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It is well known that the time-varying Kalman Filter (KF) is globally exponentially stable and optimal in the sense of minimum
variance under some conditions. However, nonlinear approximations such as the extended KF linearizes the system about the
estimated state trajectories, leading in general to loss of both global stability and optimality. Nonlinear observers tend to have
strong, often global, stability properties. They are, however, often designed without optimality objectives considering the pres-
ence of unknown measurement errors and process disturbances. We study the cascade of a global nonlinear observer with the
linearized KF, where the estimate from the nonlinear observer is an exogenous signal only used for generating a linearized model
to the KF. It is shown that the two-stage nonlinear estimator inherits the global stability property of the nonlinear observer, and
simulations indicate that local optimality properties similar to a perfectly linearized KF can be achieved. This two-stage estimator
is called an eXogeneous KF (XKF).

1 Introduction

Estimation of states in nonlinear systems is a challenging problem. A wide range of methods have been
proposed, where many of them fall into one of the following categories:

Methods based on local linearization (first-order Taylor series expansion): These methods are moti-
vated by the global asymptotic stability and tunable performance of Luenberger observers for observable
linear time-invariant (LTI) systems, Luenberger (1964), and the Kalman-Bucy filter (KF) for observable
linear time-varying (LTV) systems, e.g. Kalman and Bucy (1961), Brown and Hwang (2012), Simon
(2006). The KF gives optimal (minimum variance) filtering by selection of tuning parameters to match
the variances of white measurement noise and process noise, regardless of the structure of the uniformly
completely observable LTV system. By approximating the nonlinear system with a local linear approx-
imation, usually referred to as a linearized model, these methods can in many cases be applied also to
nonlinear systems.

Nonlinear observers usually take global asymptotic or exponential stability (or at least a large region
of attraction) as the primary starting point for the design, and then employ tuning parameters to pursue
desired performance. The design usually involves some kind of analysis based on Lyapunov stability
theory that leads to conditions on the tunable parameters and system parameters, where particular struc-
tural properties of the nonlinear system are exploited in the design, e.g. Besancon (2007), Nijmeijer and
Fossen (1999).

Both approaches have their strengths; the global (or large) region of attraction of nonlinear observers,
and the relatively general applicability and good performance that is often achieved by nonlinear KF ap-
proximations. At the same time they both also have significant weaknesses. Since the state is unknown,
the KF must usually rely on a linearization of the nonlinear model about a state estimate, leading to the
Extended KF (EKF) or other variants such as the Unscented KF, Monto-Carlo filter, and particle filter,
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a) The eXogenous Kalman Filter (XKF) - cascaded nonlinear observer and linearized Kalman-filter.

(b) Extended Kalman Filter (EKF).
Figure 1. Proposed cascaded nonlinear observer and linearized Kalman-filter, and EKF for comparison. The difference between the two KFs
is only the state estimate about which the linearization is made, where the proposed approach avoids the potentially de-stabilizing nonlinear
feedback loop of the EKF.

that perform the linear approximation using different techniques, e.g. Gelb (1974), Julier and Uhlmann
(2004), Brown and Hwang (2012), Gustafsson (2012). Regardless of the specific approach, global stabil-
ity cannot be guaranteed in general, and existing stability analysis gives implicit conditions that cannot
be verified a-priori as they depend on initial errors and system trajectories, e.g. Song and Grizzle (1995),
Reif et al. (1998). Additionally, the errors and correlations due to linearization implies sub-optimality,
although in some applications the degree of local sub-optimality is of little or no practical concern, Gelb
(1974). The nonlinear observers, on the other hand, typically come without analysis of performance in
terms of minimum variance, and may also lack a systematic approach to optimize their performance.

The problem addressed in this paper is then quite natural: Can a nonlinear observer and the Linearized
KF (LKF) be combined to benefit from their complementary advantages, without inheriting their indi-
vidual weaknesses?

One interesting approach is moving horizon estimation that combines a minimum variance cost func-
tion with constraints or special terms that ensure stability, e.g. Rao et al. (2003). While this is a general
and powerful approach, it depends in general on solving non-convex numerical optimization problems in
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real time, which may not be feasible in all practical applications and typically leads to only local stability
when gradient-based iterative optimization algorithms are employed.

Here we propose a practical solution to this problem. Although the approach is quite simple and
general, it is to the best of our knowledge a novel method. Rather than linearizing the nonlinear system
about the KF’s own state estimate, one can linearize the nonlinear system about the estimated state
trajectory coming from a global nonlinear observer. Since the linearization is made about an exogenous
state trajectory, there is no nonlinear feedback loop that can destabilize the LKF, and it follows from
nonlinear stability theory that the stability properties of the global nonlinear observer is inherited by the
cascade, Panteley and Loria (1998), Loria and Panteley (2004), cf. Figure 1. For this reason, the approach
is called the eXogenous Kalman Filter (XKF).

This paper is motivated by the benefits of final-stage LKF experienced in application studies on range-
based navigation systems in Johansen et al. (2016), Johansen and Fossen (2016), where the EKF diverges
due to the existence of local minimums, while a global observer in cascade with final-stage LKF provides
both global stability and low variance of the estimates. These successful applications inspired this paper,
where this simple and effective idea is presented in a more general framework, stability properties are
formally analyzed, and some simple illustrative examples are provided.

2 Design and analysis

Consider the nonlinear system

ẋ(t) = f (x(t), t)+G(t)w(t) (1)

y(t) = h(x(t), t)+ e(t) (2)

where f ,G,h are smooth vector- or matrix-valued functions, x is the state vector, t is time, w is a vector
of process disturbances, and e is a vector of measurement errors.

Let x̄ be an estimate of x, and assume x̄ is a bounded signal, given by a global nonlinear observer (NLO)
with bounded error x̆(t) = x(t)− x̄(t). Next, we consider the design of a 2nd-stage LKF, and regard x̄ as
an exogenous signal to this filter. A first-order Taylor series expansion of (1) about the trajectory x̄(t)
gives

ẋ(t) = f (x̄(t), t)+F(x̄(t), t)x̆(t)+G(t)w(t)+q(x(t), x̄(t), t) (3)

y(t) = h(x̄(t), t)+H(x̄(t), t)x̆(t)+ r(x(t), x̄(t), t)+ e(t) (4)

where q(·) and r(·) are higher-order terms, and

F(x̄, t) =
∂ f
∂x

(x̄, t), H(x̄, t) =
∂h
∂x

(x̄, t)

Since x̄(t) is bounded and f ,h are smooth, there exist constants kq,kr > 0 such that the higher-order
terms are bounded by

||q(t)|| ≤ kq||x̆(t)||2, ||r(t)|| ≤ kr||x̆(t)||2 (5)

If the NLO converges, these terms vanish asymptotically, so in the 2nd-stage LKF we can neglect the
higher-order terms and design a LKF based on the truncated LTV model. Using the first-order dynamics
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Figure 2. Cascaded error dynamics, where Σ2 represents the NLO error dynamics and Σ1 represents the LKF error dynamics.

of (3), i.e. neglecting the higher-order terms and the noise, and introducing a correction term using the
first-order measurement model approximation (4), we define the estimator x̂ for x by

˙̂x(t) = f (x̄(t), t)+F(x̄, t)(x̂(t)− x̄(t))+K(t)(y(t)−h(x̄(t), t)−H(x̄(t), t)(x̂− x̄(t))) (6)

We remark that in contrast to typical nonlinear KF approximations, the estimator (6) uses the first-order
model approximation rather than the full nonlinear model in the propagation and correction of the state
estimate. This is crucial in order to avoid potential instabilities that might otherwise arise in particular if
the system is not open loop stable.

Disregarding for the moment the linearization errors q and r, and the fact that x̄(t) depends on the
measurements, we recall that the KF is designed to be optimal under the assumption that w is white
noise with covariance matrix Q, e is white noise with covariance matrix R, and w and e are uncorrelated.
Then the time-varying gain satisfies K(t) = P(t)HT (x̄(t), t)R−1 where P is the time-varying symmetric
positive definite solution to the Riccati equation

Ṗ(t) = F(x̄(t), t)P(t)+P(t)FT (x̄(t), t)+G(t)QGT (t)−K(t)RKT (t)

with P(0) symmetric and positive definite, Kalman and Bucy (1961).
The state estimation error is x̃ := x− x̂ = x̆+ x̄− x̂. From (3)–(4) and (6) it follows that the error

dynamics is LTV with a perturbation:

Σ1 : ˙̃x(t) = A(x̄(t), t)x̃(t)+d(t) (7)

where

A(x̄(t), t) = F(x̄(t), t)−K(t)H(x̄(t), t)

d(t) = q(x(t), x̄(t), t)+K(t)r(x(t), x̄(t), t)+K(t)e(t)+G(t)w(t)

We let Σ2 represent the dynamics of the NLO estimation error x̆(t), cf. Figure 2 and analyze global
stability conditions for the cascade Σ2−Σ1 by employing results from Loria and Panteley (2004). As-
sumptions A1 and A2 are standard conditions that ensure boundedness and positive definiteness of the
solution of the Riccati equation, and leads to nominal convergence of the KF, e.g. Kalman and Bucy
(1961), Anderson (1971):
Assumption A1. The LTV system (F(x̄(t), t),G(t),H(x̄(t), t)) is uniformly completely observable and
controllable.
Assumption A2. The LKF tuning parameters P(0),Q,R are symmetric and positive definite.
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A key assumption is that the NLO design leads to a global form of asymptotic stability of its error
dynamics.
Assumption A3. The NLO error dynamics Σ2 is Uniformly Globally Asymptotically Stable (UGAS),
Uniformly Semi-Globally Exponentially Stable (USGES), or Globally Exponentially Stable (GES).

The theory in Loria and Panteley (2004) can be employed in any of these cases, where we remark that
GES is stronger than USGES, which is stronger than UGAS. We can now present the main result for the
stability of the unforced error dynamics:

Theorem 2.1 : Suppose Assumptions A1-A3 hold. The origin x̆ = x̃ = 0 of the unforced error dynamics
cascade Σ2−Σ1 (with w = 0 and e = 0) inherits the stability properties of Σ2.

Proof. We note that A3 implies boundedness of F(x̄(t), t),G(t), and H(x̄(t), t) due to the smoothness
of f ,G,h. Assumptions A1 and A2 imply GES of the origin of the unforced error dynamics (7) with
d = 0, Kalman and Bucy (1961), Anderson (1971). Note that ||d(t)|| ≤ kd ||x̆(t)||2 for some kd > 0 due to
(5). Since kd is bounded and does not depend on x̃, the result follows from Theorem 2.1 and Proposition
2.3 in Loria and Panteley (2004). �

If w and e are bounded inputs, and the origin of the unforced NLO error dynamics is GES or USGES, it
follows from Lemma 4.6 in Khalil (2002) that the origin of the error dynamics cascade Σ2−Σ1 is input-
to-state stable (ISS) with w and e as inputs, and that the solutions are uniformly ultimately bounded
(UUB). This property may also hold in some cases when the origin of the unforced NLO error dynamics
is UGAS, but the analysis would depend on the particular design of the NLO and its Lyapunov-function.

It should be emphasized that even with a Gaussian white noise assumption, the estimates of the state
vector and covariance matrix may be biased and in general sub-optimal, like the EKF. The reason for
this is the effect of the linearization error that is a random variable that may have a bias (due to errors re-
sulting from the global nonlinear observer) and is correlated with the measurements. Like with nonlinear
filtering in general, best practice may be to investigate the errors using simulation.

Formally, the stability properties are as strong as (but not stronger than) the NLO. The benefit of the
approach compared to using the NLO is therefore related to the optimality of the KF, and that better
performance can be achieved in many cases since a ‘perfect LKF’ can be approximated without the risk
of divergence, in contrast to the EKF and similar nonlinear filter approximations. Other nonlinear filter
approximations such as the moving horizon estimator, particle filter and Monte-Carlo filter are often
more robust than the EKF and UKF, but their computational complexity are also significantly larger.

3 Illustrative examples

These examples are intended to illustrate the fundamental properties of the approach, and are therefore
selected to be as simple as possible. We refer to Johansen et al. (2016), Johansen and Fossen (2016),
Stovner et al. (2016) for more advanced examples and application case studies.

3.1 Nonlinear measurement function

Consider the nonlinear system with first-order dynamics and two measurements defined by the nominal
model

ẋ = u (8)

y1 = |x−1| (9)

y2 = |x+2| (10)
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This can be viewed as a simple model of a mechanical system with linear motion in one degree of free-
dom, represented by the position x and driven by the velocity input u. There are two range measurements
y1 and y2 relative to transponder or beacon positions x = 1 and x =−2, respectively.

A nonlinear observer can be designed for this system using the following nonlinear transform of the
measurements

z = y2
2− y2

1 (11)

= x2 +4x+4−
(
x2−2x+1

)
(12)

= 6x+3 (13)

which leads to the nonlinear observer

˙̄x = u+L
(
y2

2− y2
1−6x̄−3

)
(14)

with error dynamics x̆ = x− x̄ given by the linear system

Σ2 : ˙̆x =−6Lx̆ (15)

Clearly, Σ2 is GES for any constant L > 0 which should be chosen to achieve desired filtering bandwidth
or pole locations. For completeness, the discrete-time implementation is given by the Euler discretization
method

x̄(k+1) = x̄(k)+Tu(k)+T L
(
y2

2(k)− y2
1(k)−6x̄(k)−3

)
(16)

where T is the sampling period, and k is the discrete time index. The EKF estimate is

x̂E(k+1) = x̂E(k)+Tu(k)+KE(k)(y(k)−CE(k)x̂E(k)) (17)

where the following linearization of the measurement matrix is used

CE(k) =
(

sign(x̂E(k)−1)
sign(x̂E(k)+2)

)
(18)

and the gain matrix KE(k) is given by the discrete-time KF equations, Gelb (1974). In contrast, the
2nd-stage LKF of the XKF is defined by

x̂(k+1) = x̂(k)+Tu(k)+K(k)(y(k)− ȳ(k)−C(k)(x̂(k)− x̄(k))) (19)

where the measurement estimated based on the NLO estimate ȳ(k) = (ȳ1(k); ȳ2(k)) is defined by ȳ1(k) =
|x̄(k)−1| and ȳ2(k) = |x̄(k)+2|. The linearization of the measurement matrix is here based on the NLO
estimate x̄(k):

C(k) =
(

sign(x̄(k)−1)
sign(x̄(k)+2)

)
(20)

and the gain matrix K(k) is given by the discrete-time KF equations, Gelb (1974).
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Figure 3. Simulation results, first example.

The simulation results shown in Figure 3 contain a comparison of transient performance of the NLO
and XKF with an EKF as well as a perfect LKF linearized about the true (unknown) trajectory for
reference (called LKF*). The control input u is a unit square wave signal with period 2π . It can be seen
that with the initial state x(0) = 0 and initial estimates at x̂(0) = x̄(0) = x̂E(0) = −3, the EKF does
not converge while all other estimators converge due to their GES property. In particular LKF* has a
very accurate initial linearization that is exploited to make an accurate correction using the measurement
already at time k = 0. In this example the measurement noise and process noise variances are R =
diag(1, 0.25), Q = 1, and the sampling interval is T = 0.01. The initial covariance estimate is P(0) = 1
in all cases, and the NLO gain is L = 0.1.

The steady state performance of the estimators is evaluated by choosing x̂(0) = x̄(0) = x̂E(0) = x(0),
i.e. perfect initialization. In this case also the EKF converges. The root-mean-squared error (RMSE) are
computed by averaging of these simulation results as σLKF∗ = 0.0461, σEKF = 0.0470, σNLO = 0.1330
and σXKF = 0.0471. The results show that both the EKF and XKF come quite close to the perfect
LKF*, despite the fact that the NLO has significantly higher errors. Hence, the errors in the NLO do not
propagate very strongly into the XKF through the linearization process in this example.

3.2 Nonlinear dynamics

Consider the first-order nominal nonlinear dynamics

ẋ = −2x+ x|x|+u (21)

y = x (22)

We note that this system is only locally stable. For this system an NLO can be desiged as

˙̄x = −2x̄+ x̄|y|+u+L(y− x̄) (23)
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(a) Initial condition x̂(0) = η(0) =−3.

(b) Initial condition x̂(0) = η(0) = 0.
Figure 4. Simulation results, second example. Note that the curves of the NLO and LKF* are almost indistinguishable in (a), while in (b) is
curves of the EKF, XKF and LKF* are almost indistinguishable from the true state.

The error dynamics x̆ = x− x̄ is given by the system

Σ2 : ˙̆x = (−2+ |y|−L) x̆ (24)

Choosing L = |y|+L0 leads to ˙̄x =−(2+L0)x̄ which is GES for any constant L0 >−2 which should be
chosen to achieve desired filtering performance. Discretization and design of EKF and XKF are similar
to the previous example.

The simulation results shown in Figure 4a illustrate transient performance of the NLO and XKF in
comparison with an EKF as well as a perfect LKF linearized about the true (unknown) trajectory for
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reference (LKF*). The control input u is a unit square wave signal with period 2π . It can be seen that with
the initial state x(0) = 0 and initial estimates at x̂(0) = x̄(0) = x̂E(0) = −3, the EKF does not converge
while all other estimators converge due to their GES property. In this example the measurement noise
and process noise variances are R = 0.25 and Q = 1, and the sampling interval is T = 0.01. The initial
covariance estimate is P(0) = 1 and the additional NLO gain is L0 = 0.

The steady state performance of the estimators is evaluated by choosing x̂(0) = x̄(0) = x̂E(0) = x(0),
i.e. perfect initialization. In this case also the EKF converges, as shown in Figure 4b. The root-mean-
squared errors (RMSE) are computed by averaging of these simulation results as σLKF∗ = 0.0075,
σEKF = 0.0071, σNLO = 0.0282 and σXKF = 0.0091. The results show that both the EKF and XKF
are not very far from the perfect LKF*, despite the fact that the NLO has significantly higher errors.

4 Conclusions

We study the cascade of a UGAS/USGES/GES nonlinear observer with the KF, where output of the
nonlinear observer is only used for linearization. The cascade is called an eXogenous KF (XKF) since
the linearization is based on an exogenous signal. It is shown that the XKF inherits the global stability
properties of the nonlinear observer. Examples illustrate that the estimation error of the multi-stage filter
can improve the performance of the NLO, and be close to the perfectly linearized KF. The examples also
illustrate that the XKF can preserve stability when the EKF is not stable.

Acknowledgments

Thanks to Graham Goodwin and Robert Mahony for interesting discussion on this idea. This work was
supported by the Research Council of Norway, Statoil, DNV GL and Sintef through the Centers of
Excellence funding scheme, Grant 223254 - Centre for Autonomous Marine Operations and Systems
(AMOS) and the Research Council of Norway through grants 221666 and 250725.

References

Anderson, B.D.O. (1971), “Stability properties of Kalman-Bucy filters,” J. Franklin Institute, 291, 137–
144.

Besancon, G. (ed.) Nonlinear Observers and Applications, Vol. 363 of Lecture Notes in Control and
Information Sciences, Springer Verlag (2007).

Brown, R.G., and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering, 3rd
edition ed., Wiley (2012).

Gelb, A. (ed.) Applied optimal estimation, MIT Press (1974).
Gustafsson, F., Statistical Sensor Fusion, Studentliteratur (2012).
Johansen, T.A., and Fossen, T.I. (2016), “Nonlinear Observer for Tightly Coupled Integration of Pseudo-

Range and Inertial Measurements,” IEEE Trans. Control Systems Technology, 24, accepted.
Johansen, T.A., Fossen, T.I., and Goodwin, G.C. (2016), “Three-stage filter for position estimation using

pseudo-range measurements,” IEEE Trans. Aerospace and Electronic Systems, 52, accepted.
Julier, S.J., and Uhlmann, J.K. (2004), “Unscented filtering and nonlinear estimation,” Proceedings of

the IEEE, pp. 401–422.
Kalman, R.E., and Bucy, R.S. (1961), “New results in linear filtering and prediction theory,” Trans.

ASME, Ser. D, J. Basic Eng, pp. 95–109.
Khalil, H.K., Nonlinear systems, Prentice-Hall (2002).



March 26, 2016 15:3 International Journal of Control nlo˙kalman˙final

10 REFERENCES

Loria, A., and Panteley, E. (2004), “Cascaded nonlinear time-varying systems: analysis and design,” in
Advanced Topics in Control Systems Theory eds. F. Lamnabhi-Lagarrigue, A. Loria and E. Panteley,
Springer-Verlag, London, chap. 2.

Luenberger, D.G. (1964), “Observing a state of a linear system,” IEEE Trans. Mil. Electronics, 8, 74–80.
Nijmeijer, H., and Fossen, T.I. (eds.) New directions in nonlinear observer design, Vol. 244 of Lecture

Notes in Control and Information Sciences, Springer Verlag (1999).
Panteley, E., and Loria, A. (1998), “On global uniform asymptotic stability of nonlinear time-varying

systems in cascade,” Systems and Control Letters, 33, 131–138.
Rao, C.V., Rawlings, J.B., and Mayne, D.Q. (2003), “Constrained State Estimation for Nonlinear

Discrete-Time Systems: Stability and Moving Horizon Approximations,” IEEE Transactions on Au-
tomatic Control, 48, 246–258.

Reif, K., Sonnemann, F., and Unbehauen, R. (1998), “An EKF-based nonlinear observer with a pre-
scribed degree of stability,” Automatica, 34, 1119–1123.

Simon, D., Optimal State Estimation. Kalman, H infinity, and nonlinear approaches, John Willey (2006).
Song, Y., and Grizzle, J.W. (1995), “The extended Kalman filter as a local asymptotic observer for

discrete-time nonlinear systems,” J. Mathematical Systems, Estimation and Control, 5, 59–78.
Stovner, B.B., Johansen, T.A., Fossen, T.I., and Schjølberg, I. (2016), “Three-stage filter for position

and velocity estimation from long baseline measurements with unknown wave speed,” in American
Control Conference.


