
Adaptive multiplicative updates for quadratic nonnegative matrix factorization

He Zhang∗, Zhirong Yang, Erkki Oja

Department of Information and Computer Science, Aalto University, Espoo, Finland

Abstract

In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices.
Quadratic Nonnegative Matrix Factorization (QNMF) is a new class of NMF methods where some factorizing matrices occur twice
in the approximation. QNMF finds its applications in graph partition, bi-clustering, graph matching, etc. However, the original
QNMF algorithms employ constant multiplicative update rules and thus have mediocre convergence speed. Here we propose an
adaptive multiplicative algorithm for QNMF which is not only theoretically convergent but also significantly faster than the original
implementation. An adaptive exponent scheme has been adopted for our method instead of the old constant ones, which enables
larger learning steps for improved efficiency. The proposed method is general and thus can be applied to QNMF with a variety of
factorization forms and with the most commonly used approximation error measures. We have performed extensive experiments,
where the results demonstrate that the new method is effective in various QNMF applications on both synthetic and real-world
datasets.

Keywords:
Adaptive, Multiplicative updates, Quadratic, Nonnegative Matrix Factorization

1. Introduction

Nonnegative Matrix Factorization (NMF) has attracted a lot
of research effort in recent years (e.g. [1, 2, 3, 4, 5, 6]). NMF
has a variety of applications e.g. in machine learning, signal
processing, pattern recognition, data mining, and information
retrieval. (e.g. [7, 8, 9, 10, 11]). Given an input data matrix,
NMF finds an approximation that is factorized into a product
of lower-rank matrices, some of which are constrained to be
nonnegative. The approximation error can be measured by a
variety of divergences between the input and its approximation
(e.g. [12, 13, 14, 6]), and the factorization can take a number of
different forms (e.g. [15, 16, 17]).

In most existing NMF methods, the approximation is linear
with respect to each factorizing matrix; that is, these matrices
appear only once in the approximation. However, such a lin-
earity assumption does not hold in some important real-world
problems. A typical example is graph matching, when it is pre-
sented as a matrix factorizing problem, as pointed out by Ding
et al. [18]. If two graphs are represented by their adjacency
matrices A and B, then they are isomorphic if and only if a
permutation matrix P can be found such that A − PBPT = 0.
Minimizing the norm or some other suitable error measure of
the left-hand side with respect to P, with suitable constraints,
reduces the problem to an NMF problem. Note that both adjan-
cency matrices and permutation matrices are nonnegative, and
the approximation is now quadratic in P.

∗Corresponding author.
Email addresses: he.zhang@aalto.fi (He Zhang),

zhirong.yang@aalto.fi (Zhirong Yang), erkki.oja@aalto.fi (Erkki
Oja)

Another example is clustering: if X is a matrix whose n
columns need to be clustered into r clusters, then the classi-
cal K-means objective function can be written as [19] J1 =

Tr(XT X) − Tr(UT XT XU) where U is the (n × r) binary cluster
indicator matrix. It was shown in [20] that minimizing J2 =∥∥∥XT −WWT XT

∥∥∥2
Frobenius with respect to an orthogonal and non-

negative matrix W gives the same solution, except for the binary
constraint. This is another NMF problem where the approxima-
tion is quadratic in W.

Methods for attacking this kind of problems are called Quadratic
Nonnegative Matrix Factorization (QNMF). A systematic study
on QNMF was given by Yang and Oja [21], where they pre-
sented a unified development method for multiplicative QNMF
optimization algorithms.

The original QNMF multiplicative update rules have a fixed
form, where an exponent in the multiplying factor in these rules
remains the same in all iterations. Despite its simplicity, the
constant exponent corresponds to overly conservative learning
steps and thus often leads to mediocre convergence speed.

Here we propose new multiplicative algorithms for QNMF
to overcome this drawback. We drop the restriction of constant
exponent in multiplicative update rules, which relaxes the up-
dates by using variable exponents in different iterations. This
turns out to be an effective strategy for accelerating the opti-
mization while still maintaining the monotonical objective de-
crease. The acceleration for Projective NMF, a special case
of QNMF, was presented in our preliminary work [22]. In
this paper we demonstrate that the new method can bring im-
provement for many other QNMF optimizations. We general-
ize the adaptive multiplicative algorithm for a wide variety of

Preprint submitted to Neurocomputing March 8, 2013

QNMF problems. In addition to Projective Nonnegative Matrix
Factorization, we also apply the strategy on two other special
cases of QNMF, with corresponding application scenarios in bi-
clustering and estimation of hidden Markov chains. Extensive
empirical results on both synthetic and real-world data justify
the efficiency advantage by using our method.

In the following, Section 2 recapitulates the essence of the
QNMF objectives and their previous optimization methods. Sec-
tion 3 presents the fast QNMF algorithm by using adaptive ex-
ponents. In Section 4, we provide empirical comparison be-
tween the new algorithm and the original implementation on
three applications of QNMF. Section 5 concludes the paper.

2. Quadratic Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) finds an approxi-
mation X̂ to an input data matrix X ∈ Rm×n:

X ≈ X̂ =

Q∏
q=1

F(q). (1)

and some of these matrices are constrained to be nonnegative.
The dimensions of the factorizing matrices F(1), . . . , F(Q) are
m × r1, r1 × r2, . . . , rQ−1 × n, respectively. Usually r1, . . . , rQ−1
are smaller than m or n.

In most conventional NMF approaches, the factorizing ma-
trices F(q) in Eq. (1) are all different, and thus the approxima-
tion X̂ as a function of them is linear. However, there are useful
cases where some matrices appear more than once in the ap-
proximation. In this paper we consider the case that some of
them may occur twice, or formally, F(s) = F(t)T for a number
of non-overlapping pairs {s, t} and 1 ≤ s < t ≤ Q. We call
such a problem and its solution Quadratic Nonnegative Matrix
Factorization (QNMF) because X̂ as a function is quadratic to
each twice appearing factorizing matrix1.

When there is only one doubly occurring matrix W in the
QNMF objective, the general approximating factorization form
is given by [21]

X̂ = AWBWT C, (2)

where the products of the other, linearly appearing factorizing
matrices are merged into single symbols. QNMF focuses on
the optimization over W, while learning the matrices that occur
only once can be solved by using the conventional NMF meth-
ods of alternative optimization over each matrix separately [11].

As stated by the authors in [21], The factorization form uni-
fies many previously suggested QNMF objectives. For exam-
ple, it becomes the Projective Nonnegative Matrix Factoriza-
tion (PNMF) when A = B = I and C = X [23, 24, 25, 20, 17].
If X is a square matrix and A = C = I, the factorization can
be used in two major scenarios if the learned W is highly or-
thogonal: (1) When B is much smaller than X, the three-factor

1Though equality without matrix transpose, namely F(s) = F(t), is also pos-
sible, to our knowledge there are no corresponding real-world applications.

approximation corresponds to a blockwise representation of X
[26, 27]. If B is diagonal, then the representation becomes di-
agonal blockwise, or a partition. In the extreme case B = I,
the factorization reduces to the Symmetric Nonnegative Matrix
Factorization (SNMF) X̂ = WWT [16]. (2) When X and B are
of the same size, the learned W with the constraint WT W = I
approximates a permutation matrix and thus QNMF can be used
for learning order of relational data, for example, graph match-
ing [18]. Alternatively, under the constraint that W has column-
wise unitary sums, the solution of such a QNMF problem pro-
vides parameter estimation of hidden Markov chains (See Sec-
tion 4.3).

The factorization form in Eq. (2) can be recursively ap-
plied to the cases where there are more than one factorizing
matrices appearing quadratically in the approximation. For ex-
ample, the case A = CT = U yields X̂ = UWBWT UT , and
A = B = I, C = XUUT yields X̂ = WWT XUUT . An applica-
tion of the latter example is shown in Section 4.2, where the so-
lution of such a QNMF problem can be used to group the rows
and columns of X simultaneously. This is particularly useful
for the biclustering or coclustering problem. These factorizing
forms can be further generalized to any number of factorizing
matrices. In such cases we employ alternative optimization over
each doubly occurring matrix.

It is important to notice that quadratic NMF problems are
not special cases of linear NMF [21]. In linear NMF, the factor-
izing matrices are different variables and the approximation er-
ror can alternatively be minimized over one of them while keep-
ing the others constant. In contrast, the optimization of QNMF
is harder because matrices in two places vary simultaneously,
which leads to higher-order objectives. For example, given
the squared Frobenius norm (Euclidean distance) as approxi-
mation error measure, the objective of linear NMF ‖X −WH‖2F
is quadratic with respect to W and H, whereas the PNMF ob-
jective ‖X −WWX‖2F is quartic with respect to W. Minimizing
such a fourth-order objective with the nonnegativity constraint
is considerably more challenging than minimizing a quadratic
function.

3. Adaptive QNMF

The difference between the input matrix X and its approx-
imation X̂ can be measured by a variety of divergences. Yang
and Oja [21] presented a general method for developing op-
timization algorithms with multiplicative updates for QNMF
based on α-divergence, β-divergence, γ-divergence or Rényi di-
vergence. These families include the most popular used NMF
objectives, for example, the squared Euclidean distance (β =

1), Hellinger distance (α = 0.5), χ2-divergence (α = 2), I-
divergence (α → 1 or β → 0), dual I-divergence (α → 0),
Itakura-Saito divergence (β → −1) and Kullback-Leibler di-
vergence (γ → 0 or r → 1). Multiplicative update rules can
be developed for more QNMF objectives, for example the ad-
ditive hybrids of the above divergences, as well as many other
unnamed Csiszár divergences and Bregman divergences.

In general, the multiplicative update rules take the following

2

Table 1: Notations in the multiplicative update rules of QNMF examples, where
X̂ = AWBWT C. Here α, β, γ, and r stand for alpha-, β-, γ- and Rényi-
divergences, respectively.

Pi j Qi j θ η

α 1 Xα
i jX̂
−α
i j 1

1/(2α) for α > 1
1/2 for 0 < α < 1
1/(2α − 2) for α < 0

β X̂β
i j Xi jX̂

β−1
i j 1

1/(2 + 2β) for β > 0
1/(2 − 2β) for β < 0

γ X̂γ
i j Xi jX̂

γ−1
i j

∑
ab X̂γ+1

ab∑
ab XabX̂γ

ab

1/(2 + 2γ) for γ > 0
1/(2 − 2γ) for γ < 0

r 1 Xr
i jX̂
−r
i j

∑
ab X̂ab∑

ab Xr
abX̂1−r

ab

1/(2r) for r > 1
1/2 for 0 < r < 1

form:

Wnew
ik = Wik

(
AT QCT WBT + CQT AWB

)
ik(

AT PCT WBT + CPT AWB
)
ik
· θ

η

, (3)

where P, Q, θ, and η are specified in Table 1. For example, the
rule for QNMF X ≈ WBWT based on the squared Euclidean
distance (β→ 1) reads

Wnew
ik = Wik

(
XWBT + XT WB

)
ik(

WBWT WBT + WBT WT WB
)
ik

1/4

. (4)

Such multiplicative learning rules have the essential advan-
tage that matrix W always stays nonnegative. Note especially
the role of the exponent η in the algorithms. The value given
in the Table guarantees that the objective function will be non-
increasing in the iteration, and hence it will converge to a local
minimum. Multiplicative algorithms using an update rule with
a constant exponent in all iterations are simple to implement.

However, the exponent η also strongly affects the conver-
gence speed. It may be that a constant value as given in the Ta-
ble is unnecessarily small in practice. The convergence can be
accelerated by using a more aggressive choice of the exponent,
which adaptively changes during the iterations. A straightfor-
ward strategy is to increase the exponent steadily if the new
objective is smaller than the old one and otherwise shrink back
to the safe choice, η. The pseudo-code for such an implemen-
tation is given in Algorithm 1, where D(X||X̂), A, B and η are
defined according to the type of cost function (Euclidean dis-
tance or I-divergence). We have empirically used µ = 0.1 in all
related experiments in this work. Although more comprehen-
sive adaptation approaches could be applied, we find that such
a simple strategy can already significantly speed up the conver-
gence while still maintaining the monotonicity of updates.

4. Experiments

4.1. Projective Nonnegative Matrix Factorization
We have selected eight datasets that are commonly used

in machine learning for our experiments. These datasets were

Algorithm 1 Multiplicative Updates with Adaptive Exponent
for QNMF

Usage: W ← FastQNMF(X, η, µ).
Initialize W; ρ← η.
repeat

Uik ← Wik

(
AT QCT WBT + CQT AWB

)
ik(

AT PCT WBT + CPT AWB
)
ik
· θ

ρ

if D(X||AUBUT C) < D(X||AWBWT C) then
W ← U
ρ← ρ + µ

else
ρ← η

end if
until convergent conditions are satisfied

Table 2: Datasets used in the PNMF experiments.

Dimensions #Samples
wine 13 178
mfeat 292 2000
orl 10304 400
feret 1024 2409
swimmer 1024 256
cisi 1460 5609
cran 1398 4612
med 1033 5831

obtained from the UCI repository2, the University of Florida
Sparse Matrix Collection3, and the LSI text corpora4, as well as
other publicly available websites. The statistics of the datasets
are summarized in Table 2.

Projective Nonnegative Matrix Factorization (PNMF) is a
special case of QNMF. When squared Euclidean distance is
used as the error measure, PNMF solves the following opti-
mization problem:

minimize
W≥0

‖X −WWT X‖2F , (5)

where ‖A‖2F =
∑

i j A2
i j. The original PNMF algorithm using

constant exponent iteratively applies the following update rule
[28, 21]

Wik ← Wik

 2
(
XXT W

)
ik(

WWXXT W + XXT WWT W
)
ik

1/3

(6)

The fast adaptive PNMF algorithm uses variable exponents (Al-
gorithm 1) instead of the constant 1/3.

Figure 1 shows the objective function evolution curves us-
ing the compared methods for eight selected datasets. One can
see that the dashed lines are clearly below the solid ones in the
plots, which indicates that the adaptive alogorithm is signifi-
cantly faster than the original implementation.

2http://archive.ics.uci.edu/ml/
3http://www.cise.ufl.edu/research/sparse/matrices/index.

html
4http://www.cs.utk.edu/\~lsi/corpa.html

3

0 0.02 0.04 0.06 0.08
150

200

250

300

350

400

time (seconds)

o
b
je

c
ti
v
e
 (

s
q
u
a
re

d
 F

ro
b
e
n
iu

s
 n

o
rm

)

wine

original

adaptive

0 50 100 150 200 250

10
3.7

10
3.8

time (seconds)

o
b
je

c
ti
v
e
 (

I−
d
iv

e
rg

e
n
c
e
)

swimmer

original

adaptive

0 10 20 30 40
0

200

400

600

800

1000

time (seconds)

o
b
je

c
ti
v
e
 (

s
q
u
a
re

d
 F

ro
b
e
n
iu

s
 n

o
rm

)

mfeat

original

adaptive

0 50 100 150 200 250

10
5.07

10
5.08

10
5.09

10
5.1

time (seconds)

o
b

je
c
ti
v
e

 (
I−

d
iv

e
rg

e
n

c
e

)

cisi

original

adaptive

0 5 10 15 20 25
3

4

5

6

7

8

9
x 10

4

time (seconds)

o
b
je

c
ti
v
e
 (

s
q
u
a
re

d
 F

ro
b
e
n
iu

s
 n

o
rm

)

orl

original

adaptive

0 50 100 150 200 250

10
5.06

10
5.08

10
5.1

time (seconds)

o
b

je
c
ti
v
e

 (
I−

d
iv

e
rg

e
n

c
e

)

cran

original

adaptive

0 20 40 60 80 100
1.5

2

2.5

3

3.5

4

4.5
x 10

4

time (seconds)

o
b
je

c
ti
v
e
 (

s
q
u
a
re

d
 F

ro
b
e
n
iu

s
 n

o
rm

)

feret

original

adaptive

0 20 40 60 80 100

10
5.01

10
5.02

10
5.03

10
5.04

10
5.05

time (seconds)

o
b

je
c
ti
v
e

 (
I−

d
iv

e
rg

e
n

c
e

)

med

original

adaptive

Figure 1: Evolutions of objectives using the compared methods based on (left)
squared Euclidean distance and (right) I-divergence.

In addition to qualitative analysis, we have also compared
the benchmark on convergence time of the three methods. Table
3 summarizes the means and standard deviations of the result-
ing convergence time. The convergence time is calculated at
the earliest iteration where the objective D is sufficiently close
to the minimum D∗, i.e. |D − D∗|/D∗ < 0.001. Each algorithm
on each dataset has been repeated 100 times with different ran-
dom seeds for initialization. These quantitative results confirm
that the adaptive algorithm is significantly faster: it is 3 to 5
times faster than the original method.

4.2. Two-way clustering

Biclustering, coclustering, or two-way clustering is a data
mining problem which requires simultaneous clustering of ma-
trix rows and columns. QNMF can be applied for finding bi-
clusters in which the matrix entries have similar values. A good
biclustering of this kind should be able to discover a blockwise

Table 3: The mean (µ) and standard deviation (σ) of the convergence time
(seconds) of PNMF using the compared algorithms.

(a) PNMF based on Euclidean distance
dataset original adaptive
wine 0.22±0.11 0.06±0.03
mfeat 68.57±1.75 19.10±0.70
orl 117.26±1.74 29.89±1.48
feret 107.58±24.43 19.97±5.60

(b) PNMF based on I-divergence
dataset original adaptive
swimmer 613.04±20.63 193.47±5.43
cisi 863.89±69.23 193.23±18.70
cran 809.61±62.64 189.41±18.50
med 566.99±64.44 132.67±13.86

structure in the input matrix when the rows and columns are
ordered by their bicluster indices.

Two-way clustering has previously been addressed by the
linear NMF methods such as three-factor NMF (e.g. [16]). How-
ever, this method is often stuck in trivial local minima where the
middle factorizing matrix tends to be smooth or even uniform
because of the sparsity of the left and right factorizing matrices
[15]. An extra constraint on the middle is therefore needed.

The biclustering problem can be formulated by a QNMF
problem: X ≈ LLT XRRT [21]. The resulting two-sided QNMF
objectives can be optimized by alternating the one-sided algo-
rithms, that is, interleaving optimizations of X ≈ LLT Y (R) with
Y (R) = XRRT fixed and X ≈ Y (L)RRT with Y (L) = LLT X fixed.
The bicluster indices of rows and columns are given by taking
the maximum of each row in L and R. This method is called
Biclustering QNMF (Bi-QNMF) or Two-way QNMF [21].

Bi-QNMF was implemented by interleaving multiplicative
updates between L and R using constant exponents. Here we
compare the previous implementation with the adaptive algo-
rithm with variable exponents, using both synthetic and real-
world data.

Firstly, a 200 × 200 blockwise nonnegative matrix is gener-
ated, where each block has dimensions 20, 30, 60 or 90. The
matrix entries in a block are randomly drawn from the same
Poisson distribution whose mean is chosen from 1, 2, 4, or 7.
Next, we compared the four methods on the real-world webkb
dataset5. The data matrix contains a subset of the whole dataset,
with two classes of 1433 documents and 933 terms. The i j-th
entry of the matrix is the number of the j-th term that appears
in the i-th document.

The resulting objective evolutions over time are shown in
Figure 2. We can see that the dashed curves are below the solid
ones for both datasets, which indicates that the adaptive algo-
rithm brings efficiency improvement. The advantage is further
quantified in Table 4, where we ran each algorithm ten times
and recorded their mean and standard deviation of the conver-
gence times.

5http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/

4

0 0.5 1 1.5
10

8.1

10
8.3

10
8.5

time (seconds)

o
b
je

c
ti
v
e

synthetic

original

adaptive

0 2 4 6 8 10

10
6

time (seconds)

o
b
je

c
ti
v
e

webkb

original

adaptive

Figure 2: Evolutions of objectives of Bi-QNMF using the original implementa-
tion and adaptive multiplicative updates: (left) synthetic data and (right) webkb
data.

Table 4: The mean (µ) and standard deviation (σ) of the converged time (sec-
onds) of Bi-QNMF using the compared algorithms.

data original adaptive
synthetic 17.96 ± 0.26 5.63 ± 0.10
webkb 139.35 ± 76.81 25.93 ± 13.61

4.3. Estimating hidden Markov chains
In a stationary Hidden Markov Chain Model (HMM), the

observed output and the hidden state at time t are denoted by
x(t) ∈ {1, . . . , n} and y(t) ∈ {1, . . . , r}, respectively. The joint
probabilities of a consecutive pair are then given by Xi j , P(x(t) =

i, x(t + 1) = j) and Ykl , P(y(t) = k, y(t + 1) = l) accord-
ingly. For the noiseless model, we have X = WYWT with
W , P(x(t) = i|y(t) = k). When noise is considered, this
becomes an approximative QNMF problem X ≈ WYWT . Par-
ticularly, when the approximation error is measured by squared
Euclidean distance, the parameter estimation problem of HMM
can be formulated as (QNMF-HMM)

minimize
W≥0,Y≥0

J(W) = ‖X −WYWT ‖2F (7)

s.t.
∑

i

Wik = 1 for all k, and
∑

kl

Ykl = 1 (8)

The QNMF multiplicative update rule for the above con-
strained problem is

Wnew
ik = Wik

[
∇−ik +

∑
a ∇

+
akWak

∇+
ik +

∑
a ∇
−
akWak

]1/4

, (9)

where∇−W = XWYT +XT WY , ∇+
W = WYWT WYT +WYT WT WY ,

∇−Y = WT XW, and ∇+
Y = WT WYWT W. The update rule guaran-

tees that the Lagrangian L(W, λ) = J(W̃) +
∑

k λk
(
1 −

∑
i Wik

)
is non-increasing for λk =

∑
i Wik∇

+
ik −

∑
i Wik∇

−
ik.

Here we apply our adaptive algorithm to relax the constant
exponent in Eq. 9. We have compared the new algorithm with
the original one on six datasets: the first two are synthetic se-
quences generated by using the procedure by Lakshminarayanan
and Raich [29], with 1000 and 10000 samples respectively; the
third and fourth ar letter sequences in the top 1510 and 58112

www/data/

10
−2

10
0

10
−3

time (seconds)

o
b
je

c
ti
v
e

synthetic_small

original

adaptive

10
−2

10
0

10
−5

10
−4

10
−3

time (seconds)

o
b
je

c
ti
v
e

synthetic_large

original

adaptive

10
−2

10
0

10
−2.9

10
−2.7

10
−2.5

10
−2.3

time (seconds)

o
b

je
c
ti
v
e

EnglishWords_small

original

adaptive

10
−2

10
0

10
−2.9

10
−2.7

10
−2.5

10
−2.3

time (seconds)

o
b

je
c
ti
v
e

EnglishWords_large

original

adaptive

10
−2

10
0

10
−3.9

10
−3.8

10
−3.7

10
−3.6

time (seconds)

o
b

je
c
ti
v
e

GeneticCodes_large

original

adaptive

10
−2

10
0

10
−4

time (seconds)

o
b
je

c
ti
v
e

GeneticCodes_small

original

adaptive

Figure 3: Evolutions of objectives of QNMF-HMM using the original imple-
mentation and adaptive multiplicative updates: (left column) datasets with less
samples and (right column) with more samples; (top) synthetic data, (middle)
English words, and (bottom) genetic codes.

English words6; the fifth and sixth are genetic code sequences
of homo sapiens7, respective with lengths 30105 and 187334.

The objective evolution curves are presented in Figure 3.
We can see that, for all six datasets, the adaptive method is sig-
nificantly faster than the original implementation, because the
dashed lines are clearly below the solid ones. The improvement
is quantified in Table 5, where we ran each method ten times.
The results show that our new method can be 2 to 6 times faster
in general.

5. Conclusions

We have proposed a simple but effective algorithm to accel-
erate optimization over nonnegative matrices in quadratic ma-
trix factorization problems, using adaptive multiplicative up-
date rules. The acceleration is achieved by using more aggres-
sive multiplicative learning steps during the iterations. When-
ever the monotonicity is violated, we switch back to the safe
learning step. This simple strategy has demonstrated consider-
able advantages in three QNMF applications, for a variety of
synthetic and real-world datasets.

6http://www.mieliestronk.com/wordlist.html
7http://www.ncbi.nlm.nih.gov/genbank/

5

Table 5: The mean (µ) and standard deviation (σ) of the converged time (sec-
onds) of QNMF-HMM using the compared algorithms.

data original adaptive
synthetic small 7.67 ± 4.23 1.18 ± 0.62
synthetic large 55.81 ± 27.26 14.28 ± 11.24
EnglishWords small 16.23 ± 6.35 8.33 ± 3.95
EnglishWords large 12.07 ± 4.02 3.61 ± 0.90
GeneticCodes small 86.44 ± 16.53 19.39 ± 8.07
GeneticCodes large 22.54 ± 15.68 4.08 ± 3.46

The accelerated algorithms facilitate applications of the QNMF
methods. More large-scale datasets will be tested in the future.
Moreover, the proposed adaptive exponent technique is readily
extended to other fixed-point algorithms that use multiplicative
updates.

6. Acknowledgement

This work was financially supported by the Academy of
Finland (Finnish Center of Excellence in Computational Infer-
ence Research COIN, grant no 251170; Zhirong Yang addition-
ally by decision number 140398).

References

[1] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative
matrix factorization, Nature 401 (1999) 788–791.

[2] D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization,
Advances in Neural Information Processing Systems 13 (2001) 556–562.

[3] P. O. Hoyer, Non-negative matrix factorization with sparseness con-
straints, Journal of Machine Learning Research 5 (2004) 1457–1469.

[4] S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in:
Proceedings of IEEE International Joint Conference on Neural Networks,
2008, pp. 1828–1832.

[5] D. Kim, S. Sra, I. S. Dhillon, Fast projection-based methods for the least
squares nonnegative matrix approximation problem, Statistical Analysis
and Data Mining 1 (1) (2008) 38–51.

[6] C. Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization
with the Itakura-Saito divergence: With application to music analysis,
Neural Computation 21 (3) (2009) 793–830.

[7] S. Behnke, Discovering hierarchical speech features using convolutional
non-negative matrix factorization, in: Proceedings of IEEE International
Joint Conference on Neural Networks, Vol. 4, 2003, pp. 2758–2763.

[8] H. Kim, H. Park, Sparse non-negative matrix factorizations via alternat-
ing non-negativity-constrained least squares for microarray data analysis,
Bioinformatics 23 (12) (2007) 1495–1502.

[9] A. Cichocki, R. Zdunek, Multilayer nonnegative matrix factorization us-
ing projected gradient approaches, International Journal of Neural Sys-
tems 17 (6) (2007) 431–446.

[10] C. Ding, T. Li, W. Peng, On the equivalence between non-negative matrix
factorization and probabilistic latent semantic indexing, Computational
Statistics and Data Analysis 52 (8) (2008) 3913–3927.

[11] A. Cichocki, R. Zdunek, A.-H. Phan, S. Amari, Nonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-way Data Anal-
ysis, John Wiley, 2009.

[12] R. Kompass, A generalized divergence measure for nonnegative matrix
factorization, Neural Computation 19 (3) (2006) 780–791.

[13] I. S. Dhillon, S. Sra, Generalized nonnegative matrix approximations with
Bregman divergences, in: Advances in Neural Information Processing
Systems, Vol. 18, 2006, pp. 283–290.

[14] A. Cichocki, H. Lee, Y.-D. Kim, S. Choi, Non-negative matrix factor-
ization with α-divergence, Pattern Recognition Letters 29 (2008) 1433–
1440.

[15] A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, R. D. Pascual-
Marqui, Nonsmooth nonnegative matrix factorization (nsNMF), IEEE
Transactions on Pattern Analysis and Machine Intelligence 28 (3) (2006)
403–415.

[16] C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-
factorizations for clustering, in: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2006,
pp. 126–135.

[17] C. Ding, T. Li, M. I. Jordan, Convex and semi-nonnegative matrix factor-
izations, IEEE Transactions on Pattern Analysis and Machine Intelligence
32 (1) (2010) 45–55.

[18] C. Ding, T. Li, M. I. Jordan, Nonnegative matrix factorization for com-
binatorial optimization: Spectral clustering, graph matching, and clique
finding, in: Proceedings of the 8th IEEE International Conference on Data
Mining (ICDM), 2008, pp. 183–192.

[19] C. Ding, X. He, K-means clustering via principal component analysis, in:
Proceedings of International Conference on Machine Learning (ICML),
2004, pp. 225–232.

[20] Z. Yang, E. Oja, Linear and nonlinear projective nonnegative matrix fac-
torization, IEEE Transaction on Neural Networks 21 (5) (2010) 734–749.

[21] Z. Yang, E. Oja, Quadratic nonnegative matrix factorization, Pattern
Recognition 45 (4) (2012) 1500–1510.

[22] H. Zhang, Z. Yang, E. Oja, Adaptive multiplicative updates for projec-
tive nonnegative matrix factorization, in: Proceedings of the 19th Inter-
national Conference Neural Information Processing (ICONIP), 2012, pp.
277–284.

[23] Z. Yuan, E. Oja, Projective nonnegative matrix factorization for image
compression and feature extraction, in: Proceedings of 14th Scandinavian
Conference on Image Analysis (SCIA), Joensuu, Finland, 2005, pp. 333–
342.

[24] Z. Yang, J. Laaksonen, Multiplicative updates for non-negative projec-
tions, Neurocomputing 71 (1-3) (2007) 363–373.

[25] Z. Yang, Z. Yuan, J. Laaksonen, Projective non-negative matrix factoriza-
tion with applications to facial image processing, International Journal on
Pattern Recognition and Artificial Intelligence 21 (8) (2007) 1353–1362.

[26] B. Long, Z. Zhang, P. S. Yu, Coclustering by block value decomposition,
in: Proceedings of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, 2005, pp. 635–640.

[27] E. M. Airoldi, D. M. Blei, S. E. Fienberg, E. P. Xing, Mixed membership
stochastic blockmodels, Journal of Machine Learning Research 9 (2008)
1981–2014.

[28] Z. Yang, E. Oja, Unified development of multiplicative algorithms for
linear and quadratic nonnegative matrix factorization, IEEE Transactions
on Neural Networks 22 (12) (2011) 1878–1891.

[29] B. Lakshminarayanan, R. Raich, Non-negative matrix factorization for
parameter estimation in hidden markov models, in: Proceedings of IEEE
International Workshop on Machine Learning For Signal Processing,
2010, pp. 89–94.

6

