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Abstract

This paper outlines how it is possible to decompose a complex non�linear modelling prob�
lem into a set of simpler linear modelling problems� Local ARMAX models valid within
certain operating regimes are interpolated to construct a global NARMAX �non�linear
NARMAX� model� Knowledge of the system behavior in terms of operating regimes is
the primary basis for building such models� hence it should not be considered as a pure
black�box approach� but as an approach that utilizes a limited amount of a priori system
knowledge� It is shown that a large class of non�linear systems can be modelled in this way�
and indicated how to decompose the systems range of operation into operating regimes�
Standard system identi
cation algorithms can be used to identify the NARMAX model�
and several aspects of the system identi
cation problem is discussed and illustrated by a
simulation example�

� Introduction

Modelling complex systems using 
rst principles is in many cases resource demanding� In
some cases our system knowledge is so limited that detailed modelling is di�cult� In other
cases� the instrumentation and logged data from the system are so sparse or noisy that
it is di�cult to identify a large number of unknown physical parameters in the model�
Examples of this are found in e�g� metallurgical and biochemical process industry�

In some cases� resources can be saved by using black�box models describing the input�output
behavior of the system� Such models represents the controllable and observable part of the
system� The structure and parameters of black�box models has in general no direct inter�
pretation in terms of the physical properties of the system� The ARMAX model is a well
known linear input�output model representation� The NARMAX �Nonlinear ARMAX�
model representation is an extension of the linear ARMAX model� and represents the sys�
tem by a nonlinear mapping of past inputs� outputs and noise terms to future outputs� In
this paper we discuss how NARMAX models can be represented� and in particular discuss
how a NARMAX model can be constructed from a set of ARMAX models�
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We will concentrate on non�linear systems that are working in several operating regimes�
because systems that normally work within one operating regime may in many cases be
adequately described by a linear model� There are numerous examples of systems that must
work in several operating regimes� including most batch processes �Rippin ������ Apart
from normal operating conditions� the control system may also have to take care of startup
and shutdown� operation during maintenance and faulty operation� which obviously lead
to di�erent operating regimes�

Traditionally� the problem with multiple operating regimes is solved by non�linear 
rst
principles models covering several operating regimes� gain scheduling� or simply by manual
or rule�based control of the system when operating outside the normal operating regimes�
From an engineering point of view� it may seem appealing to decompose the modelling
problem into a set of simpler modelling problems� This is exactly what we propose here�
First the system operation is decomposed into a set of operating regimes that are assumed
to cover the full range of operation we want our model to cover� Next� for each operating
regime we design a simple �typically linear� local model� It is usually not natural to de
ne
the operating regimes as crisp sets� since there will usually be a smooth transition from
one regime to another� not a jump� Hence� it makes sense to interpolate the local models
in a smooth fashion to get a global model� The interpolation is such that the local model
that is assumed to be the best model at the current operating point will be given most
weight in the interpolation� while neighboring local models may be given some weight� and
local models corresponding to distant operating regimes will not contribute to the global
model at that operating point� To do the smooth interpolation at a given operating point�
we need to know which of the local models describe the system well around that operating
point� For that purpose� to each local model we associate a local model validity function�
i�e� a function that indicates the relative validity of the local models at a given operating
point�

The use of local linear models without interpolation� i�e� piecewise linear models� have been
suggested by several authors� including Skeppstedt� Ljung � Millnert ������� Skeppstedt
������� Hilhorst� van Amerongen � L�ohnberg ������� Billings � Voon ����	�� and Tong
� Lim ������� A related technique is the use of splines �Friedman ����� for representing
dynamics models �Psichogios� De Veaux � Ungar ������ Splines are also local models�
but unlike piecewise linear models� there are constraints that enforces smoothness on the
boundaries between the local models� Di�erent variations of interpolating memories �Tolle�
Parks� Ers�u� Hormel � Militzer ����� Lane� Handelman � Gelfand ����� Omohundro
���	� is a related local modelling technique� where a number of input�output�pairs of the
system is memorized and interpolated to give a model� Our approach can be thought of
as a generalization of these techniques� since we interpolate local models�

This paper is organized as follows� First� in section �� we present a model representation
based on local models� Then we discuss the approximation capabilities of this represen�
tation� and show that a large class of non�linear systems can be represented� The notion
of operating regimes is introduced and we present a general result guiding the choice of
operating point vector� Thereafter� we discuss some practical aspects of modelling using
local models in section �� and some aspects of system identi
cation in section 
� In sec�
tion �� the concepts are illustrated by a simulation example� and section � contains some
discussions and conclusions�
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� Model Representation

The NARMAX model representation

y�t� � f�y�t� ��� ���� y�t� ny�� u�t� ��� ���� u�t� nu�� e�t� ��� ���� e�t� ne�� � e�t� ���

is shown by Leontaritis � Billings ������ and Chen � Billings ������ to represent a large
class of discrete�time nonlinear dynamic systems� Here y�t� � Y � Rm is the output
vector� u�t� � U � Rr is the input vector� and e�t� � E � Rm is equation error� We
introduce the �m�ny � ne� � rnu��dimensional information vector

��t� �� � �yT �t� ��� ���� yT�t� ny�� u
T �t� ��� ���� uT�t � nu�� e

T�t � ��� ���� eT�t � ne��
T

where ��t� �� is in the set � � Y ny � Unu � Ene� This enables us to write equation ���
in the form

y�t� � f���t� ��� � e�t� ���

Provided that necessary smoothness conditions on f � � � Y are satis
ed� a general way
of representing functions is by series expansions� Using a �st order Taylor�series expanded
about the systems equilibrium point yields a standard ARMAX model� Second�order
Taylor�expansions are possible� while higher�order Taylor�expansions are not very useful
in practice because the number of parameters in the model increases drastically with the
expansion order� and because of the poor extrapolation and interpolation capabilities of
higher�order polynomials� Splines o�ers a solution to this problem� but the approxima�
tion in higher dimensional spaces may be di�cult due to the smoothness constraints on
the boundaries� Chen� Billings � Grant �����a� have proposed to use a sigmoidal neu�
ral network expansion� Billings � Voon ����	� uses a piecewise linear model� and Chen�
Billings� Cowan � Grant �����b� have applied a radial basis function expansion as a means
of representing f � A generic model representation based on local models was introduced
in �Johansen � Foss ����b� Johansen � Foss ����a�� inspired by work by Stokbro� Hertz
� Umberger ������ and Jones et al� ������� We will in the following study this model
representation in detail�

Approximation using local models and interpolation

Given a set of functions f��i � �� ��� ��gN��i�� � the following equation is trivially true

f��� �

PN��
i�� f�����i���PN��

i�� ��i���
���

assuming that at any point � � �� not all ��i vanish� We will assume the function ��i is
chosen such that it is localized in a subset �i � �� This means that ��i��� is signi
cantly
larger than zero for � � �i� and ��i��� is very close to zero for � �� �i� Since ��i is close
to zero for � �� �i� we can substitute f on the right�hand side in ��� with a �fi that is a
good approximation only in �i

�f��� �

PN��
i��

�fi�����i���PN��
i�� ��i���

�
�

Introducing the normalized functions �wi � �� ��� �� de
ned by

�wi��� �
��i���PN��

j�� ��j���
���
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gives the approximation

�f��� �
N��X
i��

�fi��� �wi��� ���

In this equation� we can interpret �wi as a function that gives a value close to � in parts
of � where the function �fi is a good approximation to f � and close to zero elsewhere� By
de
nition of �wi we know that

PN��
i�� �wi��� � � for all � � �� and we call the functions �wi

interpolation functions because they are used to interpolate local models �fi� We call �fi a
local model since it is assumed to be an accurate description of the true f locally �where
��i is not close to zero��

The set of all functions of the form ��� with local models of polynomial order p and smooth
interpolation functions is denoted

�Fp �

�
�f � �� Y j �f��� �

N��X
i��

�fi��� �wi���

�

At the extreme� �th order Taylor�expansions of f about �i � �i may be used to de
ne �fi�

�fi��� � f��i� � �i �	�

where �i is a parameter vector� Such a simple local model is closely related to an interpo�
lating memory �Tolle et al� ����� and requires a large number of interpolation functions�
since this means that the value f��i� is extrapolated locally� This case is in fact identi�
cal to neural networks with localized receptive 
elds� �Moody � Darken ����� Stokbro et
al� ������ Considering f �wig

N��
i�� as a set of basis�functions� the method is also similar to

radial basis�function expansions �Broomhead � Lowe ������ for the following reason� If
the functions ��i are chosen as local radial functions� the normalized function �wi de
ned by
��� will not be radial in general� but it will qualitatively have much the same shape and
features as ��i� except near the boundary of ��

A �st order Taylor�expansion of f about �i provides better extrapolation and interpolation
than the �th order expansion �	�� Assuming the �st derivative of f exists� the local models
are given by

�fi��� � f��i� �rf��i��� � �i� � �i ��i�� � �i� ���

where �i is a parameter vector and �i is a parameter matrix� Observe that ��� is actually
an ARMAX model resulting from a linearization about �i� Both the Weighted Linear
Maps of Stokbro et al� ������� Stokbro ������ and Stokbro � Umberger ������ and the
Connectionist Normalized Linear Spline Networks of Jones et al� ������ and Jones� Lee�
Barnes� Flake� Lee� Lewis � Qian ������ uses a �st order expansion locally� This repre�
sentation makes it possible to build a NARMAX model by interpolating between a set of
ARMAX models�

Higher order local models can of course also be used� Furthermore� there is no requirement
that all the local models should have the same structure� Some of the local models may
be based on 
rst principles modelling� while others may be generic black�box models�
Johansen � Foss �����c� uses this approach to integrate 
rst principles models with neural
network type models�

Approximation Properties

It seems reasonable that the approximation can be made arbitrary good by choosing a
su�cient number of local models� This is indeed the case� as illustrated in the following�






We use the following norm to measure the approximation accuracy

jjf � �f jj� � sup
���

jjf���� �f���jj�

where jj � jj� denotes Euclidian norm�

The �p� ��th derivative of the vector function f at the point � is denoted by rp��f����
Assume f is continuously di�erentiable p � � times� and f �fig

N��
i�� are local models equal

to the 
rst p terms of the Taylor�series expansion of f about �i� For any � � �� we have

f���� �f��� �
N��X
i��

�f���� �fi���� �wi���

If we assume jjrp��f���jj � M for all � � �� where jj � jj denotes the induced operator
norm� we obtain by Taylors theorem

jjf���� �f���jj� �
N��X
i��

M

�p� ���
jj�� �ijj

p��
� �wi���

In order to ensure that this norm is smaller than an arbitrary � � �� we must ensure that
for any � � � the following condition holds

N��X
i��

jj� � �ijj
p��
� ��i��� � �

�p� ���

M

N��X
i��

��i��� ���

De
ning the set of functions fgi � �� RgN��i�� by

gi��� � jj� � �ijj
p��
� � �

�p� ���

M

and rewriting ��� gives the following condition that must hold for any � � �

N��X
i��

gi�����i��� � � ����

or equivalently if we divide ���� by
PN��

i�� ��i���

N��X
i��

gi��� �wi��� � � ����

The problem is now to 
nd the conditions on N and the functions f��ig
N��
i�� to ensure that

equation ���� holds for any given � � �� A geometric interpretation of ���� is given in Figure
�� Certainly� this equation holds if the negative contribution of one term gi�����i��� in ����
dominates the �possibly positive� contribution of all other terms� A necessary condition
is gi�����i��� � � as jj�jj� � �� This will certainly be ensured if we choose ��i as an
exponential or Gaussian function�

Notice that the shape of the gi�functions are 
xed and given by the speci
cations� We are�
however� free to choose the location and number N of local models� Let us choose the set
f�ig

N��
i�� so large and �su�ciently dense in � that at least one of the functions fgig

N��
i��

will be negative at any � � �� Then the functions fgig
N��
i�� are 
xed� and we must choose

the ��i�functions such that ���� hold�

�



This can be done in several ways� In the limit when the width of the ��i�functions go to
zero the interpolation functions �wi will approach step�functions as shown in Figure �� The
model will then approach a piecewise constant model if p � �� a piecewise linear model if
p � �� etc� In this limit� at any � � � there will exist a j such that

�wi��� �

�
� If i � j

� If i �� j

By the choice of f�ig
N��
i�� we know that gj��� � �� and since �wi��� � � for i �� j� ���� will

hold� We can now provide a result for the case when � is a bounded set�

Theorem � Suppose given any integer p � �� and suppose f has continuous �p � ���th
derivative� If � is bounded� then for any � � � there is a �f � �Fp �with �nite N � which
may depend on �� such that

jjf � �f jj� � � ����

Proof� Since rp��f��� is continuous� it is bounded �by M � �� on �� Since � is
bounded� a 
nite N is su�cient to ensure that one gi�function is negative at any point�
Since N is 
nite� we do not have to go to the limit and make f �wig

N��
i�� step�functions� but

can stop when we are su�ciently close� Then f��ig
N��
i�� can be chosen as smooth functions

such that ���� holds� Since � � � was arbitrary� the theorem is proved�

�

This is an existence theorem� However� the proof is constructive and gives indications on
how to construct the approximator� In order to use this proof to formulate an upper bound
on the approximation error� we introduce the following de
nition of distance between sets�
similar to the Haussdorf metric�

De�nition � Assume A and B are two nonempty subsets of a vector space� Then the
distance between the sets is de�ned as

D�A�B� � inf
a�A

sup
b�B

jja� bjj�

�

The crux in the proof of Theorem � is that at any point � � � one of the gi�functions is
negative and that the ��i�functions are chosen such that at any point � � �� a negative
term gi�����i��� will dominate the sum ����� At least one gi�function will be negative at
any � � � if the following condition holds

D�f�ig��� 	

�
�
�p� ���

M

� �
p��

����

If the set f�ig is dense in �� this distance will be zero� The term �su�ciently dense used
informally above means that the set f�ig

N��
i�� should be chosen such that ���� holds for

the given ��

Theorem � Suppose given an integer p � �� If � is bounded and f has bounded �p����th
derivative� i�e� jjrp��f���jj 	 M for all � � �� then for any �f � �Fp with �nite N and
su�ciently narrow functions f�	ig

N��
i�� � an upper bound on the approximation error is given

by

jjf � �f jj� 	
M

�p� ���
�D�f�ig����p�� ��
�

�



Proof� ���� will hold for � equal to the right�hand side of �
�� From the previous discus�
sion� it is evident that ���� holds for any � � �� Hence� jjf � �f jj� will be bounded by ��
and the result follows�

�

This is under the condition that the ��i�functions are chosen narrow� This bound is conser�
vative� meaning that for ��i�functions that are not too narrow and not too wide� one may
expect better accuracy� However� if the functions f��ig

N��
i�� are not narrow� the result does

not hold�

From ��
� we see that if the polynomial order p of the local models is increased� then the
accuracy will improve� If � is not bounded and M � �� N must be in
nite in order to
guarantee a bounded error�

If f does not satisfy the smoothness conditions in Theorem �� the proof obviously does
not hold� If� however� f is such that it can be approximated arbitrary well by a su��
ciently smooth function� then we can show that f can be approximated arbitrary well by
interpolating local models� In patricular we have�

Corollary � The results of Theorem � also holds if the smoothness assumption on f is
relaxed to assuming only continuity� In other words� the set �Fp is dense in the set of
continuous functions from � into Y �

Proof� By the Weierstrass approximation theorem� e�g� �Stromberg ������ for any � �

� there exists a polynomial �f such that jjf � �f jj� 	 ���� By theorem �� �f can be
approximated by a �f � �Fp on the bounded set � such that jj �f � �f jj� � ���� Using the

triangle inequality we get jjf � �f jj� � ��

�

Example �

Assume p � �� i�e� the local models are ARMAX models� Then ��
� can be written

jjf � �f jj� 	
M

�
�D�f�ig����� � � ����

If f and � are scalars� M is a bound on the second derivative of f � in other words a
bound on the curvature� If the system is linear� then M � � and one local linear model is
su�cient to make an arbitrary good global model �of course�� M indicates the nonlinearity
of the function� and we expect � to increase with increasing M � i�e� increasing nonlinearity�
which is indeed the case as indicated by ����� However� using the upper bound M gives
a conservative result since the system may behave more linearly in some regions than
others� Hence� we need not have high density of local models where the system does not
have strong nonlinear behavior�

�

Example �

With a simple example we illustrate the use of Theorem �� Consider the function f �
��� ��� R given by f��� � �� � �� Assume that we have two local linear models located

	



at �� � ��� and �� � ���� Then D�f���� ���g� ��� ��� � ���� p � � and M � �� Theorem
� predicts the bound � � ���� on the approximation accuracy� As shown by Figure
�� this bound is exact when using in
nitly narrow functions ��i� i�e� a piecewise linear
approximation� The reason for this is that M � f ����� � � for all �� hence there is no
regions where f is �less nonlinear � As we shall see later� better approximations can be
achieved using well�chosen ��i�functions� From this 
gure we also see that the local linear
models are not chosen as a 
rst order Taylor�expansion� but chosen on the basis of e�g� a
least squares regression� improvement might also be achieved�

�

Since the system function f can be approximated arbitrary well� we are able to make
arbitrary good prediction on a 
nite horizon if there is no noise� provided the intial values
are correct and the inputs and outputs are such that they give vectors � that remain in �
�Polycarpou� Ioannou � Ahmed�Zaid ������ However� it is well known that the solution
to some di�erence equations are sensitive with respect to intial values or modelling errors�
Examples of such systems are chaotic or unstable systems�

Operating regimes

In the rest of this paper we will usually assume p � �� i�e� we use linear ARMAX models
locally to build a non�linear NARMAX model� In the representation ��� the interpolation
functions f �wig

N��
i�� are de
ned on the set �� This is a subset of the information�space�

If the information�space has high dimension �as it ofte has�� the curse of dimensionallity
problem arises� This problem was 
rst described by Bellman ������ is essentially that
the number of local models needed to uniformly cover a region of this space increases
exponentially with the dimension of the space� In practise� uniform coverage it usually not
necessary� but the problem is still severe� In some cases the interpolation functions may
be de
ned on a space of smaller dimension� This is our motivation for introducing the
terms operating regime and operating point� First� we de
ne ! to be the set of operating
points� Motivated by the fact that we want to model a nonlinear system with a set of
linear models� it is convenient to de
ne an operating regime as a subset of ! where the
system behaves approximately linearly�

De�nition � An operating regime is a set of operating points !i � ! where the system
behaves approximately linearly�

A model validity function �i � !� ��� �� is smooth and satis
es �i�	� 
 � for 	 � !i� and
goes to zero outside !i� The interpolation functions wi � !� ��� �� are now de
ned as

wi�	� �
�i�	�PN��

j�� �j�	�

assuming that at every operating point 	 � !� not all model validity functions �i vanish�

In many cases there will exist a function H � �� ! such that at any t will 	�t� � H���t���
The function H will typically be a projection� i�e� ! will be in a space of lower dimension
than �� In cases where the operating point is calculated on the basis of 
ltered or estimated
quantities� the relationship between ��t� and 	�t� is more complex� and must be described
by an operatorH� This may be the case when 	 is estimated using a recursive algorithm or
a recursive 
lter to depress noise� Although very important� this complicates the analysis

�



considerably� and we will not consider this case here� but leave it as a topic for future
research�

To summarize� the representation we address at this stage is

�y�t� � �f���t� ��� �
N��X
i��

�fi���t� ���wi�	�t� ��� ����

where the local models

�fi���t� ��� � �i ��i���t� ��� �i� ��	�

are ARMAX models� We de
ne the set

Fp �

�
�f � �� Y j �f��� �

N��X
i��

�fi���wi�	�

�

where p is the polynomial order of �fi� the interpolation functions fwig
N��
i�� are smooth� and

	 � H���� Now we want to state some general results regarding the transformH from the
information vector to the operating point vector� In general� f can be written as an a�ne
function of some of its argument� We rearrange the elements of � into �T � ��TL �TN � such
that

f��� � f��L� �N� � f���N� � f���N��L ����

Assume �L and �N are the subsets of the information�space corresponding to �L and �N
respectively� f� � �N � Rm and f� � �N � Rm�m are non�linear vector� and matrix�
valued functions� respectively� Our principal result guiding the choice of 	 is the following�
which indicates that 	 must be chosen such that it captures the systems non�linearities�

Theorem � Assume f given in ���� is continuous� and � is bounded� Then for any � � �
there is a �f � F� with 	 � �N � and �nite N such that jjf � �f jj� � ��

Proof� Fix an arbitrary � � � such that �T � ��TL �TN ��

jjf���� �f���jj� � jjf��N � �L��
N��X
i��

�fi��N � �L�wi��N�jj�

� jj
N��X
i��

�f���N� � f���N��L � �fi��N � �L��wi��N�jj�

� jj
N��X
i��

�f���N�� �fNi��N� � f���N��L � �fLi��L��wi��N�jj�

In the last line we split the linear function �fi � � � Rm into two linear functions �fNi �
�N � Rm and �fLi � �L � Rm� Now we choose �fLi��L� � 
i�L where 
i is a not yet
speci
ed constant parameter matrix� Then we have

jjf���� �f���jj� 	 jj
N��X
i��

�f���N�� �fNi��N� � �f��N�� 
i��L�wi��N�jj�

	 jj
N��X
i��

�f���N�� �fNi��N��wi��N�jj�� jj
N��X
i��

�f���N�� 
i��Lwi��N�jj�

	 jjf���N��
N��X
i��

�fNi��N�wi��N�jj� � jj�Ljj� � jjf���N��
N��X
i��


iwi��N�jj�

�



The 
rst term in this equation can be made arbitrary small by Corollary � with p � �
since �fNi is linear� Since � is bounded� the second term can be made arbitrary small by
the same corollary with p � � through the choice of 
i� Hence� for any � � � we can make
jjf���� �f���jj� � � and since � is arbitrary we get jjf � �f jj� � ��

�

Using the same notation as before� the attainable approximation error is bounded by

jjf � �f jj� 	
M

�

�
�D�f	ig�!��

� � �jj�LjjD�f	ig�!�
�
� � ����

where

jj�Ljj � sup
�L��L

jj�Ljj�

The motivation for introducing the operating point 	 is that in many cases this vector
may be of a signi
cantly lower dimension than �� With a 
xed N the 
rst term in ����
will be signi
cantly smaller than the corresponding term

M
� �D�f�ig�����

However� the second term in ���� will make the error increase� but in most cases when !
is of smaller dimension than �� the approximation �������	� will give better accuracy than
���� ���� Another important fact is that a low dimension of ! makes it easier to partition
the set into operating regimes�

Example �

For example� if f is linear in the control variables u�t � ��� then 	 need not contain any
u�t� ���terms� If we have the system

y�t� � f�y�t� ��� u�t� ��� � f��y�t� ��� � f��y�t� ���u�t� ��

we can choose 	�t � �� � y�t� �� without loosing accuracy in the approximation�

�

We now generalize this result for local expansions of �polynomial� order p� We split � into
two parts and rearrange �T � ��TL �TH � such that

f��� � f��L� �H� � fH���H� � fH���H�fL��L� ����

where fL � �L � Rm is of polynomial order less than or equal to p� fH� � �H � Rm� and
fH� � �H � Rm�m may be of higher order�

Theorem � Suppose f given in �	
� is continuous and � is a bounded set� Then for any
� � � there is a �f � Fp with 	 � �H� and �nite N such that jjf � �f jj� � ��

Proof� The proof follows the same idea as the proof of Theorem �� but requires some
tedious notation� and is therefore ommitted�

�

��



Some Comparisions

Using local linear models we can write the model representation ���� � ��	� as

�y�t� �
N��X
i��

��i � �i���t� ��� �i��wi�	�t� ���

�

�
N��X
i��

��i � �i�i�wi�	�t� ���

�
�

�
N��X
i��

�iwi�	�t� ���

�
��t� ��

� ��	�t � ��� � ��	�t� �����t� ��

This means that the non�linear model can be written as an apparently linear model� where
the parameters are dependent on the operating point� Priestley ������ introduced State�
dependent models which can be written

�y�t� � ��x�t� ��� � ��x�t� �����t� �� ����

where x is the �state�vector � � is a state�dependent vector� and � is a state�dependent
matrix� In general x � � was suggested� but it was also observed that this might be
redundant� so a simpler vector may be used to describe the parameter dependence� The
present approach with x � 	 has obvious similarities� Billings � Voon ����	� discusses
the use of models with signal�dependent parameters� which are similar to ���� this x � ��
where ��t� is the auxilliary signal� In �Billings � Voon ���	� polynomials was used to
de
ne the dependence of the parameters on the auxilliary signal� i�e� ����t�� and ����t��
are polynomials in ��t�� A similar approach was proposed by Cyrot�Normand � Mien
������� Our approach is also similar� but system knowledge is applied to choose the �i�
functions� which again de
nes ��	�t�� and ��	�t��� The Threshold AR Model by Tong �
Lim ������ can also be written in the form ���� with x�t � �� � y�t� ��

��y�t� ��� �

�
�� If y�t� �� � Y�
�� If y�t� �� � Y�

��y�t� ��� �

�
�� If y�t� �� � Y�
�� If y�t� �� � Y�

where Y � Y��Y�� Here the parameters are switched between two possible parameter sets�
and the decision is based on the value of y�t���� The resulting model is a piecewise linear
model and related to our approach if 	�t � �� � y�t � �� and the interpolation functions
are step�functions�

The notion of operating points and model validity functions o�ers a complementary method
for parameterizing the state�dependence of the parameters given in �Priestley ������

Takagi � Sugeno ������ suggested a fuzzy logic based technique for combining in a smooth
fashion a set of linear models into a global model� It turns out that if the operating regimes
!i are viewed as fuzzy sets with membership functions equal to the model validity functions�
then inference on a rulebase of the form

IF 	�t� �� � !i THEN �y�t� � �fi���t� ���

gives a resulting global model of the same form as the one analysed in the present paper�
provided the fuzzy operations are properly de
ned� This suggests the use of fuzzy sets
and rules as a means of de
ning the operating regimes and local model validity functions�

��



This is appealing since this gives a direct method of representing the empirical knowledge
the engineers and operators have about the system and local models�

A related non�linear modelling approach is radial basis�functions �RBF�� �Powell ���	��
�Broomhead � Lowe ������ Using RBF"s� a non�linear function may be modelled as

�f��� �
N��X
i��

�iri�jj� � �ijj�

where ri � R
� � R is typically chosen as a Gaussian function� The relationship between

some of these approaches is best illustrated by an example�

Example �

We consider again the function in Example �� and the following 
 modelling approaches�

�� Two piecewise linear models� as Example �� centered at �� � ��� and �� � ���� This
may also be interpreted as a Thresholded AR model�

�� We choose Gaussian model validity functions

�i�	� � exp

�
�
�

�

�
	� 	i
#i

���
����

with 	� � ���� 	� � ����#i � ����� and use � local linear models�

�� � local �th order models centered at �� � �� �� � ���� �� � �� �� � ���� �� � �� and
Gaussian model validity functions with #i � �����


� A radial basis�function expansion with � Gaussian basis�functions centered at �� �
�� �� � ���� �� � �� �� � ���� �� � �� and #i � �����

Linear regression is used to estimate the model parameters� and the results are shown in
Figure 
� By comparing Figure 
a with 
b� it is obvious that interpolating local linear
models using well chosen model validity functions can improve the accuracy compared to
piecewice linear models�

Notice that f now is de
ned on ���� ��� while data on ��� �� is used for parameter estima�
tion� The extrapolation capabilities can thus be evaluated� and we see that the local linear
approximations give �st order extrapolation� as would be expected� while the local �th
order models give �th order extrapolation� The RBF approach does not given any extrap�
olation at all� since all basis�functions go to �� A feed�forward neural net with one hidden
layer �of sigmoidal basis�functions� would give an extrapolation qualitatively similar to the
�th order models in 
gure 
c� As we see� there are fundamental di�erences concerning the
extrapolation capabilities�

�

� Modelling

The representation �����	� is appealing since ARMAX models are simple� We represent
a complex nonlinear system with a number of simple linear systems� A piecewise linear

��



model will have the same features� but unless we enforce the model to be continuous on
the boundary between the local models� the resulting global model may be discontinuous�
which may be undesirable in some cases� Enforcing continuity poses restrictions on the
parameter space� giving lost representational power of the model class� The same problem
arises to an even larger extent using e�g� cubic splines� Unlike the piecewise linear model�
the model ���� will be smooth when the model validity functions are chosen as smooth
functions� In practice� there are at least 
 ways a NARMAX model can be constuced using
local ARMAX models and interpolation�

�� First we choose a set of operating regimes !i that correspond to the normal equi�
librium points and major transient operating regimes of the system in question�
This means that we partition the set of operating points into parts where be believe
that the system will behave linearly� Then we perform experiments on the system
and identify a local ARMAX model �fi for each operating regime� using cost indices
corresponding to each local model

Ji �
�

mi

miX
t��

�
y�t�� �fi���t� ���

�T
$i

�
y�t�� �fi���t� ���

�
����

where mi is the number of data�points for regime !i� and $i is a scaling matrix�
Then the local models are integrated using system knowledge to choose sensible
model validity functions f�ig

N��
i�� such that the set ! is covered� as shown in 
gure ��

The choice of these functions will strongly in%uence the accuracy of the global model�
since the local ARMAX models are identi
ed before the functions �i are chosen�

�� Instead of choosing the model validity functions f�ig
N��
i�� empirically� we may try

to 
nd optimal validity functions after we have found the local ARMAX models�
Choosing 
xed structures for the functions f�ig

N��
i�� is necessary to make the problem


nite�dimensional� Keeping the parameters of the identi
ed ARMAX models 
xed�
we may search for optimal parameters of f�ig

N��
i�� using the same data used for

identifying the ARMAX models� and a global performance index� This procedure
leads to a two�step optimization procedure�

�� A more direct approach is to 
rst choose the model validity functions corresponding
to the operating regimes !i using system knowledge� Keeping the model validity
functions 
xed� we minimize the global index

J �
�

m

mX
t��

�
y�t�� �f���t� ���

�T
$
�
y�t�� �f���t� ���

�
��
�

with respect to all parameters in the local models� Here m is the number of data�
points available� and $ is a suitable scaling matrix� Now the shape of the model
validity functions will be taken into consideration when 
nding the optimal param�
eters for the local models� This has two side e�ects� First� the accuracy of the
global model is less sensitive to the choise of f�ig

N��
i�� � Second� the local models ��	�

are in%uenced by the user�speci
ed functions f�ig
N��
i�� � Hence� they are no longer

linearizations of f about f�ig
N��
i�� �


� An obvious improvement to methods � and � would be to search for ARMAX and
local model validity function parameters simultaneously� This leads to a complex
non�linear programming problem�

��



Required A Priori System Knowledge

When building models� di�erent kinds of system knowledge must be available� For AR�
MAX models� one must 
rst estimate the dominant time�constants of the system to choose
the sampling interval� Second� the ARMAX model order must be chosen and the structure
of the system disturbances must be known in order to select the MA�part of the model�

When building NARMAX models� in addition it is necessary to 
nd a suitable structure
for the system function f � First principles knowledge can be applied here� if available�
We have proposed a generic structure that do not require 
rst principles modelling� It is�
however� not a completely black�box approach� as some limited system knowledge must be
included� In order to use the local modelling approach introduced here� a priori knowledge
in terms of operating regimes must be available� One must be able to estimate operating
regions in which the system will behave approximately linearly�

In general� the technique with local models and interpolation may be used in an elegant
fashion to integrate 
rst principles models with black�box models� since it is completely
feasible that some of the local models may be derived based on 
rst principles� while
others may be black box models �Johansen � Foss ����c�� In operating regimes where
the dominating physical pheomena are well understood and possible to model� and in
operating regimes where the data is so spares that black�box modelling is not possible� it
makes sense to use local 
rst principles models� In the remaining regimes� black�box models
can be constructed� and the proposed technique with operating regime decomposition can
be applied to integrate the di�erent models� Of course� in regimes where we have limited
data and limited knowledge� modelling is impossible� and the best we can hope for is some
reasonable extrapolation of the neighboring local models into those regimes�

De
ning the operating point in a suitable manner is important� If the local models are
linear� we have shown in Theorem � that the operating point must capture the systems
non�linearities� Given a set of data from the system� di�erent tests for linear reationships
between some inputs and the outputs is of great interest �Haber ������ In the case with
signal�dependent piecewise linear models� it is observed by Billings � Voon ����	� that
the model may be input�sensitive� This must certainly be expected if the data used for
identi
cation does not cover the full range of operation� Input sensitivity and biased
models may also be the result if the operating point vector is not suitably chosen� i�e� only
some of the non�linearities are captured by the operating point�

� Identi�cation

First we consider identi
cation of local model parameters based on the local cost indices
����� and second we consider the global cost index ��
�� Finally� we consider identi
cation
of local model validity function parameters and model structure identi
cation�

Identifying local model parameters using local cost indices

The prediction error at time t for the local model �fi is de
ned to be

�i�t� � y�t�� �fi���t� ���

�




The cost index Ji associated with the local model can be written as

Ji �
�

mi

miX
t��

�Ti �t�$i�i�t� ����

Consider the local ARMAX model ��	�� The local models are parameterized by a vector
�i and a matrix �i� Since all local models ��	� are linear functions of the parameters� the
representation is basically linear in the parameters� and standard identi
cation methods
can be applied� e�g� �S�oderstr�om � Stoica ������

Assume 
rst the noise e�t� is sequentially uncorrelated� Since the information vector
��t� �� do not contain noise terms e�t� ��� ���� e�t� ne�� the model can be written on the
linear regression form

�fi���t� ��� � �Ti �t � ���i ����

where �i is a parameter vector and �i�t� �� is a regression matrix�

The parameters can be estimated using the least squares �LS� method� The regression
matrix� �i�t � ��� is a matrix of computable or measurable quantities not depending on
the parameter vector and not correlated with e�t�� The least squares estimate minimizing
���� can be written as

��i �

�
�

mi

miX
t��

�i�t�$i�i�t�
T

��� �
�

mi

miX
t��

$i�i�t�y�t�

�
��	�

In the general case when delayed noise� e�t� ��� e�t� ��� ���� e�t� ne�� is included in ��t��
we use the prediction error �PE� method� Since the noise is assumed not to be measurable
we do not know the values of e�t� ��� ���� e�t� ne�� If the model matches the true system�
then �i�t� � e�t�� Now �i�t � �� depends on the parameters �i since it is the prediction
error� Since �i�t� depends on �i�t� �� and hence �i� we may conclude that the predictor
���� is no longer linear in the parameters� Hence it is not possible to 
nd a simple analytic
solution like ��	�� The cost indices ���� must be minimized numerically using e�g� the
Newton�Raphson algorithm

��
�k��	

i � ��
�k	

i � 
k

�
r�Ji

�
��
�k	

i

����
rJi

�
��
�k	

i

�

or the Gauss�Newton algorithm� which is based on simpli
ed calculations of the inverse
Hessian matrix�

Both the LS�method and PE�method can be formulated recursively� The RPE�algorithm
is

��i�t� � ��i�t� �� �Ki�t��i�t� ����

Ki�t� � Pi�t���t�$i ����

Pi�t� � Pi�t� ��� Pi�t� ����t�
�
$��i ��T �t�Pi�t � ����t�

���
�T �t�Pi�t� ������

with ��t� � ���i

�� i
�t��

Identifying local model parameters using a global cost index

We de
ne the global prediction error to be

��t� � y�t�� �f ���t� ���

��



The global cost index ��
� can be rewritten as

J �
�

m

mX
t��

�T �t�$��t� ����

The LS� and PE�methods can be formulated in the same manner as above� When the
identi
cation is performed on�line� some rather heuristic modi
cation may be desirable�
As pointed out in �Johansen � Foss ����b�� only the parameters of those local models that
are assumed to be valid in the current operating regime should be updated� This is easily
accomplished by assuring that the model validity function �i is exactly zero for operating
points where the local model is not valid� In practice� however� we would like the functions
�i to be smooth� i�e� they should go fast to zero instead of being exactly zero� This may
cause problems when the system is operating within one operating regime for a long time�
Then all the other local models will be updated slightly each time�step� and information
about other operating regimes will �leak out � in particular if forgetting factors are used�

The heuristics we propose to eliminate this problem is to update only the parameters of
those local models satisfying wi�	�t�� � �� where typically � � ����� ����� It is a danger that
parameters being an active part of the global model may never be updated� This requires
that the system is excitated such that the parameters of all local models will be updated
from time to time�

Identifying model validity function parameters

In general� the local model validity function parameters will enter the equations for the
prediction error nonlinearly� In particular� if these parameters are to be identi
ed sim�
ulateously with the local model parameters� we get a complex non�linear programming
problem� We will not discuss this problem here� but refer to the vast litterature on non�
linear programming� e�g� �Gill� Murray � Wright ������ We will like to point out that
most of our simulations so far indicate that a rough empirical choise of model validity
functions combined with local model identi
cation based on a global cost index in most
cases gives better results than the use of local indices and subsequent optimization of the
local model validity functions�

Identifying model structure

We have suggested how knowledge about operating regimes may be used to decompose
the modelling problem into the problem of building simple ARMAX models corresponding
to each operating regime� Together with model validity functions� this gives a model
structure where only the parameters are unknown� In some cases� such knowledge may
not be available and we need methods to 
nd an adequate model structure� i�e�� the number
N of local models� and the structure of each local model� From the parsimony principle
we know that the best model is the model with fewest parameters able to describe the
system adequately� There are several theoretical frameworks that deal with this problem�

�� The prediction error using a good model should be uncorrelated with past prediction
errors and inputs �and future inputs if the system operates in open loop�� There are
several correlation�based test� see eg� �Billings � Voon ������

��



�� If we consider the expected error criterion �J on future data� we obtain �S�oderstr�om
� Stoica �����

�J � �� � P�m�J ����

This depends on the number of parameters P and the numbers of data pointsm used
for identi
cation� This is also related to the Akaike Information Criterion� �Akaike
�����

In general J will decrease when more parameters are introduced in the model� e�g� when
new local models are added� However� P will increase� and at some stage the increment
in ��P�m will be larger than the decrease in J � if m is kept 
xed� The index �J will then
increase� indicating that the quality of the model decreases� It is therefore important to
keep the number of local models at a minimum� and use as simple local models as possible�

Both these methods can be implemented o��line by an exhaustive search� Not all of
them are suited for on�line structure identi
cation� however� It requires large amounts
of computer power to test more than ��� model hypotheses simultaneously� Generally a
batch of data is required to perform any statistical test with some signi
cance level� A large
prediction error at some time sample may be due to noise� parameter errors or inadequate
model structure� Collecting a batch of data over some time will reduce the impact of noise�
If the batch is so large that the parameter estimator is expected to converge during the
batch� the impact of parameter errors may also be insigni
cant� Hence� if the batch is large
and the prediction error is biased or correlated� we can infer that the model structure is
not good� In our approach with local models� we must decide which local models are the
cause for the mismatch� This can be found by collecting statistics locally for every local
model� The problem of on�line structure identi
cation is discussed in �Johansen � Foss
����c��

Time�varying systems

In case of time varying parameters the RPE�formulation ��������� must be modi
ed� This
is usually done by introducing a method for arti
cially increasing the covariance matrix
estimate P so it will not go to zero� The most common schemes are linear increase� which
correspond to the Kalman 
lter� exponential increase� and covariance resetting�

At one time�step we get the information vector ��t�� The information vector is transformed
to the vector w�t� � �w��	�t�� � � �wN���	�t���

T � This vector correspond to the direction
in interpolation�space where we get information� The interpolation�space consists of N
dimensions� one for each local model� If forgetting is to be avoided� we should only update
models along the direction in the model space where we get new information� This means
that we should only forget if we know that new information will arrive to compensate for
the forgotten information� At the operating regime level� this is rather simple in our case
since by construction the components of w�t� will be close to zero when the information
is not relevant for the corresponding local models� Hence� by thresholding the parameter
update� only the local models we get new information about will be updated� This leads
to a small set of local models to be updated at each time�step� Within each local model�
techniques based on the same type of reasoning can be applied to only update in the
directions in parameters�space where we get new information� �Fortescue� Kershenbaum
� Ydstie ����� S&lid� Egeland � Foss ����� Parkum� Poulsen � Holst ������

�	



� Simulation example

We will use the proposed approach to identify a model of a Continuous Stirred Tank
Reactor �CSTR� where a 
rst order� exothermic chemical reaction A � B takes place�
The system is described by the following mass� and energy�balance

V
d

dt
cA � cAiqi � cAqo � V rA ����

�cpV
d

dt
T � �cpTiqi � �cpTqo �Q�'HrV rA ��
�

rA � k�cA exp

�
�
EA

R
�
�

T
�

�

TR
�

�
����

with symbols as de
ned in Table ��

Symbol Value Unit Description

T ����
�� K Reactor temperature
Ti ��� K Inlet temperature
TR ��� K Reference temperature
cA ca� � kmol�m� Concentration of A in reactor
cAi �� kmol�m� Inlet concentration of A
EA 	���� kJ�kmol Activation energy
R ����
 kJ��Kkmol� Gas constant
k� ���
� ��min Frequency factor
� ��� kg�l Ave� density in reactor
cp 
�� kJ��Kkg� Ave� heat capacity in reactor
V ���� m� Reactor volume
'Hr ������ kJ�kmol Reaction energy
qi ca� ������ l�min Inlet %ow
qo ca� ������ l�min Outlet %ow
Q ca� �� � � MW External power from heat exchanger
rA kmol�l Reaction rate

Table �� Symbols�

Inputs to the system are the power Q and the inlet %ow qi� Outputs are temperature T
and concentration cA� We de
ne the vectors y � �� � ���� � cA � � ���� � T �T and u �
��� �qi ���
 �Q�T � The system is simulated as a continuous�time system� Two independent
sequences f�y�t�� u�t��g����t�� are collected by sampling the system every � minutes� see 
gure
�� One set is used for parameter identi
cation only� and the other is used for model
validation only�

The reactor is open�loop unstable� There are therefore two stabilizing single�loop PI�
controllers� The reference signal to the controllers are LP�
ltered white noise signals�
ensuring the input is rich�

In our example we choose the information vector �T�t � �� � �yT �t � �� uT �t � ���� We
have performed 
 simulations� and a least squares algorithm is used in all cases�

��



Simulation �

First� an ARMAX model

�y�t� � �T �t� ��� ����

�
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CCCCCCCCCCCCCCCCA

is 
tted using linear regression on the data� The points �y�� y
�
��
T and �u�� u

�
��
T are the points

the ARMAX model is linearized about� and are chosen as mean values of the respective
signals�

Simulation �

Second� a NARMAX model with two local ARMAX models ���� is 
tted� If cAi and Ti
are constant� the model ��������� can be written

d

dt
y�t� � f�y�t�� u�t�� � f��y�t�� � f��y�t��u�t� ��	�

Discretizing by the Euler method gives

y�t� � y�t� �� � 't�f��y�t� ��� � f��y�t� ���u�t� ��� ����

Comparing this with ����� Theorem � indicates that the operating point 	 � y captures
the nonlinearities� In order to keep the example simple� we observe that the system exhibit
strongest non�linear behavior with respect to temperature� As a 
rst approximation� it is
therefore reasonable to choose 	�t� � y��t� � � � ���� � T �t�� The � local model validity
functions are chosen as Gaussians ���� with 	� � ��� and 	� � ��� �corresponding to ��� K
and ��� K�� These values are found by examining the operating range the data span� The
size of the operating regimes are estimated to be #i � ���� �corresponding to �� K�� The
identi
cation of the two ARMAX models is performed separately using local cost indices
�����

Simulation �

The same models structure as simulation �� but a global cost index ��
� is used to simul�
taneously identify the parameters of the two ARMAX models�

Simulation �

Finally� we use 
 local ARMAX models and a global cost index ��
�� The local model
validity functions are still Gaussians� centered at 	� � ��		�� 	� � ������ 	� � ���	�� and

��



	� � ����� corresponding to ���� ���� �	�� ��� K respectively� The width parameter is
chosen as #i � ����� corresponding to 
 K�

Results

The results are summarized in table � �all the results are using the identi
ed model for
prediction on the data independent of the data used for identi
cation�� We see that all
NARMAX approaches give signi
cantly better results than the ARMAX approach� As
would be expected� better results are achieved with a global performance index than local
indices� and increasing the number of local models also improve on the model accuracy�

One�step�ahead prediction errors are shown in 
gure 	� The curves indicates that the
prediction error is considerably reduced using the NARMAX models compared to the
ARMAX models�

The covariance functions for the prediction errors are

E����t�� �����t� ��� ��T � �

�
r����� r�����
r����� r�����

�
����

Estimates of the autocorrelation functions are shown in 
gure �� It is well known that an
unbiased model gives an autocorrelation function equal to a ��function �This is not a suf�

cient condition� A more detailed model validation should also consider E��u�t��u����t�
�� � ��T � and higher order covariances �Billings � Voon ������� However� we may con�
clude from the curves that the NARMAX models strongly improve on the model accuracy
compared to the ARMAX models� We may not expect a perfect model because the model
structure is di�erent than the true system� First� there is fundamental structural di�erence
between the state�space system and the model based on local models and interpolation�
The low number of local models limits the accuracy� Second� there is a structure error
introduced by sampling the continuous system� Third� the simpli
ed choise of operating
point introduces a nonsystematic error�

We have also done simulations using optimization of the #i�parameters in the local model
validity functions after the local ARMAX parameters was identi
ed using local cost indices�
This gave substantial improvements� but the results was not as good as using a global index
with prechosen �not optimal� #i�parameters� Including y��t� in the operating point vector
also gave some improvements� but not as much as one may have expected� Hence� we can
conclude that the choise of operating point is sensible�

� Discussions and Conclusions

As discussed in the introduction� this model representation may be useful when 
rst princi�
ples modelling is resource demanding or does not give satisfactory results� Today� ARMAX
models are no doubt the most widely used black�box type model in industry� Neural net�
works have over the past few years gained considerable popularity� at least academically�
The most popular feed�forward type networks can be used to build black box NARMAX
models� typical examples can be found in �Chen et al� ����a� Nguyen � Widrow ������
Common to most types of neural networks is that the representation is very complex and
di�cult to understand and validate� which may explain why so few industrial applications
are reported�
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Table �� Results for ARMAX and NARMAX model 
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Decomposing the system operation into several operating regimes and using local ARMAX
models to describe each operating regime is appealing for several reasons�

� It is possible to integrate several kinds of system knowledge� including local 
rst
principles models� with a black�box type model� ARMAX models are well understood
and widely used in industry� and is hence a convenient basis for building NARMAX
models�

� The class of systems that can be represented is large� and a linear parameterization
of the model is su�cient�

� The concept is straightforward� and the model structure is easy to understand� This
is important� since the model structure can be easily validated� In addition� some
validation may be performed by validating each local model separately�

� Describing a system by means of operating regimes is common practise in engineering�
Integrating the models for each operating regime by interpolation have not been
common so far� but seems to be a straightforward way to build models that are valid
within several operating regimes� The interpolation may improve the accuracy of
the model� compared to piecewise linear models� In addition� the smoothness of the
model is an inherent property�

A fundamental problem with all local modelling methods is the curse of dimensionallity
problem �Bellman ����� Moody � Darken ����� Tolle et al� ����� Friedman ������ In our
case� we have shown that this problem may sometimes be reduced considerably� since the
operating point may be of lower dimension than the information vector�

To summarize� we have investigated how non�linear systems can be modelled using NAR�
MAX models based on local ARMAX models� The primary result is that given a su�cient
number of local models and well de
ned operating regimes� the system function can be
approximated to arbitrary accuracy� In practice� noise and the amount of data available
will limit the attainable accuracy� Standard identi
cation algorithms can easily be applied
since the proposed representation will be linear in the parameters� The empirical choice
of model validity function may however complicate the problem� Several practical aspects
of building such models are outlined and illustrated by a simulation example�

The approach falls somewhat between 
rst principles modelling and pure black�box mod�
elling� Available local 
rst principles models as well as a priori knowledge in terms of
operating regimes� can be incorporated in the model�
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Figure �� A geometric interpretation of the constraints on ��i

� �p��	�
M

�� �� ��

��� ��� ���

g� g� g�

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6 7 8 9

�

Figure �� Situation when the width of ��i goes to zero�
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Figure �� Approximation of f��� � �� � � using two local linear models�
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Figure 
� a� Approximation of f��� � �� � � using a piecewise linear model with two
local linear models� b� Approximation using two local linear models and Gaussian model
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��



0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900 1000

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

t

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900 1000

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

t

Figure �� The two 
rst curves show output and input data used for identi
cation� while
the two last curves show data used for validation�
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Figure 	� Prediction errors on the independent validation data for the resulting models of
the 
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