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Abstract—A snake can traverse cluttered and irregular
environments by using irregularities around its body as push-
points to aid the propulsion. This characteristic feature of
biological snake locomotion, denoted obstacle-aided locomotion,
is investigated for snake robot locomotion purposes in this
paper. The paper presents a hybrid model of the dynamics of a
planar snake robot interacting with obstacles in its environment.
Obstacle contact forces are calculated by formulating and
solving a linear complementarity problem (LCP). The existence
and uniqueness properties of the state evolution of the hybrid
model are investigated. Simulation results validate the hybrid
modelling approach.

I. INTRODUCTION

Inspired by biological snake locomotion, snake robots
carry the potential of meeting the growing need for robotic
mobility in unknown and challenging environments. These
mechanisms typically consist of serially connected joint
modules capable of bending in one or more planes. The many
degrees of freedom of snake robots make them difficult to
control, but provides traversability in irregular environments
that surpasses the mobility of the more conventional wheeled,
tracked and legged forms of robotic mobility.

A unique feature of snake locomotion compared to other
forms of robotic mobility is that irregularities on the ground
are beneficial for the propulsion since they provide push-
points for the snake. While obstacle avoidance is an impor-
tant topic for wheeled, tracked and legged robots, the goal
of snake locomotion is rather obstacle exploitation. The term
obstacle-aided locomotion was introduced by Transeth et al.
[1] and captures the essence of this concept.

Several empirical and analytical studies of biological
snakes have been presented that shows the importance of
external push-points on the locomotion of snakes [2]–[4].
Several mathematical models of the kinematics and dynamics
of snake locomotion have been developed. Some models [5]–
[8] assume that the links of the snake cannot move sideways
(no-slip conditions achieved by e.g. mounting passive wheels
along the snake body), while others assume isotropic or
anisotropic friction conditions [9]–[12]. The works in [1],
[13]–[15] present, to the authors’ best knowledge, the only
known models of snake robot dynamics that also include
obstacle contact forces. However, except for the model in
[15], these models are pure simulation models and not suited
for synthesis of model-based control strategies. The work
in [15] presents preliminary results by the authors in the
form of an analytical model of a snake robot interacting
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with obstacles. However, these preliminary results did not
explicitly consider the hybrid nature of the model.

A long-term goal of the work presented in this paper is to
synthesize model-based controllers for obstacle-aided loco-
motion with provable stability properties. To facilitate such
developments, the underlying mathematical model should
have a simple and analytical form. As a step in this direc-
tion, this paper presents a hybrid model of the dynamics
of a planar snake robot interacting with obstacles in its
environment. Obstacle interaction is modelled by imposing
a unilateral velocity constraint on each contacted link of
the snake robot. This is a novel approach since conventional
models of mechanical systems with unilateral constraints
calculate constraint forces with respect to the normal di-
rection of the obstacles [16]. With the approach described
in this paper, the shape of the obstacles does not have to be
considered explicitly as we instead calculate constraint forces
with respect to the normal direction of the contacted links.
This simplifies the equations of motion. As an extension
to our previous work in [15], we show how the equations
governing the obstacle contact forces on the snake robot can
be formulated as a linear complementarity problem (LCP).
This enables us to apply existing general results concerning
existence and uniqueness of solutions to LCPs [17] to the
model of the snake robot. Simulation results are presented
that validate the hybrid modelling approach.

The paper is organized as follows. Section II presents
essential background material regarding hybrid modelling
and LCPs. Section III presents a 2D model of a snake
robot without obstacle contact forces. Section IV extends
the 2D model in order to include obstacle contact forces.
Section V formulates the 2D model with obstacle contact
forces as a hybrid dynamical system. Section VI presents
a control strategy for obstacle-aided locomotion. Section
VII presents simulation results, and Section VIII presents
concluding remarks.

II. BACKGROUND MATERIAL

This section presents the hybrid modelling framework
employed in Section V and also the linear complementarity
problem, which is central in the modelling of obstacle contact
forces in Section IV.

A. Modelling of hybrid dynamical systems

A hybrid dynamical system is a dynamical system that
exhibits both continuous and discontinuous state evolution.
A snake robot interacting with obstacles is a hybrid system
since the impacts between the snake and the obstacles
represent discrete events. Several modelling frameworks for
hybrid systems exist [18]. In this work, we have chosen to
employ the modelling framework described in [19] since it
captures a wide variety of hybrid phenomena, and it also
facilitates stability analysis of hybrid systems.

In accordance with [19], a hybrid system has a state
vector  ∈ R that can both flow (evolve continuously) and
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jump (evolve discontinuously). The data that determine the
evolution of  is given by the four elements (),
where  denotes the flow set,  denotes the flow map,
 denotes the jump set, and  denotes the jump map of
the hybrid system. Whenever the state  belongs to the
flow set, it flows (or evolves continuously) according to  .
During flows, the system acts as an ordinary continuous
dynamical system. However, when  belongs to the jump
set, it generally jumps according to  to a new value +,
where superscript + denotes ‘the next value’. Hence, the
general form of a hybrid dynamical system is given by

̇ =  ( ) for all  ∈ 
+ =  () for all  ∈ 

(1)

where we have also included a control input,  ∈ R.
Existence and uniqueness of solutions is a very important

issue when modelling hybrid systems. From a given initial
state, 0, a hybrid system may have a single solution, several
solutions, or no solution at all. For a general hybrid system,
there are no easily verifiable necessary and sufficient con-
ditions for existence and uniqueness of solutions. However,
such conditions exist for special classes of hybrid systems,
such as for complementarity systems (see Section II-B).

A hybrid system is simulated by letting the state vector, ,
flow according to the flow map,  ( ), as long as  ∈ .
Whenever  ∈ , a jump in the state vector, +, is calculated
according to the jump map,  (), and the simulation of the
flow map is restarted from the new initial value, +.

B. Complementarity systems

A hybrid system is called a complementarity system if the
flow of the state, , is constrained by a set of complementarity
conditions [18]. The complementarity condition between two
scalar variables,  and , is given as  ≥ 0∧ ≥ 0∧ = 0.
The condition states that both variables must be nonnegative
and at least one variable is zero. Two vectors,  ∈ R and
 ∈ R, are said to be complementary if, for all , the pair of
variables ( ) is subject to a complementarity condition.

The constraint equations of a complementarity system can
often be formulated as a linear complementarity problem
(LCP). A LCP asks whether there exist two complementary
vectors,  ∈ R and  ∈ R, such that

 = +

 ≥ 0  ≥ 0  = 0 (2)

for a given vector  ∈ R and a matrix  ∈ R×. The
constraint equations of the snake robot are given in this form
in Section IV. The following result is proved in [17]:
Theorem 1: The LCP in (2) is uniquely solvable for all

data vectors  if and only if  is a  -matrix.
A matrix is a  -matrix if all its principal minors are posi-

tive. A principal minor of the matrix  is the determinant of
a square submatrix of  consisting of the same set of rows
and columns. A real symmetrical matrix is a P-matrix if and
only if it is positive definite. For a real symmetrical matrix,
one can therefore apply the standard criteria for positive
definiteness in order to check if the matrix is a  -matrix. If
the matrix is not symmetrical, one can e.g. apply the recursive
algorithm in [20], which is  (2), in order to check if the
matrix is a  -matrix.

Fig. 1. Kinematic parameters for the snake robot.

Fig. 2. Forces and torques acting on each link of the snake robot.

Several algorithms exist for solving the LCP in (2). A
famous approach is the so-called Lemke’s algorithm [17],
which basically uses trial and error to find the non-zero
elements of  and , but with clever rules for changing the
non-zero elements between trials.

III. MODEL OF A SNAKE ROBOT WITHOUT OBSTACLES

This section presents a continuous 2D model of a snake
robot moving on a flat surface without obstacles. The model
is based on [9], but whereas nonuniform ground friction was
assumed in [9], we here employ a uniform friction model.

A. Notations and defined symbols

The snake robot consists of  links of length 2 intercon-
nected by  − 1 joints. All  links have the same mass 
and moment of intertia  = 1

3
2. The total mass of the

robot is therefore . The mass of each link is uniformly
distributed so that the link CM (center of mass) is located
at its center point (at length  from the joint at each side).
The mathematical symbols defined in order to describe the
kinematics and dynamics of the robot are illustrated in Fig.
1 and Fig. 2.

Vectors are either expressed in the global coordinate
system or in the local coordinate system of link . This
is indicated by superscript global or , respectively. If
otherwise is not specified, a vector with no superscript is
expressed in the global coordinate system. The following
vectors and matrices are used in this paper:

 :=

⎡⎢⎣1 1
 

 
1 1

⎤⎥⎦ :=

⎡⎢⎣1 −1
 

 
1 −1

⎤⎥⎦
where  ∈ R(−1)× and  ∈ R(−1)×. Furthermore,

 :=
£
1   1

¤ ∈ R  =

∙
 0×1

0×1 

¸
∈ R2×2

sin  :=
£
sin 1  sin 

¤
∈R  := diag(sin ) ∈ R×

cos  :=
£
cos 1  cos 

¤
∈R  := diag(cos )∈ R×.
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B. Kinematics of the snake robot

The snake robot moves in the horizontal plane and has
a total of  + 2 degrees of freedom. The absolute angle,
, of link  is expressed with respect to the global  axis
with counterclockwise positive direction. As seen in Fig. 1,
the relative angle between link  and link  + 1 is given
by  =  − +1. The local coordinate system of each
link is fixed in the CM (center of mass) of the link with
 (tangential) and  (normal) axis oriented such that they
are oriented in the directions of the global  and  axis,
respectively, when the link angle is zero. The rotation matrix
from the global frame to the frame of link  is given by


global


=

∙
cos  − sin 
sin  cos 

¸
(3)

The position of the snake robot, , is described through
the coordinates of its CM (center of mass) and is given by

 :=

∙



¸
=

⎡⎢⎢⎣
1


P
=1



1


P
=1



⎤⎥⎥⎦ = 1



∙


 

¸
(4)

It is shown in [15] that the position of the CM of each link
along the global  and  axis, respectively, is given by

 =− cos  + 
 = − sin  + 

 = 
¡


¢−1
 ∈ R×

(5)

The linear velocities of the links are derived by differentiat-
ing (5). This gives

̇ = ̇ + ̇
̇ = −̇ + ̇

(6)

C. Coulomb friction model

Each link is subjected to a ground friction force acting on
the CM of the link and also a friction torque acting about
the link CM. The friction forces and torques on all the links
are contained in the vectors

 =

∙



¸
∈ R2 (7)

 ∈ R (8)

where  ∈ R and  ∈ R contain the ground friction
forces in the global  and  direction, respectively, and
 contains the friction torques. Due to space limitation,
we refer the reader to [15] for further details about the
calculation of the friction forces and torques.

D. Equations of motion

It is shown in [15] that the complete model of the snake
robot dynamics without obstacles is given as

̈ =̇
2
+ − ++



̈ =  
(9)

where  and  represent the  + 2 generalized coordinates
of the system, ̇

2
= diag(̇)̇, and

 := × +2  +2 

 := 2  −2 

 := 
¡


¢−1


 := 
¡


¢−1


(10)

These equations may be combined into the following single
differential equation:

 () ̈ =  ( ̇ ) (11)

where subscript ‘’ denotes unconstrained and

 =

∙



¸
∈ R+2

 () =

⎡⎣  0×1 0×1
01×  0
01× 0 

⎤⎦ ∈ R+2×+2
 =

⎡⎣ −

 01×
01× 

⎤⎦ +
⎡⎣̇

2
+  +


0
0

⎤⎦
(12)

IV. MODELLING OF OBSTACLE CONTACT FORCES

This section extends the model from Section III in order
to include contact forces from external obstacles in the
environment around the snake robot.

A. Overview of the contact modelling approach

The model of the snake robot should be kept as simple
as possible for control design purposes. We therefore base
the contact model of the robot on the following simplifying
assumptions:
Assumption 2: All obstacles have a circular shape. This

simplifies the specification of the obstacle environment.
Assumption 3: The distance between the edges of any

two obstacles is greater than the link length 2. This prevents
contact on both sides of a link.
Assumption 4: The friction coefficient between the snake

robot and any obstacle is .
Assumption 5: An obstacle contact force acts only on

the CM of a link and contact torques about the link CM
are negligible. This assumption simplifies the equations of
motion considerably and is reasonable when the length of
the links is small.
Assumption 6: Impacts between the snake robot and the

obstacles are completely inelastic.
Assumption 7: All impacts are instantaneous in time and

all impact forces are impulsive.
Assumption 8: During an impact, the configuration of the

snake robot,  = ( ), remains unaltered while the velocity,

̇ =
³
̇ ̇
´

, will generally experience a jump.
Assumption 9: Obstacle friction forces are negligible dur-

ing an impact.
The interaction between a snake robot link and an obstacle

is modelled by introducing a unilateral velocity constraint for
the link when it comes into contact with an obstacle. The
constraint is unilateral (acts in one lateral direction only)
since the constraint shall allow sideways motion of the link
away from the obstacle, but prevent any sideways motion
towards (and thereby into) the obstacle.

As illustrated in Fig. 3, the obstacle contact force on link 
consists of a constraint force,  ∈ R2, acting in the normal
direction of link  and away from the obstacle (parallel to
the local  axis of link ), and an obstacle friction force,
 ∈ R2, acting in the tangential direction of link  and in
the opposite direction of the tangential link velocity (parallel
to the local  axis of link ).
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Fig. 3. The obstacle contact force on link  consisting of the normal
direction constraint force, , and the tangential direction friction force,
.

Fig. 4. The value of the contact parameter of link  is  = 0 when there is
no contact,  = 1 when the constraint force points along the positive link
 axis, and  = −1 when the constraint force points along the negative
link  axis.

B. Collision detection

The environment around the snake robot consists of  cir-
cular obstacles indexed by  ∈ {1 · · ·  }. The coordinates
of the center of obstacle  is denoted by

¡
  

¢
. The set

 of points occupied by obstacle  is given by

 =
n
( ) | ¡− 

¢2
+
¡
 − 

¢2 ≤ 2

o
(13)

where  is the radius of obstacle . The set  of points
occupied by link  (see Fig. 1) is given by

={( ) |=+ cos  =+ sin  ∈ [−]}
(14)

A collision between link  of the snake robot and obstacle
 occurs whenever  ∩ 6= ∅, where ∅ denotes an empty
set. There is no collision if  ∩ = ∅.

We now introduce a vector of contact parameters,  ∈
R. The contact parameter of link , denoted by  ∈
{−1 0 1}, is a discrete state value that determines if the
link is in contact with an obstacle and also on which side of
the link there is contact. As shown in Fig. 4,  = 0 when
there is no contact,  = 1 when the obstacle constraint
force points along the positive link  axis, and  = −1
when the obstacle constraint force points along the negative
link  axis.

Whenever link  impacts an obstacle, the contact parame-
ter, , is updated according to  = e (), where

e ()=−sgnµ[0 1]³global

´µ
min

∈{1···}


¶¶
(15)

and  ∈ R2 is the vector from link  to obstacle
. In (15), the global frame vector from link  to the
closest obstacle is first found (by use of the min operator).
Subsequently, this vector is transformed to the frame of link
 using the rotation matrix 

global


. Finally, the  component
of this vector is extracted. The sign of the  component
determines on which side of the link the obstacle is located.

C. Unilateral constraint equations

This section derives the unilateral velocity constraints for
the links of the snake robot that are in contact with an
obstacle. With reference to Fig. 4, the unilateral velocity
constraint imposed on link  during contact with an obstacle
may be compactly expressed as

 ≥ 0 (16)

where  is the normal direction velocity of link . This con-
straint prevents any sideways motion towards (and thereby
into) the obstacle. Using (3), the velocity constraint is given
in the global frame as

 (−̇ sin  + ̇ cos ) ≥ 0 (17)

By assembling the velocity constraints for all links in matrix
form, inserting (6), and rearranging we get

diag () () ̇ ≥ 0 (18)

where diag () ∈ R× is a diagonal matrix containing the
elements of  along its diagonal and  () ∈ R×+2 is
given by

 ()=
£− ¡+



¢ − sin  cos 
¤

(19)

We denote the number of contacted links by  ∈
{0 1 · · ·  }. In order to easily select the velocity con-
straints from (18) that correspond to contacted links, we
define a selection matrix  () ∈ R×, which simply
contains all  rows from the matrix diag () that contain
a nonzero element. This enables us to write the equation of
velocity constraints for all links that are in contact with an
obstacle as

 ( ) ̇ ≥ 0 (20)

where  ( ) =  () () ∈ R×+2. The following
rank property is important in order to uniquely determine
the contact forces acting on the snake robot.
Property 10: The matrix  has full rank (rank

¡

¢
= )

for all ( ).
Remark 11: Due to the complexity of the elements in

, it is difficult to present a purely mathematical proof
that Property 10 holds. However, we can argue from a
physical perspective that this property must hold. Assume
that rank

¡

¢
 . This implies linear dependence between

some of the  rows of , i.e. there must exist a row of ,
denoted , such that

 =
X

∈{1··· }\{}
 (21)

where  ∈ R. The scalar ̇ is the magnitude of the normal
direction velocity of link , denoted by ||. Multiplying
(21) by ̇ therefore gives

|| = ̇ =
X

∈{1··· }\{}
 | | (22)

which states that the normal direction velocity of link  can
be written as a linear combination of the normal direction
velocities of all other contacted links of the snake robot.
From a physical perspective, such a dependence could never
occur unless all links are parallell since the couplings be-
tween the link velocities must naturally be given in terms of
both normal and tangential link velocities. This contradicts
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(22) since the relationship in (22) only contains normal
direction velocitites. This leaves the case of parallel links
(1 = 2 = · · · = ) as the only way for (22) to be true.
A straightforward calculation of  in e.g. Matlab Symbolic
Toolbox shows that  always has full rank when the link
angles are equal. We therefore conclude that  never drops
rank.

This subsection can be summarized as follows. At any
given time instant the snake robot is in contact with 
obstacles. The interaction between the snake robot and these
 obstacles is modelled by imposing a unilateral velocity
constraint on each of the  contacted links. These  velocity
constraints are given by (20).

D. Continuous contact dynamics

We will now use the unilateral velocity constraints in (20)
to derive the resulting equations of motion of the snake robot.
We assume that the  contact points between the links and
the obstacles have already been established, i.e. we consider
the continuous contact dynamics of the snake robot over
a time interval where the set of contacted links remains
constant. The discrete impact dynamics occurring when a
non-contacted link comes into contact with an obstacle is
treated in Section IV-E. We first consider the frictionless case
in Section IV-D.1, followed by contact forces with friction
in Section IV-D.2.
1) Contact dynamics without obstacle friction: The equa-

tions of motion of the snake robot when the links are
subjected to the velocity constraints in (20) are given by
[15], [21]

̈ =  + 

 (23)

where  ∈ R is a vector of scalars known as Lagrange
multipliers [21]. The Lagrange multipliers are important
because multiplier  equals the magnitude of the constraint
force that ensures compliance with the th constraint. This
means that if the th constraint in (20) corresponds to the
velocity constraint on link , then  equals the magnitude of
the constraint force  acting on link . Since the velocity
constraints in (20) are unilateral, we require that  ≥ 0. This
means that the constraint forces can only point away from
the obstacles. We will handle this directional requirement by
employing the theory of linear complementarity problems
(LCPs) introduced in Section II-B. This approach is based
on the work in [22]. An important observation is that the
normal direction velocity of a contacted link and the corre-
sponding constraint force are subjected to a complementarity
condition, i.e. we have that

̇ ≥ 0  ≥ 0 ̇ = 0 (24)

The normal direction acceleration of each contacted link in
the direction away from each obstacle, denoted by  ∈ R,
is given by

 =




¡
̇
¢
= ̈ +



̇ ≥ 0 (25)

By solving (23) for ̈ and inserting into (25), we arrive at
the following model of the continuous contact dynamics of
the snake robot with frictionless obstacles:

̈ =  + 

 (26)

 = −1 +


̇ + −1



 ≥ 0  ≥ 0  = 0
(27)

Equation (27) is in the form of the general LCP given in

(2) with  = −1


and  = −1 +


̇. In order
to calculate the dynamics of the snake robot at any given
time instant, this LCP must be solved for the unknowns
 and  subject to the complementarity conditions. The
calculated  gives the constraint forces from the obstacles
and is plugged into (26) in order to calculate ̈. The following
result concerns the existence and uniqueness properties of the
LCP in (27):
Proposition 12: The LCP in (27) always possesses a

unique solution ( ).
Proof: From Theorem 1, the proof is complete if we can

show that  = −1


is a  -matrix. We first note that 
is symmetrical. In addition, we have that  has full rank (by
Property 10) and   0 (the inertia matrix is always positive
definite). We can therefore conclude that  = −1




0, which implies that  is a  -matrix. This completes the
proof.
2) Contact dynamics with obstacle friction: A Coulomb

friction model is employed in order to describe the gliding
friction force between the links and the obstacles. In accor-
dance with Fig. 3, we define the obstacle friction forces on
all the links of the snake robot as

 =

∙



¸
= −

∙




¸
diag (sgn ()) || (28)

where  ∈ [0 1] is the Coulomb friction coefficient of the
obstacles,  ∈ R and  ∈ R contain the obstacle
friction forces in the global  and  direction, respectively,
 ∈ R contains the constraint forces in the local  direction
of each link, and  ∈ R contains the tangential link
velocities in the local  direction of each link. The mapping
between the friction forces and the link accelerations, ̈, is
identical to the mapping between ground friction forces, ,
and ̈ given in (12) since  and  both act on the CM of
the links. By using that || =  ()


, where  () is the

selection matrix introduced in (20), we may write the link
accelerations due to the obstacle friction forces, temporarily
denoted ̈ , as

̈ = −Λ (29)

where Λ ∈ R+2× is given by

Λ=

⎡⎣ −

 01×
01× 

⎤⎦∙



¸
diag(sgn())()

 (30)

By adding (29) to the equations of motion in (26) and
following the exact same approach that led to the LCP in
(27), we get

̈ =  +
³

 − Λ

´
 (31)

 = −1 +


̇ + −1
³

 − Λ

´


 ≥ 0  ≥ 0  = 0
(32)

We again identify (32) as a LCP of the general form given in

(2) with  = −1
³

 − Λ

´
and  = −1+



̇.
When obstacle friction is present, we can no longer guarantee
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existence and uniqueness of the solution to the LCP in (32)
since it is no longer evident that the matrix  is a  -matrix
(see Section II-B). We are unable to provide an analytical
upper bound of  due to the complexity of determining if
 is a  -matrix ( is not symmetrical, which complicates the
 -matrix check). However, we can still state the following
result:
Proposition 13: For a given ( ̇ ), there exists a ∗ 

0 such that the LCP in (32) possesses a unique solution
( ) for  ∈ [0 ∗).

Proof: Recall from Section II-B that  =

−1
³

 − Λ

´
is a  -matrix if all principal minors

of  are positive. We know from Proposition 12 that the
LCP in (32) always possesses a unique solution for  = 0
since  is a  -matrix in this case. All principal minors of 
must therefore be positive for  = 0. Assume now that we
increase  until a principal minor of  becomes zero, and
denote the corresponding value of the friction coefficient by
∗  0. It is then evident that the  -matrix property of 
must be preserved for   ∗, i.e. existence and uniqueness
of the solution to the LCP in (32) must hold for   ∗.
This completes the proof.
Remark 14: During our numerical treatments of the LCP

in (32) so far, we have not yet encountered a single instance
where  has failed to be a  -matrix. The authors therefore
conjecture that  must have an unrealistically high value in
order for  to no longer be a  -matrix, and that the LCP in
(32) will always be uniquely solvable during our simulations
of the snake robot.

E. Discrete impact dynamics

An inelastic impact occurs when a link comes into contact
with an obstacle. We calculate the impulsive constraint forces
and the post-impact velocity of the snake robot by following
the approach presented in [18]. The impact dynamics is given
by [18]

 ()
¡
̇+ − ̇−

¢
= 

 ¡
 +

¢
 (33)

where ̇− and ̇+ denote the generalized velocities immedi-
ately before and after the impact, respectively, and  ∈ R
is a vector of impulsive constraint forces. Note that if link 
impacts an obstacle, then − = 0. In order to include this
link in the impact dynamics, we must calculate  based on
the the value of  after the impact, i.e. + = e (), wheree () is given by (15).

The post-impact velocity and the impulsive constraint
forces are complementary, i.e. we have that

 ( +) ̇+ ≥ 0  ≥ 0  ( +) ̇+ = 0 (34)

Solving (33) for ̇+ and premultiplying by  ( +) gives
̇+ = ̇− + −1


 (35)

Denoting the normal direction velocities of each of the
contacted links by the vector  ∈ R, we may combine
(34) and (35) into the following LCP describing the impact
dynamics of the snake robot:

+ = − + −1



+ ≥ 0  ≥ 0  + = 0
(36)

The LCP in (36) is in the general form of the LCP given in
(2) with  = −1


and  = − , and must be solved

for the unknowns + and . Subsequently, the post-impact
velocity of the snake robot is found by solving (33) for ̇+

and inserting the calculated . The following result concerns
the existence and uniqueness properties of the LCP in (36):
Proposition 15: The LCP in (36) always possesses a

unique solution
¡
+  

¢
.

Proof: The proof is identical to the proof of Proposi-
tion 12.

This subsection is now summarized. The discrete impact
dynamics of the snake robot when link  impacts an obstacle
and the state immediately before the impact is (− ̇− −),
is given by

+ =

½ e ()   = 

−   6= 

+ = −

̇+ = ̇− +−1 ()

( +)

(37)

where  ∈ {1 · · ·  }, e () is given by (15), and  is
calculated from the LCP in (36).

V. HYBRID MODEL OF A SNAKE ROBOT WITH OBSTACLES

In this section, we employ the framework of a hybrid
dynamical system (see Section II-A) in order to encapsulate
the continuous and the discrete dynamics of the snake robot
into a single hybrid model. The jump set (), jump map
(), flow set (), and flow map ( ) of the model are
presented in the first four subsections, respectively, followed
by a summary of the hybrid model in the last subsection. We
define the state vector of the hybrid model as

 := ( ̇ ) ∈ R3+4 (38)

A. Jump set

A jump in the state vector  of the model occurs when a
link impacts an obstacle (jump in ̇ and ) or when a link
detaches from an obstacle (jump in ). By employing the
notation from Section IV-B, the jump set corresponding to
an impact between link  and an obstacle is expressed as


Impact


={|∩ 6= ∅ ∈{1· · ·} e()̇0} (39)

where e () is given by (15) and  denotes the th row of
the matrix  () in (19). We use e () instead of  in (39)
because  = 0 before the impact has taken place. The jump
set corresponding to link  detaching from an obstacle may
be expressed as

Detach


= {| ∩ = ∅  ∈ {1 · · ·  }   6= 0} (40)

The jump sets comprising the impacts and the detachments
of all the links, respectively, are given by

Impact=
S

∈{1···}


Impact


 Detach=
S

∈{1···}
Detach
 (41)

The complete jump set of the hybrid model may now be
compactly expressed as

 = Impact ∪Detach (42)
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B. Jump map

The jump map corresponding to the impact between link
 and an obstacle is presented in (37). The jump map
corresponding to link  detaching from an obstacle involves
simply setting  to zero. We may therefore express the
complete jump map of the model as

+ =  () = (+ ̇+ +) for all  ∈  (43)

where

+ = −

+ =

⎧⎪⎨⎪⎩
e () when  ∈ 

Impact


0 when  ∈ Detach


− when  ∈
³


Impact


∪Detach


´
̇+ =

½
̇− +−1 ()


( +) when  ∈ Impact

̇− when  ∈ Impact

(44)
The value of e () is given by (15) and  is calculated from
the LCP in (36).

C. Flow set

We define the flow set of the model so that the state vector
 always flows as long as the jump set is empty. The flow
set is therefore simply given as

 = {| ∈ } (45)

D. Flow map

The flow map of  is simply ̇ and the flow map of ̇
is given by (31). The contact vector, , remains unchanged
between jumps of . The flow map of  is therefore the zero
vector. The complete flow map of the model is given by

̇ =  ( ) = (̇ ̈ 0×1) for all  ∈  (46)

where
̈ =−1

³
 ( ̇ ) +

³

 − Λ

´

´

(47)

and  is calculated from the LCP in (32). Note that we have
not yet specified the control input, , i.e. the torques applied
to the joints of the snake robot.

E. Summary of the complete hybrid model

In accordance with Section II-A, the complete hybrid
model is given by

̇ =  ( ) for all  ∈ 
+ =  () for all  ∈ 

(48)

The following result summarizes the existence and
uniqueness properties of the model.
Proposition 16: The evolution of the state  of the model

in (48) from any initial state can always be uniquely deter-
mined when the obstacles are frictionless ( = 0). With
obstacle friction, there exists a ∗  0 such that existence
and uniqueness of the evolution of  is guaranteed for
 ∈ [0 ∗), but not guaranteed for  ≥ ∗.

Proof: From (45), the flow and jump set are mutually
exclusive, so we can always uniquely determine whether 
should flow or jump. By Proposition 15, the jump map of 
is always unique. By Proposition 12, the flow map of  is
always unique with frictionless obstacles. By Proposition 13,
the flow map of  is always unique for some  = ∗  0.
This completes the proof.

VI. CONTROL OF OBSTACLE-AIDED LOCOMOTION

The authors have previously presented a control strategy
for obstacle-aided locomotion [15] that will be employed
during the simulation of the snake robot in Section VII.
Due to space limitations, we only summarize the basic idea
behind the controller.

A major challenge during obstacle-aided locomotion is
to prevent the snake robot from being jammed between the
obstacles. In a jammed situation, the propulsive components
of the obstacle contact forces are too small to overcome the
friction forces, and hence the forward motion of the snake
robot stops. The control strategy proposed in [15] consists of
a leader-follower scheme and a jam resolution scheme, and
also a supervisory mechanism for switching between these
two schemes. The leader-follower scheme, whose single goal
is to propel the snake robot along the global positive  axis,
is carried out as long as the snake robot is able to move
without being jammed between the obstacles. If the snake
robot is jammed, the jam resolution scheme is carried out in
order to effectively ‘unlock’ the jammed joints. The complete
controller produces the torque input vector,  ∈ R−1, for
the −1 joints of the snake robot. See [15] for more details
about the controller.

VII. SIMULATION RESULTS

The main purpose of the simulation results presented in
this section is to validate the hybrid modelling approach, but
also to show how the controller described in Section VI per-
forms with this hybrid model. The model and the controller
were implemented and simulated in Matlab R2008b on a
laptop running Windows XP. The ode45 solver in Matlab
was employed with a relative and absolute error tolerance of
10−3.

The parameters characterizing the simulated snake robot
were  = 10,  = 0.07 m,  = 1 kg, and  = 0.0016 kgm2.
The various controller parameters were set according to the
controller described in [15]. The ground and obstacle friction
coefficients were set to  = 0.3 and  = 0.2, respectively.
The initial link angles and position of the snake robot were
set to 0 = [7−32−57−46−8 33 53 45 12−23]
[deg] and 0 = [0 0]

 , respectively. At each timestep of
the simulation, we verified that the solution to the LCP in
(32) was unique by employing the  -matrix test presented
in [20].

The motion of the snake robot was simulated both in a
structured and unstructured obstacle environment. The initial
( = 0 s) and final ( = 30 s) shape and position of the snake
robot in these two environments are shown in Fig. 5, while
a plot of the  direction velocity of the snake, ̇, is shown
in Fig. 6. We see that the velocity of the snake robot varies
around 10 cm/s in both environments and that the snake robot
manages to crawl about 2.5 m along the global  axis.

In order to give an idea of the forces involved in obstacle-
aided locomotion, Fig. 7 provides a plot of the constraint
forces on the center link (link 5) of the snake robot, 5,
and the torque input applied to joint 5, 5, during motion in
the structured environment.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented a hybrid model of the dynamics
of a planar snake robot interacting with obstacles in its
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Fig. 5. The initial ( = 0 s) and final ( = 30 s) shape and position of the
snake robot during motion in the structured (top) and unstructured (bottom)
obstacle environment. The trace of the head is indicated with a dotted line.
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Fig. 6. The global  direction velocity of the snake robot during motion in
the structured (top) and unstructured (bottom) obstacle environment. Vertical
dashed lines indicate time instants where the jam resolution scheme is
initiated.
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Fig. 7. The constraint forces on link 5 (top) and the torque input applied
to joint 5 (bottom) during motion in the structured obstacle environment.

environment where obstacle contact forces are calculated by
formulating and solving a linear complementarity problem
(LCP). The existence and uniqueness properties of the state
evolution of the hybrid model were considered. In particular,
it was shown that the evolution of the state  of the model
from any initial state can always be uniquely determined
when the obstacles are frictionless ( = 0). With obstacle
friction, we showed that there exists a ∗  0 such that
existence and uniqueness of the evolution of  is guaranteed
for  ∈ [0 ∗), but not guaranteed for  ≥ ∗.

In future work, the authors will use the hybrid model
in order to synthesize model-based controllers for obstacle-
aided locomotion with provable stability properties.
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