HORMANDER 0 THEORY ON QUASI-COMPLETE KAHLER MANIFOLD

XU WANG

ABSTRACT. These notes were written for a PhD course at NTNU. Most of the results are well
known. In the Hormander L? theory part, we introduce the concept "quasi-completeness”, which
we hope could simplify and slightly generalize the theory.
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1. JORDAN NORMAL FORM OF A MATRIX
Let A be an (n,n) complex matrix. The starting point of the whole story is
Lemma 1.1. \ € C is an eigenvalue of A if and only if det(A — \) = 0.

Proof. Tt is clear that Az = Az iff (A — \)a = 0 iff column vectors, say {(A — A)e; }1<j<p, of

(A — )) are linearly dependent iff (by Gauss elimination)

(A=XNer A= AN (A—=Ney, _0
etN---Ney, o

det(A —\) =

Now let {);}1<;<; be the eigenvalue set of A. By the above lemma, we must have
det(A—X) = (A = N)™ - (N =)™
Put
VY i=ker(A - \))P,
then we can choose 1 < m; < n; such that

1 2 ... my oyt
e e e A /AR T

It is clear that
VAV = {0}, 4k
If fact if (A — X;)™(e) = (A — A\p)™ (e) = 0 then we must have (A\; — A\,)™ "¢ = 0, which
gives e = (. Thus we have
@i, V™ cCn.
The Jordan theorem is the following
Theorem 1.2. C" = @'_, V™.

Proof. It is enough to show that dim ijj = n;. By the above lemma, we know that dim V}mj >
1, thus the theorem is true in case all n; = 1. Assume that n; > 1 and

n
Aer = Mey, Aej = E ChjCh-
k=1

Consider A’ = (ck;)a<k,j<n» then we have
det(N —A) = (A — )™ (O — A"

thus det(A; — A’) = 0. By the above lemma we can find a C linear combination of ey, - - - , e,
(assume that it is e5) such that
Aleg = )\162.
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Thus we have
(A — )\1)262 = (A — )\1)(A62 — Aleg) = 012(A — )\1)61 = O,

which implies that ey, e; lie in V;™'. Thus dim V;™* > 2. Continue the above process (replace A
be A’), we can finally prove that dim V|"™* = n;. O

Exercise 1: Complete the above proof and show that the above proof gives a basis, say {e,},
of C" under which A is upper triangular, i.e.

Aej = E Chj€-

k<j

Think of A — A; as a C-linear transform, say 7', on V}mj . Then we have
71 #0, T =0.

Definition 1.1. A C-linear map T from C" to itself is said to be k-nilpotent (k > 0, T° := 1) if
Tk =0 but T* £ 0.

If T is k-nilpotent then
0CkerT C - CkerTF C ker TF*! = ker TF+% = C™.
Moreover, we can inductively choose subspaces S7 (0 < j < k) of C" such that
SO @ ker TF = C",
St TS’ @ ker TF 1 = ker T,
and finally
SFeTS '@ - oTFS® =kerT.
(Thanks to Tai for pointing out a mistake in an early version of this notes).
Exercise 2: Check the following theorem:
Theorem 1.3 (Lefschetz isomorphism). We have
C* = di,V7,
where
V] = @lgj_lnglSj_ﬂ.
Moreover, for every 0 < j <k,
T9 VI VR
is an isomorphism.

The above theorem says that C" is generated by 7" and the ©.57. We call &5 a primitive space
for T'. The primitive space is not unique. But in the next section, we shall show that if we fix the
graded structure with Lefschetz isomorphism then the primitive space is unique.

Remark 1: The main example that we will use is the following: each V7 is the space of degree
j differential forms and 7" is given by the wedge product of a degree two symplectic form.
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Remark 2: Once we have fixed a basis, say A;, for each S7. then
UZ'_;_J'SkTiAj

defines a basis of C”, with respect to which we get the Jordan normal form of T'. The Jordan
normal forms for all (A — A;)[,,m; give the Jordan normal form of a matrix A.

2. LINEAR LEFSCHETZ THEORY ASSOCIATED TO A SYMPLECTIC STRUCTURE

We shall show that there is a natural Lefschetz isomorphism associated to a symplectic struc-
ture. Then we define the symplectic star operator and the associated sl,-triple.

Let V be an N-dimensional real vector space. Let w be a bilinear form on V. We call w a sym-
plectic form if w is non-degenerate and w is anti-symmetric (i.e. w(u,v) = —w(v,u), Vu,v € V,
and we know that w € A2V*).

Proposition 2.1. Assume that there is a symplectic form w on V. Then N = 2n for some integer

n and there exists a basis, say {e}, f1;--- ;ek, fx}, of V* such that
W= Z e; N\ fi
j=1
Proof. Since w is non-degenerate, we know that N > 2. If N = 2 and w(e, f) = 1 then
w=¢e"Af*,

where {e*, f*} denotes the dual basis of {e, f}. Assume that N > 3, consider
Vii={ueV:w(ue) =wy,f)=0}
Then for every u € V, we have
v i=u—w(u, fle+w(u,e)f € V',
and
ae +bf € V'iffa=b=0,
thus
V =V'@® Span{e, f}.
Since w is non-degenerate, we know for every v € V"’ there exists u € V with w(u, v) # 0. Thus
w(u',v) = w(u,v) #0,
which implies that w|y~ is a symplectic form on V. Induction on N gives the theorem. U
One may use w to define a bilinear form, say w™!, on V* such that
W (f7 ) = —wT ek, f) = Gk WS SR = w (e er) = 0.
Exercise: Check that
W (u) w,v] w) = w(v,u).

Thus the definition of w™" does not depend on the choice of basis in the above proposition.
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We shall use the same notation w™! for the following bilinear form on APV *:

(2.1) w Hp,v) i=det(w Hay, B;), p=a1 A ANy, v=PF1 A A By
Definition 2.1 (By Guillemin [12]). The symplectic star operator x : NPV* — AZ7PV* jg
defined by
1 w"
(2.2) A xsv = w ™ (p, V)—'.
n!

We shall show how to use the Lefschetz isomorphism to decode the structure of ;.
Theorem 2.2 (Hard Lefschetz theorem—pointwise version). For each 0 < k < n,
L% um—s " Au, ue NFVE
defines an isomorphism between \FV* and N*"FV*.

Proof. Notice that the theorem is true if n = 1 or £ = 0, n. Now assume that it is true for n <[,
[ > 1. We need to prove thatitistrueforn =1+ 1,1 < k < [. Put

!
W= Z e; N ff.
j=1
Then we have
W = (W (141 = k) (W) Al A
Let us write u € A*(V*) as
w=u’+u Aefpy +u A S+ Aefg A fl
where each v/ contains no ej; or ff,; term. Then "'~ A u = 0 is equivalent to
(W)FIF AL = ()R A Gl = (W) AW = (W) AR (L1 — k) ()R Au =0,
which implies 4! = u? = 0 by our theorem for n = [. Moreover, u® = 0 since
W2 E AU = (W)TPF AW+ (141 = k) (W) AW’ = 0.
Thus ()% Au® = 0, which implies u° = 0. Now we know that u — w'*'=* A is an injection,
thus an isomorphism since dim A*V* = dim A"~ *V*, U
The notion of primitive form is an analogy of primitive space in section 1:
Definition 2.2. We call u € A*V* a primitive form if k < n and w" "' A u = 0.

The following Lefschetz decomposition theorem follows directly from Theorem[2.2]

Theorem 2.3 (Lefschetz decomposition formula). Every u € AFV* has a unique decomposition
as follows:

LT’
(2.3) =Y L Au, Ly==—

rl

9

where each u" is a primitive (k — 2r)-form.
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Proof. Put V¥ = A*V*. We can assume that k < n since we have the isomorphism L* : V"% —
V"tk Notice that the theorem is trivial if £ = 0, 1. Assume that 2 < k < n. The isomorphism

n—k+2 . k—2 2n—k+2
L Vit SV ,

gives 4 € V*72 such that L" %24 = [""* 1y, Put u® = u — L, we know that u° is primitive
and u = u® + La. Consider 4 instead of u, we have & = u' + L, where u! is primitive. By
induction, we know that u can be written as

u = Z L.u",

where each u” € V*~2" is primitive. For the uniqueness part, assume that

0= i L,u",
r=0

where each u” € V*~2" is primitive. Then we have

J
0= Lp_itj <Z Lrur> = Ly L0,
r=0

which gives v/ = 0. By induction on j we know that all u" = 0. 0J

By the above theorem, it is enough to study the symplectic star operator on

T

w
wr NU, Wy = —
7!

where w is primitive. The main result is the following:
Theorem 2.4. [f u is a primitive k-form then *(w, A u) = (—1)2FFhy o A
The above theorem implies

2 __
*x; = 1.

The proof of the above theorem depends on a symplectic analogy of the lemma proved by
Berndtsson (see Lemma 3.6.10 in [[1]]).

Definition 2.3. w € A*V* is said to be an elementary form if there exists a basis, say
{61(7 fikv T 67*17 f:}a
of V* such that

n
_ * * _ * *
w= E e;NJj, u=e N---Ney.
j=1

Lemma 2.5 (Berndtsson lemma). The space of primitive forms is equal to the linear space
spanned by elementary forms.
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Proof. Since

— * * e * *
Wn—k+1 = 2 : €1 A fjl A A €1 A f]n—k+17
J1<-<Jn—k+1

we know that w, .1 A u = 0 if u is an elementary k-form. Thus every elementary form is
primitive. Let us prove the other side by induction on n. Notice that the lemma is true if n = 1.
Assume that it is true for n < [, [ > 1. We shall prove that it is also true for n = [ + 1. With the
notation in the proof of Theorem[2.2} w!~*+2 A u = 0 is equivalent to

(w/)l+2—k/\u0 — (w’)l+2_k/\u1 — (w/)l+2—k/\u2 — (w/)l+2_k/\u3—|—(l+2—k)(w/)l_k+l /\’LLO — 07

which is equivalent to the w’-primitivity of u!, u?, u3 and (142 — k)u® + w’ A u?. Now it suffices
to show that (consider (I + 2 — k)u)

W=t A (2= k)ef o A S — W)

3

is a linear combination of elementary forms. Since u* is w’-primitive, by the induction hypothe-

sis, we can assume that

_ * *
u”=ej; N Nep_q.
Thus

!
= Z N Nep_g ANefa A fiyn — €A f7)
i=h1

Now it suffices to show that if n = 2 then e] A f —e3 A f5 is a linear combination of elementary
forms. Notice that

ENfT—eNfy=(er+e) NI —f)+eaAfs+fiNe.

It is clear that e A f5 and f; A e} are elementary. (e} + e3) A (ff — f5) is also elementary since
we can write

w= (el +e) N fi+es A7 = fi)
The proof is complete. O

We shall also use the following lemma from [12].
Lemma 2.6 (Guillemin Lemma). Assume that (V,w) = (Vi,wM) @ (Va, w®). Then
ss(uAv) = (=Rl y A v, u e ARVE v e ARV
where x. and ** are symplectic star operators on Vy and V; respectively.
Proof. For every a € AF'V* b € APV, we have
aANbA(=D)FR sl y Ao =a Axlu ANDAN 2 v =w T a AbuAv)wy,
which gives the lemma. U

Now we are able to prove Theorem [2.4
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Proof of Theorem By the Berndtsson lemma, we can assume that
u=-ejN---Nej.
Consider V' = Span{e}, f/ }1<j<r © Span{e;, 1, fii1} @ --- @ Span{e;, f;} and write
*S:*Ek@*f+l®---®*?.

Since
(1) =e; A ff, *g(e; /\fj’.k) =1, Vk+1<j<n,

by the Guillemin lemma, we have

* * * * * * * * <k
*s(ek+1 A Sesi N AN epir N frgr ANu) = Chtri1 N Srpria N Nep N o AN xstu,

which implies
s (Wr A U) = Wy A =P,

Since #5* =« @ - @ ** and (try!)

*ge;:—e;, V1<j<Ek,
the Guillemin lemma gives

= (S () A A A ) = = (S
the proof is complete.
Definition 2.4. We call {L, \, B} the sly-triple on Go<p<on NF V*, where
Lu:=wAu, A:=x,"Lx,, B:=[L,A]
We have

w(Lu,v) = w Hu, Av).

Hence A is the adjoint of L. Put
L.:=L"/rl, Ly:=1, L, :=0.
We have:
Proposition 2.7. If u is a primitive k-form then
ALyu)=(n—k—r+1)L,_qu, B(L,u) = (k+ 2r —n)L,u,

forevery0 <r <n-—Fk+1

Proof. Put ¢ = (—1)*"*1, then

Lxs(Lyu)=cL(Ly—g—yu)=n—k—r+1)cLyjrriu=n—k—r+1)*(L._1u),

which gives the first identity. The second follows directly from the first.

0



HORMANDER 0 THEORY 9

3. COMPLEX STRUCTURE AND HODGE STAR OPERATOR

3.1. Compatible complex structure. Let (V,w) be a symplectic space. Let us consider another
structure on V', which can be used to define an inner product structure on V.

Definition 3.1. We call a linear map J : V. — V a complex structure on V if J(Ju) = —u for
everyu € V.

Definition 3.2. A complex structure J on (V,w) is said to be compatible with w if
(u,v) = w(u, Jv),
defines a inner product structure on 'V (i.e.
w(u, Jv) =wv, Ju), Yu,v €V,
and w(u, Ju) > 0 if u is not zero). We call (-, -) the (w, J)-metric on V.
If J is a complex structure on V' then
J)(u) :=v(Ju), YVueV,ve V"
defines a complex structure on V*. The dual formulation of compatibility is the following:

Proposition 3.1. If a complex structure J on (V,w) is compatible with w then

(. B) =w (o, JB),

defines an inner product structure on V*. We call (-, -) the (w, J)-metric on V*.

Proof. The theorem follows from
w vl w, J(v]w)) = —wH (u] w, (Jv) | w) = w(u, Jv),
where the first formula follows from
(J(u] w))(v) = (u] W)(Jv) = wlu, Jv) = —w(Ju,v) = =((Ju)| w))(v).

Definition 3.3. We call
J(wr A Avg) = J(v1) A N T (o),

the Weil operator on ©o<p<an AFVE,

Since the eigenvalues of .J are +1, its eigenvectors lie in C ® V*. Put

E,={ueCoV*:Ju)=iu}, E_;:={ueCeV": J(u)=—iu},
we know that
Ei={u—iJu:ueV'}, E,={u+iJu:uecV"}
andCV*=FE,® FE_,. Put
NPV = (NPE) N (NE-).
Then we have
C® (A'V*) = AF(C R V™) = Bprgr NP1V,
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and
Ju =", Y u e N\PIV*,
Proposition 3.2. w € AMV* iff w(u, Jv) = w(v, Ju), Yu,v € V.
Proof. Let w = w*? 4+ wb! + w20 be the bidegree decomposition of w, then
Jw = —w?0 + whl — w20,
Thus we have w € AVV*iff Jw = w iff
w(Ju, Jv) = w(u,v), Yu,v €V,
iff w(u, Jv) = w(v, Ju), Vu,v € V. O
Remark: We can also extend w™? to a bilinear form on C ® V* as follows:
w(e1u, ev) == crepw Hu,v), Yu,v €V, Vey, e €C.
Then it is clear that if w € AM1V* then
W ALOVE A0V = L (AOLYE ALY ) =
Definition 3.4. Assume that J is compatible with w. Then the (w, J)-metric on V* extends to a
hermitian metric on C @ V* as follows

(u,v) :=w (u, Jv), Yu,v € CxV*
We call it the (w, J)-metric on C @ V*.

Remark: It is clear that
/\O’IV*J_ /\1,0 V*
with respect to the (w, J)-metric. Let {£7}1 < <, be an orthonormal basis of AM°V*, then
(€7,6") = (€. €') = o
implies that {£7} <<, is an orthonormal basis of AL0V*,
Exercise 1: Check that we can write
w=id A,
j=1
moreover, if we write
g=d +iv, o,V eV*
(e gdz’ = dx’ + idy’) then
CgsE L gog
)= bV = J(@) = -V
¢ 2 2 @) ’
and the associated (w, J)-metric on V' can be written as

g=2) (d@d+V V)

j=1
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In particular, {1/2a’,v/2b’} defines an orthonormal basis of V*.
Exercise 2: We can further extend the (w, J)-metric on C® V* to each AF(C® V*) as follows
(u,v) == w (u, J), u,ve A" (Cx V),

where w~! denotes the C-linear extension of the bilinear form w=! on A* ® V*, J denotes the
Weil operator. Check that APV * 1 ALV *if (p, q) # (k, 1) and

(ug Ao ANy, vp A= Avp) = det((uj,vg)), uj, v, € CR VT,
moreover if {¢/},<;<,, be an orthonormal basis of AV * then
(T =N NN N N k<
defines an orthonormal basis of AP?V*, in particular
3.1 (Wnywp) = 1.

Definition 3.5. We call the hermitian inner product, say (-, ), defined in the above exercise the
(w, J)-metric on & NP1 V* and we shall always write the associated norm as |u| :== \/(u, u).

Now we can define a C-linear map, say %, on & AP V* such that
uUA*0 = (U, v) Wy
Exercise 3: Check that
*(APAV*) = A\PTInTPY
and xU = *0.
Definition 3.6. We call * defined above the Hodge star operator on & NP1 V™,
Remark: Compare it with the symplectic star operator, we get
* =%, 0J = Jo*,,
where J denotes the Weil-operartor. In particular, we have
2= = (—1p = (-1

on AP2V* which implies that

degu

(U, V) wp =uA*0 = (=1)FS0 AU =% ANk *x U = 3V, %U) wy, = (¥U, *V) W, .

Thus the Hodge star operator preserve the metric. In the next section, we shall show that the
above Hodge star operator is just the C-linear extension of the usual Hodge star operator on
(V. (+,-)) with respect to the canonical orientation w;,.
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3.2. Compare with the classical Hodge star operator. In general, if we have an inner product
structure, say (-,-), on an /N dimensional real linear space V. Then the induced inner product
structure on V'* is defined by the Riesz reprentation of VV* in V', more precisely, if & € V* then
we can find a unique R(«) € V such that

a(u) = (u, R(a)),
we call R(«) the Riesz representation of o in V. Then the inner product on V* is defined by
Definition 3.7. (o, 3) := (R(8), R(«)).
Exercise 4: Prove that

Q, ) = Ssu ’Oé(U)’Z
( 7 ) ueg (U,U> '

The above inner product on V* also defines an inner product structure on & A* V* as follows:

Definition 3.8. If u € A\*V* v € ANNV* and j # k then (u,v) := 0; moreover the inner product
structure on each N\*V* is defined by

(g A A, o1 A=+ Avg) i= det((uy, vg)).
Definition 3.9. An orientation on (V, (-,-)) is an N-form, say dV € ANV*, such that
(dV,dV) = 1.
A general N-form dy is said to be semi-positive (with respect to dV') if
dp = fdV, f>0.

Remark: It is clear that there are two orientations, +dV, on (V,g). (3.I) implies that w,
defines a canonical orientation with respect to the (w, J) metric.

Definition 3.10. The classical Hodge star operator « on & N* V* with respect to the orientation
dV' is defined by
uA*v = (u,v)dV.

Now it is clear that thle Hodge star operator defined in the above section is equal to the C-
linear extension of the classical Hodge star operator x with respect to the orientation w,,.

3.3. Basic notions in complex geometry.

Definition 3.11. An N-dimensional smooth manifold is a Hausdorff space X such that X is
locally homeomorphic to domains in RN with smooth transition maps and X can be written as

where { X} is an increasing sequence of relatively compact open sets in X.

Definition 3.12. Replace RY by C" and "smooth" by holomorphic, we get an n-dimensional
complex manifold.

Example: CP™ (complex projective space) and the complex torus 77, := C"/L, where L is a
lattice in C™ are examples of complex manifolds.
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Definition 3.13. A rank r holomorphic vector bundle E over a complex manifold X means a
holomorphic map, say

m:FE— X,

such that for every v € X there exists an open neighborhood, say U,, on X together with a
biholomorphic map

o, N U,) = U, x C”
such that
0.(B,)={2} xC", VzeU,, E,:=7(2),
and if U, N U, # ) then for every z € U, N U, 0, 0 0, maps {z} x C" to itself C-linearly .

Remark: Replace "holomorphic" by "smooth", one gets the notion of complex vector bundles,
similarly one may define real vector bundles over a smooth manifold. A rank one holomorphic
vector bundle is also called a holomorphic line bundle.

Exercise S: If we write
Oy 0 ay_l(z,v) = (z,04(2)v), z€U,NU,, veC,
then we know that each o, (%) is a holomorphic matrix-valued function such that
0,y (2) =04(2), 2€U,NU,
and
Ouy(2)op(2) = 0i(2), 2€ U, NU, NU,.

Definition 3.14. A holomorphic section of E on an open set U in X means a holomorphic map
e: U Esuchthate(z) € E, forevery z € U. We write H(U, E) the space of all holomorphic
sections of ' on U.

Exercise 6: Fix a basis, say {e;}, of C", then each
1
z 0, (2,€5),

defines a holomorphic section of E over U,. We shall still denote it by e; and call {e;} a
holomorphic frame of E over U,. Check that every holomorphic section of £ over U, can

be written as
() =) E(2)e5(2),
where &/ are holomorphic functions on U,.
Example: If X is a complex manifold with local coordinates
2=l 4 iy,
then its tangent bundle 7' is a smooth vector bundle over X with local frame
0/0x%,0/0y’

If we write
C® TX =T T,
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where 7" are defined by the local frame

0/07" == (007 —id/0y’)/2,
and T are defined by the local frame

0/07 := (0/0z +i0/0y’) /2,

Then we know that 7" is a holomorphic vector bundle over X. Its dual bundle 7™ is defined by
the local frame

dz = dx? +idy’.
The dual bundle 7% of T is defined by the local frame

dz’ = da? —idy’.
Definition 3.15. We call T' the holomorphic tangent bundle on X and T* the holomorphic
cotangent bundle. Let E be a holomorphic vector bundle on X. We call smooth section of
E ® (NPT A NIT) a smooth E-valued (p, q)-form; smooth section of E ® N*(C @ Tx) a smooth

E-valued k-form. We shall denote by V* (resp. VP9) the space of smooth E-valued k-forms
(resp. (p, q)-forms) with compact support on X.

Remark: If {e,} is a local holomorphic frame of E then we can write a smooth E-valued
(p, q)-form, say u, as
u= Z u® ® eq,

where u® are locally defined smooth (p, ¢)-forms on X.
Definition 3.16. The 0-operator on VP9 is defined by
ou = Zgua ® €q,
where
Q= " dz NOJOF (u”).
Exercise 7: Check that 9 does not depend on the choice of {e, } and {z7}.

3.4. Hermitian metrics and Lefschetz theory in complex geometry. Let £ be a complex
vector bundle over a smooth manifold X. A hermitian metric structure on E is defined as a
smooth family, say

th' = {hEI}7
of hermitian metrics hg, on E,. Here smooth family means that
hg(ea,es) : & hg,(ea(x), ep(x))
are smooth function of z if {e,} is a smooth local frame on E.

Definition 3.17. A Hermitian metric on a complex manifold X means a hermitian metric, say
hr, on its holomorphic tangent bundle T
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Exercise 8: Put
hip(2) = hp(0/02%,0/02%),
then we know that (try!)
W= ZZ hp(2)d2’ A dzF

is a globally defined non-degenerate hermitian (1,1)-form on X (hermitian means each hz(2)
is a positive definite hermitian matrix) and h — w is a one to one correspondence (late we shall
identify hp with w).

Definition 3.18. We call w the hermitian form of the Hermitian metric on X. If dw = 0 then we
say that (X,w) is a Kdhler manifold and the associated hermitian metric is a Kdihler metric.

The Lefschetz isomorphism associated to each w(x), z € X gives
Theorem 3.3 (Hard Lefschetz theorem). For each 0 < k < n,
(3.2) w— WP AU, ueVE
defines an isomorphism between V¥ and V?"*.

Definition 3.19. We call an E-valued k-form, say u, on X a primitive form if k < n and
WA = 0.

We also have the associated Lefschetz decomposition:

Theorem 3.4 (Lefschetz decomposition formula). Every E-valued k-form v on X has a unique
decomposition as follows:

ro_ W
3.3) u:Zeru,wr.— e
where each u” is an E-valued primitive (k — 2r)-form.

Let {e,} be a local holomorphic frame of £, then (x denotes the Hodge star operator)

= [ S hacaseahu® A, =3 @,

defines a Hermitian inner product structure on V*, we call it the (w, J, hg)-metric on V%,

Definition 3.20. The Hodge star operator on V'* is defined by

*U = Z(*ua) ® €q, U= Zua ® €q-

Definition 3.21. We call {-,-} defined by

{Z ut ® ea,Zuﬁ ® 6/3} = ZhE(ea,eg)ua AP,

the sesquilinear product on SV,
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Exercise 9: Check that with respect to the above definition, we have

full = [ e = [ 3 hiteasenpu n s,

in particular, if F is a line bundle with local holomorphic frame e and we write hg(e, e)(z) =
e ?) |y = i(z) ® e. then

Hu|]2:/e_¢ ) A *ii(z) /]u )2 e wn,
X

is just the "weighted" L?-norm, the only difference is that ¢ is not globally defined in general.
Later, we shall just write ||u||* as [, |ul2e"%w, or [y |u[?e™®

The following result is a direct consequence of Theorem 2.4 and x = .J o *,.

Theorem 3.5 (Hodge-Riemann bilinear relation—pointwise version). If u is an E-valued primi-
tive (p, q)-form then its (w, J, hg)-norm satisfies

(3.4) u]? = / (i AT}, T i= (—1) 90, > 0, k= p+ q.
X

Remark: In particular, if £ is a line bundle with smooth metric ¢~ then
JUESY)

{u,wp— AN Iu} = (—1)k th

Since we always have \u!26_¢ > 0, thus the Hodge Riemann bilinear relation just means that
(=1)

is a semipositive (n, n)-form. Assume further that u is an (n, ¢)-form. By HLT, we can write

3.5) U= Yy Wy

(=) e Pu AU A wa_g = |ulPe%w,.

k(k+1) B
2 (—i)P e U N TN Wy

where 7, is an E-valued (n — ¢, 0)-form. In particular, 7, is primitive, thus

(n—a)(n—q+1)

*Yy =Wy A Iy, = cwy Ay, = cu, ¢:=(—1) 2 "
Since |c| = 1 and * preserves the metric, we have
(B.6) |l =lul, 0,8)e?wn = (v ve)e ™ wn = g P AT Ay, Cng =G,
for every smooth forms 7, £ of bidegree (n, ¢). Check that (try) ¢ = §(na)?,

4. CHERN CONNECTION AND 00-BOCHNER FORMULA

We shall follow [3], page 25-28. Let 1, be two smooth L-valued (n, ¢)-forms (¢ > 1) on
an n-dimensional compact Kihler manifold, where L is a holomorphic line bundle with smooth
metric e~?. Recall that we have defined a map

n = T,
such that

4.1 (n,6)e™?w, = cn_qe_¢7n AT Nwy = cn_qe_¢n A .
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The formal adjoint of the 0 operator, 9", must, for any smooth u of bidegree (n, g — 1), satisfy

(Bu,€) = (u,0°¢).
By (@.1)), the left hand side equals

/ cn_qe_¢5u A e
X
We want to use Stokes’ formula to move O to an operator on v¢. Notice that e %u A 7 is a
globally defined (n,n — 1)-form and for bidegree reason we have
d(e™®u A7) = (e %u A7),

thus Stokes’ formula gives

0= /Xg(u Ae %) = /Xgu A e + (—1)%8 y A De™? (7).
Put
4.2) e = €”0(e™"e),
then we have
(Ou, &) = /X(—l)’”qcnqe‘% A Opye.-
On the other hand
(u,0°€) = /X Cngr1€ U N Vase:

Since ¢;,—g+1 = (—1)" %ic,,_,, We see that 0" satisfies

Vo = 107
Definition 4.1. We call

D:=0+0,

the Chern operator (connection) associated to (L, e™?).

Remark: Notice that the (0, 1)-part of the Chern connection is just the J-operator on L valued
forms and the (1,0)-part is further determined by the weight ¢, more precisely, we have the
following weighted product rule

de PuAv) =e ?unv+ (—1)%8"e %y A dyu.

In general, if (F, hg) is a hermitian vector bundle then we can define the Chern connection, say
D, on E-valued forms, such that the (0, 1)-part of D is just 0 and

d{u,v} = {Du,v} + (=1)%“{u, Dv}.
Exercise 1: Check that if we write
D= dsAD;j+Y dz A,
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where 27 are holomorphic local coordinates on the base manifold, then 5j =0/ 0z’ and Dj is
determined by

0/027hp(ea, ep) = hp(Djeq, ep),
where {e,} is a local holomorphic frame on E. The above formula gives a precise formula for
Dje,. In the line bundle case, hp(e, €) = e~ gives

Dje = —g¢je, Dj(fe) = (f; —dif)e,
for an arbitray smooth function f. Try to find similar formulas for the vector bundle case.
Definition 4.2. If D is the Chern connection then we call © := D? the Chern curvature.

Remark: In the line bundle case

D =9+ 0y,
notice that 9~ and dg = e?0(e~?-) implies &2 = 0. Thus
© = 09, + 0,0.
Exercise 2: Check that B
Ou = d0¢ N u,

moreover, in the vector bundle case, show that we can write
© = dz' Adz* A[D;, 0], [D;,0k] == D;0 — OiD;.
In the line bundle case, we have
(D, 0] = 0; — 6. 0k] = djz.
Try to find similar formulas for the vector bundle case.
Definition 4.3. Siu’s 00—Bochner trick is to compute i00T, where
T = o g€ Y AVa Awy1
is an (n — 1,n — 1)-form associated to an L-valued smooth (n, q)-form u, ¢ > 1.

Theorem 4.1 (00-Bochner formula). i00T can be written as

4.3) <—2Re<%*u, u) + 0 ul? — [ul? + |5%|2> e %w, +i00p N T
and
4.4) 18"l ? + [[ul 2 = |37l + / 1096 AT,

X

Proof. Note first that the second formula follows immediately from the first one, since the inte-
gral of the left hand side of (4.3)) vanishes by Stokes’ formula. Let us write

T = o g{Vus Yu} N Wy—1-
Notice that dw = 0, thus the definition of J, (the Chern connection) gives
IT = {0 Y} A wa1 + (= 1)" g { Vs D5} A w1,
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and _
100T =
iCn-g{060Vu Yu} N w1 +i(=1)"" " e {0, I} A wyr
(1) e {0, Btk A wyr (1) (1) {70 D07} Aoy,
Now we use the commutation rule (Chern curvature formula)
00y + 040 = 00¢

in the first term. The first and last terms then combine to give the first and last terms in (9.33)).

Moreover, by the formula for &, the third term equals the second term in (©.35) (here we use
Cn—q+1 = (—1)""%ic,_,). The trickiest term is the second, see the following lemma. O

Lemma 4.2. i(—1)""* ¢, {074, 070} A wy1 = (—|0ul? + |07.]?) e *w,.
Proof. The main idea is to use HLT to the (n — ¢, 1)-form .,u. Let us write
0V =a+wAb,
where a is primitive of degree (n — ¢,1) and b is primitive of degree (n — ¢ — 1,0). Since
a AN wy = 0, we have
{0, Oy} Awgo1 = {a,al Awg 1 + {w Abyw AbY Awy 1.
Moreover, since HLT is an orthogonal decomposition, we get
[07ul* = lal* + |w A DI,
now it is enough to use _ _
|Ou| = |wg A Ovu| = |wg Aw A D,
and compare the coefficients. We leave the detail as an exercise. U
Remark: In case ¢ = n = 1 then ~, is locally given by a smooth function, thus
i00¢p AT = coe”?|y,|*i00¢.
Let us define an function B such that
i00¢ = Buw,
then we have
i00¢ AT = Blul*e™%w,.
Notice that in case X = C and w = idz A dZ then
B = ¢,
In particular, B > 0 if ¢ is strictly subharmonic. In general, we shall use the following formula
to define an operator B: _
1009 N'T = {Bu,*u}.
then we have

Theorem 4.3. B = [i0, Al is a pointwise self-adjoint operator. All eigenvalues of B are positive
if i© = 100¢ > 0 (in which case we say that B > 0).
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Proof. Since u = w, N\ 7, and 7, is primitive, we have
Au = wg_1 A .
Thus (note that Ou = 199 A u = 0)
[10, AJu = iOAu = i00¢ N\ w,_1 A7, = Bu.
Fix x € X, let {¢’} be an orthonormal basis of AT X. Assume that
Yal@) = D g A NG i00G(x) =iy N E NG,
J1<<Jn—q

A direct computation gives

1006 Awgt A(E A nEmy = | Y N [ A A A,
.7¢{]17 7‘7.”*11}
Thus the theorem follows. O

Exercise 3: Check that in general, we have

[0, A(¢7F) = (ZA +Y N —ZA) (5.

jeT jEK
In particular, if B
w =10 = i00¢
then B = [i©, A] = p + ¢ — n on the space of (p, q)-forms. Hint: Use the fact that
[iO,A](a A D) = [i©1, A]a A b+ a A [iOq, Ag)b,
where ©1 =37 A& A &, A = (D j<m & A ), 0, =0 -0, Ay =A— A and
=" p=¢R g K e {1, m}, Jo,Kye{m+1,--- n}.

Theorem 4.4 (L>-estimate for the Laplacians). Let (L,e~%) be a holomorphic line bundle on
an n-dimensional Kdihler manifold (X,w). Assume that L is positive (i.e. i© = i00¢ > 0).
Then for every smooth L-valued (n,q)-form (¢ > 1) c on X, we can find a smooth L-valued
(n, q)-form v on X such that

= (90 + 3 9w =
and

[80]> + ([0l < (B¢, c).

Proof. Denote by D™ the space of smooth L-valued (n, q)-forms with compact support in X.
The 00-Bochner formula gives

(e u) 2 < (B™'e,0)(Bu,u) < (B¢, ¢) (|19ull* + 10" ul[?)
for every u € D™4. Consider the following inner product onD"™¢

(u,v)g = (Ou,0v) + (0 u, & v),
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we know that
u— (u,c)
defines a bounded linear functional on (D™, ||||g), which extends to a bounded linear functional

on its Hilbert completion, say H, of D™9. Thus the Riesz representation theorem gives v € H
such that

(u,0) = (u,v)o, [Jol[5 < (B 'c,0).
Since ||u||3 > (Bu,u), we know that H is a subspace of the L? space. Thus we have
(u,¢) = (u,v)o = (u, D),
in the sense of current, which implies that
Uv = ¢,

moreover, smoothness of ¢ gives smoothness of v. O

Theorem 4.5 (0-L>-estimate on compact Kihler ‘manifold). With the assumptions in the above
theorem, assume further that X is compact and Oc = 0. Then there exists a smooth L-valued
(n,q — 1)-form a on X such that

da = c
on X and
lal|* < (B~ ¢, 0).
In case 10 > cw we have B > qe.
Proof. Oc = 0 implies that 98 0v = 0, thus
0= (90 v, dv) = ||0 dv||%,
where we use the compact-ness in the the second identity. Now it is enough to take a = dv. O

_ Remark: The above theorem implies that if L is positive and X is compact then every smooth
0-closed form is 0-exact, i.e. the following O—Dolbeault cohomology group

HY .= % (L, ker 8)/C% (L, Im 9)
vanishes if p = n and ¢ > 1. If fact the above proof only use
0> [i0,A]:=B>0

Later we shall use Kihler identities to prove that O > [iO, A] always holds. Thus if we choose
w = 1O then B = p + ¢ — n on the space of smooth L-valued (p, ¢)-forms and we get the
following Kodaira vanishing theorem:

Theorem 4.6. If L is positive and X is compact then H?? = 0 if p+ q > n.
Exercise 4: Check that if p = n,q = 1 then
(B~'¢,0) = [|clffe:

does not depend on the choice of w.
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5. COMPLETE KAHLER CASE

Now let us consider the non—compact case. Recall that by Theorem #.4] we can always find
smooth v such that

(00" + 3 d)v=c, [|Ov|+|8|*> < (B '¢c).
The main problem is the following:
Under which conditions Oc = 0 implies dov=07?
Notice that dc = 0 iff 99 dv = 0, which implies
(99 v, dv) = 0.
but if X is not compact, we cannot move O to get
(89 dv, dv) = ||9 dv]|*.

The main idea in [8] is to consider a family of smooth forms, say f., with compact support such
that f. converges to Jv in a nice way such that

0= (%*51}, fs) - (5*5075*.]05)
gives 98 dv = 0. The approach that we will introduce is the following:

Andreotti—Vesentini—-Hérmander trick — geometry behind a good family of cut—off functions:
The idea is very simple: suppose we have a family of smooth functions x; € C§°(X) such that

Xj|Kj == 1, K] C Kj+1, UKJ = X,
and

;| <1, 19x5]w < 1/4.

Then we have
0= (X?%*gv,gv) = ||Xj5*511||2 —2(x;0x; N 5*50,51;),
Since ||0v||? < (B~ !¢, c), together with Cauchy—Schwarz inequality, the above identity gives
;9" 00[[* < (4/5%) - [1x;0 9w|[* - (B~ "¢, ¢).

Thus
Ix;0 dvl]* < (4/5%) - (B "¢, c),

let 7 go to infinity we get 90 = 0.
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5.1. Complete Kihler manifold.

Definition 5.1. A Riemannian manifold (X, g) is said to be complete if there is a real smooth
function p on X such that for every c € R,

pei={p<c}
is relatively compact in X and
ldplg <1
on X. A Kdher manifold is said to be complete if the underlying Riemannian manifold is so.

Remark: In case X is compact one may take p = 1. Thus every compact manifold is com-
plete. In general,

X; = x(p/7),
gives a good family of cut—off functions, where x is smooth on R, such that y = 1 on (—o0, 1],
Xx=0o0n[3,00),0 <y <1land|y|<1.

Relation between pseudoconvexity and plurisubharmonicity.

Definition 5.2. A complex manifold X is said to be weakly pseudoconvex if there is a smooth
real function 1) on X such that for every c € R,

e :={Y <c}
is relatively compact in X and 1) is plurisubharmonic on X, i.e.
100 > 0
on X. X is said to be Stein if moreover i00) > 0 everywhere on X.

Exercise 5: Prove that if X is Kihler and weakly pseudoconvex then there is a complete
Kihler metric on X (in particular every Stein manifold is complete Kihler).

The Andreotti—Vesentini-Hormander trick implies the following theorem:
Theorem 5.1 (0-L>-estimate on complete Kihler manifold). Let (L, e~?) be a holomorphic line
bundle on an n-dimensional complete Kéhler manifold (X,w). Assume that L is positive (i.e.

i© = id0¢ > 0). Then for every O-closed smooth L-valued (n,q)-form (¢ > 1) c on X with
(B¢, ¢) < oo, we can find a smooth L-valued (n,q — 1)-form a on X such that

ECLZC

on X and ||a||?* < (B7'¢,c).

6. HORMANDER THEORY, DEGREE (7, 1)-CASE

6.1. L*-estimate with respect to a non-complete Kiihler metric. This part is around an un-
published result of the author and Bo-Yong Chen (based on [8]).

Definition 6.1. A Kdhler metric w on a complex manifold X is said to be quasi-complete if there
exists a family of Kahler manifolds {(X;, wj, x;) }32, such that
1) Each X is an open setin X, X; C X1 and X = UXj;
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2) For each j we have w; > w on X; and for every compact subset K of X,

lim sup |w; — wl|, = 0;
J]—00 K

3) Each x; is smooth with compact support in X; such that 0 < x; < 1 on X,
lim sup [0x;]w, = 0
j=o0 X;
and for every compact subset K in X we have x; = 1 on K for all j > j(K).
Exercise 1: Recall that we have defined B := [i©, A, ]. Assume that i© > 0, try to show that
(B¢, ¢), = (c,c)io
for every smooth L-valued (n, 1)-form ¢ on X (in particular, the above inner product does not

depend on the choice of w).

We shall use the following lemma to prove the Hormander L2-estimate on non-complete Kih-
ler manifold.

Lemma 6.1. Every Kdhler metric w on X is quasi-complete if there exists a complete Kdihler
metric, say w, on X.

Proof. Enough to take X; = X, w; = w + (1/7)@ and x; = x(p/5%). O

Remark: In particular every Kihler metric on a weakly pseudoconvex manifold is quasi—
complete. The main result that we will prove is the following:

Theorem 6.2 (0-L?-estimate on quasi-complete Kihler manifold). Let (L,e™%) be a holomor-
phic line bundle on an n-dimensional quasi-complete Kdihler manifold (X,w). Assume that L
is positive (i.e. 1© = i00¢ > 0). Then for every O-closed L-valued (n,1)-form c on X with
||c||?9 < oo, we can find an L-valued (n,0)-form a on X (i.e. a section of K x + L) such that

Ja =c
on X and ||al| < ||c|]se-

Proof. Denote by O; and B; the operators with respect to (X, w;), solving the Laplace equation
gives v; on X such that

_ — B
Ojv; = ¢, [10v;llG, + 110 vjlls, < (B e, 0)u, = llellio x; < llelfie-

Claim: 5*51)]- goes to zero in the sense of distribution on every relatively compact open subset
in X. In fact dc = 0 implies that O;0v; = 0, thus each Jv; is smooth and we have
0= (ﬁ%*gvj, 5Uj>wj = Hng*gﬂj ’ ’i] — 2(X]5X] AN 5*503‘, gvj)wj,
which gives
[1x;0 du[Z, <4 Sup |0x;%, (B e, ),

b
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which implies that (since {w,} is locally bounded form above)

lim ||5*5U‘7‘||U’w =0,

J]—00
for every relatively compact open subset U in X . Thus our claim is true.

Since w; converges to w locally uniformly, taking a weak limit of {5*1}]» lv} we get an L?-form
ay on U such that B
day = ¢, |lay|] < llellie-
Now weak limit of {a; } gives an L2-form a on X such that da = c and ||a|| < ||c||;e. O
Remark 1: The above theorem implies that
H75 (L) i= L2 | (ker 9,i0) /L%, (Im 9, iO)
is trivial if X is quasi-complete and :© > 0.

Remark 2: In case X is a pseudoconvex domain in C", ¢ is a smooth strictly plurisubharmonic
function on X, we have
lal|* = / anae?.
X

If we write a = adz, dV = i"’dz A dz (i.e. dV is 2" times the Lebesgue measure d\) then

|’@H2:/X|&\2€_¢dV, \|chaa¢z/XZC3@<bjke_¢dV, c:ch;d?j/\dz.

Thus we get the following Hormander theorem:

Theorem 6.3. Let ¢ be a smooth strictly plurisubharmonic function on a pseudoconvex domain
X in C". Then for every d-closed (0,1)-form ¢ := " ¢; dz’ on X there exists a function  on X

such that a = ¢ on X and
/ ‘CAL|2€*¢ d)\ < / Zc;@gbjke"b dA,
X X

provided the right hand side is finite.

Exercise 2: If ¢ is not strictly plurisubharmonic, then one may consider

V= ¢+ |2]%

In case X is bounded, try to prove the following theorem:

Theorem 6.4. Let ¢ be a smooth plurisubharmonic function on a pseudoconvex domain X in
C™. Then for every O-closed (0, 1)-form ¢ := ) ¢; dZ’ there exists a function a on X such that

da = ¢on X and
/X jae® dx < esex o /X > lejlPe? dA,

provided the right hand side is finite.

We will also need the following generalized version of Theorem [6.2]
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Theorem 6.5 (Semi-positive version). Let (L,e™?) be a holomorphic line bundle on an n-
dimensional quasi-complete Kdhler manifold (X,w). Assume that L is semi-positive (i.e. i© =
i00¢ > 0). Then for every O-closed L-valued (n,1)-form ¢ on X with

1(¢) = lim el < 0.
we can find an L-valued (n,0)-form a on X such that
da = c
on X and ||a|| < I(c).
Proof. Consider O, + ¢ instead of O;, we find v;. on X such that

(O + yvse = ¢, |Ouell, + 1107052, +ellvgellZ, < (B +e)7 e )y < 1(0)

;<
Now dc = 0 gives
%*gvﬁ + edv;. =0,

thus (O; + €)dv;. = 0 and each Ju;. is smooth. Taking inner product with x30uv; - gives

0 = el|x;0v;el2, + [1x;0 Ovj e, = 200,9x5 A D Dvje, Dy,
Assume that sup y, 0w, = €5, we get

130 0v;c[2, < 225l1x;0 Dvjellu; I (c),
which gives
X0 0vjellu; < 2¢51(c).

The theorem follows if we first let £ go to zero then let j go to infinity. U

Exercise 3: Assume that
c=aAu,
where « is a smooth (0, 1)-form such that
ia Ao < A?-i©
on X, where A > 0 is a constant. Then
I{c) < A+ |lull.

‘We will use this estimate later.
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6.2. Approximation theorem. Let us recall the following definition first.

Definition 6.2. A complex manifold X is said to be weakly pseudoconvex if there is a smooth
real function p on X such that for every c € R,

X, ={p<c}
is relatively compact in X and p is plurisubharmonic on X, i.e.
i00p > 0
on X (i.e. pis psh exhaustion). X is said to be Stein if moreover i00p > 0 everywhere on X.

Theorem 6.6. Let (L,e~%) be a holomorphic line bundle on an n-dimensional weakly pseudo-
convex Kihler manifold (X,w, p). Assume that i© = i00¢ > 0. Let u be an L-valued L?
holomorphic n-form on Xo. Then there exists a family of L-valued holomorphic n-forms {u.},
each u. is holomorphic on X, and

l_i_r:% l|ue — ul|x, = 0.
Proof. Put
(6.1) Y. = —log—(p—2¢), € > 0.
Then we know that each ). is smooth and bounded on X.. Moreover,
(6.2) 00 > 0. N e,

on X.. Let A\ be a smooth function on R, such that A = 1 on (—o0,1], A = 0 on [2, c0] and
|N| <2 onR. Put

6.3) A=A (p+ 35) .
€
Then on X, we have
6.4) i0Xe N ONe < 64 - 700, N O, < 64 - 100,
and each ). is a smooth function with compact support in X. Thus
(6.5) / |Aou)?e”@H¥=/2) < o0,
Xo
We claim that it is enough to take u. as the Bergman projection of ., i.e.
ue == P(\.u)
on X, with respect to the weight function ¢ + 1. /2. Put
(6.6) Qe = AU — Ug.

Then each a, is the L?-minimal solution (with respect to the weight function ¢ + 1), /2) of

(6.7) (-) = 0(\ou) = O\ Au,
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on X.. Thus each a.e¥-/? is the L2-minimal solution (with respect to the weight function ¢ + .,
try!) of the following equation on X,

— — — 1—
(6.8) a(-) = 8(%6%/2) = e¥e/? <3)\5 Au+ 581/)5 A a5> = f..
Thus Theorem [6.5] gives
2,—9 _ Ve /2|2 ;—p—te : 2 _ —¢—1e
(69) LywziLm6|e sméy%mmwe ~

Notice that (6.2), (6.4) and Exercise 3 together imply that

1

(6.10) <e¥.2. (64|u|2+1|a5|2).

: 2
%1_{% | /el Sw+idD(p+1be)

Thus we have

(6.11) / la.|2e™? < 256/ lul?e™® =0, ase — 0,
€ X—s\X—Qs
which gives
(6.12) ll_r%HuE—uHXo = 0.
Thus the theorem follows. Il

Remark: For each € > 0 consider

(6.13) [ 1=\ <@> .

£

Then we know that each (. is a smooth function with compact support on X, such that . =1
on Xj. Let us choose k. > 0 such that

(6.14) kX (0) > - Y (%) i

on X, where y is smooth convex increasing function such that y = 0 on (—o0, 0). Then we have
(6.15) k- i00(x o p) > i0ue N Ope, ¥ k > ke,

on X. For each k£ > k., let a; . be the L?-minimal solution of

(6.16) 0(-) = O(peus) = v,

on X with respect to the weight function ¢ + k) o p. Notice that (6.13) implies that

(©.17) E%Lm&wmmmv“wsAmywwwwéo%%w»

Thus by Hormander’s L?-estimates, we have

2 —p—kxo
’6w+i85(¢+kxop)e =0 (k - OO)

(6.18) / |agc|?e "X <lim [ |v.
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Put
(6.19) Upe 1= felle — Qe
Then each uy, . (k > k.) is holomorphic on X and
(6.20) ||luge —ul|x, =0 (e =0, k= o0).

Thus we can make each u. to be holomorphic on X in the above approximation theorem.

6.3. Vanishing theorem and Levi problem on Stein manifold. Recall that a Stein manifold
is a complex manifold, say X, with a smooth strictly psh exhaustion function, say p. Since for
every smooth E-valued (n, ¢)-form ¢ on X, we can choose a convex increasing function, say ¥,
such that [|eX(P)¢|| 108, < 00, we know that if ¢ is O-closed and ¢ > 1 then ¢ must be d-exact.

Theorem 6.7 (Exercise). Let E be a holomorphic vector bundle over a Stein manifold X. Then
the Dolbeault cohomology group H™1(X, E) is trivial if ¢ > 1. Since

H™(X,E) ~ H(X,Kx ® E),

Consider £ ® K}_(1 instead of E, we know that the q-th Cech cohomology group H1(X, E) is
trivial as long as q > 1.

Another application of the Hormander theory is a nice solution of the Levi problem:

Is a Stein manifold (X, p) holomorphically convex ? Here holomorphically convex means that:

for every sequence of points {x;} in X such that p(x;) goes to infinity we can find a holomorphic
function f on X such that | f(x;)| goes to infinity.

Theorem 6.8. Stein manifold is holomorphically convex.

Proof. Apply the Hérmander theorem to the case that L. = — Kx. Then an L-valued (n, 0)-form
is just a function and an L-valued (n, 1)-form is a (0, 1)-form. Fix an arbitrary smooth metric
e~? on L, at each point z; choose local holomorphic coordinate system z; = {zf}lgkgn centered
at z; such that {|z;| < 3} N {z;} = z;. Consider

c=Y joN|zl) Adz Ao NP @ (dzf A Ade) T
where A\(z) = 1on |z] < 1and A = 0 on |z| > 3. Consider an extra weight function
e = x(p) + 3 n(|2]) log(|2,” + ),
where  is choosing such that
1001, + 100¢ > w = i00p

on X (the key point is that y does not depend on ¢) and

[le™¥"2cll, < 1.
Then Hormander’s theorem gives u. such that Ou. = cand

le™ul, < 1
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Let u. goes to zero. Then we get u such that Ju = 0 and u(z;) = 0. Thus
fr=—utd Azl Adzf A Ade @ (dz) A Adz]) T
fits our needs. U

Remark: The original definition of Stein manifold is the following:

A complex manifold X is said to be Stein if it is holomorphically convex and for every x #+
y € X, there exists a holomorphic function f on X such that f(x) # f(y).

It is known that if X is Stein in the above sense then X is Stein (see Demailly’s book).

Exercise 4: Prove that if X is Stein then X is also Stein in the above sense.

6.4. Kodaira embedding theorem.

Definition 6.3. Let L be a holomorphic line bundle on a compact complex manifold X, we say
that L is positive if there exists a smooth metric e~ on L such that its Chern curvature satisfies
i = i00¢p > 0
on X. We say that L is ample if there exists m € N such that a basis, say {e;}, of the space
of holomorphic sections of mL on X defines a holomorphic embedding of X into PN, N +1 =

dim H(X, mL) as follows
z s leg(z), -, en(z)] € PV.
We say that mL is very ample.
Remark: A result of Chow says that every submanifold of P is given by the common zero
set of a finite number of homogeneous polynomials in C"™!, i.e. every submanifold of P" is

algebraic. The following lemma implies that every algebraic manifold is Kihler. But not every
Kihler manifold is algebraic (there exists a non-algebraic two dimensional torus).

Proposition 6.9. Ample implies positive.

Proof. Show that the O(1) bundle on P is positive. If {e;} above defines a holomorphic em-
bedding, say

d: X — PV
Then the pull back of the O(1) bundle is equal to m L. Thus mL has a positively curved metric,
say e~?. Then e~®/™ defines a positively curved metric on L. O

Theorem 6.10 (Kodaira embedding theorem). Positive implies ample.

Proof. Assume that L is positive. Denote by ®,,, the map (depends on the choice of basis!) to PV
defined by a basis of H°(X, mL). First let us show that the map ®,, is well defined, i.e. for every
r € X, we can find u € H°(X, mL) such that u(x) # 0 (we say that mL is base point free).
The proof is very similar to the Levi problem. In fact, let z be the local holomorphic coordinate
system centered at  such that {|z| < 3} is a well defined open set in X and on which L has a
holomorphic frame, say o. Let e~ be the positively curved metric on L. Let e~ be a smooth
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metric on K x. Since X is compact and i90¢ is positive on X, we can choose a sufficiently large
m such that

i00(m¢ — 1 + n\(|z]) log(|z|]> + €)) > w := i00¢
for every ¢ (the same m for all ¢ < 1 and all z, think why!). Consider
c=0N|z|)Nd A d2" @ (d2P A d2) T @™,
Same as before, solving d and let € goes to zero, we get u such that Ja = ¢ and a(x) = 0. Thus
= N|z|)dz' A d2" @ (dP A d2) T @ 0™ —a

fits our needs. Similar argument implies that when m is sufficiently large ®,,, is injective with
injective differential. Thus ®,, defines a holomorphic embedding when m is sufficiently large.
The proof is complete. U

Exercise 5: Add the details in the above proof.

7. DEGREE (n,n)-CASE
Recall that Siu’s 99—Bochner trick is to compute i00T, where
T .= cn,qe"b% N Yu N\ We—1

is an (n — 1,n — 1)-form associated to an L-valued smooth (n, ¢)-form « with compact support,
g > 1. The main formula is: assume that dw = 0 then

i00T = (—2Re(%*u, u) + |8 u|? — |oul? + |5%|2> e %w, + 100 N T.

In case ¢ = n we have
T = €7¢‘7u’2wn71
and Ou = 0, thus

i00T = (—2Re<%*u, u) + [0 ul? + |5%|2> e %w, +i00p AT

Exercise 6: Check that the above formula is also true in case dw™ ' = 0.

Integrate the above formula, we get
10" u|]? = |07 + / i00¢ N T.
X

Notice that
1000 AT = e | Vu|Pwn_1 A i00¢.

Exercise 7: Assume that the eigenvalue of i00¢ with respect to w is \; < --- < \,,. Then
Wr—1 A Z85¢ = ()\1 + 4+ )\n)wn-
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Definition 7.1. We call \; + --- + A, the trace of i00¢ with respect to w, and denote it by
Tr,, (100¢):
Wn-1 N i00¢ = Tr,(i000) w,.
In case L = —Kx, and ¢ is defined by
e D 4y Ndz = Wy,

Then we call i00¢ the Ricci form associated to w and Tr,,(i00¢) the Scalar curvature of w.

Exercise 8: Prove the following theorem.

Theorem 7.1 (0-L>-estimate for (n,n)-forms). Let (L,e~%) be a holomorphic line bundle on
an n-dimensional Kihler manifold (X, w). Assume that Tr,(i©) > 0. Then for every L-valued
(n,n)-form c on X with

I(c) := / Tr, (10) ! |c|2 e ?w, < oo,
b

we can find an L-valued (n,n — 1)-form a on X such that da = c on X and ||a||* < I(c).
Remark 1: The above theorem is also true for non-Kéhler manifolds with d-closed w™ .

Remark 2: In case Tr,(i©) > 0, just replace I(c) < oo by

I(c) :=lim [ Tr,(i0 + ew) *c>e %w, < oo
e—=0 [x v

then the theorem still holds (try!).

Remark 3: By the above theorem, if the scalar curvature S(w) > 0 on X (X is compact
Kihler) then
H"™(X,—Kx) = H"(X, Kx) = {0}.
If S(w) < 0 then
H"(X,Kx)=H"(X,-Kx) = {0}.

7.1. Approximation theorem.

Theorem 7.2. Let (L,e~%) be a holomorphic line bundle on an n-dimensional weakly pseudo-
convex Kihler manifold (X,w, p). Assume that i© = i00¢ > 0. Let u be a 0-closed L-valued
L? (n,n — 1)-form on X. Then there exists a family of L-valued (n,n — 1)-forms {u.}, each u.
is 0-closed on X and

lim ||ue — ul|x, = 0.
e—0

Proof. The proof is very similar to degree (n,0) case. With the same notation, we need to
estimate

Tr, (6w +i00(p + b)) " - |0nhe A ac?.
What we have is

10 A O, < i0OY..,
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which implies that
OV Zwn < w1 A 10D
By the definition of Tr,,, we have
Tr, (0w + i089(¢ + 1)) ' wa1 A (8w +50D(d + 1b.)) = wn,

which gives

Try (6w + i009(¢ + =)~ 'wn1 A 109 < wy.
Thus we have

Try, (6w +100(¢ + .)) " IWe Swn < wn,

which gives

Ty, (6w + 285(925 + %))71 : ’5¢s A Ge‘i < |a’€’i'

Exercise 9: Add the details in the above proof.

8. GENERAL (n, q)-VERSION

8.1. Approximation theorem. Our main aim is to prove the (n, ¢)-version of the approximation
theorem. We need the following linear algebra lemma (generalization of our estimate in degree
(n,1) and (n,n) cases).

Lemma 8.1. Fix x € X, the following pointwise inner product (with respect to w) satisfies
(8.1) m((B+¢e) (b Aa),bAa)(x) < (a,a)(x),

li
e—0
where b is of degree-(0, 1), a is of degree (n,q — 1), B = [i©, A,| and we assume that

(8.2) iO(x) > ib(z) A b(x).

Proof. Assume that {e; } is an orthonormal basis of AT X with respect to w(x) and b(z) = e;.
It is enough to prove the case (try!) when

O(x) = ey Ney.
Assume that
a(x) =€ Aay + ag,
where a1, a; contain no €; terms, then
(B+e)'(bAa) = (1+¢) el Aay,

which gives

?L%((B +ew) HbAa),bAa)(z) = (az,as)(z) < (a,a)(x).

Thus the lemma follows. Il

Exercise 10: Use the above lemma and the proof of Theorem [6.2]to prove the following two
theorems.
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Theorem 8.2. Let (L,e~?) be a holomorphic line bundle on an n-dimensional quasi-complete
Kéhler manifold (X, w). Assume that

i© =i00¢p > ibAb

for a smooth (0, 1)-form b on X. Then for every O-closed L-valued (n, q)-form (q¢ > 1) c such
thatc =b A aon X and ||a|| < oo, we can find an L-valued (n,q — 1)-form u on X such that

Ou=c
on X and ||ul| < |]all.
Theorem 8.3. Let (L,e~%) be a holomorphic line bundle on an n-dimensional weakly pseudo-
convex Kéhler manifold (X ,w, p). Assume that i© = i00¢ > 0. Let u be a O-closed L-valued L*

(n, q)-form on X,. Then there exists a family of L-valued (n, q)-forms {u.}, each u. is O-closed
on X and lim._ ||u. — u||x, = 0.

8.2. Hormander theory, general degree (7, ¢) case. The proof of Lemma also gives:

Lemma 8.4. Let (X,w) be a Kihler manifold. Fix m € N. Let b; (resp. a;) be (1,0) (resp.
(n,q — 1)) forms on X, 1 < j < m. Let i© be a semi-positive (1,1) form on X. Assume that

(8.3) ZA ) &€y, -iO(x) > ibe Nbe, Dbe —Zb 2)¢, VEEC™, z € X,

7=1
where each (Aj,;(x)) is a semi-positive definite Hermitian matrix. Put B = [iO, A,,], then

(8.4) lim ( (B+¢)” Zb /\a],Zb Aaj> ) < Y Apla)(ay, ar)(z),
G k=1

for every x € X.

Proof. By a linear transform, it suffices to prove the case that (A,z(z)) is the identity matrix.
For simplicity’s sake, we will only prove the case that i© = w, {b;(z)} = {e;}1<j<n is an
orthonormal basis of A®!'T* X (the general case follows by a similar argument). Then (8:4) is
equivalent to that

(8.5) }Zej/\aj|2§q-2|aj|2.
j=1 Jj=1

Using orthogonal decomposition, one may assume that each a; does not contain the e; term, then
follows from Hilbert space inequality (due to the convexity of || - ||)

U1+---—|—Uq}2< o1 + -+ v
q B q

g

Remark: One may also generalize the above lemma to the "g-semipositivity" case (see the
proof of Lemma 3.10 in [17]). Similar as before, the above lemma gives the following general-
ization of Theorem
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Theorem 8.5. Let (L, e~?) be a holomorphic line bundle on an n-dimensional quasi-complete
Kéihler manifold (X, w). Let

m
C:ij/\aj
7j=1

be a O-closed L-valued (n, q)-form (q > 1), where by, -, by, are smooth (0, 1)-forms on X.
Assume that (8.3)) holds for © = 00¢. Then we can find an L-valued (n,q — 1)-form v on X
such that

ou =c
on X and
m
Jul> < > (Ajpay, ax)
Gk=1

provided the right hand side is finite.

Remark: The above theorem is inspired by Berndtsson’s Nakano positivity of the direct image
bundle [2]], in which case,

Cc = Zgwtj A aj,
7=1
where ) is a smooth function on B x X (B denotes the unit ball in C™) such that

U(t, ) + o(x)

is (locally) psh as a function of (t,xz). Then we know that for each ¢ € B, (8.3) holds for
bj = Oy, © = 0,0.(¢ + ¢) and

Ajl_c = ¢tj£k-
Thus the above theorem implies that if v is the L? minimal solution of du = ¢ then
m
2
||UH S Z (77Z}tjfkaj7 CLk).
Jk=1
9. NEWLANDER—NIRENBERG THEOREM
In this short note we shall recall the classical Newlander-Nirenberg theorem and its vector

bundle version. We shall also recall an L2-Hormander-proof given by Demailly.

9.1. Classical Newlander-Nirenberg theorem. Let )/ be a smooth manifold. Let us recall the
following definition:

Definition 9.1. We call a smooth bundle mapping J from T'M to itself an almost complex struc-
ture on M if J*> = —1.
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Now similar as before, we have the following decompositon
O.1) A (TEM @ C) = @pr gk (NPTEMe A NT:Mc), Yo € M, 1 < k < dimg M.

Thus every complex valued k-form can be written as the sum of (p, ¢)-forms. Now let u be a
smooth (p, g)-form on M, locally one may write (not unique)

9.2) w=>Y w' A A AT A AT

where each v/t is a section of T* M¢ and each i*s is a section of T* M¢. By the Leibniz rule, du
can be written as

9.3) dul* Ao AU AT AT (—DPT R A A AT A - A dibe
Thus we have
94) du = duP™ 4 duP Tt 4 duP T 4 gt

where each du'* denotes the (¢, s)-part of du.
Definition 9.2. Ou := duP*!, Ou := duP*9. We say that J is integrable if d = 0 + 0.
Proposition 9.1. J is integrable if and only if a9 =o.

Proof. 1t suffices to show that 3 =0 implies that J is integrable. By definition, we have 0 = 2.

Thus & = 0 is equivalent to 9> = 0. By (9.3), it suffice to show that if u is an (1,0) or (0, 1)
form, then du = Ju + Ou. For example, if v is an (1, 0)-form, then one may write u = ) _ a;0b;.
Thus
du =" da; \Ob; + a;ddb;.

Now it suffices to show that each ddb; has no (0, 2)-part. Since each b; is a function, we have
db]’ = (%] -+ (9[)] Thus

and the (0, 2)-part of dob; is just —gzbj, which vanishes by our assumption. Same argument
works for (0, 1)-form. O

We shall present Hormander’s L?-proof of the following theorem of Newlander-Nirenberg:

Theorem 9.2 (Newlander-Nirenberg). If J is integrable then for every x € M there exist n

smooth complex valued functions, say zy,- -+ , z,, near x such that gzj = 0 near x for each j
and {0zj(x) }1<j<n defines a basis of T Mc.

Let us show how to use this theorem first. Since {0z;(z)}1<;<, defines a basis of T} Mc,
we know that {9z;()},<;<, defines a basis of T Mc. Since dz; = 0 near z, we know that
0%Z; = 0 near x also. Thus {dImz;, dRez;}1<;<, defines a R-basis of 7M. Now we can
use z := {Rez;,Imz;}1<j<, to define a coordinate covering of M. Let z : U — R?" and
w : V — R?" be two such coordinate charts. Assume that U NV is a non-empty open subset of
M. Then w o z~! is a smooth mapping from z(U N V') to w(U N'V'). Now let us look at z and w
as complex valued functions, then both z(U N V') and w(U N V') can be seen as open subsets of
C". We shall show that w o 2z~ is holomorphic.
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Definition 9.3. Let U be an open subset in C". Let | be a smooth mapping from U to C™. f is
said to be holomorphic on U if

9.5) Off)0z; =0, onU, V1 <k<m,V1<j<n.

Now let us prove f := woz~! is holomorphic on z(UNV) in the sense of the above definition.
Since wy, = f*(z) and {Rez;, Imz; }1< <, defines a smooth local coordinate chart on M, we have

(9.6) dwy, = Z Of* |ORez; dRez; + Z Of*/olmz; dlmz;.
Since dwy, = 0, thus by definition of Owy, above, we have
(9.7) 0= Z Of*/ORez; ORez; + Z Of* /olmz; Olmz;.
Since Jz; = 0 and
z; + Z; Z; — Zj

(9.8) Rez; = %, Imz; = -2 5; S
we have

_ - — 1
(99) aRer = 582’]'; aIij = E@zj.
Thus we have

1 —
(9.10) 0=>" (a f*/ORez; — - > of /almzj) dz;.
Since {0%;}1<j<n are linearly independent, we have
1

©.11) of* /0% = 5 (05" /0Rez; + 1y 07" foImz;) =0,

on z2(UNV). Thus f = w o z! is holomorphic on z(U N'V).

The Newlander-Nirenberg theorem tells us that a smooth manifold with an integrable almost
complex structure is in fact a complex manifold. Now let us recall the Hérmander proof [[13]]
of the Newlander-Nirenberg theorem. The basic idea of Hormander is: by using a precise L?-
estimate, a "good" .J-plurisubharmonic functions gives .J-holomorphic sections. Moreover, if .J
is integrable then locally there exist "good" J-plurisubharmonic functions.

Step 1: Construct "good" J-plurisubharmonic functions (see [9]]).
Let us fix a point z in M. Let us take 2n smooth functions, say x1, - - - , 2,, near x such that
x1(x) =+ = z9,(x) =0,

and {dx(x), - ,dxs,(x)} defines a base of T M. Thus there exists a small open neighborhood,
say U,, of x such that

(.]71, cee ,Qfgn) : Um — R2n,
defines a smooth coordinate chart on U,.. Now let us fix a base, say {0y, ,0,}, of T Mc. By
definition, we have

(9.12) o = Zafdwk(x), af eC,1<57<n, 1 <k<2n.
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Since each o has no (0, 1)-part, we know that

(9.13) > afdry(x) =

Put

9.14) fi=> dfxm, 1<j<n,

then f; are smooth complex valued functions on U, and 0 f; are zero at z, i.e.
9.15) afi(z) =

By choosing sufficiently small U,, one may assume that {Ref;, Imf; }1<;<, defines a coordinate
chart on U,,. Put

9.16) v=1fP=> il
then v is a smooth function on U,. Thus choose ¢ > 0 sufficienely small, we know that
(9.17) Q= {yY <4}

is a relatively compact open subset of U, and the gradient of ¢/ has no zero point on the boundary,
{1 = 1}, of Q. Put

(9.18) w =00, & = i00 (—log(d — 1)) .

If J is integrable then both w and w are real d-closed (1, 1)-forms on ). Since
9.19) fi(z) =0fj(x) =0

we have

(9.20) i00(x) = _idfi(x) NOf;(x) =i o;AG; > 0.

Thus if ¢ is small enough then i99y) > 0 on . We call w a J-Kihler form on . In order
to constuct a singular .J-plurisubharmonic function, we have to use the following lemma of
Demailly [9]:

Lemma 9.3 (Demailly). If J is integrable then there exist n smooth complex valued functions,
say g1, -+ , gn, on a neighborhood of x such that

gi(x) =0, dg;(x) = 0;, dg; = O(),
foreveryl < j <n.

Proof. Since {0f},}1<k<n defines a base of (0, 1)-form on U, and Jf;(z) = 0, we have

9.21) => P fof+ > d fidf.
where p] ,q] are smooth function on U,. Since J is integrable, we know that
(9.22) 0=0"f;(x) = ¢"(@)dfi(x) A Dfi(x),

which implies that
(9.23) ;' (x) = ¢ (x).
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Let us consider

(9.24) g =Fi+ > _d"fifi+ ) Vfif,

kL pkl
,b

where a are complex constants and b** = b'*. Thus

(9.25) Ag; = 0f;+ Y _d"fi0fi +> " fi0fi +2) v fidfi.
It suffices to choose a*, b* with b* = b'* such that

K Kkl K Kl
the existence of a*', b*! follows from (9.23).

By Demailly’s lemma, one may assume that (consider g; instead of f;)

39

(9.27) af; = O(¥)

Then we have

(9.28) o =" f;0f; + OW*?),

thus

(9.29) 0y N0 <1p Y idf; NOf; + O(?).
Moreover, Jf; = O(¢)) implies that

(9.30) i00f; = O(y'/?),

thus

(9.31) 100 = " idf; NOf; + O(¥).

Hence

(9.32) i) A OY < Pidop + O(Y?).

Thus (choose a smaller ¢ if necessary) there exists a sufficiently big positive number /N such that
(9.33) i0p A Oy < (1 + Nap?)idop,

on (2, which implies that

(9.34) i00log(v) + ) > (e — Ny?) (fff)Q > —Nidd,

for every € > 0.

Step 2: 00-Bochner formula for integrable .J.

Let v be an arbitrary smooth (n — ¢, 0)-form on €2 and let ¢ be a real valued smooth function

on (). Put
we =w/ql, u="9ANw,,
and
T =iy AFAe™? Awg.
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Let us define

=%

0 = —x 8¢*,
where
0p  =0—0pN.
Since J is integrable, we have
)
Thus i90T can be written as
(9.35) — 2Re(00 u, uye ®w, + |0 ul?e~Pw, + i0dp AT — S,

where L
S =i Py ATy A e Awgy.

The following lemma follows from the primitive decomposition of 0~y (see Lemma 4.2 in Berndts-
son’s lecture notes [3]] or section 8 of the notes).

Lemma 9.4. 5 = (|0ul* — |95u|?)e%w,.
Thus we have the following 99-Bochner formula for (1, ¢)-forms:

(9.36) i09T = (—QRe(%"u, )+ [T ul? — [Fuf? + ya;;u|2) e~%w, + 1006 N T

Step 3: Hormander’s L?-estimate.

In order to construct d-closed functions that we need, we have to solve the E—equation for
(0, 1)-form. But we only have 99-Bochner formula for (n, ¢)-forms, thus it is necessary to solve
0O-equation for (n, 1)-form and construst a "good" 0-closed holomorphic (n, 0)-form, then we
can use it to solve the d-equation for (0, 1)-form.

We shall use Chen’s method [8]] to solve the J-equation. More precisely, put

(9.37) v=0(0fi A NOf),

and

(9.38) . =nNy + nlog(y + ) —log(d — ),

By (9.30), (9.18) and (9.34), we have

(9.39) 1000, >,

and

(9.40) / lvZe e, < / lv|2e Y@, = I(v) < oo, Ve > 0.
Put ' '

(9.41) Qa, p) == /9(5*04,5*5)@6wfdzn—i-/ﬂ(ga,g@@ew%n.
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By (9.36), we have
(9.42) Qa, ) > / la2e ey,
Q

for every smooth (n, 1)-form o with compact support in 2. Denote by H the completion under
Hermitian form () of the space of smooth (n, 1)-forms with compact support in 2. Thus

(9.43) a—>/ a, v)pe Ve,

extends to a ()-bounded linear functional on H. By the Riesz representation theorem and (9.42)),
we know that there exists a € H such that

(9.44) Qa,a) = /Q<04,v>@ew5d)n, VaeH,
and

(9.45) Q(a,a) < / v|Ze V2@, < I(v).
Notice that (9.44)) implies that ’

(9.46) (%* n 5*5) a=u,

in the sense of current. Since 99 + 0 0 is elliptic and v is smooth, we know that there exists a
smooth representative, say a, of the current a such that

(9.47) (%* + 5*5) a=u,

on D (in fact, by using the Fourier transform, we get a Garding inequality for elliptic operator
with constant coefficients, then one can get the Garding inequality for general elliptic operator
by comparing with the case of constant coefficients. In our case, by and convolution of a
with a smooth function, say the Gaussian kernel, and using the Arzela- Ascoli theorem, we get
that the current solution a locally has a smooth representative. By using the partition of unity,
we finally get a global smooth representative, say a, of a) and

(9.48) Qa,) < I(v).
Since J is integrable, implies that
(9.49) 99 9a =0

on (). Let x be a smooth function on R such that y = 1 on (—00,1/2), x = 0 on (1, 00) and
|X'| < 3onR. Then

(9.50) Xt = x(tlog )€ CE(Q,R), V> 0.

1
o—1
Moreover,

9.51) 10(x¢)|o < 3t,
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on €. Since
(9.52) (X200 0a, da) = ||x.0 0a||> — (2x,0x: A 8§ Da,da),
by (9.49) and (9.51)), we have
(9.53) 1x:0"0al[* < 6t[|x,0 al|.
Let ¢ goes to zero, we know that
(9.54) d'Pa=0,
on €). Thus we have
(9.55) 90 a = v,
on €). Put .
U, = 0 a.
We know that du. = v and
(9.56) / uclZe™" @, < Q(a,a) < I(v),
Q

Let € go to zero, by taking the weak limit, we get an (n, 0)-current v such that Ju = v in the
sense of current and

9.57) / lul2e Y0, < I(v).
Q

Again since 0 is elliptic on (n, 0)-forms, we know that the current u has a smooth representative
u such that Ju = v and

(9.58) / luZe v, < I(v).
Q

Since e~%0 is not integrable near x, we know that

(9.59) u(x) = 0.

Put

(9.60) c=0fiN---NOf, —u.

we know that

9.61) do =0, o(x) #0.

Put

(9.62) O ={yY <}

Choose 0 < d; < ¢ small enough, one may assume that o has no zero point in the closure of €);.
This time, put

(9.63) v; = d(fjo), 1<j<n,

and
(9.64) ¢e =(n+1)NY + (n+ 1) log(v + €) — log(d; — ).
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Consider the complete J-Kéhler form

(9.65) & =100 (—log(6; — v)) .

Similar as before, for each j, we get a smooth (7, 0)-form u; on €2; such that
(9.66) 511]- =v;, uj(x) =0, duj(z)=0, 1<j<n.

Put

(9.67) u; = hjo, 1 <75 <n.

Then

(9.68) A(f; —hj) =0, hj(x) =0, dhj(z)=0, 1<j<n.

‘We know that
(969) zZj = fj — hj, 1 S] <n.

fit our needs. Thus the Newlander-Nirenberg theorem is proved.

9.2. Vector bundle version of the Newlander-Nirenberg theorem. In this section, we shall
prove the following theorem:

Theorem 9.5. Let E be a complex smooth vector bundle, say complex rank r, over a complex
manifold X. Let D be a smooth connection on E. Denote by D% the (0,1)-part of D. If
(DYY)2S = 0 on X for every smooth section S of E over X then for every x € X there exist r

smooth sections, say S, -+ , S, near x such that D*'S; = 0 near x for each j and {S;(x) }1<j<r
defines a basis of I,.

Idea of the proof: Fix a Hermitian metric, say h, of £ and define the "almost Chern con-
nection", say Dj,, on E with respect to D%! and h, then use D, to prove that the 90-Bochner
formula is true for smooth section of E. Finally, solve the D%!-equation with singular weight to
get the sections that we need.

Step I Construct the almost Chern connection.

Let us fix a smooth Hermitian metric, say h, on E. They there is a natural sesquilinear product
(see section 2), say {-,-}, on A" T*X ® E with respect to h. A connection D is said to be
h-Hermitian if

(9.70) d{S, T} = {DS, T} + (—1)%5{S DT},
for every E-valued differential forms S,7". We shall prove that:

Lemma 9.6. Let D be the connection in Theorem Then there exists a unique h-Hermitian
connection, say Dy, on E such that Dy, is h-Hermitian and Dg’l = DY Moreover, (Do’l)2 =0
implies that (D,"°)? = 0.
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Proof. Let us define D}L’O by requiring
(9.71) 0{S, T} = {D;°S, T} + (—1)%&5{S, DT},
for every smooth F-valued differential forms S, 7. Put
D, = D" + D"
Then one may verify that for every smooth differential form f on X, we have
Du(fAS)=df NS+ (=1)%87f A DS,
and
9.72) d{S, T} = {DyS, T} + (—1)%5{S D, T}.

Thus D), fits our needs. Now it suffices to show that (D;}°)? = 0. Since 8> = 0, by (©.71), if
(D%1)? = 0 then

(9.73) 0=00{S, T} = {(D;")*S, T},
for every smooth E-valued differential forms S, T". Thus (D,ll’o)2 =0. g

Definition 9.4. The curvature of the almost Chern connection Dy, in the above lemma is defined
to be O(E, h) := D3.

Definition 9.5. Let us write D,ll’O = 0F and D" = .

Step 2: 00-Bochner formula for smooth sections of E.

Since a complex manifold is locallly Kéhler. Let w be a Kédhler form on a pesudoconvex open
neighborhood, say €2, of . Let y be an arbitrary FE-valued smooth (n — ¢, 0)-form on €. Put

(9.74) T=i" {7} Awgr, u=7Aw,
By tha above lemma and Step?2 in the last section, still we have

9.75) 99T = (—2Re<%*u, )+ [3uf? — |9u)? + \(aE)*uP) wn +iO(E,R) AT,

Step 3: Solve D%!-equation with "singular weight".

Let us choose a smooth basis, say {01, - - - , 0,.} of E over a pesudoconvex open neighborhood,
say €1y, of x such that
(9.76) Dpoj(x)=0,V1<j<r.
Assume that €2, is relatively compact in 2 and has global holomorphic coordinates, say 2, - - - , 2z,
such that z;(z) = 0 for each j. Put
(9.77) 7= D" ((dey A+ ANdzp) ®0j), V1< j<r

Similar as before, one may solve the D%!-equation with singular weight whose singular part is
nlog |z|* and get r smooth E-valued (n,0)-form a;, 1 < j < r, on 2; such that

(9.78) a;j(r) =0, D%a; =75, V1<j<r
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Puta; = (dz; A --- Ndz,) ® f;, then
9.79) Sj=0;—f;, 1<j<r.
are sections that we need.

Remark. By Theorem each {S;}1<j<, gives a smooth local trivialization of E, and since
each S; lies in the kernel of D', we know that transition maps between these local trivializations
are in fact holomorphic. Thus E has a holomorphic vector bundle structure.

10. BERNDTSSON—LEMPERT APPROACH TO THE OHSAWA—TAKEGOSHI THEOREM

10.1. L*-extension of holomorphic sections from a smooth divisor. Let (L,e~?) be a holo-
morphic line bundle over an n-dimensional complex manifold X. Let Y C X be a closed
(n — 1)-dimensional complex submanifold (i.e. a smooth divisor). Let u be a smooth section of
L + Ky over Y, we want to give a natural definition of the L?-norm of u. The idea is to use the
polar function.

Definition 10.1. We call
G :=log(|s|?e™)

a 'Y -polar function, where s denotes the defining section of the line bundle [Y), e~ is a smooth
metric on |Y'|. Sometimes we also write G as G . The associated G-norm of a smooth section
uwof L + Kx overY is defined as

. _ ~ ~ n2 ~ = _
= tim e Nl (il = [ ande
e G<t

where 1 is any smooth L* section of L + K x which restricts touonY.

Lemma 10.1. The G-norm does not depend on the choice of smooth extension u, moreover we
have

||ul|Z, = 27r/ i G A Te Y,
Y
ifG = Gsyandu = ds NtonY, where U is a smooth section of Ky + (L — [Y])]y-
Proof. Let U be a z-coordinate open subset of X with s = z, on U, then we have
UN{G <t} ={z€U: |z <t
which gives

lim et/ CuNTe? = 27r/ iGN T et
G<t Y

t——o00

since

. _ !
idzn A dz, = 2me?E 0+
|Zn|2geij)(z’,0)+t

where (2') = (21, , 2n_1)- O
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Remark: One way of looking at the above lemma is to use the following adjunction formula
Our starting point is the following direct consequence of Theorem [8.2]
Theorem 10.2. Let (L, e=?) be a holomorphic line bundle over an n-dimensional weakly pseu-
doconvex Kdhler manifold (X,w). Let Y C X be a closed (n—1)-dimensional complex subman-
ifold of X. Let G = G be a'Y-polar function. Fixu € H*(Y,(Kx + L)|y) with ||u||¢ < oc.
If

i00(¢p — ) > 0

on X then for every relative compact open subset X in X, u extends to U € H°(X,, Kx + L)
such that

/ iCUNT e < oo
Xo

Proof. Since ||u||¢ < oo, local holomorphic extension u,, and partition of unit \, together give
a smooth extension
U= Z AaUe,

/ aNTe? < oo, VjEN,
p<j

with

where p is a smooth psh exhaustion function of X. Then
/ 0i2e %, < o0, VjeN.
p<j

Solve d-equation Ja = J7 on {p < j} with respect to the weight ¢ + G, we get

/ iaNae® §/ iaNae "¢ < oo.
p<j p<j

Since G is Y -polar, we have a = 0 on Y. Fix j such that X, C {p < j}, we know that
U=u—a
fits out need. U
Remark: In case X is compact, the above theorem says that the L>-extension problem is

solvable for (L,Y) if L — [Y] is ample. This fact can also be understood using the following
canonical exact sequence

0—>Kx+L—-[Y]>Kx+L— (Kx+L)ly —0,
which gives
HY(X,Kx + L) —» H(Y,(Kx + L)|y)
since we have
H'(X,Kx +L—-[Y])=0
by the Kodaira vanishing theorem (see Theorem 4.6).
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10.2. Sharp Ohsawa-Takegoshi extension from a smooth divisor. Using the complex Brunn—
Minkowski theory [2], Berndtsson—Lempert [S] found a sharp Ohsawa—Takegoshi type effective
version of Theorem [[0.2] The following weakly pseudoconvex Kihler version of Theorem 3.8
in [5] is proved by Tai Terje Huu Nguyen in [16].

Theorem 10.3. Let (L, e=?) be a holomorphic line bundle over an n-dimensional weakly pseu-
doconvex Kdhler manifold (X,w). Let Y C X be a closed (n — 1)-dimensional complex sub-

manifold of X. Let G = Gy, be a non-positive Y -polar function (see Definition . Assume
that for some constant 0 < ¢ < 1,

(10.1) i00(¢p — ) > € -100¢p > 0

on X. Then every u € H(Y, (Kx + L)|y) with ||u||¢ < oo extends to U € H°(X, Kx + L)
such that

5/ CUNTe™® < 27r/ i)y AGe Y,
X Y
where U is defined such that ds N =wuonY.

Proof. We shall only provide the main idea of the proof. The details can be found in [16]. Follow
the proof of Theorem 3.8 in [S]], one may consider the Hartogs domain

Xy :={(z,v) € L* : [v]*e? < 1}
and use the following canonical isomorphism
Ky~ (Kx + L),

where 7 : L* — X denotes the canonical map from the dual bundle of L to the base manifold
X. Via this isomorphism, one may identify sections of Ky + L with sections of K- whose
coefficients depend only on X. Fix an arbitrary relatively compact weakly pseudoconvex open
submanifold, say Xy, of X. By Theorem [10.2] u extends to a holomorphic section, say %, of
Kx + L over X, with ||@|| < oo. Let us identify @ as a section of K. Now it is enough to solve
the problem on X4, which is weakly pseudoconvex in case i00¢ > 0. Put

Y¢ = X¢ nm Y.

Consider the following guasi Y,-polar function (we use "quasi" since G, also has singularity at
v =0, but withorder 1 — e < 1)

Gy := (1 —¢)log(|v]*e?) + G.

Then the Berndtsson—-Lempert method gives the following estimate for the minimal L? extension,
say U, of iy,

/ iV’ T AT < lim e_t/ QTG AT = 1.
X¢ t——o00 {G¢<t}ﬁX¢
Compute
/ O 27r/ CUNT e,
X, X
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Since £ > 0, the (1 — ¢) log |v|* part of G, gives no contribution in the limit (try). Moreover,
near a point where v # 0, G, < t is equivalent to that

log [s]* < ¥ — (1 —¢)log([v[*¢?) + ¢,
which gives

I = 27T/ " (dv Aa) A (dv A1) e¥—(1=e)log(jv|?e?)
Yo
Since for every fixed z € Y,

2
/ (|v]2e?@)==Yidv A do = il e~
lv2e?(2) <1 €

the theorem follows. O

Remark: In case X is Stein outside a divisor (e g X is projective), the following "singular"
version of the above theorem also holds.

Theorem 10.4. Let (L, e~?) (¢ can be non smooth now!) be a holomorphic line bundle over an
n-dimensional complex manifold X. Assume that X is Stein or a closed complex submanifold of
PN. Let Y C X be a closed (n — 1)-dimensional complex submanifold of X. Let G = G, be a
non-positive Y -polar function (see Definition[10.1)). Assume that for some constant 0 < € < 1,

(10.2) i00(¢p — ) > € -i00p > 0

in the sense of current on X. Then every u € H(Y, (Kx + L)|y) with ||u||¢ < oo extends to
U e H(X,Kx + L) such that

5/ CUNTe® < 27r/ i AGe T,
X Y
where U is defined such that ds N1 =wuonY.

Proof. 1f X is Stein then one may found a family of positively curved smooth metric ¢; on L
whose decreasing limit is ¢. Thus one may apply Theorem to each ¢; and take the weak
limit for j — oo. If X is a submanifold of PV, then one may choose a € CV*!\ {0} such that

Z.NY, Zy={lz0::2x] €PN 1apzo + -+ ayz, = 0}

defines a proper submanifold of Y. Since PV \ Z, is biholomorphic to CV, we know that X \ Z,
is Stein and Y \ Z, is a closed Stein submanifold of X \ Z,. Thus the projective case follows
from the fact (try, start from the unit disc case!) that every L? holomorphic section on X \ Z,
natural extends to an L? holomorphic section on X . U

10.3. Berndtsson’s subharmonicity theorem. We shall follow Guan—Zhou’s approach (see
Guan—Zhou [[11], see also [4] for the convex case) to show how to use Theorem to prove a
fundamental "subharmonicity" theorem in Berndtsson’s complex Brunn—Minkowski theory.



HORMANDER 0 THEORY 49

Definition 10.2. By a weakly pseudoconvex Kdhler fibration we mean a holomorphic submersion
p: X =B

such that each point in the base manifold B has an open neighborhood whose preimage under p
is weakly pseudoconvex Kdhler.

Definition 10.3. Let p : X — B be a weakly pseudoconvex Kdhler fibration. We call
ft : OOO<Xt, KXt + L|Xt) — C

a holomorphic family of currents with compact support if for every holomorphic section u of
Kx 5 + L over preimage of an arbitrary open set U in B,

te '), ui=u

Xt

is holomorphic on U.

Theorem 10.5. Let p : X — B be a weakly pseudoconvex Kdhler fibration. Let (L,e7?) be a
holomorphic line bundle over X with a smooth metric ¢ such that i100¢ > 0 on X. Let f' be a
holomorphic family of currents with compact support. Put

FA] = sup {|f*(u")] : u* € H'(Xy, Kx, + Llx,), / MUt ATt e ? = 1}.
Xt
Assume that || f*|| is upper semi-continuous. Then log || f*|| is plurisubharmonic in t.

Proof. Tt suffices to show that log || f*|| satisfies the sub-mean inequality on every (small) holo-
morphic disc in B. By a complex affine transformation, it suffices to show that

idt A dt
(10.3) longOHZS/ log || f*1|* 52
D, mwr

Let us take u° such that |[u°|| = 1 and f°(u®) = ||f°||o. By Theorem [10.3| we know that for
each r > 0, u° extends to a holomorphic section, say u,, on the preimage of ID,. (notice that one
may identify Ky 5 + £ with Ky + £ since now K3 is trivial) such that

idt A dt
(10.4) / 2 Ay ),
|t|<r 2mr

Since f*(u') is holomorphic in ¢, we have

idt N\ dt
(10.5) log [1/°]1? = log | f2(O) P < / log |4 (uc)|? |

2
t]<r 2mr

Vo<r<1,D.:={teC: |t|<r}

Hence | f*(uz)| < [[f]] - |u]] gives
o idt A dt
2wr?

(10.6) log || £°]|? < /| Togll7|F+ og
t|<r

Since log is concave, we know that

dt A dt dt A dt
(10.7) / log |[u|? LAy, (/ [t LN )so,
|t|<r 27?7’ [t|<r 27T?"
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hence we have o
idt A dt
g |17 < [ logllFP s
|t|<r 2rr
from which (10.3)) follows. The proof is complete. d

Remark 1: In order to verify that || f*|| is upper semi-continuous, say at the origin of the unit
disc, one may take u' with ||u"7|| = 1 such that || f%|| = |f% (u')| for every t; — 0. Taking a
subsequence if necessary, one may assume that u’ convergence weakly to u” with [[u°|| < 1. If
one could verify that

lim f% (u%) = fO(u°),
they we know that
limsup || ]| < ||/
t—0

and || f*|| is upper semi-continuous at the origin.

Remark 2: In case A& is Stein (or p is proper and the total space possesses a positive line
bundle), the above theorem is also true for non-smooth ¢ with i00¢ > 0.

10.4. Applications. In this subsection, we shall discuss applications of Theorem [[0.5] First, let
us discuss possible generalizations of Theorem [10.3]

1. Let (L,e™?) be a holomorphic line bundle over an n-dimensional weakly pseudoconvex
Kihler manifold (X, w). Assume that ¢ is smooth and wy, := i00¢ > 0.

2. We want to extend holomorphic sections of Ky + L from a closed submanifold Y to X
with good estimate. From Theorem [10.3] we need certain "polar function" G, which should at
least satisfy the following conditions:

2a) G < 0on X;
2b) for some 0 < € < 1, G'is (1 — €)wy-psh, i.e.
(1 —€)idd¢ +i00G > 0
in the sense of current on X ;
2¢) Y C {G = —oo} and G is smooth outside {G = —o0}.
With the notation in the proof of Theorem [10.3] consider
Gy := (1 —¢)log(|v]*e?) + G

on the Grauert tube X, in L*. 2a) implies that GG, is non-positive and by 2b) G4 is psh on X;.
For each 7 € C, let us define

X; i ={r € Xy:Gy(x) <t:=Rer}

and
X ={(r,z) e Cx Xy :2€ X, }.

Lemma 10.6. The projection mapping p : X — C defined by p(t,x) = 1 gives a weakly
pseudoconvex Kdhler fibration.
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Proof. Notice that w + i00|v|?e® defines a Kihler form on L*, hence X’ as a domain in C x L*
is Kihler. By condition 2c), we know that
G = Max{—1,Gy(z) — Ret}
is smooth on X, where Max is a regularized maximum function. For every open set U in C, let
¥(7) be a smooth subharmonic exhaustion function on U, we know that
—log(1 — |[v|%e?) — log —G + (1)

defines a smooth psh exhaustion function on p~!(U). Hence p~!(U) is weakly pseudoconvex
Kihler. The proof is complete. U

In order to apply Theorem we need to construct a holomorphic family of currents with
compact support

fr:C*(X,;,Kx,)— C.
We shall use an approach due to Berndtsson-Lempert, for every smooth section g of ((Kx,)ly,)*
with compact support in Y3, we know that

fg i F = g(Fly,)dV, ¥YF e C™(X;, Kx,),
Yy
where dV is a fixed volume form on Y, depends holomorphically on 7. By Remark 1 after the

proof of Theorem [10.5} we know that || f7|| is upper semi-continuous in 7 and depends only on
t = Re 7. Hence Theorem [10.5|implies that

Lemma 10.7. log || f!|| is a convex function of t € R.

By the above lemma, if log || f}|| + ¢ is bounded when ¢t — —oo then the above lemma im-
plies that log||f{|| 4 ¢, as a convex function, must be increasing, this is a key observation of
Berndtsson—Lempert. In order to use this observation, notice that f;(F) depends only on F |y¢,
in particular, for every u € H®(Yy, (Kr+)ly,), fi(u) is well defined and does not depend on .

Consider t
u
[, = sup | fy(w)]

geCs Yarlkix, vy 1FEIL

the above observation implies that
e |[ullx,

is decreasing in ¢, we shall prove that:

Lemma 10.8. Assume that u extends to an L* holomorphic section U of Kx, over X;, then
||u||x, is equal to the minimum L*-norm ||U|| of all possible U.

Proof. Since |f}(u)| < ||f}]] - [|U]] for all possible L*-holomorphic extension U, we know that
||ul|x, < min||U||. To prove the identity, we shall use the Riesz representation theorem, which

gives
U
mn|vl = sp SO
rer=, f(ty=o ||f]]
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where H denotes the space of L? holomorphic sections of Kx, over X; and H, is the space of
forms in H that vanishes on Yy, H* denotes the space of bounded C-linear functionals on H.
Notice that any such f can be approximated by f; (otherwise there would exist an F' € H \ Hy
such that f;(F ) = 0 for all g, but this gives F' € Hy, a contradiction), hence we must have
|lul|x, = min[[U]]. . O

By the above lemma, if log || f;H + t is bounded when ¢ — —oco and u extends to an L?
holomorphic section U over X, then we must have

min ||U]| < lim e |ul|x,.
t——o0

Let us consider a special case, when u comes from a section of (K y + L)y, then the coefficient
of the minimal extension U; on X; of « would depend only on X, which gives

lul %, = |V < / A T

{G¢<t}ﬂX¢
notice that when 0 < € < 1, we have

{Gy <t} N Xy ={(z,v) € L*: log(|v]?e?) < (1 — &) ' min{0,t — G(x)}}

implies

(10.8) / iU AT =27 / iU A Ue ¢ (1me) 7 max{G-1,0},

{G¢<t}ﬂX¢ X
where U in the right hand side denotes the section of Kx + L associated to UU. The above
formula suggests to prove Ohsawa—Takegoshi theorem directly using variation of weights instead
of variation of domains! In fact the weight function

(1 —¢) ' max{G —t,0}

has already been used by Berndtsson—Lempert in [S]. But in [3], they finally use the limiting case
(¢ — 1, thus variation of domains) to study the Ohsawa—Takegoshi extension theorem. Hence
the main proof in [S]] contains several technical reductions. We hope that our observation could
simply their proof a little bit.
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