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Abstract— We propose two variants of the Linearized
Kalman Filter (LKF). The model linearization is made about
an auxiliary state estimate that can be seen as an exogenous
input to the LFK, and the resulting two-stage estimator is called
an exogenous Kalman filter (XKF). Since the linearized model
of the LKF does not depend on the estimate from the LKEF,
it follows from stability theory of cascades that the stability
properties of the XKF are inherent from the auxiliary state
estimator, since the nominal LKF is globally exponentially
stable. In some cases, the use of nonlinear transforms and
immersions can be used to render the nonlinear dynamics into a
globally valid linear time-varying (LTV) form that can be used
for design of the auxiliary state estimator. Even though the noise
and disturbances may be influenced in a non-favorable way by
such transforms, they allow the auxiliary state estimator to be
designed using a time-varying Kalman filter, leading to a two-
stage estimator called the Double Kalman Filter (DKF). The
DKEF is inherently globally exponentially stable for nonlinear
systems that can be transformed into uniformly observable LTV
systems. The XKF and DKF overcome the potential instability
of the extended Kalman Filter (EKF) and similar algorithms
that can result from inaccurate initialization, by applying a
feed-forward/cascade structure instead of the feedback inherent
in the EKF linearization. The method is illustrated using
examples.

I. INTRODUCTION

The Kalman Filter (KF) is an optimal state estimation
algorithm that is widely used in many applications. It is a
robust algorithm that is known to be globally exponentially
stable when applied to uniformly observable linear time-
varying (LTV) systems, and the process and measurement
noise processes are white. However, in many applications
there are nonlinearities that call for some extension or
modifications to the KF, which has lead to a number of
widely used approximate KF algorithms. The Extended KF
(EKF), Unscented KF, Ensemble KF and particle filter are
among the most well known. Global stability can no longer
be guaranteed, in general, and existing stability analysis only
gives implicit conditions that cannot be verified a-priori as
they depend on initial errors and system trajectories, e.g.
[1], [2]. Additionally, the errors and correlations due to lin-
earization implies sub-optimal estimation accuracy, although
in some applications the degree of local sub-optimality is
small, [3].

The lack of global stability of the EKF (and other nonlin-
ear KF approximations) is essentially caused by a feedback
loop that is introduced when computing locally linear model
approximations (linearizations), cf. Figure l1a. The key point
is that the linearization is made about the current state
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estimate, and with a poor initialization of the state estimate
the linearization will be poor, and the KF update may not
be able to reduce the estimation error, and thus prevent
convergence of the error.

In this paper we study a recently proposed idea to over-
come this problem, which is to linearize about another state
estimate that is generated by an auxiliary state estimator,
[4]. The auxiliary state estimator is an exogenous input to
the LKF such that it does not depend of the LKF’s own state
estimate. For this reason, we call this two-stage estimation
strategy an eXogenous Kalman Filter (XKF), cf. Figure 1b.
The requirement to the auxiliary state estimator is essentially
that it is globally convergent, and we make no specific
requirements on the optimality or sensitivity with respect
to noise. Certainly, the design of such an auxiliary state
estimator is not trivial, and for many systems it may be
impossible. Still, as we will show later in this article, there is
a lot of freedom for the design of the auxiliary state estimator,
and there are numerous approaches and applications of the
XKF.

An important special case is when the nonlinear model
can be transformed (via algebraic transforms, feedback,
immersions or other mathematical tools) into a LTV model
for the purpose of auxiliary state estimator design. In this
case, another KF can be used as the auxiliary state estimator,
and we therefore call this approach the Double Kalman
Filter (DKF), cf. Figure 1c. The rationale for this approach
is that the first-stage auxiliary KF based on the globally
transformed LTV model will typically not achieve the same
accuracy as the second-stage LKF based on the locally
linearized model when considering the effect of measurement
noise and process noise. In simple terms, the auxiliary first
stage ensures the estimator’s global convergence without
aiming for optimal accuracy, while the second stage LKF
is used to recover high estimation accuracy by considering
the measurement noise and process noise.

The XKF has been recently proposed [4]. The main
novelty of the present paper is a discussion on the role of the
auxiliary state observer. The introduction of the DKF as a
new concept is the main contribution, generalizing ideas that
were derived in the context of navigation application studies

(51, [6].

II. DESIGN AND STABILITY OF XKF

This section shows that the XKF — being the cascade of an
auxiliary state estimator and a LKF — inherits the stability
properties of the auxiliary state estimator. The analysis is
developed in continuous time, based on [4], although we



Local
approximation
(linearization)

of nonlinear
model

lLinearized model

Kalman-filter
based on
approximate
local linearized
LTV model

Measurements

Estimate

(a) Extended Kalman Filter (EKF)

Globally
convergent,
Auxilliary sub-optimal LocaI.Iinea'r
state estimate approximation
estimator (linearization) of
nonlinear model Globally
R . convergent,
Linearized modell more
Kalman-filter accurate
Measurements based on estimate
approximate [
local linearized
LTV model
(b) eXogenous Kalman-filter (XKF)
Globally
. convergent,
KakIJr:Saer:j—f;Ir:er sub-optimal LocaI.Iinea.r
estimate approximation
¢ e>;act d (linearization) of
E_T/Srzgrgsl nonlinear model Globally
) ) l convergent,
Linearized model more
Kalman-filter accurate
Measurements based on estimate
approximate [
local linearized
LTV model

(c) Double Kalman Filter (DKF)

Fig. 1. The figure illustrates the feedback structure of the EKF in
comparison with the feed-forward/cascade structure of the XKF and DFK.

stress that the implementation should use standard discrete-
time KF formulas.
Consider the nonlinear system

(1) = fx(),0)+G0)w(r) (1)
y(#) = h(x(1),1)+e(r) )

where f,G,h are smooth vector-or matrix-valued functions,
x is a bounded state vector, ¢ is time, w is a vector of process
disturbances, and e is a vector of measurement errors.

Let X be an estimate of x, given by an arbitrary auxiliary
state estimator with bounded and convergent error X(¢) =
x(r) —x(¢). We will come back to the design of the auxiliary
state estimation in Section III, and first we consider the
design of a 2nd stage LKF, and note that X is an exogenous

signal to this filter and can be used for linearization of the
model in the LKF. A Taylor series expansion of (1) about
the trajectory x(r) gives

() = f&(e),0) + F(x(1),1)x(r)
+G()w(r) +q(x(1), %(1),1) 3)
y() = h(x(),0)+H(x(2),1)x(1)
+r(x(1),x(1),1) +e(r) 4)
where ¢(-) and r(-) are higher-order terms, and
_odf _ oh

F(x,1):= E(X’t)’ H(%,1) := a()z,t)

Since X(t) is bounded, there exist constants k,,k, > 0 such
that the higher order terms are bounded by

laOIl < kglEOIP, lr@I <k AEOIP )

Whenever the error of the auxiliary state estimator converges,
these terms vanishes asymptotically, so in the 2nd-stage LKF
we neglect the higher order terms in (3)-(4) and design a LKF
based on the truncated LTV model:

X1) = fE()1)+F(%0) (&) — (1)) (6)
+K (1) (y(1) = h(x(1),1) = H(%(1),0) (£ = X(1)))

Disregarding for the moment the linearization errors ¢ and
r, and the fact that %(¢) depends on the measurements, we
recall that the KF is optimal under the assumption that w is
white noise with covariance matrix Q, e is white noise with
covariance matrix R, and w and e are uncorrelated. Then the
time-varying gain satisfies K(¢) = P(¢t)H” (¥(¢),t)R~" where
P is the time-varying symmetric positive definite solution to
the Riccati equation

P) = FEO.DPO+POFT (0.0 ()

+G(t)QGT (1) — K (t)RKT (1)

with P(0) symmetric and positive definite, [7].

The estimation error of the 2nd stage LKF is ¥ :=x—
X =X+x—Xx. From (3)-(4) and (6) it follows that the error
dynamics is LTV with a perturbation:

Y () =A(x@),0)%() +d(t) (8)

with A(x(r),tr) = F(x(t),t) — K(t)H(x(¢),t) and d(t) =

q(x(2),x(2),t) + K(t)r(x(r),x(t),t) + K(¢)e(t) + G(t)w(t). For

the nominal case we have the following result that shows
that the XKF inherits the stability properties of the auxiliary
state estimator:

Theorem 1: Suppose there are no noises, i.e. w =0 and

e =0, and assume

Al. The LTV system (F(x(¢),t),G(¢),H(%(¢),t)) is uni-
formly completely observable and controllable.

A2. The nominal error dynamics X, of the auxiliary state
estimator is Uniformly Globally Asymptotically Stable
(UGAS), Semi-Globally Exponentially Stable (SGES),
or Globally Exponentially Stable (GES).

A3. The LKF tuning parameters P(0),Q,R are symmetric
and positive definite.
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Then the origin X = ¥ = 0 of the nominal error dynamics
cascade X, — X (see Figure 2) inherits the stability properties
of 22.

Proof: [4]: A2 implies boundedness of F (%(z),t), G(t),
and H(x(¢),t). We can employ standard results on the KF
[7], [8] in order to show global exponential stability (GES)
of the origin of the nominal error dynamics (8) with d = 0.
Note that ||d(2)|| < kg||%(2)|*> for some kg > 0 due to (5).
Since k; is bounded and does not depend on X, the result
follows from Theorem 2.1 and Proposition 2.3 in [9] since
all their conditions are satisfied. [ ]

For the general case, when w # 0 and e # 0, one can
show that bounded w and e give bounded estimation errors.
It should be emphasized that even with a random Gaussian
white noise assumption, the estimates of the state vector
and covariance matrix may be biased and in general sub-
optimal, like the EKFE. The reason for this is the effect
of the linearization error that is a random variable that
may be non-white (due to errors resulting from the global
nonlinear observer) and correlated with the measurements.
Like with nonlinear filtering in general, best practice may be
to investigate the errors using simulation.

III. THE AUXILIARY STATE ESTIMATOR

The main requirement to the auxiliary state estimator is
that it should have strong (nominal) stability properties in the
absence of noise, preferably global exponential stability. Its
response to noise is considered less important in the context
of XKF.

A. Nonlinear observers

One approach for the design of an auxiliary state estimator
is the use of nonlinear observers. While the design of
nonlinear observers with strong/global stability properties
may not be trivial, or even possible, for every observable
nonlinear system, there are still many specific systems and
classes of systems for which nonlinear observer design is
indeed possible, see e.g. [10], [11], [12].

B. The Double Kalman Filter

Another approach can be taken when the nonlinear dy-
namics can be transformed into a globally valid LTV system
structure. In order to illustrate the main idea, consider
one interesting special case, i.e. mechanical systems with
position output measurement, where pseudo-measurements
of velocity and other states may be generated by numerical
differentiation and filtering of the position measurement.

Clearly, this is not an optimal approach with respect to noise,
but this is of less concern in this context as discussed above.
For example, consider the system

X1 = X2
. _ 2 3
X2 = —0hXx2 — 0Qxy — 03X
+B1x1 + ﬁzx% + ﬁgx? +u+w
y = Xx1te

where x| is position, x, is velocity, u is a known input force,
w is unknown process noise, y is position measurement with
noise e. Using x; =y —e and xp = X; =y — ¢, this model can
be exactly reformulated as

—ouxy — 00 (¥ —é)x, — a3 (y — €)*x;
+Bixt + By —e)xi + B3 (y—e)x1 +u+w

X =

which can be written as

—ay(t)xy —ax(t)xy — a3(t)xn
+b1(t)x1 +b2(t)x1 +b3(t)x1 +u+w+e

Xy =

where the known time-varying coefficients are defined as

al(t) =, ax(t) = y(t), as(t) = oay(r)?

bi(t)=PBr, ba(t)=Boy(t), b3(t) = Bsy(1)’

and all the influences of the noise e and its derivative ¢ is
lumped into the variable €. When y and y are known time-
varying signals, the resulting model is LTV and a globally
exponentially stable auxiliary state estimator can be designed
using the standard KF. We note that in the resulting DKEF,
the auxiliary first-stage KF tuning should explicitly account
for the noises due to both e and w+ €. When € depends
on e and ¢é as well as other signals in a non-trivial way, the
optimal tuning of this auxiliary first-stage KF is not trivial.
Without going into further details we note that the above
example can be generalized in a systematic way to larger
classes of systems that could be expressed in the form

i = A(z@),)x+G(z(t),t)w )
y = Clan)x (10)

where z(¢) are signals that are known at time 7, typically
inputs, measured outputs and their time-derivatives. One can
also use rather general tools such as transforms into observer
canonical forms using differential geometry [13], [14], or the
use of differential algebra [15], and immersion [16].
The properties of the DKF can be summarized as follows:
Corollary 1: Assume an LTV model (9)-(10) is globally
equivalent to the nonlinear system (1)-(2). Moreover, assume
(9)-(10) is uniformly observable, and let an auxiliary state
estimator be defined by a KF based on (9)-(10) and positive
definite symmetric covariance matrices. If assumptions Al
and A3 of Theorem 1 holds, then the origin of the error
dynamics of the DFK is GES.
Proof: Follows directly from Theorem 1 since A2 is
satisfies by the origin of the auxiliary KF’s error dynamics
being GES. |



The more extensive example presented next illustrates an-
other design approach, where the physical and mathematical
structure of a particular nonlinear system is exploited.

IV. DKF CASE STUDY: POSITIONING WITH
PSEUDO-RANGE MEASUREMENTS

This example is based on [5]. Consider the problem of
positioning during autonomous landing of a small fixed-wing
Unmanned Aerial Vehicle (UAV). As an alternative to the use
of differential/carrier-phase GNSS (e.g. [17]) it is of interest
to investigate the use of low-cost radio navigation systems
enabled by wireless network technology, [18]. Such radio
systems typically provide measurement range up to 1000 m
with range errors of about 10-50 cm, which may be sufficient
for this purpose.

Let p € R3 and v € R? denote the UAV’s position and ve-
locity, respectively, in the East-North-Up (ENU) coordinate
frame. Assuming direct line-of-sight (LOS) path between the
radio beacons and receiver, the range measurement model is

yi=pi+B+e, (11)

for i =1,2,....,m where y; is a pseudo-range measurement,
pi is the known position of the i-th beacon, m is the number
of beacons, p; is the geometric range along the LOS, and
a common error (bias) B := cA, where A, is the clock
synchronization error where c is the speed of light. The
measurement model (11) is nonlinear due to the Euclidean
norm ||-||2. Using the method in e.g. [19], and neglecting
for the moment the random noise e;, one may transform the
nonlinear algebraic equation (11) into a linear time-varying
algebraic equation as follows:

pi = |lp—pill2

(i=B)*=(p—p)' (p—pi) (12)
Expanding and rearranging terms yields
vi—llpill3 =20l p+2yiB+(lplE-B%) (13

Forming a difference, we can define a new measurement

yi = lpill5 =y + || pml 3 (14)

for i =1,2,...,m — 1. Note that stacking instances of (14)
into matrices and vectors and using (13) gives

i =

z = 2Cx (15)

where x = [p; ] contains the unknown states, and the time-
varying matrix C € R("=D*4 is given by

—(p1—pm)"T Vi —Ym

Cc = :
_<pm—1 _pm)T Ym—1—Ym
Assuming m > 5 and all transponders and the vehicle are not
placed in the same plane, it can be established that C has full
rank (equal to 4), which is sufficient for uniform observabil-
ity also when this measurement equation is combined with
a vehicle model such as a stochastic Markov model.

We note that in the difference formed in (14), the last
(nonlinear) terms (||p||3 — B2) of (13) are canceled. This is

instrumental for transforming the model from nonlinear to a
globally valid LTV model, but at the same time it represents
a loss of information about the nonlinear relationship in the
model. The transformation into an LTV model is enabled
by the analytic redundancy provided by having at least five
measurements, since there are only four unknowns to be
estimated. However, the negative consequence of this is well
known, e.g. [19], [20], [21], [22]: The estimation based on
the quasi-LTV model (15) must be expected to be less accu-
rate than by linearizing the original measurement equation
(11) when considering the effect of noise. Nevertheless, as
the example will show, the DKF does not suffer much from
this since (15) is only used in the auxiliary state estimator
while in the presence of noise the final stage LKF recovers
performance close to the optimal by linearizing (11) about
the auxiliary state estimate.

Four different estimators are simulated and compared:

« Algebraic estimator (no filtering) based on the globally
valid quasi-linear algebraic model (15) using weighted
least squares (WLS).

o The auxilliary state estimator (AKF) implemented as
a KF with measurement model (15) using a stochastic
Markov model of the UAV velocity.

o DKF combining the first stage AKF with an second
stage LKF using the AKF estimates for linearization of
(11), and the same Markov model of the UAV velocity
as above.

« The Extended Kalman-filter (EKF) based on a lineariza-
tion of (11) about its own estimate, and the same
Markov model of the UAV velocity as above.

The parameters of the Markov model are tuned empirically
based on the typical motions of the UAV, and the parameters
of the measurement noise covariance matrices account for
correlations between y; and y,, according to (14), cf. [5].

Since the radio beacons need to be deployed at locations
near the ground, the geography of typical UAV landing
sites implies small vertical separation of the beacons even
when placing them on masts, leading to a poorly conditioned
position estimation problem. Moreover, since the UAV will
land at ground level, its altitude will be similar to the vertical
position of several of the beacons near the end of the final
approach, i.e. just before touching the ground. This means
that baselines will be crossed, and resolving ambiguity in
the position estimate becomes non-trivial. The simulation
example presented below as been deliberately chosen as a
challenging (yet realistic) scenario in order to clearly illus-
trate the potential benefits of the proposed approach. In fact,
the simulations show that the global convergence property of
the proposed method is essential for safe navigation without
any further sensors in the selected scenario, as well as similar
scenarios that are tested but not reported.

We assume 6 radio beacons are distributed within an area
with up to 800 m horizontal separation, and with up to 10 m
vertical separation between the beacons. The beacons provide
signals that are used for pseudo-range measurements with
standard deviation oy, = 0.15 m and sampling interval of
0.2 s, corresponding to a realistic hardware setup.



TABLE I
MONTE-CARLO SIMULATIONS, AVERAGED OVER 96 CASES WHERE ALL
ESTIMATES CONVERGES.

Estimator Horizontal st.dev ~ Vertical st.dev
Algebraic WLS 1.4812 8.5375
AKF 0.52605 2.5753
DKF 0.30178 0.90865
EKF 0.30484 0.87357

We simulate a small fixed-wing UAV trajectory in a final
approach towards landing. Just before touching the ground,
it is decided to abort the landing, so the vehicle climbs
out and loiters at a holding position south of the landing
target before going around to get in position for another
approach. In a Monte-Carlo simulation with 100 scenarios,
we simulate slight perturbations of the trajectory, due to wind
and other random factors, as well as different measurement
noise realizations.

During these simulations the EKF lost track of the correct
global solution in 4 out of the 100 simulations. A repre-
sentative example where this happens is shown in Figures
3 - 4. The horizontal position is accurately tracked by all
estimators, and their differences in horizontal estimation
accuracy can hardly been seen on this scale of presentation.
However, the differences in performance are clearly apparent
in the altitude estimate in Figure 3b, which shows that the
AKEF provides less accurate estimates than the DKF, and that
the EKF diverges after r =42 s.

The reason for the failure of the EKF is the existence
of multiple local minimums in the nonlinear least-squares
criterion that the EKF attempts to minimize. When the
UAV’s altitude is close to the height of the beacons, at
h=5 m and h = 15 m, it crosses their baselines. There,
the minimums are so close to each other that the EKF is
not able to distinguish between them at some point near
t =42 s, and chooses somewhat arbitrarily (i.e. dependent
on the measurement noise) which minimum to track since
there is conflicting information provided by the predictions
of the dynamic model and the measurements. It can be seen
in Figure 5 that loss of track is, in this case, not linked to
any worse geometric conditioning of the problem than at
other times. It is remarked that the problem might have been
reduced or avoided by additional hardware, such as having
beacons at higher altitude, or using additional sensors such as
inertial sensors in order to improve the predictive capability
of the model (see [6]), or altimeter or GNSS to explicitly
resolve the ambiguity to ensure the integrity of the system.
It is noted that the auxiliary AKF never loses track of the
global solution, and consequently, the DKF never loses track
of the global solution either.

Average estimation errors for the 96 cases where the EKF
converges are summarized in Table I. It can be seen that
the DKF typically performs just as well as the EKF despite
sub-optimal accuracy in the auxiliary first-stage estimation.
Hence, when the EKF does not experience divergence prob-
lems, the performances of the EKF and the DKF are close.

V. CONCLUSIONS

We study the eXogenous Kalman Filter (XKF) which is
the cascade of an auxiliary state estimator with a LKF, where
output of the auxiliary state estimator is an exogenous input
only used for linearization in the LKF. It is shown that
the XKF inherits the stability properties of the auxiliary
state estimator due to their feed-forward/cascade structure.
It is illustrated that for a relatively large class of nonlinear
systems, the auxiliary state estimator can be a KF, leading
to a two-stage estimator structure that we call a double KF
(DKF). The first stage ensures GES, while the second stage
contributes to improve estimation accuracy in the presence
of measurement noise and process noise.

Examples illustrate that the estimation error of the multi-
stage filter can be close to the perfectly linearized KF, and
for a wide range of applications can the auxiliary state
estimator be designed based on a globally valid LTV model
achieved by from transformation of the nonlinear model
without taking into account the influences of measurement
noise and disturbances. This variant of the XKF is called
the DKF - the Double Kalman Filter - since KF based on
different models are used in the two KF stages.
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