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Linear and Nonlinear Projective Nonnegative Matrix
Factorization

Zhirong Yang,Member, IEEE,and Erkki Oja,Fellow, IEEE

Abstract—A variant of nonnegative matrix factorization
(NMF) which was proposed earlier is analyzed here. It is called
Projective Nonnegative Matrix Factorization (PNMF). The new
method approximately factorizes a projection matrix, minimizing
the reconstruction error, into a positive low-rank matrix and its
transpose. The dissimilarity between the original data matrix and
its approximation can be measured by the Frobenius matrix norm
or the modified Kullback-Leibler divergence. Both measures are
minimized by multiplicative update rules, whose convergence is
proven for the first time. Enforcing orthonormality to the basic
objective is shown to lead to an even more efficient update
rule, which is also readily extended to nonlinear cases. The
formulation of the PNMF objective is shown to be connected
to a variety of existing nonnegative matrix factorization methods
and clustering approaches. In addition, the derivation using La-
grangian multipliers reveals the relation between reconstruction
and sparseness. For kernel principal component analysis with
the binary constraint, useful in graph partitioning problems,
the nonlinear kernel PNMF provides a good approximation
which outperforms an existing discretization approach. Empirical
study on three real-world databases shows that PNMF can
achieve the best or close to the best in clustering. The proposed
algorithm runs more efficiently than the compared nonnegative
matrix factorization methods, especially for high-dimensional
data. Moreover, contrary to the basic NMF, the trained projection
matrix can be readily used for newly coming samples and
demonstrates good generalization.

I. I NTRODUCTION

Nonnegative matrix factorization(NMF) has become an
active research field, with much progress recently both in
theory and in practice. The method has been successfully used
as a tool in many applications such as signal processing, data
mining, pattern recognition and gene expression studies [1],
[2], [3], [4], [5], [6]. For an overview, see [7].

Much of this attention stems from the work by Lee and
Seung [8]. Their NMF method was shown to be able to
generate sparse representations of data. Later a multitudeof
variants have been proposed to improve NMF. A notable
stream of efforts attaches various regularization terms tothe
original NMF objective to enforce higher sparseness [3], [4],
[5], [9]. These methods introduce an additional parameter
that balances the sparseness and reconstruction. However,the
selection of the parameter value usually relies on exhaustive
methods, which hinders their application. Recently it has
been shown that the orthogonality constraint on the factorized
matrices can significantly enhance the sparseness [10], [11].
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Another remarkable finding [12], [13] connects the non-
negative matrix factorization to the classical K-means clus-
tering objective. This in turn associates NMF with Principal
Component Analysis (PCA) for effectively finding the K-
means clusters [14]. The nonnegativity constraint that provides
sparseness can lead to better approximations of the cluster
indicators than direct optimization in the discrete space.

In [15], Yuan and Oja introduced a variant calledProjective
Nonnegative Matrix Factorization(PNMF), which approxi-
mates a data matrix by its nonnegative subspace projection.
Compared with NMF, the PNMF algorithm involves con-
siderably fewer parameters but is able to generate a much
sparser factorized matrix, which is desired for both feature
extraction and clustering. Its relations to sparseness andto
K-means clustering have been analyzed in [16], [17], with
some applications in facial image feature extraction and text
document clustering. Although the success of PNMF has been
empirically demonstrated, its theoretical convergence analysis
has been lacking so far.

A key in the learning algorithms for variants of NMF is a
multiplicative update rule that is able to maintain positivity.
For PNMF, it was shown in [16], [11] that a nonnegative
multiplicative version of a PCA learning rule (“Oja rule”)
suggested earlier in [18] can be used for computing the PNMF.

Recently, a similar idea as PNMF, based on the Frobenius
norm, was discussed in [19] as a particular case of their
Convex Nonnegative Matrix Factorization. The authors called
it the Cluster-NMF due to its closeness to the K-means
clustering, which was also noted in [17].

After a brief review of PNMF in Section II, we extend and
complete the above preliminary efforts with the following new
contributions:

1) Formal convergence analysis of the original PNMF
algorithms is given in Sections II-B and II-C. We
decouple the auto-association of the factorizing matrix
by using the Lagrangian technique and prove that the
resultant regularized learning objective is monotonically
decreasing at each iteration. We provide the proof for
the PNMF based on the Frobenius norm (Section II-B)
as well as for the divergence-based algorithm (Section
II-C).

2) Orthonormal PNMF (OPNMF) is introduced in Section
II-D. An additional orthonormality constraint is imposed
on the weight matrix and the Lagrangian technique is
used to derive the corresponding learning rule, where
the monotonicity of the regularized objective at each
iteration is proven. The Lagrangian solution finds jointly
a PNMF approximation and steers the factorizing matrix
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towards the Stiefel manifold of orthogonal matrices.
The learning rule turns out to be a simplified version
of the PNMF learning rule and reveals the underlying
reason that leads to high sparseness by using PNMF. It
is related to the nonnegative multiplicative version of a
PCA learning rule (“Oja rule”) [11].

3) Nonlinear extension of PNMF in Section II-E. We notice
that the multiplicative update rule for PNMF based
on the Frobenius norm relies only on inner products
between data vectors. This enables us to apply PNMF
for any nonnegative kernel Principal Component Anal-
ysis, which in turn suggests many new applications of
nonlinear PNMF such as graph partitioning.

4) Comparison of PNMF with two recent NMF variants in
Sections III and IV. In addition to the classical NMF and
K-means algorithms, we also compare PNMF with two
more recent algorithms, theOrthogonal Nonnegative
Matrix Factorization[10] andConvex Nonnegative Ma-
trix Factorization [19]. Some theoretical considerations
are given in Section III, and in Section IV, empirical
results on three real-world datasets show that PNMF
can achieve the best or close to the best in clustering.
Furthermore, PNMF is more advantageous in terms of
high sparseness and fast training for high-dimensional
data.

5) A new application of PNMF for recovering the pro-
jection matrix in a nonnegative mixture model. Our
experimental results show that PNMF can achieve small
recovery errors for various source distributions.

6) Comparison of PNMF with the approach of discretiz-
ing eigenvectors in Section IV-C. PNMF is the only
nonnegative matrix factorization method that can handle
the nonnegative principal component analysis among the
selected algorithms. In terms of small reconstruction
error, PNMF also defeats a two-step approach that
first applies eigendecomposition and then discretizes the
eigenvectors [20].

7) Theoretical justification of moving a term in the generic
multiplicative update rule. Some auxiliary mathematical
results are given in the Appendix. Especially, in mathe-
matical convergence analysis of a multiplicative update
rule, one often needs to move a term from the numerator
to the denominator or vice versa in order to maintain
the nonnegativity. We present a common technique with
theoretical justification of such moving by introducing
an additional tight upper bounding term in the auxiliary
function.

II. PROJECTIVENONNEGATIVE MATRIX FACTORIZATION

Given a nonnegative input matrixX ∈ R
m×n
+ , whose

columns are typicallym-dimensional data vectors, one tries
to find a nonnegative projection matrixP ∈ R

m×m
+ of rank r

such that (see Table 1 for notations)

X ≈ X̂ ≡ PX (1)

In particular, Projective Nonnegative Matrix Factorization
(PNMF) calculates the factorizationP = WWT with W ∈

R
m×r
+ . Compared with the Non-negative Matrix Factorization

(NMF) [8] where X ≈ WH, PNMF replaces the second
factorizing matrixH with WT X. This brings PNMF close to
non-negative Principal Component Analysis. A trivial solution
W = I appears whenr = m, which will produce zero error
but is practically useless. Useful PNMF results usually appear
whenr ≪ m for real-world applications.

The term “projective” refers to the fact thatWWT would
indeed be a projection matrix ifW were an orthogonal matrix:
WT W = I. It turns out that in PNMF learning,W becomes
approximately, although not exactly, orthogonal. As will be
seen, this has positive consequences in sparseness of the ap-
proximation, orthogonality of the factorizing matrix, decreased
computational complexity in learning, close equivalence to
clustering, generalization of the approximation to new data
without heavy re-computations, and easy extension to a non-
linear kernel method with wide applications for optimization
problems.

TABLE I
SOME FREQUENTLY USED NOTATIONS.

m, n, r data dimensionality, sample size, reduced rank of matrix
R

m×r
+

space of non-negativem × r matrices
X data matrix of sizem × n

X̂ approximated data matrix of sizem × n

Z Zij = Xij/X̂ij

W factorizing matrix of sizem × r
H factorizing matrix of sizer × n
U,V factorizing matrices of sizen × r
Ū binary matrix of sizen × r
K kernel matrix or a similarity matrix between samples, size

n × n
Λ Lagrangian multiplier matrix of sizer × r
Ψ Lagrangian multiplier matrix of sizer × n
i, a, b 1, . . . , m
j, s, t 1, . . . , n
k, l 1, . . . , r

There exist two popularly used approaches that quantify the
approximation error (1). One is based on the Frobenius norm
of the matrix difference and the other employs a modified
Kullback-Leibler divergence. In this formulation, PNMF was
first introduced in [15]. In this section, these two error criteria
are recapitulated and new convergence justifications are given.

A. Iterative Lagrangian solution

Before presenting the PNMF algorithms, it should be em-
phasized that nonnegative learning is essentially a constrained
optimization problem. More constraints can be considered in
addition to nonnegativity, for example, the orthonormality and
the replacementH = WT X. Here we employ a common
procedure to derive the iterative solutions using the Lagrangian
technique, which is the best known method to handle the
constraints.

Given the unconstrained objectiveJ (W) to be minimized
together with a set of equality constraints{Fp(W) = 0}, the
generalized objective can be formulated by introducing the
Lagrangian multipliers{λp}:

J̃ (W, {λp}) = J (W) +
∑

p

λpFp(W).
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For nonnegative optimization, we construct the auxiliary func-
tion G(W,W′) for J̃ (W, {λp}) as described in Appendix
B by using one or more bounds in Appendices C and D. An
update rule that includes the Lagrangian multipliers

W′ = π̃ (W, {λp}) (2)

can then be obtained by setting∂G(W,W′)/∂W′ = 0.
Finally, the quantities{λp} are solved by using the Karush-
Kuhn-Tucker (K.K.T.) conditions and substituted into (2).

The resulting update rule

W′ = π (W) (3)

is called aniterative Lagrangian solutionfor the constrained
optimization problem. The definition of auxiliary function
guarantees that̃J (W, {λp}) is monotonically decreasing if
one repeatedly applies (3). The iterations will converge toa
local minimum if there is a lower bound of̃J (W, {λp}). Fur-
thermore, the multiplicative nature of the update rule assures
the parameters remain nonnegative during the optimization.

Notice that the iterative Lagrangian solution does not nec-
essarily remain in the manifold specified by{Fp(W) = 0}.
Instead, it can jointly minimizeJ (W) and force W to
approach the constraint manifold. ActuallyW never exists
in the manifold for some constraints. For example, the or-
thonormality requires many entries of a nonnegative matrix
become exactly zero. IfW is initialized in such a manifold,
the convergence would be very poor because the multiplicative
update rule cannot recover a zero entry to be positive.

B. PNMF based on the Frobenius norm (Euclidean PNMF)

The Frobenius norm measures the Euclidean distance be-
tween two (vectorized) matrices:

‖A − B‖F =

√

∑

ij

(Aij − Bij)
2

Equipped with such a metric, PNMF looks for a solution of
the optimization problem

minimize
W≥0

JF (W) =
1

2
‖X − WWT X‖2

F . (4)

A nonnegative update rule for this optimization can be
developed as follows [15]. First, the unconstrained derivative
of JF with respect toW is

∂JF (W)

∂Wik

= − 2
(

XXT W
)

ik
+
(

WWT XXT W
)

ik

+
(

XXT WWT W
)

ik
.

Inserting

ηik =
Wik

(WWT XXT W)ik + (XXT WWT W)ik

into the additive update rule

W ′
ik = Wik − ηik

∂JF (W)

∂Wik

,

one obtains the multiplicative update rule

W ′
ik = Wik

2
(

XXT W
)

ik

(WWT XXT W)ik + (XXT WWT W)ik

. (5)

Based on preliminary results given in the Appendix, we are
now ready to relate this update rule to an iterative Lagrangian
solution. First we rewrite the problem (4) as

minimize
W≥0,H≥0

JF (W,H) = ‖X − WH‖2
F . (6)

subject to H = WT X. (7)

Then we have
Theorem 1:The update rule (5) is an iterative Lagrangian

solution of (6)-(7).
Proof: The generalized objective is

J̃F (W,H) = ‖X − WH‖2
F + Tr

(

ΨT
(

H − WT X
)

)

(8)

by introducing Lagrangian multipliers{Ψjk}. Next, we con-
struct

GF (W,W′) ≡ Tr
(

−2XT W′H − ΨT W′T X
)

(9)

+
∑

ik

(

WHHT
)

ik
W ′2

ik

Wik

(10)

− Tr(AT W) +
∑

ik

Aik

(

W ′
ik

2
+ W 2

ik

2Wik

)

(11)

+ Tr(XT X + ΨT H) (12)

as an auxiliary function (see Appendix B) of

LF (W′) ≡J̃F (W′,H) (13)

=Tr
(

−2XT W′H − ΨT W′T X
)

+ Tr
(

W′T W′HHT
)

(14)

+ 0 (15)

+ Tr(XT X + ΨT H) (16)

Here we denoteA = 2XXT WWT W for notational brevity.
GF tightly upper boundsLF as we apply thequadratic upper
bound(10) to (14) and themoving-term upper bound (type II)
(11) to (15) according to Appendices C and E.

Setting∂GF (W,W′)/∂W ′
ik = 0, we get

W ′
ik = Wik

(

2XHT + XΨT + 2XXT WWT W
)

ik

(2WHHT + 2XXT WWT W)ik

. (17)

The Lagrangian multipliers can be determined by using the
K.K.T. conditions. According to

∂J̃F (W,H)

∂H
= −2WT X + 2WT WH + Ψ = 0,

one obtains

Ψ = 2WT X − 2WT WH,

XΨT = 2XXT W − 2XHT WT W. (18)

Substituting (7) and (18) into (17), the update rule becomes
identical to (5). �
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C. PNMF based on the Kullback-Leibler divergence (Diver-
gence PNMF)

The difference of two matrices can also be asymmetrically
measured by the modified Kullback-Leibler divergence:

D(A||B) =
∑

ij

(

Aij log
Aij

Bij

− Aij + Bij

)

.

PNMF based on such a dissimilarity measure solves the
optimization problem

minimize
W≥0

JD(W) = D(X||WWT X). (19)

The gradient

∂JD(W)

Wik

= −
∑

j

Xij(W
T X)kj/(WWT X)ij

−
∑

j

Xij

∑

a

WakXaj/(WWT X)aj

+
∑

j

(

(WT X)kj +
∑

a

WakXij

)

also implies a multiplicative update rule:

W ′
ik = Wik

(ZXT W)ik + (XZT W)ik

∑

j (WT X)kj +
(

∑

j Xij

)

(
∑

a Wak)
(20)

by putting the unsigned negative terms to the numerator
and positive terms to the denominator [15], [16], where we
introduce a new matrixZ with

Zij =
Xij

(WWT X)ij

.

for notational simplicity.

The problem (19) can be rewritten as

minimize
W≥0,H≥0

D(X||WH) (21)

subject to H = WT X. (22)

We then have

Theorem 2:The update rule (20) is an iterative Lagrangian
solution of (21)-(22).

Proof: The generalized objective is

J̃D(W,H) = D(X||WH) + Tr
(

ΨT (H − WT X)
)

, (23)

by using Lagrangian multipliers{Ψjk}.

We then construct

GD(W,W′) ≡ (24)
∑

ij

(W′HT )ij (25)

−
∑

ij

Xij

∑

k

WikHkj
∑

l WilHlj

(

log W ′
ikHkj − log

WikHkj
∑

l WilHlj

)

(26)

− Tr
(

ΨT W′T X
)

(27)

+
∑

ik

AikW ′
ik −

∑

ik

AikWik −
∑

ik

(

AikWik log
W ′

ik

Wik

)

(28)

+ Tr(ΨT H) +
∑

ij

(Xij log Xij − Xij) , (29)

as an auxiliary function of

LD(W′) ≡J̃D(W′,H) (30)

=
∑

ij

(W′H)ij (31)

−
∑

ij

Xij log (W′H)ij (32)

− Tr
(

ΨT W′T X
)

(33)

+ 0 (34)

+ Tr(ΨT H) +
∑

ij

(Xij log Xij − Xij) (35)

Here we denoteA = XZT W for notational brevity.GD

tightly upper boundsLD as we apply theJensen upper bound
to (26) to (32) and themoving-term upper bound (type I)(28)
to (34) according to Appendices C and E.

Setting∂GD(W,W′)/∂W ′
ik = 0, we get

W ′
ik = Wik

(

ZXT W
)

ik
+ Aik

∑

j Hkj − (XΨT )ik + Aik

. (36)

Again, the Lagrangian multipliers can be obtained by using
the K.K.T conditions. According to

∂J̃D(W,H)

∂Hjk

= −(WT Z)jk +
∑

i

Wik + Ψjk = 0,

one obtains

Ψjk = (WT Z)jk −
∑

i

Wik

(

XΨT
)

ik
=
(

XZT W
)

ik
−





∑

j

Xij





(

∑

i

Wik

)

. (37)

Substituting (22) and (37) into (36), the update rule becomes
identical to (20). �

D. Orthonormality

Orthonormality is usually desired for a projection. First,
an orthonormal matrix forms a basis of a subspace, which
facilitates geometric interpretation and signal reconstruction.
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Second, two nonnegative vectors are orthogonal if and only if
their non-zero dimensions do not overlap. For some problems
such as clustering, this property is especially useful for ap-
proximating discrete solutions. PNMF with the orthonormality
constraint is calledOrthonormal Projective Nonnegative Ma-
trix Factorization(OPNMF) to be distinguished from the ones
described in Sections II-B and II-C.

Surprisingly, the enforced orthonormality constraint leads to
an even simpler Lagrangian solution for PNMF based on the
Frobenius norm. Consider the optimization problem:

minimize
W≥0,H≥0

J⊥
F (W,H) = ‖X − WH‖2

F (38)

subject to H = WT X (39)

WT W = I (40)

Applying the procedure described in Section II-A, we obtain:
Theorem 3:The update rule

W ′
ik = Wik

(

XXT W
)

ik

(WWT XXT W)ik

, (41)

is an iterative Lagrangian solution of (38)-(40).
The proof can be found in Appendix F. It is interesting

that the update rule (41) drops the termXXT WWT W

compared with (5), which makes the multiplicative updates
even faster. This simplification has also been justified in
adaptive PCA learning [16], [11], as the gradient term̂∇ =
−XXT W + XXT WWT W has little effect in learning the
principal directions [21].

Some empirical results have shown that the update rule
(5) can also yield a highly orthogonal factorizing matrixW

[15], [16], [11]. This can be interpreted by our derivation
procedure in Appendix F, where the Lagrangian multipliers
Λkl equal zero in the derivation. That is, the orthonormality
constraint is ineffective during iterative updates. This finding
also reveals that the orthonormality force has already implicitly
been included in the PNMF learning, which thus explains the
performance resemblance of PNMF and OPNMF in terms of
orthogonality [11]. Note, however, that computationally the
rule (41) is simpler than (5).

For the divergence-based PNMF with orthonormality con-
straint

minimize
W≥0,H≥0

D(X||WH) (42)

subject to H = WT X, (43)

WT W = I, (44)

we can similarly derive an multiplicative update rule

W ′
ik = Wik

Bik +
(

WWT C
)

ik

Cik + (WWT B)ik

, (45)

whereB = ZXT W + XZT W andCik =
∑

j

(

WT X
)

kj
+

∑

j Xij

∑

a Wak for notational brevity.
Theorem 4:The update rule (45) is an iterative Lagrangian

solution of (42)-(44).
The proof can be found in Appendix G. Similar to the
Euclidean case, previous empirical studies have shown that
the Divergence PNMF update rule (20) can already yield a

highly orthogonal factorizing matrixW [15], [16]. This can
be explained again by investigating the valuesΛkl in (90)
which indicates how effective the orthonormality constraint
is. Notice the matrixZ actually is the ratio of the data entries
over their approximates. Thus allZij should be close to one
if the approximation is good. In this case one can find thatΛ

approaches the zero matrix in (90). That is, a good approx-
imation leads to an inactive orthonormality constraint. This
finding indicates that the explicit orthonormality constraint is
not necessary, if there exists a good initialization that provides
a fairly good approximation, such as the K-means cluster
indicators added by a small constant that are used in [10],
[19]. In this case, the update rule (20) is more advantageous
as it requires less computation. On the other hand, random
initialization that results in a poor approximation probably
leads to effective orthonormality constraints. The updaterules
(45) and (20) may then behave very differently.

E. Nonnegative Kernel PCA

The optimization problem (38)-(40) is equivalent to the
classicalPrincipal Component Analysiswith the additional
nonnegativity constraint. Furthermore, the multiplicative up-
date rule (41) requires onlyXXT instead of the original data
matrix. Thus one can easily extend the iterative Lagrangian
solution to nonlinear cases by using the kernel technique.

Denote Φ = [φ(x1) φ(x2) . . . φ(xn)]
T , where xi are

the data vectors and they are implicitly mapped into another
vector spaceS by a functionφ. The PNMF objective based
on Frobenius norm with orthonormality constraint inS can
now be formulated as

minimize
U≥0

JK(U) = ‖Φ − UUT Φ‖2
F (46)

subject to UT U = I. (47)

Define the kernel matrix K = ΦΦT with Kst =
φ(xs)

T φ(xt). Suppose allKst ≥ 0. The optimization prob-
lem (46)-(47) leads to the multiplicative update rule

U ′
jk = Ujk

(KU)jk

(UUT KU)jk

. (48)

In addition to the nonlinearity extension, the update rule
(48) is particularly suitable for applications where the input
is given in the form of pairwise relationship and the original
data vectors are not available. For example, one may perform
nonnegativeNormalized Cut[22] to find multiple partitions
in an undirected graph which is represented by a nonnegative
affinity matrix.

F. Projective Semi-Nonnegative Matrix Factorization

In the above we assume that the data matrix or the
kernel matrix contains no negative elements. Otherwise the
multiplicative update rules using the principle describedin
Section A cannot guarantee that the updated parameters remain
nonnegative. The nonnegativity restriction can be removed
by decomposing a matrix into its positive and negative parts
and employing thelinear lower boundand/orquadratic lower
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bound in Section D and slightly modifying the multiplicative
update rule.

Let us take the Semi-Nonnegative Kernel PCA (Semi-
NKPCA) for example. The modifications of other algorithms
can be obtained similarly. Consider now the matrixK has
both positive and negative entries. One can always separate
the positive and negative parts ofK by calculating

K+
st = (|Kst| + Kst) /2

K−
st = (|Kst| − Kst) /2.

In this wayK = K+ − K− and the entries of bothK+ and
K− are all nonnegative.

We next rewrite the PNMF optimization problem as

minimize
U≥0

J±
K (U,V) = ‖Φ − UVT Φ‖2

F , (49)

subject to V = U, (50)

UT U = I, (51)

and obtain its iterative Lagrangian solution

U ′
jk = Ujk

(

K+U + UUT K−U
)

jk

(K−U + UUT K+U)jk

by using the derivation procedure in Section II-A (see Ap-
pendix H).

G. Stabilization

The Lagrangian solution of PNMF iteratively performs one
of the multiplicative update rules presented in Section II-B-
II-E. However, we find the convergence path is often very
zigzag in practice and some numerical computation problems
may occur after several iterations if the factorizing matrix W

does not have a proper magnitude.
Theoretically, let us look at the update rule (41) for example.

If the (Frobenius or Euclidean) matrix norm of the currentW

is very large, then the norm will become very small in the next
iteration because the norm is cubically powered in the denom-
inator. On the other hand, if the current norm is very small,
it will become very large in the next iteration. Consequently,
the norm ofW will change drastically between odd and even
iterations. A similar problem happens for other method such
as theOrthogonal Nonnegative Matrix Factorization(ONMF)
[10].

We propose to overcome this problem by introducing one
more parameterρ. For PNMF based on the Frobenius norm,
the modified objective becomes

minimize
W≥0

ĴF (W, ρ) = ‖X − ρWWT X‖2
F . (52)

Fixing W, the global optimalρ∗ can be solved by setting
∂ĴF (W, ρ)/∂ρ = 0:

ρ∗ =
Tr
(

WT XXT W
)

Tr (WWT XXT WWT )
.

Similarly, we can modify the divergence-based PNMF as

minimize
W≥0

ĴD(W, ̺) = D(X||̺WWT X), (53)

with the optimal

̺∗ =

∑

ij Xij
∑

ij (WWT X)ij

.

Next, fixingρ or ̺, the optimalW given its current estimate
can be found by puttingρ∗ or ̺∗ in the denominator of (5),
(41), (20) or (45). Or equivalently, one can apply the original
multiplicative update rule and then calculate

W new
ik = W ′

ik

√

Tr (W′T XXT W′)

Tr (W′W′T XXT W′W′T )
(54)

or

W new
ik = W ′

ik

√

∑

ij Xij
∑

ij (WWT X)ij

(55)

as the new estimate.
If WWT X well approximatesX, bothρ∗ and̺∗ approach

one and the modified objective is equivalent to the original one.
Thusρ or ̺ serves as an intermediate variable that stabilizes
and speeds up the algorithm especially in early iterations.

The stabilization (54) requires extraO(m2r) computations
at each iteration ifXXT is precomputed. It can be empirically
shown that the simple normalization

Wnew =
W′

‖W′‖2

can achieve similar stabilization effect [15], [16], where
‖W′‖2 equals the square root of maximal eigenvalue of
W′T W′. The normalization approach requires onlyO(mr2)
extra computation. Yet, whether the above normalization
would affect the monotonicity of the Lagrangian iterations
remains theoretically unknown. For the divergence case, the
stabilization (55) requiresO(mr) computing cost if

∑

ij Xij

and x̄i =
∑

j Xij are precomputed.

H. On the optimization of original objective functions

The underlying principle for deriving an iterative La-
grangian solution is relaxed constraint optimization. Here
relaxation means the allowance of small violation of the
involved constraints and leads to a finite regularized learning
objective by using Lagrangian multipliers. This in turn gives
sound interpretation of two forces, one for optimizing the
original objective and the other for steering the estimate to
approach the constraint manifold. In this sense, it is critical
to optimize the regularized objective instead of the original
objective.

For readers who still have concern on the monotonic de-
crease in original PNMF (not OPNMF) objective, we provide
an alternative theoretical justification by means of approxi-
mated upper-bound minimization. Take the PNMF based on
the Frobenius norm (4) for example. We linearize the objective
functionJF (W′) = 1

2
‖X−W′W′T X‖2

F by its its first-order
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Taylor expansion atW:

ĴF (W′) ≈

1

2
Tr
(

XT X
)

(56)

− Tr
(

W′T XXT W
)

(57)

+
1

2
Tr
(

W′T
(

WWT XXT W + XXT WWT W
)

)

. (58)

Next, we apply thelinear lower boundto the second line (57)
and construct its auxiliary function

ĜF (W′,W) =

1

2
Tr
(

XT X
)

−
∑

ik

(

XXT W
)

ik
W ′

ik

(

1 + log
W ′

ik

Wik

)

+ Tr
(

W′T
(

WWT XXT W + XXT WWT W
)

)

.

Setting∂ĜF (W′,W)/∂W ′ = 0, we also obtain the PNMF
multiplicative update rule (5). Therefore, the approximated
PNMF objective function is non-increasing under the PNMF
multiplicative updates. BecauseJ (W′) is a quartic function,
the above linearization (56)-(58) is good only ifW is kept
small, which also necessitates the stabilization described in
Section II-G.

III. C ONNECTIONS TO RELATED WORK

Table II summarizes four variants of nonnegative matrix
factorization based on the Frobenius norm. Compared with
the Nonnegative Matrix Factorization(NMF) approximation
[8], [23], PNMF replacesH with WT X in the objective.
It has been shown that such a replacement leads to much
higher sparseness which is desired for extracting part-based
representations [15], [16], [11]. NMF is known to be sensitive
to the starting values ofW andH and heuristic initialization is
therefore required [24]. By contrast, the sparseness can always
be achieved by using PNMF even with different random seeds
[16], [17].

The projective replacement has also been proposed in the
Convex Nonnegative Matrix Factorization(CNMF) [19]. By
using a different matrix for reconstruction, CNMF is able to
achieve better approximation accuracy for training data. It may
however poorly generalize to the testing data because thereare
twice as many parameters to be learned.

The orthonormality constraint proposed in Section II-D
is another approach to increase sparseness and reduce the
number of local minima. This idea has also been adopted
by theOrthogonal Nonnegative Matrix Factorization(ONMF)
[10], where the objective of NMF is accompanied with the
orthonormality constraint onW or H.

Compared with NMF and ONMF, the CNMF or PNMF
optimization requires only the correlation or kernel matrix
instead of the original data vectors, which is advantageousfor
nonlinear extensions. This property also enables fast training
when the dimensionality is much higher than the number of
samples. For feature extraction, CNMF or PNMF can output a

projection matrix which can be used to transform the unseen
data while NMF and ONMF cannot.

It is well-known that K-means clustering is tightly related
to nonnegative matrix factorizations [12]. Assume we want
to cluster a set ofm-dimensional vectorsx1, . . . ,xn into r
clustersC1, . . . , Cr. The classical K-means clustering usesr
cluster centroidsm1, . . . ,mr to characterize the clusters. The
objective function is

JK-means=

r
∑

k=1

∑

j∈Ck

‖xj − mk‖
2.

As shown in[12], [13], this can be written as

JK-means= Tr
(

XT X
)

− Tr
(

ŪT XT XŪ
)

(59)

with X = [x1 x2 . . . xn] the data matrix, and̄U the indicator
matrix for the clusters:̄Ujk = 1 if vector xj belongs to cluster
Ck , zero otherwise. Thus̄U is a binary (n×r) matrix, whose
columns are orthogonal if each sample belongs to one and
only one cluster. MinimizingJK-means under the binary and
orthogonality constraints on̄U is equivalent to maximizing
Tr
(

ŪT XT XŪ
)

under these constraints.
The PNMF has a direct relation to this. Consider the PNMF

criterion for the transposed data matrixXT :

‖XT − UUT XT ‖2 =

Tr
(

XT X
)

− 2Tr
(

UT XT XU
)

+ Tr
(

UUT XT XUUT
)

Together with the orthonormality constraintUT U = I, the last
term becomes Tr

(

UT XT XU
)

and the whole PNMF criterion
becomes exactly equal to the K-means criterionJK-means in
(59), except for the binary constraint.

PNMF solves thePrincipal Component Analysis(PCA)
problem with the nonnegativity constraint. It correspondsto
the nonnegative version of rule (68) in Appendix A that
implements the PCA algorithm [18]. Given the inputX and
the outputY = WT X one can form the non-normalized
Hebbian update directionXYT = XXT W, to which the
rule (68) attaches the regularized term−WWT XXT W that
comes from the normalization. Using this technique, Yang and
Laaksonen obtained theNonnegative Linear Hebbian Network
(NLHN) algorithm that iteratively applies the update rule (41)
[11]. However, the derivation in [11] is mainly inspired by
the biological neural networks and lack of mathematical inter-
pretations. Here we have given formal convergence analysis
in Section II-D. Our derivation also demonstrates that the rule
(68) may be extended to learn nonnegative projections in many
other problems.

Recently it was reported that the graph partitioning problem
can be solved by using eigenvectors of a real symmetric
matrix. Two notable methods, for example, areNormalized
Cuts [22] and theModularity method [25]. These approaches
can however identify only two partitions at a time. For
simultaneous multi-partition finding, it remains difficultto
convert the eigenvectors to binary cluster indicators. Yu and
Shi have proposed a discretization algorithm called POD that
finds a binary orthonormal matrix closest to the one composed
of eigenvectors after some rotations [20]. Nevertheless, the
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TABLE II
SUMMARY OF SOME VARIANTS OF NONNEGATIVE MATRIX FACTORIZATION BASED ON THEFROBENIUS NORM.

method problem formulation sparseness data vectors generalized to new data number of
W ≥ 0,H ≥ 0,W̃ ≥ 0 required without iterations parameters

NMF min ‖X − WH‖F low yes no (m + n)r
ONMF min ‖X − WH‖F high yes no (m + n)r

WT W = I or HHT = I

CNMF min ‖X − W̃WT X‖F high no yes 2mr

PNMF min ‖X − WWT X‖F high no yes mr
(OPNMF) WT W = I

resulting matrix is not necessarily optimal in terms of the
partitioning objective.

What we propose here is to relax the binary constraint
to nonnegativity and integrate the latter into the kernel PCA
problem which is solved by multiplicative update rules. The
empirical results shown in Section IV-C indicate that our
method can outperform the POD approach.

IV. EXPERIMENTS

We have performed empirical studies of the PNMF algo-
rithms for typical problems: feature extraction/compression,
clustering, generalization for new data, and kernel clustering.
Throughout, we used three real-world datasets:

• Iris Plants Database(iris), a dataset that contains 150
instances of 4 positive-valued attributes. The samples
belong to three iris classes, Setosa, Versicolour, and
Virginica, each including 50 instances. This small-scale
dataset is selected mainly for comparison with the fol-
lowing larger-scale databases.

• Optical Recognition of Handwritten Digits(digit), a
subset containing “0”, “2”, “4” and “6” selected from
the UCI optical handwritten digit database. There are
2237 samples of 62 nonnegative integer attributes. This
dataset is used to demonstrate the algorithm behavior
when samples are much more than attributes.

• ORL Database of Faces(orl), a set of face images taken
at the AT&T laboratory at different times, varying the
lighting, facial expressions (open / closed eyes, smiling /
not smiling) and facial details (glasses / no glasses). There
are 400 gray-scale images from 40 distinct subjects and
of size92 × 112. We have used this dataset to study the
case where the dimensionality is much higher than the
number of samples.

For comparisons, four other algorithms have been chosen:
The Lloyd’s algorithm for K-means [26], NMF [8], [23],
ONMF [10], and CNMF [19]. For better comparison, we
only use Frobenius norm-based algorithms as there is no
divergence-based implementation of ONMF and CNMF.

A. Clustering

Clustering is an important application of NMF and its vari-
ants. We have adopted two measurements,purity andentropy
which are widely used in nonnegative learning literature, for
comparing clustering results. These measurements providefair
comparison because they they do not rely on assumptions of

the cluster distributions and quantify clustering performance
by using ground truth class information which is independent
of compared algorithms.

Suppose there is ground truth data that labels the samples
by one ofq classes. Purity is given by

purity =
1

n

r
∑

k=1

max
1≤l≤q

nl
k, (60)

where nl
k is the number of samples in the clusterk that

belong to original classl. A larger purity value indicates
better clustering performance. Entropy measures how classes
are distributed on various clusters. Following [10], [27],the
entropy of the entire clustering solution is computed as:

entropy= −
1

n log2 q

r
∑

k=1

q
∑

l=1

nl
k log2

nl
k

nk

, (61)

where nk =
∑

l n
l
k. Generally, a smaller entropy value

corresponds to a better clustering quality.
We setr = q and repeated each algorithm on each dataset

100 times with different random seeds for initialization. The
mean and standard deviation of the purities and entropies of
each algorithm-dataset pair are shown in Table III (a) and
(b), respectively. From these statistics, we can see that PNMF
performs the best for all datasets in terms of purity. For the
orl, K-means ranks top in terms of entropy, but we notice that
PNMF as the runner-up performs very closely to the winner.

We have also compared the sparseness of factorizing matri-
ces computed by the methods based on nonnegative matrix
factorization. Given anu × v nonnegative matrixA, its
sparseness is quantified by the fraction of number of entries
that are smaller than the mean

∑

pq Apq/uv against the total
number of entriesuv. A fraction close to one corresponds to
an asymmetric distribution of entry values, where most entries
are near zero and thus lead to high sparseness. The means and
standard deviations of resulting sparseness are shown in Table
III (c). PNMF achieves the highest sparseness for theiris and
digit datasets and is the runner-up, which is very close to best,
for the orl dataset. By contrast, NMF yields much less sparse
factorizing matrices. ONMF has the same sparseness as PNMF
for iris anddigit but lower fororl. The sparseness of CNMF
depends on data. Foriris where dimensionality is far less than
cardinality,W is sparser thanW̃. On the other hand,̃W is
sparser thanW for orl where dimensionality is much larger
than cardinality.

We have recorded the consumed time of the compared
algorithms for the clustering task with the selected datasets.
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TABLE III
CLUSTERING PERFORMANCE: (A) PURITIES, (B) ENTROPIES, AND (C) SPARSENESS. EACH ENTRY SHOWS THE MEAN±DEVIATION OF THE CLUSTERING

RESULTS WITH100 DIFFERENT RANDOM INITIALIZATIONS . BOLDFACE NUMBERS REPRESENT THE BEST MEAN IN THE CORRESPONDING ROW.

(a)

dataset K-means NMF ONMF CNMF PNMF
iris 0.83±0.10 0.78±0.05 0.85±0.03 0.81±0.04 0.97±0.01
digit 0.92±0.10 0.98±0.00 0.98±0.00 0.96±0.00 0.98±0.00
orl 0.72±0.03 0.47±0.03 0.72±0.02 0.68±0.02 0.72±0.03

(b)

dataset K-means NMF ONMF CNMF PNMF
iris 0.31±0.10 0.42±0.08 0.30±0.05 0.36±0.03 0.09±0.03
digit 0.13±0.10 0.08±0.00 0.08±0.00 0.12±0.00 0.08±0.00
orl 0.15±0.01 0.34±0.02 0.17±0.01 0.19±0.01 0.16±0.02

(c)

NMF ONMF CNMF PNMF
dataset W H W H W W̃ W

iris 0.74±0.05 0.81±0.11 0.96±0.01 0.82±0.06 0.81±0.02 0.93±0.01 0.96±0.01
digit 0.93±0.00 0.79±0.00 0.97±0.00 0.77±0.00 0.93±0.00 0.94±0.00 0.97±0.00
orl 0.65±0.00 0.67±0.00 0.96±0.00 0.51±0.00 0.98±0.00 0.91±0.00 0.97±0.00

The comparison also includes a recently proposed NMF im-
plementation based on projected gradient calledNMFPG [28],
which is available in its author’s website1. The experiment was
repeatedly performed 100 times on a computer with an Intel
Core Duo CPU, 2G DDR2 main memory and Linux Ubuntu
7.10 operating system. The resulting means in seconds are
shown in Table IV.

The NMF algorithms, especially the projected gradient
implementation, run quickly for the datasetsiris and digit of
low dimensionality. However, they become much slower for
high-dimensional data inorl. The NMFPG algorithm is even
more problematic in this case. In addition, The PNMF training
is faster than the other nonnegative matrix factorization meth-
ods for theorl dataset. The speed advantage mainly comes
from two factors. Firstly, PNMF as well as CNMF does not
rely on the original data vectors but only their correlation
matrix which can be calculated before the iterations. This
is particularly beneficial when the dimensionality of data is
high, for example, in theorl database. Secondly, PNMF has
a simpler iterative Lagrangian solution as there is only one
matrix to be learned in PNMF while the other three have
to update two matrices at each iteration. ONMF inherits the
dimensionality problem of NMF because it uses one of the
NMF update rules.

B. Projection recovery

We have tested the proposed PNMF method for recovering
a nonnegative projection matrix̂P = ĜĜT , or equivalently
its factorizing matrixĜ. Consider a quasi-projection mixture
model

X = PY = GGT Y,

where X ∈ R
m×n
+ is an observed nonnegative matrix;

Y ∈ R
m×n is some source matrix;P = GGT ; and

G = [g1, . . . ,gr] ∈ R
m×r is a nonnegative quasi-orthonormal

matrix, i.e. gT
i gj/‖gi‖‖gj‖ very small if i 6= j. The noisy

factorizing matrixG is generated from a truly orthonormal

1http://www.csie.ntu.edu.tw/˜cjlin/nmf/

matrix Ĝ by settingG = Ĝ + ǫ with a small nonnegative
noise matrixǫ.

Note now that ifG contains no noise, then the solution to

min
W≥0

‖X−WWT X‖2
F = min

W≥0

‖GGT Y−WWT GGT Y‖2
F

subject toWT W = I is given byW = GR with RRT =
I. Because bothW and G are nonnegative,R must be a
permutation matrix. As shown in Section II-D and [11], the
orthonormality constraintWT W = I approximately holds.
Thus we would expectW in the PNMF (or OPNMF) solution
to closely resemble a column-permuted version of the original
matrix G.

We generated two sets ofYs: one contains both nonnegative
and negative entries, and the other contains only nonnegative
ones. Euclidean PNMF (semi-nonnegative version) is used in
the recovery test for the first set while Divergence PNMF
for the second. For the first set ofYs, we have tried three
distributions: (1)uniform, uniform distribution in[−0.5, 0.5];
(2) gauss, zero-mean radial Gaussian of unitary variance;
(3) laplace, zero-mean radial Laplace distribution of unitary
variance. For the second set ofYs, we have also tried the
above type of distributions but shifted the range ofuniform
to [0, 1] and taken the absolute values of (2)gaussand (3)
laplace.

The matrixG was generated as follows. First we randomly
drew a nonnegative matrixΓ ∈ [0, 1]m×r by the uniform
distribution. Next, we binarizedΓ by setting the largest entry
in each row to one and the others to zero. We repeated the
above sampling until each column inΓ contains at least one
non-zero entry. Then we normalized each column ofΓ to
unitary norm. In this way we obtained the truly orthonormal
matrix Ĝ. Finally, the quasi-orthonormal matrixG is formed
by drawing a noise matrixǫ ∈ [0, 0.01]m×r by uniform
distribution and adding it tôG.

The PNMF algorithms take the mixed matrixX as input
and output a quasi-orthonormal matrixW. We next computed
its true orthonormal version̂W = [ŵ1, . . . , ŵr] by binariza-
tion and column-wise normalization. If̂W well recoversĜ,
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TABLE IV
MEAN (µ) AND STANDARD DEVIATION (σ) OF TRAINING TIME (IN SECONDS) IN FORMAT µ ± σ. BOLDFACE NUMBERS REPRESENT THE BEST MEAN IN

THE CORRESPONDING ROW

dataset NMF NMFPG ONMF CNMF PNMF
iris 0.85±0.17 0.22±0.10 1.32±0.01 1.14±0.00 1.34±0.00

digit (×102) 2.15±0.06 0.07±0.10 3.94±0.43 2.79±0.15 2.72±0.14
orl (×103) 3.21±0.02 26.52±5.16 6.16±0.01 0.24±0.00 0.23±0.00

TABLE V
MEAN (µ) AND STANDARD DEVIATION (σ) OF RECOVERY ERROR OF THE

MIXTURE MATRIX IN FORMAT µ ± σ (×10−2).

Ytype uniform gauss laplace
Euclidean PNMF 1.07±2.12 0.37±0.11 1.76±2.87
Divergence PNMF 4.33±3.36 0.46±0.04 4.21±3.39

their difference should be small after proper ordering of the
columns. That is,W̃ = [ŵl1 , . . . , ŵlr ]. The k-th permuted
column indexlk can be determined by

lk = arg max
k′

(

ĜT Ŵ
)

k′j
.

We can then measure the recovery quality by calculating the
relative error‖W̃ − Ĝ‖F /‖Ĝ‖F = ‖W̃ − Ĝ‖F /r, where
a small value indicates better projection recovery. We have
repeated the experiment for eachY type and PNMF algorithm
for 100 times with different random seeds. The statistics ofthe
results are recorded in Table V.

It can be seen that the mean relative recovery errors are
less than five percent for allY distribution types using either
algorithm. In particular, we have found that the recovery is
the best whenY is drawn from thegaussdistribution, where
Euclidean and Divergence PNMF algorithms can respectively
achieve 0.37% and 0.46% mean relative error with small
standard deviation. Remarkably, Divergence PNMF works
very robustly in this case, resulting in only 0.04% standard
deviation. By contrast, Euclidean PNMF is more stable across
different initial Y matrices, where mean errors are less than
two percent for all three tested distribution types.

C. Nonnegative Kernel Principal Component Analysis

Given ann × n symmetric matrixK, consider the trace
maximization problem

maximize
Ū

JK(Ū) = Tr(ŪT KŪ) (62)

subject to for allj,
r
∑

k=1

Ūjk = 1, Ū ∈ {0, 1}n×r (63)

Such optimization is required in many clustering or graph
partitioning algorithms such asspectral partitioning[29], [30],
Normalized Cut[22] and themodularity method [25], where
the matrixK is derived from the similarity or affinity matrix.
These algorithms mostly resort to finding eigenvectors ofK.
Nevertheless, as multi-cluster indicators each column ofŪ

has to be binary valued. It remains difficult to obtain such
indicators from the real-valued eigenvectors. One possibility
is a discretization algorithm called POD that finds a non-
negative orthonormal matrix closest to the one composed of
eigenvectors after some rotations [20]. We have employed

the POD implementation from its author’s website2, which
takes a matrix of eigenvectors as input and returns discretized
cluster indicators. The POD discretization depends on the
initial rotation matrix. We repeated such discretization 100
times and selected the one with the bestJK .

Kernel K-means(KK-means) (see e.g. [31]) is another
approach that finds local optima of (62)-(63). It extends theK-
meansmethod [26] to nonlinear cases via the kernel principle
[32]. Denoteφ a vector function that implicitly maps a sample
x to another spaceS and nk the number of samples in the
kth clusterCk. The squared Euclidean distance between the
jth sampleφj ≡ φ(xj) and thekth cluster mean is

d2
jk =

∥

∥

∥

∥

∥

φj −
1

nk

∑

t∈Ck

φt

∥

∥

∥

∥

∥

2

= φT
j φj −

2

nk

∑

t∈Ck

φT
j φt +

1

n2
k

∑

s∈Ck

∑

t∈Ck

φT
s φt

= Kjj −
2

nk

∑

t∈Ck

Kjt +
1

n2
k

∑

s∈Ck

∑

t∈Ck

Kst,

whereKst = φT
s φt. The KK-means algorithm thus iteratively

groups the samples to their nearest cluster by the above
distance measurement. The cluster means need no explicit
computation as they are not required in cluster indication.
The matrix Ū is then obtained by settinḡUjk = 1 if the
jth sample belongs to thekth cluster and0 otherwise. The
KK-means result also depends on the initial setting of cluster
indicators. We used 100 different initial guesses by uniform
random sampling and took the one that achieves the largest
objective.

Among the five compared nonnegative matrix factorization
algorithms, only PNMF can handle the nonnegative kernel
principal component analysis. Following [10], [19], we took
the best resulting matrix from POD and KK-means and added
0.2 to it as the initialized matrix of PNMF. After PNMF
converged, we discretized the PNMF output by setting the
maximum entry of each row to 1 and the others to 0.

We have adopted two types of kernel in our experiments.
One is the linear kernel

K linear
st = xT

s xt,

i.e. φ(xj) = xj , because of its simplicity. The other is the
radial basis function(RBF) kernel

KRBF
st = exp

(

−
‖xs − xt‖

2

2σ2

)

2http://www.seas.upenn.edu/˜jshi/software/
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Fig. 1. Entropies of off-diagonal elements of the RBF kernel matrix with
varying σ.

which is widely used in machine learning and data mining.
Here the kernel widthσ as a free parameter needs to be
adjusted. We have employed an information-theoretic method
to automatically determine theσ parameter as follows. Notice
the diagonal elements ofK contribute nothing to clustering.
Therefore we can consider only off-diagonal entries. It canbe
seen thatKst (s 6= t) approaches 0 ifσ → 0 and approaches 1
if σ → ∞. That is, the uncertainty or Shannon information of
Kst is close to zero at both ends. Starting from a sufficiently
large value and then decreasingσ steadily, one can find a peak
corresponding to theK with locally maximal information. In
this work we have used entropy for information measurement.
To avoid dominance of some feature over the others, we first
normalize the samples in a dataset by subtracting their mean
and dividing each feature by their standard deviation. The
entropy peaks for the selected datasets are shown in Figure
1, to which the correspondingσ’s are2.18, 7.25, and101.57
for iris, digit, andorl, respectively. Without losing clustering
accuracy, the matrix columns of̄U are re-weighed to be
unitary for better comparison:

Ũjk =
Ūjk

√

∑

t Ū2
tk

.

We further normalize the objective J N
K (Ũ) =

√

JK(Ũ)/‖K‖F for better visual illustration. As PCA
is known to achieve the global optimum of the objective
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Fig. 2. Relative objectives of POD, KK-means, and PNMF with (a) linear
and (b) RBF kernels.

(62) without the constraint (63), we recorded the difference
between the PCA output and the resulting objectives:

δ(Ū) = J N
K,PCA(Ū) − J N

K (Ū).

The relative objectives are shown in Figure 2, where a smaller
δ value indicates better performance. It can be seen that PNMF
outperforms POD and KK-means for all selected datasets
with both kernel types. Although the eigendecomposition finds
a global optimum without the binary constraint, the extra
discretization employed by POD however does not takeK

into account. The POD output therefore can be farther from the
optimum compared with PNMF. KK-means inherits both the
advantage and disadvantage of K-means. In our experiment,
it runs fast but easily falls into poor local optima. This can
be partially remedied by repeating the algorithm with many
different starting points. Occasionally KK-means can achieve
performance next to PNMF.

V. CONCLUSIONS

We have proposed a new variant of nonnegative matrix
factorization called PNMF using the approximation scheme
X ≈ WWT X for a given data matrixX where matrixW is
non-negative. The approximation accuracy can be measured
by the Frobenius matrix norm or the modified Kullback-
Leibler divergence. Either dissimilarity measurement leads to
multiplicative updates that learns a highly sparse factorized
matrix whose columns are more orthogonal than for other
variants of NMF. Our PNMF algorithm provides an efficient
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solution for the nonnegative principal component analysis
problem, which is in turn applicable to many practical prob-
lems such as clustering and graph partitioning. All algorithms
have mathematically been proven to be iterative Lagrangian
solutions, namely, jointly finds a PNMF approximation and
steers the factorizing matrix towards the constraint manifold.
Moreover, experiments on three real-world datasets show that
PNMF is both efficient and accurate.

The PNMF method can be applied to grouping either fea-
tures or samples. In the former application, the proof procedure
using the Lagrangian technique may also imply a common
guideline for learning a nonnegative projection by adapting
the “Oja’s rule” [18]. The resulting subspace methods may
become a new branch of blind source separation. For the
grouping of sample vectors, the sparseness of PNMF can be
employed to find better discriminative clusters of data [33].
For both applications, the tight connection between PNMF and
PCA is worthy of further investigation for finding the potential
generative model.

APPENDIX A
MULTIPLICATIVE UPDATES

Suppose there is an algorithm which seeks anm-
dimensional solution vectorw that maximizes an objective
functionJ (w). The conventionaladditive updaterule for such
a problem is

w̃ = w + γg(w), (64)

where w̃ is the new value ofw, γ a positive learning
rate and the functiong(w) outputs anm-dimensional vector
which represents thelearning direction, obtained e.g. from the
gradient of the objective function. For notational brevity, we
only discuss the learning for vectors in this section, but itis
easy to generalize the results to the matrix case, where we will
use capital lettersW in place ofw.

The multiplicative update technique first generalizes the
common learning rate to different ones for individual dimen-
sions:

w̃ = w + diag(η)g(w), (65)

whereη is anm-dimensional positive vector. Choosing differ-
ent learning rates for individual dimensions changes the update
direction and hence this method differs from the conventional
steepest-gradient approaches in the full real-valued domain.

It has been shown that the following choice ofη has particu-
larly interesting properties for the constraint of non-negativity
(see e.g.[8], [34]). Supposew is non-negatively initialized.
If there exists a separation of the learning direction into two
positive termsg(w) = g+−g− by some external knowledge,
then one can always chooseηi = wi/g−i , i = 1, . . . ,m, such
that the components of (65) become:

w̃i = wi + ηi [g(w)]i = wi +
wi

g−i
(g+

i − g−i ) = wi

g+

i

g−i
. (66)

The above multiplicative update maintains the non-
negativity of w. In addition, wi increases wheng+

i > g−i ,
i.e. [g(w)]i > 0, and decreases if[g(w)]i < 0. Thus the
multiplicative change ofwi indicates how much the direction

of that axis conforms to the learning direction. There exist
two kinds of stationary points in the iterative use of the
multiplicative update rule (66): one satisfiesg+

i = g−i , i.e.
g(w) = 0, which is the same condition for local optima as in
the additive updates (64), and the other one iswi → 0. The lat-
ter condition distinguishes the non-negative optimization from
conventional ones and often yields sparseness inw, which
is desired in many applications. Furthermore, unlike steepest
gradient or exponential gradient [35], the multiplicativeupdate
rule (66) does not require any user-specified learning rates,
which facilitates its application.

As an example, assume thatX is an m × n non-negative
data matrix, and consider the adaptive PCA learning rule (“Oja
rule”) [18] for computing the dominant eigenvector ofXXT :

w′ = w + γ
(

XXT w − wwT XXT w
)

, (67)

or its generalization to finding anm × r-dimensional PCA
basis matrixW [36]

W′ = W + γ
(

XXT W − WWT XXT W
)

, (68)

whereγ is a small positive learning rate. AssumingX andW

nonnegative, a multiplicative rule is

W ′
ik = Wik

(XXT W)ik

(WWT XXT W)ik

. (69)

The above formulation principle of multiplicative updates
helps us easily obtain an iterative algorithm, the convergence
of which is however not guaranteed. In [11], the authors
interpret the multiplicative updates as a special case of natural
gradient learning. Such learning may albeit diverge due to
the unitary learning step. In this paper we conform to the
auxiliary function approach which is commonly accepted in
convergence analysis.

APPENDIX B
AUXILIARY FUNCTION

The auxiliary function method has widely been used
for convergence analysis of optimization algorithms such
as the nonnegative multiplicative updates and Expectation-
Maximization (EM). Given an objection functionJ (W) to
be minimized,G(W,W′) is called an auxiliary function if it
is a tight upper bound ofJ (W), i.e.

G(W,W′) ≥ J (W), G(W,W) = J (W)

for any W andW′. Define

W′ = arg min
W̃

G(W̃,W). (70)

By construction,

J (W) = G(W,W) ≥ G(W′,W) ≥ G(W′,W′) = J (W′),

where the left inequality is the result of minimization and the
right one comes from the upper bound. Iteratively applying the
update rule (70) thus results in a monotonically decreasing
sequence ofJ . Besides the tight upper bound, it is often
desired that the minimization (70) has a closed-form solution.
In particular, setting∂G/∂W′ = 0 should lead to the iterative
update rule in analysis.
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APPENDIX C
UPPER BOUNDING POSITIVE TERMS

The objective function involves a number of terms which
can be divided into two groups according to their leading
signs. Finding the auxiliary function can in turn become an
upper bound for each positive term and a lower bound for
each unsigned negative term. For the former, we employ three
existing approaches in this paper, two for trace-like termsand
the other for cross-entropy-like terms.

Proposition 5 (quadratic upper bound):For any matrices
A ∈ R

r×r
+ , A symmetric,W ∈ R

m×r
+ , and W′ ∈ R

m×r
+ ,

it holds

∑

ik

(WA)ik W ′2
ik

Wik

≥ Tr
(

W′T W′A
)

. (71)

Proposition 6 (linear upper bound):For any matricesA ∈
R

m×r
+ , W ∈ R

m×r
+ , andW′ ∈ R

m×r
+ , we have

∑

ik

Aik

W ′2
ik + W 2

ik

2Wik

≥ Tr
(

AT W′
)

. (72)

The proofs can be found in [23], [10] and [19]. Minimizing
such upper bounds has a closed-form solution because, for
example, the derivative of the left-hand side of (72) is

W ′
ik

Wik

Aik. (73)

Combining other gradient terms, for instance−Bik, this leads
to a multiplicative update rule

W ′
ik

Wik

Aik − Bik = 0 ⇒ W ′
ik = Wik

Bik

Aik

.

Similar property holds for (71).
Proposition 7 (Jensen upper bound):For any matrices

X ∈ R
m×n
+ , W ∈ R

m×r
+ , W′ ∈ R

m×r
+ , andH ∈ R

r×n
+

−
∑

ij

Xij log (W′H)ij ≤

−
∑

ij

Xij

∑

k

αijk (log W ′
ikHkj − log αijk) (74)

where

αijk =
WikHkj
∑

l WilHlj

.

The proof follows from Jensen’s inequality [23]. Minimiz-
ing such an upper bound requires the derivative of the right-
hand side of (74)

Wik

W ′
ik

(

ZXT W
)

ik
, (75)

whereZij = Xij/(WH)ij . Combining some other gradient
terms, for instance−Bik, the resulting multiplicative update
rule becomes

W ′
ik = Wik

(

ZXT W
)

ik

Bik

.

APPENDIX D
UPPER BOUNDING NEGATIVE TERMS

Upper bounding positive terms is sufficient to produce a
multiplicative update rule. Alternatively, one can also lower
bound the unsigned negative terms to obtain a different mul-
tiplicative update rule. It was reported that the latter approach
has better performance when the input matrix contains nega-
tive entries [37]. The lower bound stems from the inequality

z ≥ 1 + log z,

for z ≥ 0, where the equality holds if and only ifz = 1.
Proposition 8 (linear lower bound):For B ∈ R

m×r
+ , W ∈

R
m×r
+ , andW′ ∈ R

m×r
+ ,

Tr(BT W′) ≥
∑

ik

BikWik

(

1 + log
W ′

ik

Wik

)

. (76)

Proposition 9 (quadratic lower bound):For B ∈ R
r×r
+ ,

W ∈ R
m×r
+ , andW′ ∈ R

m×r
+ ,

Tr(W′T W′B) ≥
∑

ikl

BklWikWil

(

1 + log
W ′

ikW ′
il

WikWil

)

.

The negative derivative of the right-hand side of (76) is

Wik

W ′
ik

Bik, (77)

which is also ready to generate multiplicative update rules. For
example, combining the (77) and (73) leads to a multiplicative
update rule:

W ′
ik

Wik

Aik −
Wik

W ′
ik

Bik = 0 ⇒ W ′
ik = Wik

√

Bik

Aik

.

APPENDIX E
THE moving termTECHNIQUE

It is desired that all terms in multiplicative update rules are
nonnegative. However, sometimes negative terms may appear
in the numerator or denominator when setting the gradient
of an auxiliary function to zero. According to the principle
of formulating multiplicative update rules in Appendix A,
one should neglect the sign of such terms and move them
from the numerator to denominator or vice versa. This can be
implemented by adding the same term to both numerator and
denominator and justified as a corollary of the lower bounding
technique in Appendix C-D.

Proposition 10 (moving term upper bound, type I):

F1(A,W,W′) =
∑

ik

AikW ′
ik −

∑

ik

AikWik −
∑

ik

AikWik log
W ′

ik

Wik

≥ 0.

The proof can be obtained by writing

F1(A,W,W′) =
∑

ik

Aik

(

W ′
ik − Wik − Wik log

W ′
ik

Wik

)

.

The sum in parentheses is nonnegative according toz ≥
1 + log z for z ≥ 0. In addition, the functionF vanishes
if W = W′. Thus one can addF (A,W,W′) to the original
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auxiliary function without violating the tight bound constraint.
Furthermore,

∂F1

∂W ′
ik

= Aik −
Wik

W ′
ik

Aik,

Combined with the other terms from e.g. Jensen upper bound,
linear or quadratic lower bound that lead to a multiplicative
update rule, the above derivative will addAik to both the
numerator and denominator.

Likewise, according to thelinear upper bound, one can
alternatively moveAik by

Proposition 11 (moving term upper bound, type II):

F2(A,W,W′) =
∑

ik

Aik

(

−W ′
ik +

W ′
ik

2
+ W 2

ik

2Wik

)

≥ 0.

such that
∂F2

∂W ′
ik

= −Aik +
W ′

ik

Wik

Aik,

which is consistent with the form of linear and quadratic upper
bounds.

APPENDIX F
PROOF OFTHEOREM 3

The generalized objective is

J̃⊥
F (W,H) = J̃F (W,H) + Tr

(

Λ
(

WT W − I
))

,

whereJ̃F (W,H) is given in (8) and{Λkl} are the introduced
Lagrangian multipliers. Similar toGF in (9), we construct

G⊥
F (W,W′) ≡Tr

(

−2XT W′H − ΨT W′T X
)

(78)

+
∑

ik

(

WHHT
)

ik
W ′2

ik

Wik

(79)

+
∑

ik

(WΛ)ik W ′2
ik

Wik

(80)

+ Tr(XT X + ΨT H − Λ) (81)

as an auxiliary function of

L⊥
F (W′) ≡J̃⊥

F (W′,H) (82)

=Tr
(

−2XT W′H − ΨT W′T X
)

(83)

+ Tr
(

W′T W′HHT
)

(84)

+ Tr
(

ΛWT W
)

(85)

+ Tr(XT X + ΨT H − Λ). (86)

Here we apply thequadratic upper bound(79) to (84) and
(80) to (85) according to Appendix C. Setting

∂G⊥
F (W,W′)/∂W ′

ik = 0,

we get

W ′
ik = Wik

(

2XHT + XΨT
)

ik

(2WHHT + 2WΛ)ik

. (87)

Next we solveΛ andΨ by using the K.K.T. conditions.

∂J̃⊥
F (W,H)

∂H
= −2WT X + 2WT WH + Ψ = 0,

one obtains

Ψ = 2WT X − 2WT WH.

By insertingH = WT X and WT W = I, we find Ψ = 0.
Using this result and from

∂J̃⊥
F (W,H)

∂W
= −2XHT − XΨ + 2WHHT + 2WΛ = 0,

we get

WΛ = XHT − WHHT .

Left multiplying WT in both sides and usingWT W = I,
one obtains

Λ = WT XHT − HHT .

InsertingH = WT X, we findΛ = 0. SubstitutingΨ = 0 and
Λ = 0 back to (87), the multiplicative update rule becomes
(41). �

APPENDIX G
PROOF OFTHEOREM 4

The generalized Lagrangian objective is

J̃⊥
D (W,H) = J̃D(W,H) + Tr

(

Λ
(

I − WT W
))

,

and is tightly upper bounded by

G⊥
D(W,W′) =GD(W,W′)

−
∑

ikl

ΛklWikWil

(

1 + log
W ′

ikW ′
il

WikWil

)

,

where we apply thequadratic lower bound(see Appendix D)
for the additional term and replaceAik in (24) with

A⊥ = XZT W + WWT XZT W + WWT ZXT W

Setting∂G⊥
D(W,W′)/∂W ′

ik = 0 yields

W ′
ik = Wik

(

ZXT W
)

ik
+ (WΛ)ik + A⊥

ik
∑

j Hkj − (XΨT )ik + A⊥
ik

. (88)

The quantitiesΨ and Λ can be solved by using the K.K.T.
conditions:

Ψjk =
(

WT Z
)

ik
−
∑

b

Wbk (89)

Λkl = −
(

WT ZXT W
)

kl
−
(

WT XZW
)

kl

+
∑

i

Wik

∑

j

Hlj +
∑

j

(

WT X
)

kj

∑

i

Wil. (90)

Substituting (89) and (90) into (88), we get (45). �
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APPENDIX H
DERIVATION OF UPDATE RULE OFSEMI-NKPCA

The generalized Lagrangian function is

J̃±
K (U,V) =J±

K (U,V) + Tr
(

Λ
(

UT U − I
))

+ Tr (Ψ(V − U))

=Tr
(

2VT K−U
)

+ Tr
(

VT K+VUT U
)

− Tr
(

2VT K+U
)

− Tr
(

VT K−VUT U
)

+ Tr
(

ΛUT U
)

− Tr
(

ΨT U
)

+ Tr
(

K − I + ΨT V
)

The functionL±
K(U′) = J̃±

K (U′,V) has the auxiliary func-
tion

G±
K(U,U′) =

∑

jk

(

K−V
)

jk

U ′2
jk + U2

jk

Ujk

+
∑

jk

(

UVT K+V
)

jk

U ′2
jk

Ujk

−
∑

jk

(

2K+V
)

jk
Ujk log

(

1 +
U ′

jk

Ujk

)

−
∑

jkl

(

VT K−V
)

kl
UjkUjl log

(

1 +
U ′

jkU ′
jl

UjkUjl

)

+
∑

jk

(UΛ)jk U ′2
jk

Ujk

−
∑

jk

ΨjkU ′
jk log

(

1 +
U ′

jk

Ujk

)

+ Tr
(

K − I + ΨT V
)

Setting∂G±
K(U,U′)/∂U ′

jk = 0, we get

U ′
jk = Ujk

√

(2K+V + 2UVT K−V + Ψ)jk

(2K−V + 2UVT K+V + UΛ)jk

The quantitiesΨ andΛ can be solved by the K.K.T. condi-
tions, which results inΨ = 0 andΛ = 0. With V = U, the
multiplicative update rule for the problem (49)-(51) is

U ′
jk = Ujk

√

(K+U + UUT K−U)jk

(K−U + UUT K+U)jk

Alternatively, one can construct an auxiliary function without
upper bounding the negative terms, which leads to the follow-
ing multiplicative update rule:

U ′
jk = Ujk

(

K+U + UUT K−U
)

jk

(K−U + UUT K+U)jk

.
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