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ABSTRACT: The SIMC method by Skogestad (J. Process Control 2003, 13, 291−309) to tune the PID controller is revisited,
and a new method (K-SIMC) is proposed. The proposed K-SIMC method includes modifications of model reduction techniques
and suggestions of new tuning rules and set point filters. Effects of such modifications are illustrated through simulations for a
wide variety of process models. The proposed modifications permit the SIMC method to be applied with more confidence.

■ INTRODUCTION

The proportional−integral−derivative (PID) controllers are
the main controllers used in industry.1,2 There are many tuning
rules to determine the three tuning parameters systematically.3

However, poorly tuned PID controllers are often found in
industry. One of the keys to overcome this is that the tuning
rules should be simple and applicable to a wide range of
processes.4

Simple analytic tuning rules can be derived from the direct
synthesis (DS) method5−7 or equivalently the internal model
control (IMC) method.8−10 By prescribing the desired closed-
loop transfer function and the IMC filter, the controller can be
designed analytically using direct synthesis. Since the resulting
controller is complicated, it is further simplified into the PID
controller form. For this, various approximation methods such
as the Pade approximation of process time delay and the
Taylor series expansion are used along with pole-zero
cancellations usually. Chien and Fruehauf9 applied the original
IMC method by Rivera et al.8 to various process models and
provided hints to solve the problem that, when the desired
closed-loop time constant is small compared to the open-loop
time constant, the load response can be sluggish. The problem
of sluggish load responses appearing in methods based on the
pole-zero cancellations can be mitigated by making the leading
process pole not be canceled by the controller zero.6,7,9,10

However, it makes the design procedure and the resulting
tuning rules for the PID controller more complicated.
Very simple tuning rules for the PID controller known as the

SIMC method have been proposed by Skogestad,4 which
consists of two steps. The first step is to obtain an approxi-
mate first-order or second-order model from a complicated
process model. The second step is to design PI and PID
controllers from the reduced first-order and second-order
models by applying the IMC method, respectively. He
resolves the sluggish load responses of the IMC method
simply by limiting the controller integral time. The SIMC
method has been improved further11,12 and applied to real
experimental processes,13 supporting its utility. Here, the
SIMC method is re-examined.

■ MODEL REDUCTION

One of the key contributions of the SIMC method4 is the model
reduction technique to obtain approximate models of
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The applicable model reduction rules are listed in Table 1. In the
paper, some features of the SIMC method are retained but some
are modified.
First, the famous half rule of the SIMC method is considered.

The SIMC method uses the reduction
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For τ2 ≪ τ1, a simple approximation of e−τ2s/(τ1s + 1) is better
than the above approximation of eq 2 in the phase angle,
resulting in better control systems for some processes. A new
approximation rule including this case is investigated. The
Taylor series expansions of both transfer functions in eq 2
are identical up to the term s. The approximation whose
Taylor series expansions are identical up to the term s2 can be
obtained as
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It is simplified as
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The proposed Rules 1a and 1b in Table 1 implement this
model reduction technique. Here a factor τ2/τ1 is multi-
plied to the half rule of τ2/2. This reduction rule is equal
to the SIMC method when τ1 = τ2 and, as τ2 decreases,
θ approaches τ2.
Second, we simplify the SIMC rules to treat the positive

numerator time constants. Rules T1, T1a, T1b, and T2 of
SIMC are unified as
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Here λ is the design parameter representing the desired
closed-loop time constant. It is usually set to the effective
delay, θ. Equation 5 is equal to Rules T1 and T2 for large T0
and τ0 (≫λ) and the Rule T1b for small T0 and τ0 (≪λ). For
intermediate values of T0 and τ0, it is different from those
of the SIMC method. Simulations show that eq 5 provides

similar or better results than the SIMC rules. Equation 5 selects
the approximation gain which is equal to the amplitude ratio at
the frequency, ω = 1/λ.
We also change Rule T3 of SIMC slightly. The SIMC method

uses (T0s + 1)/(τ0s + 1) ≈ 1/((τ0 − T0)s + 1) for 5λ ≥ τ0 ≥ T0.
Here we propose the approximation
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Equation 6 is such that both models are equal at s = j/(2λ),
i.e., (T0s + 1)/(τ0s + 1) = k/(τs + 1) at s = j/(2λ). For small
T0 (≪2λ), it is equal to the Rule T3 of SIMC. The SIMC
approximation is accurate for frequencies near zero. However, it
will be inaccurate for important frequencies to ensure the
stability and performance of the control system. The proposed
one is accurate for frequencies around ω = 1/(2λ).
The approximation of the integrating element in Table 1 is a

technique used very often to derive tuning rules for integrating
processes.10 Here we use it explicitly. The parameter q should
be large enough but is problem-dependent.

■ TUNING RULES

PI Controller. The basic tuning rule for the first order plus
time delay process of eq 1 is

Table 1. Model Reduction Rulesa

dynamics method condition approximate model
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aThe variable h is the sampling period and λ is the tuning parameter representing the desired closed-loop time constant.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4009919 | Ind. Eng. Chem. Res. 2014, 53, 5038−50475039



τ
τ

λ θ
τ τ λ

= +

=
+

=

⎛
⎝⎜

⎞
⎠⎟C s k

s

k
k

( ) 1
1

( )
, min( , 5 )

I
c

c
1

I 1
(7)

It can be derived from Figure 1
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We limit the integral time τI by 5λ for better load responses.
The SIMC method uses 4(λ + θ) instead of 5λ, and because the
SIMC limit 4(λ + θ) shows somewhat sluggish load responses
for a large τ1, rules in the form of c(λ + θ) have been studied by
several authors.12−14 Since λ is usually near the value of θ, our τI
can be smaller than that of SIMC, resulting in more aggressive
control. The overshoot for the step set point change can be
large. So, when τ1 > 5λ, we use the set point filter for the
controller of eq 7.

λ λ τ
λ

=
+ +

+
F s

s
s

( )
2.5 (1 5 / ) 1

5 1R
1

(9)

Instead of the proposed limit 5λ, different limits based on users’
experiences and preferences can be used.
Lag-Dominant Processes. When the process time constant

τ1 is large, the process behaves similar to a delayed integrating
process as
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The controller tuning rule for this delayed integrating process is

λ θ
τ λ=

′ +
=k

k
1

( )
, 5c I

(11)

The closed loop transfer function of this control system is
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The lead term (5λs + 1) causes the overshoot of about 41% for
the step set point change. To reduce such overshoot, we use the
set point filter as
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With this set point filter, a first order like response between
R(s) and Y(s) can be obtained.
As the process time constant τ1 increases, the proposed

control system eq 7 with the set point filter eq 9 yields responses
that approach to that of the integrating process.

Delay-Dominant Processes. When the process time
constant is very small, the controller of eq 7 becomes a pure
integral controller:
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Although its control performance is not unsatisfactory, it may be
inconvenient to implement since the controller gain is zero. For
better performances with a nonzero controller gain, the improved
SIMC method11 uses τ1 + θ/3 instead of τ1 for the controller
integral time. Similar results can be obtained by implementing the
model reduction technique of Rule 3a in Table 1 as, for τ1 < 0.3θ,
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and applying the tuning rule of eq 7. Table 2 summarizes PI
controller tuning rules.

Figure 1. Feedback control system with the set point filter.

Table 2. PI Controller Tuning Rules

process method kc τI FR(s)
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PID Controller. The direct synthesis (DS) method5 or the
internal model control method8 for the second order plus time
delay process of eq 1 is9

τ
τ

τ
λ θ

τ τ τ τ

= + +

=
+

= =

⎛
⎝⎜

⎞
⎠⎟C s k

s
s

k
k

( ) 1
1

(1 )

( )
, ,

I
c D

c
1

I 1 D 2
(16)

For the PID controller, the design parameter λ can be chosen
to be smaller than θ. As λ decreases, in addition to increasing kc,
it will be better to increase the derivative time as well. This can
be obtained by approximating the process as
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Applying the DS method, we have
τ

λ ηθ
τ τ τ τ η θ= ̃ +

= = + −k
k( )

, , (1 )c
1

I 1 D 2
(18)

Comparing eq 18 with λ ̃ = ηθ to eq 16, we have
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As in the SIMC method, for better load responses, the tuning
rule 20 is modified as
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The set point filter of eq 9 is also used for this PID controller.
For faster responses, this PID controller can be applied to the
first order plus time delay process by letting τ2 = 0. These
tuning rules are given in Table 3. Tuning rule 21 is used only
for τ2 + 0.5(θ − λ) ≤ 5λ, and for a larger τ2, the following
tuning rule will be used.
For a general second order plus time delay process of
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a new tuning rule is derived by applying the concept of the
SIMC method. The PID controller for which the desired closed
loop transfer function is the same as eq 8 is
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As in the above PI controller, to improve load responses,
the integral and derivative times in eq 23 are limited (τ = 5,
ζ =1/√2):
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Table 3. PID Controller Tuning Rules

process method kc τI τD FR(s)
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aSeries-form PID: C(s) = kc(1 + 1/(τIs))(1 + τDs).
bParallel-form PID: C(s) = kc(1 + 1/(τIs)+τDs).

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4009919 | Ind. Eng. Chem. Res. 2014, 53, 5038−50475041



When τ > 5λ, extending the set point filter of eq 9, we use
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By increasing the process time constant, we can obtain the
PID controller tuning rule for the double integrating process
with time delay. For delayed double integrating processes, set
point filters are also required to reduce the overshoot for the set
point change.
Table 3 summarizes the proposed PID controller tuning rules.

For delayed integrating processes with additional poles and zeros,
PID controllers can be designed by applying model reduction

techniques in Table 1 and tuning rules in Tables 2 and 3.
Table 4 summarizes tuning procedures for delayed integrating
processes:
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■ SIMULATIONS
To illustrate performance of these modifications, the proposed
method is applied to various process models and compared with
the SIMC method. Controller parameters with the robustness
indexes (gain margin (GM), phase margin (PM), and sensitivity
peak (Ms)) are given in Table 5.
Example 1 (First Order Plus Time Delay Process).

Consider a first order plus time delay process of eq 1. The
proposed method uses a smaller value than the SIMC method
in limiting the controller integral time. Its effect for the
integrating process has been shown already in Figure 3 of
the SIMC paper (when λ = θ is used, the proposed method
uses τI = 5θ, while the SIMC method used τI = 8θ for the
integrating process).4 The proposed method shows better
load responses. On the other hand, it shows an overshoot
of about 41% without the set point filter. This overshoot can
be reduced to 5% by the set point filter of eq 13. The limit
on the controller integral time is based on the user’s
preference. Without the set point filter, the SIMC one is a
good tradeoff between load and set point responses but, with
the set point filter, the proposed correlation will yield better
results.
As the process time constant goes to zero, both controller

gain and integral time of the SIMC method become zero.
To avoid this, the improved SIMC method11 uses τ1 + θ/3 for

the controller integral time. The controller integral time of the
desired closed loop response (DCLR) method6 approaches
τ1 + θ/4 as the process time constant goes to zero. This
problem can also be resolved by the model reduction technique
as shown in eq 15. In fact, control performances of the SIMC
method (pure integral control), the DCLR method, the
improved SIMC (I-SIMC) method, and the proposed method
(K-SIMC) with the model reduction technique of eq 15 are
similar.
Figure 2 shows control performances for
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The SIMC method and the proposed method of eq 15 with
λ = θ = 1 show very similar responses. For λ = 0.6 < θ, the
SIMC method increases just the PI controller gain which shows
oscillatory responses. On the other hand, the proposed PID
controller of eq 21 shows excellent responses that are fast and
less oscillatory.

Example 2 (Second Order Plus Time Delay Process).
To illustrate the proposed tuning rule of eq 21, the following
process is considered.
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For this process, the PI controller is designed by applying the
model reduction rule and the tuning rule of the SIMC method.
Two PID controllers are designed by the SIMC method with
λ = 2 and λ = 1.2. The proposed method is the same as the
SIMC method except for λ = 1.2. Figure 3 compares closed-loop
performances, which shows improved results for the proposed
method of eq 21.

Example 3 (Second Order Underdamped Process).
The direct synthesis method and the internal model control
method result in pole and zero cancellations. Hence they
suffer from poor load responses for small time delay processes.
The SIMC method overcomes this simply by limiting
the integral time and the technique can also be applied
to the overdamped second order plus time delay processes.
Here, it is extended to the underdamped second order
plus time delay process. To illustrate this, the underdamped
process,

=
+ +

−
G s

s s
( )

e
100 10 1

s

2 (29)

is considered. Because the SIMC method does not consider
underdamped processes, we compare the proposed method
with the original direct synthesis (DS) method5,9 as in Table 3.
The damping factor of this process is 0.5, and the open-loop
system shows oscillatory responses. These oscillatory responses
appear directly in the load responses of the DS method. The
proposed method can suppress the oscillatory load response as
shown in Figure 4. The proposed method without the set point
filer can suffer from the somewhat large overshoot for the step
set point change. The set point filter reduces this overshoot
effectively.

Example 4 (Delayed Integrating Process). Consider the
process

=
+

−
G s

s as
( )

e
( 1)

s

(30)

Table 4. Proposed Approximations for G(s) = k′(Ts + 1)e−θs/
(s(τ2s + 1))

method condition approximation

proposed
With Rule 4 for the integrator, obtain

τ
′ +

+ +

θ−k q Ts
qs s

( 1)e
( 1)( 1)

s

2
and apply

model reduction techniques. Then design the PID controller.
Following are some cases.

T = 0
τ2 < 5λ C(s) is for λ

λ τ
′
+ +

θ−k
s s

20 e
(20 1)( 1)

s

2

τ2 > 5λ C(s) is for λ
λτ λ τ

′
+ + +

θ−k
s s

20 e
20 (20 ) 1

s

2
2

2

T < 1.6τ2
Obtain

τ
̃
̃ +

θ−k
s s

e
( 1)

s

2
by applying Rule 3 to

(Ts + 1)/(τ2s + 1) and then design C(s)

T > 1.6τ2
Obtain

τ τ
̃

̃ + +

θ−k
s s

e
( 1)( 1)

s

1 2
by applying Rule 3 to

q(Ts + 1)/(qs + 1) and then design C(s)
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Table 5. PID Controller Parameters Calculated

ex G(s) method λ kc τI τD GM PM Ms FR(s)

1

+

−

s
e

0.2 1

s SIMC 1 0.1 0.2 3.1 62° 1.6
SIMC 0.6 0.125 0.2 2.5 54° 1.8
proposed 1 0.1465 0.3 3.3 65° 1.5
proposed 0.6 0.125 0.2 0.2 2.9 61° 1.6

2

+ +

−

s s
e

( 1)(0.7 1)

s2 SIMC 2.35 0.2128 1.35 4.0 69° 1.4
SIMC 2 0.25 1 0.7 3.1 61° 1.6
SIMC 1.2 0.3125 1 0.7 2.5 54° 1.8
proposed 1.2 0.3125 1 1.1 2.4 60° 1.8

3

+ +

−

s s
e

100 10 1

s

2

DS 1 5 10 10 3.1 61° 1.6
proposeda 1 14.14 7.071 3.536 2.9 39° 1.8 (3.75s + 1)2/(5s + 1)2

4

+

−

s as
e

( 1)

s a = 0.4 SIMC 1 0.5 8 0.4 2.9 47° 1.7
proposed 1.4 0.3571 7 3.1 1.8 (3.5s + 1)/(7s + 1)
proposed 1 0.5 5 0.4 2.8 39° 1.8 (2.5s + 1)/(5s + 1)
proposed 0.6 0.625 5 0.6 2.2 42° 2.0 (2s + 1)/(4s + 1)

a = 20 SIMC 1 0.5 8 20 2.9 47° 1.7
SIMC 1 1.25 8 8 2.8 39° 1.8
proposeda 1 2.8284 7.071 3.536 2.8 33° 1.9 (2.78s + 1)2/(5s + 1)2

5 −

s
e s

2

SIMC 1 0.0625 8 8 2.8 33° 2.0
proposeda 1 0.1414 7.071 3.536 2.7 27° 2.1 (2.5s+1)2/ (5s+1)2

6 +
+ +

s
s s

0.3 1
( 1) (0.1 1)2

SIMC 0.05 35 0.4 ∞ 25° 2.4
proposed 0.095 51.784 0.475 0.0354 ∞ 47° 1.3 (0.35s + 1)/(0.475s + 1)

+
+ +

s
s s

0.5 1
( 1) (0.1 1)2

SIMC 0.05 21 0.4 ∞ 34° 1.9
proposed 0.095 20.880 0.475 ∞ 36° 1.8 (0.35s + 1)/(0.475s + 1)

7 +
+ +

−s
s s

5(1.6 1)e
(20 1)( 1)

s SIMC 1 1.25 8 3.7 68° 1.4
proposed 1 1.4991 5 3.0 58° 1.6 (3.125s + 1)/(5s + 1)

8 +
+

−s
s

( 1)e
(0.2 1)

s

2

SIMC 1 0.1 0.2 2.0 81° 2.0
I-SIMC 1 0.2667 0.533 1.4 91° 3.6
proposed 1 0.0721 0.2 2.8 85° 1.6

9 +
+ +

−s
s s

(2 1)e
(5 1)(0.1 1)

s SIMC 1.05 1.4524 3.05 1.7 91° 2.3
SIMC 2.1 0.9683 3.05 2.6 88° 1.6
proposed 1.1 0.7466 0.9784 3.1 61° 1.5

10 +
+

−s
s as

( 1)e
( 1)

s a = 0.2 proposed 1.2 0.2901 2.449 3.3 40° 1.5
a = 0.7 proposed 1 0.4316 5 2.9 47° 1.6

aParallel-form PID: C(s) = kc(1 + 1/(τIs) + τDs).

Figure 2. Control responses for the process G(s) = exp(−s)/
(0.2s + 1).

Figure 3. Control responses for the process G(s) = exp (−2s)/((s + 1)
(0.7s + 1)).
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For this process of a = 0.4, PID controllers by the SIMC
method (λ = θ) and the proposed method (λ = θ and 0.6θ) can
be designed. In addition to PID controllers, the PI controller
can also be designed with the approximation of

=
+

≈
+ +

≈
+

≈
− − − + −

G s
s s

q
qs s

q
qs s

( )
e

(0.4 1)
e

( 1)(0.4 1)
e

1
es s s s(1 0.4) 1.4

(31)

Figure 5 shows closed-loop responses of one PI controller and three
PID controllers. The proposed controller can be designed from

η

=
+

=
+

≈
− +

η

η

η

− −

−

−

G s
s s s s e

s s

( )
e

(0.4 1)
e

(0.4 1)
e

((1.4 ) 1)

s s

s

s

(1 )

(32)

where λ = 2η − 1 (eq 19). We can see that the PI controller is also
acceptable.

As a increases, the process approaches the delayed double
integrating process. For a = 20, the series-form PID controller
by the SIMC method (λ = 1) is kc = 0.5, τI = 8, and τD = 20.
However, because the derivative time is too large, it may be
better to be kc = 1.25, τI = 8, and τD = 8 with limiting τD. The
proposed method uses an approximation (Table 4)

=
+

≈
+ +

=
+ + +

− −

−

G s
s s

q
qs s

q
qs q s

( )
e

(20 1)
e

( 1)(20 1)
e

20 (20 ) 1

s s

s

2
(33)

Figure 6 shows control performances. For the proposed
method, q = 20 is used. The SIMC method with τD = 20

shows sluggish load responses, and that with τD = 8 shows a
large overshoot. The proposed method does not have such
problems.

Example 5 (Delayed Double Integrating Process). As
the process time constant increases, the second order plus
time delay process becomes the double integrating process
with delay. Control performances are compared for the double
integrating process:

=
−

G s
s

( )
e s

2 (34)

Figure 7 shows closed-loop performances. The SIMC method
shows a large overshoot for the step set point change. The SIMC
method also needs the set point filter to reduce the overshoot for
delayed integrating processes. The proposed method with the set
point filter shows excellent responses for both load and set point
changes.

Example 6. To illustrate the proposed model reduction rule
of eq 4 modifying the SIMC half rule, we consider the process

= +
+ +

G s
as

s s
( )

10( 1)
( 1) (0.1 1)2 (35)

For a < 0.25, the SIMC method reduces the process as

= +
+ + +

≈
+

−
G s

as
s s s

a
s

( ) 10
1

1
1

( 1)(0.1 1)
10 e
1.05 1

s0.05

(36)

Figure 4. Control responses for the process G(s) = exp(−s)/(100s2 +
10s + 1) (load step size: 5).

Figure 5. Control responses for the process G(s) = exp(−s)/(s(0.4s + 1))
(load step size = 0.2).

Figure 6. Control responses for the process G(s) = exp(−s)/
(s(20s + 1)).
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On the other hand, the proposed method reduces the process
as (λ = 0.095)

= +
+ + +

≈

+

+ +
≥

+
+ +

<

−

−

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

G s
as

s s s

a
s

a

as
s s

a

( )
10( 1)

1
1

( 1)(0.1 1)

10
1 ( /0.095)

1 (1/0.095)

e
1.005 1

, 0.475

4.8224
1

0.475 1
e

1.005 1
, 0.475

s

s

2

2

0.095

0.095

(37)

Figure 8 shows closed-loop performances. The SIMC method
shows large overshoots for the step set point change. These

large overshoots are due to the small effective time delay in the
reduced model eq 36.
Example 7. The proposed method is applied to the process

= +
+ +

−
G s

s
s s

( )
(1.6 1)e

(20 1)( 1)

s

(38)

This process is selected to check the validity of the Rule T1 of
SIMC. The SIMC method designs the PI controller from the
approximation of

= +
+ +

≈
+

− −
G s

s
s s s

( )
1.6 1

1
e

20 1
1.6

e
20 1

s s

(39)

The proposed method with λ = 1 uses the approximation of

= +
+ +

≈
+

+ +
=

+

− − −
G s s

s s s s
( )

1.6 1
1

e
20 1

1 (1.6/1)

1 (1/1)

e
20 1

1.3342e
20 1

s s s2

2

(40)

The process gain by the proposed method is less (about 17%)
than that of the SIMC method. Skogestad4 worried that the
process gain by the Rule T1 becomes too large and the
resulting control system becomes sluggish. Our approxima-
tion may relieve this concern. Figure 9 shows the responses

of both methods. The proposed model reduction method
provides the PI controller that is a little less conservative.

Example 8. Consider the process

= +
+

−
G s

s
s

( )
( 1)e
(0.2 1)

s

2 (41)

This process is selected to check the validity of the Rule T1b of
SIMC. The SIMC method designs the PI controller from the
approximation of

= +
+

≈
+

− −
G s

s
s s

( )
( 1)e
(0.2 1)

e
0.2 1

s s

2 (42)

The proposed method with λ = 1 uses the approximation of

= +
+

≈ +
+ +

=
+

− − −
G s

s
s

e
s s

( )
( 1)e
(0.2 1)

1 1
1 0.04 0.2 1

1.3868e
0.2 1

s s s

2

(43)

The process gain of the proposed method is greater (41%) than
that of the SIMC method. Hence the proposed method will

Figure 7. Control responses for the process G(s) = exp(−s)/s2 (load
step size = 0.1).

Figure 8. Control responses for the process G(s) = (as + 1)/((s + 1)2

(0.1s + 1)) (load step size = 10).

Figure 9. Control responses for the process G(s) = 5(1.6s + 1)
exp(−s)/((20s + 1)(s + 1)).
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provide a more conservative (lower) controller gain. Figure 10
shows responses of the SIMC method and I-SIMC method11

for the model of eq 41 and the proposed K-SIMC method
for the model of eq 42. We can see that closed-loop responses
of the SIMC and I-SIMC methods are too oscillatory.
Robustness indexes in Table 5 also show problems with the
SIMC method. However, for this process, the oscillatory
responses of the SIMC method can be avoided by increasing
the design parameter λ.
Example 9. Consider the process

= +
+ +

−
G s

s
s s

( )
(2 1)e

(5 1)(0.1 1)

s

(44)

This process can check the validity of Rule T3 of SIMC. The
SIMC method designs the PI controller by approximating the
process as

= +
+ +

≈
− + +

≈
+

− − −
G s

s
s s s s s

( )
(2 1)e

(5 1)(0.1 1)
e

((5 2) 1)(0.1 1)
e

3.05 1

s s s1.05

(45)

The proposed method uses the approximation of, with letting
λ = 1.1,

= +
+ +

≈ +
+ + +

=
+ +

≈
+

−

−

−
+

− −

( )

G s
s

s s

s s

s s s

( )
(2 1)e

(5 1)(0.1 1)

1 4/2.2
1 10/2.2

e

1 (0.1 1)

0.5957e
(0.9784 1)(0.1 1)

0.5957e
0.9835 1

s

s

s s

2

2 5 2
1 10 / 2.2

1.095

2

(46)

Figure 11 shows closed-loop responses of both methods. The
SIMC method with λ = 1.05 shows somewhat oscillatory
responses with a high Ms of 2.3 (Table 5). Responses are
made to be less oscillatory by increasing λ to 1.5 but become
sluggish. Responses of the proposed method are excellent.
Example 10. Consider the process

= +
+

−
G s

s
s as

( )
( 1)e

( 1)

s

(47)

For a = 0.2, the proposed method (K-SIMC) uses the approxi-
mation of, with letting λ = 1.2 and applying our model reduction
rules in Table 1,

= +
+

≈
+

+ +

=
+

+
+

+ +

≈
+

+
+
+ + +

≈
+ +

≈
+

− −

−

−

−
+

− −

( )

G s
s e

s s
q s e

qs s
q s

qs
s e

s s

q

q

e

s s

q
q

e
s s

e
s

( )
( 1)
(0.2 1)

( 1)
( 1)(0.2 1)

(6 1)
( 1)

( 1)
(6 1)(0.2 1)

1 (6/1.2)

1 ( /1.2)

1 1/2.4
1 6/2.4 1 (0.2 1)

/1.2
2.9311

(2.449 1)(0.2 1)
3.5173

2.457 1

s s

s

s

s s

2

2

2

2 6 1
1 6 / 2.4

1.192

2

(48)

Here q is assumed to be very large. For a = 0.7, with letting
λ = 1,

Figure 10. Control responses for the process G(s) = exp(−s)(s + 1)/
(0.2s + 1)2 (load step size = 0.4).

Figure 11. Control responses for the process G(s) = exp(−s)(2s + 1)/
((5s + 1)(0.1s + 1)).

Figure 12. Load responses for the process G(s) = exp(−s)(s + 1)/
(s(as + 1)) (load step size = 0.2).
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= +
+

≈
+

+ +

≈ +
+ +

=

− −

− −

G s
s

s s
s q

s qs

q
qs s

( )
( 1)e
(0.7 1)

( 1) e
(0.7 1)( 1)

1 1

1 0.7

e
1

1.1586e

s s

s s2

2 (49)

For this process, Table 5.2 in the improved SIMC method11

can be misleading to design unstable control systems. The
additional condition of T ≥ 5θ in addition to T ≥ τ2 should be
added. The proposed K-SIMC method shows stable responses
for both a values of 0.2 and 0.7 as shown in Figure 12.

■ CONCLUSION
Model reduction techniques and tuning rules in the SIMC
method are reconfirmed and some are modified. The proposed
modifications are summarized below:

[1] The half rule of the SIMC method is slightly modified.
[2] Three model reduction rules of Rule T1, T1a, T1b, and

T2 of the SIMC method are combined.
[3] The model reduction rule of Rule T2 of the SIMC

method is refined.
[4] A method to treat the process integrating element is

included in the model reduction techniques.
[5] A tuning rule to improve PID controllers for a design

parameter less than the effective process time delay is
proposed.

[6] Set point filters corresponding to limits on the controller
integral and derivative times are suggested. It is shown
that limits on the controller integral and derivative times
work well for underdamped second-order processes.

The modifications between [1] and [4] are given in Table 1
and those of [5] and [6] are in Tables 2 and 3. The proposed
modifications can be used for the SIMC method to be applied
with more confidence.
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