
Detection and Isolation of Propeller Icing and Electric Propulsion
System Faults in Fixed-Wing UAVs

O. M. Haaland, A. W. Wenz, K. Gryte, R. Hann, T. A. Johansen

Center for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics,
Norwegian University of Science and Technology, Trondheim, Norway

Abstract—Fault in the propulsion system of UAVs is one of
the main causes for incidents and loss of the aircraft. In electric
propulsion systems typical faults are ball-bearing degradation
leading to increased friction and losses, as well as propeller
icing when operating in cold conditions. In this paper we
propose a fault detection and isolation (FDI) framework that
uses model-based estimators of the various faults, implemented
with multiple Kalman and Bayes filters. The method is tested
and shown to be effective in a simulation setup using a fixed-
wing UAV simulator.

I. INTRODUCTION

There are many key challenges and risks related to the
increased utilization of unmanned aerial vehicles (UAVs) and
their integration into non-segregated airspace. It is widely
recognized that faults in the propulsion system is one of the
main risks that may lead to loss of aircraft and damage to
third parties. One particular risk is related to UAV propeller
icing, which is a major concern as it is known that a propeller
may loose 75% of its thrust after less than 2 minutes of
operation in severe icing conditions [1], [2], [3]. Notably, the
effects of icing are typically large on small UAVs because of
slow airspeed and small airframe sizes [4]. Many missions
that require beyond visual line of sight (BVLOS) operation
are at risk of encountering icing conditions if the pilot cannot
ensure that cloud environments are avoided [5], [24].

Electric propulsion system faults typically emerge gradu-
ally in the form of reduced efficiency or increased friction,
e.g., due to ball-bearing wear. While detection and diagnosis
of several types of propulsion system faults in UAVs is a
relatively well studied topic, e.g., [8], [9], [10], [11], [12],
[19], there is much less research on detection of propeller
icing on UAVs.

The problem addressed here is how to automatically detect
icing on the propeller on a fixed-wing UAV, and how to iso-
late this condition given that there could be several types of
faults in the electric propulsion system. The main idea of this
paper is to employ models of the propulsion system dynamics
[17] to formulate models corresponding to degraded perfor-
mance and failure modes. An algorithm for propeller icing
detection, fault detection and isolation is built by combining
multiple model Kalman filters in a Bayesian framework with
a Markov model for fault hypotheses. The method uses
measurements of the UAV’s airspeed, and the propulsion
motor’s angular speed and electric current. It is assumed that
the measurements are fault free, yet noisy, which is motivated

by the reliable nature of sensors for angular speed and electric
current, as well as the existence of methods that can detect
and estimate faults on air speed sensors [19], [20], [21],
[22]. This approach has some similarities to methods that
have been used for detection of airfoil icing, which has been
studied during the last years using various methods such as
model-based estimation [16], multiple-model estimation [14],
[13], and statistical fault diagnosis methods [15].

The main contribution and novelty in this paper is the
use of aerodynamic propulsion performance models and
estimation for propeller icing within an FDI framework. In
order to enhance the ability to isolate the fault, we also
employ a small change in airspeed.

The paper is organized as follows: Section II introduces
the basic model of the propulsion system, that is used
to formulate estimators, detection algorithms and diagnosis
logic in Section III. The proposed method is tested using
simulation of a fixed-wing UAV. The simulation setup is
described in Section IV and results are given in Section V,
before the conclusions in Section VI.

II. MODELING

This section introduces the electric propulsion model for
a fixed-wing UAV. Then, a state space model is used to
formulate different hypotheses about the propulsion faults
and propeller icing. The section ends with a parameter
estimation model that is formulated with a linear time-variant
(LTV) state-space representation.

A. Propulsion Model

The propulsion model of the UAV is based on modelling
of the electrical, mechanical and aerodynamic subsystems.
We only state the resulting equations here, and refer to [17]
for a more comprehensive description of the model:

Θω̇ = ke(Ie − I0)− cvω −Qa (1)

where in the nominal case we have

Qa = ρ
ω2

4π2
D5CQ(J) (2)

CQ(J) = CQ,0 + CQ,1J + CQ,2J
2 (3)

J = 2π
Va
Dω

(4)

Equation (1) gives the propeller torque balance, where ω
is the angular speed, Θ is the moment of inertia of the

shaft and rotor including the propeller, Ie is the motor
electric current, I0 is the zero-load current, cv is the viscous
friction coefficient, and ke is the motor constant. Equation
(2) describes Qa which is the aerodynamic torque created
by propeller drag, where D is the propeller diameter and ρ
is the air density. The thrust coefficient, CQ(J) is given by
a second order polynomial. This polynomial is a function of
the advance ratio J , where Va is the airspeed.

Our investigation with different fault detection and identifi-
cation methods has show that it is difficult, if not impossible,
to get reliable online estimates of the three coefficients of the
polynomial CQ(J) when they are estimated as independent
parameters. The reason is that the natural variations in J are
relatively small, and even with extensive airspeed changes
and maneuvers designed to increase the observability of these
parameters, it turns out to be difficult to get sufficiently
accurate estimates to reliably detect icing and isolate it from
faults.

Instead, we assume that icing has a linear scaling effect on
CQ(J). The scaling is parameterized by the scalar variable θ1
with nominal value θ∗1 = 1. The model can then be described
as

Qa = Q∗a · θ1 (5)

where Q∗a = ρ ω
2

4π2D
5CQ(J) is defined by the nominal

(ice-free) values of the coefficients in CQ(J). Icing is then
characterized by θ1 > 1.

Preliminary findings from icing wind tunnel tests suggest
that the scalar multiplicative icing model, as given in equation
(5), could be well suited to describe the icing dynamics when
the changes in airspeed is small.

B. System Faults and Degradation due to Icing

We will now concretize the meaning of the fault concept.
We shall then formalize the fault states of the system.

System faults and degradation occur whenever any of the
parameters of the system deviate from its nominal value. To
represent this, the nominal parameter vector x∗ is introduced:

x∗ = [θ∗1 c∗v I∗o]T

The nominal vector x∗ gives the parameter values of a fault-
free and non-degraded system, which is related to the actual
parameter vector x and the deviation ε through the equation
x = x∗ + ε. Note that these vectors are partitioned into:

x =

 x(1)

x(2)

x(3)

 (6)

where x(1) contains the first element, x(2) contains the
second- and x(3) contains the third element. The same
notation is also used for ε and similar vectors.

A fault in the propulsion system is present whenever any
element in ε is sufficiently different from zero. However, a
simultaneous occurrence of multiple faults would be exceed-
ingly rare. Thus, it is assumed that only one error can occur
at a time. The propulsion system has 4 possible states related

to faults and degradation. The following will be referred to
as the fault states m:

0) No fault: x = x∗

1) Propeller icing: x(1) 6= x(1)∗

2) Change in viscose friction: x(2) 6= x(2)∗

3) Change in static friction: x(3) 6= x(3)∗

Note that we will also refer to the much simpler binary
state: healthy vs. faulty. Both states are modeled as Markov
processes. We refer to the two Markov processes as the

Health Model: health ∈ {Healthy, Faulty}
Fault Model: fault ∈ {0, 1, 2, 3}.

Thus, the health state reefer to the state of the health model.
Similarly, the fault state reefer to the Fault model. The
Markov chains are illustrated in Figure 1.

Fig. 1. Left: The Markov chain of the Health state. Right: The Markov
chain of the Fault state.

Both models have associated transitions probabilities.
These are defined by a transition matrix

Πi
k,k∆

=

π1,1 . . . π1,n
... . . .

...
πn,1 . . . πn,n

 ∈ Rn×n (7)

where i ∈ {f, h} refers to the given model, and n is the
number of states. The Health state has n = 2 and the Fault
state has n = 4. πi,j = p(mk = j|mk∆ = i) gives the
transition probability from state i to j. The first row therefore
gives the transition probability from a fault free state to any
other state.

C. State Space Representation for Estimation

The parameters are assumed to evolve according to a
random walk process. Thus, any change from time index k
to k+ 1 is only attributable to process noise vk. This results
in a process model given by

xk+1 = xk + vk (8)

The measurement model of the system is derived from the
torque balance in the system model given by equation (1).
The airspeed Va, angular velocity ω and the motor current Ie
are assumed to be measured. Substituting equation (2), (3),
(4) and the parameter vector xk into equation (1) yields

yk = [Qa ω ke]xk + wk (9)

with yk = −keIe + Θω̇. In cruise mode the UAV speed
controllers will maintain an almost constant propeller speed.
This motivates the simplifying assumption that

ω̇ = 0 (10)

which leads to yk = −keIe. This assumption will be used in
the fault detection algorithms in this paper. The measurement
model (9) forms the basis for the measurement matrices
C

(1)
k = Qa, C(2)

k = ω and C(3)
k = ke. This leads to

yk = [C
(1)
k C

(2)
k C

(3)
k]

x
(1)
k

x
(2)
k

x
(3)
k

+ wk (11)

vk ∼ N (0,Q), wk ∼ N (0, R) (12)

Notice that yk and Ck are time dependant functions of ω,
Va and Ie. This relationship is implicitly assumed throughout
the paper. The variables ω, Va and Ie will often be refereed
to as a the measurement, zk = [ω, Va, Ie].

III. FAULT DETECTION AND DIAGNOSIS

We present a framework for sequentially detecting faults
and icing, and then correctly identifying the fault state. The
framework will therefore be presented as modules. We start
by an overview of the main algorithm and the formulation
of multiple relevant hypotheses. The key elements of the
algorithm are then described in more detail: the Kalman filter
and the Bayes filter. Then, the detection and identification
algorithms are presented.

The FDI framework presented here can be generalized and
applied to other FDI problems. This allows the adoption of
this algorithm to a wide range of UAV electric propulsion
systems. However, some design decisions in this FDI algo-
rithm are based on specific model assumptions.

A. Main idea

This section describes the system transitions between the
detection step and the isolation step. This entails giving a
descriptive overview of the relevant signals and how they
propagates through the system.

The detection step is concerned with the Markov process,
referred to as the Health model. It aims to detect transitions
from healthy to faulty. It therefore provides a binary hypoth-
esis, transition to fault or no fault. This is formalized with
the detection hypothesis HD:

HD ∈ {true, false} (13)

The isolation step is concerned with the Fault state. It
attempts to determine witch transition is most likely to have
occurred. The hypothesis space is therefore

HI ∈ {0, 1, 2, 3} (14)

where HI = 0 is no fault, HI = 1 is fault 1 (icing), HI = 2
is fault 2, and HI = 3 is fault 3.

The structure of the algorithm is shown in Figure 2. It is
assumed that the UAV is initially in a fault free state. The

detection algorithm is initialized with the nominal state x(∗)

and processes a stream of measurements zk. The detection
algorithm executes until a fault is detected. This can be seen
in the feedback loop shown in Figure 2. If a fault is detected
(HD = false), then the algorithm will start the identification
algorithm and send a command for a small change in airspeed
to the autopilot in order to enhance observability through
excitation.

Inputs to the isolation algorithm are the measurement zk
and the nominal state x(∗). The isolation algorithm will
after convergence output an hypothesis HI , where HI = 0
implies that the detection algorithm had a Type 1 error (false
detection), whereas HI = i > 0 imply that the system is in
fault state i.

Fig. 2. The data flow of the FDI algorithm. It can be seen that the detection
algorithm will launch the isolation algorithm if a fault is found. Dashed lines
represents a binary/integer signal. Solid lines represent continuous values.

B. Estimation

The Kalman filter and the Bayes Filter will now be
introduced [18]. These will be used by both the detection
and the isolation step. We also formalize the concept of a
static hypothesis models.

1) Kalman Filter: For each of the fault modes a Kalman
filter is formulated. Since it is assumed that only one fault
can occur at the time, the process noise is only affecting one
of the sub-states x(i), while the other states can be treated
as constant. The state space model can therefore be rewritten
as

x
(i)
k+1 = x

(i)
k + v

(i)
k (15)

y
(i)
k = C

(i)
k x

(i) + [C
(j)
k C

(`)
k]

[
x(j)∗

x(`)∗

]
+ wk (16)

where j and ` denote the two remaining modes other than
i. The filters will have the same form for each mode i ∈
{1, 2, 3}. We refer to the Kalman filter of model i as KF (i).
The prediction step is given by:

x̂
(i)
k|k−1 = x̂

(i)
k−1, ∈Rδi (17)

P
(i)
k|k−1 = P

(i)
k−1 +Q(i), ∈Rδi×δi (18)

ŷ
(i)
k|k−1 = C

(i)
k x̂

(i)
k|k−1, ∈R1 (19)

The update step is given by

ν
(i)
k = yk − ŷ(i)k|k−1, ∈R1 (20)

S
(i)
k = C

(i)
k P

(i)
k|k−1C

(i)T
k +R, ∈R1×1 (21)

W
(i)
k = P

(i)
k|k−1C

(i)T
k (S

(i)
k)−1, ∈Rδi×δi (22)

x̂
(i)
k = x̂

(i)
k|k−1 +W

(i)
k ν

(i)
k , ∈Rδi (23)

P
(i)
k = (I −W (i)

k C
(i)
k)P

(i)
k|k−1, ∈Rδi×δi (24)

where δi = dim(x(i)) is the dimensionality of the state x(i).
Thus, the dimensions of the equation (17) and (18) depend
on the mode i. This is illustrated in Figure 3, which shows
3 filters running in parallel.

Also note that the covariance of the measurement noise
R in equation (21) is the same for all modes. This follows
from the fact that all filters depend on the same physical
measurements.

2) Static Hypothesis Models: We will introduce the so-
called Static Model Hypotheses, which are models that as-
sume that the model parameters remain fixed. For the fault
free case, this gives

Y
(0)
k = yk − [C

(1)∗
k C

(2)∗
k C

(3)∗
k]

x
(1)∗
k

x
(2)∗
k

x
(3)∗
k

+ wk

= yk −C∗kx∗k + wk

(25)

Note that we will also make use of static models for fault
state i ∈ {1, 2, 3}. In this case it is assumed that some
estimate x̂(i)

ks
was sampled at time ks ≤ k. This gives rise to

the static measurement model

Y
(i)
k = C

(i)
k x̂

(i)
ks

+ [C
(j)
k C

(`)
k]

[
x
(j)∗
k

x
(`)∗
k

]
+ wk (26)

The static measurement models directly output the innovation
ν
(i)
k . The covariance S(i)

k of ν(i)k is given by the measurement
noise:

ν
(i)
k = Y

(i)
k (27)

S
(i)
k = R (28)

R will be the same for all static filters. In the reminder, the
context (i.e block diagrams in Figures 3 and 4) should make
it intelligible when ν

(i)
k and S

(i)
k are taken from the static

hypothesis model and when they are taken from a Kalman
filter.

3) Bayes Filter: The Bayes filter allows us to directly
compare the performance of various hypotheses Hi corre-
sponding to modes i ∈ {0, 1, 2, 3}. The filter follows directly
from Bayes Theorem [18]:

p(Hi|z0:k) =
N (ν

(i)
k , 0, S

(i)
k)p(Hi|z(i)0:k−1)∑M

j=0N (ν
(j)
k , 0, S

(j)
k)p(Hj |z(j)0:k−1)

(29)

where N (ν
(i)
k , 0, S

(i)
k) is the (Gaussian) likelihood of the

zero-mean innovation ν(i)k given covariance S(i)
k . The Bayes

filter can compare a set of filters Y (i), i ∈ {0, 1, 2, 3} and
KF (j), i ∈ {1, 2, 3} based on the likelihood:

`(i) = N (ν(i), 0, S) (30)

where ν(i) varies with the filters. This paper will be limited
to using S

(i)
k = R for i ∈ {0, 1, 2, 3}, where R is given by

equation (28). Further, R will be the same for every model.
This goes for both the Kalman- and Bayes filters.

The innovation covariance S determine Bayes Filter sensi-
tivity. To see this, consider the zero-mean Gaussian probabil-
ity density functions (PDF) defined by S. Thus, for to (differ-
ent) innovations, ν(i) > ν(j) would imply `(ν(i)) < `(ν(j)).
The smaller the S(0)

k is, the more narrow the distribution will
be. This will increase the probability differences between the
innovations. For example, the Gaussian zero mean likelihoods
`n(·) and `m(·) have variances, Sn and Sm. Sn < Sm will
then imply that `n(ν(i)) − `n(ν(j)) > `m(ν(i)) − `m(ν(j)).
Thus, smaller values of S, make the algorithm sensitive to
differences between the innovations.

The Bayes filter is recursive and initialized according to
the prior p(Hi|z(i)0) = p(Hi). We always assume that the
system starts in the fault free case. The prior is therefore
given by the first row of the Markov matrix. Keep in mind
that we are operating with two different Markov models. The
Health model will initialize according to Πh, while the Fault
model will use Πf .

The concept of a detection/isolation window L, can be
introduced at this point. The window L determines the length
of time (or number of samples) the Bayes Filter should
process before returning an hypothesis. For example, L = 10
seconds would mean that the Bayes Filter would process the
data from the last 10 seconds. The mode i, with the highest
probability would then be returned as the hypotheses. This
paper will make reefer to both a detection- and an isolation
window. These are the windows used be the respective
algorithms.

We conclude our discussion by noting how this filter is
different from the Magill filter [23]. This implementation use
that S(i)

k = R. This yields a static measurement covariance.
Contrarily, the Magill filter receive S(i)

k directly from Kalman
filter KF (i), as given in equation (21). Our reasoning is that
using equations (21) for calculating S(i)

k would make filters
probability differ substantially. This is because the process
noise Q(i) will directly affect S(i)

k . This can be seen in
equations (18) and (21). The effect is prominent since the
process noise will differ, by orders of magnitude, between
models. Thus, different values of S(i)

k is likely to introduce
big variations in `(i). However, the magnitude of the process
noise of one filter should should not make it more (or less)
likely than other filters.

C. Fault Detection

The fault detection algorithm aims at detecting faults as
defined in equation (13). A basic idea is to use a Bayes filter
to compare the output of a Kalman filter, KF (i), against the

static zero hypothesis model, Y (0)
k . A fault is detected if some

Kalman filter, KF (i) i ∈ {1, 2, 3} outperforms the fault-free
static model Y (0)

k during the interval {k − L, ..., k − 1, k},
where the integer L is referred to as the detection window.

Fig. 3. Block diagram with detection algorithm.

A block diagram of the algorithm is given in Figure 3. It
can be seen that the measurement zk is propagated through
three computational layers before a hypothesis HD formed.
The layers are as follows:

1) The Kalman filters and static model use the measure-
ment zk as input and outputs:

(ν
(i)
k , S

(i)
k)← KF (i)(zk), i ∈ {1, 2, 3}

(ν
(0)
k , S

(0)
k)← Y

(0)
k (zk)

2) Each Bayes Filter receives the data from one Kalman
filter and the static hypothesis model. They each form
a hypothesis based on the L last samples

Hi ← BF (i)((ν
(0)
k , S

(0)
k), (ν

(i)
k , S

(i)
k)), i ∈ {1, 2, 3}

3) The hypotheses are combined using a logical OR gate:

HD = H1 ∨H2 ∨H3

Each Kalman filter, KF (i), is initialized to x(i)∗. The
estimate x̂(i)

k will then be updated as measurements zk are
made available.

Note that we use 3 different Bayes Filters. Each filter
is initialized according to the transition probability given
by the first row of Πh. Each Bayes Filter is designed to
detect different faults. This partitioning avoids the situation
in which different filters KF (i) start competing for the
probability space. This could occur because multiple Kalman
filters often outperform the static model Y (0) when an error
occurs. In practice, the detection window reinitializes the
filter probabilities to the prior distribution.

D. Fault Isolation

The fault isolation algorithm aims at isolating the true
system fault after some fault has been detected. The basic
idea of the algorithm is to generate a set of static model
hypotheses, and alter the airspeed to introduce a perturbation.
The static model of the true model hypothesis will then
outperform the false ones that will drift as a consequence of

the perturbation. It is important that the models have static
parameters because otherwise the parameter estimation will
eventually mask the faults and not be helpful to isolate them.
A block diagram of the algorithm is given in Figure 4.

The isolation algorithm works as follows

1) The airspeed Va is increased. All Kalman filters es-
timates x̂(i) will quickly change due to the airspeed-
change. The estimates are then given time to stabilize.
This step can be seen in Figure 2.

2) The algorithm then samples the estimates x̂(i)
kS

at some
time ks. The time ks is given by a clock signal, as
shown in Figure 4. This is used to generate the static
models

Y (i) ← x̂
(i)
ks
, i ∈ {1, 2, 3}

3) The airspeed Va is decreased, back to its original value.
4) The innovations ν(i) of the static models are given to a

Bayes filter. The filter generates a hypothesis based on
the last L samples. The filter is initialized according to
the first row of Πf .

HI ← BF (i)(ν
(i)
k−L,...,k)), i ∈ {1, 2, 3}) (31)

E. Algorithm Tuning

The success of the FDI framework depends on rigours
tuning. The most important tuning aspects must therefore be
discussed. We will specifically cover how to tune both the
Kalman Filter and the Bayes filter.

1) Kalman filters: Tuning the Kalman filters is essential
for achieving a good results. However, it is assumed that the
reader is familiar with the tuning Kalman filters. The three
most important will therefore be covered briefly.

1) The process noise covariance Q(i)
k of Kalman filter

KF (i), should be commensurate with the magnitude
and time constant of the fault dynamics. Furthermore,
different faults, e.g ε(i) and ε(j), will tend to differ
in these respects. Thus, the filters must be tuned
independently.

2) The response time of a filter may be more important
than its accuracy. Keep in mind that the purpose of
the filters is to detect faults quickly. Furthermore,
the isolation algorithm should not be executed before
the Kalman filters have stabilized around some value.
Thus, a quick filter is desirable. An example of this
can be seen in Figure 8. The top plots shows the a
noisy estimate of x(2). The given filter was excellent
at detecting faults quickly.

3) The goal is not to achieve a perfect estimate. The
important point is that the correct filter outperforms
all other filters. Figure 7 exemplify this. It is easy to
see that the estimate of x(1) is both slow and noisy.
This is due to a low signal to noise ratio. However, the
filter still performs adequately for both identification
and isolation.

Fig. 4. Block diagram with fault isolation algorithm

2) Bayes filter: The tuning of the Bayes Filter determines
both the success of the detection- and isolation step. The
main tuning parameters are:

1) S(i)
k : The innovation variance of the Bayes filter (witch

determine the sensitivity).
2) Πf and Πf : The Markov matrices (which determine

the prior probability distributions)
3) L: The window length (which determine how many

samples the filter should use)
There will always be an interplay between these parameters,
which should be kept this in mind as we discuss them
separately. For example, high sensitivity will allow for a
shorter window length. The following will frequently refer
to Figure 5. Note that this figure is the result of simulations,
as covered in V.

The sensitivity is the most crucial aspect of the tuning
process. Its effect can be seen in figure 5. The all the plots
in the left column shows scenarios where the system is fault
free. The right column show scenarios where the system is
subjected to icing. Note that the icing has developed when
the filter initialize. Thus, no change in θ1 occurs during the
execution. The plots in the top row has the highest sensitivity.
The sensitivity then decrease down the rows. The innovation
ν(1), from Kalman filter KF (1) is exactly the same within
each column.

It should be clear from the top left plot, that high sensitivity
has obvious problems: The risk of false positives increase
drastically. Notice that the red line, i.e the false hypothesis,
almost surpass the blue line multiple times. High sensitivity
also comes with a clear advantage: fast convergence rates.
This can be seen in the top right. The correct hypothesis is
isolated in about 10 seconds. The opposite extreme is found
in the bottom row. The bottom left show that low sensitivity
makes a false positive very unlikely. However, the bottom
right shows that detecting the fault would take more than 3
minutes. A compromise is found in the middle row. This was
the sensitivity level which functioned best in the simulations.

The detection window length L, must be adapted to the
sensitivity. The horizontal lines of figure 5 show various
options for L. Keep in mind that the algorithm will choose
the hypothesis with the highest value. This happens when the
lines reach the end of a detection window. It should be clear

that we must chose a window that is long enough for the
correct solution to be chosen. At the same time, the window
must not be too long. This has the aforementioned problem
that a fault would not be detected fast enough. Furthermore,
a core model assumption is that the system does not change
state while the Bayes Filter is running. For the simulations,
a 100 second window was chosen.

The Transition probabilities also play an important role.
All the plots in Figure 5 are initialized with the same prior
distribution. However, it should be easy to imagine the effect
on different priors. For example, the top left plot would in
many instances return a false positive if the lines started
closer together. Oppositely, the bottom right plot would return
a true positive, if the lines started closer together.

It is straight forward to imagine more sophisticated ap-
proaches to determine both Πh and Πf . The transition
probabilities could be, for example, varied according to
environmental factors, such as power load, temperature and
humidity. However, in the simulations, the Markov matrices,
Πh and Πf were selected as simple as possible. Furthermore,
only the first row of Πh and Πf are of interest. This follows
from the fact that all simulations are initialized in a healthy
state. The first row of both matrices gives the transition
probabilities from healthy states. For the detection step, the
first row of Πh was set to:

Πh
1 =

[
2
3

1
3

]
(32)

Thus, remaining in a healthy state is considered twice as
likely as transitioning to a faulty state. The isolation step
assumes a discrete uniform distribution:

Πf
1 =

[
1
4

1
4

1
4

1
4

]
(33)

It is often assumed that the probability of remaining in the
current state has the highest probability. However, it should
be accounted for that Πf is only used if the detection step
has found a transition. This transition introduces a prior that
should be accounted for in Πf .

F. Evaluation Criteria

Specific evaluation criteria has been set to evaluate the
algorithm. The criteria specify a baseline for what the
algorithm must achieve in order to be considered functional.

0 20 40 60 80 100 120 140 160 180

Time [s]

0.2

0.4

0.6

0.8

P
ro

b
a

b
ili

ty
True Fault:0, S=5.000000e-05

5
0
 s

e
c
o

n
d

s

1
0
0
 s

e
c
o

n
d

s

1
5
0
 s

e
c
o

n
d

s

0 20 40 60 80 100 120 140 160 180

Time [s]

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

True Fault:1, S=5.000000e-05

5
0
 s

e
c
o

n
d

s

1
0
0
 s

e
c
o

n
d

s

1
5
0
 s

e
c
o

n
d

sY(0)

KF (1)

Short detection window

Moderate detection window

Long detection window

0 20 40 60 80 100 120 140 160 180

Time [s]

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty

True Fault:0, S=1.000000e-04

5
0
 s

e
c
o

n
d

s

1
0
0
 s

e
c
o

n
d

s

1
5
0
 s

e
c
o

n
d

s

0 20 40 60 80 100 120 140 160 180

Time [s]

0.2

0.4

0.6

0.8

P
ro

b
a

b
ili

ty

True Fault:1, S=1.000000e-04

5
0
 s

e
c
o

n
d

s

1
0
0
 s

e
c
o

n
d

s

1
5
0
 s

e
c
o

n
d

s

0 20 40 60 80 100 120 140 160 180

Time [s]

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty

True Fault:0, S=2.000000e-04

5
0
 s

e
c
o

n
d

s

1
0
0
 s

e
c
o

n
d

s

1
5
0
 s

e
c
o

n
d

s

0 20 40 60 80 100 120 140 160 180

Time [s]

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty

True Fault:1, S=2.000000e-04

5
0
 s

e
c
o

n
d

s

1
0
0
 s

e
c
o

n
d

s

1
5
0
 s

e
c
o

n
d

s

Fig. 5. All plots shows the output of a Bayes Filter during the detection step. The system is healthy, (fault = 0) in all the plots in the left column. The
blue line therefore represents the true hypothesis in the left columb. The system subjected to is in fault state 1 in all the plots in the right column. The
sensitivity of the filters is highest in the top row. The lowest sensitivity can be found in the bottom row. Thus, the red line represents the true hypothesis
in the right column. The vertical dashed lines illustrate possible values of the detection window, L.

The evaluation criteria define a binary set of requirements:
These are as follows:

1) False Alarm rate should be zero: The algorithm should
not conclude that a healthy system has transitioned to
a faulty state.

2) Fault detection rate should be 100%: The algorithm
should always conclude that a faulty system has tran-
sitioned to a faulty state.

3) Fault Isolation should have 100% accuracy: The algo-
rithm should always isolate the correct fault state of
the system.

The presented algorithm is still at low technology readiness
level. The presented results is therefore focused on satisfying
these criteria using simulations. This allow us to determine
proof of concept. Future work should introduce performance
metrics for assessing an operational range. For example, what
is the highest level of measurement noise the algorithm can
function in? How quickly can a fault be detected?

IV. SIMULATION SETUP

The simulations were performed using the Ardupilot
software-in-the-loop framework. This framework interfaces
a flight dynamics simulator implemented in Simulink. The
Simulink model includes the propulsion model (1) – (4) and
aerodynamics of the X8 fixed-wing UAV based on [7], [6].
This work has been further developed by the inclusion of
fault dynamics.

Only a subset of the possible transitions will be simulated.
The system always start in a healthy state. The system will
either stay in this state or transition to a faulty state. The
implication of this is that the transitions from a faulty to
a healthy state is neither modelled or simulated. This be
visually understood by noting that the system always start in

the green circles in Figure 1. Naturally, future work should
encompass all possible transitions.

A. Simulated Fault dynamics

The fault dynamics are simulated using a sigmoidal func-
tion, gradually increasing between over 50 seconds. This
occur after around 90 seconds, as illustrated in Figure 6.
This is a pragmatic choice to model a system where a
mathematical model is lacking. All the systems faults are
simulated according to the same sigmoidal function. This
goes for both the rise time and the relative growth of the
fault.

For a given fault, the associated variable reach a steady
state after a proportional change by a factor of 1.1. This is
exemplified in figure 6. The figure shows the fault develop-
ment of θ1.

50 100 150

Time [s]

1

1.05

1.1

x
(1)

1
 =

1

Fig. 6. This plot shows simulated fault dynamics of x(1).

B. Measurement Noise

The framework relies on measuring ω, Va and Ie. Nat-
urally, these measurements will be subjected to noise, wi,
wVa , and wω . This noise has been simulated as additive, zero
mean, Gaussian noise. The standard deviation of the given
noise has been chosen to lie between 0.1% and 0.2% of the

mean signal values, i.e. ω has noise covariance 5 · 10−1, Va
has covariance 7 · 10−4, and Ie has covariance 10−5.

Note that it is permissible for these noise levels to be
less than that of real world sensors. This is because the
model is not limited to raw measurements. For example, the
FDI typically runs at a lower sampling rate than the raw
measurements, which means that decimating (or averaging)
several measurements would effectively reduce the noise.
Moreover, the electrical model from [17] opens the door to
estimating ω or Ie, or both, with a Kalman filter. The model
could then make use of the less noisy ω̂ and Îe.

The square terms in equations (3) and (4) will affect the
noise. Specifically, the squaring of Gaussian noise compo-
nents will result in the introduction of χ2 noise terms. Thus,
the distribution of the measurement noise wk from equation
(11), will be a mixture of Gaussian and χ2 terms. Thus, the
expected value of wk will be positive. This will introduce a
bias to the system. However, for the given noise levels, this
bias is small enough to be ignored.

V. SIMULATION RESULTS

Four different simulation scenarios are used to illustrate
the performance of the presented fault detection and isolation
system, one for each of the fault states listed in Section II-B.
For the given implementation, the system satisfies the criteria
we defined in section III-F for all four scenarios.

The results of the detection and isolation are covered
separately. However, one should keep in mind that the FDI
algorithm is only successful if both steps succeed. In the
results we show a series of probability plots over time. Such
plots can be seen in Figure 5, for example. These plots show
the result of the Bayes filter iterating over a window of length
L. The graph with the highest value at the end of the window
is chosen as the most likely hypothesis. Note that the Bayes
filter is generally not run over the entire data set. Instead, it
is reinitialized to its priors and executed periodically.

A. Detection

It has been found that all fault scenarios can be detected
using our method. We also found that false positives can be
avoided through good tuning.

1) No-fault scenario: The algorithm was successful in
avoiding false alarms. The algorithm did not show any false
alarms in the chosen scenario. Note that this is the result of
tuning for this scenario and should be analyzed over a wider
range of scenarios.

2) Propeller icing scenario: The propeller icing x(1) was
successfully detected. This can be seen in the bottom row
of Figure 7. The plots shows various Bayes Filter outputs
throughout the simulation. The columns represent slices in
time. Each row shows the probability of a particular Kalman
filter. The goal here is for the red line to climb above the blue
line (no fault). This signifies a successful detection. It can be
seen that the it takes over 100 seconds (after the fault occur)
before the error is detected. The slow detection time is in
large part due to the slow convergence of the state estimate

x(1), as can be seen in the top plot of 7. It can be seen in
the top plots of Figure 8 and 9 that x̂(2) and x̂(3) converge
much faster. This results in shorter detection times.

An overview of KF (1) can be seen in the top plots of
Figure 7. The top plot shows the true parameter and the
Kalman filter estimates. The plot also show the Fault free
(nominal) parameters. It should be evident that the filter
estimates ˆx(1) with moderate success. This is a result of
the low signal to noise ratio between aerodynamic thrust
coefficients and the measurement noise. The middle plot
show that the error covariance P (1) stops decreasing after
about 300 seconds.

0 100 200 300 400 500 600 700

Time [s]

0.95

1

1.05

1.1

1.15

KF (1) : x
1

 estimate

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1
Error covariance

P
(2)

1,1

0 10 20

Time [s]

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty

Detection probability

160 180 200 220 240 260

Time [s]

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty

Detection probability

300 350 400

Time [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
a

b
ili

ty

Detection probability

Y
(0)

KF
(1)

Fig. 7. Fault scenario 1: Top plots show state and its estimate. The
middle plot show the error covariance P . The bottom row display detection
probabilities at different slices in time.

3) Change in viscous friction scenario: The detection al-
gorithm detected the change in viscose friction x(2) quickly.
This can be seen in Figure 8. The top plot shows the
dynamics of x(2) and the estimate x̂(2). It can be seen that
the estimate x̂(2) responds quickly to the change. This allows
the fault to be detected very quickly. The fast detection can
be seen in the 3 bottom plots of Figure 8. The Bayes filter
becomes very confident 30 seconds after the error occurs.

Note that the estimate x̂(2) looks noisier than the esti-
mate x̂(3) (see figure 9). However, x(2) is many orders of
magnitude smaller than x(3). Furthermore, both estimates are
subjected to the same measurement noise.

30 40 50 60 70 80 90 100 110 120 130

Time [s]

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
10 -5

hat-x (2)

x (2)

x (2*)

40 60

Time [s]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
ro

b
a

b
ili

ty

Bayes Filter

Y(0)

KF(2)

60 80 100

Time [s]

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Bayes Filter

Y(0)

KF(2)

100 120

Time [s]

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Bayes Filter

Y(0)

KF(2)

Fig. 8. Fault scenario 2. Top: True value and estimate of x(2). Bottom:
Probability plots from Bayes Filter at various time instances.

4) Change in static friction scenario: The change in static
friction x̂ was successfully detected. The results of the
estimation can be seen in Figure 9. Note that both the results
and their plots are more or less the same as that of the change
in viscous friction in Section V-A3.

20 40 60 80 100 120 140

Time [s]

1.95

2

2.05

2.1

2.15

2.2

hat-x (3)

x (3)

x (3*)

20 40 60

Time [s]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
ro

b
a

b
ili

ty

Bayes Filter

Y(0)

KF(3)

60 80 100

Time [s]

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Bayes Filter

Y(0)

KF(3)

100 150

Time [s]

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Bayes Filter

Y(0)

KF(3)

Fig. 9. Fault scenario 3. Top: True value and estimate of x(3). Bottom:
Probability plots from Bayes Filter at various time instances.

B. Isolation

The isolation algorithm manages to find the correct fault
for all fault scenarios. This can be seen in Figure 10. The plot

shows the output of the Bayes filter. It can be seen that the
algorithm was successful in every case. However, it is clear
that the icing fault is the hardest one to isolate. This can
be seen in the top plot of Figure 10. Notice that Y (1) only
marginally outperforms Y (0). The two plots below show Y (2)

and Y (3). The Bayes filter was executed 40 seconds after the
second air speed change (see Figure 11).

0 5 10 15 20 25 30 35 40

Time [s]

0

0.2

0.4

0.6

P
ro

b
a

b
ili

ty

Fault =1

0 5 10 15 20 25 30 35 40

Time [s]

0

0.5

1

P
ro

b
a

b
ili

ty

Fault =2

0 5 10 15 20 25 30 35 40

Time [s]

0

0.5

1

P
ro

b
a

b
ili

ty

Fault =3
Y

0

Y
1

Y
2

Y
3

Fig. 10. Results of isolation algorithm for all faults. Left: True Fault = 1,
Isolation hypothesis = 1. Middle: True Fault = 2, Isolation Hypothesis = 2,
Right: True Fault = 3, Isolation Hypothesis = 3

The effectiveness of the isolation algorithm can also be
seen in Figure 11. The true fault is given by HI = 2. The left
most bottom plot shows that finding the correct hypothesis,
prior the identification step, is a challenging problem. In this
plot, we see that the wrong hypothesis would have been
chosen. One should also note the horizontal green lines in
the two plots in the middle. The two horizontal green lines
shown in the two plots indicate the parameter values chosen
in the static models Y (2) and Y (3). These are generated right
before the decrease in airspeed. Observe that the estimate
x̂
(2)
k ≈ x̂

(2)
ks

and thus remains stable for all k > ks. Contrary
to this, it is found that both x̂(3)

k diverges from x̂
(3)
ks

and
x̂
(1)
k diverges from x̂

(1)
ks

. It is these divergences that results
from the perturbation of Va that allows the isolation algorithm
to find the true fault. The bottom right plot shows how the
Bayes Filter confidently isolate returns HI = 2. Note that
this scenario, the fault dynamics only gave a 1% increase in
x(2).

VI. CONCLUSIONS
In this paper we propose a fault detection and isolation

(FDI) framework for propeller icing and electric propulsion
system faults. The method uses model-based estimators of
the various faults, implemented with multiple Kalman and
Bayes filters that are used to build separate detection and

400 450 500 550 600 650

Time [s]

18

20

22
True fault state = 2

V
a

V
a,ref

400 450 500 550 600 650

Time [s]

6

6.2

400 450 500 550 600 650

Time [s]

0.9

1

1.1
10 -5

400 450 500 550 600 650

Time [s]

1.985

1.99

1.995

420 430 440 450 460

Time [s]

0

0.5

1
Before airspeed change

Y
(0)

KF
(1)

KF
(2)

KF
(3)

600 610 620 630 640

Time [s]

0

0.5

1
After airspeed change

Y
0

Y
1

Y
2

Y
3

Fig. 11. Illustration of the isolation algorithm. The top plot shows the
airspeed and its reference. The plots in the middle shows dynamic and static
estimates. The bottom plots show outputs of the Bayes filter before and after
the static filters are generated.

isolation algorithms. Clear evaluation criteria was defined for
the method. The method is tested and shown to satisfy all
the criteria in a simulation setup using a fixed-wing UAV
simulator. Specifically, the method can detect and isolate
faults corresponding to about 10 % change in parameter
values.

ACKNOWLEDGEMENTS

This research was funded by the Research Council of
Norway (RCN) through the Centres of Excellence fund-
ing scheme, grant number 223254 – NTNU AMOS, by
RCN, Maritime Robotics and Equator Aircraft through the
BIA FlightSmart project grant 282004, by RCN and UBIQ
Aerospace through the BIA D*ICE Rotors project grant
296228, and a innovation scholarship provided by the Norwe-
gian University of Science and Technology. We are grateful
to Nicolas Müller at UBIQ Aerospace for sharing insights
and experimental data on propeller icing.

REFERENCES

[1] Yang Liu, Linkai Li, Zhe Ning, Wei Tian and Hui Hu, Experimental
Investigation on the Dynamic Icing Process over a Rotating Propeller
Model J. Propulsion and Power, Vol. 34, pp. 933–946, 2018

[2] Yang Liu, Linkai Li, Wenli Chen, Wei Tian, Hui Hu, An experimental
study on the aerodynamic performance degradation of a UAS propeller
model induced by ice accretion process, Experimental Thermal and
Fluid Science, vol. 102, pp. 101-112, 2019

[3] N. Müller, R. Hann, T. Lutz, The Influence of Meteorological Con-
ditions on the Icing Performance Penalties on a UAV Propeller,
Deutscher Luft- und Raumfahrtkongress (DLRK), 2020

[4] R. Hann, T. A. Johansen, UAV Icing: The Influence of Airspeed and
Chord Length on Performance Degradation, Aircraft Engineering and
Aerospace Technology, 2021

[5] B. C. Bernstein, C. A. Wolff, F. McDonough, An Inferred Climatology
of Icing Conditions Aloft, Including Supercooled Large Drops. Part
I, Journal of Applied Meteorology and Climatology, vol. 46, pp.
1857–1878, 2007

[6] A. Winter, R. Hann, A. Wenz, K. Gryte, T. A. Johansen, Stability of a
Flying Wing UAV in Icing Conditions, 8th European Conference for
Aeronautics and Space Sciences (EUCASS), Madrid, 2019

[7] K. Gryte, R. Hann, M. Alam, J. Rohác, T. A. Johansen, T. I. Fossen,
Aerodynamic modeling of the Skywalker X8 Fixed-Wing Unmanned
Aerial Vehicle, International Conference on Unmanned Aircraft Sys-
tems, Dallas, 2018

[8] G. Ducard, H. P. Geering, Efficient Nonlinear Actuator Fault Detection
and Isolation System for Unmanned Aerial Vehicles, J. Guidance,
Control and Dynamics, Vol. 31, pp.225-237, 2008

[9] E. Baskaya, M. Bronz, D. Delahaye, Fault detection and diagnosis for
small UAVs via machine learning, IEEE/AIAA 36th Digital Avionics
Systems Conference (DASC), St. Petersburg, FL, 2017

[10] P. Freeman, R. Pandita, N. Srivastava and G. J. Balas, Model-Based
and Data-Driven Fault Detection Performance for a Small UAV,
IEEE/ASME Transactions on Mechatronics, vol. 18, no. 4, pp. 1300-
1309, 2013

[11] H. M. Odendaal, T. Jones, Actuator fault detection and isolation: An
optimised parity space approach, Control Engineering Practice, Vol.
26, pp. 222-232, 2014

[12] A. Hasan, T. A. Johansen, Model-Based Actuator Fault Diagnosis
in Multirotor UAVs, International Conference on Unmanned Aircraft
Systems, Dallas, 2018

[13] A. Cristofaro, A. P. Aguiar, T. A. Johansen, Icing Detection and
Identification for Unmanned Aerial Vehicles using Adaptive Nested
Multiple Models, International Journal of Adaptive Control and Signal
Processing, Vol. 31, pp. 1584–1607, 2017

[14] M. M. Seron, T. A. Johansen, J. De Dona, A. Cristofaro, Detection
and Estimation of Icing in Unmanned Aerial Vehicles using a Bank of
Unknown Input Observers, Australian Control Conference, 2015

[15] K. L. Sørensen, M. Blanke, T. A. Johansen, Diagnosis of Wing
Icing Through Lift and Drag Coefficient Change Detection for Small
Unmanned Aircraft, Proc. 9th IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Processes, Paris, 2015

[16] A. W. Wenz, T. A. Johansen, Icing Detection for Small Fixed
Wing UAVs using Inflight Aerodynamic Coefficient Estimation, IEEE
Aerospace Conference, Big Sky, Paper 2636, 2019

[17] E. M. L. Coates, A. W. Wenz, K. Gryte, T. A. Johansen, Propulsion
System Modeling for Small Fixed Wing UAVs, International Confer-
ence on Unmanned Aircraft Systems (ICUAS), Atlanta, 2019

[18] S. Särkkä, Bayesian Filtering and Smooting. Cambridge University
Press, 2013

[19] S. Hansen, M. Blanke, J. Adrian, A Framework for Diagnosis of Crit-
ical Faults in Unmanned Aerial Vehicles, IFAC Proceedings Volumes
(IFAC World Congress), Vol. 47, pp 10555-10561, 2014

[20] S. Hansen and M. Blanke, Diagnosis of Airspeed Measurement Faults
for Unmanned Aerial Vehicles, IEEE Transactions on Aerospace and
Electronic Systems, vol. 50, pp. 224-239, 2014

[21] T. A. Johansen, A. Cristofaro, K. L. Sørensen, J. M. Hansen, T. I.
Fossen, On estimation of wind velocity, angle-of-attack and sideslip
angle of small UAVs using standard sensors, International Conference
on Unmanned Aircraft Systems, Denver, 2015

[22] A. W. Wenz, T. A. Johansen, Moving Horizon Estimation of Air Data
Parameters for UAVs, IEEE Transactions on Aerospace and Electronic
Systems, vol. 56, pp. 2101-2121, 2020

[23] W. Chaer, R. Bishop, J. Ghosh, A mixture-of-experts framework for
adaptive Kalman filtering, IEEE transactions on systems, man, and
cybernetics. Part B, Cybernetics, vol. 27. pp. 452-64, 1997

[24] E. F. L. Narum, R. Hann, T. A. Johansen, Optimal Mission Plan-
ning for Fixed-Wing UAVs with Electro-Thermal Icing Protection
and Hybrid-Electric Power Systems, Int. Conf. Unmanned Aircraft
Systems, Athens, 2020

