new unified principle. Second, our method is extended to especially 1or the least-square errors, have been dewelope

a non-separable case that includes e.g-divergence and Renyi  (€.9. [15], [13], [16], [17]), multiplicative updates as aore
divergence. Third, we develop multiplicative algorithms for NMF  convenient optimization method are still widely adopted by
using second-order approximative factorizations, in which each many NMF applications.

factorizing matrix may appear twice. Preliminary numerical The above heuristic principle was previously justified by

experiments demonstrate that the multiplicative algorithms de- . -
veloped using the proposed procedure can achieve satisfactoryUSIng the Karush-Kuhn-Tucker (KKT) conditions [5], [6] or

KKT optimality. We also demonstrate NMF problems where the natural gradients [18]. However, these justificaticamsnot
algorithms by the conventional method fail to guarantee descent provide theoretical guarantee that the resulting updatiéls w

at each iteration but those by our principle are immune to such monotonically decrease the approximation error. A counter

violation. example is the NMF based on thedivergence. On the other
Index Terms—multiplicative, nonnegative, matrix factoriza- hand, it is known that some multiplicative update rules \hic
tion, divergence, optimization. do guarantee monotonicity do not use this form of multipdyin

with ratios, for example, the NMF based on the dual I-
divergence (see e.g. [5]).

To obtain a theoretical guarantee of the monotonic decrease
ONNEGATIVE Matrix Factorization (NMF) has at- 3 commonly used method is to construct an auxiliary func-
tracted a lot of research effort in the past decade. Singgn that globally upper bounds the objective, and then the

Lee and Seung [1], [2] advocated the use of nonnegativigyyltiplicative update should minimize the auxiliary fuioct.
constraint in approximative matrix factorization with twon- Previously the construction of such an auxiliary function
venient algorithms, much progress has been made by adopg@med to be challenging and only successful for a few types
various dissimilarity measures, approximation schemasd, agf objectives. For example, Lee and Seung employed two
constraints to this problem (e.g. [3], [4], [5], [6], [7].]d9], different inequalities for NMF based on the Euclidean dis&
[10]). NMF has also been successfully applied in many fieldgnd the I-divergence, respectively, where the first approac
including text, speech, music, bioinformatics, neuroinfat- yses an inequality for the positive quadratic term, while
ics, etc. (e.g. [11], [8], [12], [13]). See [14] for a survey.  the second one uses the Jensen inequality on the logarithm

When computing the low-rank factorization, many existingnction.

NMF algorithms employ multiplicative updates where the new Recently, two unifying methods have been introduced that
estimate is obtained by element-wise product with nonmegjatmake further use of convexity and employ the Jensen inequal-
factors. A generic principle for forming the multiplyingdi®rs ity beyond the logarithm. Dhillon and Sra [5] presented a
is widely used: the gradient of the approximation error wit§eneral auxiliary function for Bregman divergences betwee

_ _ _ the approximationX and the inputX, i.e. D¢(X|DA() or
Z. Yang and E. Oja are with Department of Information and Comput

Science, Aalto University, P.O. Box 15400, FI-00076 AaFmland. e-mail: l:D¢(X||X) Their meth_Od is neverthEIGSS_ only applicable to
{zhirong.yang,erkki.ojp@aalto.fi particular Bregman divergences, especially the lattere cas
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D¢()A(\|X). In another work [6], Cichocki et al. proposedventional heuristic principle can cause undesired inerass
multiplicative update rules for the family af-divergences, approximation error, whereas those by our method always
except the dual I-divergence, by using convexity of the guarantee descent. In Section VIl we conclude the paper and

function. discuss the future work.

Despite these efforts, there are a number of problems
remaining. Firstly, there are many NMF objectives that are || N oNNEGATIVE MATRIX FACTORIZATION AND
not convex, for example thg-divergence with very large (or MULTIPLICATIVE UPDATES

very small)s [4], [14]. Then these two methods do not apply. ) ) X ) )
Secondly, even for convex objectives, the above approache§Ven an input matrixXX. € Ri™™", Nonnegative Matrix
may still fail because they require that the derivative af thfactorization (NMF) seeks its |°V‘i'rank apprOX|mXat|on_||eth
underlying convex function must be decomposable. Otherwi®™ X = WH, whereW ¢ R and H e RY™, with
the solution of the stationary point equation in generalas ” < min(m,n). Besides the linear factorization where each
analytical form; see Eq. 3.3 in [5] for an example. MoreovefaCtorizing matrix only appears once in the approximation,
the monotonicity proofs for objectives that are non-sejplara the factorization can be of higher-order where each faitugi
over matrix elements, for example thedivergence [19] and Matrix may appear more than once (see Section V).
Renyi divergence are still lacking. . The apprOX|'mat|on error between the |n'put matrlx and
To address such problems, we present here a novel k- @PRroximation can be measured by various divergences
fied procedure for developing multiplicative NMF algoritam P (X[|X). Typical measures include the Euclidean distance
After this introductory part and a brief review in the nextFrobenius norm) and the non-normalized Kullback-Leibler
section, we propose in Section Il a much more generg!vergence (I-d|vergenge). NMF was Iatgr generalized et
principle for deriving multiplicative update rules thatayantee divergences such as-divergence [6],6-divergence [4], [20],
monotonically decreasing approximation errors. Our methéSiS&r divergences [21] and Bregman divergences [5]. More
works for any separable NMF objective as long as it can s&@mple divergences are summarized in Table IV. For brevity
expressed as a finite sum of monomials with real exponerifs,this paper we only consider minimization over the matrix
With such expressions, all we need for most commonly us&y: While exactly the same technique can be applied to
NMF objectives are two well-known inequalities based on tH¥her factorizing matrices in a very similar way, leading to
convexity or concavity of each monomial. For comprehensiyiternating minimization algorithms. In the derivatione wse
objectives that comprise more than two convex monomial¥y. W', and W to distinguish the current estimate, the
we introduce a novel inequality by which one can merge tHi§W estimate and the variable, respectively. According,
monomials into two terms. Using this generic principle, w@!S0 useX in place of X wherever we emphasize that the
derive the ensuing multiplicative update rules with théios¢ @PProximation contains the variable.
monotonicity guarantee for a large number of objectivesiwit 1h€ conventional gradient descent method does not work
various divergence measures. Our rules match all the egistfor the NMF problem because the updated estimate after each
ones whose monotonicity has been earlier proven in litezatdt€ration is not necessarily nonnegative. Projecting gizreate

using a number of specific approaches. Furthermore, nobéck to the positive hyper-quadrant is therefore needest aft
rules for many other NMF problems can be obtained. each update. Line search by a number of objective evalusation

In Section IV, the proposed technique is extended to i, often needeq to guarantee descent after each updatdy whic
non-separable case where the power operation appears G e expensive for NMF problems and thus only works for
the sum of approximating matrix elements. As a result, tfeféw particular types of objectives (e.g. [15], [16], [17])
multiplicative update rules as well as their auxiliary fions ~ USing multiplicative updates is a more convenient optimiza
of most existing NMF optimization problems can be deriveion method for NMF, because it can be easily adapted from
using the proposed principle, including thedivergence,3- the gradient while naturally maintaining the nonnegativit
divergence and all their special cases. Furthermore, md&fiuires no extra efforts to tune learning parameters sach a
new multiplicative update rules with theoretical guaranage the step size.
given for NMF based on-divergence and &yi divergence, Let V be the gradient of the approximation objective func-
their special cases including normalized Kullback-Leide tion with respect toW, and denote by * and V™~ the sums
vergence, and some other more comprehensive approxima@ositive and unsigned negative terms, he=V* —V~.

error measures. It used to be common belief that the multiplicative update
In Section V, we generalize the proposed principle to NMF -
. . . . .. . new _ yy/. vik (1)
using quadratic factorizations where a factorizing marnixy ik = Wik v

appear twice in the approximation. This may be useful e.g. in
the graph isomorphism problem. A multitude of multiplizati can minimize the NMF objectives (see e.g. [22]). The above
algorithms with monotonicity guarantee for both symmetriagpdate rule is connected to the steepest gradient descent
and asymmetric quadratic NMF problems can be obtained.method W)™ = Wi, — pik (V;@ — Vi‘k) by assuming that
Finally, empirical results in Section VI show that (1) moseach matrix element has its own learning rate = W;;/ V3, .
multiplicative algorithms derived by using our method caA recent similar justification [18] interprets the multigditive
asymptotically achieve the KKT optimality; (2) there existipdate rule as a natural gradient descent with a unitary
NMF problems where multiplicative algorithms by the conlearning rate, where the underlying Riemannian manifold is
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defined by the tensoiG(W)],,;, = 6ij5k,l%, with é;; the by using the Lipschitz constant if the NMF objective is a

Kronecker delta. Yet another way to suggest the principje (C? function, though the resulting updates are often very

is by rearranging the Karush-Kuhn-Tucker (K.K.T.) conafits slow and require extra steps to maintain the nonnegativity.

(Vt = V7). Wi, = 0 [5], [6]. However, actually none of Some specific methods have been used in particular NMF

the above justifications can provide theoretical guaratitae objectives, for example, the fourth and fifth inequalitiégeg

the resulting updates will monotonically decrease the @bjen Appendix A for the quadratic terms (e.g. [2], [10], [259]].

tive function. Counter-examples includB,(X||[WH) and the Jensen inequality on the logarithm [2] @ffunction [6],

Dey(X|[WWTX) (see Table 1V), where the updates usingnd the Concave-Convex Procedure (CCCP) for majorizing

Eq. (1) may increase the approximation error. Furthermorg;divergence [26], [20].

it is known that some multiplicative update rules which do In the following we present a common principle that not

guarantee monotonicity do not take the form of Eq. (1), faynly unifies the above proofs but also is easily generaliped t

example, the one fob,(WH]||X). other unproven objectives or higher-order factorizatiofs
The monotonicity guarantee is very important for fixeda result, our method turns the auxiliary function consinrct

point algorithms in non-convex optimization problems, inthat seemingly requires intense intelligent work into apen

cluding the multiplicative updates and also e.g. the welsymbolic manipulation procedure.

known Expectation-Maximization method. It is a basic fact

that a |0Wer'bounded monotonica”y decreasing Sequence |S||| M ULTIPLICATIVE ALGORITHMS FOR SEPARABLE

convergent. Since the NMF approximation error is generally DIVERGENCES

lower-bounded by zero, the proof of objective convergence N . . -

in NMF is reduced to finding the theoretical guarantee of Before going into details, we need generalized definitions

monotonicity. Unless otherwise stated, the term “convecgé of_tr:noncl)ml?ls dand polyntom|als. Ir_' Itt?ls k\]/vo':k, fathmonolmlal
in this paper generally refers to tlobjective function conver- with real-vajuéd exponent, anonomialby short, ot the scalar

) : b
genceor, equivalently, the monotonic decrease of the NM'\galnabIe;t;]s 0{ thetfp:mazt wherea apdb-c?n take:nymzial
approximation error. Numerical experiments for checking ¢ value, without restriction to nonnegative integers. A suna o

point convergenceor the optimality conditions of the IoOints(finite) number of monomials is called a (finitgeneralized

of convergence, are provided in Section VI-A. pog:ﬂ?:m'?)]. . h b d in th lized
Currently the auxiliary function technique [2] is the most objectives that can be expressed in the generalize

widely accepted approach for monotonicity proof of multipqunomi"jII form have two nice properties: 1) individual noen
plicative updates. Given an objective functigh’'W) to be mials, denoted by

minimized, G(W,U) is called an auxiliary function if it is wd(f(ij) = fdijfg]d, (3)
a tight upper bound off (W), i.e. G(W,U) > J(W), and -
G(W, W) =7J(W) for any W andU. Define are either convex or concave with respectVid and thus can
new ) — easily be upper-bounded; 2) an exponential is multipledhyi
W= arg H\%HG(W’W)- (2)  decomposable, i.ézy)™ = z7y", which is critical in deriving

the multiplicative update rule. We thus apply a two-steptstr
By construction,7(W) = G(W,W) > G(W"™ W) > egy for obtaining a multiplicative algorithm with monoteni
G(Wnew, Whew) = 7(W"e"), where the first inequality is the objective convergence: first, we construct individual uppe
result of minimization and the second comes from the uppgsunds for each monomial according to its convexity or
bound. Iteratively applying the update rule (2) thus resifit concavity; second, the auxiliary function is obtained byrgae
a monotonically decreasing sequence’fBesides the tight ing individual upper-bounds to monomials of two different
upper bound, it is often desired that the minimization (2 haxponents.
a closed-form solution. In particular, settirif7/0W = 0 The finite generalized polynomial form covers a large
should lead to the iterative update rule in analysis. Thev@bovariety of separable dissimilarity measures used in NMF,
technique is also namedajorization-Minimization(MM) in  for example, the Euclidean distance (Frobenius norm), the |
the optimization literature (see e.g. [23]). Another retht divergence (non-normalized Kullback-Leibler divergendee
generic principle isDifference of Convex function§DC) dual I-divergence, the Hellinger distance, the ltakuriieSa
programming (see e.g. [24]). Especially, as a requiremant {divergence, the Log-Quad cost, as well as many other unnamed
NMF problems, the factorizing matrices after applying the€siszr divergences and Bregman divergences. Some example
update rule should maintain the nonnegativity. objectives and their finite generalized polynomials areasho

The majorization or construction of such an auxiliary fundgn Table IV.
tion, however, has not been a trivial task so far. Though Many information-theoretic divergences involve the loga-
generic for a wide range of optimization tasks, there igithm function. We can unify it to our generalized polynoinia
however, no specific principle in the MM or DC literatureform by using the limit
for deriving the auxiliary function by exploiting the stituce
. Lo . z¢—1

and constraint of NMF problems. Improper majorization may Inz = lim
lead to comprehensive programming steps instead of simple 0t €
multiplicative update rules that are easy to implement.tAao Notice that limits in0™ and 0~ are the same. We use the
plausible approach is to construct a quadratic upper-boufwdmer to remove the convexity ambiguity. In this way, the

(4)
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logarithm can be decomposed into two monomials where theFor convexmonomials, we introduce\;;; = (V‘[;V’“If)’” and

first contains an infinitesimal positive exponent. Becausstm then obtain their upper bound by using the Jensen inequality
existing divergences that contain the logarithm are smooth — T4

with respect to both the factorizing matriwv and ¢ > 0, de(;@j) SZfdijZAijk (Wikaj)

we can safely exchange the order of the logarithm limit i > . Aijk

and the derivative with respect . In other words, the ~ \ Td

deriving procedure is standard, after rewriting the |dtani as — Z Wik Ouin (WU@) ) (9)
monomials. Upon upper-bounding and taking derivative with % d Wi

respect toW,, the limit operatorlim ~{-} is applied to obtain step 2: Combining individual upper-bounds
the gradient of the auxiliary function. A total upper-bounding function can be obtained by sum-
Next we formally show that multiplicative algorithms withming up individual ones obtained from the previous subsec-
monotonicity guarantee always exist as long as the appexintion. Forp = 2 and r; # 73, their sum already forms an
tion objective function is separable over matrix elememig aauxiliary function of the form given in Theorem 1. This is
can be expressed as a sum of a finite number of monomitile case for most existing NMF algorithms based eg.
with real-valued exponents. divergence [6],5-divergence [26], and their special cases.
However, when there are more than two monomials with
N . . distinct exponents, the summed upper-bound does not have
A. The auxiliary upper bounding function the form given in Theorem 1. An example is the Log-Quad
Theorem 1:DenoteX = WH, 2 < p < 00, 74 € R, cost shown in Table IV. It is generally difficult to solve the

d=1,...,p and fq; constants independent 8. Suppose equation by setting the derivative of the summed upper-toun

1) the approximation objective is separable over indiced® Zero- The complexity of analytical form of_the roots grows
drastically when the number of such monomials increases and

andj. i.e. therefore does not lead to desired multiplicative updakestu
~ Pz ~ We therefore consider merging the individual upper-bounds
D (X”X) = Z ZfdiniTjd +constant  (5) into an upper-bounding function that contains monomials of
d=1i=1j=1 only two different exponents such that the derivation can
2) there is at least one non-zero stationary poinbofiith ~continue with thep = 2 case. The merging is implemented
respect tow; and by further upper-bounding the monomials. In Appendix B we
3) Vi, k, Wi > 0. prove the following result: .

Lemma 2:Assume cx® convex. Thencz® < ac% +

1-— 9) if one of the following holds:

There are real numbetsnax andYmin (¥max > ¥min) Such that . (
b

. AT 1) a>1anda <b,
GW, W)=Y |2 v 2) a<1anda > b,
,(/} W ik
ik max v 3) a=1,c>0anda <b,

—~— \ %min 4) a=1,c<0anda > b.
W (Wi ) V.. | +constant (6) The equality holds if and only i = 1.
Ymin \ Wi For our merging purpose, notice that all individual upper-
bounding monomials are convex and have the form

is an auxiliary upper-bounding function @ (XH)E), where Word W Pa
V*+ and V-~ are the sums of positive and unsigned negative L ikTdik ( ! ) (10)
terms ofV, the gradient of the divergence with respectid Y Wi
at the current estimat®, respectively (i.eV = VT — V™). wherey, = 74 for the convex upper-bounds ang, = 1 for

Proof: the concave upper-bounds. We can then further upper bound
Step 1: Upper-bounding individual monomials these individual monomials according to the cases in Lemma 2

The objective function in the form (5) is a sum of eithefS follows. Denoteimax andymin the maximum and minimum

convex or concave monomials. Tlencavemonomials can Of {#a}q_;. respectively.
be upper bounded by using the first-order Taylor expansion ar Up-Merging (UM): for 1) ¢4 > 1 or 3) ¢4 = 1 and

the current estimate: WirOair /¥a > 0, up to some additive constant,
~ —_— - Pd — Pmax
Z wa(X;j) < Z 0411 Wik, + constant ) Wi Oir. | Wi < WirOair. [ Wi (11)
ij ik Ya Wi Ymax Wi
where « Down-Merging(DM): for 2) ¢y < 1 or 4) ¢4 = 1 and

oy ()~( ) WirOair: /%a < 0, Uup to some additive constant,
By 2 LLzabd\Tab) - ma (WH) S H — \ ¥ —— \ ¥min
i OWpe < Z faijra )i K Wirdaie ( Wir \ _ WirOair | Wi
W=w J < . (12)
(8) '(/)d Wi wmin Wi
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Because the individual upper-bounding monomials are co@: Summary of the derivation procedure
vex, we havedy, > 0 if d € UM and 0y, < O if

d € DM. Moreover, by such assignment, UM and DM cases 1e principle of deriving a multiplicative update rule ahet

must both be present._ chervvise the grad}ém = Dair, Oai corresponding auxiliary function of a given separable ciije
W0u|d be.always positive (pr_ always negatiye) for Wi gnd 5 summarized as the following procedure.
(i, k), which makes the origin the only stationary point an

therefore contradicts the second theorem assumption. Mge th 1) Transform the objective function into the form of finite

obtain the auxiliary function (6) withv;, = >~y daix and generalized polynomials. Use the limit form (4) wher-
Vik = = 2 aeom Odik- ever the objective comprises the logarithm.

Finally, all upper bounds used in the above steps come fromp) Upper bound each monomial according to their con-
one of the five inequalities given in Appendix A. It is worth cavity or convexity by using their first-order Taylor
to notice that all these upper-bounds are tightat="W, i.e. expansion (7) or the Jensen inequality (9), respectively.
G(W,W) = J(W). Therefore, the ultimate upper bound 3) If there are three or more individual upper-bounds,
does form an auxiliary function. ] combine them into two monomials using (11) or (12)

according to their exponents. Form the auxiliary func-

tion.

4) Take the derivative of the auxiliary function with respec

__The derivative of the auxiliary function (6) with respect to to the factorizing matrix variable.

Wi is given by 5) Apply the logarithm limit if needed. Employ L'épital’s
— =\ Ymac1 Y1 rule when the limit has the forrf.

IG(W, W) [ Wi vt _ 1% _ 6) Obtain the multiplicative update rule by setting the

Wi (Wi > ik <Wi ) ik derivative to zero.

(13)

B. The multiplicative update rule

In Appendix D, we present the derivation details of five
For most cases, setting this derivative to zero yields thiatgp example multiplicative update rules for readers’ bettedarn
rule standing of the deriving procedure.

\ n Itis interesting to see that the derived rules using our gene
Vl ) (14)  principlematch all existing onewhose objective monotonicity
ik has been theoretically proven using other specific appesach
wheren = 1/(¥max — ¥min)- [2], [5], [6], [4], [20]. For other separable divergencestdid
An exception is when the logarithm limit (4) is applied andn Table IV, the multiplicative update rules take the form in
lim (¢max — %¥min) = 0. In this case the limit of the derivative Eq. (14) withn = 1 for Log-Quad cost ang = 1/(a—+1)

e—0+ . !
Al for a5-Bregman divergence. The corresponding update rules
(13) has the formg. We thus apply the L'l@pital’'s rule [27, éor the examples is given in Table V.

pages 201-202] to obtain the limit before setting it to zer
See Section D-B for an example on the dual I-divergence. A couple of remarks should be addressed for the resulting
The multiplicative update rule (14) also guarantees $yricteXponent; in Eq. (14). Firstly, althoughy plays a role similar
positive descent as long as the current estimate is notOastep size, it has two distinguishing properties from the
stationary point. Otherwis& will remain unchanged due to conventional methods such as exponentiated gradient mtesce

new
ik = Wik <

Wix =0 or Vi = 0 for all (4, k). (see e.g. [28]): (1) users need no extra effort to tynas it is
Corollary 3: If W is not a stationary point off (W), then uniquely determined by the NMF objective and our proof pro-
for Eq. (14),7 (W) < 7(W). cedure; (2) is not required to approach zero for monotonicity

Proof: BecauseG is tangent to at W, which is not guarantee, as shown by the examples in Appendix D. This is
a stationary point of7, W is not a stationary point oty & major diffgrence betwee.n our multiplicative algorithnmsl a
either. Meanwhile W™ as the stationary point also achieve&he conventional exponential gradient descent methoduseca
the minimum of G because is a convex function inw. In the latter method, to our knowledge, there is no means
Then by Theorem 17 (W) = G(W, W) > G(W"" W) > to _obtgin a constant learning rate that guarantees momntoni
G(WNeW Wnew) — 7(Wnew). - objecti_ve decreas_e _and_one_has to _Choose a very small s@p Siz

Besides the generalized monomials, there are two mify @void monotonicity violation. This advantage also pdes

assumptions in Theorem 1: one requires that the objecti¥¢ Pase for an acceleration strategy using adaptive erfgne
has at least one non-trivial local minimum and the othdP €xample, to use more aggressive exponents and switéh bac
constrains thafW contains no zero entries such thatis (© the safe choice whenever ascent occurs (see e.g. [29]).

well-defined. The latter assumption is commonly needed bySecondly,n actually defines the upper bound of a safe
all multiplicative algorithms because multiplicative w#tes interval of exponents that guarantee monotonicity given ou
make no changes to zero entries. This requirement in peactioild assumption and majorization steps based on convex-
can be easily fulfiled by positively initializing factoiig ity/concavity. That is, the update rule (14) still makes the
matrices such that everything on the right-hand side of Egpjective function converge whenis replaced with a smaller
(14) generally remains positive, and so does the upds¥ed positiven*. To see this, one can apply an even further upper



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. XX, XXXXXX XXXX 6

bound divergences in Table (IV), we obtain the multiplicative apel
N\ Pmax —_ N\ rules in the form Eq. (14) witth = 1 for Kullback-Leibler

WirOuair. | Wik < WirOaix [ Win (15) divergence;y = 1/(1 + ) for ~-divergence wheny > 0,
Ymax  \ Wi Ty Wi n = 1/(1 —~v) whenvy < 0, n = 1/p for Rényi divergence

whenp > 1, andnp =1 for 0 < p < 1.

€ Here we only present exponentials on the matrix sum
X 1 e b . for notational brevity, while the same technique can easily
0" = F7= g Which is still an update rule with monotonicity e gpplied to the cases of row-wise or column-wise sums.

guarantee. Similar looser bounding can be applied by rE@aCObjectives that are not separable ovein Eq. (5) can be
Ymin t0 Obtain the same result. Nevertheless, a smaller eXpindied in a similar way.

nent corresponds to more conservative multiplicativeniear

steps, which often leads to slower descent speed in prabitice V. QUADRATIC FACTORIZATIONS

this sensey is the most aggressive and safe constant exponentrhe previous discussion focused on the linear factorimatio

provided by our method. X ~ WH, where the factorizing matri#v (or H) appears
Note that unlike the heuristic rule (1), there is no ambiguitonly once in the factorizing expression. There exist othigiN

when decomposing the gradient into positive and negatigeoblems in which a factorizing matrix may appear twice,

parts in our method. The decomposition is uniquely detefhich we call Quadratic Nonnegative Matrix Factorization

mined by the proposed procedure. If one adds and subtra@sMmF).

the same positive constant to the gradient, the resulting-mu The Quadratic NMF has a wide range of applications.

plicative update rule essentially requires a looser uppent For example, thérojective Nonnegative Matrix Factorization

with * > 1max. This leads to a multiplicative update rul
similar to (14) except the exponent= m changes to

and thus leads to slower convergence. (PNMF) is able to achieve high sparseness in both feature
extraction and sample clustering [30], [31], [32]. Otheplap
IV. A NON-SEPARABLE CASE cations include the graph isomorphism problem if the sparsi

(or orthogonality) ofW is enforced [33], as well as parameter
estimation of hidden Markov chains [34].

B B Here we focus on two typical factorization forms of QNMF:
DX[IX)=> Qa > gai X (16) (1) the asymmetric form (AQNMFX ~ WWTZY and (2)

d ij the symmetric form (SQNMF)X ~ WYW?7. Note that
other forms of quadratic factorization, e ~ YWWT,
can equivalently be transformed to AQNMF or SQNMF. Here
Y can be (i) a constant, for instan® = X that leads to
PNMF andY = I that leads toSymmetric NMF(see e.g.
[10Q]), (ii) an abbreviation for the product of other factrig
matrices that only appear once in the approximation, oy (iii
ré“horthand for recursively defined quadratic factorizatjdior
instanceY = XUUT7 that leads taX ~ WWTXUU7.

The quadratic factorizations usually give rise to more dif-
Q X0 | < X0 | o X0 ficult optimization problems. As an example, consider the
‘ %:gdj YT %-:gd] g (%; ot ab) PNMF based on Euclidean distance:

We also consider a non-separable case

where Q4(z) = Vg - 2T with v4, 74, 94;; and ¢4 constants
independent ofW. A typical example is the family ofy-
divergences, with the original or normalized Kullbackbler
divergence as its special case whens 0.

When Q4(z) is concave with respect to, the term can
be upper bounded by its first-order Taylor expansion
S5 Gdab X 23 up to some additive constant,

- o . . T 2
= Z fdin?}d; (17) ml\r)l‘}rznolze IX - WW-X]||%, (29)
ij

where the objective function is quartic with respectVio and
where fui; £ vatagai, - (Zab Guat X’f,f therefore cannot be upper-bounded by the quadratic furgtio

When O i nvex with r { to. W n writ that were earlier proposed in [2], [10]. One must find an
€ d(z) S conve espect lo, we ca € auxiliary function of at least the fourth power. To our knewl

Tqa—1

Oaij

X e : . - .
Oai; = ﬁ and apply Jensen’s inequality to obtairedge, there has been no general principle of developing mul-
the upper bound’” tiplicative algorithms with monotonicity guarantee for QIN
problems such as (19).
X Pa Our novel method now provides a straightforward way to
0] gdUij ) p : | g y

Qq nginijd Szedijgd () include the second-order factorizations. Here we only show

g g the derivation procedure for the symmetric and separatsie, ca
= Z fdij)??;‘dmv (18) which can similarly be applied to the asymmetric and/or non-
i ' separable cases. Denote

~ —~ Ta—1
where f;; £ udgdin;?d(l’”) (Zab gdabelj> o 62“‘1 (X“b)
We can see that both convex and concave cases reduceder = — = Z (Ssziz + Sj('?l)k) Wi,
the same form for the separable objectives and thus continue w=w i
with the same procedure in Section Ill. For the non-separabl (20)
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Ta—1 TABLE |
where S7.( lzl = Tafaij (WYWT) ; Yii. We divide the NortaTions IN THE MULTIPLICATIVE UPDATE RULES OFQNMF BASED ON
monomlals into the following four categories, each of whicha-, 8-, v-, AND p- (RENYI) DIVERGENCES WHEREX = WWTY FoR
can be tightly upper-bounded (see Appendix C for derivation AQNMF AND X = WY W FOR SQNMF.
details). 2 Qi a p
(Case 1) For concave monomials aﬁfj’kl >0 %ia € (1,+00)

— \2 X
~ O : al 1 = 1 = a€(0,1)
de (Xij) < Z WikOaun ( Wi + constant (21) X7 2
— , 2 Wik a € (—o0,0)
ij ik 2041— 2
i ) g B € (0,+00)
(Case 2) For concave monomials aﬁﬁkl <0, 5| x° Xij 1 2123
= \¢€ N )A(ilfB ! B € (—00,0)
WirOaix [ Wi 2-28
de ( ) < lim Rk [ 22 ) 4 constant ZXWI 1
— e—0t € Wik R Xs v € (0,400)
ij ik y X,:/ ’\1” 242y
(22) R SR oy 70
(Case 3) For convex monomials arfigh; > 0, abzy( 1
— 274 1 XZ ab ° ?p pE (17 OO)
1kad1k ik ’ )/(\P. Xx° )’51—;3 1
de 7] < Z 4 (Wk> . (23) i ; ab“ ab B p€(0,1)
(Case 4) For convex monomials arfigi; < 0
—~ € o for SQNMF
de ( ) < lim Z Wirain ([ Wi + constant WYT + OTWY n
r e—0t " S Wik new __ W (Q + Q )Lk .0 (28)
! (24) " (PWYT + PTWY),, ’

whereP, Q, 6, andn are specified in Table |. For example,

. ) the rule for SQNMF based on the squared Euclidean distance
e > i (Sijkl +5; zlk) UiUj < 0 for any U € R™*", (8 — 1) reads

we have a tighter upper bound using the first-order Taylor

Particularly, whenSfjd,ll + S(llk is negative semi-definite,

1/4
expansion: new _ 1y (XWYT + XTWY) !
(Case 2a) For concave monomials aﬁfﬁkﬁs(”k is negative ik (WYWIWYT + WYTWTWY),,
semi-definite, (29)

de (X”) < ZadikWik + constant (25) As an exception, the update rules for the dual I-divergence
” ; take a different form

(Case 4a) For convex monomials aﬁfj’kl (fl)k is negative new _ 1 exp 1(QY'W+YQ'W), (30)
semi-definite, ik i 2 (PYTW +YPTW),, |’
— Td
> WikOair. | Wik (QWYT Q'WY)
X;i) < —/ | == constant (26 - ik
de (%) < Z}; T4 (Wik> " ¢0 Wi = Waexp | o oWy T PrwY),, (1)

The resulting individual upper bounds of all the above casgss AQNMF and SQNMF respectively, wittP;; = 1 and
are in the form of Eq. (10). The derivation can therefo(rj%__ In ( /X )
- (%) 1)

proceed to the combining step in Section IlI-A and onwar
in the same way as for the linear factorization.

As examples, we present the multiplicative update rules for
QNMF based ona-divergence,3-divergence,y-divergence A. KKT optimality of the multiplicative algorithms
and Renyi divergence. These families of divergences coverin the above we have rigorously proven that the objective is
most commonly used dissimilarity measures, for examplgonotonically decreasing in NMF. Because the approximatio
the squared Euclidean distange € 1), Hellinger distance error is lower-bounded by zero, the monotonicity directly
(a = 0.5), x*-divergence ¢ = 2), I-divergence ¢ — 1 or implies that the objective evolution is convergent.
B — 0), dual I-divergenced — 0), Itakura-Saito divergence Another type of convergence, concerning the KKT optimal-
(8 — —1) and Kullback-Leibler divergencey(— 0 or p — 1). ity of the converged points, is of interest in the optimiaati

In general, the multiplicative update rules take the follayv field. Particularly, the KKT optimality in linear NMF refette

VI. EXPERIMENTS

forms: the satisfaction of the following conditions: for allk
« for AQNMF 1) (feasibility): W;, > 0 and H;, > 0,
. (QYTW +YQTW)“€ n 2) (stationarity): Vw ;x > 0, and Vg ;; > 0
e = Wi -0 27) 3) (complementary slackngs®/;;, Vw ;1 = 0,

T T ’
(PY'W + YPTW),, and H;, Vi ix = 0.
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TABLE |l " synthetic o synthetic
VIOLATION EXTENTS OF THE SLACKNESS CONDITION IN LINEARNMF, ——oud old
(A) FORW AND (B) FORH, AND IN PNMF (C). ' e
10* ! 10"
(A)
iris ecoli5 swimmer E e B e
Euclidean 9e-111e-26 2e-180 6e-04-0 !
| 2e-10+0 9e-16t1e-31 le-1%0 X
dual-I le+0H0 3e+0Q:5e-16 1e+02-0 W P Bttt tdbulinls
ltakura-Saito ~ 7e-141e-29 2e-15-0 2e-09-5e-09 ° 02 e oondsy ’ % ime (seconds)
Log-Quad 3e-0Z6e-23  8e-1Z2e-27 Q-0 10° 10’ stk
KL 7e-15+8e-31  2e-13-4e-31 0t0 e T e
(B) 10" 10?
iris ecoli5 swimmer £ £
Euclidean 3e-020 9e-09:2e-24  4e-0£6e-23 g g
[ 1e-09+0 2e-14+3e-30 le-120 ©
dual-I 4e+02-6e-14 le+023e-14 4e+0%7e-15 —
ltakura-Saito ~ le-122e-28 4e-140 9e-10t2e-09 S 1 e
Log-Quad 5e-06:0 3e-16:0 0+0 0 00l O 0% o ’ * i (seconds) s
KL 040 4e-13F5e-29 G0 faces fotal
old old
(©) i
irs ecoli5 swimmer I 10
Euclidean le-030 2e-06t0 le-13t1e-29 g H
| 2e-05t+4e-21 1le-06-0 2e-13t0 g \ 5
dual-l 4e+017e-15 1le+0%x2e-15 9e+0Zle-13 AN '
ltakura-Saito  3e-0%6e-23  4e-046e-20 G0 N
Log-Quad 3e-046e-20 7e-06:-2e-21 [¢I=0] , TSN | oo Tt
KL 2e-05+0 le-06t2e-22 Qt0 0y 05 1 15 2 o5 0.005 001 0015

time (seconds) time (seconds)

Fig._l._ _Objective evolutions of (left) NMF E_md‘ (right) SNMFsing
Similar optimality conditions apply to the quadratic NMFge multiplicative update rules by the old and new principles.
the matrixW and its associated gradient in PNMF.

The first condition obviously holds for multiplicative up-

dates as long as the factorizing matrices are nonnegativgwries _Of Itheoinput mat_rix, _Whri]chdarel I3<;16, 0.48, angeg.OG,
initialized. In our practice, the stationarity is easilyecked respectively. One exception Is the dual-l divergence, o

and also valid for all multiplicative algorithms after saféntly converged points do not fulfill the complementary slackness

long runs. The major question that remains is the complem _ndition fo_r all dgtasets.. The .violation. can be.expla}ingd b

tary slackness. the flxed—pomts_of its multiplicative algorithm, which ageren
Usually multiplicative algorithms operate on positive facby W, exp

torizing matrices. In this setting, the complementary lat@ss -

can only hold in an asymptotic manner. The rigorous pro®fMF, i.e. Wi, — 0 or ¥~ = 0 with positive initialization.

of such asymptotic convergence is difficult and only ava#labThe latter condition has ho connection to the complementary

v o . o
Wik ) = W, for the matrix W in linear

VW,ik

for some particular divergences (see e.g. [35]). slackness. By contrast, other multiplicative algorithnsing
In this section we provide the numerical results fo q. (14), have fixed-points/;x — 0 or vl’v‘“’ — 1, which is

checking the complementary slackness. The extent of viola- Vw ik
tion of the condition is measured by’ ,, |[WixVw.ix| and Consistent to the complementary slacknes¥{; ;;, > 0.
> | Hir V| for W and H, respectively.

We have used three publicly available datasets: two of them, comparison to the conventional principle
iris andecoli are collected from the UCI repositdryand the
swimmerdataset [36] consists of 256 binary images depictin
moving parts of swimmers. The dimensions of the datas
are150 x 4, 327 x 7, and1024 x 256, respectively. To avoid

Conventionally, multiplying factors in the multiplicagv
date rules are formed by putting the positive part of the
gradient to the denominator and the unsigned negative gart t

numerical errors, we add a small positive number (&0g.%) the numerator. However, such multiplicative updates canno

to each denominator and to each logarithm in the updaqgarantee monotonic decrease of the approximation erter af
rules. Each multiplicative algorithm has been run at laat each iteration. In this section we show descent violation ex
iterations and repeated 100 times. The resulting means ples f_or.bot_h linear qnd quadrqtic NMF problems, vyhgreas
standard deviations of the violation extent are shown irie'l'abt € multiplicative algorithms obtained by our new prineipl

Il (A)-(B). We also did the same experiments for PNMF an§®" completely avoid such violations.
th((a r)egsu)lts are shown in Table I (CI; We perform the comparison on NMF based@f+-Bregman

gévergence & = 10 and 5 = 0.5) and Symmetric NMF

From these results, we can see that most multiplicati NMPF) based on &vi di — 9) We sel dth
algorithms achieve zero or nearly zero violation of comple=s ) based on Bnyi divergence/ = 2). We selected these

mentary slackness, compared to the averages of non—z%% problems because they cover both linear and quadratic
actorization cases. In addition, these problems have eehb

Lhttp://archive.ics.uci.edu/ml/ solved by any previously existing methods, which demon-
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TABLE IIl . . .
PERCENTAGE OF DESCENT VIOLATION IN(A) NMF AND (B) SNMF. monomials, a m"q assumption that holds for many commonly
used approximation error measures, as shown by the many
(A) examples given here. As a result, our method turns the
mlgthOd gsggihgti% i2i3568 - of(i%ecs)z derivation that seemingly requires intense mathematicakw
0 49.98E0.12 1.7%8. .0&0. - : . ;
old (alternation)  0784.72  0.06:0.05 0.13-0.08 mtp a routlne_ exercise thgt could be even readily automated
new 0.068:0.00  0.06t0.00  0.06:0.00 using symbolic mathematics software.
®) There exist divergences that are not covered by our method.
method _ synthetic Strike Tootbal Some'a'pproxmatlon objectlve§ cannot be expressed as asum
old 68.14£6.70 10.7&1.27 20.644.97 of a finite number of monomials, for example the Relative
new 0.08£0.00 _ 0.08:0.00 _ 0.0G:0.00 Jensen-Shannon divergence and the Arimoto distance @ee e.

Chapter 2 of [14]). For such objectives, the resulting exgun
of the multiplying factor will become infinitesimal when

strates that our principle can easily be extended to new NMipplying the proposed procedure. This problem is however
problems. much alleviated in practice by using approximations witlitdin

For each of the above problems, we have tested the cogxpansions. Usually the resulting multiplicative updates
pared multiplicative algorithms on three datasets. Foedin still effectively decrease the original objective. Anathgpe
NMF, we have usedsfr) a synthetic nonnegative matrixof excluded divergences are some constrained ones such as th
generated by the Matlab commaraihd(50,30) (iris) a dataset Bit entropic loss [14, page 99]. The fixed-point optimizatio
containing 4 nonnegative measurements of 150 iris plant$,such comprehensive objectives is still an open problem.
and faceg the inner part of the ORL facial images [37] We have presented a unified principle with mild generic
(400x644). For SNMF, we have usedyn) a synthetic nonneg- assumptions. In practice, in any specific case, the update
ative matrix generated by symmetrizimgnd(50,50) (strike) rules can be further improved by ad hoc methods with more
and (ootball)?, two real-world undirected graph adjacencyroperties of the specific NMF objective considered. For
matrices of sizeg4 and115. example, when finding individual upper-bounds for the PNMF

The objective function evolutions are shown in Figure based on the squared Euclidean distance, one can make use
In order to illustrate the descent violation more clearlg wof the positive semi-definiteness &X” and thus apply
only present the curves for linear NMF iterations &N Case 2a instead of Case 2 in Step 2 (see Appendix D-D).
with fixed H. It can be seen that for both NMF problemsThis consequently leads to a multiplicative update rulehwit
the multiplicative algorithms by the conventional prirleip exponentl/3 instead of1/4. Another speedup example for
may cause undesired ascent after each update. The resulliMF based on the squared Euclidean distance can be found
objectives are far away from the local minimum in four ouinh [38].
of six selected datasets. In contrast, the multiplicatipdate Here we mainly focus on the convergence or monotonic
rules obtained by our new principle produce decreasingesurdecrease of the objective function. Rigorous proof on cenve
in all demonstrated experiments. gence to stationary points has recently been investigayed b

We ran each experiment 100 times with different startingther researchers. Lin presented a proof that a slightly-mod
points and recorded the numbers of objective increase. Wiled multiplicative algorithm for NMF based on the squared
then obtained a violation percentage by dividing the nusibeFuclidean distance can achieve KKT optimality conditions
with the length of the run. The resulting means and standg@b]. More recently, Badeau et al. proposed to examine the
deviations across 100 runs are shown in Table I, from whicsymptotic convergence behavior of multiplicative update
we can see that it is quite common for the conventional methpg using the Lyapunov stability theory [39]. Their result
to yield a violation. Alternating the updates fo and H shows that ify in our generic algorithm is small enough,
can reduce the violation times, though objective incremsimultiplicative updates are asymptotically stable, name&n
still happens for the multiplicative algorithms obtainegthe arrive at a local minimum after sufficiently many iterations
conventional principle. One may even alternate among @sdaHowever, the upper-bound ef with such stability is difficult
of individual entries ofW or H to achieve descent in practiceto compute in general. Furthermore, little is known about
though it is slow and still lacks theoretical guarantee. Bye stability when alternation among factorizing matriées
contrast, the multiplicative algorithms by our new prireip applied.

as expected, produce zero violation in all experiments. NMF optimization problems are usually non-convex. Global
optimum is not guaranteed unless extra constraints are im-
VIl. DISCUSSION posed. Considerable initialization or pre-training cafeef

We have presented a generic principle for deriving muu}i_vely avoid poor local minima. Typical initialization neds

plicative update rules, as well a proof of the convergence clude PCA/SVD, clustering, and Gabor wavelets (see e.g.
their objective function, that applies for a large varietyinear [40]; [41], [42, Section 9.2.1]). _

and quadratic nonnegative matrix factorization problefire ~ Another important and still open problem is how to select
proposed principle only requires that the NMF approximatic?Mong various divergences. This strongly depends on the na-

objective function can be written as a sum of a finite number Bf'€ of the data to be analyzed, for instance, noise, osilérd
data types. For particular parameterized families of digace,

2http:/iwww.cise.ufl.edu/research/sparse/matricestidel usually there is some trade-off when adjusting the divergen
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parameter. For example, a largeor v leads to more robust APPENDIXB

but less efficient estimation. More details on these trétke-o PROOF OFLEMMA 2

can be found in [43], [44] and references therein. Automatic  praof: The inequality obviously holds whea = 0 or
selection of the divergence parameters generally reqekiea -1 -

1 .
information or criterion, for example, ground truth dat&]4 ¢ = 0- Otherwise, by~ < we have the following
or cross-validations with a fixed reference parameter [46]. results: 1) Whem > 1, We havee > 0 because=® is convex.

With a < b, ¢ Sax—+1—f:>ca: Sacx——i—c(l—g).
ACKNOWLEDGMENT 2) When0 < a < 1, we havec < 0 becausecz® is convex.

b a X
With a > b, ¢ >a— 1— == cz® <ac—+c<177
Whena < 0, we havec > 0 becausecz® Js convex. 1bhen
with a > b, xa<ab +1—§:>c;va<acb —l—c(l—f) 3)
and 4) are complementary cases for linear monomials which
are similarly proven according to the sign of [ ]

We would like to thank support for the proje&innish
Centre of Excellence in Adaptive Informatics Resedrom
the Academy of Finland.

APPENDIXA
UPPERBOUNDS USED IN THE DERIVATIONS APPENDIXC
UPPER BOUNDING QUADRATIC MONOMIALS

1) For a real convex functiory and positive constants For concave monomials,

A1,0A2, ..., Am, ~
T aiYi Ti T de (Xij) < ZXU% + constant
160 <TG (Say). z LS
z =" WaW;SL, + constant
This upper-bound is due to the Jensen’s inequality. ijkl

2) A real concave functiorf is upper-bounded by its linear
or first-order Taylor expansion:

= Z Wi W1 ( i T S]?k) + constant

Ukl
f(x) <f(y) + (x —y)'V = x"V + constant The last step is due to the exchanges of summation indices:
i+ j andk < I. We do not assume symmetry &%),
whereV = 2£) _ (Case 1) up to some additive constant

ox _
X=y

3y Forz > 0,y > 0,a < b, z = x/y, we have

2% —1 2b—1 2t—1 . de ( ) Z QWk Z (51(;21 + nglk) gl
ij

< , becauseh(t) = —— Is mono-
toniically increasing for: > 0. (Case 2) up to some additive constant
4) ForA e R*™, x e R, y € R} —

Wi Wi

SSh+ S50, ) WaWWu Ly

XTA_X < Z CCE ( y) de ( ) — % ( ijkl + Jilk EWjin WZkWﬂ

= L 2 i J
¢ (Case 2a)

Ti = YiUs-

This upper-bound has been proven in [2], [10] by wntmgﬁ: ( ) < Zwik Z ( Z(jdlzl i S;;zl)k) W, + constant
5) ForA € RT™, x € R7, y € R " 4

Wit Wi Yt

For convex monomials, witl;;x; = WYW™),

1 T;x;
_xT < __ - Nagiass G}
X AX < —5 E (Aij + Aji)yiy; (1 + log yiyj> N W WY
ij ' g wq (Xz'j> E Cijkl - Wd o
iJ 7 v
This upper-bound is due to the inequality- log z < z ! ]kl
for z > 0 and was first used in [47]. = E :dekajz ( @ 4 S§;'il)k) 7
- .
Remarks: gk

« For notational brevity we only write the upper-bounds imvhere Vy;;, = W{,jW},j” and Vg, = Wi.
the vectorial form. The same bounds also hold for th&ase 3)

matrix case. ~ V2 (d) (d)
. y _ “dik ;
. XAII tr;e above upper-bounds are tight whete= y or ;wd(X”) < z}; SV Ejl (S,L.jkl + Sjilk) Vit

« The third upper-bound is new and unseen in the previogsase 4) Up to some additive constant,
literature for NMF proofs. Notice that it includes the
inequality 1 +log z < z for z > 0 as its a special casezwd (;}ij) < L Z (S(dli
by writing the logarithm into the limit form Eq. (4). T2 N

Vair Vaji

5@ ) ViVt | .
1+ 55 ) VairVaji anikajl
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(Case 4a) Up to some additive constant, Setting the above derivative to zero leads to
d g B=1pr
e (%) £ 5w T (60 50) Vo o S OV iy
Y Y, (WH),, Hy
APPENDIXD which is identical to the update rule derived in [4].
EXAMPLE DERIVATIONS OF MULTIPLICATIVE ALGORITHMS 3) Whenﬂ < 0,8 # -1, D( ) is concave with respect to

Here we present the concrete derivations of the rules afd; while D} is convex. Therefore the auxiliary function is
auxiliary functions for five selected approximation objees, —
three for NMF and two for PNMF. Note that the main purpos = Wi 1
of the derivations here is not to generate new algorith Wi Z(WH) s = 5@-1 BZX” WH) “Hyy
Instead, they respectively demonstrate the following aspe * .
of the principle proposed in Sections IlI-V: (1) the use ofvhose derivative with respect Wik is
concavity or convexity of individual monomials, (2) how N
to handle objectives that comprise logarithm, (3) merging WH.. H.. — Wi X, (WH)! 5 Ly,
individual upper-bounds, (4) quadratic factorizationd &) Z( Vi H Wik Z i ( k3
non-separable objectives.

b

J

Setting the above derivative to zero leads to

A. NMF based ors-divergence S, X (WH) ' Hy 5
. new _ 1. jw kj
A similar procedure can be found in [26], [20]. Denote ik ik 5, (WH) I :
D) = ;X0 and DY = —1X,; X7, There are three ~

cases: (1) Whers > 1, D( )'is convex with respect t&;; B. NMF based on dual I-divergence

while D ) is concave. Therefore the auxiliary function is The monomials are convex and linear respectively. There-
fore the auxiliary function according to Egs. (7) and (9) is

whtt g
2 | T 2 (WH); iy R
i ik i Jim zk: Wi W X¢ (WH)S, Hy,
J
~Wir > Xi; (WH)J ™" Hy; | + constant -
7 —(1+€)Wix »_ Hy; | + constant
whose derivative with respect Wik is ! N
B whose derivative with respect 10,
Wik)
(WH) Hy,j — > Xij (WH) ™ Hy. =\ €
Wik Z . 1 Wik e ‘ .
i - . lim = |(1+¢) W ZZU Hy;— (1+ e)ngj

Setting the above derivative to zero leads to
g1 with ZJ = X;;/(WH),,. Because the derivative has the
new _ 7. (Zj Xij (WH) ij) . form , we apply L’Hopltal s rule to obtain the limit (calculate

=

ik

>, (WH) Hy; denvatrves of both numerator and denominator we).t
e ©)
(2) When0 < 3 < 1, both D;; andD are convex with lim Wi Z 7= Hy,
respect toX” Therefore the auxrlrary functlon is e—0t Wik ; J
Wi“ 1 8 Wi ‘ Wik -
ik ’ Hp. 1 1 Z - “Hy;j
%: vvqi 1_’_5 zj: (WH)U HkJ +( + 6) Wik n Wik ; i kj
Wﬁ; 1 B-1 — Wik —€ .. R .
— wa 3 Z Xij WH) Hyj| + constant (1+e) Wi ZJ: Z;;"InZ;; Hy; zj: Hy;
whose derlvafve V\;Ith respect ;. is =1In (WZJ ;ij - Zln Z;jHy;j.
Wi . _— :
(Wi) Z (WH) Hy; Setting the above derivative to zero, we obtain the updaée ru
J

InZ;:Hy:
new _ 7. exp (M) ,

Zj Hy;

() s,
o which is identical to the one proven in [5].
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C. NMF based on Log-Quad cost

The monomials are convex,
respectively. Therefore the auxiliary function before giieg
terms is

12

E. PNMF based on Kullback-Leibler divergence

linear, linear, and convex, The first term is separable, while the second term is non-
separable and concave with respecbip; X;;. Therefore the
upper-bounding separable function is

e—1
. 1 —eTr7€ € . 1 e v v

E£I£1+ E Z —Wilk, A Z Zl'j (WH)U ij 51—1)%1+ E Z _Xinij +€ ZXa’b Xq;j + constant
ik j ij a

+2WikZij Regardless the constant, the two term of the separable

ik J upper-bounding function belong to Cases 4 and 1. Therefore

N the auxiliary function is

—2) Wy (XHT), Z Wi (WHH"), + constant

W;
ik ik ik

and after merging it becomes

> i [ 2 (),

i 2Wi ’

— lim lz Wi ZZ (WH);. Hy; + 2¢ (XHT)
e0+ € — Wlekf ij 17 J

up to some additive constant. The derivative of the above
auxiliary function with respect toV;;, is

W, (1]
2N Hy +2(WHHT)
J
W 3]
- =53 z;H + 2 (XHT),
Wi |5 4]

Setting the above derivative to zero leads to the multifitiea [5]

update rule
(6]

(ZHT + 2XHT)Z.]c
Zj Hyj +2 (WHHT)ik

new
ik

= Wik Ul

8

D. PNMF based on Euclidean distance 8

The first monomial belongs to Case 2a and the second féﬁ
Case 3. Therefore the auxiliary function is

=" Wik (2XXTW), [10]

ik

/V‘[;él T T T T
+%: ! (WWTXX"W + XX"WW'W) [11]

up to some additive constant. Setting its derivative to zefrp)
leads to the multiplicative update rule

1/3 [13]

2 (XXTW)
(WWTXXTW + XXTWWTW), |

new
ik

= Wik
[14]
which resembles the one given in [30], [32] except the cubic
root. Notice that the old rule itself does not necessarilys]
minimize the objective and must be accompanied with an eﬁ’r%]
normalization [30] or stabilization step [32] while the ne
update rule can guarantee monotonic decrease.

+ (X wWwx),,

1 — —
=5 2 BaiWar Wik In War Wi

aik

-1 =

Z

CiaW, constant
> 2Wk Z K+ n

whereB = XX” andC = BWWT + WWTB. Setting its
derivative to zero leads to the update rule

new

ik = Wik

(BW),,
(CW)Zk %b: (WH)ab
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TABLE IV
EXAMPLE APPROXIMATION OBJECTIVES AND THEIR GENERALIZED POYNOMIAL FORM

name definition generalized polynomial form (+constant)
= —\Z =
Euclidean Deu(X|IX) = X, (Xij - Xij) > (—2Xijxij + XQJ)
distance
. S 1
I-divergence Di(X[[X) = >, ( ij ; j) Elg(lﬁ - %: ( XUX +eX; )
. . 1 . -
Dual DIX|X) =X, (X” 3 - X, X”) lim ~ Y (Xi;fX}fﬁ — (14 Xij)
l-divergence 0T e
. o 1 . .
ltakura-Saito Ds(X|[X) = ¥, ( In ( ) 1) lim =" (—ijXiT + eX,»jXZ.;l)
divergence 0 e
a-divergence Da(X[[X) = ot > (aXij +(1-a)Xi; — X%ng*a) > (—7,1(117&))(%)(;“ +1X, )
ij
. X2 _x8  xft_ XA+ .
: _ g i _ i i A+l _ X8
p-divergence Dp(X[[X) = %: (ij 3 B+1 2 (1+ﬁX XlJXij)
~ ~ ~ 1 ~ .
Log-Quad cost Dio(X||X) = Deu(X|[X) + Di(X||X) lim =3 ( Xy X6 + eXij — 26X Xy + eX,?j)
e—0T € “—
ij
aB-Bregman Dyas(X[[X) = Z B(Xij) — 0(Xij) — ¢ (Xij)(Xi; — Xij), > [(04 - X5 - (B-1X]
divergence ij
where¢(z) = 2 —zﬂ a>1,and0< <1 —aX; X0 4 X X0 1]
Kullback-Leibler Dy (X[|X) = ZX ln Xij , where} ;. X;; =1 lim ! fZX-,-)A(? + Z)?
) ij Z X ij 0+ € - 13<*1g - 19
divergence Xij ab “*ab B i
(> X1 S XX
- < 1 1+ S1+ N (Z ) ( i
-divergence D, (X||X)= —— |1 X; 1 X, lim ~ -
~-diverg L (X]1X) T | 2; 7+ Zj i lim = Ty S

Rényi divergence

D,(X|[X) =

e}

~ 1—p
1 Xii P Xii 1 =
In L > L/ , lim — + Xii
-1 Z(ZX (szab 0 T 2%

wherep > 0
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MULTIPLICATIVE UPDATE RULES FORNMF OBJECTIVES INTABLE IV OF THE PAPER USING THE PROPOSED PRINCIPLB/HERE Zij = Xij/ (WH)”

TABLE V

objective update rule foWW
Euclidean dist Whew — W, (XHT)M
. (z17),
I-divergence WY = Wi S
dual I-divergence WhHeW = Wy, exp (%)

Itakura-Saito divergence

a-divergence

SB-divergence

Log-Quad cost

af-Bregman divergence
Kullback-Leibler divergence
~-divergence

Rényi divergence

Whew — W, > erj(WI‘f)lszHm
ik ZJ'(WH)U ij

1
ZOHL \ &
Wik (Lﬁ:j ”;{kj“> for a # 0

r}cew
Wi exp (%HJ:I’“) for a — 0
1 ., 1/8 for > 1
8oy, !
kj

1/(1—=p) forB <0

- [

new (ZHT 1 2XHT),,
Wit =W \/Z He, +2(WHHT)

1
a(a—1) 3, X (WH)S  H;+8(1—8) 3, Xi; (wmgmk]} oAt

new __ :
Wi _W”"[ ala—1) 5, (WH)S, Hig +5(1-8) 5, (WH), ' Hy,

ZHT)
Wik = Wik( H?j-k > (WH),,
new __ ¥, X (WH) HHyy, 3 (WH)YH K [ 1/Q+~) fory>0
Wi = [ SWHTL ey S X (Wi, | WNETEN =910 ) for 4 < 0

new S ZLH 3. (WH),, } n [ 1/r forr>1
Wi = [ ij S X, (WH)L ] wherern = 1 foro<r<1
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