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Abstract. Projective Nonnegative Matrix Factorization (PNMF) has
demonstrated advantages in both sparse feature extraction and cluster-
ing. However, PNMF requires users to specify the column rank of the
approximative projection matrix, the value of which is unknown before-
hand. In this paper, we propose a method called ARDPNMF to auto-
matically determine the column rank in PNMF. Our method is based on
automatic relevance determination (ARD) with Jeffrey’s prior. After de-
riving the multiplicative update rule using the expectation-maximization
technique for ARDPNMF, we test it on various synthetic and real-world
datasets for feature extraction and clustering applications to show the ef-
fectiveness of our algorithm. For FERET faces and the Swimmer dataset,
interpretable number of features are obtained correctly via our algorithm.
Several UCI datasets for clustering are also tested, in which we find that
ARDPNMF can estimate the number of clusters quite accurately with
low deviation and good cluster purity.

1 Introduction

Since its introduction by Lee and Seung [1] as a new machine learning method,
Nonnegative Matrix Factorization (NMF) has been applied successfully in many
applications, including signal processing, text clustering and gene expression
studies, etc. (see [2] for a survey). Recently much progress for NMF has been
reported both in theory and practice. Also there are several variants to ex-
tend original NMF, (e.g. [3–5]). Projective Nonnegative Matrix Factorization

(PNMF), introduced in [6–8], approximates a data matrix by its nonnegative
subspace projection. Compared with NMF, the PNMF has a number of benefits
such as better generalization, a sparser factorizing matrix without ambiguity,
and close relation to principal component analysis, which are advantageous in
both feature extraction and clustering [8].

However, a remaining difficult problem is how to determine the dimension-
ality of the approximating subspace in PNMF in practical applications. In most
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cases, one has to guess a suitable component number, e.g. the number of features
needed to encode facial images. Such trial-and-error procedures can be tedious
in practice. In this work, we propose a variant of PNMF called ARDPNMF that
can automatically determine dimensionality of factorizing matrix. Our method
is based on the automatic relevance determination (ARD) [9] technique which
has been used in Bayesian PCA [10] and adaptive sparse supervised learning
[11]. The proposed algorithm is free of user-specified parameters. Such property
is especially desired for exploratory analysis of the data structure. Empirical re-
sults on several synthetic and real-world datasets demonstrate that our method
can effectively discover the number of features or clusters.

This paper is organized as follows. In Section 2, we summarize the essence of
PNMF and model selection in NMF. Then, we derive our algorithm ARDPNMF
in Section 3. In Section 4, the experimental results of the proposed algorithm on
a variety of synthetic and real datasets for feature extraction and clustering are
presented. Section 5 concludes the paper.

2 Related Work

2.1 Projective Nonnegative Matrix Factorization

Given a nonnegative input matrix X ∈ R
m×n
+ , Projective Nonnegative Matrix

Factorization (PNMF) seeks a nonnegative matrix W ∈ R
m×r
+ such that

X ≈WWT X. (1)

Compared with the NMF approximation scheme, X ≈WH, PNMF replaces H

matrix with WT X. As a result, PNMF has a number of advantages over NMF
[8], including high sparseness in the factorizing matrix W, closer equivalence to
clustering, easy nonlinear extension to a kernel version, and fast approximation
of newly coming samples without heavy re-computation. The name “projective”
comes from the fact that WWT is very close to a projection matrix because the
W learned by PNMF is highly orthogonal. It can be made fully orthogonal by
post-processing.

PNMF based on the Euclidean distance solves the following optimization
problem:

minimize
W≥0

JF (W) =
1

2

∑

ij

[

Xij −
(

WWT X
)

ij

]2

. (2)

Previously, Yuan and Oja [6] presented a multiplicative algorithm that iteratively
applies the following update rule for the above minimization:

W ′
ik ←Wik

Aik

Bik

(3)

Wnew ←W′/‖W′‖, (4)

where A = 2XXT W, B = WWT XXT W + XXT WWT W, and ‖W′‖ calcu-

lates the square root of the maximal eigenvalue of W′T W′.



2.2 Model Selection in NMF

In NMF, Tan and Févotte [12] addressed the model selection problem based on
automatic relevance determination. First, a prior is added on the columns and
rows of matrix W and H. A Bayesian NMF model with the prior is then built.
After maximizing the posterior, they obtain a multiplicative update rule to do
both factorization and determination of component number simultaneously. The
limitation of this method is that the prior distribution still depends on the hyper-
parameters. For real-world applications, the hyper-parameters must be chosen
suitably in advance to obtain reasonable results. In this sense, this method is
not totally automatic for determining the component number.

In the following section, we overcome this problem and apply the ARD
method to PNMF by selecting Jeffrey’s prior [13] to get rid of hyper-parameters.
Then our algorithm is totally automatic without any user-specified parameters.

3 ARDPNMF

Firstly, we construct a generative model for PNMF based on the Euclidean
distance, where the likelihood function is a normal distribution.

p(Xij |W) = N
(

Xij |
(

WWT X
)

ij
, I

)

(5)

Following the approach of Bayesian PCA [10], we give a normal prior on the kth
column of W with variance γk. Due to the nonnegativity in PNMF, we treat the
distribution of each column of W as half-normal distribution.

p(Wik|γk) = HN (Wik|0, γk) =

√
2√

πγk

exp

(

−W 2
ik

2γk

)

(6)

for Wik ≤ 0, and zero otherwise.
Similar to [13], we impose a non-informative Jeffreys’ hyper prior on the

variances γ to control the sparseness of W:

p(γk) ∝ 1

γk

(7)

We choose this prior because it expresses ignorance with respect to scale and the
resulting model is parameter-free, which plays a significant role in determining
the component number automatically.

The posterior of W for the above model is given by

p(W|X,γ) ∝ p(X|W)p(W|γ) (8)

Because γ is unobserved, we apply the Expectation-Maximization (EM) algo-
rithm by regarding γ as a hidden variable.
E-step. Given the current parameter estimates and observed data, E-step com-
putes the expectation of the complete log-posterior, which is known as Q-function:

Q(W|W(t)) =

∫

log p(W|X,γ)p(γ|W(t),X)dγ (9)



Thanks to the property of Jeffrey’s prior, we have a concise form of Q-function
following the derivation in [13]:

Q(W|W(t)) = −JF (W)− 1

2
Tr(WV(t)WT ), (10)

where JF (W) is the original objective function in PNMF (see Equation (2)),

V(t) is a diagonal matrix with V
(t)
ii =

∥

∥

∥
w

(t)
i

∥

∥

∥

−2

, and
∥

∥

∥
w

(t)
i

∥

∥

∥
is the L2-norm of

the ith column of matrix W(t). Note that we ignore the constants independent
of W to present a simplified version of the Q-function.
M-step. This step maximizes the Q-function w.r.t parameters.

W(t+1) = arg max
W

Q(W|W(t)), (11)

which is equivalent to minimizing its negative form

Qard(W|W(t)) = −Q(W|W(t)) = JF (W) +
1

2
Tr(WV(t)WT ). (12)

The derivative of Qard(W|W(t)) with respect to W is

∂QARD(W|W(t))

∂Wik

=−Aik + Bik +
(

WV(t)
)

ik
. (13)

For A,B, see eq. (3).
A commonly used principle that forms multiplicative update rule in NMF is

W ′
ik ←W

(t)
ik

∇−
ik

∇+
ik

, (14)

where ∇− and ∇+ denote the negative and positive parts of the derivative [1].
Applying this principle to the gradient given in Equation (13), we obtain the
multiplicative update rule for ARDPNMF:

W ′
ik ←W

(t)
ik

A
(t)
ik

B
(t)
ik +

(

W(t)V(t)
)

ik

. (15)

The ARDPNMF algorithm is summarized in Algorithm 1. After the algorithm
converges, we apply a simple thresholding to keep the W columns whose norm is
larger than a small constant ǫ. In practice such thresholding is insensitive to ǫ be-
cause the ARD prior forces these norms towards two extremes, as demonstrated
in Section 4.1.

4 Experimental Results

We have implemented the ARDPNMF algorithm and tested it on various syn-
thetic and real-world datasets to find out the effectiveness of our algorithm. The
focus is on feature extraction and clustering.



Algorithm 1 ARDPNMF based on Euclidean distance

Usage: W← ARDPNMF(X, r), where r < m is a large initial component number.
Initialize W(0), t← 0.
repeat

V
(t) ← diag(‖w

(t)
1 ‖

−2, . . . , ‖w(t)
r ‖

−2)

W ′

ik ←W
(t)
ik

A
(t)
ik

B
(t)
ik

+ (W(t)V(t))
ik

W
(t+1) ←W

′/‖W′‖
t← t + 1

until convergent conditions are satisfied
Check the diagonal elements in matrix V, and keep the columns of W with large
L2-norms as the effective components.

Fig. 1. Some sample images of Swimmer dataset

4.1 Swimmer Dataset

Swimmer dataset [14] consists of 256 images, each of which depicts a figure with
one static part (torso)and four moving parts (limbs) with size 32 × 32. Each
moving part has four different positions. Four of the 256 images are displayed in
Figure 1. The task here is to extract the 16 limb positions and 1 torso position.
Firstly, we vectorized each image matrix and treated it as one column of input
matrix X. The initial component number was set to r = 36. Each column of
W learned by ARDPNMF has the same dimensionality as the input column
vectors and thus can be displayed as base images in Figure 2. We found that our
algorithm can correctly extract all the 17 desired features. The L2-norms of all
the columns of W are shown in Figure 3. We can easily see that the L2-norms of
ineffective basis images are equal to zero or very close to zero. The three values
between 0 and 1 correspond to three duplicates of the torsos.

4.2 FERET Faces Dataset

The FERET face dataset [15] for feature extraction consists of the inner part
of 2409 faces with size of 32 × 32. We normalized the images via dividing the
pixel values by their maximal value 255. In ARDPNMF, the initial component
number was chosen as r = 64. Figure 4 shows the resulting base images, which
demonstrates high sparseness in the factorizing matrix W and captures nearly
all facial parts.



Fig. 2. 36 basis images of Swimmer dataset. The gray cells correspond to columns
whose L2-norms are zero or very close to zero.
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Fig. 3. L2-norm of 36 basis images in Swimmer dataset.

4.3 Clustering for UCI Datasets

Clustering is another important application of PNMF. We construct the input
matrix X by treating each sample vector as a row. Then the index of the maximal
value in a row of W indicates the cluster membership of the corresponding
sample [8]. We have adopted a widely-used measurement called purity [8] for
quantitatively analyzing clustering results, which is defined as follows:

purity =
1

n

r′

∑

k=1

max
1≤l≤q

nl
k, (16)

where q is the true number of classes, r′ is the effective number of components
(clusters), nl

k is the number of samples in the cluster k that belongs to original



Fig. 4. 64 basis images of FERET dataset. 55 of them are effective basis. Remaining
gray ones’ L2-norms are zero or close to zero.

Table 1. Clustering Performance

Datasets iris ecoli glass wine parkinsons

Number of classes 3 5 6 3 2
Estimated cluster number 4.34± 0.71 2.74± 0.60 3.34± 0.61 3± 0.40 4.37± 0.58
Purity 0.95± 0.01 0.68± 0.06 0.67± 0.05 0.9± 0.09 0.77± 0.02

class l, and n is the total number of samples. Larger purity value indicates better
clustering results, and value 1 indicates total agreement with the ground truth.

We chose several commonly used datasets in the UCI repository1 as exper-
imental data. In each dataset, ARDPNMF was run 100 times with different
random seeds for W initialization, and we set the initial cluster number r as
36. Table 1 shows the mean and standard deviation of the number of clusters
and purities, as well as the numbers of ground truth classes. ARDPNMF can
automatically estimate the cluster number which is not far from the true class
number, with small deviations. Furthermore, our method can achieve reasonably
good clustering performance especially when the estimated r value is close to
the ground truth.

5 Conclusion

In this paper, using Bayesian construction and EM algorithm, we have presented
the ARDPNMF algorithm which can automatically determine the rank of the
projection matrix in PNMF. By using Jeffreys’ prior as the model prior, we

1 http://www.ics.uci.edu/˜mlearn/MLRepository.html



have made our algorithm totally free of human tuning in finding algorithm pa-
rameters. Through experiments on various synthetic and real-world datasets for
feature extraction and clustering, ARDPNMF demonstrates its effectiveness in
model selection for PNMF. Moreover, our algorithm is readily extended to other
dissimilarity measures, such as the α or β divergences [2]. Our method however
could be sensitive to the initialization of the factorizing matrix in some cases,
which we should improve in the future for a more robust estimate of the rank.
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