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Abstract

Many modern clustering methods employ a non-convex objective function and

use iterative optimization algorithms to find local minima. Thus initialization

of the algorithms is very important. Conventionally the starting guess of the

iterations is randomly chosen; however, such a simple initialization often leads

to poor clusterings. Here we propose a new method to improve cluster analy-

sis by combining a set of clustering methods. Different from other aggregation

approaches, which seek for consensus partitions, the participating methods in

our method are used consequently, providing initializations for each other. We

present a hierarchy, from simple to comprehensive, for different levels of such

co-initializations. Extensive experimental results on real-world datasets show

that a higher level of initialization often leads to better clusterings. Especially,

the proposed strategy is more effective for complex clustering objectives such

as our recent cluster analysis method by low-rank doubly stochastic matrix de-

composition (called DCD). Empirical comparison with three ensemble clustering

methods that seek consensus clusters confirms the superiority of improved DCD

using co-initialization.
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1. Introduction1

Cluster analysis plays an essential role in machine learning and data min-2

ing. The aim of clustering is to group a set of objects in such a way that the3

objects in the same cluster are more similar to each other than to the objects4

in other clusters, according to a particular objective. Many clustering meth-5

ods are based on objective functions which are non-convex. Their optimization6

generally involves iterative algorithms which start from an initial guess. Proper7

initialization is critical for getting good clusterings.8

For simplicity, random initialization has been widely used, where a start-9

ing point is randomly drawn from a uniform or other distribution. However,10

such a simple initialization often yields poor results and the iterative clustering11

algorithm has to be run many times with different starting points in order to12

get better solutions. More clever initialization strategies are thus required to13

improve efficiency.14

Many ad hoc initialization techniques have been proposed for specific clus-15

tering methods, for example, specific choices of the initial cluster centers of the16

classical k-means method (see e.g. [1, 2, 3, 4]), or singular value decomposition17

for clustering based on nonnegative matrix factorization [5, 6]. However, there18

seems to be no initialization principle that would be commonly applicable for a19

wide range of iterative clustering methods. Especially, there is little research on20

whether one clustering method can benefit from initializations by the results of21

another clustering method.22

In this paper, we show experimentally that the clusterings can usually be23

improved if a set of diverse clustering methods provide initializations for each24

other. We name this approach co-initialization. We present a hierarchy of ini-25

tializations towards this direction, where a higher level represents a more exten-26

sive strategy. At the top are two levels of co-initialization strategies. We point27

out that despite their extra computational cost, these strategies can often bring28

significantly enhanced clustering performance. The enhancement is especially29

significant for more complex clustering objectives, for example, Probabilistic30
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Latent Semantic Indexing [7], and our recent clustering method by low-rank31

doubly stochastic matrix decomposition (called DCD) [8].32

Our claims are supported by extensive experiments on nineteen real-world33

clustering tasks. We have used a variety of datasets from different domains34

such as text, vision, and biology. The proposed initialization hierarchy has been35

tested using eight state-of-the-art clustering methods. Two widely used crite-36

ria, cluster purity and Normalized Mutual Information, are used to measure37

the clustering performance. The experimental results verify that a higher level38

initialization in the proposed hierarchy often achieve better clustering perfor-39

mance.40

Ensemble clustering is another way to combine a set of clustering methods.41

It aggregates the different clusterings into a single one. We also compared co-42

initialization with three prominent ensemble clustering methods. The compar-43

ison results show that the improved DCD using co-initializations outperforms44

these ensemble approaches that seek a consensus clustering.45

In the following, Section 2 reviews briefly the recently introduced Data-46

Cluster-Data (DCD) method. It is a representative clustering method among47

those that strongly benefit from co-initializations, and will be shown to be over-48

all the best method in the experiments. Then Section 3 reviews related work49

on ensemble clustering, which is another way of combining a set of base clus-50

tering methods. In Section 4, we present our novel co-initialization method51

and describe the initialization hierarchy. Experimental settings and results are52

reported in Section 5. Section 6 concludes the paper and discusses potential53

future work.54

2. Clustering by DCD55

Some clustering methods such as Normalized Cut [9] are not sensitive to56

initializations but tend to return less accurate clustering (see e.g. [10], page 8, [8,57

11], and Section 5.3). On the other hand, some methods can find more accurate58

results but require careful initialization. The latter kind of methods can benefit59
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more from our co-initialization strategy, to be introduced in Section 4. Recently60

we proposed a typical clustering method of the latter kind, which is based61

on Data-Cluster-Data random walk and thus called DCD [8]. In this section62

we recapitulate the essence of DCD. It belongs to the class of probabilistic63

clustering methods. Given n data samples and r clusters, denote by P (k|i) the64

probability of assigning the ith sample to the kth cluster, where i = 1, . . . , n65

and k = 1, . . . , r.66

Suppose the similarities between data items are precomputed and given in67

an n×n nonnegative symmetric sparse matrix A. DCD seeks an approximation68

to A by another matrix Â whose elements correspond to the probabilities of69

two-step random walks between data points through clusters. Let i, j, and v70

be indices for data points, and k and l for clusters. Then the random walk71

probabilities are given as72

Âij = P (i|j) =
∑
k

P (i|k)P (k|j) =
∑
k

P (k|i)P (k|j)∑
v P (k|v)

, (1)

by using the Bayes formula and the uniform prior P (i) = 1/n.73

The approximation is given by the Kullback-Leibler (KL-) divergence. This74

is formulated as the following optimization problem [8]:75

minimize
P≥0

DKL(A||Â) =
∑
ij

(
Aij log

Aij

Âij

−Aij + Âij

)
, (2)

where Âij =
∑

k
PikPjk∑

v Pvk
with Pik = P (k|i), subject to

∑
k Pik = 1, i = 1, . . . , n.76

Denote ∇ = ∇+−∇− as the gradient of DKL(A||Â) with respect to P , where77

∇+ and ∇− are the positive and (unsigned) negative parts of ∇, respectively.78

The optimization is solved by a Majorization-Minimization algorithm [12, 13,79

14, 15] that iteratively applies a multiplicative update rule:80

Pik ← Pik
∇−ikai + 1

∇+
ikai + bi

, (3)
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where ai =
∑
l

Pil

∇+
il

and bi =
∑
l

Pil
∇−il
∇+

il

.81

The preprocessing of DCD employs the common approximation of making82

A sparse by zeroing the non-local similarities. This makes sense for two rea-83

sons: first, geodesics of curved manifolds in high-dimensional spaces can only be84

approximated by Euclidean distances in small neighborhoods; second, most pop-85

ular distances computed of weak or noisy indicators are not reliable over long86

distances, and the similarity matrix is often approximated by the K-nearest87

neighbor graph with good results, especially when n is large. With a sparse A,88

the computational cost of DCD is O(|E| × r) for |E| nonzero entries in A and89

r clusters. In the experiments we used symmetrized and binarized K-Nearest-90

Neighbor graph as A (K � n). Thus the computational cost is O(nKr).91

Given a good initial decomposing matrix P , DCD can achieve better clus-92

ter purity compared with several other state-of-the-art clustering approaches,93

especially for large-scale datasets where the data points situate in a curved94

manifold. Its success comes from three elements in its objective: 1) the approx-95

imation error measure by Kullback-Leibler divergence takes into account sparse96

similarities; 2) the decomposing matrix P as the only variable to be learned97

contains just enough parameters for clustering; and 3) the decomposition form98

ensures relatively balanced clusters and equal contribution of each data sample.99

What remains is how to get a good starting point. The DCD optimization100

problem is harder to solve than conventional NMF-type methods based on Eu-101

clidean distance in three aspects: 1) the geometry of the KL-divergence cost102

function is more complex; 2) DCD employs a structural decomposition where P103

appears more than once in the approximation, and appears in both numerator104

and denominator; 3) each row of P is constrained to be in the (r − 1)-simplex.105

Therefore, finding a satisfactory DCD solution requires more careful initializa-106

tion. Otherwise the optimization algorithm can easily fall into a poor local107

minimum.108

Yang and Oja [8] proposed to obtain the starting points by pre-training109

DCD with regularization term (1−α)
∑

ik logPik. This corresponds to imposing110
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Dirichlet priors over the rows of P . By varying α, the pre-training can provide111

different starting points for multiple runs of DCD. The final result is given by112

the one with the smallest DCD objective of Eq. 2. This initialization strategy113

can bring improvement for certain datasets, whereas the enhancement remains114

mediocre as it is restricted to the same family of clustering methods. In the115

remaining, we investigate the possibility to obtain good starting points with the116

aid of other clustering methods.117

3. Ensemble clustering118

In supervised machine learning, it is known that combining a set of classifiers119

can produce better classification results (see e.g. [16]). There have been also120

research efforts with the same spirit in unsupervised learning, where several121

basic clusterings are combined into a single categorical output. The base results122

can come from results of several clustering methods, or the repeated runs of a123

single method with different initializations. In general, after obtaining the bases,124

a combining function, called consensus function, is needed for aggregating the125

clusterings into a single one. We call such aggregating methods ensemble cluster126

analysis.127

Several ensemble clustering methods have been proposed. An early method128

[17] first transforms the base clusterings into a hypergraph and then uses a129

graph-partitioning algorithm to obtain the final clusters. Gionis and Mannila130

[18] defined the distance between two clusterings as the number of pairs of ob-131

jects on which the two clusterings disagree, based on which they formulated132

the ensemble problem as the minimization of the total number of disagreements133

with all the given clusterings. Fred and Jain [19] explored the idea of evidence134

accumulation and proposed to summarize various clusterings in a co-association135

matrix. The incentive of their approach is to weight associations between sam-136

ple pairs by the number of times they co-occur in a cluster from the set of137

given clusterings. After obtaining the co-association matrix, they applied the138

agglomerative clustering algorithm to yield the final partition. Iam-On et al.139
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[20] introduced new methods for generating two link-based pairwise similarity140

matrices called connected-triple-based similarity and SimRank-based similarity.141

They refined similarity matrices by considering both the associations among142

data points and those among clusters in the ensemble using link-based similar-143

ity measures. In their subsequent work [21], Iam-On et al. released a software144

package called LinkCluE for their link-based cluster ensemble framework. New145

approaches that better exploit the nature of the co-association matrix have re-146

cently appeared (see e.g. [22, 23]).147

Despite the rationales for aggregation, the above methods can produce mediocre148

results if many base clustering methods fall into their poor local optima during149

their optimization. Seeking a consensus partition of such bases will not bring150

extraordinary improvement. To overcome this, in the following we present a151

new technique that enhances the participating clustering methods themselves.152

In the experimental part we show that our approach outperforms three well-153

known ensemble clustering methods.154

4. Improving clustering by co-initializations155

We consider a novel approach that makes use of a set of existing clustering156

methods. Instead of combining for consensus partitions, the proposed approach157

is based on two observations: 1) many clustering methods that use iterative158

optimization algorithms are sensitive to initializations; random starting guesses159

often lead to poor local optima; 2) on the other hand, the iterative algorithms160

often converge to a much better result given a starting point which is sufficiently161

close to the optimal result or the ground truth. These two observations inspired162

us to systematically study the behavior of an ensemble of clustering methods163

through co-initializations, i.e., providing starting guesses for each other.164

The cluster assignment can be represented by an n×r binary matrix W , indi-165

cating the membership of the samples to clusters. Most state-of-the-art cluster166

analysis methods use a non-convex objective function over the indicator matrix167

W . The objective is usually optimized by an iterative optimization algorithm168
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with a starting guess of the cluster assignment. The simplest way is to start169

from a random cluster assignment (random initialization). Typically the start-170

ing point is drawn from a uniform distribution. To find a better local optimum,171

one may repeat the optimization algorithm several times with different starting172

assignments (e.g. with different random seeds). “Soft” clustering has been intro-173

duced to reduce the computational cost in combinatorial optimization (see e.g.174

[24]), where the solution space of W is relaxed to right-stochastic matrices (e.g.175

[25]) or nonnegative nearly orthogonal matrices (e.g. [26, 14]). Initialization for176

these algorithms can be a cluster indicator matrix plus a small perturbation.177

This is in particular widely used in multiplicative optimization algorithms (e.g.178

[26]).179

Random initialization is easy to program. However, in practice it often180

leads to clustering results which are far from a satisfactory partition, even if the181

clustering algorithm is repeated with tens of different random starting points.182

This drawback appears for various clustering methods using different evaluation183

criteria. See Section 5.3 for examples.184

To improve clusterings, one can consider more complex initialization strate-185

gies. Especially, the cluster indicator matrix W may be initially set by the186

output of another clustering method instead of random initialization. One can187

use the result from a fast and computationally simple clustering method such188

as Normalized Cut (NCUT) [9] or k-means [27] as the starting point. We call189

the clustering method used for initialization the base method in contrast to the190

main method, used for the actual consequent cluster analysis. Because here the191

base method is simpler than the main clustering method, we call this strategy192

simple initialization. This strategy has been widely used in clustering methods193

with Nonnegative Matrix Factorization (e.g. [26, 24, 28]).194

We point out that the clusterings can be further improved by more consider-195

ate initializations. Besides NCUT or k-means, one can consider any clustering196

methods for initialization, as long as they are different from the main method.197

The strategy where the base methods belong to the same parametric family is198

called family initialization. That is, both the base and the main methods use199
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Algorithm 1 Cluster analysis using heterogeneous initialization. We denote
W ← M(D, U) a run of clustering method M on data D, with starting guess
U and output cluster indicator matrix W . JM denotes the objective function
of the main method.

1: Input: data D, base clustering methods B1,B2, . . . ,BT , and main clustering
method M

2: Initialize {Ut}Tt=1 by e.g. random or simple initialization
3: for t = 1 to T do
4: V ← Bt(D, Ut)
5: Wt ←M(D, V )
6: end for
7: Output: W ← arg min

Wt

{JM(D,Wt)}Tt=1.

the same form of objective and metric but only differ by a few parameters. For200

example, in the above DCD method, varying α in the Dirichlet prior can pro-201

vide different base methods [8]; the main method (α = 1) and the base methods202

(α 6= 1) belong to the same parametric family. Removing the constraint of the203

same parameterized family, we can generalize this idea such that any clustering204

methods can be used as base methods and thus call the strategy heterogeneous205

initialization. Similar to the strategies for combining classifiers, it is reason-206

able to have base methods as diverse as possible for better exploration. The207

pseudocodes for heterogeneous initialization is given in Algorithm 1.208

Deeper thinking in this direction gives a more comprehensive strategy called209

heterogeneous co-initialization, where we make no difference from base and main210

methods. The participating methods can provide initializations to each other.211

Such cooperative learning can run for more than one iteration. That is, when212

one algorithm finds a better local optimum, the resulting cluster assignment can213

again serve as the starting guess for the other clustering methods. The loop will214

converge when none of the involved methods can find a better local optimum.215

The convergence is guaranteed if the objective functions are all bounded. A216

special case of this strategy was used for combining NMF and Probabilistic217

Latent Semantic Indexing [29]. Here we generalize this idea to any participating218

clustering methods. The pseudo-code for heterogeneous co-initialization is given219

in Algorithm 2.220
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Algorithm 2 Cluster analysis using heterogeneous co-initialization. JMi
de-

notes the objective function of method Mi.

1: Input: data D and clustering methods M1,M2, . . . ,MT

2: Jt ←∞, t = 1, . . . , T .
3: Initialize {Wt}Tt=1 by e.g. random or simple initialization
4: repeat
5: bContinue←False
6: for i = 1 to T do
7: for j = 1 to T do
8: if i 6= j then
9: Ui ←Mi(D,Wj)

10: end if
11: end for
12: J ← min

Uj

{JMj (D, Uj)}Tj=1

13: V ← arg min
Uj

{JMj
(D, Uj)}Tj=1

14: if J < Ji then
15: Ji ← J
16: Wi ← V
17: bContinue←True
18: end if
19: end for
20: until bContinue=False or maximum iteration is reached
21: Output: {Wt}Tt=1.

By this level of initialization, each participating method will give their own221

clusterings. Usually, methods that can find accurate results but require more222

careful initialization will get more improved than those that are less sensitive to223

initialization but give less accurate clusterings. Therefore, if a single clustering224

is wanted, we suggest the output of the former kind. For example, DCD can sig-225

nificantly be improved by using co-initialization. We thus select its result as the226

single clustering as output of heterogeneous co-initialization in the experiments227

in Section 5.4.228

In Table 1, we summarize the above initialization strategies in a hierarchy.229

The computational cost increases along the hierarchy from low to high levels.230

We argue that the increased expense is often deserved for improving clustering231

quality, which will be justified by experiments in the following section. Note232

that the hierarchy was mentioned in our preliminary work [11].233
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Table 1: Summary of the initialization hierarchy for cluster analysis

level name description
0 random initialization uses random starting points
1 simple initialization initialize by a fast and computationally simple method such as k-means or

NCUT
2 family initialization uses base methods from a same parameterized family for initialization
3 heterogeneous initialization uses any base methods to provide initialization for the main method
4 heterogeneous co-initialization run in multiple iterations; in each iteration all participating methods provide

initialization for each other

5. Experiments234

We provide two groups of empirical results to demonstrate that 1) cluster-235

ing performance can often be improved using more comprehensive initializations236

in the proposed hierarchy and 2) the new method outperforms three existing237

approaches that aggregate clusterings. All datasets and codes used in the ex-238

periments are available online1.239

5.1. Data sets240

We focus on clustering tasks on real-world datasets. Nineteen publicly241

available datasets have been used in our experiments. They are from various242

domains, including text documents, astroparticles, face images, handwritten243

digit/letter images, protein. The sizes of these datasets range from a few hun-244

dreds to tens of thousands. The statistics of the datasets are summarized in245

Table 2. The data sources and descriptions are given in the supplemental doc-246

ument. For fair comparisons, we chose datasets whose ground truth classes are247

known.248

The datasets are preprocessed as follows. We first extracted vectorial fea-249

tures for each data sample, in particular, scattering features [30] for images and250

Tf-Idf features for text documents. In machine learning and data analysis, the251

vectorial data often lie in a curved manifold, i.e. most simple metrics such as the252

Euclidean distance or cosine (here for Tf-Idf features) is only reliable in a small253

1http://users.ics.aalto.fi/hezhang/Clustering_co_init/
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Table 2: Statistics of the data sets.

DATASET # SAMPLES # CLASSES
ORL 400 40
MED 696 25
VOWEL 990 11
COIL20 1440 20
SEMEION 1593 10
FAULTS 1941 7
SEGMENT 2310 7
CORA 2708 7
CITESEER 3312 6
7SECTORS 4556 7
OPTDIGITS 5620 10
SVMGUIDE1 7089 2
ZIP 9298 10
USPS 9298 10
PENDIGITS 10992 10
PROTEIN 17766 3
20NEWS 19938 20
LET-REC 20000 26
MNIST 70000 10

neighborhood. We employed K-Nearest-Neighbor (KNN) graph to encode such254

local information. The choice of K is not very sensitive for large-scale datasets.255

Here we fix K = 10 for all datasets. We symmetrized the affinity matrix A:256

Aij = 1 if i is one of the K nearest neighbors of j, or vice versa, and Aij = 0257

otherwise.258

5.2. Evaluation criteria259

The performance of cluster analysis is evaluated by comparing the resulting260

clusters to ground truth classes. We have adopted two widely used criteria:261

• purity (e.g. [26, 8]), computed as262

purity =
1

n

r∑
k=1

max
1≤l≤q

nlk, (4)

where nlk is the number of vertices in the partition k that belong to ground-263

truth class l;264
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• normalized mutual information [17], computed as265

NMI =

∑r
i=1

∑r′

j=1 ni,j log
(

ni,jn
nimj

)
√∑r

i=1 ni log
(
ni

n

)∑r′

j=1mj log
(mj

n

) , (5)

where r and r′ respectively denote the number of clusters and classes; ni,j266

is the number of data points agreed by cluster i and class j; ni and mj267

denote the number of data points in cluster i and class j respectively; and268

n is the total number of data points in the dataset.269

For a given partition of the data, all the above measures give a value between 0270

and 1. A larger value in general indicates a better clustering performance.271

5.3. Clustering with initializations at different levels272

In the first group of experiments, we have tested various clustering methods273

with different initializations in the hierarchy described in Section 4. We focus274

on the following four levels: random initialization, simple initialization, hetero-275

geneous initialization, and heterogeneous co-initialization in these experiments,276

while treating family initialization as a special case of heterogeneous initializa-277

tion. These levels of initializations have been applied to six clustering methods,278

which are279

• Projective NMF (PNMF) [31, 32, 28],280

• Nonnegative Spectral Clustering (NSC) [24],281

• Symmetric Tri-Factor Orthogonal NMF (ONMF) [26],282

• Probabilistic Latent Semantic Indexing (PLSI) [33],283

• Left-Stochastic Matrix Decomposition (LSD) [25],284

• Data-Cluster-Data random walks (DCD) [8].285

For comparison, we also include the results of two other methods based on graph286

cut:287
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• Normalized Cut (NCUT) [9],288

• 1-Spectral Ratio Cheeger Cut (1-SPEC) [34].289

We have coded NSC, PNMF, ONMF, LSD, DCD, and PLSI using multiplicative290

updates and ran each of these programs for 10,000 iterations to ensure their291

convergence. Symmetric versions of PNMF and PLSI have been used. We292

adopted the 1-SPEC software by Hein and Bühler2 with its default setting.293

Following Yang and Oja [8], we employed four different Dirichlet priors (α =294

1, 1.2, 2, 5) for DCD, where each with a different prior is treated as a different295

method in heterogeneous initialization and heterogeneous co-initialization.296

For random initialization, we ran the clustering methods with fifty starting297

points, each with a different random seed, and then record the result with the298

best objective. For simple initialization, we employed NCUT to provide initial-299

ization for the six non-graph-cut methods. Precisely, their starting (relaxed)300

indicator matrix is given by the NCUT result plus 0.2. This same scheme is301

used in heterogeneous initialization and heterogeneous co-initialization where302

one method is initialized by another. For heterogeneous co-initialization, the303

number of co-initialization iterations was set to 5, as in practice we found that304

there is no significant improvement after five rounds. For any initialization305

and clustering method, the learned result gives an objective no worse than the306

initialization.307

Table 3 shows the clustering performance comparison. For clarity, only the308

DCD results using α = 1, i.e., with a uniform prior, are listed in the table, while309

the complete clustering results including three other Dirichlet priors are given310

in the supplemental document.311

There are two types of methods: NCUT and 1-SPEC are of the first type and312

they are insensitive to starting points, though their results are often mediocre313

when compared to the best in each row, especially for large datasets. The second314

type of methods include the other six methods, whose performance depends on315

2http://www.ml.uni-saarland.de/code/oneSpectralClustering/

oneSpectralClustering.html
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initializations. Their results are given in cells with quadruples. We can see that316

more comprehensive initialization strategies often lead to better clusterings,317

where the four numbers in most cells monotonically increase from left to right.318

In particular, improvement brought by co-initializations is more often and319

significant for PLSI and DCD. For example, Table 3 (top) shows that DCD320

for USPS dataset, the purity of heterogeneous co-initialization is 5% better than321

heterogeneous initialization, 10% better than simple initialization, and 34% bet-322

ter than random initialization. The advantage of co-initialization for PLSI and323

DCD is because these two methods are based on Kullback-Leibler (KL-) di-324

vergence. This divergence is more suitable for sparse input similarities due to325

curved manifolds [8]. However, the objective using KL-divergence involves a326

more sophisticated surface and is thus difficult to optimize. Therefore these327

methods require more considerate initializations that provide a good starting328

point. In contrast, objectives of PNMF, NSC, ONMF and LSD, are relatively329

easier to optimize. These methods often perform better than PLSI and DCD330

using lower levels of initializations. However, more comprehensive initializations331

may not improve their clusterings (see e.g. ONMF for OPTDIGITS). This can be332

explained by their improper modeling of sparse input similarities based on the333

Euclidean distance such that more probably a better objective of these methods334

may not correspond to better clustering performance.335

The improvement pattern becomes clearer when the dataset is larger. Es-336

pecially, PLSI and DCD achieve remarkable 0.98 purity for the largest dataset337

MNIST. Note that purity corresponds to classification accuracy up to permuta-338

tion between clusters and classes. This means that our unsupervised cluster339

analysis results are already very close to state-of-the-art supervised classifica-340

tion results3. A similar purity was reported in DCD using family initialization.341

Our experiments show that it is also achievable for other clustering methods342

given co-initializations, with even better results by PLSI and DCD.343

3see http://yann.lecun.com/exdb/mnist/
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5.4. Comparison with ensemble clustering344

Our approach uses a set of clustering methods and outputs a final partition345

of data samples. There exists another way to combine clustering algorithms:346

ensemble clustering, which was reviewed in Section 3 . Therefore, we have com-347

pared our co-initialization method with three ensemble clustering methods in the348

second group of experiments: the BEST algorithm [18], the co-association algo-349

rithm (CO) [19], and the link-based algorithm (CTS) [20]. We coded the BEST350

and CO algorithms by ourselves and ran the CTS algorithm using LinkCluE351

package [21]. For fair comparison, the set of base methods (i.e. same objective352

and same optimization algorithm) is the same for all compared approaches: the353

11 bases are from NCUT, 1-SPEC, PNMF, NSC, ONMF, LSD, PLSI, DCD1,354

DCD1.2, DCD2, and DCD5 respectively. The data input for a particular base355

method is also exactly the same across different combining approaches. The356

final partitions for CO and CTS were given by the complete-linkage hierarchical357

clustering algorithm provided in [21].358

Different from the other compared approaches, our method actually does not359

average the clusterings. Each participating clustering method in co-initializations360

gives their own results, according to the heterogeneous-co-initialization pseu-361

docode in Algorithm 2. Here we chose the result by DCD for the comparison362

with the ensemble methods, as we find that this method benefits the most from363

co-initializations.364

The comparison results are shown in Table 4. We can see that DCD wins365

most clustering tasks, where it achieves the best for 16 out of 19 datasets in366

terms of purity, and 18 out of 19 in terms of NMI. The superiority of DCD367

using co-initializations is especially distinct for large datasets. DCD clearly368

wins for all but the smallest datasets.369

6. Conclusions370

We have presented a new method for improving clustering performance371

through a collection of clustering methods. Different from conventional combin-372
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ing scheme that seeks consensus as clustering, our method tries to find better373

starting points for the participating methods through their initializations for374

each other. The initialization strategies can be organized in a hierarchy from375

simple to complex. By extensive experiments on real-world datasets, we have376

shown that 1) higher-level initialization strategies in the hierarchy can often377

lead to better clustering performance and 2) the co-initialization method can378

significantly outperform conventional ensemble clustering methods that average379

input clusterings.380

Our findings reflect the importance of pre-training in cluster analysis. There381

could be more future steps towards this direction. Currently the participat-382

ing methods are chosen heuristically. A more rigorous and computable diver-383

sity measure between clustering methods could be helpful for more efficient384

co-initializations. A meta probabilistic clustering framework might be also ad-385

vantageous, where the starting points are sampled from more informative priors386

instead of the uniform distribution.387

The proposed co-initialization strategy shares similarities with evolutionary388

algorithms (EA) or genetic algorithms (GA) that use different starting points389

and combine them to make new solution [35, 36]. In the future work, it would be390

interesting to find more precise connection between our approach with EA/GA,391

which could in turn generalize co-initializations to a more powerful framework.392
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Table 3: Clustering performance of various clustering methods with different
initializations. Performances are measured by (top) Purity and (bottom) NMI.
Rows are ordered by dataset sizes. In cells with quadruples, the four numbers
from left to right are results using random, simple, and heterogeneous initializa-
tion and heterogeneous co-initialization.

DATASET KM NCUT 1-SPEC PNMF NSC ONMF LSD PLSI DCD

ORL 0.70 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.53 0.78 0.80 0.80 0.82 0.82 0.82 0.82 0.65 0.81 0.83 0.83 0.67 0.81 0.83 0.83
MED 0.59 0.57 0.53 0.57 0.57 0.56 0.56 0.57 0.59 0.57 0.57 0.51 0.57 0.56 0.56 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.58 0.57 0.57 0.57 0.58

VOWEL 0.40 0.35 0.34 0.38 0.35 0.37 0.38 0.35 0.35 0.35 0.35 0.36 0.35 0.37 0.38 0.34 0.37 0.38 0.40 0.34 0.36 0.38 0.40 0.28 0.36 0.36 0.40

COIL20 0.63 0.71 0.67 0.67 0.71 0.71 0.71 0.73 0.71 0.72 0.72 0.63 0.71 0.72 0.72 0.71 0.68 0.68 0.68 0.58 0.75 0.69 0.70 0.62 0.75 0.69 0.70
SEMEION 0.68 0.64 0.66 0.60 0.66 0.60 0.60 0.66 0.66 0.66 0.66 0.62 0.60 0.60 0.60 0.76 0.72 0.74 0.75 0.67 0.65 0.74 0.77 0.68 0.65 0.75 0.77

FAULTS 0.42 0.40 0.40 0.42 0.45 0.45 0.45 0.44 0.39 0.38 0.38 0.42 0.45 0.42 0.42 0.39 0.44 0.43 0.43 0.35 0.41 0.44 0.44 0.35 0.40 0.43 0.44
SEGMENT 0.59 0.61 0.55 0.49 0.54 0.49 0.53 0.39 0.61 0.69 0.71 0.49 0.51 0.53 0.53 0.30 0.64 0.61 0.65 0.26 0.62 0.64 0.65 0.26 0.61 0.61 0.65

CORA 0.53 0.39 0.36 0.41 0.36 0.41 0.41 0.36 0.36 0.36 0.36 0.34 0.36 0.43 0.43 0.48 0.51 0.51 0.54 0.41 0.45 0.52 0.55 0.41 0.45 0.52 0.55

CITESEER 0.61 0.30 0.31 0.28 0.29 0.29 0.28 0.26 0.28 0.25 0.25 0.31 0.32 0.28 0.28 0.38 0.43 0.45 0.47 0.35 0.44 0.44 0.48 0.37 0.44 0.44 0.48
7SECTORS 0.39 0.25 0.25 0.29 0.29 0.29 0.29 0.26 0.25 0.25 0.25 0.24 0.29 0.29 0.29 0.27 0.37 0.40 0.35 0.27 0.37 0.40 0.35 0.30 0.37 0.40 0.35

OPTDIGITS 0.72 0.74 0.76 0.70 0.68 0.68 0.68 0.66 0.77 0.77 0.77 0.68 0.68 0.68 0.68 0.71 0.76 0.82 0.87 0.51 0.72 0.76 0.85 0.57 0.76 0.71 0.85

SVMGUIDE1 0.71 0.75 0.93 0.68 0.68 0.68 0.68 0.82 0.77 0.79 0.81 0.68 0.68 0.68 0.68 0.70 0.78 0.91 0.91 0.59 0.77 0.90 0.91 0.58 0.78 0.90 0.91
ZIP 0.49 0.74 0.74 0.54 0.70 0.72 0.68 0.65 0.74 0.74 0.74 0.55 0.70 0.67 0.68 0.72 0.84 0.83 0.85 0.33 0.74 0.84 0.84 0.36 0.76 0.84 0.84

USPS 0.74 0.74 0.74 0.67 0.80 0.75 0.68 0.72 0.74 0.74 0.74 0.62 0.80 0.75 0.68 0.80 0.79 0.84 0.85 0.48 0.73 0.80 0.85 0.51 0.75 0.80 0.85
PENDIGITS 0.72 0.80 0.73 0.79 0.79 0.79 0.79 0.49 0.79 0.73 0.73 0.63 0.79 0.79 0.79 0.66 0.88 0.89 0.89 0.24 0.82 0.88 0.89 0.25 0.84 0.88 0.89

PROTEIN 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.48 0.50 0.46 0.51 0.51 0.50 0.47 0.46 0.51 0.50

20NEWS 0.07 0.43 0.36 0.39 0.39 0.39 0.38 0.39 0.43 0.40 0.40 0.27 0.38 0.38 0.38 0.41 0.48 0.48 0.49 0.22 0.44 0.49 0.49 0.23 0.45 0.49 0.50
LET-REC 0.29 0.21 0.15 0.36 0.37 0.34 0.35 0.17 0.21 0.21 0.21 0.29 0.35 0.35 0.34 0.31 0.31 0.37 0.37 0.16 0.26 0.32 0.38 0.17 0.25 0.32 0.38

MNIST 0.60 0.77 0.88 0.57 0.87 0.73 0.57 0.74 0.79 0.79 0.79 0.57 0.75 0.65 0.57 0.93 0.75 0.97 0.97 0.46 0.79 0.97 0.98 0.55 0.81 0.97 0.98

DATASET KM NCUT 1-SPEC PNMF NSC ONMF LSD PLSI DCD

ORL 0.85 0.90 0.92 0.89 0.90 0.89 0.89 0.89 0.90 0.90 0.90 0.76 0.88 0.89 0.89 0.90 0.90 0.90 0.90 0.84 0.90 0.91 0.91 0.83 0.90 0.91 0.91
MED 0.55 0.57 0.52 0.56 0.55 0.55 0.55 0.57 0.58 0.57 0.57 0.51 0.57 0.56 0.56 0.56 0.57 0.57 0.57 0.56 0.56 0.57 0.58 0.56 0.57 0.57 0.58

VOWEL 0.43 0.40 0.38 0.39 0.36 0.37 0.39 0.37 0.38 0.37 0.37 0.37 0.36 0.37 0.39 0.35 0.38 0.40 0.40 0.32 0.40 0.38 0.41 0.28 0.39 0.38 0.40
COIL20 0.77 0.79 0.77 0.75 0.79 0.79 0.79 0.81 0.79 0.80 0.80 0.74 0.79 0.79 0.79 0.79 0.78 0.77 0.77 0.71 0.80 0.80 0.80 0.74 0.80 0.80 0.80

SEMEION 0.57 0.61 0.62 0.58 0.62 0.58 0.58 0.63 0.63 0.63 0.63 0.59 0.57 0.57 0.57 0.67 0.63 0.65 0.66 0.59 0.61 0.66 0.68 0.61 0.61 0.67 0.68

FAULTS 0.10 0.08 0.09 0.09 0.11 0.11 0.11 0.10 0.07 0.07 0.07 0.10 0.11 0.09 0.09 0.06 0.11 0.11 0.11 0.03 0.08 0.12 0.11 0.02 0.08 0.11 0.11
SEGMENT 0.58 0.55 0.58 0.43 0.48 0.43 0.49 0.25 0.56 0.62 0.63 0.38 0.46 0.44 0.44 0.13 0.53 0.51 0.58 0.08 0.55 0.53 0.58 0.07 0.55 0.53 0.58

CORA 0.34 0.16 0.14 0.14 0.13 0.17 0.17 0.14 0.14 0.14 0.14 0.11 0.13 0.17 0.17 0.22 0.24 0.23 0.25 0.15 0.20 0.24 0.25 0.15 0.20 0.24 0.25

CITESEER 0.34 0.10 0.12 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.10 0.12 0.07 0.07 0.13 0.18 0.20 0.20 0.10 0.17 0.19 0.21 0.11 0.17 0.18 0.21
7SECTORS 0.17 0.04 0.05 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.01 0.04 0.04 0.04 0.04 0.10 0.14 0.11 0.04 0.07 0.13 0.11 0.04 0.08 0.13 0.11

OPTDIGITS 0.70 0.72 0.80 0.67 0.68 0.68 0.67 0.66 0.77 0.78 0.78 0.67 0.68 0.67 0.67 0.69 0.72 0.78 0.83 0.40 0.71 0.73 0.82 0.51 0.74 0.69 0.82
SVMGUIDE1 0.31 0.35 0.65 0.27 0.27 0.27 0.27 0.34 0.39 0.41 0.44 0.27 0.27 0.27 0.27 0.12 0.25 0.60 0.60 0.02 0.38 0.59 0.59 0.02 0.40 0.59 0.59

ZIP 0.40 0.78 0.79 0.54 0.67 0.65 0.64 0.61 0.78 0.78 0.78 0.56 0.66 0.62 0.64 0.66 0.78 0.80 0.81 0.18 0.77 0.79 0.81 0.21 0.78 0.79 0.81
USPS 0.62 0.77 0.80 0.66 0.75 0.71 0.66 0.71 0.78 0.78 0.78 0.62 0.75 0.71 0.66 0.75 0.77 0.81 0.82 0.40 0.75 0.77 0.81 0.46 0.76 0.77 0.81
PENDIGITS 0.68 0.81 0.78 0.78 0.78 0.78 0.78 0.51 0.79 0.79 0.78 0.63 0.78 0.77 0.77 0.61 0.83 0.86 0.86 0.10 0.81 0.83 0.86 0.10 0.81 0.83 0.86
PROTEIN 0.00 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.02 0.04 0.01 0.04 0.04 0.04 0.02 0.01 0.04 0.04

20NEWS 0.05 0.54 0.52 0.36 0.36 0.36 0.34 0.48 0.54 0.52 0.52 0.24 0.34 0.34 0.34 0.36 0.43 0.44 0.44 0.14 0.44 0.44 0.45 0.14 0.45 0.44 0.45
LET-REC 0.35 0.38 0.26 0.43 0.43 0.42 0.43 0.21 0.38 0.37 0.37 0.35 0.43 0.43 0.42 0.39 0.41 0.45 0.45 0.17 0.37 0.42 0.46 0.18 0.36 0.42 0.46

MNIST 0.51 0.81 0.89 0.59 0.82 0.72 0.59 0.73 0.84 0.84 0.84 0.58 0.75 0.64 0.59 0.87 0.76 0.93 0.93 0.34 0.81 0.92 0.94 0.48 0.80 0.92 0.93
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Table 4: Clustering performance comparison of DCD using heterogeneous co-
initialization with three ensemble clustering methods. Rows are ordered by
dataset sizes. Boldface numbers indicate the best. The 11 bases are from
NCUT, 1-SPEC, PNMF, NSC, ONMF, LSD, PLSI, DCD1, DCD1.2, DCD2,
and DCD5 respectively.

Purity NMI
DATASET BEST CO CTS DCD BEST CO CTS DCD
ORL 0.81 0.81 0.80 0.83 0.90 0.90 0.90 0.91
MED 0.59 0.58 0.58 0.58 0.58 0.57 0.57 0.58
VOWEL 0.35 0.33 0.36 0.40 0.38 0.36 0.37 0.40
COIL20 0.73 0.69 0.72 0.70 0.80 0.77 0.79 0.80
SEMEION 0.65 0.61 0.65 0.77 0.61 0.56 0.62 0.68
FAULTS 0.40 0.39 0.41 0.44 0.08 0.08 0.09 0.11
SEGMENT 0.63 0.61 0.63 0.65 0.55 0.55 0.55 0.58
CORA 0.45 0.41 0.42 0.55 0.20 0.17 0.18 0.25
CITESEER 0.43 0.34 0.35 0.48 0.18 0.12 0.15 0.21
7SECTORS 0.36 0.27 0.25 0.35 0.08 0.04 0.04 0.11
OPTDIGITS 0.76 0.63 0.71 0.85 0.74 0.68 0.71 0.82
SVMGUIDE1 0.78 0.82 0.78 0.91 0.40 0.46 0.40 0.59
ZIP 0.74 0.62 0.76 0.84 0.78 0.70 0.80 0.81
USPS 0.75 0.65 0.73 0.85 0.76 0.69 0.78 0.81
PENDIGITS 0.84 0.84 0.81 0.89 0.81 0.81 0.82 0.86
PROTEIN 0.46 0.46 0.46 0.50 0.01 0.01 0.01 0.04
20NEWS 0.45 0.28 0.40 0.50 0.45 0.38 0.47 0.45
LET-REC 0.26 0.23 0.24 0.38 0.37 0.35 0.39 0.46
MNIST 0.96 0.57 0.76 0.98 0.92 0.68 0.84 0.93
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