THE BEST SIMPLE PID TUNING RULES IN THE WORLD **PROBABLY**

Norwegian University of Science and Technology (NTNU) N-7491 Trondheim, Norway Sigurd Skogestad

AIChE Annual Meeting

Reno, USA, November 2001

Objective:

ullet Present analytic tuning rules which are as simple as possible and still result in good closed-loop behavior.

Starting point:

• IMC PID tuning rules of Rivera, Morari and Skogestad (1986)

New SIMC tuning method:

- ullet Integral term modified to improve disturbance rejection for integrating processes.
- Any process is approximated as first-order plus delay processes using "half method"
- One single tuning rule easily memorized!

PROCESS INFORMATION

- ullet Plant gain, k
- ullet Dominant time constant, au_1
- ullet Effective time delay, heta
- Second-order time constant, au_2 (use only for dominant second-order process with $\tau_2 > \theta$, approximately)

For slow (integrating processes):

• Slope, $k' \stackrel{\mathrm{def}}{=} k/\tau_1$

Resulting model:

$$g(s) = \frac{k}{(\tau_1 s + 1)(\tau_2 s + 1)} e^{-\theta s} = \frac{k'}{(s + 1/\tau_1)(\tau_2 s + 1)} e^{-\theta s}$$

Figure 1: Step response of first-order with delay system, $g(s) = ke^{-\theta s}/(\tau_1 s + 1)$.

OBTAINING THE EFFECTIVE DELAY θ

Basis (Taylor approximation):

$$e^{-\theta s} \approx 1 - \theta s$$
 and $e^{-\theta s} = \frac{1}{e^{\theta s}} \approx \frac{1}{1 + \theta s}$

Effective delay =

"true" delay

- + inverse reponse time constant(s)
- + half of the largest neglected time constant (the "half rule") (this is to avoid being too conservative)
- + all smaller high-order time constants

(or to au_2 if use second-order model). The "other half" of the largest neglected time constant is added to au_1

Example

$$g_0(s) = k \frac{(-0.3s + 1)(0.08s + 1)}{(2s + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)^3}$$

is approximated as a first-order delay process with

$$\tau_1 = 2 + 1/2 = 2.5$$

 $\theta = 1/2 + 0.4 + 0.2 + 3 \cdot 0.05 + 0.3 - 0.08 = 1.47$

or as a second-order delay process with

$$\tau_1 = 2$$

$$\tau_2 = 1 + 0.4/2 = 1.2$$

$$\theta = 0.4/2 + 0.2 + 3 \cdot 0.05 + 0.3 - 0.08 = 0.77$$

IMC TUNING = DIRECT SYNTHESIS

- ullet Controller: $c(s) = rac{1}{g(s)} \cdot rac{1}{(y/ys)_{ ext{desired}} 1}$
- ullet Consider second-order with delay plant: $g(s) = k rac{e^{- heta s}}{(au_1 s + 1)(au_2 s + 1)}$
- Desired first-order setpoint response: $\left(\frac{y}{y_s}\right)_{\text{desired}} = \frac{1}{\tau_c s + 1} e^{-\theta s}$
- ullet Gives a "Smith Predictor" controller: $c(s) = rac{(au_1 s + 1)(au_2 s + 1)}{k} rac{1}{(au_c s + 1 e^{- heta s})}$
- To get a PID-controller use $e^{-\theta s}\approx 1-\theta s$ and derive

$$c(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{k} \frac{1}{(\tau_c + \theta)s}$$

which is a cascade form PID-controller with

$$K_c = \frac{1}{k} \frac{\tau_1}{\tau_c + \theta}; \quad \tau_I = \tau_1; \quad \tau_D = \tau_2$$

ullet au_c is the sole tuning parameter

INTEGRAL TIME

Load disturbance of magnitude 10 occurs at t=20Figure 2: Effect of changing the integral time τ_I for PI-control of "slow" process $g(s) = e^{-s}/(30s+1)$ with $K_c = 15$.

Too large integral time: Poor disturbance rejection Too small integral time: Slow oscillations

SIMC-PID TUNING RULES

For cascade form PID controller:

$$K_C = \frac{1}{k} \frac{\tau_1}{\tau_C + \theta} = \frac{1}{k'} \cdot \frac{1}{\tau_C + \theta} \tag{1}$$

$$\tau_I = \min\{\tau_1, \frac{4}{k' K_c}\} = \min\{\tau_1, 4(\tau_c + \theta)\}$$
(2)

$$\tau_2 = \tau_2 \tag{3}$$

Derivation:

- 1. First-order setpoint response with response time au_c (IMC-tuning "Direct synthesis")
- 2. Reduce integral time to get better disturbance rejection for slow or integrating process (but avoid slow cycling $\Rightarrow au_I \geq rac{4}{k' \ K_c})$

TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

SIMC:
$$\tau_c = \theta$$
 (4)

Gives:

$$K_C = \frac{0.5\tau_1}{k\theta} = \frac{0.5}{k'} \cdot \frac{1}{\theta}$$
 (5)
 $\tau_I = \min\{\tau_1, 8\theta\}$

$$\tau_I = \min\{\tau_1, 8\theta\}$$

$$\tau_D = \tau_2$$

Try to memorize!

Gain margin about 3

Process $g(s)$	$\frac{k}{\tau_1 s+1} e^{-\theta s}$	$\frac{k'}{s}e^{-\theta s}$
Controller gain, K_c	$\frac{0.5}{k}\frac{\tau_1}{\theta}$	$\frac{0.5}{k'}\frac{1}{\theta}$
Integral time, $ au_I$	$ au_1$	8θ
Gain margin (GM)	3.14	2.96
Phase margin (PM)	61.4^{o}	46.9°
Allowed time delay error, $\Delta heta/ heta$	2.14	1.59
Sensitivity peak, M_s	1.59	1.70
Complementary sensitivity peak, $M_t \parallel$	1.00	1.30
Phase crossover frequency, $\omega_{180} \cdot heta$	1.57	1 49
Gain crossover frequency, $\omega_c \cdot heta$	0.50	0.51

second-order processes if we choose $\tau_D = \tau_2$. Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) $(au_c= heta)$. The same margins apply to

EXAMPLE

$$g_0(s) = k \frac{(-0.3s + 1)(0.08s + 1)}{(2s + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)^3}$$

EXAMPLE: Process from Astrom et al. (1998)

$$g_0(s) = \frac{1}{(s+1)(0.2s+1)(0.04s+1)(0.008s+1)}$$

APPLICATION: RETUNING FOR INTEGRATING PROCESS

integral time should be increased by factor $f \approx 0.1 (P_0/\tau_{I0})^2$. To avoid "slow" oscillations the product of the controller gain and

Real Plant data:

Period of oscillations
$$P_0 = 0.85h = 51min \Rightarrow f = 0.1 \cdot (51/1)^2 = 260$$

DERIVATIVE ACTION?

First order with delay plant $(\tau_2 = 0)$ with $\tau_c = \theta$:

Figure 5: Setpoint change at t=0. Load disturbance of magnitude 0.5 occurs at t=20.

- Observe: Derivative action (solid line) has only a minor effect.
- Conclusion: Use second-order model (and derivative action) only when $au_2 > heta$ (approximately)

CONCLUSION

- It is simple (one single rule for all processes)
- It is excellent for teaching (analytical)
- It works very well for all of "our" processes

Full paper with many additional examples available at:

http://www.chembio.ntnu.no/users/skoge/publications/2001/tuningpaper_reno/