Improving Cluster Analysis by Co-initializations

He Zhang*, Zhirong Yang, Erkki Oja

Department of Information and Computer Science, Aalto University, Espoo, Finland

Abstract

Many modern clustering methods employ a non-convex objective function and use iterative optimization algorithms to find local minima. Thus initialization of the algorithms is very important. Conventionally the starting guess of the iterations is randomly chosen; however, such a simple initialization often leads to poor clusterings. Here we propose a new method to improve cluster analysis by combining a set of clustering methods. Different from other aggregation approaches, which seek for consensus partitions, the participating methods in our method are used consequently, providing initializations for each other. We present a hierarchy, from simple to comprehensive, for different levels of such co-initializations. Extensive experimental results on real-world datasets show that a higher level of initialization often leads to better clusterings. Especially, the proposed strategy is more effective for complex clustering objectives such as our recent cluster analysis method by low-rank doubly stochastic matrix decomposition (called DCD). Empirical comparison with three ensemble clustering methods that seek consensus clusters confirms the superiority of improved DCD using co-initialization.

Keywords: Clustering, Initializations, Cluster ensembles

Preprint submitted to Pattern Recognition Letters

^{*}Corresponding author.

Email addresses: he.zhang@aalto.fi (He Zhang), zhirong.yang@aalto.fi (Zhirong Yang), erkki.oja@aalto.fi (Erkki Oja)

1 1. Introduction

Cluster analysis plays an essential role in machine learning and data mining. The aim of clustering is to group a set of objects in such a way that the objects in the same cluster are more similar to each other than to the objects in other clusters, according to a particular objective. Many clustering methods are based on objective functions which are non-convex. Their optimization generally involves iterative algorithms which start from an initial guess. Proper initialization is critical for getting good clusterings.

For simplicity, random initialization has been widely used, where a starting point is randomly drawn from a uniform or other distribution. However, such a simple initialization often yields poor results and the iterative clustering algorithm has to be run many times with different starting points in order to get better solutions. More clever initialization strategies are thus required to improve efficiency.

Many ad hoc initialization techniques have been proposed for specific clus-15 tering methods, for example, specific choices of the initial cluster centers of the 16 classical k-means method (see e.g. [1, 2, 3, 4]), or singular value decomposition 17 for clustering based on nonnegative matrix factorization [5, 6]. However, there 18 seems to be no initialization principle that would be commonly applicable for a 19 wide range of iterative clustering methods. Especially, there is little research on 20 whether one clustering method can benefit from initializations by the results of 21 another clustering method. 22

In this paper, we show experimentally that the clusterings can usually be 23 improved if a set of diverse clustering methods provide initializations for each 24 other. We name this approach *co-initialization*. We present a hierarchy of ini-25 tializations towards this direction, where a higher level represents a more exten-26 sive strategy. At the top are two levels of co-initialization strategies. We point 27 out that despite their extra computational cost, these strategies can often bring 28 significantly enhanced clustering performance. The enhancement is especially 29 significant for more complex clustering objectives, for example, Probabilistic 30

Latent Semantic Indexing [7], and our recent clustering method by low-rank
doubly stochastic matrix decomposition (called DCD) [8].

Our claims are supported by extensive experiments on nineteen real-world 33 clustering tasks. We have used a variety of datasets from different domains 34 such as text, vision, and biology. The proposed initialization hierarchy has been 35 tested using eight state-of-the-art clustering methods. Two widely used crite-36 ria, cluster purity and Normalized Mutual Information, are used to measure 37 the clustering performance. The experimental results verify that a higher level 38 initialization in the proposed hierarchy often achieve better clustering perfor-39 mance. 40

Ensemble clustering is another way to combine a set of clustering methods. It aggregates the different clusterings into a single one. We also compared coinitialization with three prominent ensemble clustering methods. The comparison results show that the improved DCD using co-initializations outperforms these ensemble approaches that seek a consensus clustering.

In the following, Section 2 reviews briefly the recently introduced Data-46 Cluster-Data (DCD) method. It is a representative clustering method among 47 those that strongly benefit from co-initializations, and will be shown to be over-48 all the best method in the experiments. Then Section 3 reviews related work 49 on ensemble clustering, which is another way of combining a set of base clus-50 tering methods. In Section 4, we present our novel co-initialization method 51 and describe the initialization hierarchy. Experimental settings and results are 52 reported in Section 5. Section 6 concludes the paper and discusses potential 53 future work. 54

55 2. Clustering by DCD

Some clustering methods such as Normalized Cut [9] are not sensitive to
initializations but tend to return less accurate clustering (see e.g. [10], page 8, [8,
11], and Section 5.3). On the other hand, some methods can find more accurate
results but require careful initialization. The latter kind of methods can benefit

more from our co-initialization strategy, to be introduced in Section 4. Recently we proposed a typical clustering method of the latter kind, which is based on Data-Cluster-Data random walk and thus called DCD [8]. In this section we recapitulate the essence of DCD. It belongs to the class of probabilistic clustering methods. Given n data samples and r clusters, denote by P(k|i) the probability of assigning the *i*th sample to the *k*th cluster, where i = 1, ..., nand k = 1, ..., r.

⁶⁷ Suppose the similarities between data items are precomputed and given in ⁶⁸ an $n \times n$ nonnegative symmetric sparse matrix A. DCD seeks an approximation ⁶⁹ to A by another matrix \hat{A} whose elements correspond to the probabilities of ⁷⁰ two-step random walks between data points through clusters. Let i, j, and v⁷¹ be indices for data points, and k and l for clusters. Then the random walk ⁷² probabilities are given as

$$\widehat{A}_{ij} = P(i|j) = \sum_{k} P(i|k)P(k|j) = \sum_{k} \frac{P(k|i)P(k|j)}{\sum_{v} P(k|v)},$$
(1)

⁷³ by using the Bayes formula and the uniform prior P(i) = 1/n.

The approximation is given by the Kullback-Leibler (KL-) divergence. This
is formulated as the following optimization problem [8]:

$$\underset{P \ge 0}{\text{minimize}} \quad D_{\text{KL}}(A||\widehat{A}) = \sum_{ij} \left(A_{ij} \log \frac{A_{ij}}{\widehat{A}_{ij}} - A_{ij} + \widehat{A}_{ij} \right), \tag{2}$$

where $\widehat{A}_{ij} = \sum_{k} \frac{P_{ik}P_{jk}}{\sum_{v} P_{vk}}$ with $P_{ik} = P(k|i)$, subject to $\sum_{k} P_{ik} = 1, i = 1, ..., n$. Denote $\nabla = \nabla^+ - \nabla^-$ as the gradient of $D_{\text{KL}}(A||\widehat{A})$ with respect to P, where ∇^+ and ∇^- are the positive and (unsigned) negative parts of ∇ , respectively. The optimization is solved by a Majorization-Minimization algorithm [12, 13, 14, 15] that iteratively applies a multiplicative update rule:

$$P_{ik} \leftarrow P_{ik} \frac{\nabla_{ik}^{-} a_i + 1}{\nabla_{ik}^{+} a_i + b_i},\tag{3}$$

where $a_i = \sum_l \frac{P_{il}}{\nabla_{il}^+}$ and $b_i = \sum_l P_{il} \frac{\nabla_{il}^-}{\nabla_{il}^+}$.

The preprocessing of DCD employs the common approximation of making 82 A sparse by zeroing the non-local similarities. This makes sense for two rea-83 sons: first, geodesics of curved manifolds in high-dimensional spaces can only be 84 approximated by Euclidean distances in small neighborhoods; second, most pop-85 ular distances computed of weak or noisy indicators are not reliable over long 86 distances, and the similarity matrix is often approximated by the K-nearest 87 neighbor graph with good results, especially when n is large. With a sparse A, 88 the computational cost of DCD is $O(|E| \times r)$ for |E| nonzero entries in A and 89 clusters. In the experiments we used symmetrized and binarized K-Nearestr٩N Neighbor graph as $A \ (K \ll n)$. Thus the computational cost is O(nKr). 91

Given a good initial decomposing matrix P, DCD can achieve better clus-92 ter purity compared with several other state-of-the-art clustering approaches, 93 especially for large-scale datasets where the data points situate in a curved 94 manifold. Its success comes from three elements in its objective: 1) the approx-95 imation error measure by Kullback-Leibler divergence takes into account sparse 96 similarities; 2) the decomposing matrix P as the only variable to be learned 97 contains just enough parameters for clustering; and 3) the decomposition form 98 ensures relatively balanced clusters and equal contribution of each data sample. 99 What remains is how to get a good starting point. The DCD optimization 100 problem is harder to solve than conventional NMF-type methods based on Eu-101 clidean distance in three aspects: 1) the geometry of the KL-divergence cost 102 function is more complex; 2) DCD employs a structural decomposition where P103 appears more than once in the approximation, and appears in both numerator 104 and denominator; 3) each row of P is constrained to be in the (r-1)-simplex. 105 Therefore, finding a satisfactory DCD solution requires more careful initializa-106 tion. Otherwise the optimization algorithm can easily fall into a poor local 107 108 minimum.

Yang and Oja [8] proposed to obtain the starting points by pre-training DCD with regularization term $(1-\alpha)\sum_{ik} \log P_{ik}$. This corresponds to imposing Dirichlet priors over the rows of P. By varying α , the pre-training can provide different starting points for multiple runs of DCD. The final result is given by the one with the smallest DCD objective of Eq. 2. This initialization strategy can bring improvement for certain datasets, whereas the enhancement remains mediocre as it is restricted to the same family of clustering methods. In the remaining, we investigate the possibility to obtain good starting points with the aid of other clustering methods.

¹¹⁸ 3. Ensemble clustering

In supervised machine learning, it is known that combining a set of classifiers 119 can produce better classification results (see e.g. [16]). There have been also 120 research efforts with the same spirit in unsupervised learning, where several 121 basic clusterings are combined into a single categorical output. The base results 122 can come from results of several clustering methods, or the repeated runs of a 123 single method with different initializations. In general, after obtaining the bases, 124 a combining function, called *consensus function*, is needed for aggregating the 125 clusterings into a single one. We call such aggregating methods ensemble cluster 126 analysis. 127

Several ensemble clustering methods have been proposed. An early method 128 [17] first transforms the base clusterings into a hypergraph and then uses a 129 graph-partitioning algorithm to obtain the final clusters. Gionis and Mannila 130 [18] defined the distance between two clusterings as the number of pairs of ob-131 jects on which the two clusterings disagree, based on which they formulated 132 the ensemble problem as the minimization of the total number of disagreements 133 with all the given clusterings. Fred and Jain [19] explored the idea of evidence 134 accumulation and proposed to summarize various clusterings in a co-association 135 matrix. The incentive of their approach is to weight associations between sam-136 137 ple pairs by the number of times they co-occur in a cluster from the set of given clusterings. After obtaining the co-association matrix, they applied the 138 agglomerative clustering algorithm to yield the final partition. Iam-On et al. 139

[20] introduced new methods for generating two link-based pairwise similarity 140 matrices called connected-triple-based similarity and SimRank-based similarity. 141 They refined similarity matrices by considering both the associations among 142 data points and those among clusters in the ensemble using link-based similar-143 ity measures. In their subsequent work [21], Iam-On et al. released a software 144 package called LinkCluE for their link-based cluster ensemble framework. New 145 approaches that better exploit the nature of the co-association matrix have re-146 cently appeared (see e.g. [22, 23]). 147

Despite the rationales for aggregation, the above methods can produce mediocre results if many base clustering methods fall into their poor local optima during their optimization. Seeking a consensus partition of such bases will not bring extraordinary improvement. To overcome this, in the following we present a new technique that enhances the participating clustering methods themselves. In the experimental part we show that our approach outperforms three wellknown ensemble clustering methods.

¹⁵⁵ 4. Improving clustering by co-initializations

We consider a novel approach that makes use of a set of existing clustering 156 methods. Instead of combining for consensus partitions, the proposed approach 157 is based on two observations: 1) many clustering methods that use iterative 158 optimization algorithms are sensitive to initializations; random starting guesses 159 often lead to poor local optima; 2) on the other hand, the iterative algorithms 160 often converge to a much better result given a starting point which is sufficiently 161 close to the optimal result or the ground truth. These two observations inspired 162 us to systematically study the behavior of an ensemble of clustering methods 163 through *co-initializations*, i.e., providing starting guesses for each other. 164

The cluster assignment can be represented by an $n \times r$ binary matrix W, indicating the membership of the samples to clusters. Most state-of-the-art cluster analysis methods use a non-convex objective function over the indicator matrix W. The objective is usually optimized by an iterative optimization algorithm

with a starting guess of the cluster assignment. The simplest way is to start 169 from a random cluster assignment (random initialization). Typically the start-170 ing point is drawn from a uniform distribution. To find a better local optimum, 171 one may repeat the optimization algorithm several times with different starting 172 assignments (e.g. with different random seeds). "Soft" clustering has been intro-173 duced to reduce the computational cost in combinatorial optimization (see e.g. 174 [24]), where the solution space of W is relaxed to right-stochastic matrices (e.g. 175 [25]) or nonnegative nearly orthogonal matrices (e.g. [26, 14]). Initialization for 176 these algorithms can be a cluster indicator matrix plus a small perturbation. 177 This is in particular widely used in multiplicative optimization algorithms (e.g. 178 [26]).179

Random initialization is easy to program. However, in practice it often leads to clustering results which are far from a satisfactory partition, even if the clustering algorithm is repeated with tens of different random starting points. This drawback appears for various clustering methods using different evaluation criteria. See Section 5.3 for examples.

To improve clusterings, one can consider more complex initialization strate-185 gies. Especially, the cluster indicator matrix W may be initially set by the 186 output of another clustering method instead of random initialization. One can 187 use the result from a fast and computationally simple clustering method such 188 as Normalized Cut (NCUT) [9] or k-means [27] as the starting point. We call 189 the clustering method used for initialization the base method in contrast to the 190 main method, used for the actual consequent cluster analysis. Because here the 191 base method is simpler than the main clustering method, we call this strategy 192 simple initialization. This strategy has been widely used in clustering methods 193 with Nonnegative Matrix Factorization (e.g. [26, 24, 28]). 194

We point out that the clusterings can be further improved by more considerate initializations. Besides NCUT or k-means, one can consider any clustering methods for initialization, as long as they are different from the main method. The strategy where the base methods belong to the same parametric family is called *family initialization*. That is, both the base and the main methods use

Algorithm 1 Cluster analysis using heterogeneous initialization. We denote $W \leftarrow \mathcal{M}(\mathcal{D}, U)$ a run of clustering method \mathcal{M} on data \mathcal{D} , with starting guess U and output cluster indicator matrix W. $\mathcal{J}_{\mathcal{M}}$ denotes the objective function of the main method.

- 1: Input: data \mathcal{D} , base clustering methods $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_T$, and main clustering method \mathcal{M}
- 2: Initialize $\{U_t\}_{t=1}^T$ by e.g. random or simple initialization

3: **for** t = 1 to T **do**

4: $V \leftarrow \mathcal{B}_t(\mathcal{D}, U_t)$

5: $W_t \leftarrow \mathcal{M}(\mathcal{D}, V)$

6: **end for**

7: Output: $W \leftarrow \arg\min_{W_t} \{\mathcal{J}_{\mathcal{M}}(\mathcal{D}, W_t)\}_{t=1}^T$.

the same form of objective and metric but only differ by a few parameters. For 200 example, in the above DCD method, varying α in the Dirichlet prior can pro-201 vide different base methods [8]; the main method ($\alpha = 1$) and the base methods 202 $(\alpha \neq 1)$ belong to the same parametric family. Removing the constraint of the 203 same parameterized family, we can generalize this idea such that any clustering 204 methods can be used as base methods and thus call the strategy heterogeneous 205 *initialization*. Similar to the strategies for combining classifiers, it is reason-206 able to have base methods as diverse as possible for better exploration. The 207 pseudocodes for heterogeneous initialization is given in Algorithm 1. 208

Deeper thinking in this direction gives a more comprehensive strategy called 209 heterogeneous co-initialization, where we make no difference from base and main 210 methods. The participating methods can provide initializations to each other. 211 Such cooperative learning can run for more than one iteration. That is, when 212 one algorithm finds a better local optimum, the resulting cluster assignment can 213 again serve as the starting guess for the other clustering methods. The loop will 214 converge when none of the involved methods can find a better local optimum. 215 The convergence is guaranteed if the objective functions are all bounded. A 216 special case of this strategy was used for combining NMF and Probabilistic 217 Latent Semantic Indexing [29]. Here we generalize this idea to any participating 218 clustering methods. The pseudo-code for heterogeneous co-initialization is given 219 in Algorithm 2. 220

Algorithm 2 Cluster analysis using heterogeneous co-initialization. $\mathcal{J}_{\mathcal{M}_i}$ denotes the objective function of method \mathcal{M}_i .

```
1: Input: data \mathcal{D} and clustering methods \mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_T
 2: \mathcal{J}_t \leftarrow \infty, t = 1, \dots, T.
3: Initialize \{W_t\}_{t=1}^T by e.g. random or simple initialization
      repeat
  4:
              bContinue←False
  5:
  6:
              for i = 1 to T do
                    for j = 1 to T do
  7:
                           if i \neq j then
  8:
                                  U_i \leftarrow \mathcal{M}_i(\mathcal{D}, W_i)
  9:
                            end if
10:
                    end for
11:
                    \mathcal{J} \leftarrow \min_{U_j} \{\mathcal{J}_{M_j}(\mathcal{D}, U_j)\}_{j=1}^T \\ V \leftarrow \arg \min_{U_j} \{\mathcal{J}_{M_j}(\mathcal{D}, U_j)\}_{j=1}^T
12:
13:
                    \begin{array}{l} \mathbf{if} \ \mathcal{J} < \mathcal{J}_i \overset{\mathcal{J}_j}{\mathbf{then}} \\ \mathcal{J}_i \leftarrow \mathcal{J} \\ W_i \leftarrow V \end{array}
14:
15:
16:
                            bContinue←True
17:
                     end if
18:
              end for
19:
20: until bContinue=False or maximum iteration is reached
21: Output: \{W_t\}_{t=1}^T.
```

By this level of initialization, each participating method will give their own 221 clusterings. Usually, methods that can find accurate results but require more 222 careful initialization will get more improved than those that are less sensitive to 223 initialization but give less accurate clusterings. Therefore, if a single clustering 224 is wanted, we suggest the output of the former kind. For example, DCD can sig-225 nificantly be improved by using co-initialization. We thus select its result as the 226 single clustering as output of *heterogeneous co-initialization* in the experiments 227 in Section 5.4. 228

In Table 1, we summarize the above initialization strategies in a hierarchy. The computational cost increases along the hierarchy from low to high levels. We argue that the increased expense is often deserved for improving clustering quality, which will be justified by experiments in the following section. Note that the hierarchy was mentioned in our preliminary work [11].

Table 1: Summary of the initialization hierarchy for cluster analysis

level	name	description
0	random initialization	uses random starting points
1	simple initialization	initialize by a fast and computationally simple method such as k -means or NCUT
2	family initialization	uses base methods from a same parameterized family for initialization
3	heterogeneous initialization	uses any base methods to provide initialization for the main method
4	heterogeneous co-initialization	run in multiple iterations; in each iteration all participating methods provide
		initialization for each other

234 5. Experiments

We provide two groups of empirical results to demonstrate that 1) clustering performance can often be improved using more comprehensive initializations in the proposed hierarchy and 2) the new method outperforms three existing approaches that aggregate clusterings. All datasets and codes used in the experiments are available online¹.

240 5.1. Data sets

We focus on clustering tasks on real-world datasets. Nineteen publicly 241 available datasets have been used in our experiments. They are from various 242 domains, including text documents, astroparticles, face images, handwritten 243 digit/letter images, protein. The sizes of these datasets range from a few hun-244 dreds to tens of thousands. The statistics of the datasets are summarized in 245 Table 2. The data sources and descriptions are given in the supplemental doc-246 ument. For fair comparisons, we chose datasets whose ground truth classes are 247 known. 248

The datasets are preprocessed as follows. We first extracted vectorial features for each data sample, in particular, scattering features [30] for images and Tf-Idf features for text documents. In machine learning and data analysis, the vectorial data often lie in a curved manifold, i.e. most simple metrics such as the Euclidean distance or cosine (here for Tf-Idf features) is only reliable in a small

¹http://users.ics.aalto.fi/hezhang/Clustering_co_init/

DATASET	# SAMPLES	# CLASSES
ORL	400	40
MED	696	25
VOWEL	990	11
COIL20	1440	20
SEMEION	1593	10
FAULTS	1941	7
SEGMENT	2310	7
CORA	2708	7
CITESEER	3312	6
7SECTORS	4556	7
OPTDIGITS	5620	10
SVMGUIDE1	7089	2
ZIP	9298	10
USPS	9298	10
PENDIGITS	10992	10
PROTEIN	17766	3
20NEWS	19938	20
LET-REC	20000	26
MNIST	70000	10

Table 2: Statistics of the data sets.

neighborhood. We employed K-Nearest-Neighbor (KNN) graph to encode such local information. The choice of K is not very sensitive for large-scale datasets. Here we fix K = 10 for all datasets. We symmetrized the affinity matrix A: $A_{ij} = 1$ if i is one of the K nearest neighbors of j, or vice versa, and $A_{ij} = 0$ otherwise.

259 5.2. Evaluation criteria

The performance of cluster analysis is evaluated by comparing the resulting clusters to ground truth classes. We have adopted two widely used criteria:

• *purity* (e.g. [26, 8]), computed as

$$purity = \frac{1}{n} \sum_{k=1}^{r} \max_{1 \le l \le q} n_k^l, \tag{4}$$

where n_k^l is the number of vertices in the partition k that belong to groundtruth class l; • normalized mutual information [17], computed as

265

$$\mathrm{NMI} = \frac{\sum_{i=1}^{r} \sum_{j=1}^{r'} n_{i,j} \log\left(\frac{n_{i,j}n}{n_i m_j}\right)}{\sqrt{\sum_{i=1}^{r} n_i \log\left(\frac{n_i}{n}\right) \sum_{j=1}^{r'} m_j \log\left(\frac{m_j}{n}\right)}},$$
(5)

where r and r' respectively denote the number of clusters and classes; $n_{i,j}$ is the number of data points agreed by cluster i and class j; n_i and m_j denote the number of data points in cluster i and class j respectively; and n is the total number of data points in the dataset.

For a given partition of the data, all the above measures give a value between 0 and 1. A larger value in general indicates a better clustering performance.

²⁷² 5.3. Clustering with initializations at different levels

In the first group of experiments, we have tested various clustering methods with different initializations in the hierarchy described in Section 4. We focus on the following four levels: random initialization, simple initialization, heterogeneous initialization, and heterogeneous co-initialization in these experiments, while treating family initialization as a special case of heterogeneous initialization. These levels of initializations have been applied to six clustering methods, which are

- Projective NMF (PNMF) [31, 32, 28],
- Nonnegative Spectral Clustering (NSC) [24],
- Symmetric Tri-Factor Orthogonal NMF (ONMF) [26],
- Probabilistic Latent Semantic Indexing (PLSI) [33],
- Left-Stochastic Matrix Decomposition (LSD) [25],
- Data-Cluster-Data random walks (DCD) [8].

For comparison, we also include the results of two other methods based on graph cut: • Normalized Cut (NCUT) [9],

• 1-Spectral Ratio Cheeger Cut (1-SPEC) [34].

²⁹⁰ We have coded NSC, PNMF, ONMF, LSD, DCD, and PLSI using multiplicative ²⁹¹ updates and ran each of these programs for 10,000 iterations to ensure their ²⁹² convergence. Symmetric versions of PNMF and PLSI have been used. We ²⁹³ adopted the 1-SPEC software by Hein and Bühler² with its default setting. ²⁹⁴ Following Yang and Oja [8], we employed four different Dirichlet priors ($\alpha =$ ²⁹⁵ 1, 1.2, 2, 5) for DCD, where each with a different prior is treated as a different ²⁹⁶ method in *heterogeneous initialization* and *heterogeneous co-initialization*.

For random initialization, we ran the clustering methods with fifty starting 297 points, each with a different random seed, and then record the result with the 298 best objective. For simple initialization, we employed NCUT to provide initial-299 ization for the six non-graph-cut methods. Precisely, their starting (relaxed) 300 indicator matrix is given by the NCUT result plus 0.2. This same scheme is 301 used in heterogeneous initialization and heterogeneous co-initialization where 302 one method is initialized by another. For heterogeneous co-initialization, the 303 number of co-initialization iterations was set to 5, as in practice we found that 304 there is no significant improvement after five rounds. For any initialization 305 and clustering method, the learned result gives an objective no worse than the 306 initialization. 307

Table 3 shows the clustering performance comparison. For clarity, only the DCD results using $\alpha = 1$, i.e., with a uniform prior, are listed in the table, while the complete clustering results including three other Dirichlet priors are given in the supplemental document.

There are two types of methods: NCUT and 1-SPEC are of the first type and they are insensitive to starting points, though their results are often mediocre when compared to the best in each row, especially for large datasets. The second type of methods include the other six methods, whose performance depends on

²http://www.ml.uni-saarland.de/code/oneSpectralClustering/ oneSpectralClustering.html

initializations. Their results are given in cells with quadruples. We can see that 316 more comprehensive initialization strategies often lead to better clusterings, 317 where the four numbers in most cells monotonically increase from left to right. 318 In particular, improvement brought by co-initializations is more often and 319 significant for PLSI and DCD. For example, Table 3 (top) shows that DCD 320 for USPS dataset, the purity of *heterogeneous co-initialization* is 5% better than 321 heterogeneous initialization, 10% better than simple initialization, and 34% bet-322 ter than random initialization. The advantage of co-initialization for PLSI and 323 DCD is because these two methods are based on Kullback-Leibler (KL-) di-324 vergence. This divergence is more suitable for sparse input similarities due to 325 curved manifolds [8]. However, the objective using KL-divergence involves a 326 more sophisticated surface and is thus difficult to optimize. Therefore these 327 methods require more considerate initializations that provide a good starting 328 point. In contrast, objectives of PNMF, NSC, ONMF and LSD, are relatively 329 easier to optimize. These methods often perform better than PLSI and DCD 330 using lower levels of initializations. However, more comprehensive initializations 331 may not improve their clusterings (see e.g. ONMF for OPTDIGITS). This can be 332 explained by their improper modeling of sparse input similarities based on the 333 Euclidean distance such that more probably a better objective of these methods 334 may not correspond to better clustering performance. 335

The improvement pattern becomes clearer when the dataset is larger. Es-336 pecially, PLSI and DCD achieve remarkable 0.98 purity for the largest dataset 337 MNIST. Note that purity corresponds to classification accuracy up to permuta-338 tion between clusters and classes. This means that our unsupervised cluster 339 analysis results are already very close to state-of-the-art supervised classifica-340 tion results³. A similar purity was reported in DCD using *family initialization*. 341 Our experiments show that it is also achievable for other clustering methods 342 given co-initializations, with even better results by PLSI and DCD. 343

³see http://yann.lecun.com/exdb/mnist/

³⁴⁴ 5.4. Comparison with ensemble clustering

Our approach uses a set of clustering methods and outputs a final partition 345 of data samples. There exists another way to combine clustering algorithms: 346 ensemble clustering, which was reviewed in Section 3. Therefore, we have com-347 pared our co-initialization method with three ensemble clustering methods in the 348 second group of experiments: the BEST algorithm [18], the co-association algo-349 rithm (CO) [19], and the link-based algorithm (CTS) [20]. We coded the BEST 350 and CO algorithms by ourselves and ran the CTS algorithm using LinkCluE 351 package [21]. For fair comparison, the set of base methods (i.e. same objective 352 and same optimization algorithm) is the same for all compared approaches: the 353 11 bases are from NCUT, 1-SPEC, PNMF, NSC, ONMF, LSD, PLSI, DCD1, 354 DCD1.2, DCD2, and DCD5 respectively. The data input for a particular base 355 method is also exactly the same across different combining approaches. The 356 final partitions for CO and CTS were given by the complete-linkage hierarchical 357 clustering algorithm provided in [21]. 358

Different from the other compared approaches, our method actually does not average the clusterings. Each participating clustering method in co-initializations gives their own results, according to the *heterogeneous-co-initialization* pseudocode in Algorithm 2. Here we chose the result by DCD for the comparison with the ensemble methods, as we find that this method benefits the most from co-initializations.

The comparison results are shown in Table 4. We can see that DCD wins most clustering tasks, where it achieves the best for 16 out of 19 datasets in terms of purity, and 18 out of 19 in terms of NMI. The superiority of DCD using co-initializations is especially distinct for large datasets. DCD clearly wins for all but the smallest datasets.

370 6. Conclusions

We have presented a new method for improving clustering performance through a collection of clustering methods. Different from conventional combin-

ing scheme that seeks consensus as clustering, our method tries to find better 373 starting points for the participating methods through their initializations for 374 each other. The initialization strategies can be organized in a hierarchy from 375 simple to complex. By extensive experiments on real-world datasets, we have 376 shown that 1) higher-level initialization strategies in the hierarchy can often 377 lead to better clustering performance and 2) the co-initialization method can 378 significantly outperform conventional ensemble clustering methods that average 379 input clusterings. 380

Our findings reflect the importance of pre-training in cluster analysis. There could be more future steps towards this direction. Currently the participating methods are chosen heuristically. A more rigorous and computable diversity measure between clustering methods could be helpful for more efficient co-initializations. A meta probabilistic clustering framework might be also advantageous, where the starting points are sampled from more informative priors instead of the uniform distribution.

The proposed co-initialization strategy shares similarities with evolutionary algorithms (EA) or genetic algorithms (GA) that use different starting points and combine them to make new solution [35, 36]. In the future work, it would be interesting to find more precise connection between our approach with EA/GA, which could in turn generalize co-initializations to a more powerful framework.

393 References

- [1] P. Bradley, U. Fayyad, Refining initial points for k-means clustering, in:
 International Conference on Machine Learning (ICML), 1998, pp. 91–99.
- [2] A. Likas, N. Vlassis, J. J Verbeek, The global k-means clustering algorithm,
 Pattern Recognition 36 (2) (2003) 451–461.
- [3] S. Khan, A. Ahmad, Cluster center initialization algorithm for k-means
 clustering, Pattern Recognition Letters 25 (11) (2004) 1293–1302.

- [4] M. Erisoglu, N. Calis, S. Sakallioglu, A new algorithm for initial cluster
 centers in k-means algorithm, Pattern Recognition Letters 32 (14) (2011)
 1701–1705.
- [5] Z. Zheng, J. Yang, Y. Zhu, Initialization enhancer for non-negative matrix factorization, Engineering Applications of Artificial Intelligence 20 (1)
 (2007) 101–110.
- [6] Y. Kim, S. Choi, A method of initialization for nonnegative matrix factorization, in: IEEE International Conference on Acoustics, Speech, and
 Signal Processing (ICASSP), 2007, pp. 537–540.
- [7] T. Hofmann, Probabilistic latent semantic indexing, in: International Conference on Research and Development in Information Retrieval (SIGIR),
 1999, pp. 50–57.
- [8] Z. Yang, E. Oja, Clustering by low-rank doubly stochastic matrix decomposition, in: International Conference on Machine Learning (ICML), 2012, pp. 831–838.
- [9] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 888–905.
- [10] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE Transactions on Pattern Analysis Machine Intelligence 33 (5) (2011) 898–916.
- [11] Z. Yang, T. Hao, O. Dikmen, X. Chen, E. Oja, Clustering by nonnegative
 matrix factorization using graph random walk, in: Advances in Neural
 Information Processing Systems (NIPS), 2012, pp. 1088–1096.
- [12] D. R. Hunter, K. Lange, A tutorial on MM algorithms, The American
 Statistician 58 (1) (2004) 30–37.
- [13] Z. Yang, E. Oja, Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization, IEEE Transactions on
 Neural Networks 22 (12) (2011) 1878–1891.

- ⁴²⁸ [14] Z. Yang, E. Oja, Quadratic nonnegative matrix factorization, Pattern
 Recognition 45 (4) (2012) 1500–1510.
- [15] Z. Zhu, Z. Yang, E. Oja, Multiplicative updates for learning with stochastic matrices, in: The 18th conference Scandinavian Conferences on Image
 Analysis (SCIA), 2013, pp. 143–152.
- ⁴³³ [16] E. Alpaydin, Introduction to Machine Learning, The MIT Press, 2010.
- [17] A. Strehl, J. Ghosh, Cluster ensembles—a knowledge reuse framework for
 combining multiple partitions, Journal of Machine Learning Research 3
 (2003) 583–617.
- ⁴³⁷ [18] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, in: Interna⁴³⁸ tional Conference on Data Engineering (ICDE), IEEE, 2005, pp. 341–352.
- ⁴³⁹ [19] A. Fred, A. Jain, Combining multiple clusterings using evidence accumu⁴⁴⁰ lation, IEEE Transactions on Pattern Analysis and Machine Intelligence
 ⁴⁴¹ 27 (6) (2005) 835–850.
- [20] N. Iam-On, T. Boongoen, S. Garrett, Refining pairwise similarity matrix
 for cluster ensemble problem with cluster relations, in: International Conference on Discovery Science (DS), Springer, 2008, pp. 222–233.
- [21] N. Iam-On, S. Garrett, Linkclue: A matlab package for link-based cluster
 ensembles, Journal of Statistical Software 36 (9) (2010) 1–36.
- [22] S. Rota Bulò, A. Lourenço, A. Fred, M. Pelillo, Pairwise probabilistic clustering using evidence accumulation, in: International Workshop on Statistical Techniques in Pattern Recognition (SPR), 2010, pp. 395–404.
- ⁴⁵⁰ [23] A. Lourenço, S. Rota Bulò, N. Rebagliati, A. Fred, M. Figueiredo,
 ⁴⁵¹ M. Pelillo, Probabilistic consensus clustering using evidence accumulation,
 ⁴⁵² Machine Learning, in press (2013).
- ⁴⁵³ [24] C. Ding, T. Li, M. Jordan, Nonnegative matrix factorization for combinato ⁴⁵⁴ rial optimization: Spectral clustering, graph matching, and clique finding,

- in: IEEE International Conference on Data Mining (ICDM), IEEE, 2008,
 pp. 183–192.
- ⁴⁵⁷ [25] R. Arora, M. Gupta, A. Kapila, M. Fazel, Clustering by left-stochastic
 ⁴⁵⁸ matrix factorization, in: International Conference on Machine Learning
 ⁴⁵⁹ (ICML), 2011, pp. 761–768.
- ⁴⁶⁰ [26] C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t⁴⁶¹ factorizations for clustering, in: International Conference on Knowledge
 ⁴⁶² Discovery and Data Mining (SIGKDD), ACM, 2006, pp. 126–135.
- ⁴⁶³ [27] S. Lloyd, Last square quantization in pcm, IEEE Transactions on Informa⁴⁶⁴ tion Theory, special issue on quantization 28 (1982) 129–137.
- ⁴⁶⁵ [28] Z. Yang, E. Oja, Linear and nonlinear projective nonnegative matrix fac ⁴⁶⁶ torization, IEEE Transactions on Neural Networks 21 (5) (2010) 734–749.
- ⁴⁶⁷ [29] C. Ding, T. Li, W. Peng, On the equivalence between non-negative matrix
 ⁴⁶⁸ factorization and probabilistic latent semantic indexing, Computational
 ⁴⁶⁹ Statistics & Data Analysis 52 (8) (2008) 3913–3927.
- [30] S. Mallat, Group invariant scattering, Communications on Pure and Applied Mathematics 65 (10) (2012) 1331–1398.
- ⁴⁷² [31] Z. Yuan, E. Oja, Projective nonnegative matrix factorization for image
 ⁴⁷³ compression and feature extraction, in: Proceedings of 14th Scandinavian
 ⁴⁷⁴ Conference on Image Analysis (SCIA), Joensuu, Finland, 2005, pp. 333–
 ⁴⁷⁵ 342.
- 476 [32] Z. Yang, Z. Yuan, J. Laaksonen, Projective non-negative matrix factoriza477 tion with applications to facial image processing, International Journal on
 478 Pattern Recognition and Artificial Intelligence 21 (8) (2007) 1353–1362.
- ⁴⁷⁹ [33] T. Hofmann, Probabilistic latent semantic indexing, in: International Con⁴⁸⁰ ference on Research and Development in Information Retrieval (SIGIR),
 ⁴⁸¹ ACM, 1999, pp. 50–57.

- 482 [34] M. Hein, T. Bühler, An inverse power method for nonlinear eigenproblems
- with applications in 1-Spectral clustering and sparse PCA, in: Advances in
 Neural Information Processing Systems (NIPS), 2010, pp. 847–855.
- [35] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, A. P. L. F. De Carvalho, A survey of evolutionary algorithms for clustering, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
 39 (2) (2009) 133–155.
- ⁴⁸⁹ [36] M. J. Abul Hasan, S. Ramakrishnan, A survey: hybrid evolutionary al⁴⁹⁰ gorithms for cluster analysis, Artificial Intelligence Review 36 (3) (2011)
 ⁴⁹¹ 179–204.

Table 3: Clustering performance of various clustering methods with different initializations. Performances are measured by (top) Purity and (bottom) NMI. Rows are ordered by dataset sizes. In cells with quadruples, the four numbers from left to right are results using *random*, *simple*, and *heterogeneous initialization* and *heterogeneous co-initialization*.

DATASET	$\mathbf{K}\mathbf{M}$	NCUT	$1\text{-}\mathrm{SPEC}$		PN	MF			NS	SC			ON	MF			LS	$^{\rm SD}$			ΡI	$_{\rm SI}$			DC	D	
ORL	0.70	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.53	0.78	0.80	0.80	0.82	0.82	0.82	0.82	0.65	0.81	0.83	0.83	0.67	0.81	0.83 ().83
MED	0.59	0.57	0.53	0.57	0.57	0.56	0.56	0.57	0.59	0.57	0.57	0.51	0.57	0.56	0.56	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.58	0.57	0.57	0.57 (0.58
VOWEL	0.40	0.35	0.34	0.38	0.35	0.37	0.38	0.35	0.35	0.35	0.35	0.36	0.35	0.37	0.38	0.34	0.37	0.38	0.40	0.34	0.36	0.38	0.40	0.28	0.36	0.36 (0.40
COIL20	0.63	0.71	0.67	0.67	0.71	0.71	0.71	0.73	0.71	0.72	0.72	0.63	0.71	0.72	0.72	0.71	0.68	0.68	0.68	0.58	0.75	0.69	0.70	0.62	0.75	0.69 (0.70
SEMEION	0.68	0.64	0.66	0.60	0.66	0.60	0.60	0.66	0.66	0.66	0.66	0.62	0.60	0.60	0.60	0.76	0.72	0.74	0.75	0.67	0.65	0.74	0.77	0.68	0.65	0.75 ().77
FAULTS	0.42	0.40	0.40	0.42	0.45	0.45	0.45	0.44	0.39	0.38	0.38	0.42	0.45	0.42	0.42	0.39	0.44	0.43	0.43	0.35	0.41	0.44	0.44	0.35	0.40	0.43 ().44
SEGMENT	0.59	0.61	0.55	0.49	0.54	0.49	0.53	0.39	0.61	0.69	0.71	0.49	0.51	0.53	0.53	0.30	0.64	0.61	0.65	0.26	0.62	0.64	0.65	0.26	0.61	0.61 (0.65
CORA	0.53	0.39	0.36	0.41	0.36	0.41	0.41	0.36	0.36	0.36	0.36	0.34	0.36	0.43	0.43	0.48	0.51	0.51	0.54	0.41	0.45	0.52	0.55	0.41	0.45	0.52 (0.55
CITESEER	0.61	0.30	0.31	0.28	0.29	0.29	0.28	0.26	0.28	0.25	0.25	0.31	0.32	0.28	0.28	0.38	0.43	0.45	0.47	0.35	0.44	0.44	0.48	0.37	0.44	0.44 (0.48
7SECTORS	0.39	0.25	0.25	0.29	0.29	0.29	0.29	0.26	0.25	0.25	0.25	0.24	0.29	0.29	0.29	0.27	0.37	0.40	0.35	0.27	0.37	0.40	0.35	0.30	0.37	0.40 (0.35
OPTDIGITS	0.72	0.74	0.76	0.70	0.68	0.68	0.68	0.66	0.77	0.77	0.77	0.68	0.68	0.68	0.68	0.71	0.76	0.82	0.87	0.51	0.72	0.76	0.85	0.57	0.76	0.71 (0.85
SVMGUIDE1	0.71	0.75	0.93	0.68	0.68	0.68	0.68	0.82	0.77	0.79	0.81	0.68	0.68	0.68	0.68	0.70	0.78	0.91	0.91	0.59	0.77	0.90	0.91	0.58	0.78	0.90 (0.91
ZIP	0.49	0.74	0.74	0.54	0.70	0.72	0.68	0.65	0.74	0.74	0.74	0.55	0.70	0.67	0.68	0.72	0.84	0.83	0.85	0.33	0.74	0.84	0.84	0.36	0.76	0.84 (0.84
USPS	0.74	0.74	0.74	0.67	0.80	0.75	0.68	0.72	0.74	0.74	0.74	0.62	0.80	0.75	0.68	0.80	0.79	0.84	0.85	0.48	0.73	0.80	0.85	0.51	0.75	0.80 (0.85
PENDIGITS	0.72	0.80	0.73	0.79	0.79	0.79	0.79	0.49	0.79	0.73	0.73	0.63	0.79	0.79	0.79	0.66	0.88	0.89	0.89	0.24	0.82	0.88	0.89	0.25	0.84	0.88 (0.89
PROTEIN	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.48	0.50	0.46	0.51	0.51	0.50	0.47	0.46	0.51 (0.50
20NEWS	0.07	0.43	0.36	0.39	0.39	0.39	0.38	0.39	0.43	0.40	0.40	0.27	0.38	0.38	0.38	0.41	0.48	0.48	0.49	0.22	0.44	0.49	0.49	0.23	0.45	0.49 (0.50
LET-REC	0.29	0.21	0.15	0.36	0.37	0.34	0.35	0.17	0.21	0.21	0.21	0.29	0.35	0.35	0.34	0.31	0.31	0.37	0.37	0.16	0.26	0.32	0.38	0.17	0.25	0.32 (0.38
MNIST	0.60	0.77	0.88	0.57	0.87	0.73	0.57	0.74	0.79	0.79	0.79	0.57	0.75	0.65	0.57	0.93	0.75	0.97	0.97	0.46	0.79	0.97	0.98	0.55	0.81	0.97 (0.98
DATASET	IZM	NCUT	1 SDEC		DN	ME			NC				ON	ME			те	מי			DI	CT			D	תי	
DATASET	KM	NCUT	1-SPEC	0.90	PN	MF	0.90	0.80	NS	SC	0.00	0.70	ON	MF	0.90	0.00	LS	D	0.00	0.94	PI	SI	0.01	0.92	DC	D	2.01
DATASET ORL	KM 0.85	NCUT 0.90	1-SPEC 0.92	0.89	PN 0.90	MF 0.89	0.89	0.89	NS 0.90	SC 0.90	0.90	0.76	ON 0.88	MF 0.89	0.89	0.90	LS 0.90	D 0.90	0.90	0.84	PI 0.90	LSI 0.91	0.91	0.83	DC 0.90	D 0.91 ().91
DATASET ORL MED	KM 0.85 0.55	NCUT 0.90 0.57	1-SPEC 0.92 0.52	0.89 0.56	PN 0.90 0.55	MF 0.89 0.55	0.89 0.55	0.89 0.57	NS 0.90 0.58	SC 0.90 0.57	0.90 0.57	0.76 0.51	ON 0.88 0.57	MF 0.89 0.56	0.89 0.56	0.90 0.56	LS 0.90 0.57	D 0.90 0.57	0.90 0.57	0.84 0.56	PI 0.90 0.56	LSI 0.91 0.57	0.91 0.58	0.83 0.56	DC 0.90 0.57	D 0.91 (0.57 ().91
DATASET ORL MED VOWEL	KM 0.85 0.55 0.43	NCUT 0.90 0.57 0.40	1-SPEC 0.92 0.52 0.38	0.89 0.56 0.39	PN 0.90 0.55 0.36	MF 0.89 0.55 0.37	0.89 0.55 0.39	0.89 0.57 0.37	NS 0.90 0.58 0.38	SC 0.90 0.57 0.37	0.90 0.57 0.37	0.76 0.51 0.37	ON 0.88 0.57 0.36	MF 0.89 0.56 0.37	0.89 0.56 0.39	0.90 0.56 0.35	LS 0.90 0.57 0.38	5D 0.90 0.57 0.40	0.90 0.57 0.40	0.84 0.56 0.32	PI 0.90 0.56 0.40	USI 0.91 0.57 0.38	0.91 0.58 0.41	0.83 0.56 0.28	DC 0.90 0.57 0.39	D 0.91 (0.57 (0.38 ().91).58).40
DATASET ORL MED VOWEL COIL20 SEMELON	KM 0.85 0.55 0.43 0.77	NCUT 0.90 0.57 0.40 0.79 0.61	1-SPEC 0.92 0.52 0.38 0.77	0.89 0.56 0.39 0.75	PN 0.90 0.55 0.36 0.79	MF 0.89 0.55 0.37 0.79	0.89 0.55 0.39 0.79	0.89 0.57 0.37 0.81	NS 0.90 0.58 0.38 0.79	SC 0.90 0.57 0.37 0.80	0.90 0.57 0.37 0.80	0.76 0.51 0.37 0.74	ON 0.88 0.57 0.36 0.79	MF 0.89 0.56 0.37 0.79	0.89 0.56 0.39 0.79	0.90 0.56 0.35 0.79	LS 0.90 0.57 0.38 0.78	5D 0.90 0.57 0.40 0.77	0.90 0.57 0.40 0.77	0.84 0.56 0.32 0.71	PI 0.90 0.56 0.40 0.80	USI 0.91 0.57 0.38 0.80	0.91 0.58 0.41 0.80	0.83 0.56 0.28 0.74	DC 0.90 0.57 0.39 0.80	D 0.91 (0.57 (0.38 (0.80 (0.67 ().91).58).40).80
DATASET ORL MED VOWEL COIL20 SEMEION EAULTE	KM 0.85 0.55 0.43 0.77 0.57	NCUT 0.90 0.57 0.40 0.79 0.61	1-SPEC 0.92 0.52 0.38 0.77 0.62 0.00	0.89 0.56 0.39 0.75 0.58	PN 0.90 0.55 0.36 0.79 0.62	MF 0.89 0.55 0.37 0.79 0.58	0.89 0.55 0.39 0.79 0.58	0.89 0.57 0.37 0.81 0.63	NS 0.90 0.58 0.38 0.79 0.63	SC 0.90 0.57 0.37 0.80 0.63	0.90 0.57 0.37 0.80 0.63	0.76 0.51 0.37 0.74 0.59	ON 0.88 0.57 0.36 0.79 0.57	MF 0.89 0.56 0.37 0.79 0.57	0.89 0.56 0.39 0.79 0.57	0.90 0.56 0.35 0.79 0.67	LS 0.90 0.57 0.38 0.78 0.63	5D 0.90 0.57 0.40 0.77 0.65	0.90 0.57 0.40 0.77 0.66 0.11	0.84 0.56 0.32 0.71 0.59	PI 0.90 0.56 0.40 0.80 0.61	LSI 0.91 0.57 0.38 0.80 0.66	0.91 0.58 0.41 0.80 0.68	0.83 0.56 0.28 0.74 0.61	DC 0.90 0.57 0.39 0.80 0.61	CD 0.91 (0.57 (0.38 (0.80 (0.67 (0.11 ().91).58).40).80).68
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SECMENT	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55	1-SPEC 0.92 0.52 0.38 0.77 0.62 0.09 0.58	0.89 0.56 0.39 0.75 0.58 0.09	PN 0.90 0.55 0.36 0.79 0.62 0.11	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.42	0.89 0.55 0.39 0.79 0.58 0.11	$\begin{array}{c} 0.89 \\ 0.57 \\ 0.37 \\ 0.81 \\ 0.63 \\ 0.10 \\ 0.25 \end{array}$	NS 0.90 0.58 0.38 0.79 0.63 0.07	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62	0.90 0.57 0.37 0.80 0.63 0.07	0.76 0.51 0.37 0.74 0.59 0.10 0.28	ON 0.88 0.57 0.36 0.79 0.57 0.11	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44	0.89 0.56 0.39 0.79 0.57 0.09 0.44	0.90 0.56 0.35 0.79 0.67 0.06	LS 0.90 0.57 0.38 0.78 0.63 0.11	D 0.90 0.57 0.40 0.77 0.65 0.11	0.90 0.57 0.40 0.77 0.66 0.11	0.84 0.56 0.32 0.71 0.59 0.03 0.08	PI 0.90 0.56 0.40 0.80 0.61 0.08	LSI 0.91 0.57 0.38 0.80 0.66 0.12 0.52	0.91 0.58 0.41 0.80 0.68 0.11	0.83 0.56 0.28 0.74 0.61 0.02	DC 0.90 0.57 0.39 0.80 0.61 0.08 0.55	D 0.91 (0.57 (0.38 (0.80 (0.67 (0.11 (0.52 ().91).58).40).80).68).11
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT COPA	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.24	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16	1-SPEC 0.92 0.52 0.38 0.77 0.62 0.09 0.58 0.14	0.89 0.56 0.39 0.75 0.58 0.09 0.43	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17	0.89 0.55 0.39 0.79 0.58 0.11 0.49	0.89 0.57 0.37 0.81 0.63 0.10 0.25	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14	0.90 0.57 0.37 0.80 0.63 0.07 0.63 0.14	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.12	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17	0.89 0.56 0.39 0.79 0.57 0.09 0.44 0.17	0.90 0.56 0.35 0.79 0.67 0.06 0.13	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.22	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55	LSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24	0.91 0.58 0.41 0.80 0.68 0.11 0.58 0.25	0.83 0.56 0.28 0.74 0.61 0.02 0.07	DC 0.90 0.57 0.39 0.80 0.61 0.08 0.55 0.20	D 0.91 (0.57 (0.38 (0.80 (0.67 (0.11 (0.53 (0.24 ().91).58).40).80).68).11).58
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CUTESEER	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10	1-SPEC 0.92 0.52 0.38 0.77 0.62 0.09 0.58 0.14 0.12	0.89 0.56 0.39 0.75 0.58 0.09 0.43 0.14	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07	0.89 0.55 0.39 0.79 0.58 0.11 0.49 0.17	$\begin{array}{c} 0.89 \\ 0.57 \\ 0.37 \\ 0.81 \\ 0.63 \\ 0.10 \\ 0.25 \\ 0.14 \\ 0.07 \end{array}$	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07	0.90 0.57 0.37 0.80 0.63 0.07 0.63 0.14	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.10	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17	0.89 0.56 0.39 0.79 0.57 0.09 0.44 0.17	0.90 0.56 0.35 0.79 0.67 0.06 0.13 0.22 0.13	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10	PI 0.90 0.56 0.40 0.61 0.08 0.55 0.20 0.17	LSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.10	0.91 0.58 0.41 0.80 0.68 0.11 0.58 0.25 0.21	0.83 0.56 0.28 0.74 0.61 0.02 0.07 0.15 0.11	DC 0.90 0.57 0.39 0.61 0.08 0.55 0.20 0.17	D 0.91 (0.57 (0.38 (0.80 (0.80 (0.67 (0.11 (0.53 (0.24 (0.18 ().91).58).40).80).68).11).58).25
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.17	$\begin{array}{c} \text{NCUT} \\ 0.90 \\ 0.57 \\ 0.40 \\ 0.79 \\ 0.61 \\ 0.08 \\ 0.55 \\ 0.16 \\ 0.10 \\ 0.04 \end{array}$	1-SPEC 0.92 0.52 0.38 0.77 0.62 0.09 0.58 0.14 0.12 0.05	0.89 0.56 0.39 0.75 0.58 0.09 0.43 0.14 0.07 0.05	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04	0.89 0.55 0.39 0.79 0.58 0.11 0.49 0.17 0.07	$\begin{array}{c} 0.89 \\ 0.57 \\ 0.37 \\ 0.81 \\ 0.63 \\ 0.10 \\ 0.25 \\ 0.14 \\ 0.07 \\ 0.05 \end{array}$	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05	0.90 0.57 0.37 0.80 0.63 0.07 0.63 0.14 0.07	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.10 0.01	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04	0.89 0.56 0.39 0.79 0.57 0.09 0.44 0.17 0.07	0.90 0.56 0.35 0.79 0.67 0.06 0.13 0.22 0.13 0.04	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20 0.14	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10 0.04	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17	LSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13	0.91 0.58 0.41 0.80 0.68 0.11 0.58 0.25 0.21 0.11	0.83 0.56 0.28 0.74 0.61 0.02 0.07 0.15 0.11	DC 0.90 0.57 0.39 0.61 0.08 0.55 0.20 0.17 0.08	CD 0.91 (0.57 (0.38 (0.80 (0.80 (0.67 (0.11 (0.53 (0.24 (0.18 (0.13 ().91).58).40).80).68).11).58).25).21
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDICITS	KM 0.85 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.17 0.70	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72	1-SPEC 0.92 0.52 0.38 0.77 0.62 0.09 0.58 0.14 0.12 0.05 0.80	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.75\\ 0.58\\ 0.09\\ 0.43\\ 0.14\\ 0.07\\ 0.05\\ 0.67\\ \end{array}$	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04 0.68	0.89 0.55 0.39 0.79 0.58 0.11 0.49 0.17 0.07 0.04 0.67	$\begin{array}{c} 0.89\\ 0.57\\ 0.37\\ 0.81\\ 0.63\\ 0.10\\ 0.25\\ 0.14\\ 0.07\\ 0.05\\ 0.66\end{array}$	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78	$\begin{array}{c} 0.90\\ 0.57\\ 0.37\\ 0.80\\ 0.63\\ 0.07\\ 0.63\\ 0.14\\ 0.07\\ 0.05\\ 0.78\end{array}$	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.10 0.01 0.67	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04 0.68	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67	0.89 0.56 0.39 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67	0.90 0.56 0.35 0.79 0.67 0.06 0.13 0.22 0.13 0.04 0.69	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10 0.72	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20 0.14 0.78	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11 0.83	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10 0.04 0.40	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.07	LSI 0.91 0.57 0.38 0.66 0.12 0.53 0.24 0.19 0.13 0.73	0.91 0.58 0.41 0.68 0.11 0.58 0.25 0.21 0.11 0.82	0.83 0.56 0.28 0.74 0.61 0.02 0.07 0.15 0.11 0.04 0.51	DC 0.90 0.57 0.39 0.61 0.08 0.55 0.20 0.17 0.08 0.74	CD 0.91 (0.57 (0.38 (0.80 (0.80 (0.67 (0.11 (0.53 (0.24 (0.18 (0.13 (0.13 (0.69 ().91).58).40).80).68).11).58).25).21).21).11
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1	KM 0.85 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.17 0.70 0.31	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72 0.35	$\begin{array}{c} 1\text{-SPEC} \\ 0.92 \\ 0.52 \\ 0.38 \\ 0.77 \\ 0.62 \\ 0.09 \\ 0.58 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.80 \\ 0.65 \end{array}$	0.89 0.56 0.39 0.75 0.58 0.09 0.43 0.14 0.07 0.05 0.67 0.27	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04 0.68 0.27	0.89 0.55 0.39 0.79 0.58 0.11 0.49 0.17 0.07 0.04 0.67 0.27	$\begin{array}{c} 0.89\\ 0.57\\ 0.37\\ 0.81\\ 0.63\\ 0.10\\ 0.25\\ 0.14\\ 0.07\\ 0.05\\ 0.66\\ 0.34 \end{array}$	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78 0.41	$\begin{array}{c} 0.90\\ 0.57\\ 0.37\\ 0.80\\ 0.63\\ 0.07\\ 0.63\\ 0.14\\ 0.07\\ 0.05\\ 0.78\\ 0.44 \end{array}$	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.10 0.01 0.67 0.27	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04 0.68 0.27	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27	0.89 0.56 0.39 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27	$\begin{array}{c} 0.90\\ 0.56\\ 0.35\\ 0.79\\ 0.67\\ 0.06\\ 0.13\\ 0.22\\ 0.13\\ 0.04\\ 0.69\\ 0.12\end{array}$	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10 0.72 0.25	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20 0.14 0.78 0.60	$\begin{array}{c} 0.90\\ 0.57\\ 0.40\\ 0.77\\ 0.66\\ 0.11\\ 0.58\\ 0.25\\ 0.20\\ 0.11\\ 0.83\\ 0.60\\ \end{array}$	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10 0.04 0.40 0.02	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.07 0.71 0.38	JSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.59	$\begin{array}{c} 0.91 \\ 0.58 \\ 0.41 \\ 0.80 \\ 0.68 \\ 0.11 \\ 0.58 \\ 0.25 \\ 0.21 \\ 0.11 \\ 0.82 \\ 0.59 \end{array}$	0.83 0.56 0.28 0.74 0.61 0.02 0.07 0.15 0.11 0.04 0.51 0.02	DC 0.90 0.57 0.39 0.61 0.08 0.55 0.20 0.17 0.08 0.74 0.40	$\begin{array}{c} \hline \\ \hline $).91).58).40).80).68).11).58).25).21).21).11).82).59
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1 7IP	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.17 0.70 0.31 0.40	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72 0.35 0.78	1-SPEC 0.92 0.52 0.38 0.77 0.62 0.09 0.58 0.14 0.12 0.05 0.80 0.65 0.79	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.75\\ 0.58\\ 0.09\\ 0.43\\ 0.14\\ 0.07\\ 0.05\\ 0.67\\ 0.27\\ 0.54\end{array}$	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27 0.67	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04 0.68 0.27 0.65	$\begin{array}{c} 0.89\\ 0.55\\ 0.39\\ 0.79\\ 0.58\\ 0.11\\ 0.49\\ 0.17\\ 0.07\\ 0.04\\ 0.67\\ 0.27\\ 0.64 \end{array}$	$\begin{array}{c} 0.89\\ 0.57\\ 0.37\\ 0.81\\ 0.63\\ 0.10\\ 0.25\\ 0.14\\ 0.07\\ 0.05\\ 0.66\\ 0.34\\ 0.61\\ \end{array}$	NS 0.90 0.58 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39 0.78	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78 0.41 0.78	0.90 0.57 0.37 0.63 0.07 0.63 0.14 0.07 0.05 0.78 0.44 0.78	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.10 0.01 0.67 0.27 0.56	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04 0.68 0.27 0.66	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.62	0.89 0.56 0.39 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.64	0.90 0.56 0.35 0.79 0.67 0.06 0.13 0.22 0.13 0.04 0.69 0.12 0.66	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10 0.72 0.25 0.78	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20 0.14 0.78 0.60 0.80	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11 0.83 0.60 0.81	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10 0.04 0.04 0.02 0.18	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.07 0.71 0.38	JSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.59 0.79	0.91 0.58 0.41 0.80 0.68 0.11 0.58 0.25 0.21 0.11 0.82 0.59 0.81	0.83 0.56 0.28 0.74 0.61 0.02 0.07 0.15 0.11 0.04 0.51 0.02 0.21	DC 0.90 0.57 0.39 0.61 0.08 0.55 0.20 0.17 0.08 0.74 0.40 0.78	$\begin{array}{c} \text{CD} \\ \hline 0.91 & (\\ 0.57 & (\\ 0.38 & (\\ 0.80 & (\\ 0.80 & (\\ 0.80 & (\\ 0.11 & (\\ 0.53 & (\\ 0.24 & (\\ 0.13 & (\\ 0.13 & (\\ 0.69 & (\\ 0.59 & (\\ 0.59 & (\\ 0.79 & (\\$).91).58).40).80).68).11).58).25).21).11).82).59).81
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1 ZIP USPS	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.17 0.70 0.31 0.40 0.62	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72 0.35 0.78 0.77	$\begin{array}{c} 1\text{-SPEC} \\ 0.92 \\ 0.52 \\ 0.38 \\ 0.77 \\ 0.62 \\ 0.09 \\ 0.58 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.80 \\ 0.65 \\ 0.79 \\ 0.80 \end{array}$	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.75\\ 0.58\\ 0.09\\ 0.43\\ 0.14\\ 0.07\\ 0.05\\ 0.67\\ 0.27\\ 0.54\\ 0.66\end{array}$	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27 0.67 0.75	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04 0.68 0.27 0.65 0.71	$\begin{array}{c} 0.89\\ 0.55\\ 0.39\\ 0.79\\ 0.58\\ 0.11\\ 0.49\\ 0.17\\ 0.07\\ 0.04\\ 0.67\\ 0.27\\ 0.64\\ 0.66\end{array}$	$\begin{array}{c} 0.89\\ 0.57\\ 0.37\\ 0.81\\ 0.63\\ 0.10\\ 0.25\\ 0.14\\ 0.07\\ 0.05\\ 0.66\\ 0.34\\ 0.61\\ 0.71\\ \end{array}$	NS 0.90 0.58 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39 0.78 0.78	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78 0.41 0.78 0.78 0.78	$\begin{array}{c} 0.90\\ 0.57\\ 0.37\\ 0.80\\ 0.63\\ 0.07\\ 0.63\\ 0.14\\ 0.07\\ 0.05\\ 0.78\\ 0.44\\ 0.78\\$	$\begin{array}{c} 0.76 \\ 0.51 \\ 0.37 \\ 0.74 \\ 0.59 \\ 0.10 \\ 0.38 \\ 0.11 \\ 0.10 \\ 0.01 \\ 0.67 \\ 0.27 \\ 0.56 \\ 0.62 \end{array}$	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04 0.68 0.27 0.66 0.75	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.62 0.71	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.79\\ 0.57\\ 0.09\\ 0.44\\ 0.17\\ 0.07\\ 0.04\\ 0.67\\ 0.27\\ 0.64\\ 0.66\end{array}$	$\begin{array}{c} 0.90\\ 0.56\\ 0.35\\ 0.79\\ 0.67\\ 0.06\\ 0.13\\ 0.22\\ 0.13\\ 0.04\\ 0.69\\ 0.12\\ 0.66\\ 0.75\\ \end{array}$	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10 0.72 0.25 0.78 0.77	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20 0.14 0.78 0.60 0.80 0.81	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11 0.83 0.60 0.81 0.82	$\begin{array}{c} 0.84\\ 0.56\\ 0.32\\ 0.71\\ 0.59\\ 0.03\\ 0.08\\ 0.15\\ 0.10\\ 0.04\\ 0.02\\ 0.18\\ 0.40\\ 0.02\\ 0.18\\ 0.40\\ \end{array}$	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.07 0.71 0.38 0.77 0.75	JSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.59 0.79 0.77	$\begin{array}{c} 0.91 \\ 0.58 \\ 0.41 \\ 0.80 \\ 0.68 \\ 0.11 \\ 0.58 \\ 0.25 \\ 0.21 \\ 0.11 \\ 0.82 \\ 0.59 \\ 0.81 \\ 0.81 \\ 0.81 \end{array}$	0.83 0.56 0.28 0.74 0.61 0.02 0.07 0.15 0.11 0.04 0.51 0.02 0.21 0.46	DC 0.90 0.57 0.39 0.80 0.61 0.08 0.55 0.20 0.17 0.08 0.74 0.40 0.78 0.76	$\begin{array}{c} \text{D} \\ \hline 0.91 \\ \hline 0.57 \\ \hline 0.38 \\ \hline 0.38 \\ \hline 0.80 \\ \hline 0.80 \\ \hline 0.80 \\ \hline 0.11 \\ \hline 0.67 \\ \hline 0.11 \\ \hline 0.53 \\ \hline 0.24 \\ \hline 0.13 \\ \hline 0.13 \\ \hline 0.69 \\ \hline 0.59 \\ \hline 0.79 \\ \hline 0.77 $).91).58).40).68).11).58).25).21).82).59).81).81
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1 ZIP USPS PENDIGITS	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.17 0.70 0.31 0.40 0.62 0.68	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72 0.35 0.78 0.77 0.81	$\begin{array}{c} 1\text{-SPEC} \\ 0.92 \\ 0.52 \\ 0.38 \\ 0.77 \\ 0.62 \\ 0.09 \\ 0.58 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.80 \\ 0.65 \\ 0.79 \\ 0.80 \\ 0.78 \end{array}$	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.75\\ 0.58\\ 0.09\\ 0.43\\ 0.14\\ 0.07\\ 0.05\\ 0.67\\ 0.27\\ 0.54\\ 0.66\\ 0.78\\ \end{array}$	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27 0.67 0.75 0.78	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04 0.68 0.27 0.65 0.71 0.78	$\begin{array}{c} 0.89\\ 0.55\\ 0.39\\ 0.79\\ 0.58\\ 0.11\\ 0.49\\ 0.17\\ 0.07\\ 0.04\\ 0.67\\ 0.27\\ 0.64\\ 0.66\\ 0.78\\ \end{array}$	$\begin{array}{c} 0.89\\ 0.57\\ 0.37\\ 0.81\\ 0.63\\ 0.10\\ 0.25\\ 0.14\\ 0.07\\ 0.05\\ 0.66\\ 0.34\\ 0.61\\ 0.71\\ 0.51\\ \end{array}$	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39 0.78 0.78	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78 0.41 0.78 0.78 0.78 0.78	$\begin{array}{c} 0.90\\ 0.57\\ 0.37\\ 0.80\\ 0.63\\ 0.07\\ 0.63\\ 0.14\\ 0.07\\ 0.05\\ 0.78\\ 0.44\\ 0.78\\$	$\begin{array}{c} 0.76 \\ 0.51 \\ 0.37 \\ 0.74 \\ 0.59 \\ 0.10 \\ 0.38 \\ 0.11 \\ 0.10 \\ 0.01 \\ 0.67 \\ 0.27 \\ 0.56 \\ 0.62 \\ 0.63 \end{array}$	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04 0.68 0.27 0.66 0.75 0.78	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.62 0.71 0.77	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.79\\ 0.57\\ 0.09\\ 0.44\\ 0.17\\ 0.07\\ 0.04\\ 0.67\\ 0.27\\ 0.64\\ 0.66\\ 0.77\\ \end{array}$	$\begin{array}{c} 0.90\\ 0.56\\ 0.35\\ 0.79\\ 0.67\\ 0.06\\ 0.13\\ 0.22\\ 0.13\\ 0.04\\ 0.69\\ 0.12\\ 0.66\\ 0.75\\ 0.61\\ \end{array}$	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10 0.72 0.25 0.78 0.77 0.83	D 0.90 0.57 0.40 0.77 0.65 0.11 0.23 0.20 0.14 0.78 0.60 0.80 0.80 0.81 0.86	0.90 0.57 0.40 0.77 0.66 0.25 0.20 0.11 0.83 0.60 0.81 0.82 0.86	$\begin{array}{c} 0.84\\ 0.56\\ 0.32\\ 0.71\\ 0.59\\ 0.03\\ 0.08\\ 0.15\\ 0.10\\ 0.04\\ 0.02\\ 0.18\\ 0.40\\ 0.02\\ 0.18\\ 0.40\\ 0.10\\ \end{array}$	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.71 0.38 0.77 0.75 0.81	LSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.59 0.79 0.77 0.83	$\begin{array}{c} 0.91 \\ 0.58 \\ 0.41 \\ 0.80 \\ 0.68 \\ 0.11 \\ 0.58 \\ 0.25 \\ 0.21 \\ 0.11 \\ 0.82 \\ 0.59 \\ 0.81 \\ 0.81 \\ 0.86 \end{array}$	$\begin{array}{c} 0.83\\ 0.56\\ 0.28\\ 0.74\\ 0.61\\ 0.02\\ 0.07\\ 0.15\\ 0.11\\ 0.04\\ 0.51\\ 0.02\\ 0.21\\ 0.46\\ 0.10\\ \end{array}$	DC 0.90 0.57 0.39 0.61 0.08 0.55 0.20 0.17 0.08 0.74 0.40 0.78 0.76 0.81	$\begin{array}{c} \text{D} \\ \hline 0.91 \\ \hline 0.57 \\ \hline 0.38 \\ \hline 0.38 \\ \hline 0.80 \\ \hline 0.67 \\ \hline 0.13 \\ \hline 0.13 \\ \hline 0.69 \\ \hline 0.59 \\ \hline 0.59 \\ \hline 0.77 \\ \hline 0.83 \\ \hline 0.83 \\ \hline \end{array}$).91).58).40).80).11).58).25).21).11).82).59).81).81).81
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1 ZIP USPS PENDIGITS PROTEIN	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.34 0.17 0.70 0.31 0.40 0.62 0.68 0.00	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72 0.35 0.78 0.77 0.81 0.01	$\begin{array}{c} 1\text{-SPEC} \\ 0.92 \\ 0.52 \\ 0.38 \\ 0.77 \\ 0.62 \\ 0.09 \\ 0.58 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.80 \\ 0.65 \\ 0.79 \\ 0.80 \\ 0.78 \\ 0.01 \end{array}$	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.75\\ 0.58\\ 0.09\\ 0.43\\ 0.14\\ 0.07\\ 0.05\\ 0.67\\ 0.27\\ 0.54\\ 0.66\\ 0.78\\ 0.02 \end{array}$	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27 0.67 0.75 0.78 0.01	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.04 0.68 0.27 0.65 0.71 0.78 0.01	$\begin{array}{c} 0.89\\ 0.55\\ 0.39\\ 0.79\\ 0.58\\ 0.11\\ 0.49\\ 0.17\\ 0.07\\ 0.04\\ 0.67\\ 0.27\\ 0.64\\ 0.66\\ 0.78\\ 0.02\\ \end{array}$	$\begin{array}{c} 0.89\\ 0.57\\ 0.37\\ 0.81\\ 0.63\\ 0.10\\ 0.25\\ 0.14\\ 0.07\\ 0.05\\ 0.66\\ 0.34\\ 0.61\\ 0.71\\ 0.51\\ 0.01\\ \end{array}$	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39 0.78 0.78 0.78 0.79 0.01	GC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78 0.41 0.78 0.78 0.79 0.01	0.90 0.57 0.37 0.80 0.63 0.07 0.63 0.14 0.07 0.05 0.78 0.44 0.78 0.78 0.78 0.78	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.01 0.67 0.27 0.56 0.62 0.63 0.00	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04 0.68 0.27 0.66 0.75 0.78 0.01	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.04 0.67 0.27 0.62 0.71 0.77 0.01	0.89 0.56 0.39 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.64 0.66 0.77 0.00	$\begin{array}{c} 0.90\\ 0.56\\ 0.35\\ 0.79\\ 0.67\\ 0.06\\ 0.13\\ 0.22\\ 0.13\\ 0.04\\ 0.69\\ 0.12\\ 0.66\\ 0.75\\ 0.61\\ 0.01\\ \end{array}$	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10 0.72 0.25 0.78 0.77 0.83 0.00	D 0.90 0.57 0.40 0.77 0.65 0.11 0.23 0.20 0.14 0.78 0.60 0.80 0.80 0.81 0.86 0.02	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11 0.83 0.60 0.81 0.82 0.86 0.04	$\begin{array}{c} 0.84\\ 0.56\\ 0.32\\ 0.71\\ 0.59\\ 0.03\\ 0.08\\ 0.15\\ 0.10\\ 0.04\\ 0.02\\ 0.18\\ 0.40\\ 0.10\\ 0.01\\ \end{array}$	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.07 0.07 0.38 0.77 0.75 0.81 0.04	Image: SI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.79 0.79 0.77 0.83 0.04	$\begin{array}{c} 0.91 \\ 0.58 \\ 0.41 \\ 0.80 \\ 0.68 \\ 0.11 \\ 0.58 \\ 0.25 \\ 0.21 \\ 0.11 \\ 0.82 \\ 0.59 \\ 0.81 \\ 0.81 \\ 0.86 \\ 0.04 \end{array}$	$\begin{array}{c} 0.83\\ 0.56\\ 0.28\\ 0.74\\ 0.61\\ 0.02\\ 0.07\\ 0.15\\ 0.11\\ 0.04\\ 0.51\\ 0.02\\ 0.21\\ 0.46\\ 0.10\\ 0.02\\ \end{array}$	DC 0.90 0.57 0.39 0.80 0.61 0.08 0.55 0.20 0.17 0.08 0.74 0.40 0.78 0.76 0.81 0.01	$\begin{array}{c} \text{D} \\ 0.91 \\ 0.57 \\ 0.38 \\ 0.80 \\ 0.67 \\ 0.11 \\ 0.53 \\ 0.24 \\ 0.13 \\ 0.13 \\ 0.69 \\ 0.79 \\ 0.77 \\ 0.83 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.001 \\ 0.00$).91).58).40).68).11).58).25).21).11).82).59).81).81).81).86).04
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1 ZIP USPS PENDIGITS PENDIGITS PROTEIN 20NEWS	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.34 0.34 0.34 0.34 0.43 0.43 0.43	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72 0.35 0.78 0.77 0.81 0.01 0.54	$\begin{array}{c} 1\text{-SPEC} \\ 0.92 \\ 0.52 \\ 0.38 \\ 0.77 \\ 0.62 \\ 0.09 \\ 0.58 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.80 \\ 0.65 \\ 0.79 \\ 0.80 \\ 0.78 \\ 0.01 \\ 0.52 \end{array}$	$\begin{array}{c} 0.89\\ 0.56\\ 0.39\\ 0.75\\ 0.58\\ 0.09\\ 0.43\\ 0.14\\ 0.07\\ 0.07\\ 0.67\\ 0.27\\ 0.54\\ 0.66\\ 0.78\\ 0.02\\ 0.36\end{array}$	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27 0.67 0.75 0.78 0.01 0.36	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04 0.68 0.27 0.65 0.71 0.78 0.01 0.36	0.89 0.55 0.39 0.79 0.58 0.11 0.49 0.17 0.07 0.04 0.67 0.27 0.64 0.66 0.78 0.02 0.34	0.89 0.57 0.37 0.81 0.63 0.10 0.25 0.14 0.07 0.05 0.66 0.34 0.61 0.71 0.51 0.01	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39 0.78 0.78 0.79 0.01	SC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.62 0.14 0.07 0.78 0.41 0.78 0.78 0.78 0.78 0.79 0.01 0.52 0.52	0.90 0.57 0.37 0.80 0.63 0.07 0.63 0.14 0.05 0.78 0.78 0.78 0.78 0.78 0.78 0.78	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.10 0.01 0.67 0.27 0.56 0.62 0.63 0.00 0.24	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.12 0.04 0.68 0.27 0.66 0.75 0.78 0.01 0.34	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.62 0.71 0.77 0.01 0.34	0.89 0.56 0.39 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.64 0.66 0.77 0.00 0.34	0.90 0.56 0.35 0.79 0.67 0.06 0.13 0.22 0.13 0.04 0.69 0.12 0.66 0.75 0.61 0.01 0.36	LS 0.90 0.57 0.38 0.78 0.78 0.78 0.73 0.24 0.10 0.72 0.25 0.78 0.77 0.83 0.00 0.43	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20 0.14 0.78 0.60 0.80 0.81 0.86 0.02 0.44	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11 0.83 0.60 0.81 0.82 0.86 0.04	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10 0.04 0.40 0.02 0.18 0.40 0.01 0.01	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.71 0.71 0.38 0.77 0.75 0.81 0.04	SI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.59 0.79 0.77 0.83 0.04 0.44	0.91 0.58 0.41 0.80 0.68 0.25 0.21 0.11 0.82 0.59 0.81 0.81 0.81 0.84 0.04	0.83 0.56 0.28 0.74 0.02 0.07 0.15 0.11 0.04 0.51 0.02 0.21 0.46 0.10 0.02 0.14	DC 0.90 0.57 0.39 0.80 0.61 0.08 0.55 0.20 0.01 0.08 0.74 0.40 0.78 0.76 0.81 0.01 0.45	ED 0.91 (0.97 (0.80 (0.80 (0.80 (0.67 (0.11 (0.53 (0.11 (0.53 (0.13 (0.13 (0.13 (0.13 (0.59 (0.77 (0.83 (0.04 ().91).58).40).80).25).21).11).58).25).21).11).82).59).81).81).86).04).04
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1 ZIP USPS PENDIGITS PENDIGITS PROTEIN 20NEWS LET-REC	KM 0.85 0.55 0.43 0.77 0.57 0.10 0.58 0.34 0.34 0.34 0.40 0.62 0.68 0.00 0.05 0.35	NCUT 0.90 0.57 0.40 0.79 0.61 0.08 0.55 0.16 0.10 0.04 0.72 0.35 0.78 0.77 0.81 0.01 0.54 0.38	$\begin{array}{c} 1\text{-SPEC} \\ 0.92 \\ 0.52 \\ 0.38 \\ 0.77 \\ 0.62 \\ 0.09 \\ 0.58 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.80 \\ 0.65 \\ 0.79 \\ 0.80 \\ 0.78 \\ 0.01 \\ 0.52 \\ 0.26 \end{array}$	0.89 0.56 0.39 0.75 0.58 0.09 0.43 0.04 0.07 0.07 0.27 0.54 0.66 0.78 0.02 0.36 0.02 0.36 0.02	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27 0.67 0.75 0.75 0.78 0.01 0.36 0.04 3	MF 0.89 0.55 0.37 0.79 0.58 0.11 0.43 0.17 0.07 0.04 0.68 0.27 0.65 0.71 0.78 0.01 0.366 0.42	0.89 0.55 0.39 0.79 0.58 0.11 0.49 0.17 0.07 0.04 0.67 0.27 0.64 0.66 0.78 0.02 0.34 0.43	0.89 0.57 0.37 0.63 0.10 0.25 0.14 0.07 0.05 0.66 0.34 0.61 0.71 0.51 0.51 0.51 0.51 0.48 0.21	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39 0.78 0.78 0.78 0.79 0.01 0.54	C 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78 0.78 0.78 0.78 0.79 0.01 0.52 0.37	0.90 0.57 0.37 0.63 0.07 0.63 0.14 0.07 0.05 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78	0.76 0.51 0.37 0.74 0.59 0.10 0.38 0.11 0.00 0.01 0.67 0.27 0.56 0.62 0.63 0.00 0.24 0.35	ON 0.88 0.57 0.36 0.79 0.57 0.11 0.46 0.13 0.02 0.04 0.68 0.27 0.66 0.75 0.78 0.01 0.34 0.43	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.62 0.71 0.77 0.01 0.34 0.43	0.89 0.56 0.39 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.64 0.66 0.77 0.00 0.34	0.90 0.56 0.35 0.79 0.67 0.13 0.22 0.13 0.04 0.69 0.12 0.66 0.75 0.61 0.01 0.36 0.39	LS 0.90 0.57 0.38 0.78 0.63 0.11 0.53 0.24 0.18 0.10 0.72 0.25 0.78 0.77 0.83 0.00 0.43 0.41	D 0.90 0.57 0.40 0.77 0.65 0.11 0.51 0.23 0.20 0.14 0.78 0.60 0.80 0.80 0.81 0.86 0.02 0.44 0.45	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11 0.83 0.60 0.81 0.82 0.86 0.04 0.44 0.45	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10 0.04 0.04 0.02 0.18 0.40 0.01 0.01 0.14 0.17	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.77 0.75 0.77 0.75 0.81 0.04 0.44 0.37	LSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.79 0.79 0.79 0.77 0.83 0.04 0.44	0.91 0.58 0.41 0.80 0.68 0.11 0.58 0.25 0.21 0.11 0.82 0.59 0.81 0.81 0.81 0.86 0.04 0.45 0.46	0.83 0.56 0.28 0.74 0.61 0.02 0.07 0.15 0.11 0.04 0.51 0.02 0.21 0.46 0.10 0.02 0.14 0.18	DC 0.90 0.57 0.39 0.80 0.61 0.08 0.55 0.20 0.17 0.08 0.74 0.40 0.78 0.76 0.81 0.01 0.45 0.36	CD 0.91 (0.57 (0.80 (0.80 (0.67 (0.53 (0.11 (0.53 (0.13 (0.69 (0.69 (0.77 (0.83 (0.69 (0.77 (0.83 (0.04 (0.44 (0.44 (0.44 (0.44 ().91).58).40).80).11).58).25).21).11).82).59).81).81).81).86).04).45).46
DATASET ORL MED VOWEL COIL20 SEMEION FAULTS SEGMENT CORA CITESEER 7SECTORS OPTDIGITS SVMGUIDE1 ZIP USPS PENDIGITS PENDIGITS PROTEIN 20NEWS LET-REC MNIST	KM 0.855 0.433 0.777 0.100 0.588 0.344 0.34 0.340 0.340 0.401 0.400 0.622 0.688 0.000 0.035 0.351	$\begin{array}{c} \hline \text{NCUT} \\ \hline 0.90 \\ 0.57 \\ 0.40 \\ 0.79 \\ 0.61 \\ 0.08 \\ 0.55 \\ 0.16 \\ 0.10 \\ 0.04 \\ 0.72 \\ 0.35 \\ 0.78 \\ 0.77 \\ 0.81 \\ 0.01 \\ 0.54 \\ 0.38 \\ 0.81 \\ \end{array}$	$\begin{array}{c} 1\text{-SPEC} \\ 0.92 \\ 0.52 \\ 0.38 \\ 0.77 \\ 0.62 \\ 0.09 \\ 0.58 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.80 \\ 0.65 \\ 0.79 \\ 0.80 \\ 0.78 \\ 0.01 \\ 0.52 \\ 0.26 \\ 0.89 \end{array}$	0.89 0.56 0.39 0.75 0.58 0.09 0.43 0.04 0.07 0.05 0.67 0.27 0.54 0.66 0.78 0.02 0.36 0.02 0.36 0.02 0.36 0.02 0.59	PN 0.90 0.55 0.36 0.79 0.62 0.11 0.48 0.13 0.07 0.04 0.68 0.27 0.67 0.75 0.75 0.78 0.01 0.36 0.43 0.82	MF 0.89 0.37 0.79 0.55 0.11 0.43 0.17 0.07 0.68 0.27 0.68 0.71 0.78 0.71 0.78 0.71 0.78 0.71 0.78 0.71 0.78 0.71 0.78 0.71 0.78 0.79 0.79	0.89 0.55 0.39 0.79 0.58 0.11 0.49 0.67 0.07 0.64 0.66 0.66 0.66 0.66 0.60 0.68 0.62 0.34 0.43 0.59	0.89 0.57 0.37 0.63 0.03 0.05 0.04 0.07 0.05 0.66 0.34 0.61 0.71 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.5	NS 0.90 0.58 0.38 0.79 0.63 0.07 0.56 0.14 0.08 0.04 0.77 0.39 0.78 0.78 0.79 0.01 0.54 0.38 0.84	GC 0.90 0.57 0.37 0.80 0.63 0.07 0.62 0.14 0.07 0.05 0.78 0.78 0.78 0.79 0.01 0.52 0.37 0.84	0.90 0.57 0.37 0.63 0.07 0.63 0.14 0.07 0.05 0.78 0.78 0.78 0.78 0.78 0.78 0.01 0.52 0.37 0.84	0.76 0.51 0.37 0.59 0.10 0.38 0.11 0.67 0.27 0.66 0.62 0.63 0.00 0.24 0.35	ON 0.88 0.57 0.36 0.79 0.11 0.46 0.13 0.12 0.04 0.68 0.27 0.16 0.75 0.75 0.75 0.75 0.78 0.01 0.34 0.43 0.75	MF 0.89 0.56 0.37 0.79 0.57 0.09 0.44 0.17 0.07 0.04 0.67 0.27 0.62 0.71 0.77 0.01 0.34 0.43 0.64	0.89 0.56 0.39 0.57 0.09 0.44 0.67 0.07 0.64 0.66 0.77 0.64 0.66 0.77 0.00 0.34 0.42 0.59	0.90 0.56 0.35 0.79 0.67 0.13 0.22 0.13 0.04 0.69 0.12 0.66 0.75 0.61 0.01 0.36 0.39 0.87	LS 0.90 0.57 0.38 0.63 0.63 0.53 0.24 0.10 0.72 0.25 0.78 0.77 0.83 0.00 0.43 0.00 0.41 0.76	D 0.90 0.57 0.40 0.77 0.65 0.11 0.23 0.20 0.14 0.78 0.60 0.80 0.80 0.80 0.80 0.81 0.86 0.02 0.44 0.45 0.93	0.90 0.57 0.40 0.77 0.66 0.11 0.58 0.25 0.20 0.11 0.83 0.60 0.81 0.82 0.86 0.04 0.44 0.45 0.93	0.84 0.56 0.32 0.71 0.59 0.03 0.08 0.15 0.10 0.04 0.02 0.02 0.02 0.018 0.40 0.010 0.011 0.14 0.17 0.34	PI 0.90 0.56 0.40 0.80 0.61 0.08 0.55 0.20 0.17 0.38 0.77 0.75 0.81 0.04 0.04 0.44 0.37 0.81	LSI 0.91 0.57 0.38 0.80 0.66 0.12 0.53 0.24 0.19 0.13 0.73 0.59 0.79 0.77 0.83 0.04 0.44 0.42 0.92	0.91 0.58 0.41 0.80 0.68 0.25 0.21 0.82 0.59 0.81 0.81 0.81 0.86 0.04 0.45 0.46	0.83 0.56 0.28 0.74 0.02 0.07 0.15 0.01 0.02 0.21 0.46 0.40 0.46 0.02 0.44 0.48	D0 0.90 0.57 0.39 0.80 0.61 0.08 0.55 0.20 0.17 0.08 0.74 0.040 0.78 0.76 0.81 0.01 0.45 0.36 0.80	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $).91).58).40).80).11).58).25).21).21).82).59).81).82).81).82).81).82).81).82).93

Table 4: Clustering performance comparison of DCD using *heterogeneous co-initialization* with three ensemble clustering methods. Rows are ordered by dataset sizes. Boldface numbers indicate the best. The 11 bases are from NCUT, 1-SPEC, PNMF, NSC, ONMF, LSD, PLSI, DCD1, DCD1.2, DCD2, and DCD5 respectively.

		Pui	rity		NMI						
DATASET	BEST	CO	CTS	DCD	BEST	CO	CTS	DCD			
ORL	0.81	0.81	0.80	0.83	0.90	0.90	0.90	0.91			
MED	0.59	0.58	0.58	0.58	0.58	0.57	0.57	0.58			
VOWEL	0.35	0.33	0.36	0.40	0.38	0.36	0.37	0.40			
COIL20	0.73	0.69	0.72	0.70	0.80	0.77	0.79	0.80			
SEMEION	0.65	0.61	0.65	0.77	0.61	0.56	0.62	0.68			
FAULTS	0.40	0.39	0.41	0.44	0.08	0.08	0.09	0.11			
SEGMENT	0.63	0.61	0.63	0.65	0.55	0.55	0.55	0.58			
CORA	0.45	0.41	0.42	0.55	0.20	0.17	0.18	0.25			
CITESEER	0.43	0.34	0.35	0.48	0.18	0.12	0.15	0.21			
7SECTORS	0.36	0.27	0.25	0.35	0.08	0.04	0.04	0.11			
OPTDIGITS	0.76	0.63	0.71	0.85	0.74	0.68	0.71	0.82			
SVMGUIDE1	0.78	0.82	0.78	0.91	0.40	0.46	0.40	0.59			
ZIP	0.74	0.62	0.76	0.84	0.78	0.70	0.80	0.81			
USPS	0.75	0.65	0.73	0.85	0.76	0.69	0.78	0.81			
PENDIGITS	0.84	0.84	0.81	0.89	0.81	0.81	0.82	0.86			
PROTEIN	0.46	0.46	0.46	0.50	0.01	0.01	0.01	0.04			
20NEWS	0.45	0.28	0.40	0.50	0.45	0.38	0.47	0.45			
LET-REC	0.26	0.23	0.24	0.38	0.37	0.35	0.39	0.46			
MNIST	0.96	0.57	0.76	0.98	0.92	0.68	0.84	0.93			