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Abstract

Affective classification and retrieval of multimedia such as audio, image, and

video have become emerging research areas in recent years. The previous re-

search focused on designing features and developing feature extraction methods.

Generally, a multimedia content can be represented with different feature rep-

resentations (i.e., views). However, the most suitable feature representation

related to people’s emotions is usually not known a priori. We propose here a

novel Bayesian multiple kernel learning algorithm for affective classification and

retrieval tasks. The proposed method can make use of different representations

simultaneously (i.e., multiview learning) to obtain a better prediction perfor-

mance than using a single feature representation (i.e., single-view learning) or a

subset of features, with the advantage of automatic feature selections. In partic-

ular, our algorithm has been implemented within a multilabel setup to capture

the correlation between emotions, and the Bayesian formulation enables our

method to produce probabilistic outputs for measuring a set of emotions trig-

gered by a single image. As a case study, we perform classification and retrieval

experiments with our algorithm for predicting people’s emotional states evoked

by images, using generic low-level image features. The empirical results with

our approach on the widely-used International Affective Picture System

(IAPS) data set outperforms several existing methods in terms of classification
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performance and results interpretability.

Keywords: Image emotions, multiple kernel learning, multiview learning,

variational approximation, low-level image features

1. Introduction1

Affective computing [1] aims to help people communicate, understand, and2

respond better to affective information such as audio, image, and video in a3

way that takes into account the user’s emotional states. Among the emotional4

stimuli, affective image classification and retrieval has attracted increasing re-5

search attention in recent years, due to the rapid expansion of the digital visual6

libraries on the Web. While most of the current Content-Based Image Re-7

trieval (CBIR) systems [2] are designed for recognizing objects and scenes such8

as plants, animals, outdoor places etc., an Emotional Semantic Image Retrieval9

(ESIR) system [3] aims at incorporating the user’s affective states to enable10

queries like “beautiful flowers”, “cute dogs”, “exciting games”, etc.

Figure 1: Example images from a photo sharing site (ArtPhoto [4]) with the ground truth

labels of Amusement and Fear.

11

Though emotions are highly subjective human factors, still they have sta-12

bility and generality across different people and cultures [5]. As an example,13

Figure 1 shows two pictures taken from a photo sharing site (ArtPhoto [4]). The14

class labels of “Amusement” and “Fear” are determined by the emotion that15

has received the most votes from people. Intuitively, an “Amusement” picture16

usually makes people feel pleasant or induces high valence, whereas a “Fear”17

picture may induce low valence but high arousal to the viewer.18
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In analogy to the concept of “semantic gap” that implies the limitations of19

image recognition techniques, the “affective gap” can be defined as “the lack20

of coincidence between the measurable signal properties, commonly referred to21

as features, and the expected affective state in which the user is brought by22

perceiving the signal” [6]. Concerning the studies related to image affect recog-23

nition, three major challenges can be identified: (a) the modeling of affect, (b)24

the extraction of image features to reflect affective states, and (c) the building25

of classifiers to bridge the “affective gap”.26

Most of the current works (e.g., [5, 7, 4, 8]) use descriptive words (e.g., the27

scenario in Figure 1) to represent affective space. To obtain the ground truth28

label for learning, each image is assigned with a single emotional label among29

various emotional categories based on the maximum votes from the viewers.30

However, an image can usually evoke a mixture of affective feelings in people31

rather than a single one. Furthermore, the emotions often conceptually correlate32

with each other in the affective space. For example, the two paintings shown in33

Figure 2 are labeled as “Excitement” and “Sad(ness)” respectively according to34

the maximum votes (from the web survey in [4]). Nevertheless, by examining35

the votes from the viewers, each image actually has evoked a distribution of36

emotions rather than a single one. Moreover, the correlations can be observed37

between certain emotions. For example, “Amusement” is closely associated with38

“Excitement”, and “Fear” often comes with “Sadness”.39

Feature extraction is a prerequisite step for image classification and retrieval40

tasks [2], especially for the recognition of emotions induced by pictures or art-41

works. In the literature, much effort has been spent on designing features spe-42

cific to image affect recognition (e.g., [9, 7, 4, 10, 11]). Other works (e.g.,43

[12, 13, 14, 8]) used the generic low-level color, shape, and texture features for44

detecting the image emotions. Concerning the inference, supervised learning45

has been used more often than unsupervised learning for inferring the image46

emotions. Among the classifiers, Support Vector Machines (SVMs) have been47

adopted by most of the works (e.g., [13, 15, 7, 16, 8]). Since the most suitable48

feature representation or subset related to people’s emotions is not known a49
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Figure 2: Example images from an online user survey showing that images can evoke mixed

feelings in people instead of a single one [4]. The x-axis shows emotions (from left to right):

Amusement, Anger, Awe, Contentment, Disgust, Excitement, Fear, Sad. The y-axis shows

the number of votes.

priori, feature selection has to be done for better prediction performance prior50

to the final prediction, which increases the computational complexity. Instead51

of using a single representation or view, we can also make use of different rep-52

resentations or views at the same time. This implies that multiview learning53

[17] is preferred to single-view learning. Multiview learning with kernel-based54

methods belongs to the framework of Multiple Kernel Learning (MKL), which55

is a principled way of combining kernels calculated on different views to obtain56

a better prediction performance than single-view learning methods (see [18] for57

a recent survey).58

In this paper, we propose a novel Bayesian multiple kernel learning algorithm59

for affective classification and retrieval tasks with multiple outputs and feature60

representations. Thanks to the MKL framework, our method can learn the fea-61

ture representation weights by itself according to the data and task at hand62

without an explicit feature selection step, which makes the interpretation easy63

and straightforward. Our method has been implemented within a multilabel64

setup in order to capture the correlations between emotions. Due to its proba-65

bilistic nature, our method is able to produce probabilistic values for measuring66
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the intensities of a set of emotions triggered by a single image. As a case study,67

we conduct classification and retrieval experiments with our proposed approach68

for predicting people’s emotional states evoked by images, using conventional69

low-level color, shape, and texture image features. The experimental results70

on the widely-used International Affective Picture System (IAPS) data71

set show that our proposed Bayesian MKL approach outperforms other existing72

methods in terms of classification performance, feature selection capacity, and73

results interpretability.74

Our contributions are thus two-fold:75

1. Instead of single view representation, a multiview learning with kernel-76

based method has been applied to emotional image recognition, with the77

advantages of better prediction performance, automatic feature selection,78

and interpretation of image emotional impact.79

2. A novel Bayesian multiple kernel learning algorithm with multiple outputs80

and feature representations has been proposed for affective classification81

and retrieval tasks. Our method is able to capture the correlations between82

emotions and give probabilistic outputs for measuring the intensities of a83

distribution of emotions triggered by an image.84

We start in the following section with a concise review on the related work.85

Section 3 gives the mathematical details of the proposed method. In Section 4,86

the experimental results on affective image classification and retrieval are re-87

ported. Finally, the conclusions and future work are presented in Section 5.88

2. Related Work89

In this section, we review the works related to image affect recognition, with90

an emphasis on affective modeling, feature extraction, and classifier construc-91

tion.92

Affect has been conceptualized in psychology [19]. There are two primary93

ways to modeling affect: the dimensional approach and the discrete approach.94

The dimensional approach [20] describes affect within a 3D continuous space95
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along Valence, Arousal, and Dominance. Valence is typically characterized as96

the affective states ranging from pleasant or positive to unpleasant or nega-97

tive. Arousal is characterized as the state of being awake or reactive to stimuli,98

ranging from calm to excited. Dominance denotes power and influence over99

others, ranging from no control to full control. The discrete approach describes100

affect with a list of descriptive or adjective words (as the example given in101

Figure 2). A popular example is Ekman’s six basic emotion categories, namely,102

happiness, sadness, fear, anger, disgust, and surprise. Most of the current works103

[12, 5, 7, 4, 10, 8] related to image affect recognition focus on recognizing the104

discrete emotions extended from these basic emotions. For example, positive105

emotions may include amusement, awe, contentment, and excitement, while the106

negative emotions consist of anger, disgust, fear, and sadness [21]. For our work,107

we adopt the discrete approach as well.108

Features specific to affective image classification have been developed in109

[9, 7, 4, 10, 11]. For example, the authors in [9] and [4] designed color fea-110

tures based on Itten’s contrast theory. Specifically, the authors in [9] exploited111

semiotic principles to represent the visual content at the expressive level, while112

the authors in [4] used the composition features such as the low depth-of-field113

indicators, rule of thirds, and proportion of face and skin pixels in images,114

which have been found useful for aesthetics. The luminance-warm-cool and115

saturation-warm-cool color histograms were derived in [7] based on the fuzzy116

theory. In [10], the authors investigated the relationship between shape and117

emotions. They found that roundness and complexity of shapes are funda-118

mental to understanding emotions. On the contrary, the conventional low-level119

image features have been adopted in [12, 13, 14, 8]. For example, a large set120

of generic color, shape, and texture image features have been used in [14] and121

[8]. These low-level features were extracted from both the raw images and com-122

pound image transforms such as color transform and edge transform, which were123

found highly effective earlier in face recognition and the classification of painters124

and schools of art. In our work, we also use the conventional low-level image125

features, and we show later in the experiments that the proposed method can126
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learn well enough to predict image emotions by using low-level features.127

As for classifiers, SVM [22] is the most favorite one and has been used in128

[13, 15, 7, 16, 8]. Others include the naive Bayes classifier [23] used in [11, 4, 10]129

and the regression trees [24] used in [15]. In this paper, we follow the Bayesian130

approach. As a methodological contribution, the proposed algorithm is the131

first multiple kernel learning algorithm that combines multiview learning and132

multilabel learning with full Bayesian treatment. There are existing Bayesian133

MKL algorithms and multilabel learning methods applied to image classification134

problems (e.g., [25]) but there is no previous study on a coupled approach. In135

this case, our method has the advantage of utilizing the emotional correlations136

in image affect recognition.137

3. Proposed Method138

In order to benefit from the correlation between the class labels in a multil-139

abel learning scenario, we assume a common set of kernel weights and perform140

classification for all labels with these weights but using a distinct set of clas-141

sification parameters for each label. This approach can also be interpreted as142

using a common similarity measure by sharing the kernel weights between the143

labels.144

The notation we use throughout the manuscript is given in Table 1. The su-145

perscripts index the rows of matrices, whereas the subscripts index the columns146

of matrices and the entries of vectors. N (·;µ,Σ) denotes the normal distribu-147

tion with the mean vector µ and the covariance matrix Σ. G(·;α, β) denotes148

the gamma distribution with the shape parameter α and the scale parameter β.149

δ(·) denotes the Kronecker delta function that returns 1 if its argument is true150

and 0 otherwise.151

Figure 3 illustrates the proposed probabilistic model for multilabel binary152

classification with a graphical model. We extended the model presented in [26]153

by trying to capture the correlation between the class labels with the help of154

shared kernel weights. The kernel matrices {K1, . . . ,KP } are used to calculate155
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Table 1: List of notation.

N Number of training instances

P Number of kernels

L Number of output labels

{K1, . . . ,KP } ∈ RN×N Kernel matrices

A ∈ RN×L Weight matrix

Λ ∈ RN×L Priors for weight matrix

{G1, . . . ,GL} ∈ RP×N Intermediate outputs

e ∈ RP Kernel weight vector

ω ∈ RP Priors for kernel weight vector

b ∈ RL Bias vector

γ ∈ RL Priors for bias vector

F ∈ RL×N Auxiliary matrix

Y ∈ {±1}L×N Label matrix

intermediate outputs using the weight matrix A. The intermediate outputs156

{G1, . . . ,GL}, kernel weights e, and bias parameters b are used to calculate157

the classification scores. Finally, the given class labels Y are generated from158

the auxiliary matrix F, which is introduced to make the inference procedures159

efficient [27]. We formulated a variational approximation procedure for inference160

in order to have a computationally efficient algorithm.161

The distributional assumptions of our proposed model are defined as

λio ∼ G(λio;αλ, βλ) ∀(i, o)

aio|λio ∼ N (aio; 0, (λio)
−1) ∀(i, o)

gmo,i|ao,km,i ∼ N (gmo,i;a
>
o km,i, 1) ∀(o,m, i)

γo ∼ G(γo;αγ , βγ) ∀o

bo|γo ∼ N (bo; 0, γ−1o ) ∀o
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Figure 3: Graphical model for Bayesian multilabel multiple kernel learning.

ωm ∼ G(ωm;αω, βω) ∀m

em|ωm ∼ N (em; 0, ω−1m ) ∀m

foi |bo, e, go,i ∼ N (foi ; e>go,i + bo, 1) ∀(o, i)

yoi |foi ∼ δ(foi yoi > ν) ∀(o, i)

where the margin parameter ν is introduced to resolve the scaling ambiguity162

issue and to place a low-density region between two classes, similar to the margin163

idea in SVMs, which is generally used for semi-supervised learning [28]. As164

short-hand notations, all priors in the model are denoted by Ξ = {γ,Λ,ω},165

where the remaining variables by Θ = {A, b, e,F,G1, . . . ,GL} and the hyper-166

parameters by ζ = {αγ , βγ , αλ, βλ, αω, βω}. Dependence on ζ is omitted for167

clarity throughout the manuscript.168

The variational methods use a lower bound on the marginal likelihood using

an ensemble of factored posteriors to find the joint parameter distribution [29].

Assuming independence between the approximate posteriors in the factorable

ensemble can be justified because there is not a strong coupling between our

model parameters. We can write the factorable ensemble approximation of the
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required posterior as

p(Θ,Ξ|{Km}Pm=1,Y) ≈ q(Θ,Ξ) =

q(Λ)q(A)q(Z)q({Go}Lo=1)q(γ)q(ω)q(b, e)q(F)

and define each factor in the ensemble just like its full conditional distribution:

q(Λ) =

N∏
i=1

L∏
o=1

G(λio;α(λio), β(λio))

q(A) =

L∏
o=1

N (ao;µ(ao),Σ(ao))

q({Go}Lo=1) =

L∏
o=1

N∏
i=1

N (go,i;µ(go,i),Σ(go,i))

q(γ) =

L∏
o=1

G(γo;α(γo), β(γo))

q(ω) =

P∏
m=1

G(ωm;α(ωm), β(ωm))

q(b, e) = N

(b
e

 ;µ(b, e),Σ(b, e)

)

q(F) =

L∏
o=1

N∏
i=1

T N (foi ;µ(foi ),Σ(foi ), ρ(foi ))

where α(·), β(·), µ(·), and Σ(·) denote the shape parameter, the scale param-169

eter, the mean vector, and the covariance matrix for their arguments, respec-170

tively. T N (·;µ,Σ, ρ(·)) denotes the truncated normal distribution with the171

mean vector µ, the covariance matrix Σ, and the truncation rule ρ(·) such that172

T N (·;µ,Σ, ρ(·)) ∝ N (·;µ,Σ) if ρ(·) is true and T N (·;µ,Σ, ρ(·)) = 0 otherwise.173

We can bound the marginal likelihood using Jensen’s inequality:

log p(Y|{Km}Pm=1) ≥

Eq(Θ,Ξ)[log p(Y,Θ,Ξ|{Km}Pm=1)]− Eq(Θ,Ξ)[log q(Θ,Ξ)]

and optimize this bound by optimizing with respect to each factor separately

until convergence. The approximate posterior distribution of a specific factor τ
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can be found as

q(τ ) ∝ exp
(
Eq({Θ,Ξ}\τ )[log p(Y,Θ,Ξ|{Km}Pm=1)]

)
.

For our model, thanks to the conjugacy, the resulting approximate posterior174

distribution of each factor follows the same distribution as the corresponding175

factor.176

3.1. Inference Details177

The approximate posterior distribution of the priors of the precisions for the

weight matrix can be found as a product of gamma distributions:

q(Λ) =

N∏
i=1

L∏
o=1

G

λio;αλ +
1

2
,

(
1

βλ
+

(̃aio)
2

2

)−1 (1)

where the tilde notation denotes the posterior expectations as usual, i.e., h̃(τ ) =

Eq(τ )[h(τ )]. The approximate posterior distribution of the weight matrix is a

product of multivariate normal distributions:

q(A) =

L∏
o=1

N

(
ao; Σ(ao)

(
P∑

m=1

Kmg̃mo
>

)
,

(
diag(λ̃o) +

P∑
m=1

KmK>m

)−1 . (2)

The approximate posterior distribution of the projected instances can also be

formulated as a product of multivariate normal distributions:

q({Go}Lo=1) =

L∏
o=1

N∏
i=1

N

go,i; Σ(go,i)



ki1
...

kiP

 ão + f̃oi ẽ− b̃oẽ

 ,

(
I + ẽe>

)−1
 (3)
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where the kernel weights and the auxiliary variables defined for each label are178

used together.179

The approximate posterior distributions of the priors on the biases and the

kernel weights can be found as products of gamma distributions:

q(γ) =

L∏
o=1

G

γo;αγ +
1

2
,

(
1

βγ
+
b̃2o
2

)−1 (4)

q(ω) =

P∏
m=1

G

ωm;αω +
1

2
,

(
1

βω
+
ẽ2m
2

)−1 . (5)

The approximate posterior distribution of the biases and the kernel weights is

a product of multivariate normal distributions:

q(b, e) = N


b
e

 ; Σ(b, e)



1>f̃1>

...

1>f̃L
>

L∑
o=1

G̃of̃
o>


,



γ̃1 +N . . . 0 1>G̃>1
...

. . .
...

...

0 . . . γ̃L +N 1>G̃>L

G̃11 . . . G̃L1 diag(ω̃) +
L∑
o=1

G̃oG>o



−1
. (6)

The approximate posterior distribution of the auxiliary variables is a product

of truncated normal distributions:

q(F) =

L∏
o=1

N∏
i=1

T N (foi ; ẽ>g̃o,i + b̃o, 1, f
o
i y

o
i > ν) (7)

where we need to find the posterior expectations in order to update the approx-180

imate posterior distributions of the projected instances and the classification181

parameters. Fortunately, the truncated normal distribution has a closed-form182

formula for its expectation.183
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3.2. Complete Algorithm184

The complete inference algorithm is listed in Algorithm 1. The inference185

mechanism sequentially updates the approximate posterior distributions of the186

model parameters and the latent variables until convergence, which can be187

checked by monitoring the lower bound. The first term of the lower bound188

corresponds to the sum of exponential forms of the distributions in the joint189

likelihood. The second term is the sum of negative entropies of the approximate190

posteriors in the ensemble. The only nonstandard distribution in the second191

term is the truncated normal distributions of the auxiliary variables; neverthe-192

less, the truncated normal distribution has a closed-form formula also for its193

entropy.194

Algorithm 1 Bayesian Multilabel Multiple Kernel Learning

Require: {Km}Pm=1, Y, ν, αγ , βγ , αλ, βλ, αω, and βω

1: Initialize q(A), q({Go}Lo=1), q(b, e), and q(F) randomly

2: repeat

3: Update q(Λ) and q(A) using (1) and (2)

4: Update q({Go}Lo=1) using (3)

5: Update q(γ), q(ω), and q(b, e) using (4), (5), and (6)

6: Update q(F) using (7)

7: until convergence

8: return q(A) and q(b, e)

3.3. Prediction195

In the prediction step, we can replace p(A|{Km}Pm=1,Y) with its approxi-

mate posterior distribution q(A) and obtain the predictive distribution of the

intermediate outputs {go,?}Lo=1 for a new data point as

p({go,?}Lo=1|{km,?,Km}Pm=1,Y) =

L∏
o=1

P∏
m=1

N (gmo,?;µ(ao)
>km,?, 1 + k>m,?Σ(ao)km,?).
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The predictive distribution of the auxiliary variables f? can also be found by re-

placing p(b, e|{Km}Pm=1,Y) with its approximate posterior distribution q(b, e):

p(f?|{go,?}Lo=1, {Km}Pm=1,Y) =

L∏
o=1

N

fo? ;µ(bo, e)>

 1

go,?

 , 1 +
[
1 go,?

]
Σ(bo, e)

 1

go,?


and the predictive distribution of the class label y? can be formulated using the

auxiliary variable distribution:

p(yo? = +1|{km,?,Km}Pm=1,Y) = (Zo?)−1Φ

(
µ(fo? )− ν

Σ(fo? )

)
∀o

where Zo? is the normalization coefficient calculated for the test data point and196

Φ(·) is the standardized normal cumulative distribution function.197

4. Experiments198

In this section, we present the experimental results using our proposed199

Bayesian MKL algorithm in two different scenarios: affective image classifi-200

cation and affective image retrieval. We implemented our method in Matlab201

and took 200 variational iterations for inference with non-informative priors.202

We calculated the standard Gaussian kernel on each feature representation sep-203

arately and picked the kernel width as 2
√
Dm, where Dm is the dimensionality204

of corresponding feature representation.205

4.1. Data Sets206

Two affective image data sets have been used in the experiments, the207

International Affective Picture System (IAPS) [30] and the ArtPhoto208

[4].209

The IAPS data set is a widely-used stimulus set in emotion-related stud-210

ies. It contains altogether 1182 color images that cover contents across a large211

variety of semantic categories, including snakes, insects, animals, landscapes,212

babies, guns, and accidents, among others. Each image is evaluated by subjects213
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(males & females) on three continuously varying scales from 1 to 9 for Valence,214

Arousal, and Dominance. A subset of 394 IAPS images have been grouped into215

8 discrete emotional categories based on a psychophysical study [21]. Among216

the 8 emotions, Amusement, Awe, Contentment, and Excitement are considered217

as the positive class, whereas Anger, Disgust, Fear, and Sad are considered as218

the negative class. The ground truth label for each image was selected as the219

category that had majority of the votes. Both Machajdik et al. [4] and Lu et220

al. [10] used this subset for emotional image classification, and we also used it221

in our experiment to compare with their results.222

The ArtPhoto data set was originally collected by Machajdik et al. [4] and it223

contains 806 artistic photographs obtained using discrete emotional categories224

as search queries in a photo sharing site. The discrete categories are the same225

as those adopted in the above IAPS subset and the images cover a wide range226

of semantic contents as well. We used this data set in our image retrieval227

experiment.228

4.2. Image Features229

We have used a set of ten low-level content descriptors for still images, in-230

cluding color, shape, and texture features. Four of them are standard MPEG-7231

[31] visual descriptors: Scalable Color, Dominant Color, Color Layout, and Edge232

Histogram. These low-level features have been widely used in image classifica-233

tion and retrieval tasks, as well as in image affect detections [13, 14, 8]. When234

presented a new picture or painting, people tend to first get a holistic impres-235

sion of it and then go into segments and details [32]. Therefore, our features236

are extracted both globally and locally from each image. For certain features, a237

five-zone image partitioning scheme (see Figure 4) is applied prior to the feature238

extraction [33]. Similar to the rule of thirds used in photography, the central239

part of an image usually catches most of people’s attention. All the features240

have been extracted by using PicSOM system [34]. Table 2 gives a summary of241

these features.242
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Figure 4: The five-zone partitioning scheme [33].

Table 2: The set of low-level image features used.

Index Feature Type Zoning Dims.

F1 Scalable Color Color Global 256

F2 Dominant Color Color Global 6

F3 Color Layout Color 8× 8 12

F4 5Zone-Color Color 5 15

F5 5Zone-Colm Color 5 45

F6 Edge Histogram Shape 4× 4 80

F7 Edge Fourier Shape Global 128

F8 5Zone-Edgehist Shape 5 20

F9 5Zone-Edgecoocc Shape 5 80

F10 5Zone-Texture Texture 5 40

4.2.1. Color Features243

Scalable Color: The descriptor is a 256-bin color histogram in HSV color244

space, which is encoded by a Haar transform.245

Dominant Color: The descriptor is a subset from the original MPEG-7246
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XM descriptor and is composed of the LUV color system values of the first and247

second most dominant color. If the XM routine only found one dominant color,248

then it was duplicated.249

Color Layout: The image area is divided in 8 × 8 non-overlapping blocks250

where the dominant colors are solved in YCbCr (6, 3, 3) color system. Discrete251

Cosine Transform (DCT) is then applied to the dominant colors in each channel252

and the coefficients of DCT used as a descriptor.253

5Zone-Color: This descriptor is a three-element vector that contains the254

average RGB values of all the pixels within each zone.255

5Zone-Colm: The color moments feature treats the HSV color channels256

from each zone as probability distributions, and calculates the first three mo-257

ments (mean, variance, and skewness) for each distribution.258

4.2.2. Shape Features259

Edge Histogram: The image is divided in 4×4 non-overlapping sub-images260

where the relative frequencies of five different edge types (vertical, horizontal,261

45◦, 135◦, non-directional) are calculated using 2 × 2-sized edge detectors for262

the luminance of the pixels. The descriptor is obtained with a nonlinear dis-263

cretization of the relative frequencies.264

Edge Fourier: This descriptor calculates the magnitude of the 16×16 Fast265

Fourier Transform (FFT) of Sobel edge image.266

5Zone-Edgehist: The edge histogram feature is the histogram of four Sobel267

edge directions. It is not the same as the MPEG-7 descriptor with the same268

name.269

5Zone-Edgecoocc: The edge co-occurrence gives the co-occurrence matrix270

of four Sobel edge directions.271

4.3. Texture Features272

5Zone-Texture: The texture neighborhood feature is calculated from the273

Y (luminance) component of the YIQ color representation of each zone pixels.274

The 8-neighborhood of each inner pixel is examined, and a probability estimate275
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is calculated for the probabilities that the neighbor pixel in each surrounding276

relative position is brighter than the central pixel. The feature vector contains277

these eight probability estimates.278

4.4. Affective Image Classification279

4.4.1. Experimental Setup280

In this experiment, we evaluate the performance of the proposed Bayesian281

MKL algorithm within a classification framework and compare with the results282

in [4] and [10]. Note that for [10], we compared the result by using their proposed283

image shape features. The IAPS subset was used in this task. For training and284

testing, we used the same procedure as in [4, 10]: we used 5-fold Cross-Validation285

(CV) and calculated the average classification accuracy. As a baseline method,286

the standard SVM (with Gaussian kernel and 5-fold CV) was also implemented287

for comparison, where each feature was taken separately for training a single288

classifier. As for the free parameters, we manually set {ν, αγ , βγ , αλ, βλ, αω,289

βω} to be {1, 1, 1, 0.001, 0.001, 0.001, 0.001} respectively, based on the cross-290

validation results from the training data set. Through our experiments, we291

found that the last four parameters {αλ, βλ, αω, βω} need careful selections as292

they directly control the kernels or features sparsity, whereas the other three293

ones do not affect the final performance much on emotional image predictions.294

4.4.2. Results295

Figure 5 shows the classification results (average of 8 classes). It is clear296

to see that our proposed algorithm is the best among the three. With rather297

generic low-level image features, our classifier can achieve better classification298

performance than methods of [4, 10] which rely on the design of complicated299

domain-specific features. Table 3 shows the comparison result with four other300

existing MKL methods, including the RBMKL [35], GMKL [36], NLMKL [37],301

and GLMKL [38]. The same ten low-level image features described in this302

article were utilized as the input for all the MKL methods. We can see that303
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Table 3: The comparison of classification accuracy between the proposed Bayesian MKL

algorithm and four other existing MKL methods [35, 36, 37, 38].

Bayesian MKL RBMKL NLMKL GMKL GLMKL

0.31 0.24 0.29 0.26 0.29

our method is slightly better than NLMKL and GLMKL, yet much better than304

RBMKL and GMKL.305

To further demonstrate the advantage of multiple kernel (multiview) learning306

over single kernel (single-view) learning, we trained and tested a single SVM307

classifier using each of the 10 features separately (with the same partition as308

MKL setup). Table 4 lists the classification accuracies. The best SVM classifier309

(trained with Dominant Color) can only achieve an accuracy of 22%, which310

is about 9 percent lower than that of our algorithm. And an SVM using all311

10 features can give an accuracy of 25%. This demonstrates the advantage of312

multiview learning over single-view learning. It also validates the strength of313

our proposed classifier in terms of mapping low-level image features to high-level314

emotional responses.315

Figure 5: The classification results of the compared methods.
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Table 4: The image features ranked by SVM classification accuracies.

Rank Feature Accuracy

1 Dominant Color 0.22

2 Color Layout 0.22

3 Edge Fourier 0.22

4 5Zone-Texture 0.21

5 5Zone-Colm 0.21

6 Scalable Color 0.20

7 5Zone-Color 0.20

8 5Zone-Edgecoocc 0.20

9 5Zone-Edgehist 0.19

10 Edge Histogram 0.18

We also compared the computational cost between the proposed Bayesian316

MKL algorithm and the single-feature method (used in [4, 10]), i.e., an algorithm317

based on the classification performance of a single feature at a time and selecting318

only those features which resulted in an average performance better than a pre-319

defined threshold. The classifier used in the single-feature method is SVM,320

which has been widely-utilized in emotional image classification tasks (e.g. [13,321

15, 7, 16, 8]). Table 5 lists the compared computational costs measured in322

seconds. We can see that our method costs only around 1/4 of the time needed323

by the single-feature + SVM approach (with the best classification accuracy324

reaching 28%). Clearly, the single-feature approach is computationally much325

heavier than our method as it has to test each single feature first and then326

select the best features subset for the final (SVM) classifier input.327

Another advantage of our MKL algorithm is that it can automatically assign328

weights to features without explicit feature extraction and selection procedures.329

Figure 6 shows the average feature representation weights (i.e., kernel weights)330

in the range [0, 1] based on 5-fold CV for the multiple kernel learning scenario.331
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Table 5: The comparison of computational cost (in seconds) between the proposed Bayesian

MKL and the single-feature + SVM method. We selected the SVM kernel width using a grid

search within the set {0.01, 0.1, 1, 1.5, 2, 10, 100, 1000, 10000} based on cross-validation results.

Bayesian MKL Single-feature + SVM

557.80 2063.81

Figure 6: The average feature representation weights over 5-fold cross-validation for the mul-

tilabel multiple kernel learning scenario.

We clearly see that, among the ten image feature representations, Edge His-332

togram (F6) ranks first, followed by Scalable Color (F1), 5Zone-Colm (F5),333

and Edge Fourier (F7) etc. This reveals that colors and edges of an image are334

the most informative features for emotions recognition, which is in complete335

agreement with the studies in [4] and [10]. This also shows that multiple ker-336

nel learning helps to identify the relative importance of feature representations337

using a common set of kernel weights.338

It is worth emphasizing that an image can evoke mixed emotions instead of a339

single emotion. Our Bayesian classifier is capable of producing multiple proba-340

bilistic outputs simultaneously, which allows us to give a “soft” class assignment341
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Figure 7: The agreement of image emotion distribution between our predicted results (green

bars) and the normalized human votes (yellow bars). The x-axis shows positive emotions

((a) & (b)): Amusement, Awe, Contentment, Excitement, and negative emotions ((c) & (d))

Anger, Disgust, Fear, Sad. The y-axis shows the agreement in the range [0, 1].

instead of a “hard” one. This characteristic is particularly useful for detecting342

emotion distribution evoked by an image. Figure 7 gives some examples. One343

can see that the probabilistic outputs of our Bayesian algorithm generally agree344

well with the real human votes for certain images.345
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4.5. Affective Image Retrieval346

4.5.1. Experimental Setup347

Also, we have designed an experiment for affective image retrieval based

on our proposed Bayesian MKL algorithm. Firstly, we define the dissimilarity

measure (the Euclidean distance in the implicit feature space) between a query

image (q) and a retrieved image (r) as

de(q, r) =
√
ke(q, q) + ke(r, r)− 2ke(q, r)

ke(q, q) =

P∑
m=1

emkm(q, q)

ke(r, r) =

P∑
m=1

emkm(r, r)

ke(q, r) =

P∑
m=1

emkm(q, r)

where km(·, ·) denotes the kernel function calculated on the mth feature rep-348

resentation and em is the weight for the corresponding kernel learned by our349

algorithm. Therefore, given a query image q, our aim is to find those images350

with the smallest de(q, r) values. In essence, the smaller de(q, r) is, the more351

probable that the retrieved image r evokes similar emotional states in people.352

We selected query images from the ArtPhoto data set and let the algorithm353

retrieve images from the IAPS data set. Both data sets use the same emotional354

categories. The kernel weights {em}Pm=1 were selected by training on the whole355

IAPS data set. Note that neither of the compared methods [4, 10] had explored356

image emotions from a retrieval perspective as their focus was on feature design357

only.358

4.5.2. Results359

Figure 8 gives some query-return examples from the results of image retrieval360

experiments. For the “Contentment” image, our algorithm successfully finds361

three other contentment images as its nearest neighbors. Similar query-return362

patterns can be seen from the “Disgust” and “Fear” query images. An interest-363

ing phenomenon is that both the ‘Amusement” and “Excitement” query images364

23



have retrieved the “Awe” image, and both the “Anger” and “Sad” query images365

have found the “Fear” image among their top candidates. This is meaningful in366

that the former three emotions belong to the positive class which usually induces367

high valence, while the latter three emotions belong to the negative class which368

usually induces low valence but high arousal. Besides, the retrieval result again369

reveals the fact that an image often evokes multiple emotional states that are370

correlated with each other. For example, an amusement image usually elicits371

partial feeling of awe, and the feeling of sadness is closely connected with the372

feeling of fear. To a certain extent, our algorithm has detected such correlations373

that exist among emotions using rather low-level image features.374

5. Conclusions375

In this paper, we have presented a novel Bayesian multiple kernel learn-376

ing algorithm for affective image classification and retrieval tasks with multiple377

outputs and feature representations. Instead of single feature (view) representa-378

tion, our method adopts a kernel-based multiview learning approach for better379

prediction performance and interpretation, with the advantage of selecting or380

ranking features automatically. To capture the correlations between emotions,381

our method has been implemented within a multilabel setup. Due to its proba-382

bilistic nature, the proposed algorithm is able to predict a set of emotions evoked383

by an image rather than a single one. Currently, only the conventional low-level384

image features are utilized, as our focus in this paper is not on the affective385

feature design. Rather, we would like to provide a new framework for better386

predicting people’s emotional states, especially when an image evokes multiple387

affective feelings in people.388

It is worth emphasizing that our method is not confined to the image emo-389

tions recognition, but can be easily extended to other affective stimuli such as390

audio and video data. Due to the varying subjectivity in humans and the limit of391

the available affective databases, it is of course not guaranteed that our method392

can make a perfect classification or retrieval for every single image. Eventually,393
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Figure 8: The image retrieval results using the ArtPhoto images as queries. The first column

corresponds to the query images from the ArtPhoto data set, and the last three columns cor-

respond to the top three retrieved images from the IAPS emotional subset ranked by distance.

The ground-truth label is given under each image.
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the development in this interdisciplinary area relies on the joint efforts from394

artificial intelligence, computer vision, pattern recognition, cognitive science,395

psychology, as well as color and art theories.396
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