
IFAC PapersOnLine 53-2 (2020) 9841–9846

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2020, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2020.12.2688

10.1016/j.ifacol.2020.12.2688 2405-8963

Comparison of KVP and RSI for
Controlling KUKA Robots Over ROS �

M. H. Arbo ∗ I. Eriksen ∗ F. Sanfilippo ∗∗ J. T. Gravdahl ∗

∗ Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU), 7491 Trondheim, Norway

∗∗ Department of Engineering Sciences, University of Agder (UiA),
4879 Grimstad, Norway

Abstract: In this work, an open-source ROS interface based on KUKAVARPROXY for control
of KUKA robots is compared to the commercial closed-source Robot Sensor Interface available
from KUKA. This comparison looks at the difference in how these two approaches communicate
with the KUKA robot controller, the response time and tracking delay one can expect with the
different interfaces, and the difference in use cases for the two interfaces. The investigations
showed that the KR16 with KRC2 has a 50 ms response time, and RSI has a 120 ms tracking
delay, with negligible delay caused by the ROS communication stack. The results highlight that
the commercial inferface is more reliable for feedback control tasks, but the proposed interface
gives read and write access to variables on the controller during execution, and can be used for
simple motion and tooling control.
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1. INTRODUCTION

1.1 Motivation and Outline

ROS is an open-source middleware for writing robot soft-
ware, it provides a message-passing structure for inter-
process communication. Packages written in ROS are
transferrable from one robot setup to another, and the
large international userbase provides packages ranging
from indoor navigation, to robot simulation, to reference
frame calculation. ROS-Industrial (ROS-I) is an open-
source project aimed at extending ROS to new manufac-
turing applications. ROS-I provides a standardization of
package structures for writing packages aimed at industrial
robotics. Chitta et al. (2017) provides the ros control
framework for designing interfaces for controlling robot
hardware from ROS. This has resulted in interfaces for
different industrial robots including vendors like ABB,
Adept, Fanuc, Motoman, and Universal Robots. Extensive
research work has also gone into creating ROS drivers for
KUKA robots using the RSI interface.

Controlling industrial robots from an external computer
using ROS differs greatly from the classical proprietary
robot programming methods provided by industrial robot
vendors. As such, the commercial interfaces available for
use with ROS often rely on the user writing custom
programs on the robot controller to run for each new
application. In this article an interface for communicating
directly to global variables on the robot controller is used
to explore an alternative communication vector for KUKA
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robot cells, this is done using the KUKAVARPROXY
(KVP) server and the BoostCrossCom C++ interface for
connecting to the server. This approach requires minimal
knowledge of the KUKA Robot Language (KRL), the robot
programming language for KUKA robot cells.

The main contribution of this work is a free and open-
source KVP-based ROS package for controlling KUKA
industrial robots. The work is a continuation of the work
of Eriksen (2017b) and Sanfilippo et al. (2015a), and
compares the KVP-based control method with the RSI-
based control method for use with ROS. The results in
this article also verify the response time and tracking delay
found by Lind et al. (2010).

The article is split into four sections. The first section gives
the motivation and related research. Section 2 describes
the robotics lab as well as the KUKA Robot Controller 2
(KRC2) and the two interfaces used. Section 3 describes
the experiments comparing response time, tracking delay,
feedback control with velocity-resolved closed-loop inverse
kinematics, and an example to show the benefit of having
access to the global variables in the controller. Section 4
gives a qualitative comparison of the interfaces and dis-
cusses the results, the final section is the conclusion.

1.2 Related Research

KUKA offers three interfaces for control and communica-
tion with a robot using an external computer: Robot Sen-
sor Interface (RSI), Ethernet KRL Interface (EKI), and
Fast Research Interface (FRI). RSI is used in this article
and will be further discussed in the following sections. EKI
is an interface intended for TCP/IP data communication
between the computer and an external computer. As this
data may include motion commands, it allows for motion
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Fig. 1. Thrivaldi is a floor-mounted and a gantry-mounted
KR16, currently with a pneumatic SCHUNK gripper
(RH9010), and an IMU attached, respectively.

control. EKI is generally less expensive than RSI, but
not as viable for feedback control. EKI requires the KRL
program running on the KRC to specify the connection to
establish, and variables that will be transmitted. FRI is
a real-time interface supporting control modes from joint
impedance control to joint position control, and may be
used to read and write to variables specified in the KRL
program, but it is only available for the KUKA lightweight
manipulator series.

KVP was developed by IMTS s.r.l. as a freely distributed
server that runs on the Windows portion of the KUKA
Robot Controller. The open-source communication library
JOpenShowVar, was created by Sanfilippo et al. (2015a) as
a Java-based middleware for communication and control of
the robot. It was created as an open-source alternative to
current KUKA control packages. JOpenShowVar has been
used in research on active heave compensation for offshore
crane operations (Sanfilippo et al., 2015b), robotic welding
of tubes (Bredvold, 2015), sensorless admittance control in
human-robot interaction (Yao et al., 2018), and for robot-
assisted 3D vibrometer measurements (Venugopal, 2018).
The open-source nature of JOpenShowVar allowed for the
development of BoostCrossCom, a minimal C++ library
for communicating with the KVP server. BoostCrossCom
was developed by Nj̊astad (2015) and further explored
in Nj̊astad and Egeland (2016).

2. ROBOT SYSTEM AND SETUP

2.1 Thrivaldi

The lab, see Fig. 1, is situated at the Department of
Engineering Cybernetics at the Norwegian University of
Science and Technology (NTNU) and consists of two 6
degrees-of-freedom KUKA KR16 robots, where one is
attached to a GÜDEL gantry crane giving it 9 degrees-of-
freedom. The lab was named after Thrivaldi, a 9 headed
giant from Norse mythology. Each robot is controlled with
a KRC2 cabinet. The gantry crane is connected to the
KRC2 and set up as synchronous external axes controlled
directly by the cabinet. Both robots have a SCHUNK
FTC-50-80 force/torque sensor attached, and a pneumatic
tool changer. The project’s GitHub repositories (Eriksen,
2017a) describe the lab setup and includes ROS drivers
for controlling synchronous external axes with an RSI
interface as well as the KVP packages.

Fig. 2. RSI communicates directly with VxWorks, and
KVP goes through a server on Windows to KRL and
SPS. Both paths can be used simultaneously.

2.2 Software and Hardware

The KRC encompasses the power supply, servo controllers,
control computer, I/O, etc. The control computer in the
KRC2 is a standard x86 computer with a single core
Intel Celeron CPU. The KRC2 uses VxWin, a KUKA
specific real-time operating system based on VxWorks
that runs both VxWorks and Windows XP. The KRC2
has an interpolation cycle (IPOC) of 12 ms. Within each
IPOC, the KRL interpreter runs, I/O devices are updated,
the software programmable logic controller (SPS ) runs,
and Windows tasks are executed. The KUKA Robot Lan-
guage is KUKA’s Pascal-based proprietary programming
language used for executing robot motions. The KRC
prioritizes execution of any running KRL program over
handling Windows requests.

To understand the KVP-based interfaces, we only require
the system variables ADVANCE, OV PRO, and the motion
command PTP. ADVANCE defines how many commands
ahead the motion planner should look when performing
path smoothing. OV PRO is the override speed percentage,
the percentage of maximum permissible speed when exe-
cuting a motion command. Note that the override speed is
not necessarily the speed that will be used, but the speed
limit in the motion planner. PTP is a point-to-point motion
command to either a pose defined in Cartesian space or
joint space. The PTP command executes a trapezoidal
motion between the current pose to the desired pose. If
the option C PTP is supplied to the PTP command, and
ADVANCE>0, the motion planner will start to move towards
the next desired pose as soon as the robot is sufficiently
close to the current desired pose. This smooths the motion,
making it more efficient and faster, at the cost of positional
accuracy. KRL supports defining workspaces that can con-
strain motion or I/O commands to only be executed in
specific areas in the robot’s workspace.

2.3 The Two Interfaces

The two different interfaces have two different access
vectors to the robot as illustrated in Fig.2.

KUKA’s RSI is intended for sensor-assisted motion and
data exchange, the idea is to use external sensors to correct
the position of the robot independent of any running KRL
commands.

In the kuka experimental package, RSI has been used
to create an interface to control KUKA robots via ROS.
The ROS interface uses joint position commands to control
the robot. The RSI position corrections are intended for
minor joint or Cartesian position corrections and work at

a lower level than the KRL interpreter. This means that
it has a separate configuration for the maximum position
corrections (effectively the override speed), and neither
adheres to workspace limitations, nor perform trapezoidal
motion between current and desired position. For ROS
independent response time testing in Sec. 3.1, a bare-bones
C++ interface was created from the XML header files in
kuka experimental.

KUKAVARPROXY (KVP) is a multi-client server that
runs in Windows on the KRC and gives TCP/IP access
to external computers. KVP communicates with the KRC
using the CrossCom library, and can read and write to
global variables. To move the robot we have a KRL
program running on the KRC2 with a loop that executes a
motion command with a KVP writable joint axis variable.
As the KVP server runs in the lower-priority Windows
OS, a stochastic communication delay may occur when
the VxWorks tasks are prioritized.

The project repositories provides kuka kvp hw interface,
a ROS hardware interface that uses BoostCrossCom to
communicate with the KVP server. The package has a
node for reading joint states independently of any running
KRL program, a joint position controller using the simple
KRL program, and ROS services to read and write to
global variables on the KRC.

3. EXPERIMENTAL RESULTS

3.1 Response Time

To test the response time independently of the interface
used, an Arduino Micro with an MPU-6050 IMU is at-
tached to the end-effector of the gantry-mounted robot.
The time from a 30◦ movement on joint A5 is commanded
from the external computer until the IMU senses it is
used as the response time. After each motion, the robot
is given 10 s to settle such that any vibrations caused by
the motions does not affect the subsequent measurements.
This means that the robot controller must also overcome
the static friction in the joint. The test was performed 5000
times for each interface. The tests were run without using
the ROS stack, only TCP/IP for the KVP interface and
UDP for the RSI interface. The Arduino was connected
over SPI to USB. Timing was performed using the Boost
cpu timer class in C++, and the tests were performed on
an Intel Xeon CPU E5-1650 running Ubuntu 16.04.

Fig. 3 shows the results as a histogram where each bin is
the length of one IPOC (12 ms). RSI consistently uses
4-5 IPOCs to overcome the static friction in the joint,
and KVP uses longer. Statistics of the results are given
in Tab. 1. KVP had tests in the hundreds of milliseconds
range as the KVP server is a Windows task with lower
priority than VxWorks tasks.

The KVP-based interface has 2-3 IPOCs longer response
time than RSI. In simple write/read experiments over
KVP to arbitrary variables, the same delay can be ob-
served and is expected to be a limitation stemming from
accessing global variables in the KRL interpreter by a
server running on the Windows part of the KRC.
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Fig. 3. Response time for the two different interfaces. Each
bin of the histogram is the length of one IPOC (12
ms). Note that RSI is only in the 4th or 5th IPOC
whereas KVP has longer delay.

Table 1. Response Time for 5000 Tests (in ms)

Library Min Max Mean Median Std.Dev.

KVP 49.98 268.72 76.15 77.62 18.59
RSI 31.10 55.82 46.86 46.87 3.88

3.2 Tracking Delay

The tracking delay when using ROS is explored by creating
a simple node publishing a sinusoidal signal on joint A3.
The desired joint angle is

qA3,des(t) = A sin(ωt) (1)

where A = 0.2 rad, and ω = 0.2 rad/s. The tracking delay
is the time between a desired joint command is sent until
it is achieved, as reported by ROS.

As noted by Sanfilippo et al. (2015a), the KRL program
used for the KVP-based interface can be designed to suite
the needs of the particular application. To generalize for
a wide variety of use cases, the chosen KRL program is
a simple loop using the PTP command. There are three
design parameters to the PTP command: OV PRO that
governs the override speed, ADVANCE that governs the
look-ahead motion planner, and C PTP that activates path
smoothing.

In Fig. 4, the RSI-based interface was used. There is a 120
ms tracking delay from a command is given until the robot
achieves the same joint angle. These results are similar to
that of Lind et al. (2010) where tracking delay was tested
with RSI without ROS. We therefore assume that any
delay caused by the ROS communication stack and the
reported timestamps of the rosbag to be negligible with
respect to the tracking delay.

In Fig. 5, the KVP-based interface was used with 100%
override speed, an ADVANCE of 1, and no C PTP. The robot
moves in a stop-and-go motion. As the override speed is
very high, the robot performs a trapezoidal motion to the
desired pose and then stops when the pose is reached. After
this the robot requires some time to start a new motion,
resulting in a stop-and-go motion.

In Fig. 6, C PTP is activated and the override speed is set
to 30% . This is approximately the speed at which the
robot is required to move by the commanded signal, and
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a lower level than the KRL interpreter. This means that
it has a separate configuration for the maximum position
corrections (effectively the override speed), and neither
adheres to workspace limitations, nor perform trapezoidal
motion between current and desired position. For ROS
independent response time testing in Sec. 3.1, a bare-bones
C++ interface was created from the XML header files in
kuka experimental.

KUKAVARPROXY (KVP) is a multi-client server that
runs in Windows on the KRC and gives TCP/IP access
to external computers. KVP communicates with the KRC
using the CrossCom library, and can read and write to
global variables. To move the robot we have a KRL
program running on the KRC2 with a loop that executes a
motion command with a KVP writable joint axis variable.
As the KVP server runs in the lower-priority Windows
OS, a stochastic communication delay may occur when
the VxWorks tasks are prioritized.

The project repositories provides kuka kvp hw interface,
a ROS hardware interface that uses BoostCrossCom to
communicate with the KVP server. The package has a
node for reading joint states independently of any running
KRL program, a joint position controller using the simple
KRL program, and ROS services to read and write to
global variables on the KRC.

3. EXPERIMENTAL RESULTS

3.1 Response Time

To test the response time independently of the interface
used, an Arduino Micro with an MPU-6050 IMU is at-
tached to the end-effector of the gantry-mounted robot.
The time from a 30◦ movement on joint A5 is commanded
from the external computer until the IMU senses it is
used as the response time. After each motion, the robot
is given 10 s to settle such that any vibrations caused by
the motions does not affect the subsequent measurements.
This means that the robot controller must also overcome
the static friction in the joint. The test was performed 5000
times for each interface. The tests were run without using
the ROS stack, only TCP/IP for the KVP interface and
UDP for the RSI interface. The Arduino was connected
over SPI to USB. Timing was performed using the Boost
cpu timer class in C++, and the tests were performed on
an Intel Xeon CPU E5-1650 running Ubuntu 16.04.

Fig. 3 shows the results as a histogram where each bin is
the length of one IPOC (12 ms). RSI consistently uses
4-5 IPOCs to overcome the static friction in the joint,
and KVP uses longer. Statistics of the results are given
in Tab. 1. KVP had tests in the hundreds of milliseconds
range as the KVP server is a Windows task with lower
priority than VxWorks tasks.

The KVP-based interface has 2-3 IPOCs longer response
time than RSI. In simple write/read experiments over
KVP to arbitrary variables, the same delay can be ob-
served and is expected to be a limitation stemming from
accessing global variables in the KRL interpreter by a
server running on the Windows part of the KRC.
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Fig. 3. Response time for the two different interfaces. Each
bin of the histogram is the length of one IPOC (12
ms). Note that RSI is only in the 4th or 5th IPOC
whereas KVP has longer delay.

Table 1. Response Time for 5000 Tests (in ms)

Library Min Max Mean Median Std.Dev.

KVP 49.98 268.72 76.15 77.62 18.59
RSI 31.10 55.82 46.86 46.87 3.88

3.2 Tracking Delay

The tracking delay when using ROS is explored by creating
a simple node publishing a sinusoidal signal on joint A3.
The desired joint angle is

qA3,des(t) = A sin(ωt) (1)

where A = 0.2 rad, and ω = 0.2 rad/s. The tracking delay
is the time between a desired joint command is sent until
it is achieved, as reported by ROS.

As noted by Sanfilippo et al. (2015a), the KRL program
used for the KVP-based interface can be designed to suite
the needs of the particular application. To generalize for
a wide variety of use cases, the chosen KRL program is
a simple loop using the PTP command. There are three
design parameters to the PTP command: OV PRO that
governs the override speed, ADVANCE that governs the
look-ahead motion planner, and C PTP that activates path
smoothing.

In Fig. 4, the RSI-based interface was used. There is a 120
ms tracking delay from a command is given until the robot
achieves the same joint angle. These results are similar to
that of Lind et al. (2010) where tracking delay was tested
with RSI without ROS. We therefore assume that any
delay caused by the ROS communication stack and the
reported timestamps of the rosbag to be negligible with
respect to the tracking delay.

In Fig. 5, the KVP-based interface was used with 100%
override speed, an ADVANCE of 1, and no C PTP. The robot
moves in a stop-and-go motion. As the override speed is
very high, the robot performs a trapezoidal motion to the
desired pose and then stops when the pose is reached. After
this the robot requires some time to start a new motion,
resulting in a stop-and-go motion.

In Fig. 6, C PTP is activated and the override speed is set
to 30% . This is approximately the speed at which the
robot is required to move by the commanded signal, and
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Fig. 4. Joint A3 moving with a sinusoidal motion using
RSI.

Fig. 5. Joint A3 moving with a sinusoidal motion using
KVP at 100% override speed without C PTP.

Fig. 6. Joint A3 moving with a sinusoidal motion using
KVP at 30% override speed with C PTP.

we see that we can achieve a behavior that is close to RSI,
exhibiting approximately 150 ms delay.

3.3 Closed-Loop Inverse Kinematics Example

In this example the end-effector is to follow a 3D Lissajous
trajectory defined by

pdes(t) = 0.3

[
sin(nxωt)− 1.4
sin(nyωt) + 0.7
sin(nzωt) + 1.0

]
(2)

where ω = 0.02, nx = 5, ny = 2, and nz = 3.
The trajectory w.r.t. the robot in its initial position is
visualized in Fig. 7. The error between the current position
and the desired position is described by

Fig. 7. Visualization of the 3D Lissajous trajectory the
robot is to follow.

e(t, q) = p(q)− pdes(t) (3)

which we desire to converge to zero.

To do this we apply CASCLIK (Arbo et al., 2019),
a CasADi-based closed-loop inverse kinematics Python
framework. The framework allows for formulating con-
trollers for multiple constraint-based tasks and solves
them either using the Moore-Penrose pseudoinverse, or
as constraints to an optimization problem. In this exam-
ple we apply the quadratic programming controller, and
CASCLIK formulates the constraint

Jq̇d = −Ke− ∂e

∂t
(4)

and the cost
c = q̇T

d q̇d (5)

where J is the task Jacobian describing the partial deriva-
tive of the end-effector position, p, with respect to the joint
variable, q. The task Jacobian is automatically generated
from the KR16 URDF, q̇d is the desired joint velocity that
will be applied, K = 50, and the cost c ensures that the
resulting joint velocity remains bounded. The desired joint
velocity is integrated and position commands are sent to
the robot.

In Fig. 8 we see the Euclidean norm of the error for four
different experiments: using the RSI interface, using KVP
with 100% override speed and being lucky with the com-
puter and the KRC2 synchronizing, using KVP with 100%
override speed but not achieving synchronization, and us-
ing KVP with automatic tuning of the override speed. If
synchronization is achieved the KVP with 100% override
speed is close to the tracking error of the RSI interface,
but stochastic delays in communication causes errors that
makes us intermittently lose this synchronization. With
automatic tuning of the override speed according to the
desired joint velocity we can reduce the occurrences of the
stop-and-go motion.

The cyclic tracking error is a result of not having an
integrating effect on the controller, the tracking delay, and
the linearization assumption inherent in (4). Tuning the
gain K can decrease this error.

3.4 Benefits of Accessing Global Variables

In this example the robot moves a stapler from one card-
board box to another using either RSI for motion, or
KVP. The robot moves between four points defined in
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Fig. 8. Tracking error of the closed-loop inverse kinematics
example.

Fig. 9. KR16 ready to transfer the stapler.

joint space, stopping momentarily above the cardboard
boxes to release and grasp the stapler. With RSI, the
trapezoidal motion profile in joint space between any two
points is created by the external computer and com-
manded as small angle corrections. With KVP, only the
end position is commanded and the system relies on the
internal trapezoidal motion planner. The gripper is con-
trolled using kvp variable interface and writing to the
relevant global variable. SPS and KUKA workspaces are
used to ensure that the gripper can only be activated
when the end-effector is in designated workspaces above
the boxes and is in effect regardless of which KRL program
is running.

In Fig. 10, the Cartesian motion of the end-effector with
respect to time is given for when the task is performed
with the KVP-based interface. In Fig. 11, the Cartesian
motion of the end-effector with respect to time is given for
when the task is performed with the RSI-based interface.
In this case the motion is commanded using RSI and
the gripper is controlled using ROS services from the
kvp variable interface node. Note that with only the
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Fig. 10. Cartesian coordinates of the end-effector when
transferring stapler using KVP.
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Fig. 11. Cartesian coordinates of the end-effector when
transferring stapler using RSI.

KVP-based interface, the motion is slightly smoother
and slower as the KRL program is running with an
override speed of 30% and uses the internal trapezoidal
motion planner of KUKA. The RSI-based interface uses
a trapezoidal motion created in the external computer
that does not exactly match the KVP based interface. The
overall curvature of the two are similar, and the example
demonstrates usage of both KVP and RSI at the same
time for motion and tool control.

4. DISCUSSION

The qualitative comparison between the two interfaces
is summarized in Tab. 2. RSI is a commercial real-time
interface which demands care and consideration of the
programmer, both in terms of safety handling and keeping
the real-time communication requirements. The KVP-
based interface is an open-source interface with natural
limitations on how fast and accurate one can expect the
control to be, both in terms of timing reliability and path
accuracy when C PTP is active as demonstrated in the
experiments.

Lind et al. (2010) attributes the 120 ms tracking delay
of the RSI interface to motion buffers in the system.
Although KVP uses point-to-point motion in a different
manner than RSI, it also exhibits a tracking delay of the
same order of magnitude, suggesting that the hypothesis
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joint space, stopping momentarily above the cardboard
boxes to release and grasp the stapler. With RSI, the
trapezoidal motion profile in joint space between any two
points is created by the external computer and com-
manded as small angle corrections. With KVP, only the
end position is commanded and the system relies on the
internal trapezoidal motion planner. The gripper is con-
trolled using kvp variable interface and writing to the
relevant global variable. SPS and KUKA workspaces are
used to ensure that the gripper can only be activated
when the end-effector is in designated workspaces above
the boxes and is in effect regardless of which KRL program
is running.

In Fig. 10, the Cartesian motion of the end-effector with
respect to time is given for when the task is performed
with the KVP-based interface. In Fig. 11, the Cartesian
motion of the end-effector with respect to time is given for
when the task is performed with the RSI-based interface.
In this case the motion is commanded using RSI and
the gripper is controlled using ROS services from the
kvp variable interface node. Note that with only the
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KVP-based interface, the motion is slightly smoother
and slower as the KRL program is running with an
override speed of 30% and uses the internal trapezoidal
motion planner of KUKA. The RSI-based interface uses
a trapezoidal motion created in the external computer
that does not exactly match the KVP based interface. The
overall curvature of the two are similar, and the example
demonstrates usage of both KVP and RSI at the same
time for motion and tool control.

4. DISCUSSION

The qualitative comparison between the two interfaces
is summarized in Tab. 2. RSI is a commercial real-time
interface which demands care and consideration of the
programmer, both in terms of safety handling and keeping
the real-time communication requirements. The KVP-
based interface is an open-source interface with natural
limitations on how fast and accurate one can expect the
control to be, both in terms of timing reliability and path
accuracy when C PTP is active as demonstrated in the
experiments.

Lind et al. (2010) attributes the 120 ms tracking delay
of the RSI interface to motion buffers in the system.
Although KVP uses point-to-point motion in a different
manner than RSI, it also exhibits a tracking delay of the
same order of magnitude, suggesting that the hypothesis
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Table 2. Comparison of the RSI and KVP
based ROS interfaces

RSI KVP

Commercial Open-Source
Real-time Stochastic delay

Small angle corrections Uses KRL motion planner
Ignores workspaces Uses workspaces

Specific KRL for new tools Read and write global variables

is correct. This has not been examined on the KRC4, but
the tracking delay is expected to be lower.

Both interfaces provide joint position control. The stochas-
tic delay in the KVP-based interface may introduce er-
rors in the tracking accuracy when the external computer
performs finite differences to approximate joint-velocity
control.

The different behavior of RSI- and KVP-based ROS in-
terfaces suggests the possibility of different usage scenar-
ios. The KVP-based interface is closer to programming
in KRL. It provides the same layer of abstraction from
motion profile planning that may stop novice users of the
robot system, and it does not require timely responses to
the external computer. This means that one can restart
a program in ROS without having to restart the program
on the KRC, requiring less interaction with the KRC. The
differences are summarized in Table 2.

This layer of abstraction can be problematic for advanced
users who want to perform sensor feedback control tasks.
To them, RSI is more appropriate. However, the KVP-
based interface can be used to control tooling and other
SPS-based aspects of the system while the RSI interface
is used for motion. The KVP-based interface also allows
for logging and plotting the robot motion when executing
KRL programs by utilizing the kvp joint state node.

5. CONCLUSION

This article compares two different ROS interfaces for
controlling KUKA robots using ROS: an RSI-based in-
terface, and a new KVP-based interface introduced by
the authors. The commercial interface is more reliable for
feedback control tasks, and the open-source interface can
approach similar performance, but unreliably. The article
also recreates the timing results of Lind et al. (2010),
showing an approximately 50 ms response time and 120 ms
tracking delay when using RSI. The KVP-based interface
was 2-3 IPOCs slower, a delay associated with the KVP-
server running on the Windows part of the KRC2.

Without modifying any KRL program running on the
robot, the KVP-based interface can read and write to any
global variables on the KRC2. This can be beneficial in
Industry 4.0, as demonstrated by Øvern (2018). One can
create a fully open-source digital twin of a KUKA robot
cell using tools in the ROS community such as Gazebo
and RViz. The KVP-based interface can monitor and log
the behavior of existing robot cells without interfering
with any currently running KRL programs. However, the
stochastic nature of the KVP server’s access to the global
variables limits the useability of its approach in real-time
monitoring and control.

Although this article considers an aging KUKA robot plat-
form, the results are important considerations for control
theory applications on industrial robots in general. Both
the response time and the tracking latency are aspects
that can negatively impact the transition from academic
results to industrial application. For rapid system integra-
tion, the less reliable but more open interface may reduce
the programming effort. Documenting and describing the
nature of different control interfaces is essential for using
and improving upon them.
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