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Abstract

In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approx-

imated by a product of lower-rank factorizing matrices. Most NMF methods

assume that each factorizing matrix appears only once in the approximation,

thus the approximation is linear in the factorizing matrices. We present a new

class of approximative NMF methods, called Quadratic Nonnegative Matrix

Factorization (QNMF), where some factorizing matrices occur twice in the

approximation. We demonstrate QNMF solutions to four potential pattern

recognition problems in graph partitioning, two-way clustering, estimating

hidden Markov chains, and graph matching. We derive multiplicative algo-

rithms that monotonically decrease the approximation error under a variety

of measures. We also present extensions in which one of the factorizing ma-

trices is constrained to be orthogonal or stochastic. Empirical studies show

that for certain application scenarios, QNMF is more advantageous than

other existing nonnegative matrix factorization methods.
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stochasticity, orthogonality, clustering, graph partitioning, Hidden Markov

Chain Model, graph matching

1. Introduction

Extensive research on Nonnegative Matrix Factorization (NMF) has emerged

in recent years (e.g. [1, 2, 3, 4, 5, 6]). NMF has found a variety of applications

in machine learning, signal processing, pattern recognition, data mining, in-

formation retrieval, etc. (e.g. [7, 8, 9, 10, 11]). Given an input data matrix,

NMF finds an approximation that is factorized into a product of lower-rank

matrices, some of which are constrained to be nonnegative. The approxi-

mation error can be measured by a variety of divergences between the input

and its approximation (e.g. [12, 13, 14, 6]), and the factorization can take a

number of different forms (e.g. [15, 16, 17]).

In most existing NMF methods, each factorizing matrix appears only once

in the approximation. We call them linear NMF because the approximation

is linear with respect to each factorizing matrix. However, such linearity

assumption does not hold in some important real-world problems. A typical

example is graph matching, when it is presented as a matrix factorizing

problem, as pointed out by Ding et al. [18]. If two graphs are represented by

their adjacency matrices A and B, then they are isomorphic if and only if a

permutation matrix P can be found such that A−PBPT = 0. Minimizing

the norm or some other suitable error measure of the left-hand side with

respect to P, with suitable constraints, reduces the problem to an NMF

problem. The approximation is now quadratic in P.

Another example is clustering: if X is a matrix whose n columns need
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to be clustered into r clusters, then the classical K-means objective function

can be written as [19] J1 = Tr(XTX) − Tr(UTXTXU) where U is the

(n× r) binary cluster indicator matrix. The global minimum with respect to

U gives the optimal clustering. It was shown in [20] that minimizing J2 =

‖XT − WWTXT‖2Frobenius with respect to an orthogonal and nonnegative

matrix W gives the same solution, except for the binary constraint. This is

another NMF problem where the approximation is quadratic in W.

Although the need of quadratic factorizations has been occasionally ad-

dressed in the literature (e.g. [21, 18, 17]), there has been no systematic

study of higher-order NMF. A general way to obtain efficient optimization

algorithms is lacking as well.

In this paper we focus on a class of NMF methods where some factor-

izing matrices occur twice in the approximation. We call these methods

Quadratic Nonnegative Matrix Factorization (QNMF). Our major contribu-

tions are highlighted as follows: (1) QNMF objectives that are composed of

different factorization forms and various approximation error measures are

formulated. (2) Solving a QNMF problem is generally more difficult than

the linear ones, because the former usually involves a higher-degree objec-

tive function with respect to the doubly-occurring factorizing matrices. In

[22], we recently introduced a general approach for deriving multiplicative

update rules for NMF, based on most commonly used approximation error

measures. We now apply it to more general QNMF factorizations. Iterative

algorithms that utilize the derived rules can all be shown to guarantee mono-

tonic decrease, thus convergence, of the objective function. (3) We present

techniques for extending the algorithms to easily accommodate the stochas-
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ticity or orthogonality constraint, needed for such applications as estimating

a hidden Markov chain, clustering, or graph matching. (4) In addition to the

advantages in clustering, already shown in our previous publication [20], we

demonstrate that the proposed QNMF algorithms outperform the existing

NMF implementations in graph partitioning, two-way clustering, estimating

a hidden Markov chain, and graph matching.

In the rest of the paper, we first briefly review the nonnegative matrix

factorization problem and related work in Section 2. Next we formulate the

Quadratic Nonnegative Matrix Factorization problem in Section 3, with its

multiplicative optimization algorithms, learning with the stochasticity and

orthogonality constraints given in Section 4. Section 5 presents experimen-

tal results, including comparisons between QNMF and other state-of-the-art

NMF methods for four selected applications, as well as the demonstration of

accelerated and online QNMF. Some conclusions and future perspectives are

given in Section 6.

2. Related Work

Given an input data matrixX ∈ R
m×n, Nonnegative Matrix Factorization

(NMF) finds an approximation X̂ which can be factorized into a product of

matrices:

X ≈ X̂ =

Q∏

q=1

F(q) (1)

and some of these matrices are constrained to be nonnegative. The dimen-

sions of the factorizing matrices F(1), . . . ,F(Q) arem×r1, r1×r2, . . . , rQ−1×n,

respectively. Usually r1, . . . , rQ−1 are much smaller than m or n. In this way
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the factorization represents the data in a more compact way and thus favors

certain applications.

The difference between the input matrix X and its approximation X̂ can

be measured by a variety of divergences, for which theoretically convergent

multiplicative algorithms of NMF have been proposed1. Originally, NMF is

based on the Euclidean distance or I-divergence (non-normalized Kullback-

Leibler divergence) [1, 2]. These two measures were later unified by using the

β-divergence [12]. Alternatively, Cichocki et al. [14] generalized NMF from

I-divergence to the whole family of α-divergences. NMF has been further

extended to a even broader class called Bregman divergence, for many cases of

which a general convergence proof can be found [13]. In addition to separable

ones, divergences that are non-separable with respect to the matrix entries

such as the γ-divergence and Rényi divergence can also be employed by NMF

[11]. Many other divergences for measuring the approximation error in NMF

exist, although they may lack theoretically convergent algorithms.

In its original form [1, 2], the NMF approximation is factorized into two

matrices (Q = 2). Later the factorization was generalized to three factors

(e.g. [23, 15, 16, 17]). Note that the input matrix and some factorizing

matrices are not necessarily nonnegative, (e.g. Semi-NMF in [17]). Also, one

of the factorizing matrix can be the input matrix itself, for example, the

Convex NMF [17].

Besides the nonnegativity, various constraints or regularizations can be

1Unless otherwise stated, the term “convergence” in this paper generally refers to the

objective function convergence or, equivalently, the monotonic decrease of the NMF ap-

proximation error.
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imposed on the factorizing matrices. Matrix norms such as L1- or L2-norm

have been used for achieving sparseness or smoothness (e.g. [24, 3, 8]). Or-

thogonality combined with nonnegativity can significantly enhance the part-

based representation or category indication (e.g. [16, 25, 4, 26, 20]).

3. Quadratic Nonnegative Matrix Factorization

In most existing NMF approaches, the factorizing matrices F(q) in Eq.

(1) are all different, and thus the approximation X̂ as a function of them

is linear. However, there are useful cases where some matrices appear more

than once in the approximation. In this paper we consider the case that

some of them may occur twice, or formally, F(s) = F(t)T for a number of

non-overlapping pairs {s, t} and 1 ≤ s < t ≤ Q. We call such a problem and

its solution Quadratic Nonnegative Matrix Factorization (QNMF) because

X̂ as a function is quadratic to each twice appearing factorizing matrix2.

To avoid notational clutter, we focus on the case where the input matrix

and all factorizing matrices in the approximation are nonnegative, while our

discussion can easily be extended to the cases where some matrices may

contain negative entries by using the decomposition technique presented in

[17].

3.1. Factorization forms

To begin with, let us consider the QNMF objective with only one doubly

occurring matrix W. The general approximating factorization form is given

2Though equality without matrix transpose, namely F
(s) = F

(t), is also possible, to

our knowledge there are no corresponding real-world applications.
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by

X̂ = AWBWTC, (2)

where we merge the products of the other, linearly appearing factorizing

matrices into single symbols. It is also possible that matrix A, B, and/or

C is the identity matrix and thus vanishes from the expansion. Here we

focus on the optimization over W, as learning the matrices that occur only

once can be solved by using the conventional NMF methods of alternative

optimization over each matrix separately [11].

The above factorization form unifies all previously suggested QNMF ob-

jectives. For example, it becomes the Projective Nonnegative Matrix Factor-

ization (PNMF) when A = B = I and C = X, which was first introduced

by Yuan and Oja [21] and later extended by Yang et al. [25, 27, 20]. This

factorized form is also named Clustering NMF in [17] as a constrained case of

Convex NMF. Even without any explicit orthogonality constraint, the ma-

trix W obtained by using PNMF is highly orthogonal and can thus serve

two purposes: (1) when the columns of X are samples, W can be seen as the

basis for part-based representations, and (2) when the rows of X are samples,

W can be used as a cluster indicator matrix.

If X is a square matrix and A = C = I, the factorization can be used

in two major scenarios if the learned W is highly orthogonal. (1) When

B is much smaller than X, the three-factor approximation corresponds to a

blockwise representation of X [23, 28]. If B is diagonal, then the representa-

tion becomes diagonal blockwise, or a partition. In the extreme case B = I,

the factorization reduces to the Symmetric Nonnegative Matrix Factoriza-

tion (SNMF) X̂ = WWT [16]. (2) When X and B are of the same size,
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the learned W with the constraint WTW = I approximates a permutation

matrix and thus QNMF can be used for learning order of relational data,

for example, graph matching [18]. Alternatively, under the constraint that

W has column-wise unitary sums, the solution of such a QNMF problem

provides parameter estimation of hidden Markov chains (See Section 5.3).

The factorization form in Eq. (2) also generalizes the concepts of Asym-

metric Quadratic Nonnegative Matrix Factorization (AQNMF) X̂ = WWTC

and Symmetric Quadratic Nonnegative Matrix Factorization (SQNMF) X̂ =

WBWT in our previous work [22].

Note that the factorization form in Eq. (2) is completely general: it can

be recursively applied to the cases where there are more than one factorizing

matrices appearing quadratically in the approximation. For example, the

case A = CT = U yields X̂ = UWBWTUT , and A = B = I, C = XUUT

yields X̂ = WWTXUUT . An application of the latter example is shown

in Section 5.2, where the solution of such a QNMF problem can be used to

group the rows and columns of X simultaneously. This is particularly useful

for the biclustering or coclustering problem. These factorizing forms can be

further generalized to any number of factorizing matrices. In such cases we

employ alternative optimization over each doubly occurring matrix.

It is important to notice that quadratic NMF problems are not special

cases of linear NMF. The optimization methods of the latter generally cannot

be extended to QNMF. For linear NMF, the factorizing matrices are different

variables and the approximation error can alternatively be minimized over

one of them while keeping the others constant. In contrast, the optimization

of QNMF is more comprehensive because matrices in two places vary simul-
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taneously, which leads to higher-order objectives. For example, given the

squared Frobenius norm (Euclidean distance) as approximation error mea-

sure, the objective of linear NMF ‖X − WH‖2F is quadratic with respect

to W and H, whereas the PNMF objective ‖X −WWX‖2F is quartic with

respect toW. Minimizing such a fourth-order objective with the nonnegativ-

ity constraint is considerably more challenging than minimizing a quadratic

function.

In contrast to the rich selection of approximation error measures for lin-

ear NMF, there is little research on such measures for quadratic NMF. In

this paper we show that QNMF can be built on a very wide class of dissimi-

larity measures, quite as rich as those for linear NMF. Furthermore, as long

as the QNMF objective can be expressed in a generalized polynomial form

described below, we show that there always exists a multiplicative algorithm

that theoretically guarantees convergence, or the monotonic decrease of the

objective function, in each iteration.

In the rest of the paper, we distinguish the variable W̃ from its current

estimate W. We write X̃ = AW̃BW̃TC to denote the approximation that

contains the variable W̃, and X̂ = AWBWTC for the current estimate

(constant).

3.2. Deriving multiplicative algorithms

Multiplicative updates have been commonly used for optimizing NMF

objectives. In each epoch, a factorizing matrix is updated by elementwise

multiplication with a nonnegative matrix which can easily be obtained from

the gradient. The multiplicative algorithms have a couple of advantages over

the conventional additive gradient descent approach. Firstly, they naturally
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maintain the nonnegativity of the factorizing matrices without any extra

projection steps. Secondly, the fixed-point algorithm that iteratively applies

the update rule requires no user-specified parameters such as the learning step

size, which facilitates its implementation and applications. Although some

heuristic connections to conventional additive update rules exist [2, 25], they

cannot theoretically justify the objective function convergence.

The rigorous convergence proof, or theoretical guarantee of monotonic

decrease of the objective function, focusses on minimizing a certain auxiliary

upper-bounding function which is defined as follows. G(W,U) is called an

auxiliary function if it is a tight upper bound of the objective function J (W),

i.e. G(W,U) ≥ J (W), and G(W,W) = J (W) for any W and U. Define

Wnew = argmin
W̃

G(W̃,W). (3)

By construction, J (W) = G(W,W) ≥ G(Wnew,W) ≥ G(Wnew,Wnew) =

J (Wnew), where the first inequality is the result of minimization and the

second comes from the upper bound. Iteratively applying the update rule

(3) thus results in a monotonically decreasing sequence of J . Besides the

tight upper bound, it is often desired that the minimization (3) has a closed-

form solution. In particular, setting ∂G/∂W̃ = 0 should lead to the iterative

update rule in analysis. The construction of such an auxiliary function,

however, has not been a trivial task so far.

In [22], we recently derived the convergent multiplicative update rules for

a wide class of divergences for the NMF problem. For conciseness, we repeat

the central steps here but for details refer to [22].

Let us first generalize the definitions of monomials and polynomials: a

monomial with real-valued exponent, or shortly monomial, of the scalar vari-
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able z is of the form azb where a and b can take any real value, without

restriction to nonnegative integers. A sum of a (finite) number of monomials

is called a (finite) generalized polynomial.

This form of expression has two nice properties: (1) individual mono-

mials, denoted by azb, are either convex or concave with respect to z and

thus can easily be upper-bounded; (2) an exponential is multiplicatively de-

composable, i.e. (xy)a = xaya, which is critical in deriving the multiplicative

update rule. Note that we unify the logarithm function that is involved in

many information-theoretic divergences to our generalized polynomial form

by using the logarithm limit

ln z = lim
ǫ→0+

zǫ − 1

ǫ
. (4)

Notice that limits in 0+ and 0− are the same. We use the former to remove

the convexity ambiguity. In this way, the logarithm can be decomposed

into two monomials where the first contains an infinitesimally small positive

exponent.

Next, we show that the auxiliary upper-bounding function always exists

as long as the approximation objective function can be expressed in the finite

generalized polynomial form. This is formalized by the following theorem in

our previous work [22].

Theorem 1. Assume Ωd(z) = ρd · z
χd, and ρd, χd, gdij and φd are constants

independent of W̃. If the approximation error has the form

D(X||X̂) =

p∑

d=1

Ωd

(
m∑

i=1

n∑

j=1

gdijX̂
φd
ij

)
+ constant, (5)
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then there are real numbers ψmax and ψmin (ψmax > ψmin) such that

G(W̃,W) =
∑

ik

Wik

ψmax

(
W̃ik

Wik

)ψmax

∇+
ik −

Wik

ψmin

(
W̃ik

Wik

)ψmin

∇−
ik + constant

(6)

is an auxiliary upper-bounding function of J (W̃) , D
(
X||X̃

)
. There ∇+

and ∇− denote the sums of positive and unsigned negative terms of ∇ =

∂J (W̃)

∂W̃

∣∣∣∣∣
W̃=W

(i.e. ∇ = ∇+ −∇−), respectively.

The theorem proof, or the construction procedure of the auxiliary function

is summarized in the following procedure: 1) Write the objective function in

the form of finite generalized polynomials given by Eq. (5); Use the logarithm

limit Eq. (4) when necessary; 2) If the objective is not a separable sum over

i and j, i.e. there is χd 6= 1, derive a separable upper-bound of the objective

using the concavity or convexity inequality on Ωd; 3) Upper bound individual

monomials according to their concavity/convexity and leading signs; 4) If

there are more than two upper-bounds with distinct exponents, combine

them into two monomials according to their exponents and leading signs.

The derivation details are similar to those given in our previous work [22]

and thus omitted here.

Taking the derivative of the auxiliary function with respect to W̃ leads

to

∂G(W̃,W)

∂W̃ik

=

(
W̃ik

Wik

)ψmax−1

∇+
ik −

(
W̃ik

Wik

)ψmin−1

∇−
ik. (7)

As stated above, setting this to zero gives the iterative update rule, which

results in a monotonically decreasing, hence convergent, sequence of J (W).
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In most cases, this multiplicative update rule has the form

W new
ik = Wik

(
∇−
ik

∇+
ik

)η
, (8)

where η = 1/(ψmax−ψmin). An exception, for example the dual I-divergence,

happens when the logarithm limit is applied and limǫ→0+ (ψmax − ψmin) = 0.

In this case the limit of the derivative Eq. (7) has the form 0
0
and can be

resolved by using the L’Hôpital’s rule to obtain the limit before setting it to

zero.

The finite generalized polynomial form Eq. (5) covers most commonly

used dissimilarity measures. Here we present the multiplicative update rules

for QNMF based on α-divergence, β-divergence, γ-divergence and Rényi di-

vergence. These families include, for example, the squared Euclidean distance

(β = 1), Hellinger distance (α = 0.5), χ2-divergence (α = 2), I-divergence

(α → 1 or β → 0), dual I-divergence (α → 0), Itakura-Saito divergence

(β → −1) and Kullback-Leibler divergence (γ → 0 or r → 1). Though not

presented here, more QNMF objectives, for example the additive hybrids of

the above divergences, as well as many other unnamed Csiszár divergences

and Bregman divergences, can be easily derived using the proposed principle.

In general, the multiplicative update rules take the following form:

W new
ik = Wik

[(
ATQCTWBT +CQTAWB

)
ik

(ATPCTWBT +CPTAWB)ik
· θ

]η
, (9)

where P, Q, θ, and η are specified in Table 1. For example, the rule for

QNMF X ≈ WBWT based on the squared Euclidean distance (β → 1)

reads

W new
ik = Wik

[ (
XWBT +XTWB

)
ik

(WBWTWBT +WBTWTWB)ik

]1/4
.
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Table 1: Notations in the multiplicative update rules of QNMF examples, where X̂ =

AWBW
T
C.

divergence Pij Qij θ η

α-divergence 1 Xα
ijX̂

−α
ij 1

1/(2α) for α > 1

1/2 for 0 < α < 1

1/(2α− 2) for α < 0

β-divergence X̂β
ij XijX̂

β−1
ij 1

1/(2 + 2β) for β > 0

1/(2− 2β) for β < 0

γ-divergence X̂γ
ij XijX̂

γ−1
ij

∑
ab X̂

γ+1
ab∑

abXabX̂
γ
ab

1/(2 + 2γ) for γ > 0

1/(2− 2γ) for γ < 0

Rényi divergence 1 Xr
ijX̂

−r
ij

∑
ab X̂ab∑

abX
r
abX̂

1−r
ab

1/(2r) for r > 1

1/2 for 0 < r < 1

As an exception, the update rules for the dual I-divergence takes a different

form

W new
ik = Wik exp

[
1

2

(
ATQCTWBT +CQTAWB

)
ik

(ATPCTWBT +CPTAWB)ik

]

with Pij = 1 and Qij = ln
(
Xij/X̂ij

)
. In practice, iteratively applying the

above update rules except the dual-I case can also achieve K.K.T. optimality

asymptotically [22].

Multiplicative algorithms using an identical update rule throughout the

iterations are simple to implement. However, the exponent η that remains

constant is often conservative (too small) in practice. This can be accelerated

by using a more aggressive choice of the exponent, which adaptively changes

during the iterations. A simple strategy is to increase the exponent steadily
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if the new objective is smaller than the old one and otherwise shrink back to

the safe choice, η. We find that such a strategy can significantly speed up

the convergence while still maintaining the monotonicity of the updates [22].

For very large data matrices, there are scalable implementations of QNMF

for the case when the approximation error is the squared Euclidean distance.

An online learning algorithm of PNMF was presented in our previous work

[29], where we do not need to operate on the whole data matrix but only on

a small intermediate variable instead. The resulting algorithm not only has

low memory cost but runs faster than the batch version for large datasets.

4. Constrained QNMF

NMF objectives are often accompanied with a set of constraints. The

manifolds induced by these constraints intersect the nonnegative quadrant

and form an extensive and non-smooth function domain, which makes the

optimization difficult. Conventional optimization approaches which operate

in such domains only work for a few particular cases of linear NMF but

seldom succeed for quadratic NMF problems. Alternatively, we adopt a re-

laxation technique to solve the constrained QNMF problems: first we attach

the (soft) constraints to the objective as regularization terms; next we write a

multiplicative update rule for the augmented objective, where the Lagrangian

multipliers are solved by using the K.K.T. conditions; finally putting back

the multipliers we obtain new update rules with the (soft) constraints incor-

porated. A similar idea was also employed by Ding et al. [16]. We call the

resulting algorithm iterative Lagrangian solution of the constrained QNMF

problem. Such an algorithm jointly minimizes the QNMF approximation er-
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ror and forces the factorizing matrices to approach the constraint manifold.

In what follows, we show how to get such a solution for QNMF with the

stochasticity or orthogonality constraint.

4.1. Stochastic matrices

Nonnegative matrices are often used to represent probabilities, where all

or a part of the matrix elements must sum up to one. For concreteness we

only focus on the case of a left stochastic matrix with column-wise unitary

sum, i.e.
∑

iWik = 1, while the same method can easily be extended to row-

wise constraints (right stochastic matrix) or matrix-wise constraints (doubly

stochastic matrix). A general principle that incorporates the stochasticity

constraint to an existing convergent QNMF algorithm is given by the follow-

ing theorem.

Theorem 2. Suppose a QNMF objective J (W̃) to be minimized can be

upper-bounded by the auxiliary function G(W̃,W) in the form of Eq. (6),

whose gradient with respect to W is given in Eq. (7). Introducing a set of

Lagrangian multipliers {λk}, the augmented objective L(W,λ) = J (W̃) +
∑

k λk (1−
∑

iWik) is non-increasing under the update rule

W new

ik = Wik

[
∇−
ik +

∑
a∇

+
akWak

∇+
ik +

∑
a∇

−
akWak

]σ
, (10)

where σ = 1/[max(ψmax, 1)−min(ψmin, 1)].

The proof is given in Appendix A. Note that the above reforming principle

also includes the dual-I divergence case where max(ψmax, 1)−min(ψmin, 1) = 1

or σ = 1. The inclusion also holds in the following principle for the orthogo-

nality constraint.
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4.2. Orthogonal matrices

Orthogonality is another frequently used constraint in NMF [see e.g. 16,

18, 25, 4, 20] because a nonnegative orthogonal matrix has only one non-zero

entry in each row. In this way the matrix can serve as a membership indicator

in learning problems such as clustering or classification. Strict orthogonality

is however of little interest in NMF because the optimization problem remains

discrete and often NP-hard. Relaxation is therefore needed, as long as there

is only one large non-zero entry in each row of the resulting W while the

other entries are close to zero. An approximative orthogonal matrix is then

obtained by simple thresholding and rescaling.

Here we present a general principle that incorporates the orthogonality

constraint to a theoretically convergent QNMF algorithm. In Appendix we

have proven the following results.

Theorem 3. Suppose a QNMF objective J (W̃) to be minimized can be

upper-bounded by the auxiliary function G(W̃,W) in the form of Eq. (6),

whose gradient with respect to W is given in Eq. (7). Introducing a set of

Lagrangian multipliers {Λkl}, the augmented objective L(W,Λ) = J (W̃) +

Tr
(
Λ
(
I− W̃TW̃

))
is non-increasing under the update rule

W new

ik = Wik

[(
∇− +WWT∇+

)
ik

(∇+ +WWT∇−)ik

]σ
, (11)

where σ = 1/[max(ψmax, 2)−min(ψmin, 0)].

Corollary 4. If Λ+ = 1
2
WT∇+ is positive semi-definite, then σ = 1/[max(ψmax, 2)−

min(ψmin, 1)] in Eq. (11).
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Our derivation of the multiplicative rules for learning nonnegative pro-

jections is based on the Lagrangian approach. That is, one should apply

WTW = I, one of the K.K.T. conditions, to simplify the resulting multi-

plicative update rule after transforming Eq. (8) to its orthogonal counterpart

Eq. (11). Furthermore, removing duplicate terms that appear in both nu-

merator and denominator in practice will lead to faster convergent update

rule because (a+ c)/(b+ c) is closer to one than a/b for a, b, c > 0.

Although with highly orthogonal results, it is important to notice that

W never exactly reaches the Stiefel or Grassmann manifold during the op-

timization if it is initialized with positive entries. Therefore the reforming

principle using natural gradients in such manifolds (e.g. [26, 4]) must be seen

as an approximation.

5. Experiments

Quadratic Nonnegative Matrix Factorization can be applied to a variety

of learning problems. Extensive empirical study of PNMF, a special case

of QNMF, for feature extraction and clustering have been provided in [21,

25, 20]. In this paper we demonstrate four new example applications. The

first one employs PNMF for grouping the nodes of a graph; the second one

applies a two-sided QNMF to achieve two-way clustering; the third one uses

QNMF with the stochasticity constraint to estimate the parameters in hidden

Markov chains; and the fourth application uses QNMF with the orthogonality
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constraint for finding node correspondence of two graphs.

The following publicly available datasets have been used in our experi-

ments: Newman’s collection3, the Pajek database4, the 3Conference graph5,

the webkb text dataset6, the top 58112 English words7, the GenBank database8,

and the University of Florida Sparse Matrix Collection9.

5.1. Graph partitioning

Given an undirected graph, the graph partitioning problem is to divide

the graph vertices into several disjoint subsets, such that there are relatively

few connections between the subsets. The optimization of many graph par-

titioning objectives, for example, minimizing the number of removed edges

in partitioning, is NP-hard due to the complexity of algorithms in a discrete

space. It is therefore advantageous to employ a continuous approximation of

the objectives, which enables the development of efficient gradient descent -

type optimization algorithms by using differential calculus.

Suppose the connections in the graph are represented by a real-valued

N × N affinity matrix A, whose element Aij gives the weight of the edge

connecting vertices i, j. A classical approximation approach is spectral clus-

tering (e.g. [30]) which minimizes Tr
{
UT (D−A)U

}
subject to UTDU = I,

where D is a diagonal matrix with Dii =
∑

j Aij. Though the problem has a

3http://www-personal.umich.edu/~mejn/netdata/
4http://vlado.fmf.uni-lj.si/pub/networks/data/
5http://users.ics.tkk.fi/rozyang/3conf/
6http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
7http://www.mieliestronk.com/wordlist.html
8http://www.ncbi.nlm.nih.gov/genbank/
9http://www.cise.ufl.edu/research/sparse/matrices/index.html

19



closed form solution by using singular value decomposition, the resulting U

may contain negative entries and thus cannot directly be used as an indicator

for more than two clusters. An extra step that projects U to the positive

quadrant is needed [31].

Ding et al. [18] presented the Nonnegative Spectral Clustering (NSC)

method by introducing the nonnegativity constraint. They derived a mul-

tiplicative update rule as an iterative Lagrangian solution that jointly min-

imizes Tr
{
UT (D−A)U

}
and forces U to approach the manifold specified

by UTDU = I and U ≥ 0.

We can connect the NSC problem to the PNMF approach. Rewrit-

ing W = D1/2U, which does not change the cluster indication because

D is diagonal and positive, the NSC problem becomes maximization of

Tr
{
WT

(
D−1/2AD−1/2

)
W
}
over nonnegativeW and subject toWTW = I.

This is a non-negative PCA problem which can be solved by PNMF [25, 20].

Furthermore, we can replaceD−1/2AD−1/2 with some other symmetric matri-

ces or kernel matrices. A good kernel can enhance the clustering effect of the

graph and yield better partitioning results. Here we use a non-parametric ker-

nel called random-walk kernel that minimizes the combinatorial formulation

of the Dirichlet integral [32, 33, 34]. In brief, the kernel is obtained by sym-

metrizing the solution of the following equation: (2D−A)B = A. Consider

the reproducing Hilbert space induced by the kernelK = B+B
T

2
whose entries

are nonnegative because B = (2D−A)−1
A = 1

2
D−1

∑∞

i=0

(
1
2
AD−1

)i
A.

The graph partitioning problem can thus be solved by applying kernel PNMF

[20] in the implicit feature space to minimize ‖Φ(X)T−WWTΦ(X)T‖2F sub-

ject to W ≥ 0, where K = Φ(X)TΦ(X). The convergent update rule of ker-
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nel PNMF derived from the proposed principle isW new
ik = Wik

[
(2KW)

ik

(WWTKW+KWWTW)
ik

]1/3
.

We have compared the Nonnegative Spectral Clustering and our kernel

PNMF methods on four graphs: (1) Korea, a communication network of 39

women of two classes in Korea about family planning. (2) WorldCities, a

dataset consists of the service values (indicating the importance of a city in

the office network of a firm) of 100 global advanced producer service firms

over 315 world cities. The firms are grouped into six categories: accountancy,

advertising, banking/finance, law, insurance and management consultancy.

(3) PolBlogs, a network of weblogs on US politics, with 1224 nodes. (4)

3Conference, the coauthorship network in three conferences SIGIR, ICML,

and ICCV from 2002-2007. There are 2817 authors, 14048 edges in total. The

value on each edge represents the number of papers that two authors have

coauthored. The first three datasets are gathered from Newman’s collection3

and the Pajek database4. The 3Conference graph is available at the authors’

website5.

We have computed the purities of the resulting partitions by using the

ground truth class information: given r partitions and q classes, purity =

1
N

∑r
k=1max1≤l≤qN

l
k, where N

l
k is the number of vertices in the partition k

that belong to ground-truth class l. A larger purity in general corresponds to

better clustering result. For each dataset, we repeated the compared methods

100 times with different random initializations and recorded the purities,

whose means and standard deviations are illustrated in Figure 1. For small

graphs Korea and WorldCities, kernel PNMF is at the same level or slightly

better than the Nonnegative Spectral Clustering method. For larger graphs

PolBlogs and 3Conference, kernel PNMF is significantly superior with much
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Figure 1: Cluster purities using the two compared graph partitioning methods. Numbers

of graph nodes are shown in parentheses.

higher clustering purities.

The computational cost of both NSC and kernel PNMF is O(N2r) per

iteration. We have performed the above experiments using Matlab R2010b

software on a personal computer with Intel Core i7 CPU, 8G memory and

Ubuntu 10 operating system. For small graphs such as Korea and WorldCi-

ties, the algorithms converged within a few seconds. For larger graphs such

as PolBlogs and 3Conference, they converged within ten to fifteen minutes.

5.2. Two-way clustering

Biclustering, coclustering, or two-way clustering is a data mining problem

which requires simultaneous clustering of matrix rows and columns. Here we

demonstrate an application of QNMF for finding biclusters in which the

matrix entries have similar values. A good biclustering of this kind should
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generate a blockwise visualization of the matrix when the rows and columns

are ordered by their bicluster indices.

Two-way clustering has previously been addressed by the linear NMF

methods (e.g. [8]). Given the factorization of the input matrix X ≈ WH,

the bicluster index for each row of X is determined by the index of maximal

entry in each row of W. The bicluster index for columns are likewise ob-

tained. The biclustering problem has also been attacked by three-factor linear

NMF X ≈ LSRT with the orthogonality constraint on L and R. For tri-

factorizations, Ding et al. [16] gave a multiplicative algorithm called BiOR-

NM3F when the approximation error is measured by the squared Euclidean

distance. However, when this method is extended to other divergences such

as the I-divergence, it is often stuck in trivial local minima where S tends

to be smooth or even uniform because of the sparsity of L and R [15]. An

extra constraint on S is therefore needed.

Here we propose to use a QNMF formulation for the biclustering problem:

X ≈ LLTXRRT . Compared with the BiOR-NM3F approximation, here

we constrain the middle factorizing matrix S to be LTXR. The resulting

two-sided QNMF objectives can be optimized by alternating the one-sided

algorithms, that is, interleaving optimizations of X ≈ LLTY(R) with Y(R) =

XRRT fixed and X ≈ Y(L)RRT with Y(L) = LLTX fixed. The bicluster

indices of rows and columns are given by taking the maximum of each row

in L and R. We call the new method Biclustering QNMF (Bi-QNMF) or

Two-way QNMF.

We have compared Bi-QNMF with linear NMF based on the I-divergence

and BiOR-NM3F for two-way clustering on both synthetic and real-world
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Figure 2: Biclustering using α-NMF and α-PNMF based on the I-divergence for the syn-

thetic data: (a) the original matrix, (b) the disordered or testing matrix. The biclustering

results use (c) two-factor linear NMF, (d) BiOR-NM3F, (e) BiOR-NM3F-I and (f) Bi-

QNMF.

data. To our knowledge, BiOR-NM3F is implemented only for the squared

Euclidean distance. For comparison, we apply the same development proce-

dure by [16] (see also Section 4.2) to obtain the multiplicative update rules

for the I-divergence, which we denote by BiOR-NM3F-I.

Firstly, a 200 × 200 blockwise nonnegative matrix is generated, where

each block has dimensions 20, 30, 60 or 90. The matrix entries in a block are

randomly drawn from the same Poisson distribution whose mean is chosen
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Figure 3: Biclustering using (from left to right) two-factor linear NMF, BiOR-NM3F,

BiOR-NM3F-I, and Bi-QNMF for the webkb data.

from 1, 2, 4, or 7. The resulting generated matrix is visualized in Figure 2 (a)

by using the Matlab command imagesc. The testing matrix is then obtained

by randomly re-ordering the rows and columns of the original matrix. The

biclustering task is to recover groups of rows and columns. With the learned

factorizing matrices and corresponding bicluster indices, we reordered the

rows and columns of the disordered matrix by ascending indices.

We ran each compared algorithm ten times and picked the result with the

smallest NMF approximation error. The resulting matrices are displayed in

Figure 2 (c)-(f). It can be seen that the two-factor linear NMF method finds

some but not all biclusters, especially the ones with a few rows. BiOR-NM3F

performs even worse than the two-factor linear NMF, with the block sizes

totally mismatched and many blocks containing dissimilar values. The failure

of BiOR-NM3F could be caused by the wrong divergence type. We thus also

compared the result by using BiOR-NM3F-I. However, the extended BiOR-

NM3F generates identical columns in L and R, as well as a uniform S, which
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results in still disordered visualization. Compared to the above methods,

Bi-QNMF can well reconstruct all biclusters up to a block-wise permutation.

Next, we compared the four methods on the real-world webkb dataset6.

The data matrix contains a subset of the whole dataset, with two classes

of 1433 documents and 933 terms. The ij-th entry of the matrix is the

number of the j-th term that appears in the i-th document. Same as the

tests on synthetic data, we reordered the matrix rows and columns by using

the learned factorizing matrices of the compared methods. The resulting

matrices are visualized in Figure 3 using the Matlab command spy.

The BiOR-NM3F method basically finds no biclusters. Only some small

groups can barely be seen on the rightmost of the display. BiOR-NM3F-I is

even worse, as there is no visually blockwise pattern in its result. The row

cluster sizes found by the two-factor linear NMF and Bi-QNMF are roughly

the same, about 650 rows for the first cluster and the rest for the second.

However, linear NMF results in incoherent blocks, where the upper rows in

the first row cluster are quite different from the others but very similar to the

ones in the second row cluster. Such incoherence does not take place in the

Bi-QNMF result, where the matrix is clearly divided into 2× 2 biclusters.

Suppose the input matrix is of size m × n. The computational cost of

BiOR-NM3F, BiOR-NM3F-I and Bi-QNMF is O(mn ·max{rl, rr}) per itera-

tion, where rl and rr are number of columns of L and R. For synthetic data,

all NMF methods finish 20,000 iterations (converged) within two minutes.

For the larger webkb dataset, the NMF biclustering algorithms converged

within two hours.
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5.3. Estimating hidden Markov chains

In a stationary Hidden Markov Chain Model (HMM), the observed out-

put and the hidden state at time t are denoted by x(t) ∈ {1, . . . , n} and

y(t) ∈ {1, . . . , r}, respectively. The joint probabilities of a consecutive pair

are then given by Xij , P (x(t) = i, x(t + 1) = j) and Ykl , P (y(t) =

k, y(t + 1) = l) accordingly. For the noiseless model, we have X = WYWT

with W , P (x(t) = i|y(t) = k). When noise is considered, this becomes

an approximative QNMF problem X ≈ WYWT . Particularly, when the

approximation error is measured by squared Euclidean distance, the pa-

rameter estimation problem of HMM can be formulated as minimization

of ‖X−WYWT‖2F over nonnegative W and Y and subject to
∑

iWik = 1

for all k and
∑

kl Ykl = 1.

Previously, the above optimization problem has been difficult because the

objective is quartic with respect to W. An earlier algorithm, named NNMF-

HMM [35], interleaves minimizations over Y and one of the appearances

of W, each of which is implemented by using matrix pseudo-inversion and

truncation of negative entries.

Now we have a much nicer algorithm for this QNMF problem. Using

the presented deriving principle, we can obtain the multiplicative update

rule in the form of Eq. (10), where ∇−
W

= XWYT + XTWY, ∇+
W

=

WYWTWYT+WYTWTWY,∇−
Y
= WTXW, and∇+

Y
= WTWYWTW.

We have compared the two methods on three datasets. The first is a

synthetic sequence generated by using the procedure by Lakshminarayanan

and Raich [35]. The other two are real-world datasets, one for letter sequence

in the top 58112 English words7 and the other for a genetic code sequence of
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Figure 4: Evolutions of the HMM estimation objective.

homo sapiens8. The sizes of the observed input matrix are 22× 22, 26× 26,

and 64× 64, respectively. We empirically set the number of hidden states in

all experiments.

Both compared algorithms were run at least 10000 iterations. The evolu-

tions of HMM estimation objective are shown in Figure 4. The new method

is significantly more efficient than the old algorithm for all selected datasets.

For the two smaller datasets, the objectives using NNMF-HMM tend to fluc-

tuate a lot during the iterations, which is possibly caused by the brute-force

truncation of negative entries. NNMF-HMM is more problematic for the

largest dataset, where the approximation error only barely drops after thou-

sands of epochs. By contrast, the objectives using QNMF-HMM decrease

much faster and more stably.

QNMF-HMM uses soft constraints during its learning. To verify that the

constraint errors are trivial in the converged results, we have checked the

quantities
∑

k |1−
∑

iWik| and |1−
∑

kl Ykl| as constraint error measures

for W and Y, respectively. We repeated each experiment 100 times with

different random initial guess ofW andY. The recorded means and standard
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Table 2: Constraint errors using QNMF-HMM.

synthetic English words genetic codes

W 8.9e-06±3.8e-05 3.3e-05±3.5e-05 6.1e-06±6.1e-06

Y 1.7e-08±1.2e-07 2.2e-07±5.6e-07 2.7e-07±2.2e-07

synthetic English words genetic codes
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Figure 5: HMM estimation objectives for the selected datasets.

Figure 6: Reordered joint probability matrix by the letter clusters.
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deviations of the above constraint errors are shown in Table 2. We can see

that the constraint errors are so small that they are negligible compared to

the data dimensions.

We also examined the final objectives using the compared methods. For

QNMF-HMM, we normalized W in the end of learning to force the strict

constraints. The normalization actually causes little loss because of the neg-

ligible constraint errors. The error bars of the final objectives are illustrated

in Figure 5, from which we can see that the new method can achieve much

smaller approximation errors than the old one. In addition, the variations

of QNMF-HMM results are very small, which indicates the our method is

pretty robust.

The squared Euclidean distance in the HMM estimation can be replaced

with the Kullback-Leibler divergence, which is a more canonical difference

measure for probabilities. With such divergence we can reveal some inter-

esting structure in the fitted model of the English words data. Here we

only focus on the QNMF-HMM algorithm because there is no existing imple-

mentation or straightforward extension of NNMF-HMM for Kullback-Leibler

divergence.

The latent or blockwise structure of the joint probability matrix X is

visualized in Figure 6 by reordering the rows and columns according to the

letter clusters, where lighter dots correspond to larger values. Each English

letter was assigned to one of six clusters according to largest entries in the

learned W rows. In this way we can group the letters into the following six

groups: (1) D, Q, R, S, X, (2) C, G, (3) B, F , H, J , K, L, M , P , T , V , W ,

Z, (4) N , (5) A, I, O, U , and (6) E, Y . The first four groups are consonants,
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Table 3: Errors (mean±standard deviation) in directed graph matching.

Graph size EU-QNMF I-QNMF

SAMPIN 18 1.20±0.38 0.00±0.00

WOLFK 20 1.80±0.30 2.10±0.07

football35 35 7.20±2.28 8.20±0.81

cage5 37 9.20±1.03 12.80±0.53

BKOFFC 40 0.00±0.00 0.00±0.00

curtis54 54 96.40±5.38 56.60±2.63

will57 57 87.60±3.24 35.80±1.36

PRISON 67 4.40±0.45 6.70±0.37

CAG mat72 72 0.20±0.06 0.00±0.00

GlossGT 72 4.60±0.67 4.80±0.19

while the remaining two are basically vowels. A plausible interpretation of

such division is that English words consist of syllables where a consonant is

often followed by a vowel and vice versa. The letter N itself forms a group

probably because we used a pretty large list of English words where suffixes

such as ING and TION occur frequently.

5.4. Graph matching

Given a graph and its node-permuted version, the graph matching prob-

lem is to find the correspondence of graph nodes. If the graph and its permu-

tation are represented by (weighted) adjacency matrices, denoted by A and

B, the isomorphism can be written as B = PAPT , where P is a permutation

matrix.
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The computation time of existing combinatorial algorithms to find the

exact correct permutation grows exponentially as the number of nodes in-

creases. For large graphs, approximation is therefore needed. A classical

approximation algorithm by Umeyama [36] uses eigendecomposition and sim-

ply forces nonnegativity by using absolute values of the eigenvectors. Ding

et al. [18] pointed out that the results of Umeyama’s algorithm are not sat-

isfactory, and proposed a special case of QNMF formulation based on the

Euclidean distances: to minimize ‖B−WAWT‖2F subject to WTW = I and

W ≥ 0. After the multiplicative updates have converged, the permutation

P is obtained by using the classical Hungarian algorithm on elementwise in-

verse of WT [37]. This method, abbreviated by EU-QNMF, was reported to

be superior to Umeyama’s algorithm on dense graphs generated as follows:

Aij = 100rij and Bij = (PtAPT
t )ij(1 + ǫsij), where rij and sij are uniform

random numbers in [0, 1], Pt is a permutation and ǫ sets the noise level.

However, many real-world networks are not generated like this. They should

be sparse and thus the Gaussian assumption that underlies the Euclidean-

NMF does not hold. We are thus motivated to use the I-divergence, i.e. to

minimize DI(B||WAWT ) over W ≥ 0 and subject to WTW = I. This cor-

responds to underlying Poisson distribution which is more suitable for sparse

occurrences. We abbreviate the new method by I-QNMF.

The comparison results of EU-QNMF and I-QNMF for graph matching

are shown in Tables 3 and 4 for directed and undirected graphs, respectively.

All graphs in use are binary-valued. Most graphs were downloaded from the

University of Florida Sparse Matrix Collection9. Some others were taken from

Newman’s network data collection3 and from the Pajek datasets4. For fair
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Table 4: Errors (mean±standard deviation) in undirected graph matching.

Graph size EU-QNMF I-QNMF

RDPOS 14 4.80±0.41 4.20±0.27

PADGB 16 9.20±0.98 10.20±0.64

PADGM 16 5.60±0.66 6.20±0.40

WOLFN 20 3.20±0.59 2.00±0.34

strike 24 25.60±1.36 12.20±1.02

ZACHC 34 43.20±4.76 10.40±0.08

ZACHE 34 27.60±2.97 5.00±0.36

korea1 35 39.20±2.72 12.40±0.82

korea2 35 29.60±1.78 12.80±0.50

mexican power 35 20.00±5.25 10.80±0.62

Sawmill 36 70.40±2.14 16.00±0.69

dolphins 62 137.80±8.31 31.20±1.17

comparison, we used a neutral quantity to measure the matching error, which

is defined as #
{
XOR(PAPT ,B)

}
, i.e. the number of different edges between

the estimated permuted matrix and the true permuted matrix. A smaller er-

ror indicates better matching quality. In summary, I-QNMF performs almost

at the same level as EU-QNMF for small or easy-matched graphs. However,

the former is significantly better for larger and more difficult graphs in terms

of both smaller mean errors and smaller deviations. This advantage is even

clearer for undirected graphs.

The computational cost of both NMF graph matching algorithms isO(N3)

for a graph with N nodes. For small graphs such as SAMPIN and strike,
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the algorithms can finish 20,000 iterations (converged) within a few seconds.

For larger graphs such as GlossGT and dolphins, the algorithms converged

within about ten minutes.

6. Conclusions

We have formulated the general problem of approximative quadratic non-

negative matrix factorization and proposed a framework to develop multi-

plicative optimization algorithms that are guaranteed to decrease the objec-

tive function. Multiplicative algorithms for two typical QNMF factorization

forms based on a great variety of approximation error measures, as well

as the stochasticity and orthogonality constraints, were presented. The pro-

posed method has been applied to four different pattern recognition problems,

where QNMF is shown to be more advantageous than other state-of-the-art

NMF methods.

Our work opens the door to higher-order nonnegative matrix factoriza-

tions, but this is definitely not the end of this stream of research. For op-

timization, recently some faster additive methods for fast optimization of

NMF objectives have been developed (e.g. [38, 39, 5]). However, the speedup

is achieved for only limited kinds of divergences, especially the squared Eu-

clidean distance where the Hessian has a particularly simple form. Otherwise,

these additive approaches could be sensitive to the choice of extra parameters

such as learning rate or line search step. How to extend these methods to

many other divergences remains an open problem. Alternatively, we could

implant efficient approximative second-order optimization techniques into the

multiplicative updates for faster convergence. In addition, scalable QNMF
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algorithms for more divergence types other than squared Euclidean distance

could be developed using advanced streaming or distributed computation

techniques. Moreover, we have found that many QNMF multiplicative al-

gorithms converge to similar local minima up to a certain component order.

The theoretical analysis of the global minimum up to certain permutations

needs further investigation.

Besides matrix products, the factorized approximation may involve non-

linear operators, for example, a nonlinear activation function that interleaves

a factorizing matrix and its transpose. This kind of approximation could be

extended to the field of nonnegative neural networks and connected to the

deep learning principle when multiple such groups of elements are stacked.

Appendix A. Proof of Theorem 2

Decompose λ into two nonnegative parts: λ = λ
+ − λ

−, where λ+k =

(|λk|+ λk) /2 and λ−k = (|λk| − λk) /2. We can then write the augmented ob-

jective as L(W̃,λ) = J (W̃)+
∑

k λ
+
k

(
1−

∑
i W̃ik

)
−
∑

k λ
−
k

(
1−

∑
i W̃ik

)
.

Next, we apply the original upper-bounding on J (W̃): L(W̃,λ) ≤ G(W̃,W)+
∑

k λ
+
k

(
1−

∑
i W̃ik

)
−
∑

k λ
−
k

(
1−

∑
i W̃ik

)
. Combining individual upper-

bounds into two, we obtain the ultimate auxiliary function:

G̃(W̃,W) =
∑

ik

Wik

u

(
W̃ik

Wik

)u (
∇+
ik + λ−k

)
−
∑

ik

Wik

v

(
W̃ik

Wik

)v (
∇−
ik + λ+k

)
,

up to an additive constant, where u = max(ψmax, 1) and v = min(ψmin, 1).

Setting ∂G̃/∂W̃ik = 0 leads to

W new
ik = Wik

[
∇−
ik + λ+k

∇+
ik + λ−k

]σ
(A.1)
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with σ = 1/(u − v). From ∂L(W̃,λ)/∂W̃ik = 0, we get (∇+ − ∇−)ik −

λk = 0. By multiplying both sides with
∑

iWik and making use of the fact

∂L(W,λ)/∂λk = 0, i.e.
∑

iWik = 1, we obtain λk =
∑

iWik∇
+
ik−
∑

iWik∇
−
ik.

Inserting this to Eq. (A.1), the multiplicative update rule becomes Eq. (10).

Appendix B. Proof of Theorem 3 and Corollary 4

Similar to the proof of Theorem 2, we decompose Λ into two nonnegative

parts: Λ = Λ+ − Λ−. We can then construct the auxiliary function of the

generalized objective:

L(W̃,Λ) =J (W̃)− Tr
(
Λ+WTW

)
+ Tr

(
Λ−WTW

)
+ constant

≤J (W̃)−
∑

ikl

Λ+
klWikWil

(
1 + ln

W̃ikW̃il

WikWil

)

+
∑

ik

(
WΛ−

)
ik
W̃ 2
ik

Wik

+ constant

≤
∑

ik

Wik

u

(
W̃ik

Wik

)u (
∇+ + 2WΛ−

)
ik

−
∑

ik

Wik

v

(
W̃ik

Wik

)v (
∇− + 2WΛ+

)
ik
+ constant , G̃(W̃ ,W ),

where u = max(ψmax, 2) and v = min(ψmin, 0). Setting ∂G̃/∂W̃ik = 0 gives

W new
ik = Wik

[(
∇− + 2WΛ+

)
ik(

∇+ + 2WΛ−
)
ik

]σ
(B.1)

with σ = 1/(u−v). From ∂L(W,Λ)/∂W = 0, we get 2WΛ = ∇+−∇−. Us-

ing ∂L(W,Λ)/∂Λ = 0, i.e. WTW = I, one obtains Λ = 1
2
WT (∇+ −∇−) .

Inserting this to (B.1), the multiplicative update rule becomes Eq. (11).
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The proof of Corollary 4 is similar to that of the theorem, except that we

replace the bound of −Tr
(
Λ+WTW

)
with a hyper-plane −2

∑
ikl W̃ilΛ

+
lk +

constant. The corollary thus results in a larger exponential or step size σ

than Theorem 3.
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