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Preface

The Norwegian Dr.Ing (Ph.D) degree requires a basic research work and ap
imately one full year of courses at graduate and postgraduate level. This re
presents the main scientific results from the research.

However, there are also interesting issues on how the results were obtained, w
are not covered. Some of these issues are the work progress, development a
of computational tools like numerical methods for optimization, nonlinear eq
tion solving, simulation and control, and the software itself.

In all basic research, the results themselves cannot be planned for, only the
ities which may or may not lead up to new results. In this process, we somet
discover new interesting directions. This applies for the results presented in c
ters 3-6. The research started out in the direction of optimizing control, but it
discovered that we were able to find some new basic relationships in a syste
integrated distillation columns, and that thread was followed in more detail.

My background is from the department of Engineering Cybernetics, NTN
where I graduated in 1982, and for me it have also been interesting to take the
into Chemical Engineering. There are some obvious cultural differences in
to approach an engineering task. I think it can be summed up in that the chem
engineer focuses more on the design of a process, while the control eng
focuses more on its operation. Clearly, a combination of these approach
needed. In control engineering, we must look more into the process and influ
the design to get more controllable units and plants. It also helps the control e
neer to have a basic understanding of the process behaviour. In process d
chemical engineers should put more attention to the dynamic properties and
trol technology and use this knowledge to design more compact processes
better overall performance. I feel that in particular for complex integrated pr
esses, combined focus on process design and operation is vital since the po
benefit of the integration can easily be lost if the process is not prop
controlled.
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I have some years of experience from industry and as a research scientist at
TEF, the research foundation at NTNU. Unlike the work at SINTEF, where
industrial customer usually is directly awaiting the results from a project, the c
tomer for the Dr.Ing. has several faces. There is a financial sponsor, a super
the candidate himself and the international community of researchers in the fi
It is clear that the most demanding “customer” has to be the candidate himse
order to obtain the best results.

I have had numerous fruitful discussions with my supervisor, professor Sig
Skogestad at the Chemical Engineering Department. He has been a contin
source of inspiration, and has provided invaluable contributions both in
research work and to help me focus on the reader during writing of this thesi
Skogestad’s process control group Atle C. Christiansen and John Morud
important inputs on integrated column arrangements, and I will also men
Bernd Wittgens, Truls Larsson, Audun Faanes, Eva-Katrine Hilmen, Tore L
Marius Govatsmark, Stathis Skouras and the latest arrivals Espen Storkaa
Vidar Alstad. I thank Hilde Engelien for reading the manuscript and giving va
able feedback. I shared an office with Edvard Sivertsen, who studied memb
separation, and we discussed everything from thermodynamics to raising
dren. I hope he forgives me for all the lecturing about distillation every time I f
that I had discovered something. I am also grateful for discussions with the v
ing professors Valeri Kiva (1996/97) and David Clough (1999/2000). We also
the opportunity to meet Felix Petlyuk who visited Trondheim in May 1997.

As an introduction to Petlyuk arrangements, NTNU participated in a Europ
research project within the Joule 3 programme: DISC, Complex distillation c
umns. One spin-off was the visit by Maria Serra in june 1998, resulting in
paper in Chapter 11. I also thank my employer SINTEF for support, in addit
to the grant from the Norwegian Research Council through the REPP program

Finally I thank my wife Toril, and my children Øyvind, Berit and Maria for giving
me a wider perspective on things. The work has consumed a lot of time and a
tion for some years now and Berit, who is 10 years old, asked me: “How m
theses have you written now? Only one?”
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Summary

Distillation is the most widely used industrial separation technology and disti
tion units are responsible for a significant part of the total heat consumption in
world’s process industry. In this work we focus on directly (fully thermally) co
pled column arrangements for separation of multicomponent mixtures. Th
systems are also denoted Petlyuk arrangements, where a particular implem
tion is the dividing wall column. Energy savings in the range of 20-40% have b
reported with ternary feed mixtures. In addition to energy savings, such integr
units have also a potential for reduced capital cost, making them extra attrac
However, the industrial use has been limited, and difficulties in design and con
have been reported as the main reasons. Minimum energy results have only
available for ternary feed mixtures and sharp product splits. This motivates fur
research in this area, and this thesis will hopefully give some contributions to
ter understanding of complex column systems.

In the first part we derive the general analytic solution for minimum energy c
sumption in directly coupled columns for a multicomponent feed and any num
of products. To our knowledge, this is a new contribution in the field. The ba
assumptions are constant relative volatility, constant pressure and constant
flows and the derivation is based on Underwood’s classical methods. An im
tant conclusion is that the minimum energy consumption in a complex dire
integrated multi-product arrangement is the same as for the most difficult
between any pair of the specified products when we consider the performan
a conventional two-product column. We also present theVmin-diagram, which is
a simple graphical tool for visualisation of minimum energy related to feed dis
bution. TheVmin-diagram provides a simple mean to assess the detailed fl
requirements for all parts of a complex directly coupled arrangement.

The main purpose in the first part of the thesis has been to present a complet
ory of minimum energy in directly coupled columns, not a design procedure
engineering purposes. Thus, our focus has been on the basic theory and on
cation and analysis of the new results. However, based on these results
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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straightforward to develop design procedures including rigorous computat
for real feed mixtures without the idealized assumptions used to deduce the
lytic results.

In part 2 we focus on optimization of operation, and in particular the concep
self-optimizing control. We consider a process where we have more degree
freedom than are consumed by the product specifications. The remaining un
strained degrees of freedom are used to optimize the operation, given by s
scalar cost criterion. In addition there will in practice always be unknown distu
bances, model uncertainty and uncertainty in measurements and implemen
of manipulated inputs, which makes it impossible to precalculate and implem
the optimal control inputs accurately.

The main idea is to achieveself-optimizing controlby turning the optimization
problem into a constant setpoint problem. The issue is then to find (if possib
set of variables, which when kept at their setpoints, indirectly ensures opt
operation.

We have used the ternary Petlyuk arrangement to illustrate the concept. It
quite challenging case where the potential energy savings may easily be lost
do not manage to keep the manipulated inputs at their optimal values, and
optimum is strongly affected by changes in feed composition and column
formance. This also applies to the best control structure selection, and we be
that the reported difficulties in control are really a control structure problem (
task of selecting the best variables to control and the best variables to manipu

In this analysis we present in detail the properties of the Petlyuk arrangement
show how important characteristics depend on the feed properties and pro
purity. We have used finite stage-by-stage models, and we also show how t
Underwood’s equations to compute the energy consumption for infinite num
of stages for any values of the degrees of freedom. Such computations are
simple. The results are accurate and in terms of computation time, outper
simulations with finite stage-by-stage models by several magnitudes. The a
sis gives a basic understanding of the column behaviour and we may s
operating strategies based on this knowledge for any given separation cas
some cases there will be a quite flat optimality region, and this suggests tha
of the manipulated inputs may be kept constant. We also show that the side-st
purity has strong impact on the optimality region. One observation is that a sy
tom of sub-optimal operation can be that we are unable to achieve high s
stream purity, and not necessarily increased energy consumption.

In summary, the presented results contribute to improved understanding
removal of some uncertainties in the design and operation of directly integr
distillation arrangements.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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, the
Notation and Nomenclature

It is attempted to define the notation used for equations in the text. However
most important nomenclature used for distillation columns are summarized:

V Vapour flow rate

L Liquid flow rate

D,B,SProduct flows (, or net flow (D=V-L)

wi Net component flow through a section (positive upwards)

ri Feed component recovery

Rv Vapour split ratio at vapour draw stage

Rl Liquid split ratio at liquid draw stage

x Mole fraction in liquid phase

y Mole fraction in vapour phase

z Mole fraction in feed

q Liquid fraction (feed quality)

A,B,. Component enumeration

T Temperature

P Pressure

Partial pressure of component i

Vapour pressure

Relative volatility, referred to a common reference component

Underwood root in a top section

Underwood root in a bottom section

Common (minimum energy) Underwood root

Specific heat of vaporization

Enthalpy change

Entropy change

R The universal gas constant (8.31 J/K/mole)

Nx,M Number of x where x=d,c,s: distributed, components, stages

pi

po

α

φ

ψ

θ

λ

∆H

∆S
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f() Functions

Superscripts

Cxy Column address in a complex arrangement: column array number x, a
row number y. Unless it is obvious from the context, the column position
given as the first superscript to the variables. The column address ma
omitted for the first column (C1)

i/j Denotes sharp split between components i and j.

Subscripts

T,B Top or bottom section

F,D,B,S,...Streams

min Minimum energy operation for a given column feed

i,j,A,B... Component enumeration

Example: denotes minimum vapour flow in the top of column C21 f
sharp separation between A and B. just denote a vapour flow in top of C

For some variables, the component enumeration will be given as the first
script, and the position or stream as the second. E.g denotes compositi
component A in stream and is a scalar, while denotes the vector of all com
sitions in stream D. The second or single subscript denote a section or a str

VTmin
C21,A/B

VT
C21

xA D,
xD
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Chapter 1

Introduction

1.1 Rationale

An important motivation for studying integrated distillation column arrangeme
is to reduce the energy consumption. On a global basis, distillation columns
sume a large portion of the total industrial heat consumption, so even s
improvements which become widely used, can save huge amounts of energy
ings in the magnitude of 20-40% reboiler duty can be obtained if a three-pro
integrated Petlyuk column is operated at its optimum, instead of using a con
tional column sequence. However, we do not anticipate that all distillation ta
are suitable for this technology, but we believe that increased use of prop
designed and operated directly integrated distillation arrangements can sav
nificant amounts of energy. In spite of that the knowledge of the potential ene
savings have been available for some time, there is still some reluctance from
industry on applying complex integrated columns. Difficulties in design and c
trol have been reported in the literature as the main reasons. Better understa
of the characteristics of these systems is therefore required.

In operation of complex process arrangements we also face the problem of on
optimization based on a general profit criterion. The need for on-line optimiza
is normally due to unknown disturbances and changing product specification
find practical solutions, we need good strategies for control design, which also
robust in presence of measurement noise and uncertainties in the process m
A very important issue here is the control structure design, i.e. the selectio
measurements and variables to be controlled, and the variables to be manip
by a control system. We know this problem area from conventional setpoint c
trol, but on-line process optimization brings a new dimension to this issue.
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A process model, which can predict the response of manipulated inputs and e
nal disturbances, is always a good starting point for control design. Howeve
complex arrangements of unit processes, the system behaviour is not easy t
dict, even if the basic units are well described. Modern process simulators giv
the opportunity to study complex systems in great detail, but sometimes it is
ficult to understand the basic properties that may become hidden in adva
modelling packages. Thus, there is a need to identify new problem areas in
grated systems and to explain the basic mechanisms.

1.2 Contributions of the Thesis

In this work, we hope to bring some contributions that improve the understand
of complex integrated distillation columns and in that way help to reduce som
the uncertainties that have caused the industrial reluctance. The focus
directly integrated (fully thermally coupled) distillation columns, denoted as P
lyuk arrangements, both from the minimum energy design and optimal opera
viewpoints.

This thesis has two main parts. InPart I: Design (Chapter 3-6), we use basic dis
tillation equations for minimum energy calculations to explore the characteris
of directly integrated columns. Analytical solutions for minimum energy in ge
eralized directly coupled multi-product arrangements are deduced. TheVmin-
diagram is presented as a graphical tool for simple assessment of the overal
imum vapour flow as well as the requirements in the individual internal sectio

In Part II: Operation (Chapters 7-11), the focus is on operation, mainly for co
trol structure design. An integrated column arrangement, like the Petlyuk colu
has a quite complex behaviour and is a very good example of a process w
require on line optimization in order to obtain the potential energy savings
practice. The approach denoted self-optimizing control (Skogestad et. al. 199
analysed and is applied to Petlyuk arrangements. This is a general metho
selecting variables for setpoint control in order to obtain close top optimal op
tion based on a general profit criterion.

Note that the focus in this thesis is on the understanding of complex integr
distillation columns. Thus, the more general problem of process integration
plant-wide basis has not been included. However, optimal utilization of availa
energy is clearly an issue for a plant-wide perspective, and this should be a su
for further work.

Below, the contributions in the individual chapters are outlined in more deta
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1.3 Thesis Outline

1.3.1 Part I: Design

Chapter 2 is an introduction to basic distillation theory. It does not contain a
new results, but it is included to give the reader who is not familiar with distil
tion an overview of the basic concept used in the models throughout the th
We restrict the analysis to ideal systems with the assumptions about constan
ative volatility, constant molar flows and constant pressure. This may s
restrictive, but it gives valuable insight and we present results that can be obta
by simple computations. There is also a section on multi-component distillat
which can be read as an introduction and brief summary of the following chap

Chapter 3 presents how to use the classical equations of Underwood for com
ing minimum energy and distribution of feed components in a 2-prod
distillation column with multi component feed. TheVmin-diagram is introduced
to visualize the solutions. TheVmin-diagram and the equations behind it becom
important tools for analysis and assessment of complex directly integrated
umns as described in the following chapters.

In Chapter 4 the exact solution for minimum vapour flow in a 3-product inte
grated Petlyuk arrangement is analysed. It is shown how theVmin-diagram can be
used for simple and exact assessment of both general and modified Pe
arrangements. The minimum energy solution is generalized to any feed qu
and any number of components.

In Chapter 5 the general methodology from Chapters 3 and 4 is applied to ded
an analytic expression for minimum energy in directly coupled distillati
arrangements for M-products and N components. The main assumptions are
stant pressure and no internal heat integration. The solution is effecti
visualized in theVmin-diagram as the highest peak, and this in fact the same as
most difficult product split between any pair of products in a single two-prod
column. The analytical minimum energy result and the simple assessment o
multicomponent separation task are assumed to be new contributions in the

In Chapter 6, multicomponent reversible distillation is used to analyse minimu
energy requirement on the background of the 2nd law of thermodynamics (m
mum entropy production). It is first conjectured that the result in chapter 5 g
the minimum for any distillation arrangement without internal heat integrat
(still at constant pressure). However, by introducing internal heat integration,
shown that it is possible to reduce the external heat supply further. The ultim
minimum is obtained with an imaginary reversible process where all the he
supplied at the highest temperature and removed at the lowest temperature.
ods for calculating entropy production in the arrangements are presented
finally operation at several pressures is also briefly discussed.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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1.3.2 Part II: Operation

Chapter 7 would be the starting point of this thesis if the results were presen
in chronological order. This chapter is recommended for a reader who wa
introduction to the Petlyuk arrangement, its operational characteristics and t
concept of self-optimizing control. The content was first presented at the P
ESCAPE conference in May 1997. Part I of this thesis, is really a spin-off fr
more comprehensive studies of complex integrated columns, in order to ach
better understanding of their operational characteristics.

In Chapter 8 the methods from Chapter 7 are applied to evaluate how vari
feed properties affects the characteristics of the Petlyuk column with infi
number of stages and sharp product splits.

Chapter 9 extends the analysis to non-sharp product specifications for the
product case. TheVmin-diagram from Chapter 4 is particularly useful for this pu
pose. It is shown that the optimality region is expanded from a line segmen
the plane spanned by two degrees of freedom) for sharp product splits, to a q
rangle-shaped region where the width depends mainly on the side-str
impurity. The results also explain why it may be impossible to reach high pu
in the side-stream in some cases when the degrees of freedom are not set pro

Chapter 10 is the most independent chapter in this thesis, and it can be read w
out any knowledge about distillation. Here the focus is on the general conce
self-optimizing control, which has been presented by Skogestad et al. (1999
method based on Taylor-series expansion of the loss function is presented.
that we have not covered other possible approaches for optimizing control,
EVOP (Box 1957) or use of on-line optimization. However, self-optimizing co
trol is a tool for control structure design, thus it can be combined with a
optimizing control approach.

Chapter 11 is the result of a simulation study where various candidate variab
for self-optimizing control for the 3-product Petlyuk column were evaluated.

Finally, Chapter 12 makes a summary and conclusion of the most importa
results of the thesis and discusses directions for further work.

Several chapters are self-contained papers, presented at conferences and i
nals. Thus the reader will find that the introductory parts in several chap
contain some overlapping information, and that the notation may be slightly
ferent in the first and second part.

In Appendix A-D some related results are included. We recommend in particu
Appendix D, which shows how to use a standard rigorous simulator with conv
tional column models to find the optimal operating point for a Petlyuk colum
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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Chapter 2

Distillation Theory

by

Ivar J. Halvorsen and Sigurd Skogestad

Norwegian University of Science and Technology
Department of Chemical Engineering

7491 Trondheim, Norway

This is a revised version of an article published
in the Encyclopedia of Separation Science by Aca-
demic Press Ltd. (2000). The article gives some of
the basics of distillation theory and its purpose
is to provide basic understanding and some tools
for simple hand calculations of distillation col-
umns. The methods presented here can be used to
obtain simple estimates and to check more rigorous
computations.
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2.1 Introduction

Distillation is a very old separation technology for separating liquid mixtures t
can be traced back to the chemists in Alexandria in the first century A.D. To
distillation is the most important industrial separation technology. It is parti
larly well suited for high purity separations since any degree of separation ca
obtained with a fixed energy consumption by increasing the number of equ
rium stages.

To describe the degree of separation between two components in a column
a column section, we introduce the separation factor:

(2.1)

wherex denotes mole fraction of a component, subscriptL denotes light compo-
nent,H heavy component,T denotes the top of the section, andB the bottom.

It is relatively straightforward to derive models of distillation columns based
almost any degree of detail, and also to use such models to simulate the beha
on a computer. However, such simulations may be time consuming and often
vide limited insight. The objective of this article is to provide analytic
expressions that are useful for understanding the fundamentals of distillation
which may be used to guide and check more detailed simulations. Analy
expressions are presented for:

• Minimum energy requirement and corresponding internal flow
requirements.

• Minimum number of stages.

• Simple expressions for the separation factor.

The derivation of analytical expressions requires the assumptions of:

• Equilibrium stages.

• Constant relative volatility.

• Constant molar flows.

These assumptions may seem restrictive, but they are actually satisfied for m
real systems, and in any case the resulting expressions yield invalueable ins
also for systems where the approximations do not hold.

S
xL xH⁄( )

T

xL xH⁄( )
B

------------------------=
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2.2 Fundamentals

2.2.1 The Equilibrium Stage Concept

The equilibrium (theoretical) stage concept (see Figure 2.1) is central in dist
tion. Here we assume vapour-liquid equilibrium (VLE) on each stage and tha
liquid is sent to the stage below and the vapour to the stage above. For some t
columns this may be a reasonable description of the actual physics, but it is
tainly not for a packed column. Nevertheless, it is established that calculat
based on the equilibrium stage concept (with the number of stages adjusted a
priately) fits data from most real columns very well, even packed columns.

One may refine the equilibrium stage concept, for example by introducing b
mixing or a Murphee efficiency factor for the equilibrium, but these “fixes” ha
often relatively little theoretical justification, and are not used in this article.

For practical calculations, the critical step is usually not the modelling of
stages, but to obtain a good description of the VLE. In this area there has
significant advances in the last 25 years, especially after the introduction of e
tions of state for VLE prediction. However, here we will use simpler VLE mode
(constant relative volatility) which apply to relatively ideal mixtures.

2.2.2 Vapour-Liquid Equilibrium (VLE)

In a two-phase system (PH=2) withNc non-reacting components, the state is com
pletely determined byNc degrees of freedom (f), according to Gibb’s phase rule;

(2.2)

y

x

PT

Vapour phase

Liquid phase

Saturated vapour leaving the stage

Saturated liquid leaving the stage
with equilibrium mole fractionx

with equilibrium mole fractiony

and enthalpyhL(T,x)

and molar enthalpyhV(T,x)
Liquid entering the stage (xL,in,hL,in)

Vapour entering the stage (yV,in,hV,in)

Perfect mixing
in each phase

Figure 2.1: Equilibrium stage concept.

f Nc 2 P– H+=
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If the pressure (P) andNc-1 liquid compositions or mole fractions (x) are used as
degrees of freedom, then the mole fractions (y) in the vapour phase and the tem
perature (T) are determined, provided that two phases are present. The ge
VLE relation can then be written:

(2.3)

Here we have introduced the mole fractions x and y in the liquid an vapour ph

respectively, and we trivially have  and

In idealmixtures, the vapour liquid equilibrium can be derived from Raoult’s la
which states that the partial pressurepi of a component (i) in the vapour phase is
proportional to the saturated vapour pressure ( ) of the pure component. an
liquid mole fraction (xi):

(2.4)

Note that the vapour pressure is a function of temperature only. For an ideas
according to Dalton’s law, the partial pressure of a component is proportiona
the mole fraction times total pressure: , and since the total pressur

 we derive:

(2.5)

The following empirical formula is frequently used for computing the pure co
ponent vapour pressure:

(2.6)

The coefficients are listed in component property data bases. The case withd=e=0
is the Antoine equation.

y1 y2 … yNc 1– T, , , ,[ ] f P x1 x2 … xNc 1–, , , ,( )=

y T,[ ] f P x,( )=

xi
i 1=

n

∑ 1= yi
i 1=

n

∑ 1=

pi
o

pi xi pi
o

T( )=

pi yiP=

P p1 p2 … pNc
+ + + pi

i
∑ xi pi

o
T( )

i
∑= = =

yi xi

pi
o

P
------

xi pi
o

T( )

xi pi
o

T( )
i

∑
---------------------------= =

p
o

T( )ln a
b

c T+
------------ d T( )ln eT

f
+ + +≈
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2.2.3 K-values and Relative Volatility

TheK-value for a componenti is defined as: . The K-value is some
times called the equilibrium “constant”, but this is misleading as it depen
strongly on temperature and pressure (or composition).

Therelative volatility between componentsi andj is defined as:

(2.7)

For ideal mixtures that satisfy Raoult’s law we have:

(2.8)

Here depends on temperature so the K-values will actually be cons
only close to the column ends where the temperature is relatively constant. O
other hand the ratio is much less dependent on temperature w
makes the relative volatility very attractive for computations. For ideal mixtur
a geometric average of the relative volatilities for the highest and lowest tem
ature in the column usually gives sufficient accuracy in the computatio

.

We usually select a common reference componentr (usually the least volatile or
“heavy” component), and define:

(2.9)

The VLE relationship (2.5) then becomes:

(2.10)

For a binary mixture we usually omit the component index for the light comp
nent, i.e. we writex=x1 (light component) andx2=1-x (heavy component). Then
the VLE relationship becomes:

(2.11)

Ki yi xi⁄=

αij

yi xi⁄( )
yj xj⁄( )

------------------
Ki

K j
------= =

αij

yi xi⁄( )
yj xj⁄( )

------------------
Ki

K j
------

pi
o

T( )

pj
o

T( )
---------------= = =

pi
o

T( )

pi
o T( ) pj

o T( )⁄

αij αij top, αij bottom,⋅=

αi αir pi
o

T( ) pr
o

T( )⁄= =

yi

αi xi

αi xi
i

∑
-----------------=

y
αx

1 α 1–( )x+
------------------------------=
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This equilibrium curve is illustrated in Figure 2.2:

The differencey-x determine the amount of separation that can be achieved o
stage. Large relative volatilities implies large differences in boiling points a
easy separation. Close boiling points implies relative volatility closer to unity
shown below quantitatively.

2.2.4 Estimating the Relative Volatility From Boiling Point Data

The Clapeyron equation relates the vapour pressure temperature depende
the specific heat of vaporization ( ) and volume change between liquid
vapour phase ( ):

(2.12)

Increasingα

Mole fraction of light
0 1

1

x

y

component in liquid phase

Mole fraction
of light

in vapour

α=1

component

phase

Mole fraction

Figure 2.2: VLE for ideal binary mixture:y
αx

1 α 1–( )x+
------------------------------=

H
vap∆

V
vap∆

d p
o

T( )
dT

------------------ H
vap∆ T( )

T V
vap

T( )∆
----------------------------=
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If we assume an ideal gas phase and that the gas volume is much larger tha
liquid volume, then . Integration of Clapeyrons equation fro
temperatureTbi (boiling point at pressurePref) to temperatureT (at pressure )
then gives, when  is assumed constant:

(2.13)

This gives us the Antoine coefficients:

.

In most cases . For an ideal mixture that satisfies Raoult’s law
have  and we derive:

(2.14)

We see that the temperature dependency of the relative volatility arises from
ferent specific heat of vaporization. For similar values ( ), t
expression simplifies to:

(2.15)

Here we may use the geometric average also for the heat of vaporization:

(2.16)

This results in a rough estimate of the relative volatility , based on the boil
points only:

 where (2.17)

Vvap∆ RT P⁄≈
pi

o

Hi
vap∆

pi
o

ln
∆Hi

vap

R
---------------- 1

Tbi
-------- 

  Prefln+
 
 
 

∆Hi
vap

R
----------------–

 
 
 

T
-------------------------+≈

ai

∆Hi
vap

R
---------------- 1

Tbi
-------- 

  Prefln+= bi,
∆Hi

vap

R
----------------–= ci, 0=

Pref 1 atm=
αij pi

o T( ) pj
o T( )⁄=

αijln
∆Hi

vap

R
---------------- 1

Tbi
--------

∆H j
vap

R
---------------- 1

Tbj
--------–

∆H j
vap ∆Hi

vap
–

RT
---------------------------------------+=

∆Hi
vap ∆H j

vap≈

αijln ≈ ∆H
vap

RTb
------------------

β

Tbj Tbi–

Tb
---------------------- where Tb TbiTbj=

  

∆H
vap ∆Hi

vap
Tbi( ) ∆H j

vap
Tbj( )⋅=

αij

αij e
β Tbj Tbi–( ) Tb⁄

≈ β ∆H
vap

RTB
----------------=
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If we do not know , a typical value  can be used for many case

Example:For methanol (L) and n-propanol (H), we have
and  and the heats of vaporization at their boiling point
are 35.3 kJ/mol and 41.8 kJ/mol respectively. Thus

 and .
This gives  and

 which is a bit lower than the experimental
value.

2.2.5 Material Balance on a Distillation Stage

Based on the equilibrium stage concept, a distillation column section is mode
as shown in Figure 2.3. Note that we choose to number the stages starting
the bottom of the column. We denoteLn andVn as the total liquid- and vapour
molar flow rates leaving stagen (and entering stagesn-1 andn+1, respectively).
We assume perfect mixing in both phases on a stage. The mole fraction of sp
i in the vapour leaving the stage withVn is yi,n, and the mole fraction inLn is xi,n.

The material balance for componenti at stagen then becomes (in [mol i/sec]):

(2.18)

∆H
vap β 13≈

TBL 337.8K=
TBH 370.4K=

TB 337.8 370.4⋅ 354K= = H
vap∆ 35.3 41.8⋅ 38.4= =

β ∆H
vap

RTB⁄ 38.4 8.83 354⋅( )⁄ 13.1= = =
α e13.1 32.6⋅ 354⁄ 3.34≈ ≈

Ln+1

LnVn-1

Vn

yn

xn

yn+1

xn+1

yn-1

xn-1
Stagen-1

Stagen

Stagen+1

Figure 2.3: Distillation column section modelled as a set of connected
equilibrium stages

wi,n

wi,n-1

td

dNi n, Ln 1+ xi n 1+, Vnyi n,–( ) Lnxi n, Vn 1– yi n 1–,–( )–=
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whereNi,n is the number of moles of componenti on stagen. In the following we
will consider steady state operation, i.e: .

It is convenient to define the net material flow (wi) of componenti upwards from
stagen to n+1 [mol i/sec]:

(2.19)

At steady state, this net flow has to be the same through all stages in a column
tion, i.e. .

The material flow equation is usually rewritten to relate the vapour composi
(yn) on one stage to the liquid composition on the stage above (xn+1):

(2.20)

The resulting curve is known as theoperatingline. Combined with the VLE rela-
tionship (equilibrium line) this enables us to compute all the stage composit
when we know the flows in the system. This is illustrated in Figure 2.4, and fo
the basis of the McCabe-Thiele approach.

dNi n, dt⁄ 0=

wi n, Vnyi n, Ln 1+ xi n 1+,–=

wi n, wi n 1+, wi= =

yi n,
Ln 1+

Vn
-------------xi n 1+,

1
Vn
------wi+=

xn-1

xn

xn

yn-1

yn

(2) Material balance

(1) VLE: y=f(x)

operating line
y=(L/V)x+w/V

Use (1)

Use (2)

(1)

(2)

x

y

Figure 2.4: Combining the VLE and the operating line to compute mole
fractions in a section of equilibrium stages.
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2.2.6 Assumption about Constant Molar Flows

In a column section, we may very often use the assumption about constant m
flows. That is, we assume [mol/s] and [mol/
s]. This assumption is reasonable for ideal mixtures when the components
similar molar heat of vaporization. An important implication is that the operat
line is then a straight line for a given section, i.e
This makes computations much simpler since the internal flows (L andV) do not
depend on compositions.

2.3 The Continuous Distillation Column

We here study the simple two-product continuous distillation column in Fig
2.5: We will first limit ourselves to a binary feed mixture, and the compone
index is omitted, so the mole fractions (x,y,z) refer to the light component. The
column hasN equilibrium stages, with the reboiler as stage number 1. The f
with total molar flow rateF [mol/sec] and mole fractionz enters at stageNF.

Ln Ln 1+ L= = Vn 1– Vn V= =

yi n, L V⁄( )xi n 1+, wi V⁄+=

F
z

q

D

B

xD

xB

Qr

Qc

Rectifying
section

Stripping
section

xF,yF

Condenser

Reboiler

LT

Stage 2

VTLT

Stage N

Feed stage NF

VBLB

Figure 2.5: An ordinary continuous two-product distillation column
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The section above the feed stage is denoted the rectifying section, or just th
section. Here the most volatile component is enriched upwards towards the d
late product outlet (D). The stripping section, or the bottom section, is below
feed, in which the least volatile component is enriched towards the bottoms p
uct outlet (B). The least volatile component is “stripped” out. Heat is supplied
the reboiler and removed in the condenser, and we do not consider any hea
along the column.

The feed liquid fractionq describes the change in liquid and vapour flow rates
the feed stage:

(2.21)

The liquid fraction is related to the feed enthalpy (hF) as follows:

(2.22)

When we assume constant molar flows in each section, we get the following
tionships for the flows:

(2.23)

2.3.1 Degrees of Freedom in Operation of a Distillation Column

With a given feed (F,z andq), and column pressure (P), we have only 2 degrees
of freedom in operation of the two-product column in Figure 2.5, independen
the number of components in the feed. This may be a bit confusing if we th
about degrees of freedom as in Gibb’s phase rule, but in this context Gibb’s
does not apply since it relates the thermodynamic degrees of freedom inside
gle equilibrium stage.

LF∆ qF=

VF∆ 1 q–( )F=

q
hV sat, hF–

H
vap∆

---------------------------

1> Subcooled liquid

1= Saturated liquid

0 q 1< < Liquid and vapour

0= Saturated vapour

0< Superheated vapour








= =

VT VB 1 q–( )F+=

LB LT qF+=

D VT LT–=

B LB VB–=
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This implies that if we know, for example, the reflux (LT) and vapour (VB) flow
rate in the column, all states on all stages and in both products are compl
determined.

2.3.2 External and Internal Flows

The overall mass balance and component mass balance is given by:

(2.24)

Herez is the mole fraction of light component in the feed, andxD andxB are the
product compositions. For sharp splits withxD≈ 1 andxB ≈ 0 we then have that
D=zF. In other words, we must adjust the product splitD/F such that the distillate
flow equals the amount of light component in the feed. Any deviation from t
value will result in large changes in product composition. This is a very import
insight for practical operation.

Example:Consider a column with z=0.5, xD=0.99, xB=0.01 (all these refer
to the mole fraction of light component) and D/F = B/F = 0.5. To simplif
the discussion set F=1 [mol/sec]. Now consider a 20% increase in the d
tillate D from 0.50 to 0.6 [mol/sec]. This will have a drastic effect on
composition. Since the total amount of light component available in th
feed is z = 0.5 [mol/sec], at least 0.1 [mol/sec] of the distillate must now b
heavy component, so the amount mole fraction of light component in 
distillate is now at its best 0.5/0.6 = 0.833. In other words, the amount
heavy component in the distillate will increase at least by a factor of 1
(from 1% to 16.7%).

Thus, we generally have that a change inexternal flows(D/F andB/F) has a large
effect on composition, at least for sharp splits, because any significant devia
in D/F from z implies large changes in composition. On the other hand, the ef
of changes in theinternal flows (L andV) are much smaller.

2.3.3 McCabe-Thiele Diagram

The McCabe-Thiele diagram wherey is plotted as a functionx along the column
provides an insightful graphical solution to the combined mass balance (“op
tion line”) and VLE (“equilibrium line”) equations. It is mainly used for binary
mixtures. It is often used to find the number of theoretical stages for mixtures w
constant molar flows. The equilibrium relationship (y as a functi
of x at the stages) may be nonideal. With constant molar flow, L and V are c
stant within each section and the operating lines (y as a function ofx between the
stages) are straight. In the top section the net transport of light compo

F D B+=

Fz DxD BxB+=

yn f xn( )=
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. Inserted into the material balance equation (2.20) we obtain the o
ating line for the top section. A similar expression is also derived for the bott
section:

(2.25)

A typical McCabe-Thiele diagram is shown in Figure 2.6:

The optimal feed stage is at the intersection of the two operating lines and the
stage composition (xF,yF) is then equal to the composition of the flashed feed m
ture. We have that . Forq=1 (liquid feed) we find
and forq=0 (vapour feed) we find . For other cases ofq we must solve
the equation together with the VLE.

At minimum reflux, a pinch zone, which is a zone of constant composition w
develop on both sides of the feed stage if it is optimally located.

w xDD=

Top: yn
L
V
---- 

 
T

xn 1+ xD–( ) xD+=

Bottom: yn
L
V
---- 

 
B

xn 1+ xB–( ) xB+=

0
1

1

xF

y

y=x

xDxB

yF

x

Top section operating line

VLE y=f(x)

ottom section
Optimal feed

Reboiler

Condenser

z

The intersection of the

Slope (LT/VT)

perating line
lope (LB/VB)

Slope q/(q-1)
along the “q-line”.

stage location

operating lines is found

Figure 2.6: McCabe-Thiele Diagram with an optimally located feed.

z qxF 1 q–( )yF+= xF z=
yF z=
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2.3.4 Typical Column Profiles— Not optimal feed location

An example of a column composition profile is shown in Figure 2.7 for a colu
with z=0.5, =1.5, N=40, NF=21 (counted from the bottom, including the
reboiler), yD=0.90, xB=0.002. This is a case were the feed stage is not optima
located. The corresponding McCabe-Thiele diagram is shown in Figure 2.8:
see that the feed stage is not located at the intersection of the two operating
and that there is a pinch zone above the feed, but not below.

Figure 2.7: Composition profile (xL,xH) for case with non-optimal feed location.
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Figure 2.8: McCabe-Thiele diagram for the same example as in Figure 2.7: Observe
the feed stage location is not optimal.

2.4 Simple Design Equations

2.4.1 Minimum Number of Stages— Infinite Energy

The minimum number of stages for a given separation (or equivalently, the m
imum separation for a given number of stages) is obtained with infinite inte
flows (infinite energy) per unit feed. This always holds for single-feed colum
and ideal mixtures, but may not hold, for example, for extractive distillation w
two feed streams.

With infinite internal flows (“total reflux”):Ln/F=∞ andVn/F=∞. A material bal-
ance across any part of the column givesVn = Ln+1 and similarly a material
balance for any component givesVn yn = Ln+1 xn+1. Thus;yn = xn+1, and with
constant relative volatility we have:
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(2.26)

For a column or column section withN stages, repeated use of this relation giv
directly Fenske’s formula for the overall separation factor:

(2.27)

For a column with a given separation, this yields Fenske’s formula for the m
mum number of stages:

(2.28)

These Fenske expressions do not assume constant molar flows and apply
separation between any two components with constant relative volatility. N
that although a high-purity separation (largeS) requires a larger number of stages
the increase is only proportional to thelogarithm of the separation factor. Fo
example, increasing the purity level in a product by a factor of 10 (e.g. by red
ing xH,D from 0.01 to 0.001) increasesNmin by about a factor of .

A common rule of thumb is to select the actual number of stages
even larger).

2.4.2 Minimum Energy Usage— Infinite Number of Stages

For a given separation, an increase in the number of stages will yield a redu
in the reflux (or equivalently in the boilup). However, as the number of sta
approach infinity, a pinch zone develops somewhere in the column, and the r
cannot be reduced further. For a binary separation the pinch usually occurs a
feed stage (where the material balance line and the equilibrium line will me
and we can easily derive an expression for the minimum reflux with . F
a saturatedliquid feed (q=1) we have King’s formula:

(2.29)

where is the recovery fraction of light component, and
of heavy component, both in the distillate. The value depends relatively we
on the product purity, and for sharp separations (where and

α
yL n,
yH n,
-----------

xL n,
xH n,
-----------⁄

xL n 1+,
xH n 1+,
-------------------

xL n,
xH n,
-----------⁄= =

S
xL

xH
------

 
 
 

T

xL

xH
------

 
 
 

B

⁄ αN= =

Nmin
Sln
αln

---------=

10ln 2.3=

N 2Nmin=

N ∞=

LTmin

rL D, αrH D,–

α 1–
----------------------------------F=

r L D, xDD z⁄ F= rH D,

r L D, 1=
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), we haveLmin= F/(α - 1). Actually, equation (2.29) applies withou
stipulating constant molar flows or constantα, but thenLmin is the liquid flow
entering the feed stage from above, andα is the relative volatility at feed condi-
tions. A similar King’s formula, but in terms of entering the feed sta
from below, applies for a saturatedvapour feed(q=0):

(2.30)

For sharp separations we get =F/(α - 1). In summary, for a binary mixture
with constant molar flows and constant relative volatility, the minimum boilup
sharp separations is:

(2.31)

Note that minimum boilup has a finite lower limit for sharp separations. From t
we establish one of the key properties of distillation:We can achieve any produc
purity (even “infinite separation factor”)with a constant finite energy(as long as
it is higher thanthe minimum) by increasing the number of stages.

Obviously, this statement does not apply to azeotropic mixtures, for whichα = 1
for some composition. However, we can get arbitrary close to the azeotropic c
position, and useful results may be obtained in some cases by treating
azeotrope as a pseudo-component and usingα for this pseudo-separation.

2.4.3 Finite Number of Stages and Finite Reflux

Fenske’s formulaS= αΝ applies to infinite reflux (infinite energy). To extend thi
expression to real columns with finite reflux we will assume constant molar flo
and consider below three approaches:

1. Assume constant K-values and derive the Kremser formulas (exact clos
the column end for a high-purity separation).

2. Assume constant relative volatility and derive the following extended F
ske formula (approximate formula for case with optimal feed stage
location):

rH D, 0=

VBmin

VBmin

rH B, αr L B,–

α 1–
---------------------------------F=

VBmin

Feed liquid, q=1: VBmin
1

α 1–
------------F D+=

Feed vapour, q=0: VBmin
1

α 1–
------------F=
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HereNT is the number of stages in the top section andNB in the bottom
section.

3. Assume constant relative volatility and derive exact expressions. The m
used are the Underwood formulas which are particularly useful for com
puting the minimum reflux (with infinite stages).

2.4.4 Constant K-values— Kremser Formulas

For high-purity separations most of the stages are located in the “corner” par
the McCabe-Thiele diagram where we according to Henry’s law may appr
mate the VLE-relationship, even for nonideal mixtures, by straight lines;

Bottom of column: yL = HLxL (light component;xL→ 0)

Top of column: yH = HH xH (heavy component;xH → 0)

whereH is Henry’s constant. For the case of constant relative volatility, Henr
constant in the bottom is and in the top is . Thus, with co
stant molar flows, both the equilibrium and mass-balance relationships are lin
and the resulting difference equations are easily solved analytically. For exam
at the bottom of the column we derive for the light component:

(2.33)

where is the stripping factor. Repeated use of this equat
gives the Kremser formula for stageNB from the bottom (the reboiler would here
be stage zero):

(2.34)

This assumes we are in the region where s is constant, i.e. .

At the top of the column we have for the heavy component:

(2.35)

S αN LT VT⁄( )
NT

LB VB⁄( )
NB

-----------------------------≈

HL α= HH 1 α⁄=

xL n 1+, VB LB⁄( )HLxL n, B LB⁄( )xL B,+=

sxL n, 1 VB– LB⁄( )xL B,+=

s VB LB⁄( )HL 1>=

xL NB, sNBxL B, 1 1 VB– LB⁄( ) 1 s N– B–( ) s 1–( )⁄+[ ]=

xL 0≈

yH n 1–, LT VT⁄( ) 1 HH⁄( )yH n, D VT⁄( )xH D,+=

ayH n, 1 LT VT⁄–( )xH D,+=
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where is the absorbtion factor. The correspondin
Kremser formula for the heavy component in the vapour phase at stageNT
counted from the top of the column (the accumulator is stage zero) is then:

(2.36)

This assumes we are in the region where a is constant, i.e. .
For hand calculations one may use the McCabe-Thiele diagram for the inte
diate composition region, and the Kremser formulas at the column ends wher
use of the McCabe-Thiele diagram is inaccurate.

Example.We consider a column with N=40, NF=21, =1.5, zL=0.5, F=1,
D=0.5, VB=3.2063. The feed is saturated liquid and exact calculations gi
the product compositions xH,D= xL,B=0.01.
We now want to have a bottom product with only 1 ppm heavy product,
xL,B = 1.e-6. We can use the Kremser formulas to easily estimate the a
tional stages needed when we have the same energy usage, VB=3.2063.
(Note that with the increased purity in the bottom we actually get B=0.49
and LB=3.7012). At the bottom of the column  and the
stripping factor is .
With xL,B=1.e-6 (new purity) and  (old purity) we find by
solving the Kremser equation (2.34) with respect to NB that NB=33.94, and
we conclude that we need about 34 additional stages in the bottom (th
not quite enough since the operating line is slightly moved and thus affe
the rest of the column; using 36 rather 34 additional stages compensa
for this).

The above Kremser formulas are valid at the column ends, but the linear app
imation resulting from the Henry’s law approximation lies above the real V
curve (is optimistic), and thus gives too few stages in the middle of the colu
However, if the there is no pinch at the feed stage, i.e. the feed is optim
located, then most of the stages in the column will be located at the columns
where the above Kremser formulas apply.

2.4.5 Approximate Formula with Constant Relative Volatility

We will now use the Kremser formulas to derive an approximation for the se
ration factor S. First note that for cases with high-purity products we h

That is, the separation factor is the inverse of the product
the key component product impurities.

a LT VT⁄( ) HH⁄ 1>=

yH NT, aNTxH D, 1 1 LT– VT⁄( ) 1 a N– T–( ) a 1–( )⁄+[ ]=

xH 0≈

α

HL α 1.5= =
s VB LB⁄( )HL 3.2063 3.712⁄( )1.5 1.2994= = =

xL NB, 0.01=

S 1 xL B, xH D,( )⁄≈
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We now assume that the feed stage is optimally located such that the compo
at the feed stage is the same as that in the feed, i.e.

Assuming constant relative volatility and using
, and (including

total reboiler) then gives:

(2.37)

where (2.38)

We know that S predicted by this expression is somewhat too large because
linearized VLE. However, we may correct it such that it satisfies the exact r
tionship at infinite reflux (where and c=1) by
dropping the factor (which as expected is always larger than 1).
finite reflux, there are even more stages in the feed region and the formula
further oversestimate the value of S. However, since c > 1 at finite reflux, we
partly counteract this by settingc=1. Thus, we delete the term c and arrive at th
final extended Fenske formula, where the main assumptions are that we have
stant relative volatility, constant molar flows, and that there is no pinch z
around the feed, i.e. the feed is optimally located (Skogestad’s formula):

(2.39)

where .

Together with the material balance, , this approximate fo
mula can be used for estimating the number of stages for column design (ins
of e.g. Gilliand plots), and also for estimating the effect of changes of inter
flows during column operation. However, its main value is the insight it provid

1. We see that the best way to increase the separationS is to increase the
number of stages.

2. During operation whereN is fixed, the formula provides us with the impor
tant insight that the separation factorS is increased by increasing the
internalflowsL andV, thereby makingL/V closer to 1. However, the effect
of increasing the internal flows (energy) is limited since the maximum s
aration with infinite flows is .

yH NT, yH F,=
xL NB, xL F,= HL α=
HH 1 α⁄= α yLF xLF⁄( ) yHF xHF⁄( )⁄= N NT NB 1+ +=

S αN
LT VT⁄( )NT

LB VB⁄( )NB
----------------------------- c

xHFyLF( )
------------------------≈

c 1 1
VB

LB
-------–

 
 
  1 s NB––( )

s 1–( )
-------------------------+ 1 1

LT

VT
-------–

 
 
  1 a NT––( )

a 1–( )
-------------------------+=

S αN= LB VB⁄ VT LT⁄ 1= =
1 xHFyLF( )⁄

S αN
LT VT⁄( )NT

LB VB⁄( )NB
-----------------------------≈

N NT NB 1+ +=

FzF DxD BxB+=

S αN=
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3. We see that the separation factorS depends mainly on the internal flows
(energy usage) and only weakly on the splitD/F. This means that if we
changeD/F thenS will remain approximately constant (Shinskey’s rule)
that is, we will get a shift in impurity from one product to the other suc
that the product of the impurities remains constant. This insight is very
useful.

Example.Consider a column with  (1% heavy in top) and
 (1% light in bottom). The separation factor is then approx

mately . Assume we increase D
slightly from 0.50 to 0.51. If we assume constant separation factor (Sh
key’s rule), then we find that  changes from 0.01 to 0.0236 (heav
impurity in the top product increases by a factor 2.4), and  chang
from 0.01 to 0.0042 (light impurity in the bottom product decreases by
factor 2.4). Exact calculations with column data: N=40, NF=21, =1.5,
zL=0.5, F=1, D=0.5, LT/F=3.206, gives that  changes from 0.01 to
0.0241 and changes from 0.01 to 0.0046 (separation factor chang
from S=9801 to 8706). Thus, Shinskey’s rule gives very accurate
predictions.

However, the simple extended Fenske formula also has shortcomings. First
somewhat misleading since it suggests that the separation may alway
improved by transferring stages from the bottom to the top section

. This is not generally true (and is not really “allowed” as
violates the assumption of optimal feed location). Second, although the form
gives the correct limiting value for infinite reflux, it overestimates th
value ofSat lower reflux rates. This is not surprising since at low reflux rate
pinch zone develops around the feed.

Example:Consider again the column with N=40. NF=21, =1.5, zL=0.5,
F=1, D=0.5; LT=2.706. Exact calculations based on these data give xHD=
xLB=0.01 and S = 9801. On the other hand, the extended Fenske form
with NT=20 and NB=20 yields:

corresponding to xHD= xLB = 0.0057. The error may seem large, but it is
actually quite good for such a simple formula.

2.4.6 Optimal Feed Location

The optimal feed stage location is at the intersection of the two operating line
the McCabe-Thiele diagram. The corresponding optimal feed stage compos
(xF, yF) can be obtained by solving the following two equation

xD H, 0.01=
xB L, 0.01=

S 0.99 0.99 0.01 0.01×( )⁄× 9801= =

xD H,
xB L,

α
xD H,

xB L,

LT VT⁄( ) VB LB⁄( )>

S αN=

α

S 1.541 2.7606 3.206⁄( )20

3.706 3.206⁄( )20
--------------------------------------------× 16586000

0.34
18.48
-------------× 30774= = =
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and . Forq=1 (liquid feed)
we find and for q=0 (vapour feed) we find (in the other cases
must solve a second order equation).

There exists several simple shortcut formulas for estimating the feed point l
tion. One may be derived from the Kremser equations given above. Divide
Kremser equation for the top by the one for the bottom and assume that the
is optimally located to derive:

(2.40)

The last “big” term is close to 1 in most cases and can be neglected. Rewriting
expression in terms of the light component then gives Skogestad’s shortcut
mula for the feed stage location:

(2.41)

whereyF andxF at the feed stage are obtained as explained above. The opt
feed stage location counted from the bottom is then:

(2.42)

whereN is the total number of stages in the column.

2.4.7 Summary for Continuous Binary Columns

With the help of a few of the above formulas it is possible to perform a colu
design in a matter of minutes by hand calculations. We will illustrate this wit
simple example.

We want to design a column for separating a saturated vapour mixture of
nitrogen (L) and 20% oxygen (H) into a distillate product with 99% nitrogen a
a bottoms product with 99.998% oxygen (mole fractions).

z qxF 1 q–( )yF+= yF αxF 1 α 1–( )xF+( )⁄=
xF z= yF z=

yH F,
xL F,
------------

xH D,
xL B,
------------α NT NB–( )

LT

VT
-------

 
 
  NT

VB

LB
-------

 
 
  NB
-------------------

1 1
LT

VT
-------–

 
 
  1 a NT––( )

a 1–( )
-------------------------+

1 1
VB

LB
-------–

 
 
  1 s NB––( )

s 1–( )
-------------------------+

---------------------------------------------------------------=

NT NB–

1 yF–( )
xF

--------------------
xB

1 xD–( )
--------------------

 
 
 

ln

αln
---------------------------------------------------------------=

NF NB 1+
N 1 NT NB–( )–+[ ]

2
---------------------------------------------------= =
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Component data: Normal boiling points (at 1 atm): TbL = 77.4K, TbH = 90.2K,
heat of vaporization at normal boiling points: 5.57 kJ/mol (L) and 6.82 kJ/m
(H).

The calculation procedure when applying the simple methods presented in
article can be done as shown in the following steps:

1. Relative volatility:

The mixture is relatively ideal and we will assume constant relative vola
ity. The estimated relative volatility at 1 atm based on the boiling points

 where

,  and

. This gives

and we find  (however, it is generally recommended to obtain
from experimental VLE data).

2. Product split:

From the overall material balance we get

.

3. Number of stages:

The separation factor is , i.e. lnS= 15.4.

The minimum number of stages required for the separation is
 and we select the actual number of stages 

 ( ).

4. Feed stage location

With an optimal feed location we have at the feed stage (q=0) thatyF = zF

= 0.8 and .

Skogestad’s approximate formula for the feed stage location gives

αln
∆Hvap

RTb
----------------

TbH TbL–( )

Tb
------------------------------≈

∆Hvap 5.57 6.82⋅ 6.16 kJ/mol= = Tb TbHTbL 83.6K= =

TH TL– 90.2 77.7– 18.8= = ∆Hvap( ) RTb( )⁄ 8.87=

α 3.89≈ α

D
F
----

z xB–

xD xB–
------------------ 0.8 0.00002–

0.99 0.00002–
------------------------------------ 0.808= = =

S
0.99 0.99998×
0.01 0.00002×
------------------------------------ 4950000= =

Nmin Sln αln⁄ 11.35= =

N 23= 2Nmin≈

xF yF α α 1–( )yF–( )⁄ 0.507= =
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5. Energy usage:

The minimum energy usage for a vapour feed (assuming sharp separa
is . With the choice

, the actual energy usage (V) is then typically about 10%
above the minimum (Vmin), i.e.V/F is about 0.38.

This concludes the simple hand calculations. Note again that the number of s
depends directly on the product purity (although only logarithmically), where
for well-designed columns (with a sufficient number of stages) the energy us
is only weakly dependent on the product purity.

Remark 1:

The actual minimum energy usage is slightly lower since we do not ha
sharp separations. The recovery of the two components in the bottom p
uct is  and

, so from the formulas given earlier the exac
value for nonsharp separations is

Remark 2:

For a liquid feed we would have to use more energy, and for a sharp
separation

Remark 3:

We can check the results with exact stage-by-stage calculations. With
N=23,NF=15 and =3.89 (constant), we findV/F = 0.374 which is about
13% higher thanVmin=0.332.

Remark 4:

A simulation with more rigorous VLE computations, using the SRK equ
tion of state, has been carried out using the HYSYS simulation packa
The result is a slightly lower vapour flow due to a higher relative volatilit

NT NB–
1 yF–( )

xF
--------------------

xB

1 xD–( )
--------------------

 
 
 

ln αln( )⁄=

0.2
0.507
------------- 0.00002

0.01
-------------------× 

  1.358⁄ln 5.27–= =

NF N 1 NT NB–( )–+[ ] 2⁄ 23 1 5.27+ +( ) 2⁄ 14.6 15≈= = =

Vmin F⁄ 1 α 1–( )⁄ 1 2.89⁄ 0.346= = =
N 2Nmin=

rH B, xH B, B( ) zFHF( )⁄ 0.9596= =
r L B, xL B, B( ) zFLF( )⁄ 0≈=

Vmin F⁄ 0.9596 0.0 3.89×–( ) 3.89 1–( )⁄ 0.332= =

Vmin F⁄ 1 α 1–( )⁄ D F⁄+ 0.346 0.808+ 1.154= = =

α
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( in the range from 3.99-4.26 with an average of 4.14). More precisely
simulation withN=23,NF=15 gaveV/F=0.291, which is about 11% higher
than the minimum value  found with a very large numbe
of stages (increasing N>60 did not give any significant energy reducti
below ). The optimal feed stage (withN=23) was found to beNF=15.

Thus, the results from HYSYS confirms that a column design based on the
simple shortcut methods is very close to results from much more rigor
computations.

2.5 Multicomponent Distillation — Underwood’s Method

We here present the Underwood equations for multicomponent distillation w
constant relative volatility and constant molar flows. The analysis is based on
sidering a two-product column with a single feed, but the usage can be exte
to all kind of column section interconnections.

It is important to note that adding more components does not give any additi
degrees of freedom in operation. This implies that for an ordinary two-prod
distillation column we still have only two degrees of freedom, and thus, we w
only be able to specify two variables, e.g. one property for each product. T
cally, we specify the purity (or recovery) of the light key in the top, and spec
the heavy key purity in the bottom (the key components are defined as the c
ponents between which we are performing the split). The recoveries for all o
components and the internal flows (L andV) will then be completely determined.

For a binary mixture with given products, as we increase the number of sta
there develops a pinch zone on both sides of the feed stage. For a multicomp
mixture, a feed region pinch zone only develops when all components distri
to both products, and the minimum energy operation is found for a particula
of product recoveries, sometimes denoted as the “preferred split”. If all com
nents do not distribute, the pinch zones will develop away from the feed st
Underwood’s methods can be used in all these cases, and are especially use
the case of infinite number of stages.

2.5.1 The Basic Underwood Equations

The net material transport (wi) of componenti upwards through a stagen is:

(2.43)

Note thatwi is constant in each column section. We assume constant molar fl
(L=Ln=Ln-1 and V=Vn=Vn+1), and assume constant relative volatility. The VL
relationship is then:

α

V'min 0.263=

V'min

wi Vnyi n, Ln 1+ xi n 1+,–=
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We divide equation (2.43) byV, multiply it by the factor , and take
the sum over all components:

(2.45)

The parameter is free to choose, and the Underwood roots are defined a
values of  which make the left hand side of (2.45) unity, i.e which satisfy

(2.46)

The number of values satisfying this equation is equal to the number of c
ponents,Nc.

Comment: Most authors use a product composition (x) or component recovery
(r) in this definition, e.g for the top (subscript T) section or the distillate prod
(subscript D):

(2.47)

but we prefer to use the net component molar flow (w) since it is more general.
Note that use of the recovery is equivalent to using net component flow, but
of the product composition is only applicable when a single product stream
leaving the column. If we apply the product recovery, or the product composit
the defining equation for the top section becomes:

(2.48)

yi

αi xi

αi xi
i

∑
-----------------= αi

yi xi⁄( )
yr xr⁄( )

-------------------=
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2.5.2 Stage to Stage Calculations

By the definition of from (2.46), the left hand side of (2.45) equals one, and
last term of (2.45) then equals:

The terms with disappear in the nominator and can be taken outside
summation, thus (2.45) is simplified to:

(2.49)

This equation is valid for any of the Underwood roots, and if we assume cons
molar flows and divide an equation for with the one for , the followin
expression results:

(2.50)

Note the similarities with the Fenske and Kremser equations derived earlier.
relates the composition on a stage (n) to an composition on another stage (n+m).
The number of independent equations of this kind equals the number of Un
wood roots minus 1 (since the number of equations of the type as in equa
(2.49) equals the number of Underwood roots), but in addition we also h

. Together, this is a linear equation system for computing
when  is known and the Underwood roots is computed from (2.46).

Note that so far we have not discussed minimum reflux (or vapour flow rate),
these equation holds for any vapour and reflux flow rates, provided that the r
are computed from the definition in (2.46).
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2.5.3 Some Properties of the Underwood Roots

Underwood showed a series of important properties of these roots for a two-p
uct column with a reboiler and condenser. In this case all components
upwards in the top section ( ), and downwards in the bottom sect
( ). The mass balance yields: where
Underwood showed that in the top section (withNc components) the roots ( )
obey:

(2.51)

In the bottom section (where ) we have a different set of roo
denoted ( ) computed from

(2.52)

which obey: (2.53)

Note that the smallest root in the top section is smaller than the smallest rel
volatility, and the largest root in the bottom section is larger then the largest
atility. It is easy to see from the defining equations that as

 and similarly as .

When the vapour flow is reduced, the roots in the top section will decrease, w
the roots in the bottom section will increase, but interestingly Underwood sho
that . A very important result by Underwood is that for infinite numb
of stages; .

Thus, at minimum reflux, the Underwood roots for the top ( ) and bottom (
sections coincide. Thus, if we denote these common roots , and recall

, and that we obtain the fol-
lowing equation for the “minimum reflux” common roots ( ) by subtracting th
defining equations for the top and bottom sections:

(2.54)

We denote this expression the feed equation since only the feed properties (q and
z) appear. Note that this is not the equation which defines the Underwood r
and the solutions ( ) apply as roots of the defining equations only for minim
reflux conditions ( ). The feed equation hasNc roots, (but one of these is
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not a common root) and theNc-1 common roots obey:
. Solution of the feed equation gives u

the possible common roots, but all pairs of roots ( ) for the top a
bottom section do not necessarily coincide for an arbitrary operating condit
We illustrate this with the following example:

Assume we start with a given product split (D/F) and a large vapour flow
(V/F). Then only one componenti (with relative volatility ) can be dis-
tributed to both products. No roots are common. Then we gradually red
V/F until an adjacent componentj=i+1  or j=i-1  becomes distributed. E.g
for j=i+1 one set of roots will coincide: , while the others
do not. As we reduceV/F further, more components become distributed
and the corresponding roots will coincide, until all components are dist
uted to both products, and then all theNc-1 roots from the feed equation
also are roots for the top and bottom sections.

An important property of the Underwood roots is that the value of a pair of ro
which coincide (e.g. when ) will not change, even if only on
two or all pairs coincide. Thus all the possible common roots are found by solv
the feed equation once.

2.5.4 Minimum Energy — Infinite Number of Stages

When we go to the limiting case of infinite number of stages, Underwoods’s eq
tions become very useful. The equations can be used to compute the mini
energy requirement for any feasible multicomponent separation.

Let us consider two cases: First we want to compute the minimum energy f
sharp split between twoadjacent key componentsj and j+1 ( and

). The procedure is then simply:

1. Compute the common root ( ) for which

from the feed equation:

2. Compute the minimum energy by applying the definition equation for

.

Note that the recoveries
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For example, we can derive Kings expressions for minimum reflux for a bin
feed ( , , , and liquid feed (q=1)). Con-
sider the case with liquid feed (q=1). We find the single common root from the
feed equation: , (observe as expected). T
minimum reflux expression appears as we use the defining equation with the
mon root:

(2.55)

and when we substitute for  and simplify, we obtain King’s expression:

(2.56)

Another interesting case is minimum energy operation when we consider s
split only between the most heavy and most light components, while all the in
mediates are distributed to both products. This case is also denoted the “pref
split”, and in this case there will be a pinch region on both sides of the feed st
The procedure is:

1. Compute all theNc-1 common roots ( )from the feed equation.

2. Set and solve the following linear equation se
with equations with respect to (
variables):

(2.57)

Note that in this case, when we regard the most heavy and light componen
the keys and all the intermediates are distributed to both products and Kings
simple expression will also give the correct minimum reflux for a multicomp
nent mixture (forq=1 or q=0). The reason is that the pinch then occurs at the fe
stage. In general, the values computed by Kings expression give a (conserv
upper boundwhen applied directly to multicomponent mixtures. An interestin
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result which can be seen from Kings’s formula is that the minimum reflux at p
ferred split (forq=1) is independent of the feed composition and also independ
of the relative volatilities of the intermediates.

However, with the more general Underwood method, we also obtain the distr
tion of the intermediates, and it is easy to handle any liquid fraction (q) in the feed.

The procedure for an arbitrary feasible product recovery specification is sim
to the preferred split case, but then we must only apply the Underwood roots
corresponding equations) with values between the relative volatilities of the
tributing components and the components at the limit of being distributed
cases where not all components distribute, King’s minimum reflux express
cannot be trusted directly, but it gives a (conservative)upper bound.

Figure 2.9 shows an example of how the components are distributed to the p
ucts for a ternary (ABC) mixture. We choose the overhead vapour flow (V=VT)
and the distillate product flow (D=V-L) as the two degrees of freedom. Th
straight lines, which are at the boundaries when a component is at the lim
appearing/disappearing (distribute/not distribute) in one of the products, ca
computed directly by Underwood’s method. Note that the two peaks (PAB and
PBC) gives us the minimum vapour flow for sharp split between A/B and B/C. T
point PAC, however, is at the minimum vapour flow for sharp A/C split and th
occurs for a specific distribution of the intermediate B, known as the “prefer
split”.

Kings’s minimum reflux expression is only valid in the triangle below the pr
ferred split, while the Underwood equations can give all component recoverie
all possible operating points. The shaded area is not feasible since all liquid
vapour streams above and below the feed have to be positive.
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Figure 2.9: Regions of distributing feed components as function ofV andD for a feed
mixture with three components: ABC. Pij represent minimum energy for sharp spl
between componenti andj. For large vapour flow (above the top “saw-tooth”), only on
component distribute. In the triangle below PAC, all components distribute.

2.6 Further Discussion of Specific Issues

2.6.1 The Energy Balance and Constant Molar Flows

All the calculations in this article are based on the assumption of constant m
flows in a section, i.e and . This is a very
common simplification in distillation computations and we shall use the ene
balance to see when we can justify it. The energy balance is similar to the m
balance, but now we use the molar enthalpy (h) of the streams instead of compo
sition. The enthalpy is computed for the actual mixture and will be a function
composition in addition to temperature (or pressure). At steady state the en
balance around stagen becomes:

(2.58)
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Combining this energy balance with the overall material balance on a st
, whereW is the net total molar flow through a

section, i.e.W=D in the top section and -W=B in the bottom section) yields:

(2.59)

From this expression we observe how the vapour flow will vary through a sec
due to variations in heat of vaporization and molar enthalpy from stage to st

We will now show one way of deriving the constant molar flow assumption:

1. Chose the reference state (whereh=0) for each pure component as saturate
liquid at a reference pressure. This means that each component has a
ferent reference temperature, namely its boiling point ( ) at the
reference pressure.

2. Assume that the column pressure is constant and equal to the referen
pressure.

3. Neglect any heat of mixing such that .

4. Assume that all components have the same molar heat capacitycPL.

5. Assume that the stage temperature can be approximated by
. These assumptions gives on all stages an

the equation (2.59) for change in boilup is reduced to:

(2.60)

6. The molar enthalpy in the vapour phase is given as:

 where  is the

heat of vaporization for the pure component at its reference boiling tem
ature ( ).

7. We assume thatcPV is equal for all components, and then the second su
mation term above then will become zero, and we have:

.
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8. Then if  is equal for all components we get

, and thereby constant molar flows:

 and also .

At first glance, these assumptions may seem restrictive, but the assumptio
constant molar flows actually holds well for many industrial mixtures.

In a binary column where the last assumption about equal is not fulfill
a good estimate of the change in molar flows from the bottom (stage1) to the top
(stageN) for a case with saturated liquid feed (q=1) and close to pure products, is
given by: . The molar heat of vaporization is taken
the boiling point temperatures for the heavy (H) and light (L) compone
respectively.

Recall that the temperature dependency of the relative volatility were relate
different heat of vaporization also, thus the assumptions of constant molar fl
and constant relative volatility are closely related.

2.6.2 Calculating Temperature when Using Relative Volatilities

It may look like that we have lost the pressure and temperature in the equilibr
equation when we introduced the relative volatility. However, this is not the c
since the vapour pressure for every pure component is a direct function of tem
ature, thus so is also the relative volatility. From the relationsh

 we derive:

(2.61)

Remember that only one ofP or T can be specified when the mole fractions a
specified. If composition and pressure is known, a rigorous solution of the t
perature is found by solving the non-linear equation:

(2.62)

However, if we use the pure components boiling points (Tbi), a crude and simple
estimate can be computed as:

(2.63)
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For ideal mixtures, this usually give an estimate which is a bit higher than the
temperature, however, similar approximation may be done by using the va
compositions (y), which will usually give a lower temperature estimate. Th
leads to a good estimate when we use the average of x and y, i.e:

(2.64)

Alternatively, if we are using relative volatilities we may find the temperature
the vapour pressure of the reference component. If we use the Antoine equa
then we have an explicit equation:

 where (2.65)
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Figure 2.10: Temperature profile for the example in Figure 2.7 (solid line) compared
various linear boiling point approximations.
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This last expression is a very good approximation to a solution of the nonlin
equation (2.62). An illustration of how the different approximations behave
shown in Figure 2.10. For this particular case which is a fairly ideal mixture, eq
tion (2.64) and (2.65) almost coincide.

In a rigorous simulation of a distillation column, the mass and energy balan
and the vapour liquid equilibrium (VLE) have to be solved simultaneously for
stages. The temperature is then often used as an iteration parameter in or
compute the vapour-pressures in VLE-computations and in the enthalpy com
tations of the energy balance.

2.6.3 Discussion and Caution

Most of the methods presented in this article are based on ideal mixtures and
plifying assumptions about constant molar flows and constant relative volati
Thus there are may separation cases for non-ideal systems where these m
cannot be applied directly.

However, if we are aware about the most important shortcomings, we may
use these simple methods for shortcut calculations, for example, to gain insig
check more detailed calculations.
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Chapter 3

Analytic Expressions and Visual-
ization of Minimum Energy

Consumption in Multicomponent
Distillation:

A Revisit of the Underwood
Equations.

Ivar J. Halvorsen and Sigurd Skogestad

The classical Underwood equations are used to com-
pute the operational characteristics of a two-
product distillation column with a multicomponent
feed. The Vmin-diagram is introduced to effec-
tively visualize how the energy consumption is
related to the feed component distribution for all
possible operating points of the column. This dia-
gram becomes very useful when we later shall use
it for assessment of Petlyuk arrangements.

A preliminary version was presented at AIChE
Annual Meeting in Dallas, Texas, November 1999
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3.1 Introduction

3.1.1 Background

The equations of Underwood (1945,1946ab,1948) have been applied succes
by many authors for analysis of multicomponent distillation, e.g. Shiras (195
King (1971), Franklin and Forsyth (1953), Wachter et. al. (1988) and in a co
prehensive review of minimum energy calculations by Koehler (1995). Minim
energy expressions for Petlyuk arrangements with three components have
presented by Fidkowski and Krolikowski (1986) and Carlberg and Westerb
(1989ab). However, minimum energy requirements for the general multicom
nent case is the topic of this chapter, and this issue has so far not been
understood.

We use the basic Underwood equations to com-
pute the distribution of all the components in
the generalized multicomponent feed as a func-
tion of the degrees of freedom in a two-product
distillation column (Figure 3.1). We assume
constant molar flows, constant relative volatili-
ties and infinite number of stages.

A main result is a simple graphical visualiza-
tion of minimum energy and feed component
distribution for all possible operating points.
We denote this the Minimum Energy Mountain
Diagram or just theVmin-diagram.

TheVmin-diagram can be used for quick deter-
mination of the minimum energy requirement
in a single binary column with a multicompo-
nent feed, for any feasible product
specification.

Interestingly, the methods presented in this chapter can also be used for Pe
arrangements and for arrangements with side strippers and side rectifiers.
will be treated in detail in the succeeding chapters.

Alternative methods for visualization of feed distribution regions for a single c
umn have been presented by Wachter et. al. (1988) based on a continuum m
and by Neri et.al. (1998), based on equilibrium theory.

We will also discuss the behaviour of composition profiles and pinch zones,
how the required number of stages depends on the component distribution.

Figure 3.1: Two-product
distillation column with
reboiler and total condenser
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3.1.2 Problem Definition - Degrees of Freedom

With a given feed, a two-product distillation column normally has two degre
freedom of operation. For a binary feed, this is sufficient to specify any prod
distribution. In the case of a multicomponent feed, however, we cannot fre
specify the compositions in both products. In practice, one usually specifies
distribution of two key components, and then the distribution of the non-key co
ponents is then completely determined for a given feed. In some cases, the co
pressure could be considered as a third degree of freedom, but we will assum
the pressure is constant throughout this chapter since the pressure has a l
impact on the product distribution.

For every possible operating point we want to find the distribution, here given
the set of recoveries , the normalized vapour flow rate (V/
F) and the overall product split(D/F or B/F). This can be expressed qualitativel
for the top section as:

(3.1)

It is sufficient to consider only one of the top or bottom sections as the recove
and flows in the other section can be found by a material balance at the feed s
The feed properties are given by the composition vectorz, flow rateF, liquid frac-
tion q and relative volatilities . A recovery ( ) is the amount of componeni
transported in a stream or through a section divided by the amount in the fe

3.2 The Underwood Equations for Minimum Energy

Underwood’s methods for multicomponent mixtures (Underwood 1945, 1946
1948) play a major role in our analysis, and here we summarize the most im
tant equations for minimum energy calculations. The analysis is based
considering a two-product column with a single feed, but the usage can
extended to all kinds of column section interconnections.

3.2.1 Some Basic Definitions

The starting point for Underwood’s methods is the material balance equation
cross-section in the column. The net material transport (wi) of componenti
upwards through a stagen is the difference between the amount travellin
upwards from a stage as vapour and the amount entering a stage from abo
liquid:

(3.2)

R r1 r2 … r Nc
, , ,[ ]=

VT

F
------- D

F
---- RT, , f Spec1 Spec2 Feed  properties, ,( )=

α r i

wi Vnyi n, Ln 1+ xi n 1+,–=
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Note that at steady state,wi is constant through each column section. In the fo
lowing we assume constant molar flows (L=Ln=Ln-1 and V=Vn=Vn+1) and
constant relative volatility ( ).

In the top section the net product flow  and:

(3.3)

In the bottom section, , and the net material flow is:

(3.4)

The positive direction of the net component flows is defined upwards, but in
bottom the components normally travel downwards from the feed stage and
we have . With a single feed stream the net component flow in the f
is given as:

. (3.5)

A recovery can then be regarded as a normalized component flow:

(3.6)

At the feed stage, is defined positive into the column. Note that with our d
inition in (3.6) the recovery is also a signed variable.

3.2.2 Definition of Underwood Roots

The Underwood roots ( ) in the top section are defined as the  solutions

(3.7)

In the bottom there is another set of Underwood roots given by the solution

(3.8)

Note that these equations are related via the material balance at the feed s

αi

D Vn Ln 1+–=

wi T, xi D, D r i D, ziF= =

B Ln 1+ Vn–=

wi B, x– i B, B ri B, ziF= =

wi B, 0≤

wi F, ziF=

r i wi wi F,⁄ wi ziF( )⁄= =

wi F,

φ Nc

VT

αiwi T,
αi φ–
----------------

i 1=

Nc

∑=

ψ

VB

αiwi B,
αi ψ–
----------------

i 1=

Nc

∑=
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and the relationship between the vapour flows

(3.10)

whereq is the liquid fraction of the feedF.

Calculation of the Underwood roots involves solving a straightforward polyn
mial root problem, but we should be careful and make sure that the vecto
component flowswT or wB is feasible. This also implies that in the multicompo
nent case there is a “hidden” interaction between the unspecified elementswT
and the Underwood roots.

3.2.3 The Underwood Roots for Minimum Vapour Flow

Underwood showed a series of properties of the roots ( and ) for a two-p
uct column with a reboiler and condenser. In this conventional column,
components flow upwards in the top section ( ), and downwards in
bottom section ( ). WithNc components there are for each of and
Nc solutions obeying:

(3.11)

(3.12)

When the vapour flow is reduced, the roots in the top section will decrease, w
the roots in the bottom section will increase. Underwood (1946) showed that m
imum vapour flow for any given product distribution is equivalent to one or mo
pairs of roots coinciding to a common root ( ).

Recall that . By subtracting the defining equations for th
top and bottom sections (3.7)-(3.8), we obtain the following equation which
valid for the common roots only (denoted ):

(3.13)

We denote this expression thefeed equationsince only the feed properties (q and
z) appear. It has alsoNc roots, but one of these cannot be a common root due
(3.11) and (3.12), so there areNc-1 possible common roots which obey:

wi T, wi B,– wi F, zi F, F= = r i T, r i B,– 1=

VT VB– 1 q–( )F=

φ ψ

wi T, 0≥
wi B, 0≤ φ ψ

α1 φ1 α2 φ2 α3 … αNc φNc> > >> > > >

ψ1 α>
1

ψ2 α2 ψ3 α3 … ψNc αNc> > >> > > >

φi ψi 1+ θi= =

VT VB– 1 q–( )F=

θ

1 q–( )
αi zi

αi θ–( )
-------------------

i
∑=
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. (3.14)

Note that we can compute the common roots from the feed equation (3.13), w
out knowing anything about the distribution of feed components in the produ

We will denote a root anactive root for the case when .
Inserting the active root in the top and bottom definition equations gives the m
imum flow for a given set of component distribution(wT or rT).

 or (3.15)

With Na active roots, this represents a set ofNa independent linear equations
which may be used to find the exact set of the so-called distributing compon
that appear in both products.

Note that the subscriptmin indicates that we use a common active root
opposed to an actual root  in equation (3.7).

3.2.4 Computation Procedure

Our task is to find theNc product recoveries (or component flows) and the vapo
flow, given any pair of feasible specifications. The procedure on how to ap
Underwood’s equations for this purpose has been described by several au
e.g. Shiras (1950) and Carlberg and Westerberg (1989).

The key to the general solution is to identify thedistributingcomponents. A com-
ponent in the feed is distributing if it appears in both products, or is exactly at
limit of becoming distributing if the vapour flow is reduced with an infinitesim
amount.

The computation procedure is as follows:

Consider a set ofNd distributing components, denoted: . Th
recoveries in the top are trivially for all non-distributing light compo
nents ( ), and for the non-distributing heavy componen
( ). Then, with a given distribution set we know the recoveries
the non-distributing components.

Then we use another of Underwood’s results: For any minimum vapour flow s
tion, the active Underwood roots will only be those with values in the ran
between the volatilities of the distributing components ( ). Th
implies that withNd distributing components, the number of active roots is:

(3.16)

α1 θ1 α2 θ2 … θNc 1– αNc> >> > > >

θk φk ψk 1+ θk= =

VTmin

αiwi T,
αi θk–
-----------------

i
∑= VTmin

αi r i T, ziF

αi θk–
-----------------------

i
∑=

θ
φ

d1 d2 …, dNd,{ , }
r i T, 1=

i d1< r i T, 0=
i dNd> Nc Nd–

αd1
θk αdNd

> >

Na Nd 1–=
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Thus, as illustrated in Table 3.1, we have enough information to determine
solution in equation (3.1) completely, given the set of distributing componen

Define a vector X containing the recoveries of the distributing compone
and the normalized vapour flow in the top section:

(3.17)

(superscript T denotes transposed). The equation set (3.15) can then be writ

a linear equation set on matrix form:

(3.18)

With the detailed elements in the matrices expanded, this is the same as:

Table 3.1:  Number of unknown variables and equations

Total number of variables (VT,RT) Nc+1

- Specified degrees of freedom 2

= Initially unknown variables Nc-1

- Number of non-distributing components Nc-Nd

= Remaining unknown variables Nd-1

- Number of equations=number of active rootsNa = Nd-1

= Required extra equations 0

Nd

X rd1 T, rd2 T, … rdNd T,
VT

F
-------, , , ,

T
=

M X⋅ Z=

M

αd1
zd1

αd1
θd1

–
---------------------

αd2
zd2

αd2
θd1

–
--------------------- …

αdNd
zdNd

αd1
θd1

–
--------------------- 1–

αd1
zd1

αd1
θd2

–
---------------------

αd2
zd2

αd2
θd2

–
--------------------- …

αdNd
zdNd

αd1
θd2

–
--------------------- 1–

… … … … 1–

αd1
zd1

αd1
θdNd 1–

–
-----------------------------

αd2
zd2

αd2
θdNd 1–

–
----------------------------- …

αdNd
zdNd

αd1
θdNd 1–

–
----------------------------- 1–

X

rd1 T,

r d2 T,

…
r dNd T,

VT F⁄

•

Z

αi zi

αi θd1
–

------------------
i 1=

d1 1–

∑–

αi zi

αi θd2
–

------------------
i 1=

d1 1–

∑–

…

αi zi

αi θdNd 1–
–

--------------------------
i 1=

d1 1–

∑–

=

                    

    

        
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



70

the
s the
ry
zero

of
r

uce
The elements in each column of M arise from the terms in (3.15) related to
distributing components, and we have one row for each active root. Z contain
part of (3.15) arising from the non-distributing light components with recove
one in the top. The recoveries for the heavy non-distributing components are
in the top, so these terms disappear.

There areNa=Nd-1 equations (rows of M and Z) andNd+1 variables in X (col-
umns in M). Thus by specifying any two of the variables in X as our degrees
freedom we are left withNd-1 unknowns which can be solved from the linea
equation set in (3.18).

If we want to specify the product split as one degree of freedom, we introd
 as an extra variable and the following extra equation:

(3.19)

Then the linear equation set (3.18) can be expanded to give:

(3.20)

Thus, the solution for the unknown recoveries when we specifyVT/F andD/F is:

D F⁄

D F⁄ r i T, zi∑=

M

αd1
zd1

αd1
θd1

–
---------------------

αd2
zd2

αd2
θd1

–
--------------------- …

αdNd
zdNd

αdNd
θd1

–
------------------------ 1– 0

αd1
zd1

αd1
θd2

–
---------------------

αd2
zd2

αd2
θd2

–
--------------------- …

αdNd
zdNd

αdNd
θd2

–
------------------------ 1– 0

… … … … 1– 0

αd1
zd1

αd1
θdNd 1–

–
-----------------------------

αd2
zd2

αd2
θdNd 1–

–
----------------------------- …

αdNd
zdNd

αdNd
θdNd 1–

–
-------------------------------- 1– 0

zd1
zd2

… zdNd
0 1–

X

rd1 T,

r d2 T,

…
r dNd T,

VT F⁄

D F⁄

Z

αi zi

αi θd1
–

------------------
i 1=

d1 1–

∑–

αi zi

αi θd2
–

------------------
i 1=

d1 1–

∑–

…

αi zi

αi θdNd 1–
–

--------------------------
i 1=

d1 1–

∑–

zi
i 1=

d1 1–

∑–

=
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Note that equation (3.18) is only valid in a certain region of the possible opera
space, namely in the region where components numberedd1 to dNd are distribut-
ing to both products. However, we can verify the feasibility of any solution w
the following relation between the recoveries in an ordinary two-product colum

(3.21)

For arrangements with fully thermally coupled column sections, this relation d
not necessarily apply. This will be discussed in more detail in Chapter 4.2.3

The problem of finding the correct distribution set is dependent on how we s
ify the two degrees of freedom. An example of a specification which always g
a feasible solution is and . That is, when we want to fin
the minimum energy operation point for sharp split between a light key (L
component in the top and a heavy key (HK) in the bottom. Then we always kn
that the common Underwood roots with values between the relative volatilitie
the keys will be active, thus and and the structure of equ
tion (3.18) is thereby known.

For nonsharp key specifications, components lighter than the light key, and h
ier than the heavy key, may or may not be distributing. Then we usually hav
check several possible distribution sets. The correct solution is the one with
highest number of distributing components that satisfy (3.21).

A practical approach is to apply an iterative procedure where we first assume
all components are distributing. If this assumption is wrong, the set of recove
obtained from a solution will be infeasible (violates 3.21). The procedure is t

r d1 T,

r d2 T,

…
r dNd T,

αd1
zd1

αd1
θd1

–
---------------------

αd2
zd2

αd2
θd1

–
--------------------- …

αdNd
zdNd

αdNd
θd1

–
------------------------

αd1
zd1

αd1
θd2

–
---------------------

αd2
zd2

αd2
θd2

–
--------------------- …

αdNd
zdNd

αdNd
θd2

–
------------------------

… … … …
αd1

zd1

αd1
θdNd 1–

–
-----------------------------

αd2
zd2

αd2
θdNd 1–

–
----------------------------- …

αdNd
zdNd

αdNd
θdNd 1–

–
--------------------------------

z– d1
z– d2

… z– dNd

1– αi zi

αi θd1
–

------------------
i 1=

d1 1–

∑–

αi zi

αi θd2
–

------------------
i 1=

d1 1–

∑–

…

αi zi

αi θdNd 1–
–

--------------------------
i 1=

d1 1–

∑–

zi
i 1=

d1 1–

∑–

1 0

1 0

… …
1 0

0 1

VT

F
-------

D
F
----

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

1
w1 T,
w1 F,
------------≥

w2 T,
w2 F,
------------

w3 T,
w3 F,
------------ …

wNc T,
wNc F,
--------------- 0≥ ≥ ≥ ≥ ≥

or

1 r≥ 1 T, r2 T, r3 T, … r Nc T, 0≥ ≥ ≥ ≥ ≥

r LK T, 1= rHK T, 0=

d1 LK= dNd HK=
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to remove heavy components with recoveries < 0 and light components with
recoveries > 1 from the set of distributing components until we have a feas
solution. This ensures that we can find a solution with a finite (and small) num
of iterations. ForNc components, the maximum number of distribution sets is

(3.22)

i.e. for a ternary case with feed components denoted ABC, the following sets
be distributing: A or B or C or AB or BC or ABC. In cases where we specify o
of V or D, or both, we always have to apply the iterative procedure when solv
for the recoveries since the set of distributing components is initially unknow

For V>Vmin and an infinite number of stages there are no common Underw
roots. Thus, at most one component may be distributing and its recovery is i
pendent of the actual value ofV, but it is uniquely related to through (3.19):

(3.23)

3.2.5 Summary on Use of Underwood’s Equations

The equations involved are illustrated in Figure 3.2. Note the important differe
between the feed equation (FEQ) which gives us the possible common roots
the definition equations (DEQ) at a cross-section above or below the feed, w
gives us the actual roots for a given flow and product distribution. The key to
full solution is to identify the distribution of feed components, and thereby the
of active common Underwood roots. When we specify the two degrees of f
dom (DOF) as a sharp split between two key components, the distribution s
obvious and unique. Otherwise we may have to check several possible sets.
way, the computation time is in the order of microseconds on any availa
computer (in year 2000)

Nc Nc 1+( ) 2⁄

D F⁄

D F⁄ z1 z2… rd1
zd1

+ +=
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3.3 TheVmin-diagram (Minimum Energy Mountain)

A nice feature, due to the fact that we have only two degrees of freedom, is
we are able to visualize the entire operating range in two dimensions, even
an arbitrary number of feed components. In this work we choose to use the
vapour flow(VT/F) and the product split, expressed by the distillate (D/F), as
degrees of freedom and we will visualize the solutions in the two-dimensiona
V plane (really normalized toD/F, V/F). The choice of vapour (V/F) flow rate on
the ordinate provides a direct visualization of the energy consumption and col
load. Note also that it follows from the linear equation set (3.20) that the relat
ship between the these flow rates (D,V) and the recoveries (R) is always linear for
a given set of distributing components. Thus, the function:

(3.24)

VT

αiwi T,
αi φ–
----------------

i
∑=

VB

αiwi B,
αi ψ–
----------------

i
∑=

1 q–( )
αi zi

αi θ–
--------------

i
∑=

The feed equation
gives the common
“Vmin”-roots ( ):θ

Top section

Bottom section

Top and bottom definition
equations give the “actual”
- roots  andφ ψ

Solution procedure:

1. Obtain all  from FEQ.
2. Specify 2 variables (DOF)
3. Assume a distribution

(set of active roots)
4. Solve one of the resulting

DEQ sets (T or B)
5. Check feasibility and redo

from 3 if required

θ

wi,T

wi,F=Fzi,F

wi,B

(1-q)F

Vapour part of
the feed

Figure 3.2: Illustration of Underwood’s equations. Positive directions of vapour flo
(solid) and net component flows (wi, dashed) are indicated. (Normally we havewi,B<0).

Net flow of

DEQT:

FEQ:component i:

DEQB:

RT f
D
F
----

VT

F
-------, 

 =
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is linear in each region with the same set of distributing components. At
boundary between two of the regions, one component will be at the limit of be
distributing. These distribution boundaries are also straight line segments in
D-V plane due to the linear properties of equation (3.20).

An important boundary is the transi-
tion from V>Vmin to V=Vmin. It looks
like mountain peaks in the D-V-plane
as illustrated in Figure 3.6, and this is
the background for denoting it the
Vmin-diagram or the minimum energy
mountain.

There is a unique minimum energy
solution for each feasible pair of prod
uct recovery specifications, and th
solution is always found below or at
theVmin-boundary.

Above theVmin-boundary, the operation is not unique since we can always red
the vapour rate down to theVmin-boundary without changing the produc
specifications.

Below theVmin-boundary we can identify a set of polygon regions for each se
distributing components. For the ternary case in the figure, the regions where
BC or all of ABC are distributing are indicated.

3.3.1 Feasible Flow Rates in Distillation

The D-V plane spans out the complete feasible operating space for the col
both the minimum energy solutions and all others. This is quite simple to un
stand from a operational viewpoint.D andVT are just flows, and we can operat
a column with any feasible combination of flows through the separation stage
we alternatively specify two key component recoveries as degrees of freedom
can only span a sub-region of the operating space, and we do not know in adv
if our specification is feasible. Feasibility simply implies that we require posit
vapour and liquid flows in all sections:

(3.25)

In an ordinary two product column we also require  and
(note that this is not a feasibility requirement for directly cou

pled sections) which with a single feed translates to:

 and (3.26)

Vmin-boundary

Distribution
regions

AB

ABC
BC

V

D
Figure 3.3: TheVmin-diagram for
ternary feed (ABC)

V>Vmin

Distribution
boundaries

VT 0 VB 0 LT 0 LB 0>,>,>,>

D VT LT– 0≥=
B LB V–

B
0≥=

VT max 1 q–( )F D,( )≥ 0 D F⁄ 1≤ ≤
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3.3.2 Computation Procedure for the Multicomponent Case

The procedure for computing the required points to draw theVmin-mountain-dia-
gram for a general multicomponent case (Nc components) is as follows:

1. Find all possible common Underwood roots [ ] from th
feed equation (3.13).

2. Use equation (3.20) (or 3.18+3.19) to find the full solutions for sharp sp
between every possible pair of light (LK) and heavy key (HK) specifica
tions. Each solution gives the component recoveries (R), minimum vapour
flow (Vmin/F) and product split (D/F). These are the peaks and knots in th
diagram, and there are such key combinations, described
more detail below:

- Nc-1 cases with no intermediates (e.g. AB, BC, CD,....)
These points are the peaks in theVmin-diagram

- Nc-2 cases with one intermediate (e.g. AC, BD, CE,....)
These are the knots between the peaks, and the line segments
between the peaks and these knots forms theVmin-boundary

- e.t.c.

- 2 cases withNc-3 intermediates (Nc-1 components distribute)

- 1 case withNc-2 intermediates (all components distribute)

This last case is the “preferred split” solution where the keys are the m
light and heavy components, and all intermediates distribute.

3. Finally we will find the asymptotic points where all recoveries in the to
are zero and one, respectively. These are trivially found asVTmin=0 for
D=0 and VTmin=(1-q)F for D=F (Note that this is the same asVBmin=0 for
B=0).

3.3.3 Binary Case

Before we explore the multicomponent cases, let us look closer at a binary c
Consider a feed with light component A and heavy component B with rela
volatilities , feed composition , feed flow rateF=1 and
liquid fraction q. In this case we obtain from the feed equation (3.13) a sin
common root obeying . The minimum vapour flow is found b
applying this root in the definition equation (3.15):

(3.27)

θ1 θ2 … θNc 1–, , ,

Nc Nc 1–( ) 2⁄

αA αB,[ ] z zA zB,[ ]=

θA αA θA αB> >

VTmin

F
---------------

αAr A T, zA

αA θA–
-------------------------

αBr
B T, zB

αB θA–
------------------------+=
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We also have from (3.19):

(3.28)

The procedure in section 3.3.2 becomes very simple in the binary case since
is only one possible pair of key components (A,B). We obtain the followi
results which we plot in the in theD-V-plane of theVmin diagram in Figure 3.4.
First we find the operating point which gives sharp A/B-split:

PAB:  =>

and then the asymptotic points:

P0 :  =>

P1 :  =>

These three points make up a triangle as shown in Figure 3.4. Along the str
line P0-PAB we haveV=Vmin for a pure top product ( ), and the line ca
be expressed by:

D
F
---- r A T, z

A
rB T, zB+=

r A T, rB T,,[ ] 1 0,[ ]= D VTmin,[ ] zA

αAzA

αA θA–
-------------------, F=

r A T, rB T,,[ ] 0 0,[ ]= D VTmin,[ ] 0 0,[ ]=

r A T, rB T,,[ ] 1 1,[ ]= D VTmin,[ ] 1 1 q–( ),[ ]F=

0 F
D

only B is distributing

A+B are distributing

Figure 3.4: TheVmin-diagram, or minimum energy mountain.
Visualization of the regions of distributing components for a binary feed case.

(1-q)F

PAB: VTmin

VT

V>Vmin
V=Vmin(rA,rB)

V>Vmin

P0

P1

only A is distributing

r B
,T

=0

r
A

,T =1

Infeasible region: (V<D or V<(1-q)F

A at the boundary of
becoming distributing

B at the boundary of
becoming distributing

θA active

Region (B) where

Region (A) where

Region (AB) where both

=> no active roots

A/B

Vmin for
sharp A/B-split

zAF

(no B in distillate).

(no A in bottoms).

rB T, 0=
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Similarly, along the straight line PAB-P1, we haveV=Vmin for a pure bottom prod-
uct ( ), and the line can be expressed by:

 where (3.30)

Inside the triangle, we may specify any pair of variables among(VT,D,rA,rB) and
use the equation set (3.27-3.28) to solve for the others. This is exactly the s
equation set as given in (3.20) for the general multicomponent case when
components are distributing.

Above the triangle (Vmin-mountain),V>Vmin, and we have no active Underwood
roots, so (3.27) no longer applies. However, since only one component is dis
uting, we have either or . This implies that the recoveries a
directly related toD, and we have:

 for  or  for (3.31)

which is equivalent to (3.23) in the general multicomponent case. Anywh
above the triangle we obviously waste energy since the same separation c
obtained by reducing the vapour flow until we hit the boundary to region AB

VT>D andVT>(1-q)F for feasible operation of a conventional two-product dist
lation column. The shaded area represents an infeasible region where a flow
somewhere in the column would be negative. Note that the asymptotic points0
and P1) are infeasible in this case.

We may also visualise the non-sharp split solutions with specified compo
recoveries. This is illustrated in Figure 3.5 for the example a

(dashed lines). The unique solution with both specifications f

filled is at the intersection inside region AB. Note that forV>Vmin these become
vertical lines.

We also indicate the alternative coordinate system (dashed) ifVB andB are used
as degrees of freedom. The relation toVT andD is trivial

VT

F
-------

αAr A T, zA

αA θA–
-------------------------= D r A T, zAF=

r A T, 1=

VT

F
-------

αAzA

αA θA–
-------------------

αBr
B T, zB

αB θA–
------------------------+= D

F
---- zA rB T, zB+=

r A T, 1= rB T, 0=

D
F
---- r A T, z

A
=

D
F
---- zA≤ D

F
---- zA rB T, zB+=

D
F
---- zA≥

VT rA 0.85= D( )

VT rB 0.25= D( )
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3.3.4 Ternary Case

Figure 3.6 shows an example of theVmin-diagram, or “minimum energy moun-
tain” for a ternary feed (ABC). To plot this diagram we apply the procedure
Section 3.3.2 and identify the following five points:

The peaks, which giveVmin for sharp splits A/B and B/C (no distributing
components):

PAB:  =>

PBC:  =>

The preferred split, which givesVmin for sharp A/C-split (B is distributing):

PAC: =>

where  is the recovery of B:

and the trivial asymptotic points:

0 F D

Figure 3.5: Solution for a given pair of recovery
specifications visualized in theVmin-diagram

(1-q)F

PAB

VT rA,T=0.85

P0

P1

rB,T=0.25 VB

B

Solution

r A T, rB T,,[ ] 1 0,[ ]= D VTmin,[ ] zA

αAzA

αA θA–
-------------------, F=

rB T, rC T,,[ ] 1 0,[ ]= D VTmin,[ ] zA zB+
αAzA

αA θB–
-------------------

αBzB

αB θB–
-------------------+, F=

r A T, rC T,,[ ] 1 0,[ ]= D VTmin,[ ] zA βzB+
αAzA

αA θB–
-------------------

αBβzB

αB θB–
-------------------+, F=

β β rB T,
A C/

αAzA

αBzB
-------------–

αB θA–( ) αB θB–( )
αA θA–( ) αA θB–( )

-------------------------------------------------= =
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P0 :  =>

P1 :  =>

The two peaks (PAB and PBC) give us the minimum vapour flow for sharp spli
between A/B and B/C, respectively. The valley, PAC, gives us the minimum
vapour flow for a sharp A/C split and this occurs for a specific distribution of
intermediate component B, known as the “preferred split” (Stichlmair 1988).

A part of theVmin-boundary, namely the V-shaped PAB-PAC-PBC curve, has been
illustrated by several authors, e.g. Fidkowski (1986), Christiansen and Skoge
(1997). It gives the minimum vapour flow for a sharp split between A and C a
function of the distillate flow. Figure 3.6, however, gives the complete picture
all feasible operating points. In every region where more than one compo
may be distributing to both products (AB, BC and ABC), at least one Underwo
root is active and we may find the actual flows and component distribution
using equation (3.18) with the actual active roots. Note that at the boundaries
of the components will be at the limit of being distributing.

r A T, rB T,,[ ] 0 0,[ ]= D VTmin,[ ] 0 0,[ ]=

r A T, rB T,,[ ] 1 1,[ ]= D VTmin,[ ] 1 1 q–( ),[ ]F=

0 1

VT/F

D/F

1-q

ABC

D

VT LT

VT=D (LT=0)

 “The preferred split”

Sharp A/BC split Sharp AB/C split

Infeasible region
VT=(1-q)F or VB=0

Fqz

Region A

zA

Region B Region C

Region ABC

Region AB Region BC

θA

θAθB

θΒ

P0

P1

V>Vmin
above this
“mountain”

VB LB

B

zB zC

r C,T
=0

r C,T
=0

rA,T=1

r
A,T =1

r B
,T

=0

r
B

,T =1

Figure 3.6:Vmin-“mountain”-diagram for a ternary feed mixture (ABC).V>Vmin above
the solid “mountain” P0-PAB-PAC-PBC-P1. Below this boundaryV=Vmin for all cases, but
the distribution of feed components to the product are dependent on operating re
These regions are denoted AB, BC and ABC from the distributing components.
active roots are also indicated.

PBC: VTmin
AB/B

PAB: VTmin
A/BC

PAC: VTmin
A/C
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At boundaries B/AB and ABC/BC:rA,T=1 (rA,B=0)
At boundary A/AB:rB,T=0 (rB,B=1)
At boundary  C/CB:rB,T=1 (rB,B=0)
At boundaries B/BC and AB/ABC:rC,T=0 (orrC,B=1)

Comment: King’s minimum reflux formula (ref. Chapter 2) can be deduce
from the exact Underwood solution at PAC for a saturated liquid feed (q=1):

(3.32)

However, King’s formula cannot be applied for sharp A/B or B/C split. If we t
this for example at PAB, we clearly have:

(3.33)

The underlying reason is that in the deduction of King’s formula, a pinch zon
assumed to exist across the feed stage. However, this is only true in the re
where all components distribute, which is only in the triangle region ABC bel
the preferred split, denoted Class 1 separations (Shiras 1950).

Example: For and equimolar, saturated liquid feed, we ge

 and

Note that King’s formula predicts minimum reflux to be significantly abo
the real minimum which is obtained by Underwood’s expression.

However, for the preferred split (PAC) we obtain:

Here we must apply the more complex Underwood expression for pointAC
given at page 78.

LTmin

F
--------------

VTmin D–

F
------------------------- 1

αLK αHK⁄ 1–
----------------------------------- 1

αA αC⁄ 1–
---------------------------= = =

Kings Lmin

1
αA αB⁄ 1–
---------------------------

Underwoods Lmin

θAzA

αA θA–
-------------------

≠         

α 4 2 1, ,[ ]=

Kings Lmin

1
αA αB⁄ 1–
--------------------------- 1

4 2⁄ 1–
------------------- 1= =

    

Underwoods Lmin

θAzA

αA θA–
------------------- 2.76 1 3⁄( )

4 2.76–
------------------------- 0.74= =

    

Kings Lmin

1
αA αC⁄ 1–
---------------------------

Underwoods Lmin

1
3
---

=     }
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3.3.5 Five Component Example

A 5-component example is shown in Figure 3.7. Here we also plot the con
lines for constant values of the recoveries in the top for each component in
range 0.1 to 0.9.

Note that the boundary lines (solid bold) are contour lines for top recoveries e
to zero or one and that any contour line is vertical forV>Vmin. This diagram
clearly shows how each component recovery depends on the operating
(D,V).

Since we assume constant relative volatility only adjacent groups of compon
can be distributing. In the example with five components ABCDE, the followi
distributing groups exist: A, B, C, D, E, AB, BC, CD, DE, ABC, BCD, CDE
ABCD, BCDE, ABCDE. To draw theVmin-diagram forNc components, we must
identify the points (Pij ) given in the procedure in Section 3.3.2.

Number of points (peaks and knots) Pij : (3.34)

This is simply the sum of the arithmetic series{1+2+...+(Nc-1)} (one point with
no intermediates + two points with one intermediate+...+(Nc-1) points with no
intermediates). This number is equal to the number of distribution regions w
V=Vmin (10 for the 5-component example: AB, BC, CD, DE, ABC, BCD, CDE
ABCD, BCDE, ABCDE). Note thatV>Vmin only in the regions where just one
component distributes.
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Infeasible region

Case:
α=[9           6         3.5           2           1]
z=[0.2         0.2         0.2         0.2         0.2]
q=0.8

Figure 3.7: TheVmin-diagram for a 5-component feed (F=1).
Contour lines for constant top product recoveries are included.

Nc Nc 1–( ) 2⁄
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Figure 3.7 also illustrates that some combinations of recovery specifications
be infeasible, e.g.rA,T=0.9 andrC,T=0.6. Observe that combined specification o
D and an intermediate recovery may have multiple solutions, e.g.D=0.2 and
rB,T=0.3. The specification ofV and a recovery will be unique, as will the spec
fication of D andV. The specification of two (feasible) recoveries will also b
unique, and the solution will always be a minimum energy solution (V=Vmin).

3.3.6 Simple Expression for the Regions Under the Peaks

In the Vmin-diagram, the peaks represent sharp splits between adjacent co
nents (j andj+1). In the region just under the peaks, the vapour flow is particula
simple to compute since there is only one active root, (this is in fact the sta
step 2 of the general procedure in Section 3.3.2). We find directly from (3.15

(3.35)

(3.36)

Recall and observe that the slopes under the peaks are given

 and (3.37)

The contour lines under the peaks PAB, PBC, PCD and PDE in Figure 3.7 are exam-
ples of lines where the slopes are given by equation (3.37). In the case
completely sharp split, , , the expression in (3.35) simp
fies to:

 and (3.38)

Equation (3.38) gives us the peaks and (3.35) describes the behaviour in
region under the peaks. Thus we can use these simple linear equations to de
the local behaviour for a 2-product column where we specify a reasonable s
split between two groups of components.

VTmin r j T, r j 1+ T,,( )
αi zi

αi θ j–
----------------

i 1=

j 1–

∑
α j zj

α j θ j–
-----------------r j T,

α j 1+ zj 1+

α j 1+ θ j–
--------------------------r j 1+ T,+ +=

k0 kj r j T, kj 1+ r j 1+ T,+ +=

D zi
i 1=

j 1–

∑ 
 
 

zj r j T, zj 1+ r j 1+ T,+ +=

α j θ j α j 1+> >

kj

α j zj

α j θ j–
----------------- 0>= kj 1+

α j 1+ zj 1+

α j 1+ θ j–
--------------------------= 0<

r j T, 1= r j 1+ T, 0=

VTmin
j/j+1 αi zi

αi θ j–
----------------

i 1=

j

∑= D zi
i 1=

j

∑=
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3.4 Discussion

3.4.1 Specification of Recovery vs. Composition

We have chosen to use component recovery (or net component flow), rather
composition, which is used by many authors. One important reason is to get a
ear equation set inV, D andR inside each distribution region. If we choose to us
composition in (3.18), the equation set may again become linear if we divide
D and compute the ratio V/D. But then we do not have the vapour flow (which
use as energy indicator) directly available.

Another important reason is that when we apply the equations for directly cou
columns, there is no single product stream since the product is the difference
counter flowing vapour and liquid stream. Then there is not any unique comp
tion related to a certain specification ofV and D as degrees of freedom.

Nevertheless, for the final products, it is more common to use compositio
specification. But we choose to compute the corresponding recovery (or net
ponent flow) and use those variables in Underwood’s equations.

The relation between recovery and net component flow is simply that the reco
can be regarded as a normalized component flow: =
In the following we switch between usingr or w depending on which one is the
most convenient in a certain expression.

3.4.2 Behaviour of the Underwood Roots

TheVmin-diagram is also very well suited to illustrate the behaviour of the Und
wood roots in each section ( ) as we change the vapour flow. Recall
Underwood showed that as the vapour flow (V) is reduced, a certain pair of roots
will coincide, and we getV=Vmin. But how do we find which pair, and what hap
pen to the other roots? Also, recall thatVmin is not a constant, but depends on ho
we select the two degrees of freedom in the column.

We illustrate the behaviour with a ternary example in Figure 3.8. We have
common roots ( ). In each of the three casesi-iii , D is kept constant andV
is reduced from a large value in the region whereV>Vmin until we are in region
ABC where all feed components distribute. The behaviour of the roots is c
puted from the defining equations (3.7) and (3.8). Observe how the pair
approaches the common root and how approaches the other com
root as we cross a distribution boundary to the region where each com
root becomes active.

Note also that in caseii , where we pass through the preferred split, both comm
roots become active at the same time. Observe that one root ( ) in the top
one ( ) in the bottom, never coincide with any other root.

r i wi wi F,⁄= wi ziF( )⁄

φ ψ,

θA θB,

φA ψB,
θA φB ψC,

θB

φC
ψA
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



84

the
in
ere

m

Figure 3.9a shows how the important root in the top, behaves outside
regions AB or ABC where it is constant . A similar result is shown
Figure 3.9b) for the root in the bottom, outside the regions ABC or BC wh

. Note that these contours are linear in each distribution region.
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Figure 3.8: Observe how a pair of Underwood roots coincide as vapour flow (V) is reduced
and the operation cross a distribution boundary in theVmin-diagram.
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Figure 3.9: Contour plot of the most important roots a) in the top- and b) in the botto
sections outside the region when these roots are active. Same feed as in Figure 3.8
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3.4.3 Composition Profiles and Pinch Zones

At minimum energy operation with infinite number of stages, the composit
profile will have certain pinch-zones where there are no changes from stag
stage. Shiras (1950) denoted these as points of infinitude. The pinch zone is a
tral issue in the deduction of Underwood’s equations for minimum ene
calculations. In this section we will present expressions for pinch zone comp
tions and discuss important characteristics of the pinch zones and compos
profiles.

3.4.4 Constant Pinch-zone Compositions (Ternary Case)

Underwood showed how to compute the pinch zone compositions for cases
infinite number of stages. In Underwood (1945) the following expression is u
to find a pinch zone composition in the top section for componenti, related to
Underwood rootk:

(3.39)

In the bottom section, we simply apply the roots for the bottom ( ) and bott
component flows (wi,B) to get the corresponding pinch zone compositions (no
that each elementwi,B is normally negative since we define the positive directio
upwards). Underwood (1945) also showed that we may get infeasible comp
tions from this equation. We also see that as the roots approach a rel
volatility, the denominator term in (3.39) will approach zero, and so will the co
ponent flow in the nominator. We can get around this numerical problem
always assuming a very small component flow when computing the roots.

Let us use a ternary example with feed components A, B and C. From (3.39
find three compositions for each section. In region AB we remove the heav
from the top product. Thus, somewhere in the top section there will be a p
zone where only A and B appear. In this region, will be an active root. T
actual pinch composition can be found by applying in (3.39). Note that
compute the actual roots ( ) from (3.7) after we have computed and f
(3.18).

 , (3.40)

We may use an alternative approach to find this pinch zone composition. We c
bine the assumption about a pinch ( ) in the top secti
where component C is fully removed ( ) with the material balance (3.

xi PT,
φk

xi D, D

LT
---------------

φk

αi φk–( )
---------------------

wi T,
LT

-----------
φk

αi φk–( )
---------------------= =

ψ

θA
φB

φ wT LT

xA PT,
wA T,
LT

-------------
φB

αA φB–( )
------------------------= xB PT,

wB T,
LT

------------
φB

αB φB–( )
------------------------ 1 xA PT,–= =

xi n, xi n 1+, xi PT,= =
xC n, 0=
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the equilibrium expression, and the definition equation (3.15) where we apply
root (which we know is the only active root in region AB). When we solve f
the pinch, we obtain:

 , (3.41)

Surprisingly, from (3.41), which is valid for any operating point within regio
AB, we observe that the pinch-zone composition in the top section will be in
pendent of the operating point (V,D) since is a constant. This issue was n
pointed out by Underwood, and it is not at all obvious from (3.40) since all va
ables in (3.40), except , are varying in region AB.

In the bottom section, all components will be present in the product, and here
pinch zone will be determined by (again not a common root). This pinch z
will actually appear from the feed stage and downwards, but we will see an ab
composition change in the stages above the feed stage. Unlike the pinch in th
the pinch composition in the bottom will change as the operating point is mo
around in region AB.

When the column is operated in region BC, the roles will be exchanged and
pinch zone composition on the bottom will be invariant, but the pinch zone co
position in the top will vary withD,V.

Finally in region ABC where both common roots are active, both pinch zone co
positions will be constant and independent onD,V.

Example.We will illustrate this by a numerical ternary example whereF=1,
z=[0.33 0.33 0.33], =[4 2 1], q=1.The composition profile has been compute
using a stage-by-stage model with 50 stages in each section, which in pract
an infinite number of stages for this example. In Table 3.2 we have given the
for four operating points, which are all in the AB region. The pinch zone com
sitions are computed by (3.39) and the actual root applied is indicated in the
column.

θA

xA PT,
αB αA θA–( )
θA αA αB–( )
--------------------------------= xB PT,

αA θA αB–( )
θA αA αB–( )
-------------------------------- 1 xA PT,–= =

θA

α

ψA

α
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The composition profiles along the column are shown in triangular diagram
Figure 3.10 and in composition against stage number in Figure 3.11. Note tha
pinch related to is constant in all these cases. In region ABC (cases 3 an
we will see that the pinch-zone develops on both sides of the feed stage. Thu
and applied for the top and bottom sections give the same result. Also h
the pinch zone composition is constant in the whole region ABC, and the com
sition can be found alternatively by solving a feed flash.

It is also interesting to see that roots which are not common roots plays an im
tant role for the pinch. In the triangular diagrams in Figure 3.10, we see tha
composition profile develops along the straight line from one pinch point to
next, even if the next pinch point is infeasible, it acts as an asymptotic point
gives the direction of the profile.

At the point of preferred split, which is in fact the intersection of region AB, B
ABC and B, we will have three pinch zones in the column. One through the f
stage as in region ABC, a second somewhere in the middle of the top sectio
determined for region AB, and a third somewhere in the middle of the bottom
tion as in region BC.

Table 3.2:  Operating point and pinch zone compositions for the exampl

Operating
point:

1: AB/B 2: AB 3: AB/ABC 4: Pref. split

D V 0.37 0.98 0.37 0.77 0.36 0.62 0.44 0.78

rAT rBT rCT 1.00  0.10  0.00 0.90 0.22 0.00 0.80  0.27 0.00 1.00  0.33 0.0

xAD xBD xCD 0.91 0.09 0.00 0.80 0.20 0.00 0.75 0.25 0.00 0.75 0.25 0.0

xAB xBB xCB 0.00 0.47 0.53 0.05 0.41 0.54 0.10 0.38 0.52 0.00 0.40 0.6

Top
pinch
comp.

1.20 -0.20 0.00
0.45 0.55 0.00
0.18 0.05 0.77

1.67 -0.67 0.00
0.45 0.55 0.00
0.25 0.19 0.56

2.22 -1.22 0.00
0.45 0.55 0.00
0.33 0.33 0.33

2.22 -1.22 0.00
0.45 0.55 0.00
0.33 0.33 0.33

Bottom
pinch
comp.

0.35 0.37 0.28
0.00 0.68 0.32
0.00 -0.27 1.27

0.34 0.35 0.31
-0.05 0.68 0.37
-0.01-0.29 1.30

0.33 0.33 0.33
-0.11 0.70 0.41
-0.02 -0.32 1.34

0.33 0.33 0.33
0.00 0.61 0.39
0.00 -0.27 1.27

φA
φB
φC

ψA
ψB
ψC

φB
ψA

φC
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Figure 3.10: The composition profiles attempt to reach the theoretical pinch points
Plot shows composition profiles in for the four cases given in Table 3.2.
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Figure 3.11: Composition profiles by stage number for the four cases given in table
Note the constant pinch zone in the top section
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3.4.5 Invariant Multicomponent Pinch-zone Compositions

In the general case we will find that in every region where one or more com
nents are completely removed from one of the products, we will have an inva
pinch zone composition. More precisely, this occurs in the regions below
boundary for sharp split between the most extreme components. For examp
the 5-component case in Figure 3.7, the invariant pinch zone compositions ap
in regions AB, ABC, ABCD, ABCDE, BCDE, CDE and DE.

To select the proper root to be used in (3.39) the following rules apply:

• When there are  heavy components not distributed to the top pr
uct, the root applied in (3.39) will give us the invariant pinch
zone composition in the top for the whole distribution region. This appli
in each of the regions to the left of the preferred split (e.g. below PAB-PAC-
PAD-PAE in Figure 3.7). In the bottom  will give the pinch below the
feed stage.

• Similarly, when there are  light components, not distributed to th
bottom (but all are distributed to the top product), the root
applied in (3.39) will give us the invariant pinch zone composition in th
bottom (e.g. for the regions below PAE-PBE-PCE-PDE in Figure 3.7). In the
top  will give the pinch above the feed stage.

At the boundaries, where a component is at the limit of being distributing, t
pinch zones may appear in each section. Note that at the preferred split, ther
be a pinch zone through the feed stage, and we observe the invariant pinch
the neighbouring regions in both column ends.

The behaviour of the pinch zones plays an important role in directly (or so-ca
fully thermally) coupled columns. In the ternary case, the top pinch represent
maximum composition of the light (A) component which can be obtained in
first column when the reflux into the column is in equilibrium with the vapo
leaving the column. When the columns are connected, the minimum vapour
in the succeeding column will have its minimum when there is a pinch zone ac
the feed region. And this minimum will be as low as possible when the amoun
light component is as high as possible.

Furthermore, in the Petlyuk column, we know that the energy requirement in
succeeding column is constant in a certain operation region. This is eas
explain from the fact that when the feed pinch composition in a binary colum
constant, the energy requirement will also be constant.

NHNd
φNc NHNd–

ψ1

NLNd
ψ1 NLNd+

φNc
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3.4.6 Pinch Zones forV>Vmin

We have above discussed the pinch-zones for the case whenV=Vmin. Above the
Vmin-mountain, in region B, we may still use equation (3.41), but we have to
the actual root in the top section , instead of :

 , , (3.42)

When we combine this expression with the behaviour of as shown in Fig
3.9a we know that the pinch-zone composition will be constant along the s
straight contour lines where  is constant.

A similar relation is found for and the pinch zone in the bottom when the c
umn is operated in region B. This is also illustrated in Figure 3.9b.

, , (3.43)

3.4.7 Finite Number of Stages

Considering a ternary feed (A,B, and C) we will now look at the stage requirem
for a split close to sharp A/C split, with a specified impurity in the top and botto
for a column with finite number of stages. Minimum energy for infinite numb
of stages is easily found from theVmin-diagram as the V-shaped boundarie
between the regions AB/B and B/BC. However, with finite number of stages
real minimum vapour flow (VRmin) has to be slightly higher. We want to keep th
ratio VRmin/Vmin below a certain limit, and this gives us the stage requiremen
Figure 3.12 shows the result forVRmin/Vmin=1.05 for a given feed and impurity
constraints. The total number of stages (N=NT+NB) is minimized for each oper-
ating point.

Observe that the largest number of stages is required close to the preferred
When we move away from the preferred split, the number of required stage
one of the sections is reduced. The lesson learned from this is that if the col
is designed for operation on one side of the preferred split, this can be ta
advantage of by reducing number of stages in the appropriate section. How
if the column is to be operated at, or on both sides of the preferred split, both
tions have to be designed with its maximum number of stages (N dashed).

The top section stage requirement is reduced to the left of the preferred split.
reason is that the real minimum vapour flowVRmin(dotted) is determined by the
requirement of removing A from the bottom which is given by the boundary A
B. At the same time the required “Vmin” for removing C from the top is given by

φA θA

xA PT,
αB αA φA–( )
φA αA αB–( )
--------------------------------= xB PT, 1 xA PT,–= xC PT, 0=

φA

φA

ψC

xA PB, 0= xB PB,
αC αB ψC–( )
ψC αB αC–( )
---------------------------------= xB PB, 1 xB PB,–=
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the boundary between regions AB/ABC. This implies that we may take out sta
in the top because we have a much larger vapour flow than required to remo
Thus we really haveV>>”V min” and the requiredNT will then approach a lower
limit, NTmin, which can be approximated by the wellknown Fenske equat
which can be applied between any two keys (L,H) and any two stages (here top
(T) and feed (F)) and infinite reflux (L=V):

(3.44)

In the top section we have to consider separation between B and C, and in the
tom, separation between A and B. Note that in this equation, the impu
composition (e.g.xC,T in the top andxA,B in the bottom) will normally dominate
the expression, soNmin will neither depend much on the feed pinch compositio
nor on the intermediate (B) in the end.
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Figure 3.12: Required number of stages in top and bottom section forV/Vmin=1.05 and
separation between A and C with less than 1% impurity. The actual operating po
considered are shown (dotted) in theVmin-diagram.

Nmin

log SLH TF,( )
log αL αH⁄( )
-------------------------------= where SLH TF,

xL T, xH T,⁄
xL F, xH F,⁄
---------------------------=
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At the preferred split, the Fenske equation gives and
the feed data and purity requirement as in Figure 3.12. We may then for exa
use the very simple rule (see Chapter 2) as a first approach in a
ple design procedure for each section. This rule would in fact be quite good
the example above.

3.4.8 Impurity Composition with Finite Number of Stages

Note that in all distribution regions in aVmin-diagram, except in the triangle below
the preferred split, one or more feed components will be completely remo
from one of the products with infinite number of stages. However, even wit
finite number of stages we will in practice remove these components almost c
pletely. Consider now that we have designed the number of stages to
satisfactory performance in a range on both sides of the preferred split (e.gNT=11
andNB=12 in the previous example). Then, as we move the operation away f
the preferred split, we have both “N>>Nmin” and “V>>Vmin” in one of the sec-
tions, and the impurity of the component to be removed in that section will
much smaller than the required specification. Thus, in these cases the colum
as a true rectifier for the component to be removed. This means that in region
of the ternary example, when we move a bit away from the boundary AB/AB
the mole fraction of C in the top will become very small also for finite number
stages. This can be observed in the composition profiles in Figure 3.11 for c
1 and 2 where we observe that the C-composition approaches zero quite clo
the feed stage, and the top is in practice “over-purified”. A rough estimate of
remaining impurity can be obtained by the Fenske equation (3.44) by using
real number of stages and solve for the appropriate impurity.

3.5 Summary

TheVmin-diagram gives a simple graphical interpretation of the whole operat
space for a 2 product distillation column. A key issue is that the feasible opera
space is only dependent of two degrees of freedom and that theD-V plane spans
this space completely. The distribution of feed components and correspon
minimum energy requirement is easily found by just a glance at the diagram.
characteristic peaks and knots are easily computed by the equations of U
wood and represent minimum energy operation for sharp split between
possible pairs of key components. The diagram represents the exact solutio
the case of infinite number of stages, and the computations are simple
accurate.

Although the theory has been deduced for a single conventional column, we
see in the next chapter that the simpleVmin-diagram for a two-product column
contains all the information needed for optimal operation of a complex dire
(fully thermally) coupled arrangement, for example the Petlyuk column.

NTmin 5≈ NBmin 6≈

N 2Nmin=
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In this work we have only considered simple ideal systems. But it is clear
such diagrams can be computed for non-ideal systems too. The key is to use
ponent property data in the pinch zones. The material balance equations ha
be fulfilled in the same way for non-ideal systems. It is also straightforward
compute the knots and peaks from a commercial simulator e.g. Hysys, wher
use a large number of stages and specify close to sharp split between each po
pair of key components.
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Chapter 4

Minimum Energy for Three-
product Petlyuk Arrangements

The main result is an exact analytical solution of
minimum energy for separation of a multicomponent
feed in a 3-product Petlyuk column, and we also
show that this result is the same as the minimum
energy required for the most difficult binary
product split in an ordinary 2-product column. We
use the V min -diagram to effectively visualize the
characteristics of the minimum energy solution for
any given feed.

Some of the results in this chapter were first pre-
sented at the AIChE Annual meeting, Dallas Texas,
November 1999 with the title “Exact analytical
expressions for minimum energy in generalized Pet-
lyuk distillation column arrangements”.
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4.1 Introduction

In this Chapter we will analyse the mini-
mum energy solution for the three-produc
Petlyuk arrangement as shown in Figur
4.1. An important contribution is to show
the minimum energy requirement and
detailed vapour flow requirements by jus
a glance at theVmin-diagram. TheVmin-
diagram was presented in Chapter 3 an
the results are directly based on Unde
wood’s equations for multicomponen
distillation in conventional columns
(Underwood 1945-48). We review the
most important Underwood equations an
some minimum energy results for Petlyu
arrangements given by previous authors
Section 4.2.

The main treatment of the Petlyuk arrangement is given in Sections 4.5-4.8.
analytic minimum energy expression has been given by Fidkowski and K
likowski (1986) for the case of a saturated liquid ternary feed and sharp pro
splits. In this paper, the minimum energy expressions are generalized to ha
any feed quality and nonsharp product splits. We also illustrate by two exam
that we easily handle more than three feed components.

We will also discuss some basic issues on how to apply the Underwood equa
on directly coupled columns like the Petlyuk arrangements: First, in the dire
coupled sections of the Petlyuk arrangement we have recycle flows from the
column into the top and the bottom of the prefractionator. This is a new situa
compared to the conventional arrangements, and we must check carefully ho
recycle streams affect Underwood’s methods. This issue is treated in Sectio
and it turns out that with some restrictions on the recycle stream compositions
directly coupled columns can be treated as ordinary columns.

Second, in Section 4.4 we present the important result from Carlberg and We
berg (1989) on how the Underwood roots carry over to succeeding dire
coupled column. This is a very important result and is a basis for the very sim
assessment we can do with aVmin-diagram.

Finally we will relate the results to some other types of column integration, a
briefly discuss implications to stage requirements and control.

D (A)

S (B)

B

C21

C22

C1

VB
C1

RvVB
C22

=

LT
C1

RlLT
C21

=

F,z,q

Figure 4.1: The integrated
Petlyuk arrangement for
separation of ternary mixtures

Main
column

Prefrac-
tionator

(ABC)

(C)
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4.2 Background

4.2.1 Brief Description of the Underwood Equations

Consider a two-product distillation column with a multicomponent feed (F) with
liquid fractionq and composition vectorz of N components. The defining equa
tion for the Underwood roots ( ) in the top and ( ) in the bottom are:

Top: Bottom: (4.1)

There will beN solutions for each root, and the sets from the top and bottom eq
tions are generally different. Note that the net flow for a component (wi) is defined
positive upwards, also in the bottom. Underwood showed that with infin
number of stages, minimum vapour flow is obtained when pairs of roots in the
and bottom coincide. By subtracting the equations above, we obtain wha
denote the feed equation, which gives us the set of possible common roots

(4.2)

Underwood showed, that for ordinary columns, the number of each set of roo
equal to number of components(N), and they obey: ,
and that the(N-1)possible common roots are in the range between all volatiliti
When we apply the material balance at the feed stage, we observe that the po
common roots depend only on feed composition and quality, and not on how
column is operated. However, it is not obvious when we may apply the comm
roots back into the defining equations, in particular for more than binary mixtu
The general rule is that we may apply the common roots being in the range of
atilities for the components distributed to both ends. We denote these roots a
roots. If we have any active roots then and there will be a unique so
tion for a given product purity specification. Otherwise .

Note that we assume constant pressure and constant relative volatilities, and
the vapour liquid equilibrium (VLE) relationship between the vapour (y) and liq-
uid (x) compositions is given by:

(4.3)

φ ψ

VT

αiwi T,
αi φ–( )

-------------------

i 1=

N

∑= VB

αiwi B,
αi ψ–( )

--------------------

i 1=

N

∑=

θ

VT VB–
αi wi T, wi B,–( )

αi θ–( )
--------------------------------------

i 1=

N

∑
αi ziF

αi θ–( )
-------------------

i 1=

N

∑ 1 q–( )F= = =

αi φi θi ψi 1+ αi 1+≥ ≥ ≥ ≥

V Vmin=
V Vmin>

yi

αi xi

α j x jj 1=

N∑
-----------------------------=
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4.2.2 Relation to Previous Minimum Energy Results

An analytical expression for the vapour flow in a three product Petlyuk colu
with a ternary feed (components A,B and C) and liquid sidestream was obta
by Fidkowski and Krolikowski (1986) for saturated liquid feed (q=1), and sharp
product splits.

(4.4)

Here, are the two common Underwood roots, obtained from (4.2) for
prefractionator feed. Glinos et. al. (1986) also presented this solution and we
cuss briefly its characteristics.

The prefractionator (column C1) has to perform a sharp A/C split. The minim
vapour flow in the prefractionator column is obtained for a particular distribut
of the intermediate B component, denoted as the preferred split. The load on
and C22 will depend on the amount of intermediate B in each feed. Thus the
imum energy requirement in the top of column C22 or in bottom of C21 w
increase as the amount of B is increased in each of the feeds. Several autho
Fidkowski and Krolikowski (1986) and Christiansen and Skogestad (19
showed that the optimum can be obtained by operating the prefractionator in
whole region between the preferred split and the so-called “balanced” split w
the vapour flow requirement in bottom of C21 and top of C22 becomes equal.
implies that there is a “flat” optimality region and that the minimum vapour flo
can be obtained not only at a single operating point, but along a line segme
the space spanned by the two degrees of freedom.

Fidkowski and Krolikowski (1986) deduced equation (4.4) by a quite detai
algebraic procedure, via expressions for pinch-zone compositions at the con
tion points as function of the operating point of the prefractionator.

Here we will use another approach, more directly based on the Underwood e
tions. Such an approach was first presented by Carlberg and Westerberg (198
who also extended the solution to more than one intermediate component. In
paper we extend the work of Carlberg and Westerberg and propose a very s
graphical interpretation in theVmin-diagram. This gives a powerful tool that ca
be applied to any number of components, and for Petlyuk arrangements exte
to any feasible number of product streams with any given purity specificatio

VTmin
Petlyuk

VBmin
Petlyuk

max
αAzA

αA θA–
-------------------

αAzA

αA θB–
-------------------

αBzB

αB θB–
-------------------+,

 
 
 

F= =

θA θB,
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4.2.3 TheVmin-diagram for Conventional Columns

We here review the results from Chapter 3. Since a two-product column oper
at constant pressure has only two degrees of freedom we may visualize all p
ble operating points in theD-V plane. This is illustrated in theVmin-diagram,
which is shown for a ternary feed (with components ABC) in Figure 4.2. The d
gram provides an informative visualization of the exact solutions for any given
of feasible specifications and infinite number of stages.

Each peak or knot in this diagram (Pij) is the operating point for minimum vapou
flow and sharp split between the component pairi,j ( ). The straight lines
between the peaks and knots are distribution boundaries, that is a boundary w
a component is at the limit of appearing or disappearing in one of the prod
streams. We denote the distribution regions by the components being distrib
to both products when operating in that region. For example in region AB co
ponents A and B are distributing to both products, whereas component C
appear in the bottom product. In region A, B and C we have no common Un
wood roots and . Below the “mountain”, in regions AB, ABC or BC
one or more pair of Underwood roots coincide and . The actual ac
common roots are those in the range between the volatilities of the distribu
components.

In the following we will discuss how we also can use theVmin-diagram for
directly coupled columns like the Petlyuk arrangement.

0 1

VT/F

1-q

ABC

VT LT

 “The preferred split”

Fqz

Region B

Region C

Region ABC

Region AB Region BC

θAθB

θΒ

V>Vmin in
regions A,B and C

VB
LB

θA

D/F

Figure 4.2: TheVmin-diagram for a ternary mixture ABC. The components which
are distributed to both ends are indicated in each region, with the correspondin
active Underwood roots.

Region A

V=Vmin in regions AB,BC and ABC

D

B

PBC: VTmin
AB/C

PAC: VTmin
A/C

PAB: VTmin
A/BC

Vmin
i/j

V Vmin>
V Vmin=
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4.3 The Underwood Equations Applied to Directly Cou-
pled Sections

4.3.1 The Petlyuk Column Prefractionator

In the prefractionator of a Petlyuk column we ca
still use the net component flow (w) or feed recov-
ery (r) to describe the separation carried out in th
column. From the material balance at any cros
section in the column:

(4.5)

Thus, for the column in Figure 4.3 the compositio
in the flow leaving the column top is dependent o
the composition of the incoming flow through th
material balance:

(4.6)

Note that for a conventional column with total condenser , and
have a unique relation between net component flow and the product compos
for a given distillate flow: , where .

We may regard the vapour flow entering the Petlyuk column prefractionator a
bottom and the liquid flow entering at the top as independent feeds with com
sitions (xLT,yVB). Thus the number of degrees of freedom in operation is n
increased, because in addition toLT andVB we may also consider the new “end
feed” compositions (xLT,yVB) as degrees of freedom. The important question
how these new “feed” compositions affect the split of components from the m
feed (F) to the top and bottom sections, in addition to our two main degrees
freedom as expressed by the flow rates (D,VT) in theVmin-diagram.

The Underwood equations used to produce theVmin-diagram have been deduce
from the material balance (4.5) and the vapour liquid equilibrium, without co
sidering product compositions at all. Note, however, that the results are base
the restrictions and . In a conventional column, these con
tions are always fulfilled, but the prefractionator in Figure 4.3 may be operate
modes where these restrictions are not met. Thus provided these restriction
fulfilled, the equations behind theVmin-diagram will also apply for the Petlyuk
column prefractionator.

LT,xLT

F,q

z

VB,yVB

VT,yVT

LB,xLB

Figure 4.3: The
prefractionator of a
Petlyuk arrangement

D,wi,T

B,wi,B

}

}

wi n, Vnyi n, L–
n 1+

xi 1 n,+=

yi VT,
wi T, LTxi LT,+

VT
-------------------------------------=

xi LT, yi VT,=

yi LT, wi T, D⁄= D VT LT–=

wi T, 0≥ wi B, 0≤
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Consider the ternary feed ABC with theVmin-diagram in Figure 4.2. Assume firs
that we operate the column in region ABC. In this case a pinch zone will deve
on both sides of the feed stage with the pinch zone composition given from
feed flash. The transport of components through the pinch zone is given by
material balance (4.5), the VLE and the pinch condition (xn=xn+1), and will not
be influenced by a composition far away from the pinch. Thus, in the whole A
region, the product split, given by for example , is completely independ
of the “end” compositions (xLT,yVB).

In region AB, we know that in a conventional column . If some hea
C component is present in the liquid entering the prefractionator top it has t
transported downwards, and thus violates the condition . Howeve
we require , we make sure that the condition  is fulfille

This leads to the following general rule:

The Vmin-diagram for a conventional column can also be applied to the
Petlyuk prefractionator, provided that a component, which would have
been removed from one end in the conventional column, does not appe
the end “feeds” of the Petlyuk prefractionator.

This means that if for a given set ofD andVT in the conventional col-
umn and for the same set ofD andVT in the Petlyuk prefractionator,
the sameVmin-diagram applies. The compositions of the other components in
end “feeds” do not affect the product split (given bywi.T or ri,T). However, the
local compositions in the flows leaving the columnxLB,yVT are affected through
the material balance equation (4.6).

Thus, the Petlyuk column prefractionator with an infinite number of stages ha
practice only 2 degrees of freedom in operation, as long as the above const
on the end-feeds components are fulfilled.

4.3.2 Composition Profiles

An operational and computational advantage with the directly connected pre
tionator is that we may decouple the feed split, expressed by the recovery (
or alternatively the net flow of each component ( ), from the composition
the flow leaving the column. In Figure 4.4 the profiles for the preferred split
shown for a Petlyuk column prefractionator a), and a conventional column b).
end-feed compositions have been set equal to the pinch zone compositions in
end of the Petlyuk prefractionator. This implies that the vapour and liquid co
positions in each end are at equilibrium.

Observe that the profiles develop similarly from the feed stage to the pinche
each section where only two components are left. The differences are obse
towards the ends. In the conventional columns remixing occurs caused by
cling of the condenser and reboiler products.

wi T,

wC T, 0=

wC T, 0≥
xC LT, 0= wC T, 0=

wi T, 0=
xi LT, 0=

r i T,
wi T,
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If we change the composition of A/B returned at the top or B/C at the bottom
a), we will get the same profile development from the feed towards the pi
zones, and the same net flow (wi) of components, but from the pinch to the colum
ends the profile will move towards the end stage composition determined by (4

Another very important feature is the profile of the components being remo
Note that it approaches zero close to the column ends (heavy C is removed i
top and light A in the bottom). This is a characteristic of operation at theVmin-
boundary. IfV>Vmin, this component composition would approach zero closer
the feed stage. The number of stages in this example is large (50+50) so it c
regarded as “infinite” number of stages.

4.3.3 Reverse Net Flow of Components

We have now stated that the prefractionator performs exactly like the con
tional column if we ensure that the end feeds do not contain any components
would have been removed from that end with a conventional column.

However, in a Petlyuk configuration this is not always the case. Consider the
uation where we operate in region AB (see Figure 4.5 at page 103, case i), an
liquid entering the column from the top has a composition equal to the invar
pinch zone composition given by equation (3.41). Then we reduce D until
enter region A. In the conventional case, component B would no longer be dis
uted to both products, and no Underwood roots would be active. But in
prefractionator we still have B in both sides. Note that at the border A/AB we h
wB,T=0, and as we reduce D further,wB,Twill become negative. Another interest
ing observation, is that if we compute the pinch zone composition related to
from (3.41) (note that ), then the pinch zone composition, which w
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a) Petlyuk column prefractionator
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b) Conventional column
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Figure 4.4: Composition profiles at preferred split. Feed dataz=[0.33 0.33 0.33],
=[4 2 1],q=1. End feeds in a) are set equal to pinch zone compositions.α

φA
φA θA=
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infeasible in region AB (refer to table 3.2), becomes feasible in region “A”. A
at the same time, the invariant pinch related to is still invariant in region “A
This implies that there are two different and feasible pinch compositions wh
only two components appear, a situation which is simply impossible in a conv
tional column.

Note that for a directly coupled column, where we for example may ha
and , some of the “truths” from the classical Underwoo

methods are no longer valid, but the basic equations are still very useful bec
they are based on the plain material balance in equation (4.5) and the VLE (
Thus we only need to consider a few new types of operating regimes which o
with the directly coupled columns.

φB

wA T, 0> wB T, 0<

0 1

VT/F

D/F

1-q

ABC

VT LT

 “The preferred split”

VT=(1-q)F

Fqz

Region
Region B

Region

Region ABC

Region AB Region BC

(θA)

θAθB

θΒ

PAB
PBC

PAC

P0

P1

V>Vmin
above the “V”

VB LB

“C”=BC

“A”=AB

θA

(θΒ)
Case i)

Case ii)

Case iii)

Figure 4.5: TheVmin-diagram for the Petlyuk column prefractionator is identical to th
diagram for the conventional diagram in region ABC and also in AB when C is n
present in the top-feed, and in BC when A is not present in the bottom-feed. Howe
the V-shapedVmin-boundary for sharp A/C split (bold) is extended when B is present
the end-feeds (VB or LT)
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Looking at theVmin-diagram in region “A”, it turns out that the Underwood roo
is the single active root in this region when the following condition is fulfille

(4.7)

At the boundary AB/“A” the pinch zone composition related to
, and it will increase as we move the operation further into region “A

The implication is simply that we may think of region AB as being extended in
region “A” as long as a sufficient amount of B is present in the top. This obse
tion has been confirmed by simulations.

Similarly, if we consider the case where we operate in region BC, and m
across the boundary to “C” (caseii, Figure 4.5), but have , we will
obtain reverse flow of component B from the bottom and upwards.

Another interesting case is if we operate to the left of PBC, but above the V-shaped
Vmin-boundary (caseiii , Figure 4.5) and C-component is present in the top: W
will then obtain or . Thus the C-component will simply “fall”
straight through the column. In this case correspondingly, the region BC wh

is active will be extended into region “B”. The limiting composition whic
gives the required C-composition is also here given by the pinch equation
Underwood. This case is particularly interesting for the lower part of the main c
umn in a Petlyuk arrangement in cases where we allow impurities in
sidestream product, and we will treat this further in Chapter 9.

Note also, that with a directly coupled column, the feasible range of operatio
changed. We still require positive vapour and liquid flow in sections, but nega
net product flow is now feasible, e.g. is allowed, but is clear
not optimal

The important implication is that the separation of the feed and energy requ
ment of the Petlyuk prefractionator is identical to a conventional column in
important operating regions (B, AB, ABC, BC) close to the preferred split.

4.3.4 Reverse Flow Effects on the Underwood Roots

Underwood showed that the values of the roots from the defining equation a
the range between the relative volatilities of components for all and

. With reverse component flow this result is no longer valid. This can
shown by a simple example:

We consider our base case where ,
. Assume first that we are operating at PAB in Figure 4.5. The top

recoveries are . The three Underwood roots are found a
. Note here that .

θA

xB LT, xB PT,
θA>

θA
xB PT,

θA 0=

xB VB, 0>

wC T, 0< rC T, 0<

θB

D VT LT– 0<=

wi T, 0≥
wi B, 0≤

α 4 2 1, ,[ ]= z 0.33 0.33 0.33, ,[ ]=
q 1=

RT 1 0 0, ,[ ]=
φ φA φB φC, ,[ ] 2.78 2 1, ,[ ]= = φA θA=
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Then we move to the left along the V-shaped Vmin-boundary where we have
reverse flow of the B-component, e.g. for  we obtain

. We still have , but note that both  and
 are in the range between  and . If we increase the reverse fl

further, we will reach a point where = and further increase will give
.

Note that the definition of the Underwood roots is based on the material bala
(4.5) without any restriction on the direction of component flows, thus the eq
tion for pinch zone compositions and minimum reflux are still valid.

4.4 “Carry Over” Underwood Roots in Directly Coupled
Columns

The first part of this section is mainly based on Carlberg and Westerberg (198
who pointed out that Underwood roots “carry over” from the top of the first c
umns to the second column in the directly- or fully thermally coupled columns
shown in Figure 4.6.

The vapour flow in the top of the prefractionator is given by the Underwood de
ing equation:

(4.8)

Note that we generally have to apply the actual Underwood roots ( ). The c
mon roots ( ) only apply for minimum energy operation.

The top and bottom defining equations for column C21
become:

, (4.9)

The material balance at the connection point gives:

 and (4.10)

The combination of these gives the feed equation for col-
umn C21 where the common roots ( ) appear:

RT 1 0.2– 0, ,[ ]=
φ 2.78 2.28 1, ,[ ]= φA θA= φA
φB αA αB

φA φB
φA φB<

VT
C1 αiwi T,

C1

αi φC1
–( )

-------------------------
i

∑=

φ
θ

LT

LT

VT

D

C21

C1

VT

VB

Figure 4.6: Directly
coupled columns (fully
thermally coupled).

LB

VT
C21 αiwi T,

C21

αi φC21
–( )

----------------------------
i

∑= VB
C21 αiwi B,

C21

αi ψC21
–( )

-----------------------------
i

∑=

VT
C21

VB
C21

– VT
C1

= wi T,
C21 wi B,

C21– wi T,
C1=

θC21
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Here we observe that the feed equation of column C21 (4.11) is identical to
top section defining equation for column C1 in (4.8). Thus the possible comm
roots in column C21 are equal to the actual roots from the defining equation in
top of column C1:

(4.12)

The common roots ( ) of column C1 are found from the feed equation for
main feed (note that we will omit the superscript C1 for column C1), which w
a ternary feed is the familiar expression:

(4.13)

Since an active common root represents a minimum vapour solution in a si
column, and , we have the following relation for the ternary fe
example where we recover all of the light component in the top of C21 with
middle and heavy component recovery equal to zero:

(4.14)

Note that this also implies the following relation for the roots:

(4.15)

The minimum vapour flow in column C21 for any given operation of C1 is wh
the common root in C21 is active. Then for the first root
and:

(4.16)

VT
C21

VB
C21

–
αi wi T,

C21
wi B,

C21
–( )

αi θC21
–( )

------------------------------------------
i

∑
αiwi T,

C1

αi θC21
–( )

----------------------------
i

∑ VT
C1

= = =

θC21 φC1=

θ

αAzA

αA θ–
----------------

αBzB

αB θ–
----------------

αCzC

αC θ–
----------------+ + 1 q–=

θC21 φC1=

VT
C21

F
-------------

αAzA

αA φA
C21

–
-------------------------

αAzA

αA θA
C21

–
-------------------------

αAzA

αA φA
C1

–
----------------------=

αAzA

αA θA
C1

–
----------------------≥ ≥=

θA
C1 φA

C1 θA
C21

=≤ φA
C21≤

φA
C21 θA

C21
= φA

C1
=

VTmin
C21

F
---------------

αAzA

αA φA
C1

–
----------------------=
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The absolute minimum solution is found when is equal to the common r
( ),Then the common root of C1 becomes active in both columns at
same time ( ):

(4.17)

As usual the notation“V min” represents the minimum vapour flow for a single co
umn for a given feed. The outer “min()” represents the effect of the operation o
C1 to the feed composition and the effective feed quality for column C21.

We may generalize this expression to any number of components and fea
recoveries in the top with the following equation set (one equation for each

given by the components distributed to the top
C21):

(4.18)

The relation in (4.14) also shows that any sub-optimal operation of either colu
C1 or C21 cannot be recovered by the other. The operation of both has to be
mized simultaneously to achieve the overall minimum vapour flow in C21 a
(4.18).

For a column C22 connected to the bottom of column C1, we will find equival
results. For the ternary feed case, with full recovery of the heavy component
the bottom of column C22 and middle and light component recovery is equa
zero, the equivalent to equation (4.17) becomes:

(4.19)

Note that we have not considered the actual compositions in the junction stre
However, we know from the results in Section 4.2.3, that the composition in
return flow into the top of C1 has no influence on the product split in C1 unle
component which would have been removed in a conventional prefraction
were to be introduced in that return flow. This implies that for nonsharp opera
of C1, (where all components distribute and all common roots are active)

φA
C1

θA
C1 θA=

φA
C21 θA

C21
= φA

C1 θA= =

VTmin
C21

F
---------------

 
 
 

C1
min

αAzA

αA θA–
-------------------=

θk θ1…θ
NdT

C21 1–
[ ]∈ NdT

C21

VTmin
C21

F
---------------

 
 
 

C1
min

αi zi r i T,
C21

αi θk
C1

–( )
-------------------------

i 1=

NdT
C21

∑=

VBmin
C22

F
---------------

 
 
 

C1
min

α– CzC

αC θB–
-------------------

αAzA

αA θB–
-------------------

αBzB

αB θB–
------------------- 1 q–( )–+= =
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return-flow composition has no influence at all. For preferred split operation,
is also true when we ensure that there is no heavy (C) component in the re
flow.

In normal operation regimes of C1 and C21, the conditions are trivially fulfille
This is very important, and somewhat surprising because from a glance at a
lyuk arrangement, we might expect all kinds of complicated recycle effects
to the two-way flows in the direct couplings.

For some types of sub-optimal operation, however, we expect that the pictu
more complicated. This is discussed further in Chapter 7 where we study
behaviour of the Petlyuk column outside the optimal operation region. For ex
ple, we may get reverse net flow of a component from the feed junction
recycling of components through several columns in the arrangement.

Comment: We have previously used the feed composition and liquid fraction
a feed equation. However, equation (4.11) is equivalent to the more familiar f
given in (4.2) or (4.13). The equivalent single stream feed flow rate (F), compo-
sition (z) and liquid fraction (q) for column C21 are given by:

(4.20)

The results for column C21 with a single feed stream, with properties given
(4.20) give exactly the same results as described above.

4.5 Vmin-Diagram for Directly Coupled Columns

Since the feed to C21 is the top product from C1, minimum energy in C21 w
depend on the operation of column C1. In Figure 4.7 we illustrate how theVmin-
diagram for C21 depends on C1. We consider a ternary feed and operation o
umn C1 at point X, shown in the region whereV>Vmin. The Vmin-diagram for
column C21 (dotted) will be determined by the Underwood root from the defin
equation in the top of C1 (4.16), and its peak, Z= will be directly abo

.

For any operating point X, we get a newVmin-diagram for C21. Thus a change in
X will normally also affect Z as given by:

FC21 VT
C1 LT

C1– DC1= =

zC21
wF

C21

FC21
-------------

wT
C1

DC1
----------= =

qC21
LT

C1–

FC21
------------- 1

VT
C1

DC1
----------–= =

PAB
C21

PAB
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However, observe that changes in X along the contour of a constant Underw
root (see also Figure 3.9), do not affect Z.

If we specify a sharp A/C split in C1 and want to recover all of the light A-com
ponent in the top of C21, we first have to recover all of A in C1, which can o
be obtained for X at or above - - . The minimum vapour flow
C21 will then be limited by Z= , and this can only be obtained when C1
operated exactly at theVmin-boundary - . The analytical solution ha
been given in (4.17).

A particular interesting operation point is at the preferred split (X= ), beca
the diagram for C21 will then overlap the part of the diagram for C1 to the lef
the preferred split. This result is very important and will be used in the followi
sections.

PBC

PAC

=θA

D,

C1

PAB

C21
F

D
C2C1

C1
D=

C1
VT

(1-q)F

0

Figure 4.7: TheVmin-diagram for columns C1 (solid) and C2 (dashed) for a case wh
C1 is operated atX (whereV>Vmin). If the operating pointX=PAC (preferred split), the
Vmin-diagram for C21 will overlap the left-hand side of the diagram for C1.

Operating
point X for
C1

(1-q )F=
C2 C21

Feasible
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for C21

Vmin-diagram
for C21

C1
F

C1
VT

C21
VT

θA = φA (X)
C21 C1

C1

Z=f(X)

P1

Constant

φA
C1

φA
C1

=θA

C1

C1
zAF

Vmin-diagram
for C1

> θA
C1

φA
C1

VTmin
C21,A/B αAzAF

αA φA
C1–

-----------------------= D
C21,A/B

zAF=

PAB
C1 PAC

C1 PBC
C1

PAB
C1

PAB
C1 PAC

C1

PAC
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4.6 Minimum Energy of a Ternary Petlyuk Arrangement

4.6.1 Coupling Column C22 with Columns C21 and C1

Now we have the necessary background to deduce the simple analytical sol
for minimum vapour flow in the Petlyuk arrangement as shown in Figure 4.1.
sharp A/C split in column C1 and sharp A/B split in column C21, minimu
vapour flow requirement in the top of C21 is given by equation (4.16):

(4.22)

We can also find the equivalent for the bottom flow in C22 for sharp B/C s
from equation (4.19):

(4.23)

Due to the direct coupling we know that the absolute minimum vapour flow
C21 is found when we operate column C1 in a region where . Simila
the absolute minimum for vapour flow in C22 is found when C1 is operated
region where . For sharp product splits, the preferred split is the o
point of operation where both common roots carry over to C21 and C22 at
same time. Any other solution will give a larger value for the minim vapour flo
in at least one of C21 or C22 so we know that we really only have to consider
solution at preferred split operation of C1. Now we relate these expressions t
required vapour flow in the bottom reboiler of the Petlyuk arrangement.

(4.24)

For sharp product splits, we can express this as:

(4.25)

We may use the feed equation (4.13) to remove the feed quality term(1-q)F from
the Underwood expressions, as we have done in (4.26). In addition we here r
the minimum vapour flow to the top condenser:

VT
C21

V≥ Tmin
C21 αAzA

αA φA
C1

–
----------------------F=

VB
C22

V≥ Bmin
C22 α– CzC

αC ψC
C1

–
-----------------------F=

φA θA=

ψC θB=

VBmin
Petl

max min VTmin
C21( ) 1 q–( )F– min VBmin

C22( ),( )=

VBmin
Petl

max
αAzA

αA θA–
------------------- 1 q–( )–

α– CzC

αC θB–
-------------------,

 
 
 

F=
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(4.26)

This expression (4.26) is identical to the result of Fidkowski and Krolikows
(1986) in equation (4.4), but (4.26) is more general in that it is also valid for
arbitrary feed quality (q). Note from (4.13) thatq affects the solution for the com-
mon Underwood roots ( ) and not only the term(1-q)F.

This minimum solution implies that either C21 or C22 may get a vapour fl
larger than its minimum value. However, this only affects the local behaviou
that column, and not the product composition and the operation of the prefrac
ator and the other column. The reason is that, although the composition in
connection point to the prefractionator may be altered and in theory might in
ence the separation in the prefractionator, theproduct compositionhas no
influence on the recovery of feed components unless aremovedcomponent is
reintroduced, or there is areverse flowof components back into the column. Thu
we have to verify that the heavy C cannot reach the feed junction to C21 and
the light A cannot reach the feed junction to C22 in the main column.

It is quite easy to show that none of these situations occur at the optimal solu
by the following argument: Assume that we operate C1 along the V-shaped
imum energy region which is at the boundaries AB/B or BC/B in Figure 4.2. T
ensures that the intermediate B-component is distributed to both ends of C1
that the component C is removed from the top and A from the bottom. In C21
B component is transported downwards since no B shall appear in the top
since C is heavier than B, no C can be transported upwards in C21 at the
time. This must also be true if the vapour and reflux in C21 are increased a
the minimum value as long as we keep the distillate product rate constant. A
ilar argument can be applied for the light component A in C22. For the junct
C21- C22 at the sidestream outlet, we know that B is transported out of each
umn end. And since there will be no A from C21 and no C from C2
in the sidestream.

VTmin
Petl

VBmin
Petl

1 q–( )F+ max
αAzA

αA θA–
-------------------

αAzA

αA θB–
-------------------

αBzB

αB θB–
-------------------+,

 
 
 

F= =

θA θB,

V Vmin≥
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4.6.2 Visualization in theVmin-diagram

By a closer inspection of the vapour flow rates for the Petlyuk arrangement
observe that all the important information can be found in theVmin-diagram for
the feed to the prefractionator (C1). Figure 4.8 illustrates this for our tern
example. The expressions for the peaks, shown in Chapter 3, are simply:

PAB: (4.27)

PBC: (4.28)

These are exactly the same terms as the expression for in equation (
(the notation i/j in the superscript denotes sharp i/j-split in a two-product colum

Similarly we find for the vapour flow requirement into the bottom of the Petly
column:

(4.29)

This leads to the following important conclusion for pure product specificatio

The minimum vapour flow rate requirement in the Petlyuk column with
three pure products is the same as the minimum vapour flow for the m
difficult of the two sharp component splits A/B or B/C in a single conve
tional distillation column.

This is characterized as the highest peak in the Vmin-diagram.

This is illustrated in the equation below where we use the column drawing
superscripts (the Petlyuk column is shown as a dividing wall column).

(4.30)

We will show that we can obtain detailed information about the minimum vap
in the column and in all sections of the column from one single diagram. In
following we assume that we operate the prefractionator at its preferred s
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F
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Then both common roots in C1 carry over to column C21 and C22. If we loo
the expressions for how the minimum vapour flow in C1 and C21 depends on
net component flows in the region where is active in both columns, we fi
exactly the same functional expression:

(4.31)

Note that this is a functional relation, and these columns are of course never
ated with the same set of component flows. The maximum amount of feed to
is given by the net distillate flow from C1 at the preferred split, thus the diagr
for C21 cover the part of C1 to the left of the preferred split. The minimum vap
flow in the bottom of C21 is found by the material balance at the connection po
and since column C1 is assumed to operate at the preferred split we have:

(4.32)

This implies that the origin of the coordinate system in theVmin-diagram for C21
[ ], (shown dashed in Figure 4.8) coincide with the dia
gram for C1 [ ], (thin solid ), and also that the boundar
lines coincide around the peak PAB. It is also obvious that we require
thus the feasible part of the diagram for C21 is the part above PAC.

A similar approach can be done for theVmin-diagram for C22. Here, the simples
way is to use the functional relation for the bottom flows:

(4.33)

θA

VTmin
C21

wA T, wB T,,( ) VTmin
C1

wA T, wB T,,( )
αAwA T,
αA θA–
--------------------

αBwB T,
αB θA–
--------------------+= =

VB
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VT
C21

VTmin
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–=

DC21 VT
C21,

DC1 VT
C1,

VB
C21 0>

VBmin
C22

wB B, wC B,,( ) VBmin
C1

wB B, wC B,,( )
αBwB B,
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αC θB–
--------------------+= =
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By using the material balance at the connection we find that the origin in theVmin-
diagram for C22 expressed by [ ] (dash-dotted ), can
placed exactly at PAC, and this diagram will overlap the C1-diagram to the rig
of PAC, also here with the feasible region above PAC since we require

.

We may now read the required minimum vapour flows in all sections of the P
lyuk arrangement directly from theVmin-diagram for the prefractionator feed a
shown in Figure 4.8

Thus in order to find if C21 or C22 gives the highest vapour flow requiremen
the Petlyuk column, we simply have to find the highest peak in theVmin-diagram
for a two-product column with the same feed. It does not matter if we refer
peaks to the top or the bottom (e.g. with the coordinate system sh
thin dotted ). Thus, for the case shown in Figure 4.8 we observe b
glance at the diagram that PBC is the highest peak and thereby

PAC

θA

D

D

D

VT

C22

C21

C1

C22

VT
VT

C1

C1
VB

C21
VTmin

C21
VBmin
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F
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VBmin
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D
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D=
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VBmin
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VTmin (1-q)F

C1
VT
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VB

=0

=0

∆VP

Figure 4.8: TheVmin-diagrams for columns C21 and C22 in a Petlyuk arrangem
overlaps the diagram for C1 when C1 is operated at the preferred split. Thus, minim
vapour rates for all column sections in the Petlyuk arrangement can be found dir
from theVmin-diagram of a single two-product column (the prefractionator C1).
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4.6.3 Nonsharp Product Specifications

The general expression (4.31) for the vapour flow in column C21 is valid for
feasible distribution of A and B component to the top. Similarly, equation (4.3
can be used when the B and C components both appear in the bottom of co
C22. Thus, given the recoveries of each pair of distributing components to the
and bottom of the Petlyuk arrangement we may also handle the nonsharp ca
equation (4.24). However, nonsharp product specifications will be treated in
detail in Chapter 9 where we among other things will show that the implication
the shape and extent of the optimality region is particularly interesting.

4.6.4 The Flat Optimality Region

We return to the sharp product split case and study the characteristics of th
optimality region by comparing the peaks in theVmin-diagram. When we consider
the preferred split operation we have in general three different solution ca
characterized by the requirement for minimum vapour flow from column C21
C22 in the main column:

1. C22 controls:  or

2. Balanced:  or

3. C21 controls:  or

In Cases 1 and 3, there are different vapour flow requirements in bottom of
and top of C22. The difference is given directly as the difference between
height of the peaks in Figure 4.8. For a balanced main column (Case 2) the p
are equal. The highest peak always sets the overall requirement.

When we implement the vapour flow in the reboiler we simply use:

(4.34)

and in the top we have

(4.35)

VBmin
C22

VTmin
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Let us now assume we have the situation in Case 1. It is obvious that s
, the root cannot be active in C21. The amount of dist

late product is the total amount of A from the feed, and we have the follow
defining equation with this specification, from which we can solve for the roo

(4.36)

We have two limiting cases. The first is when we operate the prefractionator a
preferred split. Then is active in C1, and since it will carry over to the fe
equation in C21 we clearly waste vapour flow in C21. The other limiting cas
when we move the operation point of C1 along the boundary BC/B u

. In this case the vapour flow in C21 is a localVminsolution in C21,
thus . Now the main column is balanced since:

(4.37)
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Figure 4.9:Vmin-diagram for the prefractionator (C1), with for the
Petlyuk column in the same coordinate system.
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Outside this flat optimality region, the overall vapour flow requirement incre
rapidly. Figure 4.9 gives an example where we have plotted the balance point
also shows how the overall minimum vapour flow for the Petlyuk column depe
on the prefractionator net product flow (D).

In this example, we may find the real root ( ) in the top of C1, (which carr
over to C21) related to the balance point from:

(4.38)

Knowing and in the balance point, we find the actualD andV for
the prefractionator directly from the defining equations for the Underwood ro
TheVmin-diagram for C21 when  is shown dashed in Figure 4.9.

If the peak PAB were the highest, we would have a Case 3 situation, with the o
mality region to the left of the preferred split. We may summarize

The flat optimality region is found from the preferred split and on the V
shaped minimum energy boundary for sharp A/C split towards the high
peak. The extent of the optimality region depends on the difference of
height of the peaks.

4.7 Improved 2nd Law Results in Petlyuk Arrangements

Several authors e.g. Carlberg and Westerberg (1989b), Agrawal and Fidko
(1998b), Annakou and Mizsey (1996), mention that a typical Petlyuk colum
where all the heat input is done at the highest temperature level, and all the
removal is done at the lowest temperature level, has a drawback compared to
ventional arrangements where some heat is added and removed at interm
levels. Even if the overall vapour flow rate, which can be regarded as a first
(of thermodynamics) effect, is always less than in a conventional arrangem
(Fidkowski and Krolikowski 1987), the temperature range between heat input
removal is always the largest boiling point difference, which gives low perfor
ance in terms of the second law effect. Thus, in order to recommend a Pe
arrangement, the first law effect must dominate over the second law effect
respect to the utility requirement.

However, when the peaks in theVmin-diagram are of different height, this implies
that a change in vapour flow could be allowed at the sidestream stage. In the
when the vapour flow requirement in the lower end is larger, this may easily
realised by extracting some of the sidestream product as vapour. This may be
either directly, or by withdrawing all the liquid from C21 and returning it slight
cooled, exactly sufficient to condense the required change in vapour at the r

φAbal

VTmin
Petl

F
---------------

αAzA

αA θB–
-------------------

αBzB

αB θB–
-------------------+=

αAzA
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stage. In cases where the vapour flow in C21 is higher, some of the heat ca
supplied at the sidestream stage. The maximum flow rate is still given by the h
est peak, but not all of it has to be supplied or removed at the most extr
temperatures.

A heat exchanger at the sidestream stage
illustrated in Figure 4.10 can ensure that bo
C21 and C22 are operated at minimum
energy at the same time. The actual change
vapour flow can easily be found from the
Vmin-diagram as the difference height of th
two peaks PAB and PBC (see in Figure
4.8). The prefractionator now has to be ope
ated exactly at its preferred split.

The cases where the second law effect cann
be improved is for a balanced main column
Then the vapour flow requirements are th
same in the top and bottom and this is also th
the case where we obtain the largest vapo
flow rate savings, compared to the best o
conventional direct or indirect split configu-
rations (ref. Chapter 8). In these cases the fi
law effect is most likely to dominate over the
second law effect.

We have not done a detailed comparative study with other types of columns
heat integration, taking a heat exchanger at the sidestream stage into cons
tion, but it is clear that some results in other studies, e.g. Annakou and Miz
(1996), Agrawal and Fidkowski (1998b), would have been more favourable f
Petlyuk arrangement if this extra heat exchange ability had been included.

4.8 Minimum Energy with Multicomponent Feed

In many cases we separate more than three feed components in the 3-produ
lyuk arrangement as shown in Figure 4.1. Thus we have to specify one or m
composite products. The basic minimum energy expression in this case will
be given by the largest minimum energy requirement from either column C2
C22 as in equation (4.24).

Note also that the Underwood roots carry over from the prefractionator to
umns C21 and C22 in the same way for any number of components in the f
This implies that if we operate the prefractionator at its preferred split, all
common underwood roots carry over, and this implies that theVmin-diagrams for
column C21 and C22 will overlap the diagram for column C1 also in the mu

D

S

B

C21

C22

C1

F,z,q

Figure 4.10: Petlyuk arrangement
with extra heat exchanger at the
sidestream stage.

Prefrac-
tionator Extra heat

exchange

Condenser

Reboiler

∆VP
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



4.8 Minimum Energy with Multicomponent Feed 119

of
rod-
tlyuk
ess-

nent
mply

e
t of
in

To
ply
ed in

to
e
reted

eam

top.

t of
C21
hen
component case. Note that theVmin-diagram is based solely on the properties
the feed to column C1 and characterise distribution regions in an ordinary 2-p
uct column. The fact that we can use the same diagram for the whole Pe
arrangement is very important and gives us a powerful and simple tool for ass
ment of any given separation task in a Petlyuk arrangement.

4.8.1 The General Rule

We extend the rule given in Section 4.6.2 for a ternary feed and sharp compo
splits, to a general multicomponent feed and three composite products. We si
replace the term “component” with “product”:

The minimum vapour flow requirement in the Petlyuk column with thre
products is the same as the minimum vapour flow for the most difficul
the two possible product splits (top/middle- or middle/bottom-products)
a single conventional distillation column.

This is characterized as the highest peak in the resulting Vmin-diagram for
the products.

The following examples show qualitatively the characteristics of the solution.
obtain analytical solutions for minimum vapour flow and product splits we sim
apply the computational tools based on the Underwood equations present
Chapter 3.

Two examples, with N=5 components (ABCDE) in the feed, will here be used
illustrate how to use theVmin-diagram to find the minimum energy solution. W
do not give any particular feed properties, thus the diagrams should be interp
qualitatively.

4.8.2 Example: Sharp Component Splits in Products

First consider a case where we want AB in the top product, CD in the sidestr
and pure E in the bottom. AVmin-diagram is shown in Figure 4.11.

In the prefractionator we have to remove AB from the bottom and E from the
This is obtained along the “V”- shaped boundary PBC-PBD-PBE-PCE-PDE (solid
bold). The “preferred” solution for the prefractionator is to operate at PBE. In col-
umn C21 know that the diagram for C21 overlap the diagram for C1 to the lef
the preferred split when column C1 is operated at the preferred split. Column
shall perform a sharp AB/C separation and the minimum energy solution t
simply found at PBC. Similarly, in column C22 the peak PDE gives the corre-
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sponding minimum vapour flow for sharp split between CD/E. Thus the Petl
arrangement requirement is simply given by the highest peak PBC or PDE, which
is the encircled PBC in the figure.

In this case we will also have a flat optimality region. It is shown qualitatively th
if we move the operation of column C1 to the left of the preferred split, along
boundary BCD/CD, the peak PDE will start to increase. At P’DE it becomes equal
to PBC and the main column is balanced, and the prefractionator (C1) is oper
at Pbal. Thus, minimum vapour flow for the Petlyuk column can be obtained o
when the prefractionator is operated along the line between PBE and Pbal.

Note that a peak in theVmin-diagram is simply the vapour flow requirement for
particular sharp split in an ordinary two-product column. Thus the minimu
vapour flow requirement for the Petlyuk arrangement is given by most diffic
split between two of our specified product groups, if the separation was to be
ried out in a conventional 2-product column.

This is illustrated in “equation” (4.39). In this example PCD is an higher peak than
PBC or PDE, but this does not matter since we do not attempt to split the D an
components into separate products (subscript T,B is not used since we may
sider either tops or bottoms).

0 1

V

D

A

B C D

E

AB
BC

CD

DE

ABC
BCD

CDE

ABCD BCDE

ABCDE

PAE

PAD

PAC

PBD

PCE

PBE

PAB

PBC
PCD

PDE

PBal

P’DE

The prefractionator must
be operated between PBE and Pbal.

Figure 4.11:Vmin-diagram for 5 component feed used to find minimum vapour flw
requirements in a 3 product Petlyuk arrangement for sharp product splits AB/CD/E

VTmin
Petl
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4.8.3 Example: Nonsharp Product Split

In the next example, as shown in Figure 4.12, we use the same feed andVmin-dia-
gram, but we change the product specifications so that all the light A compo
is recovered in the top, all the C component in the sidestream and all heavy
the bottom. However, in this case we allow B to appear in both top and sidestr
products, and D to appear in both the sidestream and bottom products.

The solution is still quite simple to obtain from theVmin-diagram. In the prefrac-
tionator we need to remove A from the bottom and E from the top, and
minimum vapour flow in the prefractionator is found at the preferred split PAE.
This time all common roots carry over, and C21 and C22 becomes columns

E

ABCD

E

AB

CD

AB

Max=

,Vmin VminVmin

CDE
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V

D
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B C D

E
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CDE
ABCD BCDE
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PAE
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PAC

PBD

PCE

PBE

PAB

PBC
PCD

PDE

PBal

Figure 4.12:Vmin-diagram for 5 component feed used to find minimum vapour flo
requirements in a 3 product Petlyuk arrangement. Specification with nonsharp prod
splits AB/BCD/DE.
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4-component feeds. However, the interesting point of operation in column is
sharp split between A and C. Since both carry over from C1, the minim
vapour flow in the top of C21 is trivially found at PAC. Similarly PCE will give the
requirement in C22. Again, the separation is found to be exactly the same a
most difficult product split when we compare one and one such split in an o
nary 2-product distillation column as shown in “equation” (4.40).

(4.40)

Note that in both these examples, the bold lines represent minimum energy
tion for sharp split between a pair of the specified (composite) products in ei
top or bottom of an ordinary two-product column.

4.9 Discussion

An important observation is that when there is a significant difference between
two peaks which gives us the vapour requirement in the upper (C21) and lo
(C22) part of the main column, some parts of the arrangement will be opera
with unnecessary high vapour flow. Here we will discuss some other alterna
of integrations, and finally we will discuss stage requirements and control iss

4.9.1 The Conventional Reference

For separating a mixture into three products we usually compare the Pet
arrangement with the best of a conventional direct split (DS) or indirect split (I
In the latter, we here use a partial condenser and vapour feed to the secon
umn. Consider a ternary mixture (ABC). The vapour flow in the first column (C
is given by the peak PAB in theVmin -diagram for indirect split and PBC for direct
split. The second column require a newVmin computation, which is trivial since
the feed to C2 is binary. If we want to analyse the bottom vapour rates, we
draw theVmin-diagram for C2 into the diagram for C1 with a bias given by flo
rates in C1, as illustrated in Figure 4.13

θA θB,

DE

ABCD

DE

AB

BCD

AB

Max=

,Vmin VminVmin

BCDE
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Fidkowski and Krolikowski (1987) showed that the Petlyuk arrangement alw
performed better. For some cases it is very easy to see this from theVmin-diagram.
For example when the peaks are of similar height, the energy requirement t
whole Petlyuk arrangement is the same as the requirement to only the first co
of the conventional arrangement.

TheVmin-diagram is first of all attractive to assess the minimum energy and f
distribution in the first column for any multicomponent arrangement, and
completely directly coupled arrangements. For other than directly coupled
umns, we have to compute new diagrams for succeeding columns, and we d
get same type of simple and informative visualization as we have shown for
Petlyuk arrangement.

4.9.2 Extra Condenser or Reboiler in the Prefractionator

Several authors, e.g. Agrawal and Fidkowski (1998) have pointed out that in s
cases, the overall minimum vapour flow rate may be unaffected if a condens
used at the prefractionator top as shown in Figure 4.14. Let us stay with the 3 c
ponent example. If a partial condenser is introduced at the prefractionator, w
longer have the direct coupling to column C21. Thus the common Underw

C2

C1

F,z,q

Figure 4.13:  Conventional indirect- and direct split arrangements.
Plot showsVmin-diagram for C1 with diagram for C2 in the same axes.
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roots in C21 have to be found by a solution of the feed equation for C21, wh
the feed is given by the distillate from C1. TheVmin-diagram for C21 has to be
calculated for the given feed quality. In Figure 4.14 we have shown theVmin-dia-
gram for column C21 plotted into the diagram for C1 for three different fe
qualities to C21. We refer the diagram to the requirement of reboiler vapour fl
in all the following cases:

i) Direct coupling (Petlyuk arrangement):

ii ) Partial condenser:

iii ) Total condenser:

Note how the diagrams for casesii ) andiii ) are attached to the preferred split ope
ating point for the prefractionator. The maximum peak gives directly t
requirement for reboiler vapour flow. The main column becomes balanced w

. Note that is unaffected by the connection type betwe
columns C1 and C21, but will increase with the amount of condensa
and recycle in the top of column C1.

We have chosen an example where the peak is still below PBC for Caseii ),
with a partial condenser. Thus column C22 is still determining the overall requ
ment of the configuration, and the introduction of the partial condenser does
affect the highest peak. However, since the difference between the pea
smaller, we now have less flexibility in operation of the prefractionator since
flat optimality region will be more narrow.
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Figure 4.14:Vmin-diagram for 3-component feed ABC (solid) for the modified Petlyk
arrangement with a condenser at the prefractionator top. Dashed lines areVmin-diagrams
for C21 in with a partial (ii ) and a total (iii ) condenser in C1, referred to the reboiler
vapour flow requirement.
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When we increase the condensation duty to achieve a total condenser, we sh
Caseiii ) an example where the vapour flow requirement at exceeds PBC, and
this system will have poorer performance than the Petlyuk arrangement.

This analysis shows that a combined arrangement as in Figure 4.14 may re
the same minimum vapour flow as the Petlyuk arrangement only for cases w
the peak PBC is significantly higher than peak PAB. It is also straightforward to
compute theVmin-diagram for C21 for any given case and do a detailed check
shown in the figure.

Similarly, a combined arrangement with a direct coupling between column
and C21 and an extra reboiler at the bottom of C1 and conventional feed to
may require the same total minimum vapour flow as a Petlyuk arrangement
if the peak PAB is significantly higher than PBC.

4.9.3 Use of a Conventional Prefractionator Column

A configuration with a conventional prefractionator
column with its own reboiler and condenser as
shown in Figure 4.15 was studied by Christiansen
(1997). This approach may in some cases come
close to the Petlyuk arrangement in terms of overall
vapour flow, but never better. In other cases, the
minimum vapour flow will be higher than with the
conventional configurations. In Appendix C it is
shown that the optimum is always found when the
prefractionator is operated exactly at the preferred
split (when the relative volatilities are constant in
the whole system). We will also have an operating
point where the main column is balanced, but in the
this case there is no completely flat optimality
region since the total vapour flow with a balanced
main column will always be slightly above the
requirement at preferred split operation.

4.9.4 Heat Integration

In all minimum energy discussions, heat integration between some of the colu
will always be an option. Heat integrated arrangements can be a practical alt
tive to Petlyuk arrangements in some cases. It is difficult to make gen
statements about such applications because there is a large variety of engin
solutions, implementation, and availability of utilities, so we will not discuss h
integrated arrangements and operation at different pressure levels in further d

PAB
iii

S

B

C21

C22

C1

F,z,q

Prefrac-
tionator

(ABC)

qC21

FC21=DC1

Figure 4.15: Conventional
prefractionator arrangement

D
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4.9.5 The Two-Shell Agrawal Arrangement

Agrawal (1998) presented the alternativ
(thermodynamically equivalent) arrangemen
shown in Figure 4.16 as a more operable sy
tem than the typical Petlyuk arrangement i
Figure 4.1 (or the an equivalent dividing wal
system). Note that the bottom section of th
main column (C22) with its reboiler (C22B)
is placed in the first shell as the prefractiona
tor (C1), and the top section of C22 (C22T) i
placed in the second shell together with th
upper part of the main column, C21. Th
main advantage with this configuration
according to Agrawal (1998), is that both
vapour streams between the shells have t
same direction. With a higher pressure in th
first column the vapour is easily controllable
by valves. The liquid flows will be returned
from the second shell to the first, and the pre

sure difference can be overcome by pumps. Note also that due to the h
pressure in the reboiler, the overall temperature difference between the reb
and the condenser will be smaller.

A similar configuration with a higher pressure in the second shell is also an a
native. Then C21 is split between the two shells, and the vapour direction is f
the second to the first (not shown).

Assuming that the relative volatility is independent of pressure (which is reas
able for cases where we can assume constant molar flows and constant re
volatilities in the first place), the minimum vapour flow rates will be identical
the ones found earlier for the Petlyuk column.

4.9.6 A Simple Stage Design Procedure

Triantafyllou and Smith (1992) presented a design procedure for the ter
arrangement based on a separate prefractionator column model, i.e. equival
the structure in Figure 4.15. Here we will present a simpler and more direct s
design approach and we discuss qualitatively how we can design the numb
stages in a Petlyuk arrangement, and how the required number of stages de
on the feed properties and how the column is operated.

It is difficult to compare the capital cost of arrangements based on counting st
only. The cross sectional area will also be different, and mainly dependent on
vapour rate. The total sum of the product of stage count and vapour rate in

D

S

B

C21

C22B

C1

F,z,q

Figure 4.16: Agrawal’s column
arrangement makes precise vapour
flow control simpler.

Prefrac-
tionator

Condenser

Reboiler

C22T

C22
VT

C1
VTShell 1

Shell 2

C22

(low P)
(high P)
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section may be a suitable indicator of the total cross section area. But in ge
the cost of a stage in each section can be different, dependent on the ty
arrangement.

However, when we fix the number of stages, the real minimum vapour fl
(VRmin) will be higher thanVmin. The ratioVRmin/Vmin<1.1 is typical design rule.

The required number of stages in each column section depends primarily o
relative volatilities of the components and product purity specifications. The m
imum number of stages (for infinite reflux ratio) can be found from the Fen
equation applied to each section. For removal of the heavy key (H), the minimum
number of stages between feed stage (F) and the top (T) is:

(4.41)

The impurity of the component to be removed will dominate the separation (S
each section. Thus, in (4.41) we may approximate .

In order to apply (4.41) for the prefractionator we need the compositions. A g
estimate can be found by using the pinch zone compositions, described in Ch
3. In addition we need to estimate a required impurity for the component to
removed. These values will normally be in the same order of magnitude as
impurity specification of the sidestream product. For more accurate estimate
can compute the net component flows from the prefractionator, and use the m
rial balance (4.6) and the vapour-liquid equilibrium where we may assu
equilibrium between the vapour and liquid flow in the junction.

Skogestad’s simple design rule: (ref. Chapter 2) will typically give
real minimum vapour flow (VRmin) in the range between 5-10% aboveVmin found
for infinite number of stages, for the same separation.

4.9.7 Possible Reduction of Stages

For the dividing wall column, or similar type arrangements where we do not c
trol vapour flow individually in every section, some parts can be operated wi
significant higher vapour rate than the minimum requirement as found from
Vmin-diagram. In sections whereV>>Vmin we normally haveV>>VRmintoo, and
we may remove some of the stages and still achieve the required separatio

Thus in addition to the feed properties, product purities and the structure o
arrangement, the stage requirement is also affected by how the column is ope
inside the optimality region.

NTmin
ln S( )

ln αH 1– αH⁄( )
------------------------------------= S,

xH 1– T, xH T,⁄
xH 1– F, xH F,⁄
------------------------------------=

S 1 xH T,⁄≈

N 2Nmin≈
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As shown in Chapter 3, operation at the preferred split will always require
highest number of stages in the prefractionator. Thus, if we operate on each o
sides, along the V-shaped curve which gives a sharp A/C split, we may rem
stages in either the top or bottom of column C1.

The actual overrefluxed sections will depend on the feed properties (which d
mine the highest peak in theVmin-diagram) and how the column is operate
within the optimality region. Thus it is vital to analyse all possible combinatio
of feed composition and other properties, before stages are removed in a sec

Figure 4.17 shows three different feed property cases. In Case 1 and 3, one
peaks is higher. For example in Case 1, the lower main column (C22) and the
fractionator top (C1T) will always require full number of stages. But observe t
as operation is moved along the optimality region from the preferred split (P)
to the balance point for the main column (R) the stage requirement in the bo
of C1 will be reduced, and as we approach R the requirement in the top of
will increase since will approach the actual vapour flow determined

(the highest peak). In another feed region where the other peak is hi
we get the situation in Case 3. At the boundary, we have Case 2 where the p
are equal and the preferred split is the only optimal operation point. Then we n
full number of stages in all sections. Q represent the operation point where m
mum number of stages is required for a given overallVBRmin/VBmin ratio.

Vmin
C21

Vmin
C22

P

R

Q

P Q R

P

R

Q

Case 1:

P=Q=R

Case 3:

Case 2:

: Over-refluxed

: Minimum reflux

P Q R

VC1

VC1

DC1

DC1

Figure 4.17: Some of the sections (dark) have to be operated close to the real min
reflux and will require the highest number of stages for a givenVRmin/Vmin ratio. The feed
properties, which determine the highest peak in theVmin-diagram, and selection o
optimal operating point along P-R determine the requirement to each section.

VC1

DC1

C1
C21

C22
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Observe that in order to remove stages, we must know if we always have
properties that will give either Case 1 or Case 2 or Case 3, and we must decid
how to operate the prefractionator (in P, R or Q).

4.9.8 Short Note on Operation and Control

The analytical solution for minimum energy is simple when we know the fe
composition, relative volatilities and feed quality. In practice we have to fa
unknown disturbances, uncertainties in measurements and implementatio
control inputs, model uncertainties and non-ideal equilibrium properties. Thu
will be impossible to compute the desired optimal values for the flow rates
implement these on a plant.

However, when we keep each individual column at its preferred split, we h
identified that this leads to optimal operation. This implies that we do not nee
know the feed properties, the only requirement is that we have to measure s
thing which can tell us if we are operating close to the preferred split or not.
do not need to measure the criterion value.

The characteristic of the preferred split is that we remove (almost completely
most volatile feed component from the bottom and the least volatile from the
Thus, by keeping the impurities of these components at setpoints fixed at s
values we ensure that the operation is at the preferred split, even if we do not k
the feed (Christiansen 1997). The actual values are determined by the allo
impurities in the final products.

For a binary feed, the preferred split is the same as the minimum energy solu
for sharp split between the two keys, and it is well known (Shinskey 1984), (G
don 1986), that minimum energy operation is obtained by keeping both pro
impurities at the specification limit.

This implies in general that we must measure the composition in each junc
and that we have full flexibility in adjusting two degrees of freedom for each
the three internal columns (C1, C21 and C22). In practice, a full set of comp
tion measurements and full flexibility in operation will not always be availab
Thus, strategies that utilize less expensive measurements, like temperatures
usually be applied. In multicomponent mixtures with more than two compone
a component with low concentration will not influence the temperature at
since the composition of the other components will dominate, thus an impu
measure based on temperature is not practical. However, we may use tempe
differences to indicate presence of pinch zones, and close to the product o
we also have close to binary mixtures, and the temperature will be a more d
composition indicator.
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In Chapters 7 and 11 we have studied the issue of selecting the best measure
for this kind of optimizing control problem in order to obtain close to optim
operation by simple feedback control. This kind of approach has been den
self-optimizing controlby (Skogestad et. al. 1999). The conclusion from the
studies is that a good control strategy is vital in order to obtain operation clos
the minimum energy for a Petlyuk arrangement. Even though the theoretical
ings compared to conventional arrangements can be large, an inadequate c
approach may lead to operation far from the optimum, and the entire sa
potential may easily be lost.

An open loop policy, however, e.g when we fix some draw ratios or reflux ra
is deemed to fail for Petlyuk arrangements in most cases. This is due to the
that the energy requirement will increase rapidly outside the optimality reg
and due to the always present disturbances and uncertainties we will neith
able to compute the optimal flow rates in each column nor implement these
sufficient accuracy. But with a properly designed feedback control strategy, b
on insight in the actual column characteristics, optimal operation of a Petl
arrangement is clearly feasible.

4.10 Conclusion

The minimum energy solution for a 3-product Petlyuk arrangement has been
lysed. The solution is very easy to visualize in theVmin-diagram for the feed, and
is given by the following rule:

The minimum total vapour flow requirement in a multi-component Petly
arrangement is determined by the highest peak in the Vmin-diagram related
to the specified product splits.

Alternatively, since theVmin-diagram originally just characterize a two-produc
column with a multicomponent feed, this may also be expressed as:

The minimum total vapour flow requirement in a Petlyuk arrangement 
the same as the required vapour flow for the most difficult split between
of the specified products if that separation was to be carried out in a sin
conventional two-product column.

In addition to the overall vapour flow requirement, we find the individual vapo
flow requirement for each column section, directly from the same diagram.
Vmin-diagram is based on feed data only, and was originally intended to visua
minimum energy regions and distribution regions for all possible operating po
in an ordinary two-product distillation column with multicomponent feed. T
computational effort is minimal, and the solutions are exact for infinite numbe
stages. Thus the methods are well suited for quick screening of a separation
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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and to initialize computation in more rigorous distillation models, e.g. rigoro
Petlyuk column model as used for optimization by Dünnebier and Pantel
(1999).

The plain Petlyuk arrangement will probably be most attractive when the pe
in the Vmin-diagram are of similar height. Otherwise, combined arrangeme
may give similar performance in terms of minimum vapour flow, and even be
performance in terms of separation work.

In Section 4.3 we have presented some interesting properties of the compo
profile and the pinch zones in directly coupled columns. This is an important b
for understanding and for extension of Underwood’s methods to these kind of
umns. There are some restrictions on the recycle flow compositions, bu
normal operating regions these restrictions are not violated. Thus, the other re
in this Chapter have been found by applying the Underwood equations just a
ordinary 2-product columns. The restrictions becomes more important for n
sharp product splits (Chapter 9) and for operation outside the optimality reg
(Chapter 7).

Note that we do not propose in detail how to compare costs for different arra
ments. The results herein give minimum vapour rates in all sections, and we
have given a rough estimate of stage requirements, in numbers. However,
are still a large variety of possible practical implementations, and it is imposs
to give a general formula for capital costs utility costs for these. But hopefully,
results herein have contributed to a better understanding of directly coupled
umns, so that a chemical engineer can better consider these solutions in su
application areas.
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Chapter 5

Minimum Energy for Separation
of Multicomponent Mixtures

in Directly Coupled Distillation
Arrangements

The main result is an exact analytical solution of
minimum energy in a generalized and extended Pet-
lyuk arrangement for separation of a N-component
feed into M products. The solution is very simple
to visualize by the V min -diagram and is given by
the highest peak. Interestingly, the minimum
energy solution in a complex integrated Petlyuk
arrangement is equal to the most difficult split
between a pair of the products, as if each single
split was to be carried out in an ordinary 2-prod-
uct column. In addition to the overall minimum
vapour flow we obtain flow rates and feed distri-
bution for all internal columns in the
arrangement.
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5.1 Introduction

Analytical expressions for minimum energy in a ternary Petlyuk arrangem
with infinite number of stages have been available for some time (Fidkowski
Krolikowski 1986), (Glinos et. al. 1986). Carlberg and Westerberg (1989) p
sented solutions for an arbitrary number of intermediate components. In Cha
4 we showed how the solution can be visualized in theVmin-diagram. This gives
us a very simple tool to asses the properties of the solution and the detailed va
flow requirement in all column sections, and may also be used to handle ge
multicomponent feeds and arbitrary product specifications. In this paper we
extend this approach to the general multi-product case.

However, as mentioned by Christiansen (1997), the general analytic solutio
minimum energy for separation of a multicomponent feed by distillation into m
tiple products have not been given in the literature for more than three produ
and the extension to any number of products is the main result of this paper. M
precisely, we present an analytical expression for minimum energy requirem
for the separation ofN components intoM products (where normally ) in
a generalized extended Petlyuk arrangement, where all columns are directly (
thermally) coupled. The assumptions are constant relative volatility, cons
molar flows, constant pressure and infinite number of stages.

This result is a direct extension of the results for a 3-product Petlyuk column
sented in Chapter 4, and is based on Underwood’s equations (1945,1946,1
and theVmin-diagram from Chapter 3. We will limit ourselves to sharp produ
splits in most of the presentation, but the expressions are general, and can
be extended to nonsharp product specifications.

First we will deduce the minimum energy solution for the 4-component 4-prod
case, and discuss some of its properties. Then we will show that the solutio
easily extended to any number of components and products. We focus on a s
ard configuration shown in Figure 5.1. This configuration can be extended to
number of products by adding more arrays of directly coupled columns.

Remark: There exist a very large variety of possible realisations for extend
Petlyuk arrangements, which are equivalent in terms of energy requirement
example in a recent article (Agrawal 2000) it is shown that for a 4-product c
umn, sections can be arranged together in 32 different configurations. For th
product column the number is 448 configurations which are equivalent in te
of minimum energy requirement. There are of course many important differen
i.e. in how easy it is to set individual vapour and liquid flow rates in practice, h
the column arrangement behaves for non-optimal operation, how easy it is to
trol, possibility for operation at more than one pressure level, pract
construction issues, etc.

M N≤
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5.2 Four Components and Four Products

5.2.1 Extended Petlyuk Arrangement

We will now extend the procedure developed in Chapter 4 to the generalize
product Petlyuk arrangements as shown in Figure 5.1. An important key to
optimal solution is how the Underwood roots carry over to succeeding dire
coupled columns (Carlberg and Westerberg 1989). This is described in Se
4.4.

A Vmin-diagram for a given feed to the prefractionator (column C1) is shown
Figure 5.2. As shown in Chapter 3, the peaks represent minimum energy o
tion for sharp split between adjacent components. For sharp split betw
components j and j+1 , only one common Underwood (which obey

) is active and the peak (Pj,j+1) can be expressed by:

C21

C22

C1F,z,q

Figure 5.1:  The Petlyuk arrangement extended to four products.
Vapour and liquid flow rates can be set individually in each internal
2-product column.

C31

C32

C33

ABCD

A

B

C

D

ABC

AB

BC

BCD

CD

α j θ j α j 1+< <
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Pj,j+1: , (5.1)

5.2.2 Minimum Vapour Flow Expressions

The common Underwood roots are given as theN-1 solutions of the feed
equation:

Feed equation: (5.2)

The solutions obeys , and forN=4 with the
feed components enumerated A,B,C and D, we have 3 solutions ( )
assume that column C1 is operated at its preferred split, thus all of these roots
be active. Components ABC and the intermediate roots will carry ove
C21 and Components BCD and the roots will carry over to C22. T
Vmin-diagrams for C21 and C22 will overlap the diagram for C1 to the left a

VTmin
j/j+1

αi ziF

αi θ j–
----------------

i 1=

j

∑= Dj/j+1 ziF

i 1=

j

∑=

PBC
PAC

D

VT

P0

A/BCD
VTmin

ABC/D
VTmin

(1-q)F

C1
VB

0

=0

Figure 5.2:Vmin-diagram for a given 4-component feed (ABCD) to the prefractionator
The set of distributed components and corresponding active Underwood roots
indicated in each distribution region. The preferred split is at PAD.

PBD

PCD
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VTmin
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θA

B
A

C
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P1

F

θA

PBC

PBC

C21
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αi zi

αi θ–
--------------

i 1=

N

∑ 1 q–=

α1 θ1 α2 θ2 … θN 1– αN≥ ≥ ≥ ≥ ≥ ≥
θA θB θC, ,

θA θB,
θB θC,
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right of the preferred split, equivalent to the ternary case shown in Figure
However, the recovery of B and C in the bottom of C21 and top of C22 will
limited to the amount in the feeds, which is given by C1 operated at the prefe
split (PAD). Thus the peaks for sharp BC split in C21 and C22 will be along PAC-
PBC and PBD-PBC, respectively (see the dashed contour lines for constant rec
ery of B and C in the figure).

We operate C21 at its preferred split too. This implies operation at PAC in the
Vmin-diagram in Figure 5.2. Then theVmin-diagram for C31 will also overlap the
diagram for C21 to the left of PAC, which already overlaps the diagram for C1
Minimum vapour flow in C31 is then determined by the common rootθA, which
carries over from C1 and C21. For full recovery of the light A in the top of C
and sharp A/B-split, we may simply write the minimum vapour flow express
directly from Underwood’s equations.

(5.3)

This is simply the expression in (5.1) for the peak PAB in theVmin-diagram, and
as we have indicated in the equation, this is exactly the same minimum va
flow needed to separate A from BCD in an ordinary two-product column.

Similarly, column C22 will be operated at its local preferred split (at PBD). The
root θC carries over from C1 and C22 to C33, and we can write the followi
expression for the minimum vapour flow in the bottom of column C33:

(5.4)

We recognize this as the expression for the peak PCD in theVmin-diagram, but note
that we must be consistent and refer the peaks in theVmin-diagram to either the
top flow (VT) or the bottom flow (VB) when the feed quality .

We may also use the feed equation (5.2) and express the vapour flow with
heavy components, i.e:

(5.5)

The expressions in (5.3) and (5.4) give requirements for a total vapour rate in
top of the Petlyuk column, and represent the peaks PAB and PCD in theVmin-dia-
gram. But does the middle peak, PBC also have a physical meaning?

VTmin
C31 αAzA

αA θA–
------------------- VTmin

A/BCD
VBmin

A/BCD
1 q–( )F+= = =

VBmin
C33

1 q–( )F+
αi zi

αi θC–
------------------

i A B C, ,=
∑ VTmin

ABC/D
VBmin

ABC/D
1 q–( )F+= = =

q 1≠

VBmin
ABC/D αi zi

αi θC–
------------------ 1 q–( )F–

i A B C, ,=
∑

αDzD

αD θC–
--------------------–= =
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It certainly has, and again we return to the Underwood equations. The
amount of the A and B products is transported upwards through the top sec
of C21 and C32. The root is active in both C32 and C21, and we simply wr

(5.6)

Since , we recognize this as the expression for peak PBC:

(5.7)

Note that and are

directly related since .

5.2.3 Visualization in theVmin-Diagram

The Vmin-diagram contains complete information about every minimum vap
flow and product split for each individual column in Figure 5.1. This can be fou
by a detailed walk-through of the Underwood equations for each column and
material balance equations at the junctions, but we illustrate it more directl
Figure 5.3.

Feed data for this example is given as:F=1, q=0.8, z=[0.25 0.25 0.25 0.25],
α=[14, 7, 3, 1].The feed composition (zi), relative volatilities (αi), and recoveries
(ri,T in the table) are given for components A,B,C,D respectively. We have app
the general procedure from Chapter 3 for computing the numerical values fo
peaks and knots, and the results are given in Table 5.1:

Table 5.1:  Data for peaks and knots in theVmin-diagram

PAB

sharp A/B

PBC

sharp B/C

PCD

sharp C/D

PAC

B distributing

PBD

C distributing

PAD

preferred split

VTmin 0.8975 0.9585 1.0248 0.6350 0.7311 0.5501

D 0.2500 0.5000 0.7500 0.3663 0.5839 0.4490

ri,T 1,0,0,0 1,1,0,0 1,1,1,0 1,0.47,0,0 1,1,0.34,0 1,0.57,0.22

θB

VTmin
C21

VTmin
C32

+
αAzAF

αA θB–
-------------------

αBwB T,
C21

αB θB–
--------------------+

 
 
  αBwB T,

C32

αB θB–
--------------------+=

wB T,
C21

wB T,
C32

+ zBF=

VTmin
C21

VTmin
C32

+
αAzAF

αA θB–
-------------------

αBzBF

αB θB–
-------------------+ VTmin

AB/CD
= =

VBmin
AB/CD

VBmin
C22

VBmin
C32

+= VTmin
AB/CD

VTmin
C21

VTmin
C32

+=

VBmin
AB/CD

VTmin
AB/CD

1 q–( )F–=
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Observe in Figure 5.1 how the vapour flow in each individual column appear
difference between the peaks and knots. Thus, for preferred split operation in
column, all internal flows and component recovery can be found from the da
Table 5.1. The relations are quite trivial and come from the material balance e
tions at the column junctions.

To better understand Figure 5.3, in Figure 5.4 we show a detail of a genera
componentVmin-diagram where we illustrate how to find the corresponding n
product flows in addition to the minimum vapour flows in the top and bottom s
tion of an individual column. For components in the range X-Y, the preferred s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

D/F

V
T/F

(1-q)

PBC

PAC

PAB

A/BCD
VTmin

ABC/D
VTmin

PBD

PCD

PAD

C33
VB

C33
VT

AB/CD
VTmin

C32
VTC31

VT
C31

VB

C21
VT

C21
VB

C1
VT

C1
VB

C32
VB

C22
VB

C22
VT

C31
D

C21
D

C1
D

C32
D

C33
D

C22
D

C1
B

C22
B

C33
B

C32
B

C31
B

C21
B

zA zB zC zD

Figure 5.3:Vmin-diagram showing the minimum vapour flows and product splits for ev
section in the Petlyuk arrangement in Figure 5.1 when each column C1, C21 and
operates at its preferred split (note that the subscriptminshould be on every vapour flow)

The highest peak
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will be at PXY. For sharp X/Y-split, the column must be operated at or above
V-shaped boundary PX,Y-1-PXY-PX+1,Y. Note that when we have a binary feed, th
V-shaped curve collapse to a vertical line and the “preferred split” is a top pe

Note how the minimum vapour flow requirements in the top and bottom is gi
by the -shaped triangle PX-1,Y-PXY-PX,Y+1 below PXY.

.

This principle in this illustration will also be valid when X and Y are composi
products and also when the X/Y split is nonsharp. We will discuss this furthe
Section 5.3.

5.2.4 The Highest Peak Determines the Minimum Vapour Flow

Consider now the case when all the vapour flow has to be supplied in the bo
reboiler and all products are liquids. The only extra vapour flow is the vapour fr
tion in the feed.

For the four-product case, we have found three sets of vapour flow requirem
represented by the three peaks in theVmin-diagram. Thus it is clear that the highes
of these requirements (either referred to the top or the bottom), must deter
the overall requirement for vaporization in the arrangement.

Λ

PX,Y

PX-1,Y

Figure 5.4: Detail from aVmin-diagram which shows how to find the minimum vapou
flow and net product rates in one of the internal two-product columns in a genera
Petlyuk arrangement with feed components in the range X-Y. When the colum
operated at its local preferred split (PXY) all common roots are active and we indicat
(right) how they carry over to succeeding columns.

PX,Y+1

PX-1,Y+1

X,...,Y-1

X+1,...,Y

X,...,Y

D=VT-LT

B=LB-VB

VT

VB

LT

LB

VTmin

VBmin

BD

F

FV=VT-VB

PX+1,Y
PX,Y-1

FV=VT-VB

FL=LT-LB

F=FV+FL

=(1-q)F

θX, θX+1,..θY-2, θY-1
θX,θx-1,..θY-2,θY-1

θX,θx-1,..θY-2

θx+1,..θY-2,θY-1

θx+1,..θY-2

Sharp X/Y split above the “V”
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This very nice and simple result directly generalizes what was shown for th
product Petlyuk column in Chapter 4, and in the Section 5.3, we will extend
to any number of feed components and products. However, before we mov
the general case, let us discuss some more properties of the solution in the
subsections.

5.2.5 Composition at the Junction C21-C22-C32

If we consider minimum energy operation of columns C21 and C22 separa
each will have a certain pinch zone composition around their feed stage an
each end. The ideal direct coupling of the top of C22 to the bottom of C21 sho
be done with equilibrium composition between the liquid and vapour flows at
corresponding pinch zone composition. However, if the pinch zone composit
in the top of C22 differs from the pinch composition in the bottom of C21, the
will be a certain loss due to mixing. In this case the coupling of C21 and C
should really be done at different feed stages in C32. However, we will show
when the columns are properly operated, the streams at the junction betwee
and C22 will have the same composition. In Chapter 3 (and also in Appendix
it is shown how the pinch zone composition, where two components appea
related to the actual Underwood root in the range between the relative volatil
of the components. Thus, the pinch zone compositions, expressed by the B-
ponent (when A is removed in bottom of C21 and D is removed in top of C22)
given by:

 and (5.8)

When C21 and C22 are operated at their preferred split, the root will be ac
in both columns, thus  and .

This result does not require any accurate operation of C1 since we observe in
ure 5.2 that is active in all regions adjacent to PAD. However, operation of C1
away from the preferred split (PAD) will influence the other roots carried over to
C21 and C22 which are related to the top and bottom products, and the minim
energy results in (5.3) and (5.4) can then not be obtained. For example when
umn C1 is operated above and to the right of PAD the actual root in the top

 and thereby .

xB pB,
C21

αC αB ψC
C21–( )

ψC
C21 αB αC–( )

--------------------------------------= xB pT,
C22

αC αB φB
C22–( )

φB
C22 αB αC–( )

-------------------------------------=

θB
ψC

C21 φB
C22 θB= = xB pB,

C21 xB pT,
C22=

θB

φA θA> VTmin
C31 φA( ) VTmin

C31 θA( )>
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5.2.6 Flows at the Feed Junction to C32

We have required that we can set the liquid and vapo
flow rates individually in each internal two-produc
column. Let us take a closer look at the general type
the directly coupled feed junction to C32 as illustrate
in Figure 5.5. The positive direction is defined int
C32. In C21 and C22 we assume that we know the fe
rates (including feed quality). Then when we set th
four flow-rates in these columns, the vapour and liqu
feed flows to C32 are determined by:

(5.9)

In some cases one of these streams can be negative and this implies that we
withdraw either a vapour or liquid stream from the feed stage of C32. Anyw
we only need one vapour flow and one liquid flow for a given case, and on
these may be a reverse flow. The total feed is normally positive since:

(5.10)

But recall that with directly coupled sections, negative product flows are feas
but usually far from optimal. Note also that we may find the equivalent feed qu
ity and composition as if this feed was to be supplied as a single stream:

(5.11)

Example: The feed junction flows to C32 can easily be found from the Vmin-
diagram in Figure 5.3. The vapour portion of the feed to C32
( ) is the vertical difference (V-direction) between PBD and
PBC, and the net total feed ( ) is the horizontal difference (D
Direction). In this case wee see that the liquid portion of the feed
( ) is positive too.

C22T

C32

C21B

FV

FL

xB,P

xB,P

BC

Figure 5.5: The Directly
coupled feed junction.

FV
C32

VT
C22

VB
C21

–=

FL
C32

LB
C21

LT
C22

–=

F
C32

FV
C32

FL
C32

+ D
C22

B
C21

+ D
C32

B
C32

+= = =

q32 FL
C32

F
C32⁄=

FV
C32 0.10=

FC32 0.22=

FL
C32 FC32 FV

C32– 0.12= =
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5.2.7 Composition Profile - Simulation Example

A composition profile from a simulation example is shown in Figure 5.6. Th
are 30 stages in each column section (N=60 in each column), and in practice this
is close to infinite number of stages for this case (with purity requirements aro
99.9%). The flow rates are taken from theVmin-diagram in Figure 5.3 and are
applied directly in the simulator. This simulation is a practical confirmation of t
analytical expressions for flows and pinch zones and for the minimum ene
behaviour.

Observe the characteristic of a preferred split pinch zone at all feed junctions
that one component is completely removed in the end of each column. Note
that the pinch zone composition in each column end is identical to the feed s
composition in the succeeding column. In each section, the compositions o
remaining components increase monotonously from the feed pinch to the
pinch without any remixing. Note that if a column had its own reboiler and co
denser, remixing at the end is inevitable (ref. Section 4.2.3 and Figure 4.4).

0 molfraction 1

C1

BCD

ABC

A

D

α = [ 14 7 3 1]
z = [ 0.25 0.25 0.25 0.25]
q = [ 0.80]
Stages:60 in each column

0 molfraction 1

C21

C22

CD

BC

AB

B

D

A

C

0 molfraction 1

C31

C32

C33

D

C

B

A

C

D

B

C

A

B

Figure 5.6: Composition profiles for the Petlyuk arrangement in Figure 5.1 (or 5.13
Each column is operated at its preferred split with vapour flows and product splits
from Table 5.1 data as shown in theVmin-diagram in Figure 5.3. Observe the pinch zon
in all junctions and how one component is removed in each column end.

Junction pinch
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5.3 Minimum Energy for N Components and M Products

We are now in position to compute the minimum vapour flow in a gene
extended Petlyuk arrangement with any number of feed components (N) and any
number of products (M). We will start from the basic 4-product arrangement
Figure 5.7, which can be extended to any number of products by adding more
of directly coupled columns. There is only one reboiler and condenser, alway
the outlets for the final bottom and top products, respectively.

For an M-product arrangement, there are
cross-sections that may have inde-

pendent total vapour flow requirements
through all intersected columns. These
intersections represent the product splits in
the system. We have chosen to use the par-
ticular set I1, I2 and I3 forM=4 which
intersect all internal top sections as shown in
Figure 5.7. Note that only the A-product
pass through intersection I1, thus I1 repre-
sent the A/BCD split. I2 represent the AB/
BC split since all of A and B but none of C
and D pass here. Finally I3 represent the
ABC/D split. This can easily be extended to
the general M-product case.

When each internal column operates at its
preferred split, all the common Underwood
roots (θA,θB and θC for N=4) given by the
feed equation (5.2) for the prefractionator
feed will carry over to the succeeding col-
umns as indicated in Figure 5.7.

Then, note that in each column section, cut
by each intersection line (I1,I2 or I3), there
is one common active Underwood root (e.g.
θB is active in column C21 and C32 inter-
sected by I2). We can apply this root in the
defining equation for each column cross-
section and find the total vapour flow through the intersections. For sharp pro
split, the net product flows are simply the amount of the main product compon
in the feed. The flow through I1 is trivially:

(5.12)

F,z,q

Figure 5.7: Extended 4-product
Petlyuk Arrangement with all columns
operated at preferred split. The activ
Underwood roots are indicated. The
intersections represent the produc
splits.

ABCD

A

B

C

D

ABC

AB

BC

BCD

CD

I2

I3

θA

θA

θA

θB

θB

θB

θC

θC

θC

θB

I1M 1–

Vmin
I1 αAwA T,

C31

αA θA–
--------------------

αAzAF

αA θA–
------------------- VTmin

C1,A/BCD
= = =
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At intersection I2 we know that all the light A component pass through the top
C21 too, and for the B-component we have . None of t
heavier C and D components are present. The middle Underwood root (θB) is
active in both C21 and C32, thus we have:

(5.13)

At I3 we know that all of components A, B and C are passing, but none of
heavy D. The root (θC) is active in all columns (C1, C22 and C33) and we get

(5.14)

Again we recognize these expressions as the vapour flow at the three peaks
Vmin-diagram for the prefractionator feed and from equations (5.3, 5.4 and 5

5.3.1 Vmin for N Feed Components and N Pure Products

The important observation from the three and four product examples is tha
maximum vapour flow rate through any horizontal cross-section in a general
Petlyuk arrangement with N feed components and M=N pure products is fo
directly as the highest peak in theVmin-diagram for the feed.

The expression for a peak is given in equation (5.1) (deduced in Chapter 3),
we relate the vapour to the top of the Petlyuk arrangement, the minimum va
flow is given by:

(5.15)

where theN-1 common roots ( ) are found by the feed equation (5.

Note that the solution is exactly the same as the most difficult split between
component groups in an ordinary 2-product distillation column. The express
in (5.15) for each value ofj is the height of peakj in theVmin-diagram referred to
the top.

The result in (5.15) is amazingly simple, and it is also worth to note that
can find all flow rates in all sections of the complex column arrangeme
as shown in Figure 5.3.

wB T,
C21 wB T,

C32+ zBF=

Vmin
I2 αi wi T,

C21 wi T,
C32+( )

αi θB–
------------------------------------------

i A B,=
∑

αi ziF

αi θB–
-----------------

i A B,=
∑ VTmin

AB/CD
= = =

Vmin
I3 αi wi T,

C1 wi T,
C22 wi T,

C33+ +( )
αi θC–

------------------------------------------------------------
i A B C, ,=

∑
αi ziF

αi θC–
------------------

i A B C, ,=
∑ VTmin

ABC/D
= = =

VTmin
Petl

F
---------------

max

j

αi zi

αi θ j–
----------------

i 1=

j

∑ 
 
 

for j 1 2… N 1–,,{ }∈=

θ1…θN 1–
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5.3.2 GeneralVmin for N Feed Components and M Products

For each extra product, we have to add another array of columns to the stru
in Figure 5.7. The total number of internal directly coupled two-product colum
to separateM products is:(M-1)+(M-2)+...+2+1 = M(M-1)/2. There areM-1
product splits, and these can be related toM-1 minimum energy operating points
(peaks) in theVmin-diagram.

However, we have often more components (N) in the feed than number of p
ucts (M). Thus, we have to consider split between products, which may
specified as an aggregate of components. Fortunately, the characteristic of
mum energy operation is unchanged. Each internal two-product column sh
only separate the components belonging to the most extreme products in its
(in terms of relative volatility).

A Vmin-diagram for M composite products can easily be drawn into the gen
N-component diagram. The procedure is similar; we compute the peaks and k
in the diagram from the minimum energy operation given by sharp split betw
each possible pair of products. Note that this does not mean sharp split bet
individual components if some components are allowed in more than one prod

In Figure 5.8 we illustrate for a given example how to use theVmin-diagram to
assess minimum energy operation when M<N. The diagram (solid) is drawn
a given 8-component feed (ABCDEFGH) which shall be separated into four p
ucts (WXYZ) in an extended 4-product Petlyuk arrangement (Figure 5.7).
product specifications are given in Table 5.2. Based on these we can specif
required two degrees of freedom for each possible pair of product splits in a si
two-product column. The resulting split specifications are given in Table 5.3,
the minimum energy solution for each split (I/J) gives us the peaks and knotsIJ)
in theVmin-diagram for the M products shown (bold dashed) in Figure 5.8.

Table 5.2:  Specification of feed component recoveries in products W,X,Y an

Product
Light key
impurity

specification
Components

Heavy key
impurity

specification
Comment

W - A,B 0% C all of A, any
amount of B

X 0%A B,C,D,E <10% E the rest of B

Y <10.0%D D,E,F 0% G

Z 0% F G,H - Sharp F/G split
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Table 5.3:  All possible product split specifications, by two key recoveries

Split Col
Light key

in top
Heavy

key in top
VTmin Comment

W/X C31 100% A 0% C 0.9632 Sharp A/C split, B distributes.

X/Y C32 >90% D <10% E 1.3944 Nonsharp D/E split

Y/Z C33 100% F 0% G 1.2093 Sharp F/G split

W/Y C21 100% A <10% E 0.5569 Sharp bottom, nonsharp top

X/Z C22 >90% D 0% G 0.7477 Nonsharp top, sharp bottom

W/Z C1 100% A 0% G 0.4782 “Preferred split” A/G, not A/H
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Case:
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Sharp A/H-split is not needed

Figure 5.8: Assessment of minimum vapour flow for separation of a 8-component f
(ABCDEFGH) into 4 products (WXYZ). The plot shows theVmin-diagram for the feed
components (solid) and the equivalent diagram for the products (bold dashed) is e
obtained from the product split specifications given in Tables 5.2 or 5.3.
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The highest peak determines the maximum minimum vapour flow requireme
the arrangement. In this example this is the middle peak PXY, which is directly
related to column C32 (note thatVTmin-values in Table 5.3 are for the given spli
in a two-product column, and that the required flow in the individual colum
appear as we have shown in Figure 5.3). With a single reboiler, all the hea
vaporization has to be supplied in the bottom and since the other peaks are l
columns C33 and C31 will get a higher vapour load than required. However, w
heat exchangers at the sidestream stage, we only have to supply heating f
requirement given by PYZ in the bottom reboiler and heating for the differenc
between PYX and PYZ in the bottom of C32, which is at a lower temperature. W
may also take heat out due to the difference between PXY and PWX above C32.

Observe that PXY is of similar height as PAB. This implies that we are able to sep
arate the light component A as a pure product in the top with a similar vapour fl
requirement as given by PXY. Thus, we can see directly from the diagram that w
may change specification of product W to be pure A without consuming any m
energy (but then we cannot take out any heat above C32 of course).

The diagram also illustrates that non-sharp product specifications can be ha
quite easily. Note how the peak PXY follows the contour lines for and

.

The same example could be used for cases where M=N too.

As a last comment on our example, observe that the “preferred” split is at PWZ.
We put “preferred” in quotes since we have earlier defined the preferred sp
minimum energy for the most extreme component split which would be A/H he
But since H never need to be separated from the other components, we d
need that split. Instead we only separate products W and Z in the prefraction
(C1), which really is a split between components A and G. Thus, we may say
PWZ represents the preferred split for our four aggregate products.

5.4 Verification of the Minimum Energy Solution

Here we reformulate minimization of energy as an optimization problem and
ify that the solution given in equitation (5.15) (the highest peak), really is optim
for the extended Petlyuk arrangement. We will do this by two steps. First by de
mining the feasible region of operation for the given product specifications,
second by showing that no changes in any degrees of freedom within the fea
region may reduce the minimum vapour flow requirement.

We will limit the presentation toN components andM=N pure products. How-
ever, the result will also be valid for the general case, e.g. the example in se
5.3.2 above.

rE T, 0.1=
rD T, 0.9=
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5.4.1 Minimum Vapour Flow as an Optimization Problem

We formulate the criterion function as the maximum of the minimum vapour fl
requirements through any of the intersections I1, I2,.... I(M-1).

(5.16)

Hereu represents our degrees of freedom in operation, and we have in genera
degrees of freedom for every column, e.g. expressed by (D,V) for each. Thus:

(5.17)

The main constraints are given as the final product (Pi) specifications. We may
also treat arrangements with a lower number of degrees of freedom, by spec
tion of a set of flow constraints, expressed as the equalityg(u)=0. An example is
if we restrict the feed to column C32, in the 4-product column in Figure 5.1, to
a single liquid stream; then expresses the constra

With given feed properties, (F, α, z, q) and sharp product split specification, th
optimization criterion can be expressed as:

(5.18)

HerePi denote product numberi.

5.4.2 Requirement for Feasibility

The feasible region is the operation region where we have fulfilled the operati
constraints in (5.18). Here we only consider the pure products specifications
no additional constraints (nog(u)=0).

Then feasible operation requires operation on, or above theV-shaped boundary in
theVmin-diagram for each column. For example in the 4-component example
feasible region for the prefractionator is on or above PAB-PAC-PAD-PBD-PCD.
Note that theVmin-diagram for the succeeding columns only overlap the prefr
tionator diagram when this is operated at its preferred split. In other cases we
find the newVmin-diagram for each column, given by the actual Underwood ro
for the proceeding columns (ref. Chapter 4).

J u( ) max V
I1

V
I2 … V

I M 1–( ),, ,( )=

dim u( ) M M 1–( )=

g u( ) VB
C21 VT

C22– 0= =

Jopt J u( )
u

min=

subject to constraints

r i
Pi 1=

r i
Pj 0=

g u( ) 0=

i j≠( )∀
 
 
 
 
 
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This is easy to show by the following argumentation for the 4-product colum

Assume first close to preferred split operation in all columns. Then chan
the operation of C1 so we allow some light A to be transported downwa
in C1 and into C22. This A have to will be transported upwards in C22
since it is more volatile than B which also is transported upwards, and th
some amount of A have to be present at the feed junction to C32. A port
will have to enter C32, and since A still is more volatile than B, it will als
be transported upwards in C32 and will appear in the product stream fr
the junction C31/C32 where we have specified a pure B product.

We may do this “experiment” with a sloppy split for any of C1, C21 and C22.
all these columns, the most heavy feed component for every column has t
fully removed in the top, and the most volatile have to be fully removed from
bottom in order to obtain sharp product splits in the final columns of the seque

5.4.3 Verification of The Optimal Solution

We have already shown in Section 5.3 that the expression for each peak repr
the minimum vapour flow through a given intersection when all columns in
extended Petlyuk arrangement are operated at their respective preferred
But, we may ask if it possible to change the operation in some part of the arra
ment away from the local preferred split and thus reduce the highest peak.

In the following we will show that this is not possible.

An important characteristic of the direct coupling is that the actual Underwo
roots in a column section (φ in tops andψ in bottoms) carry over as a common
root (θ) to the succeeding column (Carlberg and Westerberg 1989), (see. Se
4.4). We combine this with Underwood’s minimum energy results which sta
that for a given column .

Consider now the top of the 4-product arrangement. It is clear that the first r
in the columns C1, C21 and C33 have to obey:

(5.19)

The vapour flow in the top of C31 is generally expressed by , thus we obt

(5.20)

This expression shows that there is no way to operate columns C1, C21 or C
that the vapour flow requirement in the top of C31 is reduced below the minim
which is given by the peak PAB in the Vmin-diagram. The minimum solution is

φi θi ψi 1+≥ ≥

φA
C31 θA

C31≥ φA
C21 θA

C21≥ φA
C1 θA

C1≥ θA= = =

φA
C31

VT
C31

αAzAF

αA φA
C31–

-------------------------
αAzAF

αA φA
C21–

-------------------------
αAzAF

αA φA
C1–

----------------------
αAzAF

αA θA–
-------------------≥ ≥ ≥ VTmin

A B/= =
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only obtained when we operate column C1 in a region where is active. T
is only obtained along the curve PAD-PAC (really also along PAC-PAB, but then we
remove component C and not only D in the top of C1, and then we might rem
column C21 completely). In addition C21 must also keep active, which
obtained along PAC-PAB, and at last, C31 must be operated exactly at PAB. This
line of argumentation is easy to extend to the general N-component N-pro
case.

Operation of columns C22, C32 and C33 have no direct impact on PAB, thus there
is no way to operate these columns to reduce the peak PAB. This shows that the
peak PAB represent the absolute minimum vapour flow for the top of the Petly
arrangement also for other operation points than preferred split for each inte
column.

Similarly, in the bottom of columns C1, C22 and C33 we have:

(5.21)

which gives:

(5.22)

Thus, all the bottom columns have to be operate with active in order to k
the minimum requirement in the bottom of C31 at peak PCD.

For sharp split, this is only obtained for C1 along PAD-PBD, C22 along PBD-PCD
and C33 at PCD. Thus PCD represents the minimum vapour flow in the bottom
the Petlyuk arrangement for any operation of the arrangement.

It is important to note that we have to operate column C1 exactly at its prefe
split (PAD) to avoid increased vapour requirements in C31 or C33. Thus opera
of C1 in the region above the preferred split will increase the vapour requirem
represented by the peaks PAB or PCD.

However, column C1 have no such direct impact on the middle peak PBC. The
only requirement is that the root is active, since this root has to carry ove
C33 via both C21 and C22. This is trivial as long as both B and C are distribu
to both products. However, it is a bit more complicated if C21 or C22 is opera
outside the region where is active. Then the resulting root in C32 will be d
ferent from the corresponding root in C21 and the expression for the total fl
through intersection I2 will be more complicated than for the case in equa
(5.13).

θA

θA

ψD
C31 θC

C33≤ ψD
C21 θC

C21≤ ψD
C1 θC

C1≤ θC= = =

VB
C33

αDzDF

ψD
C31 αD–

--------------------------
αDzDF

ψD
C21 αD–

--------------------------
αDzDF

ψD
C1 αD–

------------------------
αDzDF

θC αD–
--------------------≥ ≥ ≥ VBmin

ABC/D= =

θC

θB

θB
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Assume now that we keep the vapour flows and product splits constant in colu
C1 and C22. Thus, any change in vapour flow through intersection I2 must c
through the bottom of C32 so:

(5.23)

This can be expressed by the common Underwood root in C32 and the amou
C-component into the feed junction of this column.

(5.24)

When the product splits in C21 and C22 are kept constant, this vapour
depends only on the behaviour of the common Underwood root in C32, whic
given as the solution of its feed equation:

(5.25)

Note that the net component feed rates to C32 is given directly from the mat
balance at the junction: . We assume that C22 is opera
at its preferred split. Thus is active in C22. In C21, we may have opera
outside the active region, thus we have to use the actual root . The r
hand side of (5.25) can now be written as:

(5.26)

By careful inspection of the structure of the feed equation (5.25-5.26), we obs

that we always have  and that the solution have to obey:

(5.27)

Vmin
I2∆ VBmin

C32∆=

VBmin
C32

αCwC F,
C32

θB
C32 αC–

-------------------------=

VF
C32

αBwB F,
C32

αB θC32–
-------------------------

αCwC T,
C22 wC B,

C21–

αC θC32–
----------------------------------------+ VT

C22 VB
C21–= =

wi F,
C21 wi T,

C22 wi B,
C21–=

θB
θB ψC

VT
C22 VB

C21–
αBwB B,

C21

αB ψC
C21–

--------------------------
αCwC B,

C21

αC ψC
C21–

--------------------------
αBwB T,

C22

αB θB–
--------------------

αCwC T,
C22

αC θB–
---------------------+ + +=

ψC
C21∂
∂ θB

C32 0>

θB θB
C32 ψC

C21≥ ≥
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Thus, we have that for suboptimal operation of C21, the actual Underwood
decreases from its original optimal value . Due to the structu

of equation (5.26), the important Underwood root also decrease, and f
equations (5.25) and (5.24) we see that the flow through the intersection I2
increase.

We may similarly analyse the operation of C22 outside the region where
active, and get to the conclusion that this will also increase the vapour rate thr
the cross-section I2.

It is clear that this result is independent of any changes in distribution of B an
components from column C1, C21 and C32. For each distribution case, we
start with active in both C21 and C22. Then any operation outside the ac
region in either C21 or C22 or both, will lead to an increase in the required fl
through intersection I2.

We have not carried out a detailed proof for the general N-component M-pro
case for other than the far left and right peaks. But we expect that this can be
by the same line of argumentation as we used to state that the middle peak c
be reduced for any feasible operation of C21 and C22. Numerical evidence
supports this.

5.4.4 Summary of the Verification

The generalized minimum energy solution in (5.15) requires that we are ab
set two degrees of freedom (e.g.D,VT) individually for each internal column in
Figure 5.1. Then we are able to operate each column at its preferred split
thereby ensure that the common Underwood roots found from the prefraction
feed equation, carry over to all succeeding columns. If any part in the sequen
columns is operated away from the preferred split, the vapour flow requireme
some of the cross-sections have to increase, in other words; one or more o
peaks related to the specified product splits have to increase.

In order to fulfil the product specifications, a sharp split has to be perform
between the most extreme products in each column. This requires operation
above the local V-curve, which has its minimum in the local preferred split.

Note that the operation of each column has direct impact on the operation o
succeeding columns that separate one of the same products. For example, th
fractionator in our 4-component example separates out the light A in the bot
But so does C21 and C31, thus if the vapour flow in C1 is above the exact m
mum energy requirement for sharp A separation (which is along PAC-PAD), then
the minimum requirement in the succeeding columns will also increase.

ψC
C21 ψC

C21 θB=
θB

C32

θB

θB
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In general, if a column has its preferred split at PXY, and is operated above this
point, all succeeding columns with knots and peaks related to either X or Y
in general be affected. Any sub optimal operation somewhere in the arrange
cannot be recovered in the succeeding columns.

5.4.5 The Optimality Region

When the peaks are of different height, we may operate some of the columns
from the preferred split as long as the highest peak is not affected, and the
peaks do not grow above this one. This give rise to “flat” regions in the plot
overall energy requirement, , as function of the degrees of freedom.

We illustrate this by an example in Figure 5.9. Since PCD is the highest peak, the
optimality region for C1 is along PAD-PBD. However, somewhere the actua
Underwood root in the top of C1 related to the AB-split will get a value whi
makes the peak PAB’ given by equal the peak PCD. This line segment lim-
its the optimality region for both column C1 and C21, and this is very similar
the result from the ternary case discussed in Chapter 4.

VB
Petl

PBC

PAC

D

VT
C1

PAB

C1

(1-q)F

C1
VT

C1
VB

=0

=0

Figure 5.9: Vmin-diagram for 4-component feed ABCD with optimality regions for
operation of columns C1, C21 and C22. The contour lines for constant and a give
constant which makes are shown (dashed).
These boundaries are the upper bounds for the optimality regions.

φA
θB

C21 VA/BCD VAB/CD Vmin
ABC/D= =

PBD

PCD

Possible optimality

Optimality region

Actual C1
operation (X)

Optimality
region for C1

for C21 for C1 at X

region for C22

and C22 at PBD

X

Possible increase
in peak PBC

Constant UW
root φA,Bal

θB

sets the overall
Vmin requirement

VBmin = VBmin
Petl

C32
ABC/D

Actual C22
operation (X)

PAB’

Maximum allowed
C32

VBmin

φA Bal,
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Similarly, C22 has to be operated along PBD-PCD. This optimality region is lim-
ited by how C21 is operated, since both affect the cross-section I2 through
Underwood root ( ) given by equation (5.25). In Figure 5.9 we have in
cated the operation at PBD. Then we may find the optimality region for C21 in th
marked region above PAC. Note how operation of C1 limits the lower part of th
optimality region for C21 through the contour for constant  through X.

5.5 Discussion

5.5.1 Arrangement Without Internal Mixing

To avoid mixing of the streams in the feed to C32, we might consider a struc
as shown in Figure 5.10. For a generalized M-product arrangement of this
we would get several parallel columns, performing split between the same s
components, but without any mixing of internal products. However, in the follo
ing we will show that when all the columns in Figure 5.1 and Figure 5.10
operated at their respective preferred split, the result will be identical.

θB
C32

φA

Figure 5.10: Alternative directly coupled column arrangement without internal
mixing of streams. C32a and C32b are parallel columns for BC separation

C21

C22

C1

F,z,q

C31

C33

C32a

C32b

BC

BC

B

C

D

A

AB

ABC

BCD

I2’
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The feed equation for column C32 equals the sum of the feed equations for C
and C32b:

, (5.28)

(5.29)

Since is active in both C21 and C22, will also be a root in the feed equa
in all these three cases. Furthermore, in each of the columns C32a, C32b, C
will be the only active root since main task of these columns is to separate the
B and C, thus the feed equation root in the range between the volatilities o
keys will determine minimum vapour flow. Then it is trivial to show that the su
of vapour flows out of the top of C32a and C32b, ( ) equals
We have:

(5.30)

The amount transported via C31 ( ) will be the same in the two cases s
the preferred split solutions in C21 only depends on the feed to C21. This c
firms that the column C32 does the same job as the sum of C32a and C32b

 and = . (5.31)

But what about sub-optimal operation? Can this arrangement reduce the pe

For the arrangement in Figure 5.10, the equivalent to the flow through cross
tion I2 in Figure 5.7 is:

(5.32)

It is easy to show that when the root is active in all these columns, we ge
identical expression as in (5.13), and . Let us keep operation of
C22 and C32b constant, but assume that we increase the vapour flow in C21
can be expressed in terms of the actual Underwood root in the bottom of

 which replace  when it is not active. Thus

(5.33)

VB
C21

– VT
C32a

VB
C32a

–= VT
C22

VT
C32b

VB
C32b

–=

VT
C22

VB
C21

– VT
C32

VB
C32

– FV
C32

= =

θB θB

VT
C32a VT

C32b+ VT
C32

VTmin
C32a

VTmin
C32b

+
αB wB T,

C32a
wB T,

C32a
+( )

αB θB–
-------------------------------------------------

αB zBF w–
B T,
C21( )

αB θB–
----------------------------------------= =

wB T,
C21

wB T,
C32a

wB T,
C32a

+ wB T,
C32

= VT
C32a

VT
C32b

+ VT
C32

VI2' VT
C1 VB

C21 VT
C32a VT

C32b+ + +=

θB
Vmin

I2' Vmin
I2=

ψC θB< θB

VI2' Vmin
I2– VB

C21 ψC( ) VBmin
C21 θB( )–( ) VTmin

C32a ψC( ) VTmin
C32a θB( )–( )+=
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Here the actual root will carry over to C32a, and since all B-component tra
ported downwards in C21 will be transported upwards in C32a, the te
involving net transport of B will disappear. According to Underwoo

. Note also that the net flow of C component in the bottom of C
is a negative number since C is transported downwards while the positive d
tion is upwards. Thus we have:

(5.34)

We conclude for the 4 component example that the arrangement in Figure
has the same main characteristics as the arrangement in Figure 5.1. Alth
there is a slight difference in suboptimal operation, it cannot reduce the va
flow requirement through any of the cross-sections below the minimum vap
result given by (5.15).

5.5.2 Practical Petlyuk Arrangements (4-product DWC).

In the Petlyuk arrangement in Figure 5.1 or in Figure 5.13, we assume that we
adjust the vapour and liquid flow individually in all columns. The more practic
arrangement in Figure 5.11 is a bit less flexible since all the vapour flow ha
come from the bottom reboiler, and similarly, the liquid flow comes from the t
condenser. It will generally have a higher energy requirement although it ma
the same in some cases (see example). Since we extract only liquid sides
products, also in the junction into the feed of C32. We get a simpler configurat
which also may be implemented as a dividing wall column (DWC) in a sin
shell, as indicated in Figure 5.11b.

However, operation is by no means simple and we still have 9 manipulated in
left, and when 4 are used for product purity, there are 5 left. These must b
properly in order to achieve the optimal operation given by the highest peak in
Vmin-diagram.

The cross-sectional area is usually designed for a maximum vapour load
know that there may be large differences between each section, e.g in C31
Figure 5.2. However, in cases where the peaks are similar, we know that the
vapour requirement is similar in any cross section (I1,I2 or I3). Thus as indica
in Figure 5.11b, the DWC can be implemented in a single shell with a cons
diameter, and with quite different, but suitable cross-sectional areas for the i
nal columns. This is one issue which makes DWC implementations attractiv

θB ψC αC>≥

VI2' Vmin
I2–

αCwC B,
C21

αC ψC–
---------------------

αCwC B,
C21

αC θB–
---------------------–

 
 
  αCwC B,

C21 θB ψC–( )–

αC ψC–( ) αC θB–( )
--------------------------------------------------- 0>= =
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We apply the sameVmin-diagram as in Figure 5.3 also in this case. We start
determining the requirement of the prefractionator (C1). The original diagram
of course valid for C1 and we chose to operate C1 at its preferred split, whic
at PAD. Then all the common roots from C1 carry over to C21 and C22. Howev
in Figure 5.11 we have the restriction: . Here column C22 contr
the vapour requirement since . Thus minimum vapour for colum
C21 is somewhere on the line between the points X,Y in Figure 5.12. First we
to operate C21 in X. Then the root carries over all the way to C31, and
vapour flow requirement will be given by PAB. However, will not carry over
to C22. Instead a larger root will carry over and the requirement for C32 will
given by P”BC. But as illustrated in the figure, this gives a higher vapour flo
requirement than PCD, which was our original highest peak. However, here w
may increase the net product flow from C21 and move operation to Z. In this c
V>Vmin in C21, and none of the common roots are active. Both C31 and C32
be affected, and the new minimum vapour requirements are given by P’AB and
P’BC respectively. In this example, we get a resulting diagram where PCD still is
the highest peak, and the minimum vapour flow requirement for this less flex

C21

C22

C1F,z,q

Figure 5.11: Practical 4-product Petlyuk arrangements with some flow restrictions:
We allow only liquid feed to C32 and liquid intermediate side products B and C.
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C32

C33

F,z,q
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A

a) Implemented in three b) Implemented in a single shell
as a dividing wall column (DWC)
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C1 BC
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21 VT

22=
VBmin

21 VTmin
22<
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Petlyuk arrangement is the same as the fully flexible arrangement. It is quite c
however, that we may use another feed and find cases where the less fle
arrangement can never reach the minimum requirement of the fully flexible c
figuration. For example if the peak PCD were at the same height as PBC in Figure
5.12. Then either of the peaks P’AB or P’BC would be higher than the original
three peaks for any operation of C21 along the line Y-Z.

In summary, the solution is still simple to find by theVmin-diagram, but we get
new peaks for the columns where the preceding column cannot operate at its
ferred split. This can be done accurately by Underwood’s equations, but we
also look directly at the diagram and find an approximate solution graphica
Note how the peak P’AB rise and P’BC fall as the operation of C21 is moved on
the line from X towards Y.

Another important lesson is that we may change operation in some parts o
arrangement within the optimality region, without affecting the highest peak. T
extent of this region is dependent on how different the peaks are and the pra
impact is that some of our degrees of freedom do not need to be set accur
only within a certain range.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

D/F

V
T/F

(1-q)

PBC
PAC

PAB

PBD

PCD

PAD

C33
VB

C33
VT

C32
VT

C31
VT

C31
VB

C21
VT

C21
VB

C1
VT

C1
VB

C32
VB

C22
VB

C22
VT

Figure 5.12: Vmin-diagram for 4-component feed ABCD with the less flexible Petly
arrangement in Figure 5.11. Vertical arrows are vapour flow requirements in each c
section. Feed data:z=[0.25 0.25 0.25 0.25],α=[14,7 ,3,1],q=0.8

P’AB

P”BC
P’BC

X Z Y
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5.5.3 Heat Exchangers at the Sidestream Junctions

In order to set all flow rates independ
ently for the columns in the last array
(e.g. C31, C32 and C33), we may with
draw both vapour and liquid, or we may
e.g. withdraw liquid products and use
heat exchanger where the duty corre
sponds to the change in vapour flow (se
Figure 5.13). The required vapou
change is given directly in theVmin-dia-
gram as the difference between th
height of neighbouring peaks.

Note that we do not need any hea
exchange at the internal feed junctions
since we can withdraw any required liq
uid or vapour flow from the feed stage o
the succeeding column as discussed
the previous section.

In addition to obtaining full flexibility in
controlling the two degrees of freedom
in each internal column, this structure
also gives a better result with respect t
the second law of thermodynamics com
pared to the case when we supply all th
heat in the bottom and remove it in the

top and withdraw only liquid products. TheVmin-diagram gives minimum vapour
requirements for every section for the specified separation, but when the peak
different we may supply or remove some of the heat at the boiling points of
intermediate components. The highest peak will set the same vapour flow req
ment through the most demanding intersection in both cases.

Example: In Figure 5.3 PCD is the highest peak and we must supply

 in the bottom reboiler. The difference in vapour flow in

C33T and C32B ( ) is the difference between PCD

and PBC. Similarly the difference between PABand PBCgives the difference

between C32T and C31B ( ).

If the peaks to the left were higher than the peaks to the right, we may still sup
all the heat in the reboiler, but then columns C33 and C32 will be overreflux
But with heat exchangers in the sidestream junctions, we can supply each co
with its minimum requirement.

C21

C22

C1F,z,q

Figure 5.13: The general extended
Petlyuk arrangement with heat
exchange at the sidestream junctions.

C31

C32

C33

ABCD

A

B

C

D

ABC

AB

BC

BCD

CD

Heat

Reboiler

exchanger

Heat
exchanger

Condenser

VBmin
C33 1.02=

VTmin
C33 VBmin

C32– 0.07=

VTmin
C32 VBmin

C31– 0.06=
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5.5.4 The Kaibel column or the“  column”

The Kaibel column (Kaibel 1987) is a directly cou-
pled arrangement for separating 4 components as
shown in Figure 5.14. The interesting part is the
extra column section (C2x whereL=V) for separat-
ing B/C in the main column. However, the sharp B/
C split is performed already in the prefractionator
(C1), so section C2x is really not needed, and can be
replaced by heat-exchange between bottom of C21
and top of C22, denoted the “ column” by (Chris-
tiansen 1997).

The minimum vapour flow requirement in the Kaibel
column is always outperformed by the full Petlyuk
arrangement in Figure 5.1. This is simple to see from
theVmin-diagram, in Figure 5.2 as shown by the fol-
lowing argument for example:

In the Petlyuk arrangement, the overall vapour
requirement is given by the highest peak. In the Kai-
bel column, C1 is not operated at the preferred split,
but at a sharp B/C split, which is given by the middle
peak (PBC). If this is the highest peak, it is clear that
the Kaibel column requires a higher reboiler vapour
rate, since it require this vapour rate for C1, and we
must in addition have some vapour flow for the separation of C/D in the top
C22. If PBC is not the highest peak, we observe that when C1 is operated atBC,
none of the common roots and are active in C1 and cannot carry ove
C21 or C22. Then, as shown in Section 5.4.3, the expressions for minim
vapour in each of C21 and C22 have to be higher than the peaks PAB and PCD.

5.5.5 Required Number of Stages - Simple Design Rule

The proposed stage design for ternary Petlyuk arrangements given in Chap
can be applied for the extended arrangements too.

We can calculate the pinch zones in all junctions for all columns at preferred s
This is trivial when we know all flow rates and component distribution from t
Vmin diagram.

Then a minimum number of stages (Nmin) can be found from the Fenske equatio
(ref. Section 4.9.6) for each section for a given impurity of the component to
removed in that section. This impurity can be set according to the impu
requirement in the products.

A

C

D

C21

C22

C1

Figure 5.14: The Kaibel
arrangement for separation of
a 4-component feed

ABCD

B

C2x

AB

CD

θA θB
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The simple design rule: will typically give a real minimum vapou
flow (VRmin) in the range between 5-10% aboveVmin found for infinite number of
stages, for the same separation.

This simple design rule may of course be adjusted by more rigorous column c
putations and cost functions.

5.5.6 Control

M-product columns will of course be more complicated than the more fami
ternary Petlyuk arrangements. However the characteristic of optimal operati
similar, and is given by keeping each individual column at its preferred split.

By keeping the impurities of the components to be removed in each section a
points fixed at small values we ensure that the operation is at the preferred
even if we do not know the feed. The magnitude of the allowed impurity setpo
in intermediate columns should be set according to the allowed impurities in
final products.

5.6 Conclusion

We have shown that the results can indeed be extended to general multico
nent-multi product arrangements.

An explicit analytical solution for minimum vapour flow for a generalized an
extended Petlyuk arrangement has been found. The solution is very easy to
alize in theVmin-diagram for the feed, given by the following rule:

The minimum total vapour flow requirement in a multi-component, mu
product Petlyuk arrangement, is determined by the highest peak in the
Vmin-diagram.

Alternatively, since theVmin-diagram originally just characterize a two-produc
column with a multicomponent feed, this may also be expressed as:

The minimum total vapour flow requirement in a multi-component, mu
product Petlyuk arrangement is the same as the required vapour flow 
the most difficult split between two of the specified products if that sepa
tion is to be carried out in a single conventional two-product column.

We note that this is a direct extension of the results for the 3-product Pet
arrangement from Chapter 4.

Note that the rule above applies to any feasible product specifications, bo
cases with equal number of feed components and products, and for any pos
component grouping in the products in cases where the number of products i
than the number of feed components.

N 2Nmin≈
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In addition to the overall vapour flow requirement, we find the individual vapo
flow requirement for every column section, directly from the same diagram.
Vmin-diagram is based on feed data only and was originally intended to visua
minimum energy regions and distribution regions for all possible operat
points, in an ordinary two-product distillation column with multicomponent fee

In order to adjust two degrees of freedom in each internal column, we may in
eral need a two-way flow connection for either vapour or liquid at internal fe
junctions. Also at the sidestream stages we may use heat exchanger to co
the function of setting all degrees of freedom, and to supply or remove he
intermediate temperature levels. Practical arrangements with less degrees o
dom may also reach the same minimum vapour flow.

Although arrangements with more than 3 products may be feasible, the resul
general M product systems have mainly theoretical interest. The most impo
result is that we can find the minimum target value for the vapour flow requi
for separation of a multicomponent feed by distillation in directly coupl
arrangements.

The result is exact, but it is important to note that we have assumed constant
sure, and that we have not considered any internal heat exchange insid
system.

The latter may as shown in Chapter 6, give some further energy savings.
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Chapter 6

Minimum Energy Consumption
in

Multicomponent Distillation

In the evaluation of minimum energy consumption
(1st law) we here also discuss minimum entropy pro-
duction, or lost work (2nd law). This leads us to
the reversible Petlyuk arrangement. However the
total required heat supply is higher in this case
than for the typical (adiabatic) Petlyuk arrange-
ments, but there is a potential for further
reduction by use of internal heat integration.
This principle can also be applied to general
arrangements (not only reversible) and we compare
set of alternative distillation arrangements for a
given feed example. One interesting result is that
it is possible to go below the minimum energy, as
given for the extended Petlyuk arrangement pre-
sented in Chapter 5, by use of internal heat
integration.

We also conjecture that the generalized extended
adiabatic (not reversible) Petlyuk arrangement
require less energy than any other adiabatic
arrangement at constant pressure and without
internal heat integration.
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6.1 Introduction

In this chapter we use the extended Petlyuk arrangement presented in Cha
as a basis and discuss methods for further reduction of the energy consumpt
multicomponent distillation. Some important questions are: Is the directly c
pled Petlyuk arrangement always the best? Is it possible to find an ultimate ta
for minimum energy? Can reversible distillation give further energy reductio
What about internal heat exchange and operation at several pressure levels

We here define “best” by the following two measures:

1. Minimum Energy (first law efficiency)

2. Minimum Entropy Production (second law efficiency)

The surrounding plant, environmental issues, capital and energy costs have s
influence on the importance of each of these measures to the overall econ
However, we will not consider any economic measure, but present some the
ical distillation arrangements and show by some examples how we can m
arrangements, which approach the “best” in both the above senses. We
present the entropy calculations in more detail below.

In section 6.2 we show that for arrangements with adiabatic column sections
no internal heat exchange, the directly (fully thermally) coupled arrangeme
require less energy than other types of adiabatic column integration. We do
discuss the entropy production in this section, so this can be seen as an intr
tion and stating of the minimum energy level for a large class of distillati
systems.

The reversible Petlyuk arrangement (Petlyuk 1965) plays an important role in
paper, and we show how to compute compositions and vapour flows in sec
6.4. The basic theory of reversible distillation is included in Appendix Sect
6.10.

In Section 6.5 we compare set of alternative distillation arrangements for a g
feed example. One interesting result is that it is possible to go below the minim
energy, as given for the extended Petlyuk arrangement presented in Chapter
use of internal heat integration.

We also briefly discuss operation at several pressure levels in section 6.6.

6.1.1 Some Terms

We first define some important terms used in this chapter. A columnsectionis a
set of connectedequilibrium stagesand we will mainly discuss sections with infi-
nite number of stages. We introduce the termadiabatic columnsection, as used
by Petlyuk et. al. (1964), to denote a column section with constant molar fl
and no heat exchange along the section. Thus, the directly coupled columns
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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sented in Chapter 4 and 5 and typical conventional arrangements co
adiabatic sections. Innon-adiabatic sectionswe can supply or remove heat con
tinuously at any stage in the section. Areversible sectionis an infinite non-
adiabatic section where the heat is supplied or removed in a way that elimin
mixing irreversibility between neighbouring stages. In a columnarrangementwe
put together a number of sections, reboilers and condensers to perform a c
separation task. Sections may bedirectly (fully thermally) coupled,by two-way
liquid and vapour streams or may be coupled via condensers or reboilers. We
divide sections at stages with feed streams or side-draw streams. TheMinimum
energyis the minimum required external heat supply to reboilers and to non-
abatic column sections in order to carry out the specified separation task in a g
arrangement and is related to the first law of thermodynamics. Sometimes w
the total requirement forvaporizationor vapour flowas measure of the energy
requirement.

We will also discuss the separation work(exergy) which is related to the secon
law, where we also consider the temperature levels of the supplied and rem
heat in the system. Reversible distillation requires minimum separation wor

6.1.2 Basic Assumptions

We make the following basic assumptions, which are used throughout this pa

1. Ideal mixtures with constant relative volatiltity (α) and constant molar
flows (in adiabatic sections)

2. Constant and equal heat of vaporization (λ) for all components

3. Raoult’s and Dalton’s laws

4. Ideal gas in the vapour phase and negligible liquid volume

In Section 6.10 (Appendix) it is shown that with these assumptions, the temp
ture-composition-pressure relationship (T-x-P) for a multicomponent mixture
(see Petlyuk (1964) for a binary mixture) is given by:

(6.1)

Here is the boiling point for the reference component at the reference p
surePref. However, when considering temperature differences, these cons
disappear. The universal gas constantR=8.31 [JK-1mol-1)] .

In the entropy calculations we assume that the feed and the products are sat
liquids such that the heat supplied equals the heat removed.

1
T
---

R
λ
---

Pref

P
---------- αi xi

i
∑ 

 
 

ln 1
Tb r,
----------+=

Tb r,
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6.1.3 Minimum Entropy Production (2nd law efficiency)
The difference between the actual work which can be extracted from a pro
and the ideal reversible work is the “lost work” given by:

(6.2)

where is the temperature of the surroundings and is the total entr
change (entropy production). The lost work is zero only for a reversible proc
where , but in general we have from the second law of thermo
namics that:

(6.3)

Here, is the entropy change in the system (e.g. the distillation column)
is the entropy change in the surroundings. Note that is a state func

and is thereby a fixed number for a given separation task. We consider ideal
tures for which the entropy change when mixingNc pure compounds at constan
pressure and temperature is given by (x denotes mole fraction):

(6.4)

However, the entropy change in the surroundings depends on the actual pro
and can be calculated from:

(6.5)

where is the actual heat transferred at system temperature T. The integra
to be taken around the system boundaries where heat transfer to the surroun
occur. When the heat is supplied or removed at discrete temperature levelsQj at
Tj), for example in a reboiler and a condenser of an ordinary distillation colum
the integral in (6.5) can be replaced by summation:

(6.6)

If we can find a process where the total entropy change ( ) is zero
), it is reversible.

Wlost T0 Stotal∆=

T0 ∆Stotal

∆Stotal 0=

Stotal∆ Ssur∆ S∆+ 0≥=

S∆
Ssur∆ S∆

∆S R xi ln xi( )
i 1=

Nc

∑–=

Ssur∆ Qd
T

-------∫°–=

dQ

Ssur∆
Qj

T j
------

j
∑–=

Stotal∆
Ssur∆ S∆–=
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A normalized measure of the work loss, or entropy production is given by therel-
ative entropy production, defined here as:

(6.7)

Thus, to check the second law efficiency, we simply need to compute
the actual distillation arrangement. The entropy change is known from (
when applied to the feed and all the products.

6.1.4 Minimum Energy (1st law)

Even thought the net heat supply is zero ( ) it is useful to distingu
between heating ( ) and cooling ( ). We write
where the heating and cooling . Note
that the total heat supply equals the total cooling and is given by:

(6.8)

This is a useful measure from an energy point of view (1st law).

Ideally we want to have both small (small lost work, i.e. good 2nd la
performance) and small (small total heat supply, i.e good 1st l
performance).

The ideal separation process with a minimum value of is a reversible pro
with all the heating at the highest temperature ( ) and all the cooling at the l
est temperature ( ). For this process we have from (6.6):

(6.9)

Since the process is reversible, we have , i.e. we have that:

(6.10)

Stotal∆
S∆

-----------------
Ssur∆ S∆+

S∆
---------------------------=

Ssur∆
S∆

Qd∫° 0=
dQ 0> dQ 0< dQ dQH dQC+=
dQH dQ 0,( )max= dQC dQ 0,( )min=

QH QHd∫° QC– QCd∫°–= = =

S∆ total
QH

QH
TH

TL

S∆ sur

Qj

T j
------∑–

QH

TH
--------

QC

TL
-------–

 
 
 

– QH
1

TL
------ 1

TH
-------– 

 = = =

Ssur∆ S∆–=

QHmin
∆– S

1
TL
------ 1

TH
-------– 

 
--------------------------=
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The vaporization rate ( ) is related to the heat by . For an ideal dis
lation process with a pure light component at pressure in the top and a
heavy component in the bottom at pressure , the reciprocal temperature
ference is computed by (6.1) and we obtain:

(6.11)

Then the minimum vaporization rate can alternatively be expressed by the rel
volatility and pressures:

(6.12)

A theoretical reversible process with this behaviour can be obtained by usin
ideal heat pump which transforms the required amount of heat from the
extreme temperature levels, to the intermediate temperature levels as requi
the reversible distillation column (e.g. in Figure 6.2a at page 186). We could
imagine to adjust the pressure continuously along the column to keep the tem
ature constant at two levels, but this would also require reversible compres
and expansion between stages which is even more “theoretical” than the
pump solution.

Any irreversible process that supplies and removes heat at the same tempe
levels, e.g. an adiabatic distillation column, will require higher vaporization r
than given by (6.12) according to the second law of thermodynamics.

6.1.5 Summary of some Computation Examples

We show by some numerical examples that it is possible to go below the minim
energy requirement for the typical adiabatic Petlyuk arrangement (to be give
equation 6.13) by use of heat integration, even if we keep constant pressure
system. In Table 6.1 we have summarized the energy consumption (minim
vapour flow) and the relative entropy production (relative lost work) for so
conventional column arrangements and some examples of Petlyuk arrangem
with internal heat exchange which are described in Section 6.5. The table is s
in descending order by the required by external heat supply. Note, however,
the same ordering does not apply to the lost work.

We will in the rest of this paper show in more detail how these results
obtained.

V QH λV=
PL

PH

1
TL
------ 1

TH
-------–

R
λ
--- αLHln

PH

PL
-------ln+

 
 
 

=

Vrev,min
∆– S

λ 1
TL
------ 1

TH
-------– 

 
------------------------------ ∆– S R⁄

αLHln
PH

PL
-------

 
 
 

ln+

-----------------------------------------= =
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In the calculation of the numerical values we have assumed constant pressur

the following feed data: , , , .

Table 6.1:  Comparison of minimum energy (external heat supply) and rela
entropy production (lost work) for a set of column arrangements for a given f

Configuration
(Ad: Adiabatic
Non: Non-ad.)

External
Energy
Vmin=

 Relative
Entropy

Production
Comments:

(HE: Heat exchange)

Direct Split, no HE
(conventional)

Ad 2.072 0.59 C1:A/BC, C2: B/C

Indirect Split, no HE
(conventional)

Ad 2.032 1.21 C1:AB/C, C2: A/B

Side Rectifier
(directly coupled)

Ad 1.882 0.86 C1:A/BC, C2: B/Cl

Side Stripper
(directly coupled)

Ad 1.882 1.05 C1:AB/C, C2: A/B
Figure 6.1, page 177

Reversible Petlyuk
Column

Non 1.667 0.00 Figure 6.2a page 186

Conventional prefrac-
tionator arrangement

Ad 1.556 0.63 C1:A/C, C21:A/B,
C22: B/C, no HE

Petlyuk Column
(typical)

Ad 1.366 0.72 Figure 6.2b page 186
without side-HE

Petlyuk Column +
side-HE

Ad 1.366 0.54 Figure 6.2b page 186

Petlyuk + HE across
the dividing wall

Ad+
Non

1.222 0.54 Example 2,Section 6.5

Petlyuk + HE from
sidestream to feed

Ad 1.181 0.49 Example 3,Section 6.5

Petlyuk + total mid-
dle HE

Ad+
Non

1.000 0.26 Example 1a,Section 6.5

Reversible Petlyuk
with internal HE

Non 1.000 0.05 Example 1,Section 6.5

Reversible process
with only two temper-
ature levels

Non 0.793 0.00 Example 0,Section 6.5
Theoretical minimum
ref. Section 6.1.4

Σ∆Q λ⁄ Stotal∆ S∆⁄

F 1= α 4 2 1, ,[ ]= z
1
3
--- 1

3
--- 1

3
---, ,= q 1=
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6.2 The Best Adiabatic Arrangement Without Internal
Heat Exchange

Petlyuk (1965) showed that it is possible to device a reversible Petlyuk arra
ment (see Section 6.5) with zero lost separation work and thus requires minim
separation work compared to any other separation process.

However, it has also been conjectured that the adiabatic Petlyuk arrangem
where all the heat is supplied in the bottom reboiler at the maximum tempera
requires minimum energy (Vmin) compared to any other adiabatic distillatio
arrangement (without internal heat exchange). However, no proof has been f
in the literature (Petlyuk 2000), except for the ternary case. For the ternary
Fidkowski and Krolikowski (1987) showed that the 3-product Petlyuk arran
ment always has a smaller vapour flow than any arrangements with side-strip
or side-rectifiers and they showed that these also performed better than the
ventional direct and indirect split sequences.

For the generalized adiabatic Petlyuk arrangement presented in Chapter 5
minimum energy requirement for separation of a feed mixture ofNc components
is given by:

, where (6.13)

where are theNc-1 common Underwood roots found from the feed equati
(q is liquid fraction in the feed (F) andz is the feed composition):

(6.14)

Note that all the heat can be supplied in the bottom reboiler and be removed i
top condenser, but, in some cases, some of the heat may be supplied or rem
at the product outlets (Chapter 4 and 5).

In the following we consider adiabatic column sections, and we verify that
adiabatic Petlyuk arrangement is indeed the best distillation arrangement w
we regard the total requirement for vaporization at constant pressure, and w
we do not consider any internal heat exchange within the arrangement.

6.2.1 Direct Coupling Gives Minimum Vapour Flow

First we will show that the direct (fully thermal) coupling minimises the vapo
flow requirement through any column junction.

Vmin
Petlyuk αi ziF

αi θ j–
----------------

 
 
 

i 1=

j

∑j
max= j 1 Nc 1–,{ }∈

θi

αi zi

αi θ–
--------------

i
∑ 1 q–=
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Let us consider a general junction at the top of the prefractionator (C1) and
succeeding column (C21) as illustrated in Figure 6.1. To simplify we assum
ternary feed, but similar results can be obtained for any number of compon
and at any junction in an arrangement.

We assume that the two degrees of freedom in column C1 (e.g. )
fixed. In Chapter 4 we showed that the composition in the recycle flow (
from C21 to C1 normally has no effect on the net component flows from C1
C21. This is so unless a component which would have been removed in an
nary column (with a condenser) is not introduced in the recycle flow to
directly coupled column. For reasonable operation of the system this will n
mally not be a problem.

At the interconnection to C21 we allow for supply or removal of heat (still wi
fixed ). This will then only affect the effective liquid fraction ( )
to column C21 and have no impact on the component flows ( ). Recall
direct coupling implies that the reflux in C1 is taken directly as a side-draw fr
C21 and that the vapour flow from C1 is fed directly to C21. In this case the ex
nal heat exchange is zero, and we obtain an equivalent liquid fraction given

(6.15)

Note that we always have with direct coupling, which is equivalent to
superheated vapour feed. Heat removal (e.g. a condenser) will increase
heat supply (superheater) will decrease its value.

DC1 VT
C1,

LT
C1

DC1 VT
C1, qC21

wi
C1

qdc
C21 1 VT

C1
D

C1⁄–=

qC21 0<
qC21

VT
C1

VT
C21

VB
C21

V
I1

= VT
C21

V
I2

= VT +
C1 VB

C21

C1

C21

Heat Q

LT
C1

Net feed F =D
C1C21

θΑ

φΑ

C21

V

φΑ θΑ
C21

V
I1

V
I2

Figure 6.1: General column interconnection junction. The direct (full
thermal) coupling gives which implies
and a zero external heat exchange at the interconnection (Q=0).

θA
C21 φA= min max V

I1
V

I2,( )( )
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The most important effect of the direct coupling is that the Underwood roots
the top of C1 “carry over” as the common (minimum energy) Underwood ro
for C21 (Carlberg and Westerberg 1989). Thus, , which is vital
the following analysis.

For a given operation of the first column (not necessarily at minimum energy),
vapour flow, and net component flows in the top can be related to a certain Un
wood root ( ), here given by the defining equation in column C1 (we omit
superscript C1 onw and ):

 (note ) (6.16)

Consider now any type of interconnection to the succeeding column (C21)
minimum energy operation in C21 the flow rates are determined by the com
nent distribution and the common Underwood roots. Thus:

(6.17)

The common Underwood roots can be found from the feed equation of C21 (6
and will depend on the external heat through the feed quality. The net compo
flow and net distillate flow in C1 are constants.

(6.18)

Note that for any reasonable operation of columns, all net component flows
positive in the top sections and negative in the bottom sections. This implies
the minimum vapour flow in the top section will increase as the common Und
wood root increase and the vapour flow in the bottom section will decrease.

In the following we fix the operation of column C1 such that and all , a
thereby all are constant, and we want to find the value of the common Un
wood root in C21 ( ) which minimize the maximum vapour flow rates throu
any of the intersections above or below the feed junction (see Figure 6.1):

θA
C21 φA

C1=

φ
φ

VT
C1

αAwA

αA φA–
-------------------

αBwB

αB φA–
-------------------

αCwC

αC φA–
--------------------+ += D

C1
wi∑=

VTmin
C21

αAwA
C21

αA θA
C21–

-------------------------
αBwB

C21

αB θA
C21–

-------------------------
αCwC

C21

αC θA
C21–

-------------------------+ +=

VBmin
C21

αA wA
C21 wA–( )

αA θA
C21–

---------------------------------------
αB wB

C21 wB–( )

αB θA
c21–

--------------------------------------
αC wC

C21 wC–( )

αC θA
C21–

---------------------------------------+ +=

αAwA

αA θC21–
-------------------------

αBwB

αB θC21–
-------------------------

αCwC

αC θC21–
-------------------------+ + 1 qC21–( )DC1=

VT
C1 wi

φ j
θA

21
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



6.2 The Best Adiabatic Arrangement Without Internal Heat Exchange 179

re

.

I2)
tual
ou-
d at
.

ith
ill

irect
ro-
sult
 where (6.19)

 and (6.20)

A typical dependency of and as a function of is shown in Figu
6.1, and we see that the analytical solution is given by:

arg( ) = (6.21)

Proof

For normal operating conditions, we have  and .

This implies that  is found when .

By applying  in equations (6.16-6.20) we obtain
Q.E.D.

In conclusion, minimization of the vapour rate through any intersection (I1 or
is found when the common Underwood roots in column C21 equal the ac
roots in the top section of C1. This is exactly what we obtain with a direct c
pling. Note that the proof does not require the first column to be operate
minimum energy and that it is valid for any distribution of components in C1

6.2.2 Implications for Side-Strippers and Side-Rectifiers

A direct implication of the result in Section 6.2.1 above is that arrangements w
side-strippers (like in Figure 6.1 with a direct coupling) or side-rectifiers, w
always have a lower total need for vaporization than the corresponding ind
split or direct split configurations. This was also shown by Fidkowski and K
likowski (1987) for the ternary case, but it is straightforward to extend the re
in Section 6.2.1 to the general multicomponent case.

6.2.3 The Adiabatic Petlyuk Arrangement is Optimal

The result in Section 6.2.1 gives rise to the following conclusion:

V
I1

V
I2,( )max 

 
θA

C21
min

VI1 VTmin
C21= VI2 VT

C1 VBmin
C21+=

V
I1

V
I2 θA

21

V
I1

V
I2,( )max 

 
θA

C21
min φA

θA
C21d

dV
I1

0>
θA

C21d

dV
I2

0<

V
I1

V
I2,( )max 

 min V
I1

V
I2

=

θA
C21 φA= V

I1
V

I2
=
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We assume constant relative volatilities, constant molar flows, consta
pressure and no internal heat integration. Then the generalized adiab
Petlyuk arrangement has the lowest need for vaporization compared to
other adiabatic distillation arrangement for separation of an arbitrary fee
mixture into its pure components when

This result is based on the simple argument that at any junction where we m
consider another type of connection than the direct coupling, the required va
flow through the junction, and thereby through a cross-section of the wh
arrangement, will increase.

We have not presented a complete proof, so the above conclusion is a conje
However, for the ternary case, it has been proved by Fidkowski and Krolikow
(1987), when considering conventional arrangements and side-strippers as
native configurations.

A qualitative explanation is that the direct (full thermal) coupling can be regar
as ideal heat integration. For example when a side stripper configuration is
instead of an indirect split configuration, the direct coupling replaces a conde
(which in practice has an inevitable loss). This is probably the background for
term “full thermal coupling” used by many authors. However, here we will u
the term “direct coupling” which relates to that both the vapour and liquid flo
are coupled directly between two columns. In addition, we obtain reversible m
ing at the junctions when we keep the vapour and liquid flows in the junction
equilibrium.

6.3 Entropy Production in Adiabatic Arrangements

6.3.1 Adiabatic Column (Section)

We consider a column (or just a section) with constant vapour flow (V),
and known composition and pressure in the top (T) and bot-

tom (B). Then equation (6.6) combined with (6.11) gives:

(6.22)

Note that this expression is independent of the heat of vaporization, the bo
point temperatures and the absolute pressure. In the case of constant pressu
when all the heat is supplied in the bottom where only the heavy key (H) app
and is removed in the top where only the light key appear (L), (6.22) is simplifi
to:

QH λV QC–= =

Ssur∆ λV
1

TT
------- 1

TB
-------– 

  RV
αi xi T,( )PB∑
αi xi B,( )PT∑

-----------------------------------
 
 
 

ln= =
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(6.23)

(Note that this could be found from equation (6.12) when replacing w
V and  with , and constant pressure).

Example: We may apply (6.23) to adiabatic binary distillation. Combine
with Kings formula for Vmin, (for ) we obtain:

(6.24)

For the feed: , , , we obtain .
The actual entropy change  (6.4), and the relative entro
production .

6.3.2 Adiabatic Petlyuk Arrangements

The entropy production in adiabatic Petlyuk arrangements (see Figure 6.2
page 186) can be found by the expression for single adiabatic sections. We
use combinations of (6.23) for nonsharp products or (6.23) for sharp pro
splits. Consider a ternary case (components ABC with relative volatilit

and saturated liquid feed) where we have sharp product splits
that we have the possibility to change the vapour flow at the sidestream stagS)
(by supply or removal of heat). Then, given by the minimum vapour flows (V) in
the reboiler (B) and condenser (T):

(6.25)

When the vapour flow is constant through the arrangement we h
, ( ), and from (6.25 or directly

from 6.23) we obtain:

(where ) (6.26)

Note that . From this it
is simple to see that the entropy production when we have constant vapour
through the arrangement as given by (6.26) is always larger then the expre
in (6.25) where we allow for supply or removal of heat at the sidestream sta

Ssur∆ RVlnαLH=

Vrev,min
∆S ∆Ssur–

q 1=

Ssur∆ R
1 α 1–( )z+( )

α 1–
----------------------------------F αln=

F 1= α 2= z 0.5= Ssur∆ R 1.5 2ln⋅ ⋅=
S∆ R– 2ln⋅=

Ssur∆ S∆+( ) S∆⁄ 0.5=

αC αB αC, ,

Ssur∆ λ VB
1

TS
------ 1

TB
-------– 

  VT
1

TT
------- 1

TS
------– 

 + 
 =

λR VB αBCln VT αABln+( )=

VB VT V= = Vmin
Petl VBmin VTmin,( )max=

Ssur∆ RVlnαAC= αACln αBCln αABln+=

max VB VT,( ) αBCln αABln+( ) VB αBCln VT αABln+≥
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6.4 Reversible Distillation

Reversible multicomponent distillation have been described by Grunberg (19
Petlyuk et. al. (1964 and 1965) and Fonyó (1974ab). An overview is also foun
the textbook by King (1980). Here we show in detail how to compute flow ra
and composition profiles in a reversible arrangement for separation of multic
ponent feed, and we will relate this to the adiabatic Petlyuk arrangement.

The sources of irreversibility in a distillation process come from mixing of flui
with different composition and temperature. This may happen at the feed s
in the top or bottom when fluid is returned to the column, and also inside the
umn when there is a composition difference between neighbouring stage
adiabatic distillation, there will always be a set of stages inside the column
tions with significant composition differences resulting in irreversible intersta
mixing, even with infinite number of stages.

To obtain reversible operation we consider infinite non-adiabatic sections.
assume that at any stage (n), there is a local pinch zone with constant compositio
(i.e. ) such that we obtain reversible mixing between neighbour
stages. Then the material balance for component(i) at an arbitrary stage is given
by:

(6.27)

Note that the net component flowwi is always constant inside any type of sectio
From (6.27) we get the requirement for vapour flow through the stages:

Top: Bottom: (6.28)

Note that this expression is valid for any component (i). The net product flows are
trivially given by  and .

A characteristic of thereversible distillationcolumn is that some of the heat is
supplied continuously along the bottom (stripping) sections and removed a
the top (rectifying) sections, as opposed to the conventional adiabatic arra
ments, where there are no heat exchange along the column sections.

In Appendix Section 6.10 we present the reversible distillation theory in m
detail. We show that when the vapour flow is set according to (6.28), the entr
to the surroundings is described by:

(6.29)

xn 1+ xn=

V yi Lxi– wi=

VT

wi xiD–

yi xi–
--------------------= VB

wi xiB+

yi xi–
--------------------=

D Σwi T,= B Σ– wi B,=

dSsur R wid xiln( )( )
i

∑=
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For any given reversible arrangement, it is then trivial to show that integratio
(6.29) along all the reversible sections gives (where is giv
by (6.4)). In the appendix, this is shown in detail for a reversible binary colum
Below, we treat the reversible Petlyuk arrangement more carefully.

6.4.1 The Reversible Petlyuk Arrangement

In multicomponent distillation, Petlyuk (1965) and Fonyó (1974) list two ma
properties which limits the possibilities for reversible operation:

1. We cannot remove more than one component in each end of a 2-prod
column. This is due to the fact that we need a pinch zone across the f
stage, and this is only possible for so-called Class 1 separations (Shir
1950). If we relate this to theVmin-diagram (ref. Chapter 3), reversible
operation is only possible at the preferred split, where we remove exa
one feed component in each end, or in the triangle below, where all co
ponents may be distributed to both ends.

2. We require that the top reflux is in equilibrium with the vapour flow leavin
This is not possible with an ordinary condenser unless the liquid flow r
is zero. Similarly the vapour flow into the bottom must be in equilibrium
with the liquid flow out. This cannot be done reversibly in a single con
denser or reboiler in the case of more than 2 components.

Note that both these limitations can be overcome with a Petlyuk arrangemen
already have reversible mixing in all junctions and by using infinite reversible s
tions, the whole arrangement becomes reversible. In the following we will pre
a procedure for computing reversible heating or cooling along the sections,
the corresponding composition profiles. Figure 6.2a illustrates the results f
given ternary example.

The vapour and liquid rates trough the feed stage can be found by assum
pinch at the feed stage, for example by applying Underwood’s (1948) equat
for minimum reflux for the stages immediately above and below the feed.
recoveries (or net component flowswi) of all components are completely deter
mined when we specify two independent variables at the feed stage.

Away from the feed stage we can express the compositions and flow rates
function of a single free variable, e.g. the composition of the component whic
to be removed in that section. (This can be shown by inspecting the equa
involved). When we remove the most extreme volatile component (k) in a section
(its composition has to approach zero before the end and the material flowwk=0)
we may apply equation (6.28/6.60) fori=k. Then the following expression applies
for both the top and the bottom section (with different componentsk and net flows
wi, of course):

Ssur∆ S∆–= S∆
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Interestingly, the composition of an arbitrary component(i) on a certain stage
depends linearly on the mole fraction of the component (k), which is to be
removed, and its mole fraction at the feed stage of that column.

, for (6.31)

Herek refers to the least volatile component in the top section, and the most
atile component in a bottom section. Equation (6.31) can be proved by inse
(6.31) into (6.30), and verifying that the material balance (6.27/6.58) is fulfil
for all component flows.

Now we extend this to compute flow rates and compositions in the whole arra
ment. The compositions in all feed junctions are found by applying (6.
recursively for every section. The limiting pinch composition in the top of the fi
column (the prefractionator), when the heavy component (i=H ) is removed, can
be found by settingxH=0.

(6.32)

Similarly, wheni=L denotes the light component, the composition in the liqu
leaving the bottom (where , ) becomes:

(6.33)

When the direct (fully thermal) coupling is between pinch zones at the same c
position, the mixing will be reversible. Then the “pinch”-compositions given
(6.32 and 6.33) express the “feed-stage” composition in the succeeding colu
and we simply reuse the same equations for that column, but with one compo
removed from its feed. Going through the whole arrangement, we find that a
arbitrary junction (column Cx) the “feed composition” is uniquely determined
the first feed stage composition (xF), and the range of components present at t
junction ( ).

V x( ) wi
i

∑–
αk

αi xi
i

∑
----------------- 1–

 
 
 
 
 

⁄= D wi T,
i

∑= B wi B,
i

∑–=

xi xi F,
1 xk–

1 xk F,–
-------------------

 
 
 

= i k≠

xi PT,
C1

xi F,
1 xH F,–
---------------------=

wL 0= xL 0=

xi PB,
C1

xi F,
1 xL F,–
--------------------=

L i H≤ ≤
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Example: With a ternary saturated liquid feed (components ABC)

 and (6.34) gives: ,

The net component flows at the feed stages in each column can again be com
by using the preferred split in every column inside the arrangement.

The entropy change to the surroundings is given by equation (6.29/6.62) for
section. For our ternary example shown in Figure 6.2a, we may write the t
entropy change as:

(6.35)

Since we have pinch in the junction regions, the terms involving any intermed
junction composition will cancel out due to the material balance for each net c
ponent in the junction. For example the terms involving the contribution from
light component at the feed junction at C21 are given as:

Thus, the total entropy change in the surroundings will depend only on the p
uct and feed compositions and we obtain , which proves that
have a reversible process.

The solution for a ternary case is illustrated in Figure 6.2a. Numerical values
shown for the compositions and flow rates in the end of every section.

The solution procedure is summarized below:

• The net component flows are computed for the prefractionator (C1) feed
specifying a sharp A/C split and pinch across the feed stage (preferred s
(ref. Chapter 4).

• The net component flow rates in columns C21 and C22 are trivial since
require pure products, and the junction feed flows are given from C1.

• All junction compositions are computed from (6.34)

• Vapour flow in each end is computed from (6.30)

xi F,
Cx

xi F,

xj F,
j L=

H

∑
----------------------= xi F,

Cx 0= i L< i H>

xF z= xA F,
C21 zA

zA zB+
-----------------= xB F,

C22 zB

zB zC+
-----------------=

∆Ssur ∆Ssur
C1T ∆Ssur

C1B ∆Ssur
C21T ∆Ssur

C21T ∆Ssur
C22T ∆Ssur

C22T+ + + + +=

wA T,
C1

xA T,
C1

ln wA B,
C21

wA T,
C21

–( ) xA F,
C21

ln+ wA T,
C1

wA B,
C21

wA T,
C21

–+( ) xln A F,
C21

0= =

∆Ssur ∆– S=
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a) Reversible Petlyuk Arrangement a) Adiabatic Petlyuk Arrangement

Figure 6.2: The reversible Petlyuk arrangement (a), has heating and cooling alon
sections. In the (irreversible) adiabatic Petlyuk arrangement (b), all heat is supplied
bottom reboiler. Minimum required internal flow rates and the resulting junc
compositions (x) are shown for the given feed. (The heat removal at the side-stage f
adiabatic arrangement (b) is optional).
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6.4.2 Comparing Reversible and Adiabatic Arrangements

The internal flows and pinch zone compositions for the adiabatic Petlyuk arra
ment shown in Figure 6.2b are computed by the methods presented in Chap
and 4. The composition profile in the prefractionators are shown in Figure
Recall from Chapter 3 that the adiabatic profile also follow straight lines from
feed to the pinch composition at the ends in the triangular diagram.

However, in the reversible arrangement the pinch composition at each end o
results in a lower vapour flow requirement in the succeeding columns, comp
to the adiabatic arrangement. This is easy to see qualitatively: In C22 the m
fraction of C is increased at its feed stage, leading to a lower boilup ratio, and
ilarly in C21 the mole fraction of the light A is increased at the feed stage, lead
to a lower reflux ratio.

Note that even if the reversible arrangement in Figure 6.2a is thermodynamic
optimal with respect to minimising the lost work, the numerical example sho
that the total heat supply is higher than for the (irreversible) adiabatic arrangem
in Figure 6.2b.

The most important similarities and differences between the reversible and
adiabatic arrangements are listed below:

• The flows through the prefractionator feed stage and the recoveries of f
components from the prefractionators are identical.

• The pinch zone compositions at the ends of the prefractionator differ a
result in a a lower requirement for energy in the succeeding columns for
reversible prefractionator.

• The total amount of required heat supply for vaporization is higher in t
given reversible arrangement for our example.

Feed (z)

A

B

C
Reversible profile

Adiabatic profile
0.50.5

0.6 0.54
xBP

xBP

Junction
into C22

Junction
into C21

extra heat
added in C1B

Profile with

Figure 6.3: Composition profiles in the prefractionators (C1) for the adiabatic a
reversible arrangements shown in Figure 6.2.

α = [4 2 1]

q = 1
z = [0.33 0.33 0.33]
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6.5 A Case Study: Petlyuk Arrangements
with Internal Heat Exchange

We here show by a set of numerical examples that by use of internal heat inte
tion it is possible to reduce the external heat supply requirement below the
known minimum vapour flow values given by Fidkowski and Krolikowski (198
for the ternary case, and generalized in equation (6.13) (Chapter 5) to any m
component case.

The basis for this possibility is that the temperature range in some of the col
sections overlaps, and some of the removed heat can be utilized as heat sup
other sections and in that way reduce the need for external heat supply.

The examples are based on the ternary case in Figure 6.2. For all cases we

(6.36)

6.5.1 Example 0: Theoretical Minimum Energy Limit

Recall that the absolute minimum heat supply in a reversible process is whe
the heat is supplied at the highest temperature, and is removed at the lowes
perature as shown in (6.12). For the given feed ( ), the correspondin
minimum need for vaporization by external heat supply in a hypothetical rev
ible “distillation” process is:

(6.37)

6.5.2 Example 1: Internal Heat Exchange
in the Reversible Arrangement

The total need for heat supply for vaporization in all three bottom sections of
reversible arrangement in Figure 6.2a, is given by:

= (6.38)

However, by careful inspection of the available heat from cooling ( ) a
required heating ( ) at each temperature (T) for the given case we find that
the heat required in the middle sections C1B and C21B can be supplied by
heat removed from C22T and C1T and the sidestream condenser (the deta
this procedure is not shown, but ordinary Temperature-Heat diagrams ca

∆S RΣzi ziln– 8.31
3
3
--- 1

3
---ln⋅– 9.13 JK 1– mol 1–[ ]–= = =

F 1=

Vrev,min

zi ziln∑
αLHln

---------------------– 3 3⁄( ) 1 3⁄ln
4ln

------------------------------– 0.7925= = =

Qv

λ
------ VBF

C22
V

C1B∆ V
C21B∆+ += 1

4
9
--- 2

9
---+ + 15

9
------ 1.667= =

dQc T( )
dQH T( )
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used). Thus, in theory, minimum heat supply, when the possibilities for inte
heat exchange case is utilized, is given by the requirement for heat supply in C
only: . We may also calculate the entropy to the surroundings
(6.29) for sections C22B and C21T and along the middle sections, where
externaldQ=0, we use (6.5 or 6.50) directly (this part yields the two first terms

(6.39)

We get a little entropy production ( ) due to some irreversibility in th
heat exchanger system since we take out some heat which is returned at sl
lower temperature levels. However, the separation in the column is not affec

Note that in the general case we might get from (6.39). Howev
this would only imply that we are unable to obtain full heat exchange in the m
dle sections, and (6.39) would then not represent the complete .

All the external heat is now supplied in the bottom reboiler and along the bot
section of C22, and is removed along the top of C21 and in the top condenser
internal flows and compositions will be identical to the case in Figure 6.2a.

Example 1a .We may alternatively operate the top and bottom as adiabatic s
tions and supply all the required heat in the bottom remove it in the top (we
consider the same heat exchange in the middle sections). The entropy chan
the surroundings will in this case simply be given by equation (6.23):

(6.40)

6.5.3 Example 2: Heat Exchange Across the Dividing Wall

Usually, capital costs prevent distributed reboilers and condensers along the
of column sections. However, in a Dividing Wall Column (DWC) the sections a
closely integrated, and it is interesting to study if we may get positive ene
effect for free, from the potential of heat transfer across the dividing wall. T
idea is to distribute the heat transfer inside the Petlyuk arrangement, and pos
obtain reduced energy consumption in the reboiler.

The beneficial directions are always from section C1B to C22T and from C1T
C21B. However, the temperature profiles along the sections may not always
a driving force in the beneficial directions. In addition, the heat transfer surf
area may not be sufficient. This implies that the desired heat transfer coeffic
will depend on feed properties and flow rates. Lestak et al. (1994) considered

VBF
C22 1.0=

∆Ssur'
VTF

C21

TF
C21

------------
VBF

C22

TF
C22

------------– R wC B,
C22 xC F,

C22ln wB T,
C21 xB F,

C21ln–( )– 9.60= =

∆Ssur S∆–>

∆Ssur' ∆S–<

∆Ssur

∆Ssur RVB
C22 αLHln 8.31 1.00 4ln⋅ ⋅ 11.52= = =
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transfer across the wall for a given case, and it was found that it could be be
cial to allow for heat transfer along a part of the dividing wall and insulate
other part. But the overall reduction in heat input was found to be small.

In our example we may try to operate only sections C1B and C22T reversibly.
upper parts (C1T, C21T and C21B) will then require the same flows as in the
abatic arrangement. Note that the demand in C1B is higher than the available
in C22T, so we can never reach fully reversible operation in C1B. However
using equations (6.46) and (6.49) we can adjust the feed junction compositio
C22 until we get a heat balance ( ). This occurs at
which gives and the need for boilup is reduced with about 8
from  in the pure adiabatic case to .

An alternative approach is to use forced heat integration at one, or more, pa
stages. For example by using a part of the vapour flow from a stage in C22T
heating fluid at a suitable stage in C1B. This may give better flexibility in ope
tion compared to a passive heat transfer across the wall, but it will be m
expensive in implementation and operation.

6.5.4 Example 3: Pre-heating of the Feed by
Heat Exchange with the Sidestream

The result obtained when all the available internal heat is utilized is not very r
istic. However, it is possible to obtain positive results with a much simp
approach. In the adiabatic arrangement in Figure 6.2b, a large portion of the
stream is available as vapour. If the feed temperature is below the boiling poi
the pure intermediate, it is possible to transfer heat from the sidestream to
feed. Stage temperatures for the example is obtained from equation (6.52) w
we assume that the heavy component boiling point is and hea
vaporization  (which is close to n-pentane properties at 100kP

With equimolar feed, the feed stage temperature while the pure
component boiling point is . However, as the amount of vapo
in the feed is increased, the feed stage temperature will be increased, an
amount of sidestream available as vapour will be decreased. The vapour
have been computed from the Vmin-diagram methods presented in chapter 4.

For the given case we find that with a liquid fraction , all the he
from condensing the sidestream is transferred to the feed. The resulting li
feed stage composition is changed from

and the feed stage temperature becom
, which is still below . The important mole fraction of the

intermediate B-component in pinch zone at the feed junction to C22 is redu
from to and the vaporization rate in the reboiler
reduced from  to .

∆VT
C22 ∆VB

C1= xB 0.571=
VB

C1 F⁄ 0.611=
VB

C22 F⁄ 1.366= VB
C22 F⁄ 1.222=

Tb C, 310K=
λ 25kJ kg⁄=

TF 285.1K=
Tb B, 289.3K=

q 0.7620=

xF 0.333 0.333 0.333, ,[ ]=
xF 0.2778 0.3398 0.3825, ,[ ]=
TF 287.0K= Tb B,

xBP 0.608= xBP 0.560=
VB

C22 F⁄ 1.364= VB
C22 F⁄ 1.181=
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The total need for vaporization per unit feed in both columns in a conventio
direct split configuration is in this case. The savings in reboiler duty co
pared with the plain Petlyuk arrangement is 32.8% and can in theory be incre
to 41.8% when we heat the feed by condensing the vapour portion of sidestr

This kind of heat integration is only possible when the feed temperature is be
the sidestream temperature, and excess vapour is available at the sidestream
However, if there are other available streams in the plant at suitable temper
levels, the heat exchange does not have to be done directly between the sides
and the feed stream, but with other streams.

Unlike the ideal heat exchange within the reversible arrangement, heat exch
with the sidestream can be implemented in practice, and we may get signifi
positive effects for units with realistic size and efficiency.

6.5.5 Summary of the Examples

The main results have been summarized in Table 6.1. The numbers should
from themselves, but here are some observations:

• The Adiabatic Petlyuk column has the lowest energy consumption com
pared to the arrangement without heat integration. This will also be a
general result (ref. Section 6.2 and Fidkowski and Krolikowski (1987))

• The heat-integrated arrangements have even lower energy consumpt
than the Adiabatic Petlyuk column.

• The conventional direct split configurations require less separation wo
than the typical Petlyuk arrangement where all the heat is supplied in 
bottom and is removed in the top. Note also that the different reversib
arrangements may have quite different requirements for total heat sup

• However, the Petlyuk column with an heat exchanger at the sidestrea
stage (Figure6.2b)has lower lost work than any of the arrangements wit
out heat integration (this result may be case specific).

• For the given feed data, the extremely simple configuration with heat tra
fer to the feed from condensation of the available sidestream vapour fl
(Ex 3) seems very promising, both with respect to small minimum ener
requirement, small lost work, and possibility for practical realization.

However, we cannot make general conclusions from Table 6.1 since the dat
only valid for the particular feed used in the example.

2.032
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6.6 Operation at Several Pressure Levels

The pressure has a large impact on distillation and is widely used in the indu
to get a suitable temperature range in each column. This is important for opt
use of available utilities, and for optimal heat integration within a plant. We w
not go into much detail on this issue, but we will look at three examples be
where we combine heat exchange and different pressure levels. Note that we
assume no loss related to the compression or expansion or in the heat excha

6.6.1 Example 1: Feed Split (Binary Case)

The configuration in Figure 6.4 shows a case where t
feed is split into two streams where 50% is separated
high pressure and 50% at low pressure. The pressures
adjusted so the temperature in the reboiler of the low-pr
sure column is equal to the condenser temperature of
high pressure column (TM), and we assume perfect hea
exchange. (Note that in practice we would require a certa
temperature difference).

If the columns are adiabatic, it is trivial to find that the min
imum boilup (Vmin) in the high-pressure reboiler will be
50% less than in a single column since the feed is reduc
by 50% (we assume constant relative volatility).

However, we may also check the requirements for a reve
ible system. The required pressure ratio is
which is found from equation (6.1) by equating the boilin
points of pure light component at high pressure and pu
heavy component at low pressure at (TM), thus the relation
between temperature spans are given by:

(6.41)

Minimum separation work will of course be identical for any separation proce
but minimum required vaporization in reversible distillation depends on the te
perature span as given by (6.12). For the temperature span in Figure 6.4 we o

(6.42)

AB

A

B

A

B

50%

50%

PH

PL

Figure 6.4: Binary
separation at two
pressures

Heat
removed

Heat
supplied

TM

TH

TL

TM

PH PL⁄ α=

1
TL
------ 1

TH
-------– 2

1
TM
-------- 1

TH
-------– 

  2
1

TL
------ 1

TM
--------– 

 = =

Vrev,min

zi ziln∑–

αlog PH PL⁄log+
---------------------------------------------

1
2
---

zi ziln∑–

αlog
------------------------ 

 = =
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This result is 50% below the requirement for a single reversible column. Thus
efficiency of the adiabatic system will be the same in the tw
cases, provided that the heat exchange between the columns is ideal.

This is an example where we trade heat supply with temperature span, but wi
changing the consumption of separation work. A typical application area is
plant has available hot utility at high temperature, e.g. from an exothermal pro
like a methanol reactor. Then the configuration in Figure 6.4 is a practical arra
ment that make the best use of the available energy.

6.6.2 Example 2: Double Effect Direct Split (DEDS)

For the ternary case we may consider a heat-inte-
grated direct split configuration (double effect
column). Figure 6.5 shows an example where the
upper column (C1) performs a sharp A/BC split and
the lower (C2) the B/C split. Column C2 is operated
at a higher pressure so reboiling in column C1 can be
obtained by full heat integration with the condenser
in column C2. The required minimum pressure ratio
(for ideal heat exchange) can be found from (6.1):

(6.43)

The temperature levels can be computed from (6.1)
for a given reference pressure level and correspond-
ing boiling point of the reference component, and a
given heat of vaporization.

The required vapour flow from the bottom reboiler in
column C2 can be found by Underwood’s equations
for C1 and King’s formula for C2 (Chapter 2):

(6.44)

A double effect indirect split (DEIS) will be equivalent. Then the first column w
normally be operated at high pressure, and will carry out the sharp AB/C sp

We may operate both columns at their minimum vapour flow at the same time
adding or removing additional external heat in the middle heat exchanger so
expressions on the right hand side in (6.44) are fulfilled.

Vrev,min Vmin⁄

A

BC

B

C

PH

PL

Figure 6.5: Double
effect Direct Split
(DEDS) configuration
for 3-product separation

Heat
removed

Heat
supplied

TM

TH

TL

TM

ABC

Pump

BC

C1

C2PH PL⁄ aB zB zC+( ) αBzB αCzC+( )⁄=

VBmin
C2

F
--------------- max

αAzA

αA θA–
------------------- 1 q–( )+

αBzB αCzC+

αB αC–
---------------------------------,

 
 
 

=
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6.6.3 Example 3: Double Effect Prefractionator Column (DEPC)

Consider an arrangement with a separate conventional prefractionator col
but where the condenser in the prefractionator is directly heat integrated with
reboiler of the main column as shown in Figure 6.6 (Bildea and Dimian 199
(Fonyó et. al. 1999) (Emtir et.al. 1999). In order to get direct heat transfer,
pressure in the prefractionator must be higher than in the main column. Note
all the external heat is supplied in one reboiler and is removed in one conde
just as for the Petlyuk column. However, the main difference is operation at m
than one pressure level.

For any given split in C1 (distribution of the
middle B-component) we will obtain a certain
product composition in the top .
The pressure ratio can be found from (6.1) b
equating the temperatures in top of C1 (A+B
components) and the bottom of C22 (pure C)

(6.45)

This ratio is obviously higher than for the direc
split case (DFDS: 6.43) since for DSPC we nee
to have the same temperature for the mix of a
the light A+ some B from C1 and pure C in C22
while for DEDS we only adjust the pressure
until the temperature of the mix of all B+C from
C1 equals pure C in C2.

The minimum vapour flow (when we conside
total condensation in C1) is the maximum of th

minimum requirement in each of the three columns. The absolute minimum
be determined by the requirement for the preferred prefractionator split (
However, in cases where one of the main columns has a higher requiremen
have to supply some extra heat, either in the reboiler to C1 or to C22 or
directly.

6.6.4 Relation to the Petlyuk Column and theVmin-diagram

Minimum vapour flow in an adiabatic Petlyuk column is determined by the hig
est peak in theVmin-diagram (Chapter 4) as shown in Figure 6.7. Originally, th
diagram characterize minimum vapour flow and feed component distribution
two-product column (Chapter 3), and interestingly we also find the lower bou
aries for minimum vapour flow in the double effect columns directly from t
same diagram. The peaks correspond to minimum vapour flow for sharp pro
splits (A/BC and AB/C) and the “valley” in the middle correspond to the preferr

C21

C22

C1

F,z,q

All external heat

All external heat

supplied here

Figure 6.6: Separate
prefractionator arrangement
with double effect heat
exchange (DEPC)

removed here

BC

ABC

AB

A

B

C

PH

PL

PL

xA T,
C1 xB T,

C1,( )

PH PL⁄ αAxA T,
C1 αBxB T,

C1+( ) αC⁄=

Vmin
A C/
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A/C split where the intermediate component is distributing. The diagram in
figure show a case were the A/BC split is simpler than the AB/C split, thus
selection between DEDS or DEIS, the preferred choice will be DEDS (note
this rule does not apply to conventional DS and IS configuration without heat i
gration, where we compare the sum of vapour requirement in both columns
the two configurations).

The results are summarized in Table 6.2 below, where we also give data bas
the same feed as used for the examples in Table 6.1.

Note that we do not have an equality for theVmin-expression in the table for the
double effect columns when the split in column C1 is very simple and require v
low vapour flow compared to the split in next column(s).

The numbers in parenthesis apply to cases where we utilize the possibility for
exchange at an intermediate temperature level. At the sidestream stage for th
lyuk column, and in the heat exchanger in the DEDS column in order to re
minimum vapour flow in all sections simultaneously. For the DEPC configu
tion, the given feed data actually results in the same the minimum vapour flo
all three internal columns.

Table 6.2:  Relation between minimum vapour flows

Configuration Vmin Diagram

Petlyuk column,
(with side HE)

= 1.366 = Highest
peak

0.72
(0.54)

DEDS or DEIS
(with extra HE)

= 1.072 = Lowest
peak

0.64
(0.59)

DEPC = 0.778 = Preferred
split

0.63

Vmin

V

D

Figure 6.7: Minimum energy for
the Petlyuk column, the DEDS
and the DEPC illustrated in a
Vmin-diagram for a ternary feed
(ABC)

Vmin

A/BC

A/C

AB/C

Vmin

Petlyuk column:

DEPC

DEDS:

highest peak

lowest (left) peak

preferred split

Stotal∆ S∆⁄

Vmin
A/BC Vmin

AB/C,( )max=

Vmin
A/BC Vmin

AB/C,( )min≥

Vmin
A/C≥
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As in the binary feed split example, the double effect columns are also config
tions where we trade an increased temperature range for a lower amount o
supply. The temperature range in the DEDS/DEIS configurations will be lar
than for the Petlyuk column, and the DEPC will have the largest range.

Due to the operation at several pressure levels, and thereby at different tem
ture ranges, we must be careful when comparing minimum vapour flows with
results for constant pressure in Table 6.1.

However, the entropy production (lost work) in the double effect columns are
same as for the corresponding configurations without heat integration.
implies that we do not improve the energy consumption (total heat supply) rel
to the theoretical reversible process with all heat exchanged at the most ext
temperatures.

6.7 Discussion

6.7.1 Plant-wide Issues

The general principle for any internal heat exchange configuration is to appro
a reversible process, and at the same time approach the case where most
external heat supply and heat removal occur at the most extreme temperatu

However, heat integration should be considered on a plant-wide basis, an
only within a isolated plant segment, and as in all design problems, the investm
cost must always be considered in comparison to the potential energy
savings.

6.7.2 Heat Exchange at the Sidestream Stages

As discussed in Chapter 4 and 5, the adiabatic Petlyuk column has normally
ferent minimum vapour requirements above and below the sidestream stag
follows trivially from equation (6.6) that if these differences in vapour flow rat
are obtained by adding or removing heat at the sidestream stages, the sepa
work will be reduced, thus the 2nd law efficiency will be improved. However, t
total requirement for vaporization will not be affected.

Note that many authors generally state that Petlyuk arrangements has a high
work consumption than conventional systems (e.g Carlberg and Wester
1989), but this is normally without considering any heat exchange at the s
stream stage. Data for the example in Table 6.1 is an example where we rea
opposite conclusion when we utilize the possibility for removing heat at the in
mediate temperature level at the sidestream stage. (Here the relative en
production ( =0.54 for the column in Figure 6.2b while the direc
split configuration has =0.59).

Stotal∆ S∆⁄
Stotal∆ S∆⁄
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6.7.3 Non-Uniqueness of Heat Supply in Reversible Columns

The entropy change in the reversible system is unique, but there are many po
reversible process paths, and each will result in a different amount of heat
sumed by vaporization. Note that the total entropy expression is independe
the junction compositions, thus if we can alter the junction compositions b
reversible sub-process, we can find alternative reversible paths.

Consider the ternary feed case again. The net component flow rates are giv
the conditions at the feed stage. At the bottom of section C1, we have only B
C present. We omit the column superscript in the equations below where th
flow rates (wB andwC) are computed for the bottom of C1 (note thatwA=0). The
reversible vapour flow (6.60) in the bottom of C1 and up to the feed stage in
can then be expressed as a function ofxB at the feed junction (wherexA=0). Note
that these expressions also are valid for the adiabatic arrangement since it is
on a pinch assumption in the zone around the junction.

, (6.46)

In the process of removing the light component A, we have already shown
reversible operation follows a linear profile (Figure 6.3) towards the pinch co
position given by (6.33). However, after the light A is removed completely,
may add a new subsection at the bottom of C1, denoted C1B’. By exchanging
along the side of C1B’ to obtain the vapour flow given in (6.46) we may alter
final junction compositionxB in both directions. We may reduce it by further hea
ing until we reach the limiting composition when the vapour flow into the botto
of C1B’ becomes zero. Then

(6.47)

This is exactly the same condition as when we use an adiabatic prefraction
with its own reboiler, and saturated liquid feed to C22.

The effect on vapour flow in C22 can also be expressed as a function ofxB. In the
bottom (C22B) the net flow of component C is identical to the net flow in the p
fractionator,wB=0, and the vapour flow up into the feed stage becomes:

(6.48)

VB
C1

xB( )
αCw

B

αB αC–( )xB
-------------------------------

αBwC

αB αC–( ) 1 xB–( )
---------------------------------------------– wB wC+( )+= xA 0=

xB
V 0=

wB

wB wC+
---------------------=

VBF
C22 xB( )

αBwC

αB αC–( ) 1 xB–( )
---------------------------------------------– wC+=
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Note that this is exactly the same expression that will determine minimum bo
in an adiabatic column ( gives Kings’s formula
for ).

An interesting issue, however, is how the total amount of vaporization flow in
integrated system is affected by the choice of in a reversible arrangement
total amount of vaporization in the bottoms of C22 and C1, is given by

(6.49)

Note that the material flowswB andwC are negative in the bottom sections and th
vapour flow at the feed stage of C1 ( ) is independent onxB. From (6.49) we
see that if we reducexB by adding more heat along C1B’, the total amount
vaporization in C1 (including C1B’) and C22 increase.

B=L-V

xB

VBF

C22

C1

dQ

F

Figure 6.8: Modified reversible arrangement
In section C1B’ we have only B and C
present, and we may alter the compositionxB
into C22, and thereby , by heating or
cooling reversibly, but without affecting the
total net work consumption in the system.

VBF
C22

dQ

xBP

C1B’

VB

VBF

dQ

xA=0,wA=0

xB

wC=0

wB=0

wB,wC

wB,wC

dQ

wC

wB

wC 1 z–( )F xB, z q, 1= = =
Vmin

xB

VBF
C22

VBF
C1

VB
C1

–( )+ VBF
C1 αC wB–( )

αB αC–( )xB
------------------------------- wB–( )+ +=

VBF
C1
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This suggest that we should cool along C1B’, but, we still have to supply the s
heating along the bottom of C1B. The picture is changed, however, if we al
internal heat exchange inside the system. Thus, if the heat removed in C1
reused in C1B we may still apply (6.49). Then the limiting point of operation
when , which gives the same flows as in the adiabatic case.

Thus, this confirms that it is possible to find a reversible arrangement with exa
the same heat supply requirement, and the same external flows and junction
positions as in the adiabatic Petlyuk arrangement, but this requires that we a
internal heat exchange inside the system. In this example we cool along C1B
supply the same amount of heat back along C1B which seems a bit strange

6.7.4 Practical Issues

In the design of an optimal separation system, we must apply a cost func
which properly reflects the real operational costs and investment cost. Thus,
is no particular configuration which is optimal for a given separation task. In so
cases, the optimal solution of a given cost criterion will be close to minim
energy, and in other cases closer to minimum lost work. This is dependen
prices on equipment, energy, raw materials and products, and on the ava
temperature ranges for heating and cooling utilities within a plant.

Zero lost work (entropy production) may be an unrealistic target since the ca
cost of realizing a (close to) reversible process may become very high (infi
column sections, infinite number of heat exchangers infinite area in heat exch
ers e.t.c.). For simulations of reversible columns we really need “infinite” num
of stages. In adiabatic distillation columns, “infinite” number of stages can
simulated in practice with

Proper control and operation of a given distillation system is very importan
obtain the full potential in terms of low energy consumption, product quality a
volume. This is particularly important for complex arrangements like the Petly
arrangements, and for closely heat integrated arrangements.

6.8 Conclusion

Reversible distillation gives valuable insight in the energy requirement for mu
component distillation. However, even if the reversible arrangement is opti
with respect to entropy production or lost work (2nd law), we may have irreve
ible (adiabatic) systems with less energy consumption (1st law). With
considering any internal heat exchange, the adiabatic Petlyuk arrangement s
to achieve less minimum energy requirement than any other distillation syst

VB
C1 VBF

C1=

N 4xNmin≈
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Internal heat exchange can be used for further reduction of the minimum exte
energy (heat supply). Heat exchange can be applied in any system where the
perature ranges where we need heat supply overlaps temperature ranges
heat is available. Thus, it can be applied for the ideal reversible arrangeme
well as for the adiabatic Petlyuk column and also for conventional colu
arrangements. With a given total temperature range, the minimum energy t
can be defined by a theoretical reversible distillation process where all the en
is supplied at the highest temperature and removed at the lowest temperatu

We have briefly discussed how pressure can be used to adjust temperature
in a distillation system, but this issue is by no means fully covered in this wo
and it seem clear that this is an important area for further studies.
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6.10 Appendix: Reversible Distillation Theory

In a reversible process the total entropy production is zero, thus, for reversible
tillation we trivially have . However, we here show in more deta
how we can obtain a reversible distillation process by applying heating and c
ing along infinite non-adiabatic column sections in a particular way. Then,
computing from (6.5) we verify that this process really is reversible
showing that we obtain .

In a distillation column where the feed and products are saturated liquids, the
supplied equals the heat removed, thus . For entropy calculation in
tillation sections, we need to relate heat flow and temperature to flows
compositions, and in the following we will deduce some useful expressions
similar procedure is presented by Petlyuk (1964) for a binary mixture, but here
present a general procedure for multicomponent mixtures.

By applying integration by parts (Petlyuk 1964), we obtain:

(6.50)

We express all variables as function of composition, thus we considerQ(x) and
T(x).The integration path will then be from the bottom to the top of the colum
and (6.50) can be expressed as:

(6.51)

Ssur∆ S∆–=

Ssur∆
Ssur∆ S∆–=

Qd∫° 0=

Ssur∆ Qd
T

-------∫°– 1
T
---– Qd∫° Qd∫ 

  1
T
--- 

 d 
 ∫°+ Q

1
T
--- 

 d∫°= = =

0= 0≠

     

Ssur∆ Q x( )

1
T x( )
----------- 

 d

dx
--------------------dx

xB

xT

∫=
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6.10.1 Temperature-Composition-Pressure Relationship

Let us first find an expression for the temperature and the differentiald(1/T(x)).

We consider ideal components obeying Raoult’s law; , whe
is the partial pressure of componenti, is the vapour pressure, are th

liquid and vapour phase mole fractions. According to Dalton’s law, the total pr
sure . The relative volatility for any component related to
reference component is then given by . We divide the pressure w

and obtain: . Note that the
temperature relation is through the vapour pressure of the reference compo
given by: . Here is the boil-
ing point of a pure reference component at the reference pressure ( ).
expression is obtained by integration of the Clausius-Clapeyron equation (C
ter 2) when we assume constant heat of vaporization (λ), negligible liquid volume
and the ideal gas law. Then the temperature-composition-pressure relationsh
the multicomponent mixture is given by (ref. Petlyuk (1964) for binary mixture

(6.52)

We needd(1/T) in (6.50) and by derivation of (6.52) we obtain:

(6.53)

The vapour liquid equilibrium (VLE) is given by:

(6.54)

In the following we assume constant pressure. We can substitute the VLE
(6.53) and the relation between  and the compositions is then given

(6.55)

pi Pyi xi pi
o= =

pi pi
o x y,

P Σ pi Σxi pi
o= =

αi pi
o pr

o⁄=
pr

o T( ) P pr
o T( )⁄ Σ pi

o T( ) pr
o T( )⁄( )xi Σαi xi= =

pr
o T( )( )ln Prefln λ R⁄( ) 1 Tb r,⁄ 1 T⁄–( )+= Tb r,

Pref

1
T
---

R
λ
---

Pref

P
---------- αi xi

i
∑ 

 
 

ln 1
Tb r,
----------+=

d
1
T
--- 

  R
λ
---

αidxi
i

∑
αi xi

i
∑
-------------------- R

λ
---dP

P
-------–=

yi

xi
----

αi

α j x j
j

∑
-------------------=

d 1 T⁄( )

d
1
T
--- 

  R
λ
---

yi

xi
----

 
 
 

dxi
i

∑ R
λ
--- yi xi–( )

dxi

xi
-------

i
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Note that we have used the fact that (when the sum is taken ove
components) to obtain the expression with the factor . This form is use
when we shall evaluate the integral (6.50) as we will show in (6.61).

6.10.2 The Reversible Vapour Flow Profile

Now, we need to express the heat supply as a function of composition along a
tion. When we consider ideal components with equal and constant hea
vaporization ( ), the heat input is directly related to vaporization a
condensation:

(6.56)

whereL andV are the local liquid and vapour flow rates through the stages. T
we can apply together withd(1/T(x))from (6.55) in the entropy
expression in (6.50). Note that the contribution from reboilers and condense
given by discrete terms like  as in (6.6).

To find the functionV(x) which gives reversible operation we study the intern
properties of a column section. To avoid irreversible mixing, we assume infi
number of stages so that we can consider any local stage (n) as belonging to a zone
of constant composition such that . (Such a pinch condition
usual to assume also in adiabatic distillation for computing of minimum flows,
only in a certain zone of the section). The material balance on an arbitrary s
(n) inside a section is given by:

(6.57)

We use the pinch assumption, omit the stage index and obtain:

(6.58)

Herewi is the net molar flow of componenti (defined positive upwards, and into
feed stages). The total net flow is obtained by taking the sum over all compon

(6.59)

Note that in the top we have  and in the bottom

Σdxi 0=
yi xi–( )

λ

dQ λdV λdL–= =

Q x( ) λV x( )=

∆Q T⁄

xi n, xi n, 1+=

Vnyi n, Ln 1+ xi 1+ n,– wi=

V yi Lxi– wi=

V L– wi
i

∑=

D wi T,
i

∑= B wi B,
i

∑–=
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By eliminating the liquid flow (L) we can express the vapour flow at any stage
a top or a bottom section as function of the stage composition for any given c
ponent (i):

Top: Bottom: (6.60)

6.10.3 Entropy Production in a Reversible Section

Note that the component flows (and thus also D and B) are always constant in
a given section. Then equation (6.60 top) combined with (6.55) in (6.50) giv

(6.61)

Note that the expression for vapour flow (V) in (6.60) is valid for any component
(i) so we could use it inside the summation and cancel the factors .

The final expression is independent of both relative volatility and heat of vap
zation. We will get the same expression for both the top and bottom section

 or on differential form: (6.62)

The net component flows (wi) are always constant in a section, thus the integ
in (6.62) gives us the logarithmic terms ( ) that appear in the system entr
expression (6.4). For a given separation case, we have to find the net comp
flows (wi), but this is usually quite simple for the given set of specifications.

We show the application of the equations for reversible vapour flow and entr
production in detail for a binary case below, and discuss some of its propertie
multicomponent case is treated in Section 6.4.1).
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6.10.4 Reversible Binary Distillation

The net component flows in each section of a binary distillation column
uniquely given by the two product specifications, here as the composition o
light component ( ) (We use and ). Thus

,  and ,

From (6.59) and (6.60), the resulting vapour and liquid flows in the top becom

, and (6.63)

Similarly we find for the bottom:

, and (6.64)

The entropy change of the surroundings as given in (6.62) becomes:

(6.65)

Note that  and , thus we obtain:

(6.66)

and we find that by computing the actual state change of
system entropy from equation (6.4). Thus, we conclude that by applying
liquid and vapour flow rates as in (6.63) and (6.64), we have reached a rever
system, and it follows from the second law of thermodynamics that no furt
reduction in net work can be obtained.

xD xB, x1 x= x2 1 x–=
w1 T, xDD= w2 T, 1 x– D( )D= w1 B, x– BB= w2 B, 1 x– B( )– B=
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xD x–
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The following two characteristics of reversible operation are very important
minimum energy results and will also be valid for the multicomponent case:

• We have to supply heat below the feed and remove heat above the fe
(See Figure 6.9)

• The vapour flow has its maximum through the feed stage and this flow r
is identical to the minimum vapour flow in an adiabatic column (with co
stant molar flows). (See Figure 6.9 and the McCabe diagram in Figure
6.10)

General comments and observations:

• Note that for feasible (positive) liquid flow rates in the top, the highest l
uid composition in the top is really notxD, butxD

+ which is in equilibrium
with yD=xD. ThenLT=0 andVT=D . However, raising the purity fromxD

+

on the top stage toxD in the product can be done by equilibrium vaporis
tion and then a direct condensation of the vapour to liquid, which is a
reversible process for a binary mixture. And since the integral toxD

+ is
shown to give the reversible work expression, and the process on the fi
stage and condensation of the product is also reversible, we may integ
(6.65) toxD even if the equations gives a negativeLT in for x>xD

+.

• Note that the local slope of the operating line (LT/VT) at [x,y] is the same as
the line through [xD,xD] and [x,y], as illustrated in the McCabe-Thiele dia
gram in Figure 6.10.

• For pure products, the flow expressions can be simplified (shown for t
top):

,  and (6.67)

The slopeL/V at the top becomes1/α and , while for non-
pure product, the slope at the top is zero at [xD

+,yD] and

For nonsharp-splits the liquid flow into the top is zero (see Figure 6.9), b
as we approach pure products, the heat exchange close to the top wi
approach the amount required in the condenser for sharp splits (given
equation (6.67) forx=1). The behaviour in the bottom is equivalent.

VT D
α

α 1–( )x
--------------------= LT D

1
α 1–( )x

--------------------=
LT

VT
------- y

αx
------=

LT Fz α 1–( )=
LT 0=
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Figure 6.9: Reversible binary distillation: Internal flow rates (Lrev,Vrev) as function of
composition. Minimum flow rates in an adiabatic column are also indicated (Lmin,Vmin).
Note thatVT-LT=D  andLB-VB=B
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Chapter 7

Optimal Operation of Petlyuk
Distillation:

Steady-State Behaviour

Ivar J. Halvorsen1 and Sigurd Skogestad

Norwegian University of Science and Technology, Department of Chemical Engineer
7034 Trondheim, Norway

Published in Journal of Process Control
Volume 9, May 1999, 407-424

Abstract.

The “Petlyuk” or “dividing-wall” or “fully thermally coupled” distillation col-
umn is an interesting alternative to the conventional cascaded binary columns
for separation of multi-component mixtures. However, the industrial use has
been limited, and difficulties in operation have been reported as one reason.
With three product compositions controlled, the system has two degrees of
freedom left for on-line optimization. We show that the steady-state optimal
solution surface is quite narrow, and depends strongly on disturbances and
design parameters. Thus it seems difficult to achieve the potential energy sav-
ings compared to conventional approaches without a good control strategy. We
discuss candidate variables which may be used as feedback variables in order
to keep the column operation close to optimal in a “self-optimizing” control
scheme.
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7.1 Introduction

The thermally integrated “Petlyuk” arrangement has several appealing feat
For the separation of a three-component mixture,Triantafyllou and Smith (1992)
report typical savings in the order of 30% in both energy and capital costs c
pared to traditional arrangements with two columns in series. However,
important question remains: Is this process unit difficult to operate and is it p
sible in practice to achieve the energy savings?

The Petlyuk column, shown in
Figure 7.1, has at steady stat
five degrees of freedom, which
may be selected as the follow-
ing manipulative inputs: Boilup
(V), reflux (L), mid product
side-stream flow (S), liquid split
(Rl=L1/L) and vapour split
(Rv=V2/V). There may be up to
four product specifications:

1. Top purity ( )

2. Bottoms purity ( )

3. Side-stream purity ( )

4. Ratio of the light and heavy
component impurity in the side-
stream product ( ).

However, Wolff, et. al.
(1994,1996)have reported dis-
continuities in the range of

feasible operation if all these product compositions are specified. This is rel
to the fact that column sections 4 and 5 (see Figure 7.1) are tightly coupled
we cannot independently adjust the amount of light and heavy component in
intermediate side-stream product. This may be a disadvantage compared to
ventional arrangement with two columns. On the other hand, if the numbe
controlled outputs is reduced from four to three, by not considering the ratio
light/heavy impurity-components in the side-stream, the feasibility problem d
appears. Thus in this paper we will focus on this simpler task of three-p
control, where the purities of the main component in each product are spec
( , , ).

1. Also at SINTEF Electronics and Cybernetics,
N-7465 Trondheim, Norway

Feed
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gure 7.1: The Petlyuk Distillation Column
plemented in a single column shell.
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The remaining extra two degrees of freedom can then be used for other purp
and in particular for minimizing the operating cost, which in our case is the ene
consumption (V).

The practical problem of keeping operation at optimum is illustrated in Figure
which may represent the energy consumptionV (Criterion) as a function of the
liquid split Rl (Free control variable). We are nominally operating at the optimu
but then the optimal operating point has moved due to some unknown dis
bance, and we want to compute the optimal move in our available manipula
variable in order to follow the real optimum. With model uncertainty an
unknown disturbances it may be difficult to tell in which direction the free var
ble should be moved in order to bring the process closer to the real optimum

Three main approaches to deal with this problem are: Model based meth
experimenting methods (e.g. EVOP) and feedback methods. In this paper we
focus on the feedback method. This is the simplest method, requiring the
modelling effort for implementation, and is therefore the preferred choice i
gives acceptable performance. In our case the objective is to use the two
manipulated inputs (e.g.Rl andRv) to minimize the energy consumption per un
feed (V/F). The key step for the feedback method is to translate this optimiza
problem into a setpoint problem. The issue is then to find a set of variables wh
when kept constant at their setpoints, indirectly ensures optimal operation. Fi
7.3 illustrates this idea.

Since the criterion function (V) in our case is also a possible free variable, o
seemingly viable solution for the Petlyuk column would be to simply impleme
the optimal minimum heat input in an open loop fashion, i. e. to perform an o
mization to compute the minimum ofV with respect to the degrees of freedom
(uDOF),

Free control
variable

Real
optimum Model optimum

Optimal
move

Computed
move

Real
operating
point Assumed

operating
point

Figure 7.2: Optimization problems with unknown
disturbances and model uncertainties

ModelReal

Criterion
Result of
movePlant
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(7.1)

and then simply setV=Vo. However, there are at least three serious problems:

1. Operation is infeasible forV<Vo, so we would need to useV>Vo.

2. The optimal value ofVo changes with operation, and it would require a goo
model and measurements of the disturbances to recompute it.

3. Measurement or estimation of the actualV is generally difficult and inac-
curate, which makes it even more difficult to keepV close toVo.

Thus, this open-loop policy is clearly not viable. As good candidate variables
feedback control we want variables which avoid the three problems above and
isfies the following requirements:

1. The optimal candidate feedback value should not be at an unconstrai
extremum (likeV=Vo)

2. The optimal value of the variable should be insensitive to disturbance

3. The accuracy of the measurement of the variable should be good and
variable should be easy to control, using the available extra degrees o
freedom.

Free control
variable

Real
optimum

Optimal
move

Computed
move

Real
operating
point

Figure 7.3: Optimization by controlling a suitable
feedback variable to a setpoint.
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Result of
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Maximum variationvariable
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minV
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Often we may find variables which have an extremum when the criterion fu
tions is at its minimum. Although these cannot be used for feedback, they ma
used in experimental methods, or as indicators to process operators.

A variable related to the gradient of the criterion function fulfils requirement
and 2.

In general it is not always possible to find a feedback variable with the requ
property of turning the optimization problem into a setpoint problem. Howev
for processes with a large number of states, and a large number of ways to
bine measurements, good candidates may exist, but they may not be easy to
Skogestad and Postlethwaite (1996)present a method for selecting the best ca
didate feedback variables from a set of available alternatives (see their rema
page 405). We will not consider this procedure here, but rather aim at obtai
insight into the column behaviour that may be used for selecting candidate f
back variables.

Some interesting questions for the Petlyuk column are: Which variables sh
be used as the degrees of freedom in order to achieve the best practical r
(The choice mentioned above is not necessarily the best.) Can we l
both degrees of freedom constant? Or can we leave one variable constant an
the other one for our optimization task? Or do we need to use both degrees of
dom for on-line optimization? How large changes in disturbances can we acc

7.2 The Petlyuk Column Model

We use a stage-by-stage model with the following simplifying assumptions: C
stant pressure, equilibrium stages with constant relative volatilities, cons
molar flows, no heat transfer through the dividing wall. This model is very simp
but it contains the most important properties of a column. The model and colu
data are given in Table 1. Since we focus on the steady-state properties we d
need to include data for tray and condenser holdups.

To model the column in Figure 7.1: we use 6 sections of stages (the num
inside the column are section numbers). In our case study a three-componen
nary) feed, consisting of componentsa, b andc is separated into almost purea
(97%) in the top product D, almost pureb (97%) in the in the side stream S, an
almost purec (97%) in the bottom product B.

The input, output and disturbance vectors are defined next. There are five de
of freedom which we select as the following manipulated inputs:

Three outputs (compositions) are controlled:

Rl Rv,( )

u L V S Rl Rv, , , ,[ ]=

y xDa xBc xSb, ,[ ]=
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The disturbances associated with the feed are:

In addition to the outputs in y, we will propose later some other measuremen
be used for optimization purposes. We will also present results from a mo
where we assume infinite number of stages and sharp product splits, but wit
same feed.

7.3 Optimization Criterion

We assume that it is optimal to keep the product purities at their specifications
the setpoints are 97% purity). This is reasonable in most cases unless the pr
values are very different or energy is very cheap. The column has 5 degre
freedom at steady-state so with 3 setpoints specified we have 2 degrees of
dom left for optimization. We choose as a base case the two remaining degre
freedom to beRl andRv. (Note that other choices could have been made.)

With the three product purities given, the only operation variables that affect
operating costs are the reboiler and condenser duty. Both are proportional t
boilup rateV, and as the optimization criterion we therefore choose to minim
the scalar “cost”J=V/F (we normalize the throughput (F=1) and minimizingV/F
is then equivalent to minimizingV).

With our assumptions the steady state optimization problem can be written o
following general form:

(7.2)

where denote the degrees of freedom. The other three man
lated inputs are not degrees of freedom any more since th
values are determined indirectly by the product purity setpoints ( ) and .
solution to (7.2) yields the optimal values of the degrees of freedom as a func
of the external disturbances (d) and the product specifications ( ),

(7.3)

In many optimization problems, the optimal solution is at some “active” co
straint(s), and the optimizing control task can be reduced to controlling the ac
constrained variables. However, for our application the optimal solution is usu
not at a constraint. Thus, the optimal solution to the problem in (7.2) is a p
where the gradient which usually is much more difficult to find an

d F za zb q, , ,[ ]=

J
u1

min V u1 ys d, ,( )
u1

min Vopt ys d,( )= =

u1 Rl Rv,[ ]=
u2 L V S, ,[ ]=

ys u1

ys

u1 opt, U ys d,( )=

Vu1
∇ 0=
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implement. The reason is that we do not really know the disturbancesd accu-
rately, and unless we have a very good model we do not even know the fun
to be minimized in (7.2).

We will leave this problem for a while, and assume that we know the model
the disturbances, and we will investigate the shape of the cost function (J=V), that
is, how it depends on changes in product purity specifications and disturban

7.3.1 Criterion with State Space Model

With a stage-by-stage model, we can formulate the criterion with the model e
tion included as equality constraints:

(7.4)

Heref is the column model andh is a set of equality or inequality constraints. Th
states (x) consist of two component compositions on each equilibrium stage.
our column, the total number of states is 100 (there are 48 stages plus reboile
condenser). Typically,h will contain product specifications (e.g. ) an
other operational constraints like an allowed range for the inputs u

) and internal flow constraints, e.g. to avoid flooding (the latt
constraints are not considered here, but such problems have to be dealt w
industrial columns).

It is important to note that the problems and solutions for equations (7.2) and (
are identical. The difference is that with (7.4) we get the solution expressed by
full state and input vector [x,u] and we can easily use our model equation
directly.

J
x u,[ ]

min V=

subject to the constraints:

f x u d, ,( ) 0=

h x u d ys, , ,( ) 0≤

xDa 0.97>

umin u umax≤ ≤
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7.4 Results From the Model Case Study

7.4.1 Optimal Steady State Profiles

We here consider the optimal steady state solution with three compositions s
ified and with the two remaining degrees of freedom chosen such that the va
boilup V (energy consumption) is minimized. The results for our base case
shown in Table 1.

Figure 7.4:a shows the resulting optimal composition profiles along the colu
for the base case in Table 1 and optimal profiles for various feed disturbanc
shown in Figure 7.4:b. We observe that the stage with maximumb-composition
is the side-stream stage, which intuitively seems reasonable.We also observ
the prefractionator (dashed lines) separatesa from c almost completely. Thus we
can regard sections 1+2 as a column of separation ofa from c, sections 3+4 as a
binary column for separation ofa andb, and sections 5+6 as a binary column fo
separation ofb andc. The “tricky” part is that the amount ofb in the “feeds” to
“columns” 3+4 and 5+6 depends on the control inputsu1=[Rl,Rv], and that we
have the same vapour flow from the lower part of the main column through to
upper part (from section 5 to 4).

Normally, composition measurements along the column are not available,
temperatures, which are closely related to compositions, may be used to o
important information. In Figure 7.5: the temperature profile is shown for a c
where the three pure-component boiling points are set to 0, 50 and 100 “deg
for light, medium and heavy component, respectively.

Table 7.1:  Optimal steady-state solution

Parameter/Variable Base case

Relative volatility [αA,αB,αC] [4,2,1]

Feed composition [za,zb,zc] [1/3 1/3 1/3]

Feed liquid fractionq 0.477

ys=[xDa,xSb,xBc] [0.97,0.97,0.97]

u1,opt=[Rl,Rv] [0.450,0.491]

Vopt  1.498

xSa/xSc 0.937
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Figure 7.4: a) Optimal composition profiles for
componentsa, b and c in pre-fractionator (dashed) and
main column (solid) for the base case in Table 1.

Figure 7.4: b) Optimal composition profiles for vari-
ous disturbances in the feed composition ( 0.05) and
the liquid fraction ( 0.1).
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At the product locations, the temperature profile is close to the pure product b
ing point, and the temperature profile will normally have large gradients wh
the composition profile has large gradients.

7.4.2 The Solution Surface

In the following the three product compositions are specified (97% purity).
first study the dependency of the solution surface to variations inRl and Rv.

(7.5)

This is shown in Figure 7.6: (surface) and Figure 7.7: (contour plot) for the b
case (which has a partly vaporized feedq=0.48). The surface actually looks like
the hull of a ship, and there is a quite flat region (“bottom of the valley”) betwe
points P and R. The minimum vapour flow at the “bottom” isVopt=1.498, but
observe that the vapour flow increase rapidly if we do not keep [Rl,Rv] at their
optimal values [0.450,0.491]. In the “worst” direction, which is normal to the li
PR, the boilup increase by 30% for a change inRl or Rv of just 5%. Whereas, in
the “best” direction, along the line PR, we can make a change 10 times larg
Rl or Rv (50%) before the boilup increases by 30%. This is further illustrated
Figure 7.8 and Figure 7.9 which give cross-sections of the surface in the bad
good directions respectively. We note that for the case withq=1, a reduction ofRl
by just 2% in the bad direction results in infinite boilup.
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Figure 7.5: Optimal temperature profile in pre-
fractionator (dashed) and main column (solid) for the
base case in table 1.

V V Rl Rv,( )=
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con-
ms
The conclusion of this is that at least one of the two degrees-of-freedom (Rl or Rv)
have to be adjusted during operation in order to be able to keep the energy
sumption close to its minimum (i.e. operate along the line PR). But is see
possible that one degree of freedom, for instanceRv, can be left uncontrolled (con-
stant), provided that the other degree of freedom,Rl, is adjusted to keep the
operating point along the “bottom of the valley” (along PR).

Figure 7.6: Optimal solution surface.V(Rl,Rv) (base case)
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Figure 7.7: Contour plot ofV corresponding to Figure
7.6:.
NTNU D
r. ing
. Thesis 2001:43 Ivar J. Halvorsen



222

his

ion

si-
tion
hat
l

pli-

feasi-
or a
ul-
ese
trol
able.

eady

will

ring
ucts.
7.4.3 Effect of Disturbances

If disturbances move the optimum in the “bad” direction normal to PR, then t
results in large increases in V unless we adjustRl and/or Rv in order to remain in
the “bottom of the valley”. We find in our case that changes in feed liquid fract
(q), middle feed component (zb) and sidestream product composition (xS,b), will
move the optimal operating point in the “bad” direction. The other feed compo
tion changes and setpoint changes will move the operation in the “good” direc
along the “bottom of the valley” and thus require less attention. The fact t
changes in the feed liquid fraction (q) moves optimum in the bad direction norma
to PR is illustrated in Figure 7.8.

In addition, we see from Figure 7.8 that changes inq have a dramatic effect on the
shape of the solution surface. When the feed is saturated liquid (q=1), the optimal
surface becomes almost vertical very close to the optimum. The practical im
cation of this is that withRl andRv fixed close to their optimal values, the system
may become unstable, since we may easily enter a region where there is no
ble solution (no amount of energy can fulfil the composition requirements). F
subcooled liquid (q>1), the solution surface “bends over”, and we may have m
tiple solutions of V for the same product compositions. In open loop, all th
operation conditions are reachable and stable. But with composition con
active, and tuned for the lower branch, operation on the upper branch is unst

Feed flow changes are normally a major disturbance, but do not affect the st
state operation if we keep product compositions (ys) and split ratios ( ) con-
stant (since these are all intensive variables). However, feed flow changes
affect the composition control and optimization during a transient.

7.4.4 Transport of Components

Interesting insight into the behaviour of the column are obtained by conside
how each component moves through the column sections towards the prod
Define thenet upwards flow wj of component j through stagei as:

(7.6)

At steady state is constant through each sectionk. The ratio ofwk,j to the
amount in the feed is therecovery:

(7.7)

Rl Rv,

wj Vi yi j, Li 1+ xi 1 j,+–=

wj

rk j,
wk j,
Fzj
----------=
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At optimal operation we find that the component flows (wk,j) are as indicated in
Figure 7.10. For example, if we look at the lighta-component, then most of the
flow takes the “shortest” way out to the top product. Some light product “slip
down the prefractionator and this mostly ends up in the side stream. Interesti
for the optimal solution there is no net flow of light component downwards in
section above the side stream, that is, is close to zero. For the heavy
ponent (c) the behaviour is similar, but reversed.The intermediateb-component
distribute quite evenly along the two paths.
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Figure 7.8: The solution surface forV is very steep and depends strongly onRl in the
“bad” direction normal to PR. The whole surface is also strongly dependent on thed
liquid fraction (q).

Figure 7.9:V depends only weakly onRl whenRv is adjusted so we stay in the “good” PR
direction. Note that the axis scaling are the same as in Figure 7.8:

P

R

Rl

Rv

Rl

P

R

Rl

Rv

w4 a,
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



224

ry

ro-
be
, so
ge
issue
s for

t the
the

the
r

d
and

y of
In the following we will in particular consider the effect of changing the recove
(β) of componentb at the top of the prefractionator:

(7.8)

7.5 Analysis from Model with Infinite Number of Stages

The limiting case with an infinite number of stages in each column section p
vides a lower bound (Vmin) on the energy usage. Although this value cannot
achieved in practice, one can usually come within 10-20% of the lower bound
it provides very useful information also for practical distillation. The advanta
of using infinite number of stages is that one does not need to consider the
of selecting the number of stages. Furthermore, excellent theoretical result
the Petlyuk column have been presented byFidkowski and Krolikowski (1986).
Through careful treatment of the Undewrood equations, they have shown tha
minimum energy solution for the Petlyuk column is obtained by operating
prefractionator along its minimum energy characteristic in the range between
preferred split, Stichlmair (1988), and up to a point where the upper and lowe
part of the main column arebalanced.

Christiansen and Skogestad (1997)derived similar results for the closely relate
case with a separate prefractionator (with its own reboiler and condenser),
they suggested a control structure based on controlling either the impurit
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Figure 7.10: Components taking the “shortest” way.
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heavy key at the top of the prefractionator, or the impurity of light key at the p
fractionator bottom. (The particular choice depends on whether the uppe
lower parts of the main column determine minimum reflux.)

We will now use the case with infinite stages to study more carefully how vari
disturbances and other parameters affect the task of keeping the operation
close to the optimum.

7.5.1 Minimum Energy Consumption for a Petlyuk Column.

We first recapitulate the most important results fromFidkowski and Krolikowski
(1986). Their results are derived for a saturated liquid (q=1) ternary feed, constant
relative volatilities, constant molar flows, infinite number of stages and sh
splits. InHalvorsen and Skogestad(1999) we have extended Fidkowski’s resu
to handle any liquid fraction (q). Fidkowski and Krolikowski use the recovery o
the middle component in the net flow out of the top of the prefractionator ( ) a
the “reflux” into the prefractionator ( ) as the two degrees of freedom. We w
later mapβ andL1 to our choice of degrees of freedom,Rl andRv. Note that min-
imizing the main column boilup (V) is equivalent to minimizing the main column
reflux (L).

At minimum reflux (Lmin) for the Petlyuk column, minimum reflux constraint
have to be satisfied for both columns in Figure 7.1: In the prefractionator (sec
1+2), and in either the upper (section 3+4) or lower (sections 5+6) parts of
main column.

First consider the prefractionator which separates the ternaryabc-mixture intoab
andbc. For a sharp split betweena andc, the minimum reflux (L1) as a function
of the recovery has a distinct minimum at thepreferred split( ), as
shown in Figure 7.11 for our base case feed.

The main column can be regarded as two binary columns, but their reflux fl
are not independent. For large values of , most of theb-component will have to
be separated in the upper part of the main column while the lower part get
almost purec-feed. Thus the reflux requirement for the upper part of the main c
umn will determine the overall main column reflux and the lower part will
over-refluxed. For low values of we have the opposite case, and for an inte
diate value, , reflux requirements are the same for both parts; at this p
the main column isbalanced.

β
L1

β β βP=

β

β
β βR=
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7.5.2 Solution Surface for Infinite Number of Stages

Fidkowski and Krolikowski (1986)found that the minimum overall reflux (Lmin)
is not obtained at a single value of the recovery , but rather there isa flat region
whereL=Lmin for a range of recoveries between the preferred split for the prefr
tionator ( ), and the value ( ) which makes the main column balanced. T
is illustrated in Figure 7.11.

The flat region may be wide or narrow, depending on the relative values of
and and we may have cases with either or (like in o
example). Only for the special case do we have a sharp minimum. N
that the value of corresponding to the preferred split is always optimal,
depending on the value of , it will be in the left or right end of the flat regi

The corresponding solution surfaceV(Rl,Rv) computed by the infinite stage mode
and sharp product splits is shown in Figure 7.12 (surface) and Figure 7.13 (
tour) and is seen to be very similar to the surface for the case study sh
previously in Figure 7.6 and Figure 7.7.

As already noted, there is a flat region withV=Vmin along a straight line from P*

to R* in the -plane. The fact that the optimum is flat between P* and R*

is an important result, and this fully confirms the results based on numerical c
putations on the column with a finite number of stages.

β

βP βR

βP
βR βP βR> βP βR<

βP βR≈
βP

βR
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Figure 7.11: The prefractionator reflux (L1) has a sharp minimum at the preferred sp
(P*). The overall column reflux (L) is minimal in a flat region (P*-R*) for recoveries
between the preferred split ( ) and a balanced main column ( )βP 0.5= βR 0.625=

Rl Rv,( )
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In appendix 7.10.2 we summarize the results inHalvorsen and Skogestad(1999)
and present analytical results for generating the rest of the solution surface
find that for a given value of the main column boilup (V=const, V>Vmin), the con-
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sharp splits contains the same characteristics as found in Figure 7.6
Figure 7.13: The contour lines for are straight lines between ther
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tours in the -plane are straight lines between four characteristic co
lines (C1-C4). These contour line corners (C1-C4) are illustrated in Figure 7
where each line represent a particular operating condition for each particular
(dotted) of the solution surfaceV(Rl,Rv):

Corner line 1 (C1):

Preferred split in the prefractionator. Over-refluxed main column.
,

Corner line 2 (C2):

Along the left branch of the minimum reflux characteristics for the prefra
tionator. , ,

Corner line 3 (C3):

Over-refluxed prefractionator (above the V-shaped minimum curve). B
anced main column

, ,  ( ),

Corner line 4 (C4):

Along the right branch of the minimum reflux characteristics for the pr
fractionator, but above the point representing a balanced main column

, ,

Note that line C2 and C4 apply for our example where . When
we instead get the similar lines C2’ and C4’:

Corner line 2’ (C2’):

Along the right branch of the minimum reflux characteristics for the pr
fractionator. , ,

Corner line 4’ (C4’):

Along the left branch of the minimum reflux characteristics for the prefra
tionator. Above the point representing a balanced main column.

, ,

As we approach minimum boilup (V=Vmin), lines C1 and C2 (or C2’) approach
point P* (optimum at preferred prefractionator split, ) and line C3 and C
(or C4’) approach point R* (optimum at balanced main column, ).

Rl Rv,( )

β βP=
L1 L1 P,= L Lmin>

β βP< L1 L1 min, β( )= L Lmin β L1,( )=

β βR L( )= L1 L1 R, L( )= L Lmin> L1 L1 min, βR( )>

β βR> L1 L1 min, β( )= L Lmin β L1,( )=

βP βR< βP βR>

β βP> L1 L1 min, β( )= L Lmin β L1,( )=

β βR< L1 L1 min, β( )= L Lmin β L1,( )=

β βP=
β βR=
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The path C2-P*-R*-C4 on the solution surfaceV(Rl,Rv) represent an important
limiting case of operating conditions: There the minimum reflux constraints
met in both the prefractionator and in the main column. That is:
and .

In the whole operating region to theright of the path C2-P*-R*-C4 in Figure 7.13
we over-reflux the prefractionator (operating above the V-shaped minimum c
acteristics), while we keep the main column at its minimum reflu

and . This part corresponds to surfaces in th
(β,L1)-plane found inFidkowski and Krolikowski(1986). Note also that the case
of a balanced main column is always within in this region (along C3).

In the whole operating region to theleft of the path C2-P*-R*-C4 in Figure 7.13
we operate the prefractionator exactly at its minimum characteri
( ), but we over-reflux the main column . The
computation of the surface in this region is a new contribution as it was not c
sidered byFidkowski and Krolikowski (1986).

Finally, we must note that the “good direction” is along the path C1-P*-R*-C3
(which is coinciding with the path C2-P*-R*-C4 only along the line P*R*). Oper-
ation along the “good” path gives the minimum ofV when we keep one degree o
freedom constant (Rl or Rv). Observe that C1 is to the left of the path C2-P*-R*-
C4 and C3 is to the right.

L1 L1 min, β( )=
L Lmin β L1,( ) Lmin β( )= =

L1 L1 min, β( )> L Lmin β L1,( )=

L1 L1 min, β( )= L Lmin β L1,( )>
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7.5.3 Analyzing the Effect of the Feed Enthalpy

The effect of changing the liquid fraction is shown in Figure 7.14 (contour pl
and Figure 7.15 (cross section in the bad direction) for the infinite stage mo

The results in Figure 7.15 are in agreement with similar computations for
finite column model in Figure 7.8. As we increaseq the surface between corne
lines C4 and C1 first becomes vertical and then starts to bend over when
increase the liquid fraction past saturated liquid .

7.5.4 How Many Degrees of Freedom Must we
Adjust During Operation?

Is it possible to obtain reasonable energy savings if we keep bothRv andRl con-
stant? The answer is clearly “no” for our case study, as we have already found
the energy usage (boilupV) increases very sharply as we move away in certa
directions from the flat region. This is further illustrated in Figure 7.16, where
show the boilup as a function ofRl for various fixed values ofRv (this is not quite
as bad as we move normal to P*R, but note the difference in axis scaling w
comparing the curve for q=0.5 in Figure 7.15 with Figure 7.16). We clearly
from the sharp minimum of the V-shaped curves (solid lines) thatRl would have
to be determined very accurately in order to obtain a value ofV reasonable close
to the minimum. For instance, ifRl is set only 5% away from its optimal value
energy increase compared to the optimum is between 10% to 30%.
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Figure 7.14: Liquid fraction affects the shape of the surface in addition to the
position of the optimal operating line in the (Rl,Rv) plane.
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Having established that we cannot keep both degrees of freedom constant, w
Can we leaveoneconstant? Since the vapour flows are usually the most diffic
to adjust in practice, and since it seems reasonable in many cases that the v
split is constant if we make no adjustments, we will analyze what happens w
we keepRv= constant and then adjust the other degree of freedom (i.e.Rl)
optimally.
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Figure 7.15: Cross-sections of the surfaces in Figure 7.14: in the “bad” directio
normal to P*R* (taken at the middle of the line P*R*).
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energy consumption.
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Figure 7.17 shows how the boilup (V) depends onRv whenRl is optimized for
every value ofRv (i.e. along the “good” C1-P*-R*-C3 path in Figure 7.12:). As
mentioned above, we must choseRv in the flat region (Rv,p<Rv<Rv,r) in order to
achieve minimum boilup. Importantly, if or we very soo
loose energy compared to the optimal operation (V>Vmin=100%) even ifRl is
adjusted optimally. For , the best we can do is to adjustRl to operate
the prefractionator exactly at its preferred split and minimum reflux, while
main column is over-refluxed (along C1). And for the best we can
is to adjustRl to operate the main column at the balance line, while the prefr
tionator is over-refluxed (along C3).

Also recall from Figure 7.16 that even withRv in the flat region, we will need to
adjustRl. We conclude that it is acceptable to keep one degree of freedom (e.gRv)
constant, as long as it is selected as to operate within the flat region, and as
as the other degree of freedom is adjusted optimally.

Figure 7.17: Minimum energy can be obtained if the vapour split is set within the
region. Plot showV as a function ofRv whenRl is optimized for each value ofRv
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7.5.5 Sensitivity to Disturbances and Model Parameters

We want to check if the simple strategy of keepingRv constant will work. In Fig-
ure 7.18 we show the set of “flat region” (minimum energy) line segments (P*R*)
for variations of feed enthalpy (q=[0.4 0.5 0.6]) and 2% feed composition change
in different directions:

,

When the light feed fraction is increased and the heavy reduced, the points P* and
R*move closer together, reducing the flat region. Changes inq result in sideways
movement of the P*R* line. The possible region forRv that ensures operation in
the flat region for all possible disturbances in our example is indicated by the q
narrow region between the solid and dashed lines.

7.5.6 A Simple Control Strategy with one Degree of
Freedom Fixed

Based on the observations above we propose a control strategy where weRv
and useRl as a manipulated input (we could also make the opposite choice)

1. Keep a fixed value forRv in the flat region

2. Control the product compositions at their setpoints (e.g. by manipulat
L,S and V).

3. Control some feedback variable such thatRl is being adjusted close to
optimally.

za zb,[ ] 1 3⁄ 1 3⁄,[ ] 0.02 γ( ) γ( )sin,cos[ ]+=
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Figure 7.18: For the selected set of disturbances, a value ofRv between 0.53 and 0.59
guarantees operation in the flat region.
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Provided that we can find the right feedback variable, this strategy will be acc
able if the magnitude of feed disturbances and other uncertainties do not brin
selectedRv outside the flat region. If the latter is not satisfied, we will also have
adjustRv to keep the operation within the flat region.

A particular difficult case occurs if some disturbance moves the balance poin
the main column to the other side of the point of the preferred split. In this c
Rv will usually have to be adjusted, and we may have to change the control s
egy for adjustingRl.

7.5.7 Liquid Fraction:
Bad Disturbance or Extra Degree of Freedom?

In general, adding more heat in the feed (i.e. reducing liquid fractionq) will be
less efficient than adding the same heat in the reboiler. However, recall from
ure 7.15 that the position of the minimum energy line (P*R*) will be directly
affected by the feed enthalpy and this may be used to our advantage. For inst
in a case where we cannot adjustRv, and we are operating outside the “flat” min
imum energy region, we may add heat or cool the feed to move the solu
surface into the flat region. Flow constraints in the column sections may
another motivation for introducing the feed enthalpy as a degree of freedom

It is also possible introduce an extra degree of freedom by extracting both liq
and vapour products in the sidestream, again for the purpose of moving the
tion surface as desired.

In summary, largeuncontrolledvariations in the liquid fraction should be avoided
but adjustments of the feed enthalpy (q) can be used as a mean to move the so
tion surface in a desired manner.

7.5.8 Relations to Composition Profiles

Each of the different surface segments in Figure 7.12 corresponds to a chara
istic composition profile. The location of the pinch zones on these profiles ca
used to identify the actual operation point, and this information may then be u
in an optimizing control strategy. In Figure 7.19 we show composition profi
computed from the stage-by-stage column model, with a sufficiently la
number of stages to be a good approximation of an infinite column. Adding m
stages will just extend the flat pinch regions. We show composition profiles f
different operating points: Optimal operation (V=Vmin) at P* (upper left) and R*

(upper right), and suboptimal operation (V=1.3Vmin) along the four corner lines
C1 to C4. We used the infinite stage model to compute the control inputs for e
case (e.g. Figure 7.13).
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At operating point P* we have pinch zones on both sides of the prefractiona
feed, and at the lower “feed” to the main column, whereas the upper part o
main column is over-refluxed. At point R* we have pinch zones at both “feeds” t
the main column (the column is balanced), but here the lower end of the pre
tionator is over-refluxed (remember that we haveβp<βR, and in the case ofβp>βR
we would get an anti-symmetric result). Along C1 (middle left) we have a sim
prefractionator profile as at P*, but along C1 both parts of the main column i
over-refluxed. And similarly, along C3 (middle right) the main column is ba
anced at minimum reflux (like in R*), whereas the prefractionator is over-refluxe
along C3. Along C2 (lower left) we over-purify the “wrong” (upper) side of th
prefractionator, and along C4 (lower right) we over-reflux the “wrong” (lowe
end of the main column.

The optimal “pattern” in our case study, whereβP <βR, is to have a pinch zone
above the prefractionator feed, and a pinch zone on both sides of the lower
column “feed”. If this is the case, we know that the operation is along line P*R*.
None of the suboptimal operating points have this “signature”. Note also tha
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Figure 7.19: We can extract important information about the actual operating pointm
the composition profiles in the “infinite” Petlyuk column. Prefractionator composn
profiles are shown dashed. Locations of feed, sidestream, and connection sta
indicated (dotted). Feed data:zf=[0.33,0.33,0.33],α=[4,2,1],q=0.5.
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operation along P*R*, the upper part of the main column and the lower end of t
prefractionator, are over-refluxed. In cases withβP <βR both pinch zones move to
the other end. If we do not know the relative magnitude ofβP andβR, a possible
approach is to operate at point P* all the time, that is, with pinch zones onboth
sides of the prefractionator feed (or no end of the prefractionator overpurifie

The corresponding column with a finite number of stages and non-sharp s
studied earlier (Table 1 and Figure 7.4:) does not have pinch zones, and this
us that we probably have too few stages. However, that model is not intende
a column design example, but rather to illustrate the problem of optimizing c
trol. And more importantly, in spite of low number of stages in our case stu
example, the main properties of that solution surface is very close to the re
from the infinite stage model.

7.6 Candidate Feedback Variables

The results from computations using models with both finite and infinite num
of stages show that we must continuously adjust at least one of the two degre
freedom (e.g.Rl) if operation close to optimal is desired. As mentioned above,
would like to implement this in a feedback fashion, by finding some measu
ment, which when kept at a constant value, indirectly ensures optimal opera
Candidates for such measurements are composition measurements on indi
stages, temperature measurements and combinations thereof and flow me
ments from individual sections of the column. Temperatures are easy to mea
flows are more difficult, and even more so are compositions.

We consider next a few candidate measurements (Y1-Y6) for feedback con
The analysis is mainly based on observations from the model with a finite num
of stages.

7.6.1 Position of Profile in Main Column (Y1).

An interesting observation from our case study using the finite stage model is
the maximum composition of the mid-component occurs at the location of
side-stream when the column is at its optimum (Figure 7.4:b). A measureme
the stage numberwith the maximum value of the intermediate componentxb
therefore seems to be a very good candidate for feedback optimization. How
we would need on-line composition measurements on several stages, so it i
ficult to use in practice.
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7.6.2 Temperature Profile Symmetry (Y2)

The temperature profiles on both sides of the dividing wall show some interes
symmetry properties. We define the average difference temperature of the tem
ature profiles on each side of the dividing wall as a symmetry measurement (DTS).
If the vectorTp,k contains the temperature profile in sectionk, and denotes the
average of the elements of in the vector x, then

(7.9)

In a practical applicationDTS can be based one or more pairs of difference te
peratures in sections above and below feed and side stream. The tempe
profile shown in Figure 7.5 is for optimal operation. In Figure 7.20 we show
profiles if we move away from the optimum in the four directions towards P a
R and normal to PR in Figure 7.6. Interestingly we find thatDTS is close to con-
stant along directions parallel to the “bottom of the valley” of the solution surfa
(along PR in Figure 7.6), as illustrated in Figure 7.21. When we move away f
the bottom of the valley normal to PR, the profile symmetry changes, and theDTS
becomes more positive towards the right side and more negative to the left si
PR (see Figure 7.7).
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Figure 7.20: Temperature profiles for the base case for off-optimal operation
directions along the bottom valley towards R (upper right) and P (lower left),
and in the “bad” directions normal to PR to the left (upper left plot) and to the rig
(lower right plot)
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If we choose to adjust the liquid split (Rl) to controlDTS, we can replace the liquid
fraction (Rl) with the setpoint forDTSas a degree of freedom. The contour plot o
the surfaceV(DTS,Rv) for the base case is shown in Figure 7.22 and when we co
pare this to the contour ofV(Rl,Rv) in Figure 7.7 we observe that the region clos
to the optimum now is quite flat in both directions of the degrees of freedom
V(DTS,Rv) as opposed toV(Rl,Rv) which is quite steep in the direction normal t
line PR. This “flatness” is a very important property since it implies that t
energy consumption will not be very sensitive to the degrees of freedom in the
region.

Unfortunately, the optimal value ofDTS, (which may be non-zero) is sensitive to
feed composition disturbances. However,DTs is easy to measure and apply in
practical control strategy.

7.6.3 Impurity of Prefractionator Output Flows (Y3,Y4)

A key to optimal operation is to operate the prefractionator at minimum refl
characteristic .Christiansen and Skogestad (1997)showed that
this is achieved by:

1. β>βP: Control the impurity of the heavy component in the top. (Y3)

2. β<βP: Control the impurity of the light component in the bottom. (Y4)

In both cases the uncontrolled end of the prefractionator should be over-puri

In cases whenβP andβR are close or may change order, we would have to u
both degrees of freedom if we want to track the optimum. Since we know
operating the prefractionator at the preferred split always will be optimal, in
pendent of where the balance point is, we can look for a strategy which keep
prefractionator operating point at the preferred split all the time (L1,p,βP). This
can be obtained by using both degrees of freedom for two-point control of b
the prefractionator impurities (Y3 and Y4).

We also have to ensure that the main column is operated at its minimum re
But this is indirectly achieved by controlling all three product purities.

7.6.4 Prefractionator Flow Split (Y5)

Consider the net “distillate” flow leaving the top of the prefractionator (D1).

(7.10)

Note that this is not a physical stream, but a difference between the vapour
liquid flows in the top of the prefractionator. It may even become negative if
column is not operated well. For sharp splits; (for a normaliz
feedF=1), so by adjustingD1 we directly affect the distribution of the middle

L1 L1 min, β( )=

D1 V1 L1–=

D1 za βzb+=
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component (b). We would expectβ to be in the range [0,1], and thusD1 to be in
the range [za,za+zb]. This insight is correct, as we find in some non-optimal ope
ating points thatβ or evenD1 may be negative, corresponding to circulatio
around the dividing wall. Boilup as a function of isD1 is illustrated in Figure 7.23,
where we see thatD1 changes almost proportionally to the boilup when we mo
along the solution surface in the bad direction normal to PR. Thus if we were
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Figure 7.21: Operation at constantDTS implies operation at a line parallel to the good P
direction on the solution surface. Plot show contour lines of constantDTS (solid) projected
on the contour lines ofV(Rl,Rv) (dashed) for the base case in Table 1.

Figure 7.22: Contour plot ofV(DTS,Rv) for the base case. The region close to the optim

is now quite flat in both directions.
u
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to measure the net prefractionator distillate flowD1, then we could achieve close
to optimal operation by adjustingRl (orL1) to keepD1 at a setpoint. Unfortunately
such a flow measurement is difficult to obtain in practice.

We can also expressD1 in terms ofRl andRv. A simple overall material balance
for the prefractionator yields:

(7.11)

whereL andV are the overall reflux and boilup for the main column. This show
thatRv, Rl andq affectsD1 in a similar way.

Another very interesting observation is that is thatV as a function ofD1 behaves
very “nicely” (Figure 7.23), compared to the very non-linear relationship betwe
V andRl (Figure 7.8) where we may even have multiple solutions in some ca
This shows that if we were to use an open-loop policy, it would be better to k
D1 rather thanRl constant. For example, forq=1 we see upon comparing Figure
7.8 and Figure 7.23 that a very small reduction inRl yields a large increase inV,
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Figure 7.23: BoilupV as function of the prefractionator “distillate” flow (D1) in the
“bad” direction normal to PR.
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since the surfaceV(Rl,Rv) is very steep close to the optimum. On the other han
from Figure 7.23 and Figure 7.24 we observe that this is not the case withD1 as
an independent variable.

7.6.5 Temperature Difference over Prefractionator (Y6)

It is possible to find variables that have an extremal value when . S
variables cannot be used for feedback setpoint control approaches becau
steady-state changes sign at the optimum. However, it is often difficult to dire
measure the criterion value (V). In such cases other variables may be used inste
as an indicator of the criterion value and, used for example, in an on-line exp
menting method (like EVOP).

One such variable isthe temperature difference over the pre-fractionator(Y6).
We observe from the model with a finite number of stages that the tempera
difference over the pre-fractionator always has its maximum when the boilup
its minimum. Although it is simple to measure, the actual maximum va
depends on disturbances and product purities, so it may be difficult to tell the
ference between the effect of non-optimal operation, or a disturbance,
changed feed composition.
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Figure 7.24: The surface V(D1,Rv) is less sensitive to variations in feed liquid fraction
than the equivalent V(Rl,Rv) when we fix both degrees of freedom. (Plots for model with
infinite stages)

V Vmin=
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t

Ideal Properties,
difficult to measure

Close to ideal properties,
easy and cheap measurement, bu
setpoint is sensitive to feed
composition

Has an extremum value at the opti-
mum. Not suited for feedback, but
contains important information.

Very close to ideal properties. Use
both degrees of freedom. Can track
the preferred prefractionator split
operating point. (P*)

Figure 7.25:  Some candidate feedback variables

Y1: Position of max-
imumb-composition

Y2: Temp. profile
symmetry measure
DTs

Y6: Temperature
difference over
prefractionator.

Y3 and Y4:
Impurity of non-
keys in both ends of
the prefractionator

Difficult to use directlyCriterion function:
V=f(Rl,Rv)

Reasonable properties. may be dif-
ficult to measure. Better than fixing
Rl

Y5:Prefractionator
flow split D1

Very close to ideal properties. Valid
when βP<βR and Rv,P<Rv<Rv,R.
Somewhat difficult to measure.

Y3: Heavy key
impurity in prefrac.
top

Bad direction
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7.6.6 Evaluation Of Feedback Candidates

A qualitative evaluation of the various alternative measurements introdu
above is shown in Figure 7.25. The criterion function is the boilupV and in par-
ticular we need to avoid movement in the “bad” direction normal to PR. T
position of the maximumb-composition in the main column is promising as
feedback variable since it at least for our case study, is not affected by di
bances at all, but it may be difficult to measure or estimate. The other varia
are affected by disturbances and setpoints, thus keeping one of these consta
lead to operation away from the optimum as illustrated in the figure.

Nevertheless, the improvement may be significant, compared to keeping
exampleRl at a constant value. Feedback from the impurity of the heavy key
the top of the prefractionator (Y3 or Y4) is very interesting, but in this case o
or two composition measurements are probably required.

7.7 Conclusions

The Petlyuk distillation column will most likely require some kind of optimizin
control in order to realize its full potential for reduced energy consumption. T
is because the solution surface of the criterion function is very steep in one d
tion, and the operation is very sensitive to certain disturbances. The sim
strategy is to achieve “self-optimizing” control by feedback control of a varia
which characterize optimal operation. In this paper we have obtained some
tionships between optimal operation and some measurements which ca
deduced from the composition profile or the states. This may be used to s
candidate feedback variables. Optimization by feedback, or “self-optimizing c
trol”, should be compared to nonlinear model-based optimization methods,
evaluated for complexity and performance.
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7.10 Appendix

7.10.1 Model Equations for the Finite Dynamic Model

The model equations are quite standard and are described below. The comp
mass balance on a stagei (counting from the top) for components is
at steady state given by:

(7.12)

With constant relative volatility, the equilibrium is given by:

(7.13)

j a b c, ,[ ]∈

Li 1– xi 1– j, xi j,–( ) Vi 1+ yi 1 j,+ yi j,–( )+ 0=

yi j,
α j xi j,

α j xi j,
j

∑
----------------------=
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The column is modelled by connecting the stages and sections as shown in F
7.1. We assume constant molar flows, thus and inside a s
tion, and . The liquid and vapour splits are assumed to be realized
splitting the flows at two specified ratios. (Note that indices 1-6 here denote t
column sections)

(7.14)

The practical implementation of liquid split and side-stream withdrawal m
involve full withdrawal of all downcomer flow into an external accumulator, a
controlled flow back into the column again. The vapour split may be more d
cult to implement in practice, but practical solutions do exist.

The feed enthalpy factor is given in terms of the liquid fractionq:

(7.15)

More precisely, the flow changes at the feed stage (i=f ) are given by:

(7.16)

and the following expression is added to the component mass balance in (7.1
i=f .

(7.17)

A simple temperature model is used here: We just assume that the temperatu
a stage (i) is the mole fraction average of the boiling points for each comp
nent (j).

(7.18)

Vi Vi 1+= Li Li 1–=

Mi const=

L1 RlL3=

V2 RvV6=

q

1>
1=

1 0>∩<
0=

0<





 Subcooled liquid

Saturated liquid

Liquid and vapor

Saturated vapor

Superheated vapor

Li 1– Li qF+=

Vi Vi 1+ 1 q–( )F+=

qF zj xi j,–( ) 1 q–( )F zj yi j,–( )+

TB j,

Ti TBjxi j,
j a b c, ,=

∑=
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7.10.2 Analytic Expressions for Minimum Reflux

These results are based onFidkowski and Krolikowski (1986). The original equa-
tions were only valid for saturated liquid feed (q=1), but this has been extended
to include any liquid fraction (q) (Halvorsen and Skogestad, 1999). For sha
product splits and normalized feed, the minimum reflux value for the Petlyuk c
umn is given by:

(7.19)

The roots ( ) are solutions of the Underwood equation for the prefraction
feed:

(7.20)

Note that the Underwood roots obeys the following inequalit
.

The prefractionator has a V-shaped minimum reflux characteristicL1=L1,min(β) as
shown in the lower part of Figure 7.26 and for sharp a/c split it can be expres
analytically by:

(7.21)

Equation (7.21) has a distinct minimum which represent the absolute minim
energy operating point for the prefractionator: This is denotedthe preferred split
(Stichlmair,1988). Analytical values for prefractionator reflux (L1,p) and middle
key recovery (βP) at the preferred split, can be found by equating the two straigh
lines of (7.21). Note that in general,βP is dependent of feed composition and liq
uid fraction via (7.20), but in the special case of saturated liquid,βP is only
dependent on the relative volatilities:

(7.22)

Lmin max
αAzA

αA θA–
-------------------

αAθB

αA θB–
-------------------

αBzB

αB θB–
-------------------+,

 
 
 

=

θA θB,

αAzA

αA θ–
----------------

αBzB

αB θ–
----------------

αCzC

αC θ–
----------------+ + 1 q–( )=

αA θA αB θB αC> > > >

L1 min, β( )

αAθ1

αA θA–
-------------------

αBθ1β
αB θ1–
------------------+ for β βp≤

αAθB

αA θB–
-------------------

αBθBβ
αB θB–
-------------------+ for β βp≥









=

βP

αB αC–

αA aC–
--------------------= for q 1=
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Further elaboration of the result show that the minimum energy for the whole
lyuk column occurs not at a single point, but is constant in the range of fractio
recoveries (β) between thepreferred split(βP), which yields minimum energy
consumption in the prefractionator, and for a certainβ=βR, for which we will find
that the minimum energy requirements is fulfilled at the same time for both
upper and lower parts of the main column, also denoted:a balanced main column.
The prefractionator has to be operated at its minimum characteris
L1,=L1,min(β) (7.21), with β betweenβP and βR. We may have three different
cases:1)βP>βR, 2) βP<βR and 3)βP=βR, where the last one is a special cas
where the solution is reduced to a single point in the (β,L1)-plane at the preferred
split. Figure 7.26 show an example whereβP<βR.

The analytical expression in (7.19) is deduced by requiring minimum reflux in
prefractionator and in the main column. The main column can be regarded as
binary columns separating components a/b and b/c. Since the columns are
nected, we cannot specify the reflux in each part freely, thus when we set the
column reflux (L) and the two degrees of freedom (hereβ andL1) all other flows
are determined. Minimum reflux requirement can then be expressed in these
variables for both parts of the main column.

We can find a function which gives the minimum reflux requir
ment (into the main column top) when we only consider the upper part of the m
column, and similarly gives the minimum reflux requirement (in
the main column top) when we only consider the lower part of the main colu
Then the main column minimum reflux as given in (7.19) can be found by solv

(7.23)

subject to

The properties of the solution surface can be studied further by con
ering each of and . Fortunately, these functions are fou
to be linear inβ andL1. Thus we can express these functions as straight line
the (β,L1) plane for a constantL. Solved with respect to the prefractionator reflu
(L1) we can find the simple analytic expressions in (7.24) with and (7.
with .

(7.24)

Lmin
upper β L1,( )

Lmin
lower β L1,( )

Lmin β L1,( ) max Lmin
upper β L1,( ) Lmin

lower β L1,( ),( )=

L1 L1 min, β( )≥

Lmin β L1,( )
Lmin

upper β L1,( ) Lmin
lower β L1,( )

Lmin
upper

Lmin
lower

L1 Lmin
upper

βzBαA

αA αB–( )
zAaB

Lmin
upper

----------------–

------------------------------------------------–=
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Note that these equations are only valid when there is a pinch zone around the
responding main column “feed” location and we have sharpa/c split in the
prefractionator and sharpa/bandb/csplits in the two main column parts.

We can interpret (7.24) as a level contour for the surface in
(β,L1)-plane when we only consider the minimum reflux requirement for t
upper part of the main column. Similarly equation (7.25) represents a contour
for in the (β,L1)-plane when we only consider the minimum
reflux requirement for the lower part.

Figure 7.26: Minimum reflux for the whole Petlyuk column (L) has aflat minimum region
(P*R*) for recoveries in the range between the preferred split (βP) and a balanced main
column (βR), while minimum reflux (L1) for the prefractionator itself has a sharp
minimum at the preferred split.

ConstantL

Balanced main columnMain column

Prefractionator

Lmin(β)

L1,min(β)

β

ββP βR

The upper part of the main column
determine minimum reflux for
large values ofβ

The lower part of the main column
determine minimum reflux for
small values of β

R*

P*

Eq (A.12)
Eq. (A.l3)reflux (L1)

reflux (L)

L1 Lmin
lower zB–

1 β–( )zBαC

αB αC–( )
zCaB

Lmin
lower zA zC 1 q–( )–+ +

---------------------------------------------------------------–

-----------------------------------------------------------------------------------------------–=

L L= min
upper β L1,( )

L L= min
lower β L1,( )
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The operating points in the (β,L1)-plane fora balanced main column (L1,R,βR) are
found at the intersection of the lines described by (7.24) and (7.25) for the s
main column reflux ( ). For the case of saturated liquid fe
(q=1), the solution can be expressed by

, (7.26)

The reason for the flat optimum (see Figure 7.26) is that the level lines give
(7.24) and (7.25) coincide with the corresponding branches of the minim
reflux characteristic for the prefractionator (7.21) at the optimum. The proof

follow the same procedure as inFidkowski and Krolikowski (1986).The
result is the simple analytical expression for the overall minimum reflux in eq
tion (7.19) which is valid also for any liquid fraction (q).

We might have expected the optimum to be at the preferred prefractionator
(P*) or at a balanced main column (R*). The fact that all points on the straight line
P*R* are optimal is very important.

7.10.3 Mapping V(β,L1) to V(Rl,Rv)

We here consider the surfaceV(Rl,Rv) for the case with infinite number of stages
From equations (7.24) and (7.25) we see that for a fixed reflux (L), the level con-
tour of L(β,L1) (and then alsoV(β,L1))are straight line segments in the (β,L1)-
plane (see the dashed level line for constantL in Figure 7.26 which represent
operating lines from equations (7.24) and (7.25)). Recall also the definition o
split ratios, and observe howRv can be expressed as a function ofL,L1,andβ in
the case of sharp product splits (Feed is normalized):

(7.27)

Thus, for constant reflux (L), any straight line in the (β,L1)-plane map to a straight
line in the (Rl,Rv)-plane.

The optimum which occur on a line segment in the (β,L1)-plane will then also be
a straight line segment in the (Rl,Rv)-plane. Fidkowski’s equations, extended t
handle any feed liquid fraction (q), together with equation (7.27) gives us the to
to compute all possible level lines on the surfaceV(Rl,Rv) with the feed composi-
tion, liquid fraction and component relative volatilities as parameters.

L Lmin
lower Lmin

upper= =

βR

L αA αB–( ) FzAα
B

–

Lαc L F zA zC+( )+( )–
---------------------------------------------------------=

L1 R, L 1
zBαA

LαA L zA zC+ +( )αC–
---------------------------------------------------------–

 
 
 

=

q 1≠

Rl

L1

L
------= Rv

V2

V
------

L1 za zbβ 1 q–( )–+ +

L za 1 q–( )+ +
-------------------------------------------------------= =
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Each level line is a polygon with four characteristic corners:

C1.Operating theprefractionator at preferred split and minimum reflux
(L1,P,βP), over-refluxing the main column (L>Lmin).

C2.Operating along theleft branch of the prefractionator characteristic
(L1=L1,min(β), β<βP), L from intersection of (7.21) and (7.25)

C3.Operating wherethe main column is balanced (L1,R,βR), while the pre-
fractionator is over-refluxed (L1>L1,min(β))

C4.Operating along theright branchthe prefractionator, above the balanc
point.(L1=L1,min(β), β>βR), L from intersection of (7.21) and (7.24)

Note that corner lines C1,C2 and C3,C4 coincide at each end of the optimum
in the (Rl,Rv)-plane. (The list items above are valid forβP<βR. In the case of
βP>βR we have to reformulate item 2 and 4)

It is interesting to observe that the point (βp,L1,P) map to a curve in the (Rl,Rv)-
plane when we increase the main column reflux. (Corner 1.)

And for q=1, operating along the right branch of the prefractionator, above
balance point (Corner 4) map into a single point in the (Rl,Rv)-plane.

The constant energy level lines from corner 2 via corner 3 to corner 4 are dire
described by the equations (7.24) and (7.25).
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Chapter 8

Use of Short-cut Methods to
Analyse Optimal Operation of
Petlyuk Distillation Columns

Ivar J. Halvorsen and Sigurd Skogestad

Norwegian University Of Science and Technology (NTNU)
Department of Chemical Engineering, N7491 Trondheim, Norway

Presented at PRESS99, Budapest, Hungary, May 1999

Abstract:
Analytical methods are used to compute important operational parameters f
infinite staged Petlyuk column as a function of feed composition, feed entha
and relative volatilities. The computational effort is very low, and the methods
be used to get a very good picture of the applicability of a Petlyuk column fo
specific separation task. It is found that the largest energy savings are obtaine
the set of feed compositions when the prefractionator is operated at its prefe
split and both the upper and lower parts of the main column operate their res
tive minimum reflux condition at the same time. The position of this bound
region relative to the actual feed is very important when we consider impor
operational aspects of the column.

Keywords: Petlyuk distillation column, dividing wall column, optimizing contro
minimum energy
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8.1 Introduction

The fully thermally coupled distillation arrangement, (Petlyuk 1965), has sev
appealing features for separation of a three-component mixture. However
industrial usage has been quite limited, even though it is 50 years since Wrig
patent (1949) for a dividing wall column. The sole industrial exception has b
BASF, e.g. (Kaibel 1997), which have several dividing wall columns in operat
and regard it as standard technology. Recently, a Japanese and a British ap
tion have been reported, (Parkinson 1998) and (Lestak et al. 1999). Theore
design studies and results from pilot plant operation have been presented by
antafyllou and Smith 1992) and (Mutalib and Smith 1998). Recent theoret
studies are presented by (Mizsey et. al. 1998) and (Agrawal and Fidkow
1998a,b). All authors report typical savings in the order of 30% in energy co
and that the implementation as a dividing wall column can also save conside
capital costs compared to traditional arrangements with two binary column
series.

In this paper we use analytical methods for infinite staged high purity colum
The methods can be used to quickly check if a Petlyuk arrangement is suitab
a particular separation case, and indicate requirements for the level of autom
control and the design of number of stages in each column section.

8.2 The Petlyuk Distillation Column

The Petlyuk column, shown in Figure 8.1, has at steady state five degrees of
dom. These may be selected as the following manipulated input variables: Bo
(V), reflux (L), mid product side-stream flow (S), liquid split (Rl=L1/L) and vapour
split (Rv=V2/V). There are three main product purity specifications: Top (
bottom ( ) and side-stream ( ). A very important issue is then that we h
more degrees of freedom (5) than product specifications (3 in this example).
two extra degrees of freedom can be used for optimization purposes, like min
zation of the energy consumption. When the column is operated optimally,
infinite staged Petlyuk column always consumes less energy than the corres
ing conventional solution, (Fidkowski 1987). However, this optimal operati
may be difficult to achieve in practice since the optimal operation depe
strongly on the feed properties and the remaining degrees of freedom.(Wolff
Skogestad 1994) and (Halvorsen and Skogestad 1999a).

In the following we will choose L,V and S to control the product purities, and
(Rl,Rv) be the remaining two degrees of freedom (note that other choices ma
made). The overall energy consumption will then be a function of the degree
freedom (Rl,Rv), the feed properties (z,q) and the product specifications
( ). We choose to use the reboiler vapour flowV as a measure of the
energy consumption.

xDa
xBc xSb

xDa xBc xSb, ,
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Our aim is to adjustRl and
Rv in order to keep

. The optimal
values Rl and Rv can be
found by minimizing the
boilup with respect to the
degrees of freedom as
shown in equation (8.1).
The optimal boilup ( )
will be a function of feed
properties and product
specifications.

An important observation
for the Petlyuk column is
that for a broad
range of values of (Rl,Rv).
This implies that the opti-
mum is quite flat and that
exact values for (Rl,Rv) may
not be required. However,

this observation is limited to a certain direction in the (Rl,Rv)-plane. This indicates
that one of the degrees of freedom can be left constant, like in the trivial case
will follow up this idea and investigate how the optimal region depend on the f
properties and relative volatilities.

(8.1)

8.3 Computations with Infinite Number of Stages

We here limit ourselves to sharp splits ( ) and infinit
number of stages. Only the main procedure is outlined here; for details see
vorsen and Skogestad 1999a,b) and also (Fidkowski 1986) for the minim
reflux computation. We assume a ternary feed mixture with composit

for the light, intermediate and heavy components respective
We use normalized feed (F=1), with liquid fractionq (whereq=0 implies satu-
rated vapour andq=1 implies saturated liquid). We assume constant mo
overflow and constant relative volatilities , referred to a com
mon reference component (usually C). Then we can compute the solution su

. V(Rl,Rv) for a given set ofz,qand is shown in Figure 8.2

Feed
F,z,q

D,xD

B,xB
Bottom product

Top product

Reboiler

Vapour split (Rv)

3

1

2

4

5

6

Side-stream
product

S,xS

Condenser

“The Dividing

Liquid split (Rl)

 wall”

L

V

Prefractionator

Figure 8.1: The Petlyuk distillation arrangement
implemented as a Dividing Wall Column

V Vopt=

Vopt

V Vopt≈

Vopt q z xDa xBc xSb, , , ,( ) V Rl Rv q z xDa xBc xSb, , , , , ,( )
Rl Rv,
min=

Rl Rv,( )
opt

f q z xDa xBc xSb, , , ,( )=

xDa xBc xSb 1= = =

z zA zB zC, ,[ ]=

α αA αB αC, ,[ ]=

V Rl Rv q z α, , , ,( ) α
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(surface) and Figure 8.3 (contour). Note the flat region withV=Vmin along a
straight line from P* to R* in the -plane. This corresponds to the oper
tion along the V-shaped prefractionator minimum reflux characteris
( ). between the point of the preferred split ( ) in P*, and the
value ( ) which makes the main column balanced in R*. is defined as the
recovery of the intermediate B-component leaving the prefractionator top.

The flat region may be wide or narrow, depending on the relative values of
and and we may have cases with either or (like in figure 8
and 8.3). Only for the special case do we have a sharp minimum.
mapping between the variables ( ), which is convenient when we look at
prefractionator, and our chosen degrees of freedom are straightforw
from the definition, and the line segment P*R* is described by the poi

in P* and in R*. The minimum boilup rate for the Pet
lyuk column, which is the boilup when operating along P*R*, is given by:

(8.2)

The Underwood roots ( ) obey and can be foun
by solving equation (8.3):

(8.3)

The minimum vapour flow for the prefractionator for sharp A/C split is then giv
by:

(8.4)

We can find the point of preferred split ( ) by solving (8.4) for the value
V1,min when both Underwood roots are active (which is at the minimum of
“V”-shapedV1,min(β)). The point of a balanced main column ( ) can be foun
by solving the equations for the level lines for the same minimum main colu
reflux for the upper and lower part ( ). These level lines can
expressed as two straight lines in the ( )-plane for the upper and lower
of the main column:

Rl Rv,( )

L1 L1 min, β( )= βP
βR β

βP
βR βP βR> βP βR<

βP βR≈
β L1,

Rl Rv,( )

Rl P, Rv P,,( ) Rl R, Rv R,,( )

Vmin
petlyuk

max
αBzB

θA αB–
-------------------

αCzC

θA αC–
--------------------+

αCzC

θB αC–
-------------------,

 
 
 

=

θA θB, αA θA αB θB α>
C

> > >

αAzA

αA θ–
----------------

αBzB

αB θ–
----------------

αCzC

αC θ–
----------------+ + 1 q–( )=

V1 min, β( )
max

θB θB,

αAzA

αA θ–
----------------

αBzBβ
αB θ–
----------------+

 
 
 

=

βP

βR

Lmin
upper Lmin

lower=
β L, 1
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



8.3 Computations with Infinite Number of Stages 255
(8.5)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9 0

0.2

0.4

0.6

0.8

1

50

100

150

200

250

300

350

Liquid split R
l

Vapor split R
v

B
o

ilu
p

 V
/V

op
t [

%
]

R*

P*

C2

C4
C3

C1

Figure 8.2: The solution surfaceV(Rl,Rv) for the case
with infinite stages and sharp splits

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Liquid split R
l

V
ap

or
 s

pl
it 

R
v

Contour plot of V(R
l
,R

v
)

z
f
 =[0.33 0.33 0.33 ]

α =[4.00 2.00 1.00 ]
q = 0.5

C1

C2

C3

C4

P*

R*

Optimal operation
line, V=100% 

At balanced
main column 

At preferred
prefractionator
split 

V=300% 

Figure 8.3: The contour lines forV(Rl,Rv) are straight lines
between the four characteristic corners.

L1 Lmin
upper

βzBαA

αA αB–( )
zAaB

Lmin
upper

----------------–

------------------------------------------------–=
NTNU Dr. in
g. Thesis 2001:43 Ivar J. Halvorsen



256

m-

or-
ach

the

e

),

end
Our
tion
l-
s as
es
(8.6)

For non-optimal operation, away from the line P*R*, the details of how to co
pute an arbitrary point on the solution surfaceV(Rl,Rv) is given in (Halvorsen and
Skogestad 1999). A short summary is given here: The contours for (V=const,
V>Vmin) in the -plane are straight lines between four characteristic c
ner lines (C1-C4) which represent a particular operating condition for e
particular edge (C2 and C4 are for ).

• C1: Preferred split in the prefractionator. Over-refluxed main column.

• C2: Along the left branch of the minimum reflux characteristics for the
prefractionator.

• C3: Balanced main column, and over-refluxed prefractionator (above 
V-shaped minimum curve).

• C4: Along the right branch of the minimum reflux characteristics for th
prefractionator for

The minimum boilup when we fix one ofRl or Rv, is along the path C1-P*-R*-C3:
This path is given byV(Rl,opt(Rv),Rv) or V(Rl,Rv,opt(Rl)). Full savings can only be
obtained if the chosen constant value is in a flat region, (e.g if
and in addition the other must be optimized for that choice, (e.g.Rl=Rl,opt(Rv)
when we choose to fixRv).

8.4 Results with the Analytical Methods or some Separa-
tion Cases

8.4.1 When do we get the Largest Savings with the Petlyuk
Column?

The energy savings that can be obtained with a Petlyuk configuration will dep
on the feed properties, the product specifications and the relative volatilities.
reference for computing the savings is the best of the conventional configura
with direct split (DSL) or indirect split (ISV) (with vapour feed to the second co
umn). In the triangular plots in Figure 8.4 we show the contours of the saving
a function of the feed composition , for three sets of relative volatiliti
with saturated liquid feed.

L1 Lmin
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Observe that the largest saving is obtained for the set of the particular feed
positions when the operating point for a preferred prefractionator split equals
operating point for a balanced main column. This is the situation when P* coin-
cides with R* and we have . This is denoted the “boundary curve” in t
following figures. On the side of this boundary closest to pure C-feed we alw
have , and on the side most close to pure A-feed we always h

. The situation when P*=R* is also special when we consider the oper
tional aspects. In that situation we have no flat region on the solution surface
this implies that we have to adjust both degrees of freedom on-line in orde
maintain optimal operation for even small feed disturbances. The particular
composition when we have the largest energy savings will be either at the in
section with the dashed curve where the boilup for the conventional direct
equals the indirect split configuration, ( ) or at the end-points f
the boundary curve for .

Thus we get the largest theoretical savings in the region where the column is
difficult to operate optimally, and where we also require the largest numbe
stages, see (Halvorsen and Skogestad 1999b).
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8.4.2 Sensitivity to Changes in Relative Volatility Ratio
and Liquid Fraction

The sensitivity of the boundary curve for to variations in ,
very strong as shown for the difficult separation case in figure 8.5a and 5b. In
ure 5c we observe that changing the feed liquid fraction (q) rotates the boundary
curve around an invariant point.

8.4.3 When Can we Obtain Full Savings with
Constant Vapour and Liquid Splits?

Assume that the design value for the vapour split has been set to. Figure 8.6a
illustrates the contour lines for constant vapour split values of the end-point
P*R*, Rv,P,(solid) andRv,R(dashed) as a function of feed composition. In order
be able to operate in the flat optimal region, we must have a feed composition
that . (We have always: )

βP βR≈ αAB αBC⁄
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.This is illustrated with the shaded area in figure 8.6a for an example w
=0.6. Observe that in the feed region close to the boundary curve

, an operation strategy with constant will only give us full saving
for one particular feed composition, but further away from the boundary curve
exact value of  is not required.

The extent of the flat region increases as we move away from the boundary c
In Figure8.6b,V(Rl,opt(Rv),Rv) is shown for some selected feed compositions, a
we note flat regions.
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In Figure 8.6c we show an example where wee keep both degrees of freedom
stant. Now the region where Petlyuk column saving is positive is even m
limited. In Figure 8.6c it seems almost impossible to save energy without ad
ing Rl and/orRv to move that narrow region if the feed composition changes.

Let us make a short summary: To operate at minimum energy we first hav
ensure that is in the flat region in order be able be within the solution surf
V(Rl,,Rv) between P* and R* at all. This task seem quite easy unless when the
composition is close to the boundary curve. Second, we must find the opt
value ofRl for the particular , to ensure that we actually operate onP*R* and
not somewhere to the sides of P*R*, whereV(Rl,,Rv) may be quite steep. With
both Rl andRv constant, the probability of hitting P*R* on a solution surfac
which is moved around by changes inz, qandα, will be very small, so this will
only be a feasible strategy if the operating conditions are reasonable steady
for cases where the solution surface is not very steep (which can be the situ
for easier separations than for the case in Figure 8.6c).

8.5 A Simple Procedure to Test the Applicability
for a Petlyuk Arrangement

We present a short procedure for evalu
ating separation cases by the followin
simple example: We consider the thre
feed composition regions: I,II and III,
shown in the triangular diagram in fig-
ure 8.7. The boundary curves fo

(in region X) are computed
for the expected variations of relative
volatility and liquid fraction. For feed
case I, we have an intersection with th
region X, thus this case will require on-
line adjustment of both degrees of free
dom to achieve the full theoretica
energy saving. For case II and III we
know that there will be a flat region on

the solution surface, and the optimal operation will be on the left and right bra
of the prefractionator characteristic, respectively. However, if we want to hav
fixed vapour split (Rv,d), the feed have to be within the region Y in order to get th
full benefits of the theoretical energy saving. Thus only the feed case III will
suitable for instance with a DWC with the constant vapour split if we are requi
to achieve the full theoretical savings of the Petlyuk arrangement. For ano
value ofRv,d, region II may also be suitable for operation with a fixed vapour sp

Rv
o

Rv
o

I

B

AC

III

Feed region where a
fixedRv,d is optimal.

Feed region where:
βP βR=

X

Y

Figure 8.7: Check the applicability of a
Petlyuk arrangement for a given feed
property range
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8.6 CONCLUSION

Simple analytical Underwood methods developed for the infinite staged Pet
column with sharp product split can be used to compute the theoretical perfo
ance of a Petlyuk arrangement for any set of feed properties and operat
situations. For every set of feed parameters and relative volatilities the full sur
V(Rl,Rv) can easily be computed and analysed. We observe that the best po
energy savings is obtained close to the feed composition region where the op
ing point for preferred split of the prefractionator coincide with the situation th
we have the same minimum reflux requirement in the upper and lower part o
main column, i.e when the main column is balanced. This region is also the m
difficult region for operation since we have to adjust both degrees of freedom
line. However, if the feed composition is away from the boundary line, then o
mal operation (in terms of minimum boilup) can be obtained with a strate
where one of the degrees of freedom, e.g. the vapour split, is kept constant

The results shown in this paper are valid for sharp product splits, and there
relevant for high purity distillation. In Chapter 9 the case of non-sharp sp
including new analytical expressions for the infinite stage case, is treated fu
and it is shown that in particular the sidestream purity is closely related to
extent of the flat region ofV(Rl,Rv). A typical symptom of a real column if we
have a feed composition outside the feasible regions for high purity operatio
that we will be unable to produce high purity products, even if the energy inpu
the column is above the theoretical minimum. So instead of an increase in en
consumption for non-optimal operation, we may experience a decreasing pro
purity.
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Chapter 9

Optimal Operating Regions for
the Petlyuk Column -

Nonsharp Specifications

Ivar J. Halvorsen and Sigurd Skogestad

Unpublished

Abstract:
Nonsharp product purity specifications bring a new dimension to the flat optim
ity region of a 3-product Petlyuk arrangement. In the sharp product split case
optimality region is a line segment in the plane spanned by the two remain
degrees of freedom. However, when we allow a certain sidestream impurity,
mal operation is achieved in a wider quadrangle shaped region. An impo
practical implication is that suboptimal operation of a Petlyuk arrangement m
result in reduced sidestream purity, and not necessarily increased energy
sumption. It will normally also be simpler to operate the Petlyuk column when
do not require high sidestream purity. In this paper we deduce analytical exp
sion for minimum energy and the detailed boundaries of the optimality region
any product purity specification. We also discuss the implications of four prod
purity specifications.
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9.1 Introduction

The objective of this paper is to present the ge
eral minimum energy solution for nonsharp
product splits for the integrated Petlyuk distilla
tion column shown in Figure 9.1, and to discus
important aspects of operation of such column

The configuration in Figure 9.1 has five degree
of freedom after the level control loops in the to
and bottom are closed. These are the main c
umn reflux ( ), boilup ( ) and the
sidestream flow rate (S) which are used for prod-
uct composition control plus the reflux and
vapour flow in the prefractionator, represente
by the split ratios (Rl,Rv). The latter two degrees
of freedom are here used for minimizing th
energy requirement.

Several authors (Fidkowski and Krolikowsk
1986), (Glinos et. al. 1989), (Carlberg and Wes

erberg 1989), (Christiansen 1997) have presented expressions for the mini
energy solution for sharp product splits, and have pointed out that the minim
energy solution will be along a line segment in a plane spanned by the
selected degrees of freedom. With optimal values of the remaining two degre
freedom, the energy requirement for the Petlyuk arrangement is typically 3
lower than in conventional column sequences. In Chapters 7 and 8 we show
the column behaves not only at the optimum, but in an arbitrary region around
optimum for the sharp product split case. In Chapter 7 and 11 we also pres
case study for finite number of stages and nonsharp product splits, mainly
an operational point of view.

It turns out that the impurity specification in the sidestream product has a very
nificant impact on the optimality region and thus on how the remaining t
degrees of freedom should be used. We will show that the optimality region in
case of a nonsharp sidestream specification is extended from a line segmen
quadrangle-shaped region, with a width given by the sidestream purity only.

We will also discuss the observations by Wolff and Skogestad (1996) ab
“holes” in the operational region when we want to specify a certain amoun
light and heavy impurity in the sidestream.
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9.2 The Basic Methods

The analysis and presentation is based on theVmin-diagram (Chapter 3) which is
based directly on Underwood’s equations for minimum energy for infin
number of stages (Underwood 1946, 1948ab). Chapters 4 and 5 shows ho
apply these methods for minimum energy calculations for directly coup
arrangements. Here we give a brief review of the most important issues.

9.2.1 The Underwood Equations

The actual Underwood roots in the top ( ) and bottom ( ) of a two-product c
umn are defined by the following relationships between the vapour flow (V) and
the net component flows (w, defined positive upwards) through a cross-section
the top (T) and in the bottom (B) of the column:

, and (9.1)

The solutions obey . Minimum vapour flow is
obtained when one or more pairs of roots coincide ( ). These
obtained by solving the feed equation which arise when we subtract the equa
above.

(9.2)

Here the feed composition (z) appears since: . For a
ternary case we obtain two common Underwood roots ( , ) by solving (9
and the correct active ones to apply is the ones between the volatilities of the
tributing components. The minimum vapour flow when root k is acti
( ), is then:

, and (9.3)
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αCzC

αC θ–
----------------+ + 1 q–= =

wi T, wi B,– wi F, ziF= =
θA θB

φk θk ψk 1+= =

VTmin

αiwi T,
αi θk–
-----------------∑= VBmin

αiwi B,
αi θk–
-----------------∑=
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9.2.2 TheVmin-Diagram

Figure 9.2 illustrates aVmin-diagram
for a given ternary feed mixture
(ABC) in a two-product column, e.g.
for the prefractionator (C1) in Figure
9.1. We use the top vapour flow (VT)
and the net product split (D/F) as
degrees of freedom. The peaks repr
sent minimum energy for sharp spli
between A/BC (PAB) or AB/C (PBC).
Sharp split between A/C require
operation above the V-shaped PAB-
PAC-PBC, with minimum vapour flow
at the preferred split (PAC). In the tri-
angular regions under the
“mountain”, a set of components AB,
ABC or BC may be distributing to

both products, and in each of these regions the active Underwood roots will b
ones between the relative volatilities of the distributing products. Above
“mountain”,V>Vmin, only one component may distribute and there are no co
mon Underwood roots.

9.2.3 TheVmin-diagram Applied to the Petlyuk Arrangement

For directly coupled columns, like the Petlyuk arrangements, the actual Un
wood roots in one section carry over as common roots to the succeeding co
(Carlberg and Westerberg 1989). Thus, we have:

 and (9.4)

This was used in Chapter 4 to show that for column C1 operated at the prefe
split, we obtain and . TheVmin-diagrams for C21 and
C22 overlap the diagram for C1, and minimum vapour flow for the Petly
arrangement for sharp product split is simply given by the highest peak in
Vmin-diagram, thus (we omit superscript C1):

(9.5)

where , =

D=VT-LT

VT

AB

BC

ABC

A B

C

Figure 9.2: The Vmin-diagram. The
distributing components and the active
Underwood roots are indicated in each region.

θA,θB

θB

θA

PAB

PBC

PAC

θC21 φC1= θC22 ψC1=

θA
C21 θA

C1= θB
C21 θB

C1=

VTmin
Petl max VT

A/BC VT
AB/C,( )=

VTmin
A/BC

F
---------------

αAzA

αA θA–
-------------------=

VTmin
AB/C

F
---------------

αAzA

αA θB–
-------------------

αBzB

αB θB–
-------------------+=

α– czC

αC θB–
------------------- 1 q–( )+
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9.2.4 The Optimality Region for Sharp Product Splits

Somewhat surprising, the minimum boilup solution for the arrangement is
unique, and the optimality region is the minimum boilup region in the spa
spanned by the two remaining degrees of freedom, here chosen as the ne
leaving the prefractionator and the vapour flow in the prefractiona
( ).

As shown by Fidkowski and Kro-
likowski (1986), and revised in the
Vmin-diagram in Figure 9.3, the opti-
mality region is the line segment
(PAC-Pbal). That is, from the pre-
ferred split (PAC), along the V-shaped
Vmin-boundary (PAB-PAC-PBC) for
sharp A/C split, towards the highest
peak. At Pbal, ,
which we denote a balanced main
column.

In Figure 9.3 PBC is the highest peak.
At the balance point, the active
Underwood root in the top of C21
carries over from the top of C1
( ) and we have:

(9.6)

The distribution of the intermediate B in C1 and the balance point operating p
(Pbal) can then be found by:

(9.7)

The preferred split (PAC) is found when both  and  are active:

(9.8)

DC1 VT
C1,

D=VT-LT

VT

AB

ABC

Figure 9.3: Optimality region for the
prefractionator column (C1) of a Petlyuk
arrangement shown in theVmin-diagram.

θA,θB

θA

PAB Pbal

φΑbal

PBC

Optimality
region

PAC:

Preferred split

Vmin-diagram for C21
whenφA

C1=φAbal

VBmin
C21 VTmin

C22=

φAbal

VTmin
A/BC

F
---------------

αAzA

αA φAbal–
---------------------------

VTmin
AB/C

F
---------------

αAzA

αA θB–
-------------------

αBzB

αB θB–
-------------------+= = =

VTbal
C1

αAzA

αA θB–
-------------------

αBwB Tbal,
C1

αB θB–
---------------------------+

αAzA

αA φAbal–
---------------------------

αBwB Tbal,
C1

αB φAbal–
---------------------------+= =

θA θB

VTpref
C1

αAzA

αA θB–
-------------------

αBwB Tpref,
C1

αB θB–
-----------------------------+

αAzA

αA θA–
-------------------

αBwB Tpref,
C1

αB θA–
-----------------------------+= =
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9.3 Non-Sharp Product Specifications

9.3.1 Relation Between Compositions, Flows and Recoveries

For sharp product splits, the net component flows and product flows are triv
given by the feed compositions. However, with nonsharp products, these
related through the overall material balance and the specifications.

We consider a ternary feed mixture with components A, B and C and comp
tions (zA,zB,zC). We choose to specify the products by the composition of the m
component in each of the three product streams; at the top (D), at the side (S) and
in the bottom (B) ( ) (note that whenB is used in subscripts, the
first position refer to component and the second to product or section). In no
operating regions, there will be no heavy component in the top prod
( ), and no light component in the bottom product ( ). How
ever, in the sidestream, we may have both light ( ) and heavy (
impurities. Since , we only need one of the sidestrea
impurities in addition to the three main specifications to determine the prod
streams uniquely. We here choose to use as a free variable. The ov
material balance for the column gives:

or (9.9)

Observe that the product specification matrix for sharp product sp
and this gives a particular simple solution: .

For use of Underwood equations for directly coupled sections it is convenien
use net component flows (w). These are found easily when the product flows a
compositions are known:

(9.10)

xA D, xB S, xC B,, ,

xC D, 0= xA B, 0=
xA S, xC S,

xA S, xB S, xC S,+ + 1=

xA S,

zA

zB

zC

F

xA D, xA S, 0

1 xA D,–( ) xB S, 1 xC B,–( )

0 1 xB S, xA S,––( ) xC B,

D

S

B

Ms

D

S

B

= =

D

S

B

Ms
1–

zA

zB

zC

F=

Ms I=
D zAF= S, zBF= B, zCF=

wA D, xA D, D=

wB D, 1 x– A D,( )D=

wC D, 0=

wA S, xA S, S=

wB S, xB S, S=

wC S, 1 xB S, xA S,––=

wA B, 0=

wB B, 1 xC B,–( )B=

wC B, xC B, B=
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Note that the product flows (D,S,B) and the product net flows (w) are a function
of the unspecified amount of impurity in the sidestream. Thus, if we also spe
a fourth variable in the products (e.g. ), the solution for flows and prod
recoveries is unique. We will discuss this later in Section 9.6.3.

9.4 Minimum Vapour Flow for Non-Sharp Product
Specifications

As shown in Chapter 4 for the 3-product Petlyuk column, and in Chapter 5 for
general M-product case, the minimum vapour flow for the Petlyuk column is
same as the maximum of the minimum energy required for any pair of prod
splits in a binary column. This is also valid for nonsharp product splits and
may apply equation (9.5) directly, but now with the vapour flows related to
nonsharp product splits between D/SB and DS/B.

(9.11)

We know that the minimum values for columns C21 and C22 are obtained fo
operated in region ABC where  carry over to C21 and  to C22. Thus

= (9.12)

= (9.13)

Note that to compare the vapour flow requirements for the two splits when
we have to refer to either the top or the bottom. The difference is given by
vapour fraction in the feed((1-q)F).

The four component flows (w) are uniquely given from the product specification
and can be computed from equations (9.9-9.10). In the case of pure product
trivially get , , and we obtain
the well known expressions for sharp product splits as given in (9.5).

However, since we only specify the main components in each of the three p
ucts, the impurity specification in the sidestream, here represented by
remaining degree of freedom. Thus, in general the solution to (9.11) has t
minimized with respect to :

xA S,

VTmin
Petl max VTmin

D/SB VTmin
DS/B,( ) max VTmin

C21 VBmin
C22 1 q–( )F+,( )= =

θA θB

VTmin
D/SB

αAwA T,
C21

αA θA–
--------------------

αBwB T,
C12

αB θA–
--------------------+= VTmin

C21

VTmin
DS/B

αBwB B,
C22

αB θB–
--------------------

αCwC
C22

αC θB–
-------------------- 1 q)F–( )+ += VBmin

C22 1 q–( )F+

q 1≠

wA T,
C21 zAF= w– C B,

C22 zCF= wB T,
C12 wB B,

C22 0= =

xA S,

xA S,
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(9.14)

We illustrate the behaviour of the minimum energy operating points in Figure
Note that is minimized for and is mini-
mized for  which is the same as .

In Figure 9.4, we obviously have > . This
implies that the requirement in C22 controls the overall requirement, and the s
tion to (9.14) is given by:

, at (9.15)

We classify this assolution Case 1, and one characteristic is that we have only th
heavy C component as impurity in the sidestream at the optimum.

Similarly, when the peak PAB is significantly higher than PBC, we will have an
optimal solution with only light A impurity in the sidestream (Case 3). We m
only get a solution where the optimum is obtained for a combination of A an
impurity in the sidestream when the peaks are of similar height (Case 2). Ca
and 3 are illustrated in Figure 9.5.

These three cases are equivalent to similar cases for sharp product splits, a
summarize the characteristics of the possible solutions:

VTmin
Petlyuk

max VTmin
C21

xA S,( ) VBmin
C22

xA S,( ) 1 q–( )F+,( )( )
xA S,
min=

VBmin
C22 xA S,( ) xA S, 0= VTmin

C21 xA S,( )
xA S, 1 xB S,–= xC S, 0=

D=VT-LT

VT

AB

PBC

ABC

Figure 9.4: Behaviour of and in the TheVmin-diagram
for a given feed. The plot shows the solution of a typical Case 1 where column C22
controls the overall requirement in the Petlyuk Arrangement.

VTmin
C21 xA S,( ) VBmin

C22 xA S,( )

VBmin(xA,S)+(1-q)F

xA,S=0

xA,S=0

xA,S=1-xB,S

xA,S=1-xB,S

VTmin(xA,S)

VTmin= C22

C21

Petl VBmin(0)+(1-q)F
C22

PAB

BC

PAC

VBmin
C22 0( ) 1 q–( )F+ VTmin

C21 1 xB S,–( )

VTmin
Petlyuk

VBmin
C22

0( ) 1 q–( )F+= xA S, 0=
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1. C22 controls: = >  for

 and

2. Balanced: = =  for

 and

3. C21 controls: = >  for

 and

The solution for the balanced case 2 is also quite simple since
are close to linear in (it is exactly linear if the purity specifi

cations in top and bottom are equal, e.g. when ).

Note that the reduction in energy requirement when impurity is allowed in
products is almost linearly dependent of the impurity specifications, and tha
do not obtain much energy saving by reducing the purity requirements.

Example: for sharp product splits where the feed is give
by: ,  and . For 99% side-
stream purity in the sidestream, the requirement is reduced by just 1.0%

. Similarly, For 99% purity in all products, we obtain 1.6%
reduction, to .

VTmin
Petl VBmin

C22 0( ) 1 q–( )F+ VTmin
C21 1 xB S,–( )

xA S, 0= xC S, 1 xB S,–=

VTmin
Petl VBmin

C22 xA S,( ) 1 q–( )F+ VTmin
C21 xA S,( )

0 xA S, 1 xB S,–< < xC S, 1 xB S,– xA S,–=

VTmin
Petl VTmin

C21 0( ) VBmin
C22 1 xB S,–( ) 1 q–( )F+

xA S, 1 xB S,–= xC S, 0=

VBmin
C22 xA S,( )

VTmin
C21 xA S,( ) xA S,

xA D, xC B,=

D=VT-LT

VT

Figure 9.5: Behaviour of and in the Vmin-diagram for
Case 2, when the columns are balanced, and Case 3, when columns C21 contro

VTmin
C21 xA S,( ) VBmin

C22 xA S,( )

VBmin(xA,S)+(1-q)F

xA,S=0xA,S=1-xB,S

xA,S=1-xB,S

VTmin(xA,S)

VTmin

C22

C21

Petl

D=VT-LT

VT

VBmin(xA,S)+(1-q)F

xA,S=0

xA,S=0

xA,S=1-xB,S

xA,S=1-xB,S
VTmin(xA,S)

VTmin=

C22

C21

Petl VTmin(1-xB.S)
C21

xA,S=0

Case 2: Balanced C21 and C22 Case 3: C21 controls

VTmin
Petl 1.366=

α 4 2 1, ,[ ]= z 1 3⁄ 1 3⁄ 1 3⁄, ,[ ]= q 1=

VTmin
Petl 1.352=

VTmin
Petl 1.343=
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Since energy savings in Petlyuk columns typically are in the range of 20-4
compared to conventional arrangements, the further reduction due to im
product specifications will be insignificant and we will not recommend to use
minimum energy for non-sharp split as a design target.

However, optimal operation is much stronger affected by non-sharp product
specifications. This is because operation outside the optimality region may e
lead to losses comparable to the whole potential savings, or we will be unab
fulfil the purity specifications, in the sidestream in particular.

9.5 The Optimality Region

During operation of the column, the two remaining degrees of freedom (DO
determine the actual operating point. The optimality region are all the poss
operating points which results in minimum energy consumption as given by e
tion (9.14).

We here use the operating point for the prefractionator, given by the top vap
flow and the product split ( and ) as the two degrees of freedom. La
we will map this to the split ratios (Rl,Rv) used e.g. in Chapter 7.

In the following sub-sections we will mainly use Case 1 in the deduction of
optimality region, and finally we will show the behaviour of Case 2 and
solutions.

9.5.1 Possible Impurity Paths to the Sidestream

There are two different paths any impurity may travel to the sidestream. Ass
(Case 1) that we allow a certain amount of heavy impurity (wC,S). Component C
may travel upwards in column C22 ( ), but it may also travel over the top
C1 and downwards in column C21 ( since ). Th
material balance at the sidestream stage yields:

(9.16)

The minimum vapour flow into the bottom of the arrangement does not dep
on the actual path. Since we may allow heavy C in the top of C1, this implies
the optimality region can be extended into regions where the prefractionator
forms non-sharp splits too. In the following we will analyse the extent of th
optimality region carefully.

Normally we expect . However, the direction of the heavy compon
C in column C22 may be different from what we normally expect. Thus the ma
rial balance (9.16) can still be fulfilled even if and
This behaviour is only possible due to the direct coupling between C21 and C

VT
C1 DC1

wC T,
C22

wC T,
C1 wC B,

C21–= wC T,
C21 0=

wC T,
C22 wC B,

C21– wC S, xC S, S= =

wC T,
C22 0>

wC B,
C21– wC S,> wC T,

C22 0<
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It is in fact also possible to transport C upwards in column C21 and downwa
into column C1. Although it may be feasible, this possibility has to be far fro
the optimal operation. This is clear since we cannot transport C upwards in
as long as B is transported downwards, which is the normal operation mod
C21.

9.5.2 The Optimality Region for Case 1

In Case 1, that is when column C22 controls the vapour flow requirem
at the optimum and all product flows (D,B and S) and net compon

flows in the products (wi,P) are uniquely given by (9.9-9.10). The overall mini
mum vapour flow requirement  is given by (9.13).

The distribution of components in the prefractionator is not unique. Howe
since we must have to avoid any light impurity in the sid
stream, and we must also ensure that the Underwood root is active. This l
the optimality region to the region BC in theVmin-diagram for the prefractionator
which is to the right of the preferred split (P1). More specific, the region is the
quadrangle P1-R1-R2-P2-P1, as illustrated in Figure 9.6, and we will show how th
boundaries of this quadrangle can be computed.

Operation in region BC depends on the distribution of the intermediate B com
nent and the heavy C component, and is given by the Underwood equation

(9.17)

We have used  since . Note also that .

The preferred split (P1) is obviously a feasible operating point for column C1, b
any point inside either region B ( not active), region AB ( not active a

) or region ABC ( ) will violate a requirement for the
optimal solution in (9.13). Thus the boundaries ABC/BC (P1-P2) and B/BC (P1-
R1) will limit the optimality region.

Recall from Section 9.2.4 that the optimality region for sharp product splits
found along a straight line in theVmin-diagram from the preferred split toward
the highest peak, until thebalancedpoint where the vapour flow requirement
from both columns (C21 and C22) are equal. This will be true for the nonsh
case too and this is the line P1-R1 in figure. To find the balance point we use th
fact that the actual Underwood root ( ) is carried over from the top of colu
C1 and balanced operation we can find this root ( ) from:

xA S, 0=

VTmin
Petl VBmin

C22 1 q–( )F+=

xA S, 0= wA B,
C1 0=

θB

VTmin
C1 αAzAF

αA θB–
-------------------

αBwB T,
C1

αB θB–
--------------------

αCwC T,
C1

αC θB–
--------------------+ +=

wA T,
C1 zAF= wA B,

C1 0= φA
C1 θA≥

θB θB
wA T,

C1 zAF< wA T,
C1 zAF<

θA
C21

φA
C1 θA

C21=
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(9.18)

Then we apply this root in the definition equation for column C1, and we ha

(9.19)

By solving equations (9.19) and (9.17) together we find all possible soluti
along the straight line R1-R2 in Figure 9.6. R1 is found at the B/BC boundary by
applying .

Note that just as in the sharp split case, the extent of the line segment P1-R1 is
mainly determined by the difference between the height of the peaks, which a
depends on feed properties and composition.

Equation (9.23) limits
maximum negativewC T,

C22

wC T,
C22

0=

Balanced C21 and C22.
Line given by equation
(9.19) for constant

.φA
C1 φA bal,

C1=

Preferred
split

Boundary ABC/BC
wherewA B,

C1 0=

Boundary B/BC where
wC T,

C1 0=

P1

P2

R1

R2

VBmin
Petlyuk

VBmin
C22

=

Region where

wC T,
C22 0<

Figure 9.6: Optimality region for non-sharp side-product specification. The ove
vapour flow in the Petlyuk arrangement is constant and optimal for the prefraction
column operated inside the optimality region (the bold quadrangle P1-R1-R2-R1-P1).
The plot shows a Case 1 solution, where column C22 controls the minimum vapour
requirement.

Region

Region BC

Region AB

DC1

VT
C1

ABC

PAB

PBC

Region where

wC T,
C22 0>

VTmin
C21 φA

C1( )
αAwA D,

C21

αA φAbal
C1

–
---------------------------

αBwB D,
C21

αB φAbal
C1

–
--------------------------+ VTmin

Petlyuk
= =

VT
C1 αAzAF

αA φAbal
C21

–
---------------------------

αBwB T,
C1

αB φAbal
C21

–
--------------------------

αCwC T,
C1

αC φAbal
C21

–
---------------------------+ +=

wC T,
C1 0=
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Now we need to find the last side in the optimality region quadrangle, given
the line R2-P2. This obviously have to do with the maximum amount of heav
which can be allowed to be transported above the top of the prefractionator

9.5.3 Net Flow of Heavy C into Top of Column C22

We know from Chapter 4 that the composition in the top of C22 does not af
the product split or Underwood roots in C22 as long as there are no net flo
components into the top of C22. Thus we know that the optimality region at le
cover the range . However, simulation studies indicated that
optimality region was larger and that a certain amount of “negative” or “rever
net flow ( ) could be allowed. In the following we derive the limiting
value for the reverse net flow of component C from column C21 and into the
of C22.

In Chapter 4 we showed that we may allowreversenet flow of a component into
the top or bottom end of a directly connected column, without affecting the m
imum energy calculations provided that the particular component compos
did not exceed the pinch zone composition related to the active Underwood
Thus for the connection C21-C22 this limits the flow of component C into the
of when the pinch zone composition in top of C22 equals the side product c
position. The expression for the pinch zone related to a particular root is give
Underwood (1946), and by simple manipulation this can be expressed by th
component flow in the top of column C22.

(9.20)

Note that when the flow of component C is slightly positive, this expression w
give a negative value for the pinch composition (recall ). In th
case, the composition of the flow entering with the liquid into the top of colum
C22 will not affect the separation of the feed. Thus for conventional columns,
composition has no physical meaning. However for directly coupled colum
where we may have reverse net flows into the column ends, this pinch zone
position becomes positive and meaningful for . The implication for t
optimality region is that Underwood root  will only be active when:

(9.21)

0 wC T,
C22 wC S,< <

wC T,
C22 0<

xC PT,
C22 θB, wC T,

C22

LT
C22

-------------
θB

αC θB–
-------------------

w– C T,
C22

w– C T,
C22 θB αC–

αB θB–
-------------------wB T,

C22
+

--------------------------------------------------------= =

αC θB αB< <

wC T,
C22

0<
θB

xC S, xC PT,
C22 θB,

≥
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By combining (9.20) and (9.21) we can find the limiting amount of negative fl
of heavy C in the top of C22 as a function of the sidestream specification (wh
has to be equal to the limiting pinch composition), and the amount of intermed
B travelling upwards:

(9.22)

By using the material balance we can express this relation in terms of net com
nent flow of B and C in the prefractionator. Thus, the maximum amount of he
C that can travel upwards in the prefractionator, when we still are in the optima
region, is given by:

(9.23)

Since the product flows are constant when the product compositions are con
this limit gives a linear relation between and which give. a straig
line when plotted in theVmin diagram as shown by the line P2-R2 in Figure 9.6.

This analysis completes all sides of the flat optimality region quadrangle for C
1.

The boundary line obtained for ( is also shown in the figure, but t
line has no affect on the optimality region. However, since giv

, this implies that the line will go through the minimum
energy operating point for column C22 (close to the peak PBC) parallel to the B/
BC boundary so it will be fairly easy to draw this line and thereby get an indi
tion on the width of the optimality region.

9.5.4 Optimality Regions for Case 3

The optimality region for Case 3, that is when the peak PAB is higher than PBC
and the upper part of the main column (C21) controls the overall minimum vap
flow to the Petlyuk column, may be derived by mirroring the analysis for Cas
The equivalent to equation (9.23), which here gives the minimum amount of l
A over the top of the prefractionator (is:

(9.24)

wC PT,
C22 xC S,

1 xC S,–
--------------------

 
 
  αC θB–

αB θB–
-------------------

 
 
 

wB T,
C22

=

max wC T,
C1( )

Vmin
Petl

SxC S,
xC S,

1 xC S,–
--------------------

 
 
  αC θB–

αB θB–
-------------------

 
 
 

zBF wB T,
C1

– BxB B,–( )–=

wC T,
C1 wB T,

C1

wC T,
C22 0=

wC T,
C22 0=

wC B,
C22 wC F, wC S,–=

min wA T,
C1( )

Vmin
Petl

DxA D,
xA S,

1 xA S,–
--------------------

 
 
  αA θA–

αB θA–
-------------------

 
 
 

DxB D, wB T,
C1

–( )–=
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9.5.5 Optimality region for Case 2 (Balanced Main Column)

In Case 2 we require that both and are active in column C1. This imp
that the optimality region for column C1 has to be in region ABC, which is at
below the preferred split. Now we may have both light A impurity in the botto
of C1 and heavy C impurity in the top. The limits, however, will still be given b
equations (9.23) and (9.24) and the result is that the optimality region becom
triangle just below the preferred split. In this region, the main columns C21
C22 are balanced ( ).

The optimality regions for Case 2 and 3 are illustrated in Figure 9.7

Note that at the limiting situation for the transition from Case 1 to Case 2, the o
mality region will collapse to the line P1-P2 along the boundary ABC/BC and
the transition from Case 3 to Case 2 the optimality region will collapse to a
along AB/ABC.

Note particularly that the preferred split operating point will be part of the op
mality region for all possible cases, just as for the case of sharp product spl

9.5.6 Effect of the Feed Composition

The boundaries between Case 1/Case 2 and Case 2/Case 3 depend on th
composition. In Figure 9.8 these are illustrated for the given example.
allowed impurity in the sidestream is specified to 3%, and the top and bot
products are close to pure products. To the left of the boundary, we will have C
1 solution with only heavy C in the sidestream (xA,S=0), and to the right we will
get Case 3 solution with only light A in the sidestream (xA,S=3%). Between these

θA θB

VTmin
C22 xA S,( ) VBmin

C21 xA S,( )=

VTmin
C21

Vmin
PetlyukVBmin

C22

VTmin
C21

Vmin
Petlyuk

AB BC

ABC

BCAB

Optimality regions

Case 2: Balanced C21 and C22 Case 3: C21 controls

Figure 9.7: The optimality regions for cases 2 and 3.
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boundaries, there will be Case 2 solution with as certain amount of both A an
in the sidestream. For sharp product splits, the region where we have a C
solution collapse to a single boundary curve (dashed).

9.5.7 Sensitivity to Impurity Specification-Example

We here introduce the split ratios as an alternative set of degrees of freedom
uid split and vapour split . Figure 9.9 show
the optimality region in theVmin-diagram (a) and theRl-Rv plane (b) for 0%, 3%
and 6% impurity allowed in all products. At sharp product split specifications (
impurity) the optimality region is the well known line segment (P-R).

Note that the width between the lines P1-R1 and P2-R2 is mainly determined by
the sidestream impurity. The impurity in the top or sidestream has minor imp
The extent P-R is quite similar to the sharp-split case, and is mainly determ
by the difference in vapour requirement in the main column, when the pref
tionator is operated at the preferred split, simply given by the different heigh
the two peaks in theVmin-diagram.

9.6 Operation Outside the Optimality Region

In Chapter 8 and 7 we have presented the energy consumption as a function
degrees of freedom for sharp product splits and infinite number of stages an
a case with nonsharp split and finite number of stages. We will now discuss
solution surface for nonsharp product splits, and infinite numb
of stages.
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Case 2

Feed:
a=[4.0 2.2 1.0]
q= 1.0

Purity specification:
xAB=100%
xBS= 97%
xCB=100%

or impurity:
xAS+xCS=3%

Figure 9.8: How the feed composition affects the solution type for 3% impurity in t
sidestream. For case 2, the contours for constant light impurity in the sidestream (xA,S)
are shown. For sharp split, case 2 solutions collapse to a single boundary line (das

z= Position in diagram

Rl LT
C1 LT

C21⁄= Rv VB
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C22⁄=

VB
Petl Rl Rv,( )
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9.6.1 The Solution Surface - Simulation Example

In Figure 9.10a we show the optimality region for 97% purity in all three pro
ucts. Feed data is , , , . The
total number of stages , distributed in the individual sections

and . This is in
practice “infinite” number of stages for this separation task.
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Figure 9.9: The sidestream impurity specification opens up the optimality region fro
the line P-R (bold) for sharp product splits, to a quadrangle where the width mainly
determined by the sidestream impurity. Feed z=[1/3,1/3,1/3], q=0.5, =[4,2,1].α
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Figure 9.10: The whole solution surface is widened for non-sharp produ
The plots show contours of the solution surfaces for 3% product impurity (a) and
sharp product splits (b) (V=100% in the optimality region). Note the characteristic sha
corners denoted C1-C4 on the sharp-split contours.
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Figure 9.10a shows contour plots for at 0.05%, 5% 10% and 15% ab
. Observe that the optimality region computed for infinite number of sta

(dashed) fits the 0.05% contour very well. This is a practical confirmation of
theoretical results.

We may compare with the corresponding sharp split case, shown in Figure 9
The nonsharp solution surface is wider, not only at the optimality region, bu
every contour of constant vapour flow. Thus for a given inaccuracy in implem
tation of the optimal degrees of freedom, it is more likely that there is a lower l
in the nonsharp case. However, the energy consumption increases rapidly ou
the optimality region in both cases, so we still have to pay attention to setting
split ratios at proper values.

For the sharp split case, every contour is a quadrangle where each corner c
sponds to a particular limiting mode of operation (ref. Chapter 7). We also cle
observe the same characteristic main “corners” for the non-sharp case, but n
corner “lines” has been “widened”.

9.6.2 Characteristics of the Solution

The highest peak in theVmin-diagram also determines the component that m
appear as impurity in the sidestream during optimal operation. Figure 9.11 i
trates that the impurity will be either light A or heavy C in large parts of t
operating space. It is only possible to get both components as impurities to
sidestream when the main column is balanced or with nonsharp prefraction
operation, which only may occur along the corner regions C1-C4 (bold).

VB
C22

VBmin
Petl

Figure 9.11: Typical appearance of light (A) and heavy (C) impurity in the sidestrem
dependent of the operating point in theRl,Rv-plane. The plot show an example for a
Case 1 and b) Case 3 for a close to sharp product splits. (ref. Figure9.10b) (We havt
shown a Case 2 example, but then the optimality “line” would just collapse to a sine
point where all corner lines would meet)

b) Case 3 C3C4

C1

C2

Only heavy C
impurity in S

Only light A
impurity in S

a) Case 1
C3

C4

C1

C2

Only heavy C
impurity in S

Only light A
impurity in S

Optimality
region (line)

Optimality
region (line)
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Let us examine more closely the behaviour of the material flows of light a
heavy impurities in the prefractionator and to the sidestream for the non-s
case. In Figure 9.12 we show the net component flow as a function of the pos
along the contour of 10% loss.

Between the “corners” C1-C4, the impurity is either only A or only C as we ha
illustrated in Figure 9.11. Inside each corner region the impurity in the sidestr
change from only light A to only light C. These corner regions (C1, C2 C3 a
C4) are also illustrated in Figure 9.13. Note also that we observe that some h
C-component travel downwards in the top of column C22 between corners C4
C1, as we have shown in Section 9.5.3.

9.6.3 Four Composition Specifications

We here specify a fourth product specification, which implies that we speci
certain amount of both light A and heavy C in the sidestream, e.g. by specify
the ratio or just . As shown above, in Section 9.6.2, the only po
sible solutions are found in the corner regions on the solution surface. In Fi
9.13 we illustrate how the corner lines (C1-C4) for the sharp split case show
Figure 9.10b have been widened to corresponding regions (shaded) with a s
icant width for the non-sharp case in Figure 9.10a.

The solution for a given specification of has to be on a curve inside th
corner regions. We here specify % The possible solutio
are found at the two separate branches (bold) in the middle of the (shaded) c
regions. The minimum energy solution is a single point at one of these bran
(or possibly at two alternative equal minima, one at each branch).

As discovered by Wolff et. al. (1993) and discussed by Morud (1994) there ca
a “hole” in the operating range since there is a region of the vapour split where
have no solutions with the given specifications.
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upwards in

in C22 top

Figure 9.12: Net component flow (w) of components A and C in the prefractionator
(PB,BT) and in the sidestream (S). The abscissa (s) is the position along the 10%
contour, starting between C2 and C3. Note how A and C is exchanged in the sidestre
in four corner regions C1, C2, C3 and C4.

s
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This is quite simple to understand from the figure since the solutions are foun
two separate branches. For example if we specify constant (see Fi
9.13), we may never reach any solution where , even if we still have f
manipulated inputs to control four specifications.

Note also that these branches are outside the optimality region for three pro
specifications, thus, the minimum vapour requirement with four specificati
has to be slightly higher.

For Case 2 solutions (not shown) the two branches will join at the optima
region for one particular value ofxA,S(see section 9.4). For all others, we still hav
two separate branches, but these will be quite close since the optimality re
will almost collapse to a single point.

Control of the fourth specification can be difficult unless we know the particu
branch we are on, and in some cases also unless we know on which side o
optimum we are on. The reason is that the sign in a control loop may change
one branch to another, and even from one side of the optimum to the other, o
may end up in the “hole” where the specification is infeasible. For example, ba
on Figure 9.13a we can fix at approximately 0.43 and use to control
if we know that we are operating at the lower branch. But at the upper branch
would only work for set to the right of the optimum ( ) and the sign in th
control loop is changed. To complicate the picture further, the feed may cha
and we may go from a Case 1 solution via Case 2 to Case 3, which actually s
and rejoins the pairs of corner regions which make up a branch (see Figure 9
However, we have not studied the control problem in further detail, and solut
to the above problems may be found.

0.35 0.4 0.45 0.5 0.55 0.6
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

R
l

R
v

V(R
l
,R

v
) − 3% product impurity

0.3 0.4 0.5 0.6 0.7

0.9

1

1.1

1.2

1.3

1.4

DC1

V
TC

1

V(DC1,V
T
C1) − 3% product impurity

C2

C1

C4

C3

C1

C2

C3C4
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visualized both in theRl,Rv plane and theVmin -diagram (right) (ref. case in Figure 9.10)
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9.6.4 Failure to Meet Purity Specifications

The operation of the column will be limited by constraints such as maxim
available energy, maximum vapour flow in different column sections, and lim
tions on how we can manipulate the degrees of freedom (DOF). For example
dividing wall column, it may be preferable for cost saving and simplification
the construction to fix the vapour split at design and omit any manipulative de
for it.

If the degrees of freedom have been set outside the feasible region for a given
and the available energy, then the specified purity cannot be obtained. What
ally happens will depend on how the composition control is implemented, and
selection and implementation of the additional two degrees of freedom.

We will use a simple numerical example to illustrate this. For the given feed u
in Figure 9.14 we plot the optimality region for sharp split and 97% puri
Assume that we fix the split rations atRl=0.46 andRv=0.577 as illustrated. In the
sharp split case, this is at the contour that gives 20% increased vapour flow. H
ever, in the 97% purity case we are on the edge of the optimality region and
vapour flow is in fact 5.6% below minimum vapour flow for sharp split. If th
vapour flow is limited below the 20% level, sharp split is simply infeasible w
the selected split ratios.

However, note that it is indeed possible to maintain high purity with minimu
energy at all times if we are able to keep the degrees of freedom (here
within the optimality region (P-R).

Since this region is affected by feed property changes, the degrees of free
(one or both) should also be adjustable in a suitable range for the expected u
in order to track a moving optimality region.

0.35 0.4 0.45 0.5 0.55 0.6
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

R
l

R
v

R
l
,R

v
−plane

Figure 9.14: A sub-optimal set of the two degrees of freedom may either give incre
energy consumption or reduced product purity, in particular in the sidestream.
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9.7 Conclusions

The flat optimality region for the 3-product Petlyuk column with a ternary fe
and non-sharp product specifications has been analysed in detail and we p
analytic expressions for the minimum vapour flow and the optimality reg
boundaries. The analysis also explains the “holes” in the operating region w
we specify four product compositions.

The main result in this paper, however, is that the flat optimality region
extended from a line-segment in the space spanned by the two degrees of fre
for the sharp split case, to a quadrangle-shaped region when we allow nons
products. In summary: Increased sidestream impurity extends the width of the
optimality region.

A consequence of this result is a new understanding of the observed product
ties and energy consumption in real Petlyuk columns. In the case of sub-opt
operation, for example due to limitations on how to set the remaining two deg
of freedom, then the specified purity may be infeasible or require energy c
sumption far above the optimal value. However, the symptom of sub-opti
operation is very likely to be low purity in the sidestream rather than increa
energy consumption. We illustrated by an example for a given feed, that 3% s
stream impurity can be equivalent to 20% energy loss.

However, in this case, we could achieve high purity without significant incre
in energy by simple adjustment of the degrees of freedom.

Thus, the results in this paper should be used for better understanding and
pretation of product quality obtained in Petlyuk columns. When we design
operation strategy that includes proper use of the degrees of freedom, this co
arrangement has the ability to produce high purity products, also in the s
stream, with low energy consumption.
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9.9 Appendix:
Alternative Proof of the Optimality Region for Case 1

Let us look closer at the vapour split in the feed junction to C22. For C1 opera
in region BC we have:

(9.25)

Since the active Underwood root carries over to C22, we also have

(9.26)

VBmin
C1 αBwB B,

C1

αB θB–
--------------------

αCwC B,
C1

αC θB–
---------------------+=

VTmin
C22 αBwB T,

C22

αB θB–
--------------------

αCwC T,
C22

αC θB–
---------------------+=
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Consider a small change in the operation of the prefractionator inside region
expressed by a change in the net flows of components B and C (
We note that everywhere in BC. The feed and the product flows a
compositions have to be constant, thus the changes in each component flow
to be identical in the bottom of C1 and top of C22 to fulfil the material balan

 and (9.27)

The change in vapour flow into the prefractionator is then given by:

(9.28)

The change in the vapour flow into the bottom of the Petlyuk column will then

(9.29)

This shows that there is a region for operation of column C1 which does not a
the overall requirement. The assumptions behind this result are given by:

1.  and  active in C1 which is limited by:

- Region BC for C1 (below P1-R1 and to the right of P1-P2)

2.  active in C22, which is limited by

-  active in C1

- Maximum reverse flux of component C into C22 top (above P2-R2)

3. >  which is limited by:

-  (to the left of R1-R2)

wB B,
C1∆ wC B,

C1∆,
wA B,

C1∆ 0=

wC B,
C1∆ wC T,

C22∆–= wB B,
C1∆ wB T,

C22∆–=

VB
C1∆

αB wB T,
C1∆

αB θB–
------------------------

αC wC T,
C1∆

αC θB–
------------------------+

αB wB T,
C22∆

αB θB–
------------------------

αC wC T,
C22∆

αC θB–
------------------------–– VT

C22∆–= = =

VB
C22∆ VB

C1∆ VT
C22∆+ 0= =

wA B,
C1∆ 0= θB

θB

θB

VTmin
C22 VBmin

C21

φA φAbal<
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Chapter 10

Self-Optimizing Control:
Local Taylor Series Analysis

by

Ivar J. Halvorsen, Sigurd Skogestad and John Morud

This chapter is a revised version of Paper 229c
presented at AIChE Annual Meeting, Miami Beach,
16-20 Nov. 1998, Paper 229c. with the title: Self-
Optimizing Control: The Basic Idea and Taylor
Series Analysis.
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10.1 Introduction

The concept ofself-optimizing controlhas been presented by Skogestad and
workers in several papers and conference presentations (Skogestad et. al.
(Skogestad 2000a,b), (Skogestad and Postlethwaite 1996). Section 10.2
overview, mainly taken from Skogestad’s papers. The main focus in this Cha
starts in section 10.3 where we present a Taylor series expansion of the los

10.1.1 The Basic Idea

We consider a process where we have more degrees of freedom than product
ifications, thus the remaining degrees of freedom can be used to optimize
operation, given by some scalar cost criterion(J). In some cases the optimum is
found at a constraint, such problems are routinely solved and implemented t
using model predictive control, often based on linear models.

A more difficult case is when the optimum is not at the constraints. An exam
is the optimal split into parallel streams in the preheating to a crude oil distillat
column. The reason that these problems are more difficult is that they are m
sensitive to the model, and that the optimal solution may be difficult to implem
due to uncertainty. For example, in the crude oil preheat problem, it may be d
cult to find the correct optimal split because there is no simple measureme
the energy recovery, which we want to maximize. Also, even if we were able
compute the desired split, it is difficult to implement it exactly in practice.

There are several solutions to these problems. A widely used approach is t
an optimizer above the regulatory layer, and computing optimized setpoints p
odically, for example based on based on:

1. Steady state models

2. Non-linear dynamic model-based optimization (an extension of MPC)

3. On-line experimenting methods (e.g. EVOP) (Box 1957)

However, if possible we would like to avoid the reoptimization and use:

4. Feedback methods (with constant setpoints).

We focus on the feedback method as it is the simplest and is the preferred c
if it gives acceptable performance. The main idea is to achieve “self-optimiz
control” by turning the optimization problem into a constant setpoint proble
The issue is then to find (if possible) a set of variables which, when kept at t
setpoints, ensures optimal operation. For example, in the crude oil preheat p
lem, a commonly used feedback solution is to try to keep the temperatures a
points of remixing at the same value. This often gives reasonably opti
operation.
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In practice, we have to accept a certain loss compared to the optimal cost func

Self-optimizing control is when we can achieve acceptable loss with co
stant setpoint values for the controlled variables

We can regard the termself-optimizingas a generalization of the termself-regu-
lating. Self-regulation is when acceptable performance is obtained without ac
control.

In a perfect idealized plant, where there are neither unknown disturbances
model uncertainties, the selected approach for control would not matter, but in
real world, some choices are clearly better than others.

The main step in the analysis is to find and evaluate any variables that hav
best self-optimizing control properties. Thus it is not yet another control al
rithm, but an important step in controlstructure design.

Sometimes the self-optimizing solution is obvious, and is applied as “best e
neering practice”. For example why we control compositions or temperature
a distillation column where the products are intermediates. When we do the p
optimization we also find the boilup and reflux rates, and we could chose to a
these directly. However, we know from “best engineering practice” that comp
tion control gives a solution that is much more robust against unknown f
property changes and uncertainties in implementation of flow rates and in the
umn model. In new processes, often consisting of closely integrated units
“best engineering practice” may not be obvious at all, and we need to have a
ysis and design methods that can help us find the best practical control struc
These methods must take the real world’s uncertainties and unknown di
bances into consideration, and based on economic considerations discrimina
good choices from the bad ones.

In a typical plant, the cost is normally determined by steady-state parameters
in the following we will primarily consider steady-state models. However, befo
we take the final decision on the control structure, the dynamic properties mu
analysed and evaluated.

10.2 Selecting Controlled Variables for Optimal Operation

10.2.1 The Performance Index (cost)J

We assume that the optimal operation problem can be quantified in terms of a
lar performance index (cost)J, such that the objective of the operation is t
minimizeJ with respect to the available degrees of freedom.J may be a purely
economic objective, but is more generally a weighted sum of the various con
objectives. For the optimization itself it does not really matter which variables
use as degrees of freedom as long as they form an independent set. Let the
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set” for the degrees of freedom be denotedu (these may consist, for example, o
a subset the physical manipulatorsm). In addition, the cost will depend on the
unknown disturbancesd (which here is assumed to include uncertainty in th
model and uncertainty in the optimizer). We can then writeJ(u,d). The nominal
value of the disturbances is denotedd0, and we can solve the nominal operatin
problem and obtainuopt(d0) for which:

(10.1)

From this we can obtain a table with the corresponding optimal value of any o
dependent variable, including the optimal value of any measurementcopt(d0).

The issue is now to decide how to best implement the optimal policy in the p
ence of uncertainty by selecting the right set of controlled variablesc with
constants setpointscs = copt(d0). Here it is assumed that the number of controlle
variablesy equals the number of independent variablesu, or more exactly that we
starting fromc=f(u,d) can derive the inverse relationship:

u=f -1(c,d) (10.2)

where the functionf -1 exists and is unique.

Instead of evaluating the mean value of the performance index, it may be bett
evaluate the always positive loss function. The loss function expresses the d
ence between the actual operating costs (e.g. obtained when we adjustu in order
to keepc at a given setpoint) and the optimal operating cost (obtained w
u=uopt(d)),

L(u,d) = J(u,d) - Jopt(d) (10.3)

The objective of the operation is to minimizeJ (or some average ofJ), or equiv-
alently to minimize the lossL. The loss function is zero if we use the optima
policy u=uopt(d). The loss has the advantage of providing a better “absolute sc
on which to judge whether a given set of controlled variablesc is “good enough”,
and thus is self-optimizing.

J u d0,( )
u

min Jopt uopt d0( ) d0,( ) Jopt d0( )= =
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Three main types of problems are illustrated in Figure 10.1. In case (a) the
function is flat, and if we keep the input (u=u0) constant, the loss will be small for
the expected disturbance. Thus we already have self-optimizing control by ap
ing a constantu directly. In case (b) the situation is more complicated becau
small disturbances will lead to a large loss with the constant input approach.
we need to adjust the input to track the moving optimum. In a self-optimiz
approach we will look for another variable to keep constant, while we use
original input (u) as a manipulated control variable for this purpose. In the l
case (c) we do not need to search for the optimum for disturbancesd0 to d1,
instead we focus on implementation of an active constraint. This is normally s
pler than to track a moving optimum, e.g. it is easy to keep a valve fully op
However, if the constraint becomes inactive for some disturbances (d2), we need
a system which can handle transition between constrained and unconstr
operation. This is an important issue, but we do not treat this further in this pa

10.2.2 Open-loop Implementation

Let us first consider an open-loop implementation where we attempt to keu
constant at the valueus. With this implementation the operation may be non-op
mal (with a positive loss) due to the following reasons

1. The value ofus is different from the optimal valueuopt(d).

2. The actual value ofu is different fromus (due to an implementation error
caused by imperfect control).

This can be seen more clearly if we write the actual input as:

u = us + eu (10.4)

L(u,d) L(u,d)

u u

d=do

d=do+∆d

Loss

Loss

uo
u

uo

(c) constrained optimum

L(u,d)ddo do

Figure 10.1: Major classes of optimizing control problems

(b) uconstrained sharp optimum(a) uconstrained flat optimum

d1d2
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



292

sitive

the
de-
le

r”
d es-

he-

if it
ments

f

r
-

spe-
whereeu is the implementation error foru. In process control,u is often a flowrate,
and it is difficult in practice to obtain exactly the desired valueus, soeu may be
large.1

Introducing the optimization error:

eu,opt(d) = us - uopt(d) (10.5)

Then the difference between the actual and optimal input, which causes a po
loss, can be written:

u - uopt(d) = us - uopt(d) + eu = eu,opt(d) + eu (10.6)

i.e. it is the sum of the optimization error and the control error. In summary,
open-loop policy is often poor; both because the optimal input value often
pends strongly on the disturbance (soeu,opt is large), and because we are not ab
to implementu accurately (soeu is large).

10.2.3 Closed-loop Implementation

In theory, the truly optimal solution would be to use some “optimizing controlle
which uses the measurements information (feedback) to correct the model an
timate the disturbanced, and based on this computes a new optimal valueuopt(d).
The main problem with this approach is the modelling effort, and the lack of t
oretical tools to ensure robustness (insensitivity to uncertainty).

As mentioned, in practice, a simpler closed-loop implementation is preferred
yields acceptable operation (loss). This approach uses directly the measure
cmof the selected controlled variables and adjustsu in an inner feedback loop to
achievecm ≈ cs, where in most casescs = copt(d0), i.e.cs comes from solving the
nominal optimization problem. The idea is that by keepingcm ≈ cs we achieve an
operation where the deviationu - uopt(d) is smaller than for the open-loop policy
(in the open-loop policy we keepu constant, but this is not optimal in the face o
disturbances). This may happen becausecopt(d) is relatively insensitive tod and/
or becausec may more accurately controlled. Next we formalize these ideas.

We here rewrite the problem with the variablesc as independent variables rathe
than the original independent variables (inputs)u. However, note that we as a spe
cial case may choosec=u, or some of the elements in the vectorc may be the
original input variables. Thus, the open-loop implementation is included as a
cial case.

1. The implementation erroreu may be reduced in some cases if we measure the variableu and
implement an inner control loop with setpointus. However, also in this case there will be a control
and a measurement error; if we use integral action then at steady-stateeu will equal the steady-
state measurement error (noise).
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If we compare the open-loop and closed-loop policies then the question is:

Is it best to adjust the input variables u such that u = us + eu (where eu is
the implementation error for the input u), or is it better to adjust u=f-1(c,d)
in feedback fashion such that c = cs + e (where e is the implementation
error for control of c)?

More generally, if there are many alternative sets of variablesc which can be
measured and controlled, which set should be used? If we letym represent all the
candidate measured variables then we can write:

c = g(ym,u) (10.7)

where the functiong is free to select. An open-loop policy is obtained wit
g(ym,u)=u. Linearized in terms of deviation variables (10.7) becomes:

∆c = C1 ∆ym + C2 ∆u (10.8)

The issue is then to find the optimal choice for the matricesC1 andC2, but under
the restriction that the number of controlled variables (c’s) equals the number of
independent inputs (u’s). If we use only feedback thenC2=0. If we do not allow
“combined” controlled variables, then the matrixC = [ C1 C2 ] is a a “selection
matrix” with only one nonzero element in each row.

To compare the alternative choices we may evaluate the objective function
equivalently the loss function, for alternative values of the disturbanced and the
implementation errorec. The optimal choice for controlled variablesc (i.e. opti-
mal choice of the matrixC) is then the one that minimizes some average value
the loss:

L(u,d) = L(f -1(cs+e,d),d) (10.9)

for the expected set of disturbancesd ∈ D, and expected set of implementatio
(control) errorse ∈ E. In the simplest case we select the setpoints ascs=copt(d0),
but the value ofcs may also be the subject to an optimization.

The difference between the actual and optimal outputs, which causes a po
loss, can be written:

c - copt(d) = cs + e - copt(d) = eopt(d) + e (10.10)

i.e. it is the sum of the optimization erroreopt(d) = cs - copt(d) and the control error
e. As already mentioned, if there were no uncertainty (i.e.d=d0 andec=0), then it
would make no difference which variablec that were chosen.
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Figure 10.2 illustrates an example where we may reduce the loss due to the
turbances by keeping the variablec constant instead of the inputu. However,
some loss must be expected due to the error associated with each approac
for small disturbances the worst case error contribution will usually dominate
loss.

10.2.4 A Procedure for Output Selection (Method 1)

We are now in a position to formulate a procedure for selecting controlled out
c. Preferably, one should find several candidate sets of candidate outputs, w
could be further analysed to see if they are adequate with respect to other cr
that may be relevant, such that the input-output controllability (including the pr
ence of right half-plane zeros).

1. Define the optimal operation problem (including specifying the cost fu
tion J to be minimized).

2. Solve the optimization problem at a given nominal operating point. That
find uopt(d0) by solving the nominal optimization problem

(10.11)

where
u – “base set” for theNu degrees of freedom
d0 – nominal value of the parameters (disturbances)

3. This yields a table with the nominal optimal values of all variables,
copt(d0)).

Loss L(d)

d

u=u0

u=u0+eu

c=c0+ec

c=c0

contribution
from errors

Open loop

Closed loop

d0

Figure 10.2: Loss as a function of disturbances for open loop and closed loop opera
The plot also illustrates the worst case contribution from the uncertainties and e
associated with each approach (dashed).

Worst case

disturbance

J u d0,( )
u

min
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4. Define the uncertainty for:

- the optimization: Define the magnitude or set of unknown distur-
bances (d∈ D) (including any changes that occur between each
reoptimization). Treat also errors in the data and model for the o
mizer as disturbances.

- each candidate output variable (y): Define the magnitude or set of
control error (e ∈ E (e.g. due to measurement error)

5. Repeat for eachcandidate set of Nu output variables (y’s)

- Evaluate the cost functionJ(c,d) with fixed setpoints

c = cs + e (10.12)

wherecs=c0 copt(d0) is taken from the above table.
Do this for all disturbances (d∈ D) and all control errors (e ∈ E).

- Compute the “mean” cost,Jmean (or equivalently, the lossL)

6. Select as the controlled outputs the candidate set with the lowest “me
cost (or retain all the sets with an acceptable loss for further screening

Comments:

1. Instead of evaluating the costJ we may equivalently evaluate the lossL.

2. There are many possibilities for defining themean cost,Jmean, for
example,

- mean cost over a finite set (e.g., maximum, nominal, minimum valu
for each disturbance and each control error)

- mean cost from “Monte-Carlo” evaluation of given distribution ofd
ande

- worst-case loss (compared to true optimal)

3. The computation load can be significantly reduced if we use a local anal
based on a Taylor series expansion ofJ or L. This is discussed in Section
10.4.

≡
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10.3 Local Taylor Series Analysis

In this section we study the problem of selecting controlled outputs by expan
the cost function around a nominal optimal unconstrained operating point. To
end, we assume that the cost functionJ is smooth, or more precisely twice differ-
entiable, at the operating point we are considering.

We assume that the nominal disturbance isd0 and that the nominal operating poin
is optimal, i.e:

u0=uopt(d0) and c0=copt(d0) (10.13)

so that we haveJ(u0,d0) = Jopt. We next consider a disturbance and input chan
so that the new disturbance is:

d = d0 + ∆d (10.14)

and the new input is:

u = u0 + ∆u (10.15)

where∆u is the input change. The inputuwill generally be different from the opti-
mal input,uopt(d), and we define the deviation from the optimal value as:

∆u’ = u - uopt(d) (10.16)

Note that∆u’ is not the same as∆u, and more precisely∆u = u - uopt(d0). In order
to track the optimum we require∆u’ = 0, which implies∆u = uopt(d)- uopt(d0).

The issue is now what effect a nonzero value of∆u’ will have on the operation (as
quantified by the value of the loss functionL).

10.3.1 Expansion of the Cost Function

A second order Taylor expansion of the cost function can be written compactl
matrix form as:

(10.17)

whereH is the Hessian matrix ofJ with respect to ;

J u d,( ) J u0 d0,( ) Ju
T

Jd
T u∆

d∆
1
2
--- u∆

d∆

T

H u∆
d∆

O
3

+ + +=

u∆
d∆

H
Juu Jud

Jdu Jdd

=
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All derivatives are evaluated at the optimal nominal operating point (withd=d0
andu=u0=uopt(d0)), as indicated by using the subscript0. We have:

(10.18)

Note thatJu=0 because the Jacobian with respect to the independent varia
must be zero at the optimum when it is unconstrained. Note also

since and also since the
result of the expression is scalar. The Hessian matrix is always symmetric, sJuu
andJdd are symmetric. Since the expansion is performed at the point whereJ has
a minimum, we have that is positive for any nonzero vector∆u, i.e.
Juu is positive definite,Juu> 0 (if the minimum is a saddle then is zero
in some direction andJuu is positive semidefinite, ). Equation (10.17
written in separate terms inu andd gives:

(10.19)

Ju u∂
∂J
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0 u1∂
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10.3.2 The Optimal Input

The nominal operating point (u0,d0) is assumed to be optimal so we have
u0 = uopt(d0), and as noted the Jacobian must be zero (Ju= 0). Next, consider a dis-
turbance and a corresponding optimal input change so that the new oper
point is (u,d) and the new Jacobian is:

(10.20)

A first-order expansion of the Jacobian at the nominal point gives:

(10.21)

We assume that we change the input so that the new operating point is also
mal, i.e.u=uopt(d). Then we must also have that the Jacobian is zero, i.e.J’u=0,
and we get:

(10.22)

Solving with respect to the input we find that a first-order accurate approxima
of the optimal input when there is a disturbance change, is:

(10.23)

Thus the optimal control action which will track a moving
optimum as illustrated in Figure 10.3:

J'u u∂
∂

J u d,( )=

J'u Ju Juu u u0–( ) Jud
T

d d0–( ) O
2

+ + +=

0 Juu uopt d( ) uopt d0( )–( ) Jud
T

d d0–( )+=

uopt d( ) u0 Juu
1–
Jdu d d0–( )–=

∆uopt uopt d( ) u0–=

J(u,d0+∆d)J(u,d0)

u0 u0+∆uopt

u

J

Figure 10.3: Optimal control move
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10.3.3 Expansion of the Loss Function

Let us now consider the loss function

L(u,d) = J(u,d) - J(uopt(d),d) (10.24)

By applying the Taylor series expression in equation (10.19) and combinin
with the loss function (10.23) we obtain the following interesting expression
the loss (where the error term of  is omitted):

(10.25)

where . This tells that the loss is a function of the deviatio
(∆u’) from the optimal input which also intuitively is reasonable.

Here the Hessian is evaluated in the nominal optimal point(u0,d0). We might
consider evaluated at the current optimal point(uopt(d),d). However this does
not matter as long as we only consider Taylor series expansion to the se
order. This can be seen by expressing  in terms of . We have =0 

(10.26)

When we replace with in (10.25) and remove the third order terms,
will get exactly the same expression.

Note that the impact from the disturbance (d) is only throughuopt(d). This tells us
that if the disturbances are small, or the disturbance has a small effect on the
mal input, the loss will also be small if we have an acceptable nominal input.
curvature described by the HessianJuu determine the “flatness” of the loss
function.

10.3.4 Loss With Constant Inputs

Assume there is a disturbance change, but we attempt to keep the input fixed
nominally optimal valueu0, i.e.:

us = u0 (10.27)

whereu0 = uopt(d0). We use the word “attempt”, since in practice there will be a
implementation error so the actual input will be:

u = us + eu (10.28)

O3

L u d,( ) 1
2
--- u uopt d( )–( )T

Juu u uopt d( )–( ) u'∆ T
Juu u'∆= =

u'∆ u uopt d( )–=

Juu
Juu'

Juu' Juu Ju'

Juu' Juu Juud
T d d0–( ) Juuu

T uopt d( ) uopt d0( )–( )+ +=

Juu Juu'
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whereeu is the implementation error for the input. Then from (10.23) the dev
tion from the optimal input is:

∆u’ = u - uopt = Juu
-1Jdu∆d + eu (10.29)

and we can evaluate the resulting loss from (10.25):

(10.30)

The last cross-term which may be negative may lead us to think that the loss
be negative, but it can never be, due to the quadratic form in (10.25). Howev
lucky combination of errors and disturbances may give us zero, but the de
should rather be based on the worst combination.

10.3.5 Loss with Constant Controlled Outputs

As already mentioned, the outputsc are related to the inputs and disturbances
the relationship:

c = f(u,d) (10.31)

The corresponding linearized relationship in terms of deviation variables
(∆c = c - c0, etc.) is:

∆c = G∆u + Gd∆d (10.32)

whereG = (∂f/∂u)T andGd = (∂f/∂d)T. Assume there is a disturbance change, b
we attempt to keep the control output fixed at its nominally optimal valuec0, i.e.:

cs = c0 (10.33)

wherec0 = copt(d0). We use the word “attempt”, because, in practice, there will
an implementation error so the actual controlled output will be:

c = cs + e (10.34)

wheree is the implementation error (typically, the sum of the measurement e
and the control error). We have in this case∆c = e, so the corresponding input
change is:

∆u = -G-1Gd∆d + G-1e (10.35)

L eu ∆d,( ) 1
2
---∆d

T
JduJuu

1–
Jud∆d

1
2
---eu

TJuueu eu
TJud∆d+ +=
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and from (10.23) the resulting deviation from the optimal input is:

∆u’ = u - uopt = (Juu
-1Jdu - G-1Gd)∆d + G-1e (10.36)

The optimal choice for the controlled outputs is still the one that minimizes
“mean” value of the loss:

L = ∆u’TJuu∆u’ (10.37)

for the expected disturbances (as expressed by the magnitude∆d) and the
expected control error (as expressed by the magnitude ofe). Note that the matrices
Juu andJdu are independent of the choice of controlled outputs.

10.3.6 Loss Formulation in Terms of Controlled Outputs

Equation (10.37) with∆u’ from (10.36) is a bit cumbersome. An alternative form
is to express the loss directly in terms of the controlled outputs. A similar der
tion as for the inputs, see (10.25), gives:

L = ∆c’TJcc∆c’ (10.38)

where∆c’ = c - copt(d) and;

Jcc = G-TJuuG
-1 (10.39)

(the latter follows from∆c’ = G∆u’)., We see thatJcc depends directly on the
choice of the controlled outputs through the matrixG-1, and to keepJcc and thus
L small,we want G-1 small. The deviation between the actual and optimal outp
∆c’, will be nonzero due to the presence of two generally independent terms

∆c’= eopt + e (10.40)

where:

eopt = cs - copt(d) (10.41)

is the optimization error (introduced by attempting to keepc at cs rather than at
copt(d)), and:

e = c - cs (10.42)
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is the implementation or control error (introduced by incorrect measurement
poor control ofc).

We may also express the optimization error directly in terms of the disturba
Using the linearized model in (10.32) and noting thatcs=c0 we get:

(10.43)

Inserting the expression foruopt(d) from (10.23), we find:

eopt(d) = cs - copt(d) = (GJuu
-1Jdu - Gd)∆ d (10.44)

We will return to this expression in Section 10.6.

Remark.Obviously, substitution of (10.44) and (10.40) into (10.38) gives t
same expression for the lossL as a function ofe and∆d, as the one we obtain by
substituting (10.36) into (10.25).

10.3.7 “Ideal” Choice of Controlled Outputs

If we for the moment disregard the control errore, then the ideal choice of con-
trolled outputs would be to haveeopt(d)= cs - copt(d)=0 for any value ofd. Here
cs=c0 is constant, so to achieve this we need the optimal value of output to be i
pendent of the disturbance. An example of such an ideal output would be to
a direct measurement of the gradient of the cost function with respect to the i
(since it is optimal for any disturbance to have this gradient zero, we co
directly specify its setpoint at zero). In particular, consider the following outp

c = f(u,d) = α∂J(u,d)/∂u + β = αJu(u,d) + β (10.45)

whereα andβ are constants. To see that this output would be “ideal”, we linear
(10.45) to get

∆c = αJuu ∆u + αJud
T∆d (10.46)

i.e. we find thatG = αJuu andGd = αJud
T = αJdu, which upon substitution into

(10.44) giveseopt=0.

However, as we see when studying, for example, selection of measurement
tions in a distillation column, the implementation erroremay be a very important
factor, and the “ideal” choice of controlled outputs from (10.45) may not be
best after all.

eopt– copt d( ) c0– G uopt d( ) u0–( ) Gd d∆+= =
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10.4 A Taylor-series Procedure for Output Selection

The key to the selection is to evaluate the loss for the expected set of disturba
and control errors for the set of all possible measurement models. The com
tions for procedure presented in Section 10.2 can be very time-consuming
they can be reduced significantly if we use the Taylor series approximation ab

Let us first normalize the inputs so each element contributes equally to the
using the transformation:

(10.47)

Then the loss (10.25) can be expressed by:

(10.48)

where denotes the 2-norm of the vectoruz. Note that the square root
(defined as ) is not unique, but we here chose the particu
implementation of where the singular value decompo
tion of Juu is given by . is the diagonal matrix of singula
values, sorted in descending order. Since the Hessian is symmetric and po
definite, the singular values equals the eigenvalues (which are all positive
numbers) and the input direction equals the output directions, thus, the ortho
mal matrices: .

For a feedback policy we may from (10.36) express the normalized input as

uz = Juu
1/2[(Juu

-1Jdu - G-1Gd)∆d + G-1e] (10.49)

Let the elements in the positive diagonal matricesWd and We represent the
expected magnitudes of the disturbances and the control errors, i.e. let:

and

where the scaled disturbances  and  are of unit magnitude, i.e. satisfy

 and

Minimization of the lossL for any (worst-case) combination of disturbances a
control errors is then equivalent to minimizing the induced 2-norm (maxim
singular value) of the matrix

uz Juu
1 2⁄

u uopt–( ) Juu
1/2∆u'= =

L
1
2
---uz

T
uz

1
2
--- uz 2

2= =

uz 2
Juu

1 2/ Juu
1 2/ Juu=
Juu

1 2⁄ VuuΣ
uu
1 2/ Vuu

T=
Juu UuuΣuuVuu

T= Σuu

Uuu Vuu=

∆d Wd∆d̃= ∆e We∆ẽ=

∆d̃ ∆ẽ

∆d̃ 2 1≤ ∆ẽ 2 1≤
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Thus, if we assume that the disturbances and control errors are two-n
bounded, we have that:

(10.51)

and the procedure (which is a Taylor-version of method 1) becomes:

1. Define the optimal operation problem (specify the cost functionJ).

2. Solve the optimization problem at the given nominal operating point a
find the second-order derivatives of the cost,Juu andJud, at this nominal
optimal operation point.

3. For each candidate set of controlled variables obtain the linear model
∆c = G∆u + Gd∆d.

4. Define the uncertainty:

- The elements in the diagonal matrixWd represents the magnitude of
each disturbance.

- The elements in the diagonal matrixWe represents the magnitude of
the control error for each outputc (e.g. due to measurement error).

5. For eachcandidate set compute the singular value of the matrixM.

6. Select as the controlled outputs the candidate set with the lowest valu

the worst case loss,

Best Linear Combination of Measurements.

We can easily use this approach to search for the best linear combination of m
urementsym and independent inputsu to control. Write

∆c = C1∆ym + C2∆u (10.52)

M M1 M2,[ ]=

where M1 Juu
1 2/ Juu

1–
Jud G

1–
Gd–( )Wd=

M2 Juu
1 2/ G

1–
We=

Lmax L( )
∆d̃ ∆ẽ,
max

1
2
---σ M( )= =

Lmax
1
2
---σ M( )=
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where we are free to choose the matricesC1 and C2. However, we make the
restriction that the number of controlled variables (c’s) equals the number of inde-
pendent inputs (u’s) (recall the comments following (10.8)).

We first identify all the candidate measurementsym and obtain the linear model:

∆ym = Gm∆u + Gmd∆d (10.53)

We also need to identify (or at least estimate) the control error (measurem
noise) associated with controlling the measurements and inputs, and collect
in the diagonal matricesWem andWeu.

The matrices used in the procedure above then become:

G = C2 + C1Gm

Gd = C1Gmd

and thej’th diagonal element in the matrix control error matrixWe is given by:

whereC = [C1 C2] andWm = diag{ Wem, Weu} .

We may envisage finding the optimal choice forC,denotedCoptwhich minimizes
the worst case lossLmax:

(10.54)

The large number of possible self-optimizing structures implies that enginee
insight of the process may help to rule out a large number of bad structures
to propose a set of good candidates, from which the best solution can be fo

10.5 Visualization in the Input Space

We here obtain some insight by considering the loss function(L) in the input
space. In Figure 10.4 we illustrate a case wheredim(d)=3, dim(u)=2 and
dim(c)=dim(e)=2. For each possible disturbance, we can map the optimal in
(uopt(d)) from the disturbance space into the input space. Similarly we can m
the corresponding action of the feedback controller which attempts to keepc=0
between the same spaces, but in addition we must map the effect of the po
errors and uncertainties. The key is to keep the magnitude |uc(d,e)-uopt(d)| small
at least in the large loss direction (v1). The loss function is characterized by th
HessianJuu. The singular value decomposition ( , where the sing

We jj, Cij
2Wm ii,

2

i
∑=

σ M C( )( )
C

min

VΣVT Juu=
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useful to describe its properties. In the 2-dimensional input space as shown i
figure, the loss function is an ellipsoid and the eccentricity of an elliptic cont
is given by . The axis of the contour whereL=1 is in the
large loss direction which is given by and in the low loss directio
given by .

If the loss ellipsoid has a large eccentricity ( ), we usually only need
consider the projection of (uc(d,e)-uopt(d)) onto the worst direction ( ). In such
cases we may also choose to keep some of the inputs constant (e.g. in Figur
we could choose to keepu2 constant and only useu1 to keep operation close to
the moving optimum). Note that the loss ellipsoid moves around with its m
mum inuopt(d). Its shape, however is determined byJuu, and this is accurate to the
second order in the Taylor series expansion.

GdG
-1

G-1

u0=uopt(d0)

Large loss

d3

d1

e1

e1

d

e

d∈D

e∈E

Figure 10.4: The best self-optimizing control structure minimize the worst case lossL)
for a givend∈D in presence of uncertainties and errorse∈E. The controller signal (uc(d):
dashed ellipse) should ideally track the moving optimum (uopt(d): solid ellipse). In
addition we get a contribution (uc(e):) from errors and uncertainties (e∈E). The resulting
controller outputuc(d,e)may be anywhere inside the shaded region (for a givend). Note
that the main directions of the Hessian (Juu), the matrices G-1 and GdG

-1 and the
mappinguopt(d) plays important roles.

direction (v1)

Low loss
direction (v2)

u1

u2

d2

uc(e)

Control

uc(d,e)

Contour of L=(u-uopt(d))TJuu(u-uopt(d))

d∈D

e∈E, for given d

uopt(d)

uc(d)

Σ diag σ1 σ2,( )= V v1 v2,[ ]=

1 σ1 σ2⁄– 1 σ1⁄
v1 1 σ2⁄

v2

σ1 σ2»
v1
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In the general case, a large condition number ofJuu implies that in some directions
the loss function will be quite flat, and we do not have to compensate for dis
bances and errors which moves the optimum in these directions. It also su
that we can reduce the number of variables to keep constant by feedback co
Thus, for each singular value of low significance to the loss, we can reduce
dimension of c.

10.6 Relationship to Indirect and Partial Control

Here we consider a special problem which from the outset is a setpoint prob
in term of the “primary” output , and we want to penalize the quadra
weighted derivation, that is:

(10.55)

whereW>0 is a weighting matrix. In this case the optimal cost for any disturban
is to haveJopt = 0, so we have that the loss equals the cost,L = J. Furthermore

= , and we may write

(10.56)

where we have selected the nominal operating point such that
make the problem interesting we assume that the “ideal” choice of outputsc=y1
can or should not be used because direct control ofy1 is difficult or impossible.
We therefore instead consider controlling the secondary outputsy2 (i.e. we choose
c=y2). The idea is to find a set of variablesy2, such that keepingy2 close to the
setpointy2s, indirectly achieves good control ofy1 (i.e.y1 is kept close toy1s). The
linear model relating the variables is

(10.57)

(10.58)

where∆u = u - u0, etc. We assume that the nominal operating point (u0,d0) is opti-
mal, i.e.y10 = y1s.

1. Let us first use our derived relationships to confirm that the outputsc=y1
would be ideal (this is really just a check of our derived formulas). We
assume here that the setpointsy1s are constant (since we assumed in the
derivation above thatcs is constant), i.e. we have∆ y1s=0 ande1 = ∆ y1. We
get

y1

J
1
2
--- y1 y1s–( )TW y1 y1s–( ) 1

2
---e1

TWe1= =

y1 opt, y1s

e1 y1 y1s– y1 y10–( ) y1s y10–( )– y1∆ y1s∆–= = =

y10 y1s=

y1∆ G1 u∆ Gd1 d∆+=

y2∆ G2 u∆ Gd2 d∆+=
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(10.59)

and we get that

(10.60)

and from (10.44) we get as expected

(10.61)

2. Let us next consider the more interesting case of selectingc=y2, where we
keep the setpoints constant,y2s = y20. Rewriting the linear model gives
(Havre 1998)

(10.62)

whereP are called the partial control gains. To derive (10.62) we first sol
(10.58) with respect tou

(10.63)

and then substitute this into (10.57) and use the fact that∆y2 = e2 and∆y1
= e1 + ∆y1s to get (10.62).

To minimize the cost functionJ we wante1 = y1 - y1s small. Equation
(10.62) shows howe1 is affected by disturbancesd, by the control error for
the secondary variables,e2, and by changes in the setpointsy1s. Let us here
disregard setpoint changes for the primary outputs, i.e. let∆ y1s=0. If we
furthermore

- scale the outputsy1 such thatW=I

- scale the outputsy2 such that the expected control errore2 is of mag-
nitude 1

J
1
2
--- y1∆ TW y1∆ 1

2
--- G1 u∆ Gd1 d∆+( )T

W G1 u∆ Gd1 d∆+( )= =

Ju G1 u∆ Gd1 d∆+( )T
WG1=

Juu G1
TWG1=

Jud G1
TWGd1=

eopt cs copt d( )– G1Juu
1– Jdu Gd1–( ) d∆ 0= = =

e1 G1G2
1– e2 Gd1 G1G2

1– Gd2–( ) d∆ y1s∆–+=

Py Pd

           

u∆ G2 y2∆ G2Gd2 d∆–=
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- scale the disturbances such that the expected disturbance chang∆d
is of magnitude 1

then we see from (10.62) that to minimizee1 (andJ) we should attempt to
minimize the combined norm of the matricesPy andPd (appropriately
scaled). This simple approach has been used on a distillation case stu
(Havre 1998). To show that we can not use temperature measuremen
located at the end of the column because of sensitivity to control errore2
(measurement noise) (as seen since the scaled matrixPy is large), and we
can not use measurements close to the middle at the column yield bec
of sensitivity to disturbances (as seen since the scaled matrixPd is large).
The best balance between sensitivity to measurement noise and distu
bances is found when the measurements are located somewhere bet
the end and the middle of the column.

3. An alternative form of (10.62) is

(10.64)

where by definition

is the difference between the chosen constant setpoint fory2, y2s=y20, and
the optimal valuey2,opt(d,y1s) that corresponds toe1 = y1 - y1s= 0. We may
obtaine2,opt by settinge1 = 0 in (10.58) and solving fore2. We get

Py e2,opt = ∆ y1s - Pd ∆ d (10.65)

and substituting this into (10.62) gives (10.64). Expression (10.64) is rat
obvious, but it is nevertheless very useful in some cases, and forms th
basis for the rule of minimizing the minimum singular value (see below

Comment: Another way of deriving (10.64) is to use (for anyd)

y1 - y1opt = G1 (u - uopt) (10.66)

y2 - y2opt = G2 (u - uopt) (10.67)

which sincey1 - y1opt= y1 - y1s= e1 andy2 - y2opt= (y2 - y2s) + (y2s- y2opt)
= e2 - e2opt directly gives (10.64).

4. By replacingPy andPd by the corresponding transfer function matrices,
Py(s) andPd(s), we can extend these results to nonzero frequencies.

e1 y1 y1s– Py e2 e2 opt,+( )= =

e2 opt, y2s y2 opt, d y1s,( )–=
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10.7 Maximizing the Minimum Singular Value (Method 2)

Let the matrixG represent the effect on the controlled variablesc of a small
change in the “base set” of independent variablesu, i.e.:

∆c = G∆u (10.68)

Then, a common criterion (rule) in control structure design is to select the se
controlled outputsthat maximizes the minimum singular value of the gain matr
σ(G) (Yu and Luyben (1986) refer to this as the “Morari Resiliency Index”). Pr
viously, this rule has had little theoretical justification, and it has not been c
how to scale the variables. However, as indicated by Skogestad and Postleth
(1996) the rule may be derived by considering a local approximation of the
function. It is desirable to select the controlled variables such that the loss is
imized. Thus, the loss depends on the quantityu - uopt, which we obviously want
as small as possible. Now, for small deviations from the optimal operating p
we have that the candidate output variables are related to the independent
bles byc - copt= G(u - uopt), or

u - uopt= G-1(c - copt) (10.69)

Since we wantu- uopt as small as possible, it therefore follows that we shou
select the set of controlled outputsc such that the product ofG-1 andc - copt is as
small as possible. Thus, the rule is (Skogestad and Postletwhite 1996):

Assume that we have scaled each output c such that the expected va
(c - copt) is of magnitude 1 (including the effect of both disturbances an
control error, but note that this scaling may not be possible). Then sele
the output variables c which minimize the norm of G-1, which in terms of
the two-norm is the same as maximizing the minimum singular value o
σ(G).

The rule above involves minimizing whereas we real
want to minimize the loss. From we see that these conditio
are the same provided it is possible to scale the inputs such that the He

 is unitary (magnitude one in all directions) because then .

Interestingly, we note that this rule does not depend on the actual expressio
the objective functionJ, but it does enter indirectly through the variation ofcopt
with d, which enters into the scaling.

Let us analyse this further, based on the full loss expression in the input (u) and
output spaces (c).

∆u' 2 u uopt–
2

=
L ∆u'TJuu∆u'=

u'
juu ∆u' 2 L 2=
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10.7.1 Directions in the Input Space

We here take a closer look at the expression for the normalized (10.49), and
stitute the singular value decompositions for expressions with the Hessian anG.

(10.70)

The first term is the contribution from the disturbance compensation, and the
ond term is the uncertainty and error contribution. Let us first consider the c

when the error term dominates. Then we should minimize . By singu

value composition we find

(10.71)

This is an interesting expression, which we will return to in Section 10.7.2 be
where we use it to investigate the loss in the output space.

Observe in particular the product . These matrices contains the direct
associated with the singular values ofG andJuu. The product, gives a “permuta-
tion” between the singular values of G andJuu.

The worst case is when the strongest directions inJuu is aligned with the weakest

directions of G. Then will be paired with and the worst case cont

bution is .

This implies that the smallest singular value of G ( ) becomes importan
cases where the error term is significant compared to the disturbance term, a
particular when there are no dominating directions in the Hessian (

If there are some dominating directions inJuu ( ), it is preferable to align
the strong input directions of G with the strong directions of the Hessian. T

 and;

(10.72)

The worst case contribution from this term is:

This alignment is normally what we want in control since we want the strong
effect on the error in the most important direction. Now does not have to
responsible for the worst case loss, and the procedure which is based om min
ing  may not be the best choice.

uz Juu
1 2⁄–

Jud Juu
1/2

G
1–
Gd–( )Wd∆d̃ Juu

1/2
G

1–( )Weẽ+=

Juu
1/2

G
1–

Juu
1/2

G
1–

Vuu Σuu
1 2/ Vuu

T VGΣG
1–( )UG

T=

Vuu
T VG

1 σ⁄ G σuu

σuu σG⁄

σG

σuu σuu≈

σuu σuu»

Vuu
T VG I=

Σuu
1 2/ Vuu

T VGΣG
1–

diag σuu 1,( ) σG 1,⁄ σuu 2,( ) σG 2,⁄ …, ,{ }=

σuu i,( ) σG i,⁄( )
i

max

σG

σG
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When the disturbance term of the loss is dominating, we have to consider the
term in equation (10.70). Thus the requirements to G which minimize the con
bution from errors could be a bad choice for counteracting the effect from
disturbances. The properties ofGd becomes important and we need the mo
comprehensive procedure based on the complete loss expression (10.51).

10.7.2 Analysis in the Output Space

Assume that we have been able to scale the outputs such that w
and . Then we introduce the transformation (ref. Secti

10.7.1)

. (10.73)

Now the loss can be expressed by the transformed outputs by equation (10.3
a similar expression as equation (10.48) for the transformed inputs

(10.74)

Note that each element in has the same impact on the loss. It is clear that
Hessian (Juu) is unitary, maximizing the minimum singular value ofG, σ(G), is a
good solution. If not, we may still use a quite simple approach by minimizing
maximum singular value of the product , but this require that w
evaluate .

However, in the multivariable case the scaling is not trivial. If it is not possible
find a suitable scaling where we must return to the full procedure giv
in Section 10.4. The problem is that the full space defined by may
be reached in some directions for the given space spanned by disturbance
errors. Thus the singular valueσ(G) or even may be associated with
a direction where and in that case this method may imply a large l
whereas in reality the loss is small.

However, use of this rule may be computationally much simpler than evalua
the mean value ofJ of the loss function.

c'˜∆ 2 1≤
d∆ 2 1≤ ẽ∆ 2 1≤

cz Juu
1 2/ G 1–= ∆c'˜

L ∆c'TG T– JuuG 1– ∆c'
1
2
---cz

T
cz

1
2
--- cz 2

2= = =

cz

σ Juu
1 2/ G 1–( )

juu

c'˜∆ 2 1≤
c'˜∆ 2 1≤

σ Juu
1 2/ G 1–( )

c'˜∆ 2 1«
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10.8 Application Examples

10.8.1 Toy Example

To give a simple “toy example”, letJ=(u-d)2 where nominallyd0=0. For this prob-
lem we always haveJopt(d)=0 corresponding touopt(d)=d. Now consider three
alternative choices for the controlled output (e.g. we can assume they are
alternative measurements)

c1 = 0.1(u-d); c2 = 20u; c3= 10u - 5d=10(u-d)+5d

For the nominal case withd0=0 we have in all three cases thatcopt(d0)=0 so we
select in all three casescs=0. Since in all casesuopt(d)=d, the optimal value of the
controlled variable for the three cases arec1opt(d) = 0,c2opt(d)=20d andc3opt=5d.

Method 1:

The losses can for this example be evaluated analytically, and we find
the three cases:

L1 = (10e1)2; L2= (0.05e2-d)2; L3 = 0.1e3 - 0.5d 2

(For example, in case 3, we haveu=(c3+5d)/10 and withc3 = c3s+e3 = e3 we get
J=(u-d)2 = (0.1e3 + 0.5d - d)2). If we further assume that the variables have be
scaled such that and then the worst-case values of
losses areL1 = 100,L2=1.052 = 1.1025 andL3= 0.62 = 0.36, and we find thatout-
put c3 is the best overall choice for self-optimizing control. However, with no
control errorc1 is the best, and with no disturbancesc2 is the best.

Observe also thatc1 is proportional to the gradient ofJ, and that the corresponding
loss does not depend on the magnitude of disturbances, but in this examp
error will dominate, andc3 which is not a perfect gradient, have much better err
properties. However, for increased disturbances, the lossL3 will increase, while
theL1 will remain constant.

Method 2.

For the three choices of controlled outputs we haveG1 = 0.1,G2=20 andG3=10,
andσ(G1) = 0.1,σ(G2)=20 andσ(G3)=10. This would indicate thatc2 is the best
choice, but this is only correct with no disturbances. The reason for the err
that we have not scaled the output variables properly; in particular, we have
take into account the effect of the disturbances on the magnitude ofc - copt(d).

Let us now scale the variables properly. We haveuopt=d, so we havec1,opt=0,
c2,opt=20d andc3,opt=5d. Forc1 we then have that |c1 - c1,opt| = 1 + 0 (the control
error is 1 plus the variation inc1,opt(d) due to disturbances is 0), and we find th

|G1
-1(c1 - c1,opt)| = 1/0.1 (1+0) = 10

∆d 2 1≤ ∆ei 2
1≤
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Similarly;

|G2
-1(c2 - c2,opt)| = 1/20 (1+ 20) = 1.05

|G3
-1(c3 - c3,opt)| = 1/10 (1+5) = 0.6

and we find as expected thatc3 is the best choice. Thus, the two methods agre
In this monovariable case the scaling was quite trivial, but in a mulitvariable c
the scaling may be difficult.

10.8.2 Application to a Petlyuk Distillation Column

The Petlyuk distillation column (Figure 10.5)
have been used for case studies in several pap
by the author. A qualitative analysis have bee
presented in Chapter 7, and an evaluation bas
on computation on a full model have been pre
sented in Chapter 11.

The cost function is the reboiler vapour flow
(J(u,d)=VB), The disturbances are feed compos
tion, feed quality, feed flow rate, and the thre
product purity specifications. Reflux (LT), boilup
(VB) and sidestream flowrate (S) are used f
composition control (D and B are used for leve
control). Note that we want to minimize one o
the manipulated inputs. The remaining degrees
freedom are then the draw ratios for the liqui
and vapour to the prefractionator ( )
The cost function has a quite sharp minimum, an
the optimal solution is affected by the distur

bances. Thus this is an obvious case for on-line optimization, and self-optimi
control is a possible approach since there are a large number of measurable
ables which may have self-optimizing control properties.

Here we will bring a short summary of the procedure and results from the diplo
work by Storkaas (1999) (in Norwegian). The Taylor series method presente
Sections 10.3 and 10.4 was used to evaluate self-optimizing control based
combination of four temperature measurements. The nominal cost-function
its Taylor series approximation (J(u,d0)=J(u0,d0)+(u-u0)

TJuu(u-u0).
(u0=uopt(d0)) shown in Figure 10.6 for the nominal set of disturbances as a fu
tion of the control inputs. The cost function is quite non-linear, but we obse
that the approximation (dashed) capture the main shape of the cost fun
around the optimum.

D

S

B

C21

C22

C1

VB
C1

RvVB=

LT
C1

RlLT=

F,z,q

Figure 10.5: The integrated
Petlyuk arrangement for
separation of ternary mixtures

Main
column

Prefrac-
tionator

VB

LT

u Rl Rv,[ ]=
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Since the cost function has clearly distinguishable strong and weak directions
choose to keep one of the degrees of freedom constant (typically the vapour
Rv). Storkaas (1999) studied the problem of minimizing reboiler vapour flow
presence of disturbances in feed composition, quality and flow rate and un
tainty in product purity setpoints and implementation of split ratios. T
candidate variables were limited to a combination of four temperat
measurements:

(10.75)

whereNi indicates a given stage for that measurement. In this case, the numb
possible solutions is finite, and the optimization problem in (10.54) was sol
simply by evaluating all solutions.

The background for selecting from this set is the qualitative analysis given
Chapter 7. It was observed that the temperature profiles in the prefractionato
the main column had some symmetry properties which was different on each
of the optimum, and by taking the difference temperatures above and below
feed and sidestream, we can get a candidate variable.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
l

R
v

V(u)=V(R
l
,R

v
)

V
o
+δuTJ

uu
δu

Figure 10.6: Contour plots of the cost function for the Petlyuk column (VB(u,d0)). and the
Taylor series expansion (dashed). Feed:z=[1/3,1/3,1/3],α=[5.6 2.8 1], q=0.5, u=[Rl,Rv]
(ref. Storkaas 1999)
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Although we have not studied controllability in detail, simulation experience in
cates that the Petlyuk arrangement is not very difficult to control, provided
we do not use infeasible setpoints. Similar interactions as found in ordinar
product distillation are found in the Petlyuk column too. However, increasing
number of control loops from 2 to 4 or even 5 seems quite feasible. This have
confirmed by some simulation case studies in the diploma work by Gillesham
(2000)

10.9 Discussion

10.9.1 Trade-off in Taylor Series Analysis

We must consider an important trade-off when we apply the Taylor series met
The Taylor series expansions are accurate for small perturbations, but we
need to compensate for large disturbances and uncertainties that contribut
significant loss. This implies that the Taylor-series method will not be suffici
if there are severe nonlinearities which cannot be represented by the second
Taylor series expansion for the expected range of disturbances and inputs.

We may compensate some of this when we do the numerical computations o
Hessian. Response surface methods (Box 1987), which adapts a quadratic
to based on a set of data points may give better result for large deviations
local methods, normally applied for numerical differentiation. We really need
best accuracy for the loss function in the region around the acceptable
instead of close to the nominal optimum.

However, as a screening tool, and to get important information about the w
disturbance directions, the Taylor-based methods presented here are val
The main advantage is the simplicity in checking a large number of measurem
models without the need for excessive model computations.

10.9.2 Evaluation of Loss

The method based on minimizing the maximum singular value ofMc (10.54) is
equivalent to minimizing the worst case loss for normalized disturbances
errors specified by  and .

This method has two main drawbacks:

• The worst case loss may not be the appropriate measure in some case
example when the disturbance associated with the worst case loss is 
rare. Thus, other methods, e.g. minimizing the average loss based on
turbance probability (p(d)), may sometimes be more suitable.

∆d̃ 2 1≤ ∆ẽ 2 1≤
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• The real disturbance and error regions may not fit the above type of n
specification.

A typical example is when we may specify
the possible range for each individual distur-
bance as .

Then the specification may give
misleading results, at least if the largest sin-
gular values in Mc are close. This is
illustrated in Figure 10.7: Here we have
foundda as the worst disturbance by the sin-
gular value method. Butdb which obey

may give a larger loss, but this is
not found by the singular value method since

.

An alternative is to make a sufficient dense
grid of possible disturbance vectors ( ), and compute the correspondin
of losses directly from (10.49). This is also easy to combine with weighted l
computation.

However, the simplicity of computing is appealing, and if we examine t
associated directions in disturbances, errors and inputs, and also check the
racy of the Taylor series expansion more carefully in this directions, we ob
valuable information for evaluation of self-optimizing control structures.

10.9.3 Criterion Formulation with Explicit Model Equations

We have used an unconstrained cost functionJ(u,d) where the dimension ofu
equals the number of remaining degrees of freedom in the system, when all
ifications are fulfilled. The nonlinear process model is implicit in the co
function, and so are also the product specifications and other constraints. An
uation ofJ(u,d) usually implies solving the process model internally.

However, process models are normally given in another form, e.g. in state-s
form, and it can be convenient to separate the criterion, the basic model, the
uct specifications and the measurement model in the formulation. Morud (19
showed how to expand the cost functionJ(x,u,d)in a second order Taylor series
with a model in state-space form:f(x,u,d)=0 (wherex is the state vector). The
nominal solution is found by minimizing the Lagrange function:

Minimizing averaged loss:

LCS
d( ) p d( ) dδ

D
∫CS

min

a) ∆d 2 1≤

d1

d1

da

db

b) ∆di 2
1≤

Figure 10.7: Norm bounded
disturbance specification may be
conservative. Hereda and db are
the worst disturbances in region a)
and b) respectively.

∆di
˜

2 1≤

∆d̃ 2 1≤

∆di 2
1≤

db 2
1>

d D∈

σ Mc( )
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For second order Taylor series expansion of the loss, we need to expand bo
model and the criterion to second order.

Note that we here have the same number of the remaining degrees of freedo
in the expressionJ(u,d). Direct computation of the HessianJuu from J(u,d)usu-
ally requires that we must solve the full model for every perturbation inu andd.
However the dimension ofJuu is normally quite small compared to the Hessian
the Lagrange function in the alternative approach. The best approach with re
to computational load will depend on the complexity and availability of t
model, the dimension of the state, and available optimization tools.

10.9.4 Active Constraint Control

The approach outlined in Section 10.2 may be extended to include problems
equality and inequality constraints:

(10.78)

Problems with equality constraints are relatively straightforward, especially if
can identify a single variable (manipulated or measured) directly related to
constraint; this should then be included as a controlled variables c (“active
straint control” (Arkun 1980)). The main effect is then that each constra
removes a degree of freedom for the optimization. The same argument hold
inequality constraints where the optimal policy is always to keep the same
straint active (i.e. satisfy them as equalities for any disturbance).

The more difficult problems are when we have a inequality constraint whic
active only under certain conditions (disturbances), and the constraint is
directly expressed by a direct manipulated or controlled variable. For such c
one must be careful to avoid infeasibility during implementation, for examp
there may be a disturbance such that the specified value of the controlled var
can only be achieved with a nonphysical value of the input (e.g. a negative fl
rate). The on-line optimization is usually for simplicity based on the nomin
disturbance (d0), and two approaches to avoid infeasibility are then:

La x u λ d, , ,( )
x u λ, ,
min J x u d, ,( ) λf x u d, ,( )+( )

x y λ, ,
min=

J u d,( )
u

min

subject to g1 u d,( ) 0=

g2 u d,( ) 0≤
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• to use back-offs for the controlled variables during implementation, or

• to add safety margins to the constraints during the optimization (Narraw
1991), (Glemmestad 1997).

Alternatively, one may solve the “robust optimization problem”, where one a
optimize cs for all the possible disturbances. A fourth, and better approach
terms of minimizing the loss, is to track the active constraint, but this require
more complex control system. In particular, model predictive control is very w
suited and much used for tracking active constraints.

10.9.5 Controllability Issues

Of course, steady-state issues related to the costJ are not the only ones to be con
sidered when selecting controlled outputs. It may happen that the “optim
controlled outputs from a steady-state point of view, may result in a difficult c
trol problem, so that dynamic control performance is poor. This may be analy
using an input-output controllability analysis. For example, in distillation colum
control it is well known (Skogestad 1997) that controlling both product compo
tions may be difficult due to strong two-way interactions. In such cases, one
decide to control only one composition (“one-point control”) and use, for exa
ple, constant refluxL/F (although, this may not be optimal from a steady-sta
point of view). Alternatively, one may choose to over-purify the products to ma
the control problem easier (reducing the sensitivity to disturbances).

10.9.6 Why Separate into Optimization and Control

Why is the controller decomposed? The first reason is that it requires less co
tation. This reason may be relevant in some decision-making systems where
is limited capacity for transmitting and handling information (like in most sy
tems where humans are involved). It does not, however, hold in today’s chem
plant where information is centralized and computing power is abundant. T
other reasons often given are failure tolerance and the ability of local units to
quickly to reject disturbances (e.g. Findeisen et al., 1980). These reasons m
more relevant, but as pointed out by Skogestad (1995-2) there are probably
more fundamental reasons. The most important one is probably to reduce the
involved in defining the control problem and setting up the detailed dyna
model which is required in a centralized system with no predetermined lin
Also, decomposed control systems are much less sensitive to model uncer
(since they often use no explicit model). In other words, by imposing a cer
control configuration, we are implicitly providing information about the beha
iour of the process, which we with a centralized controller would need to sup
explicitly through the model.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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Evaluation of self-optimising con-
trol structures for an integrated
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ABSTRACT

In a Petlyuk distillation column, two extra degrees of freedom can be used for
optimisation purposes. It has been reported that a typical energy saving of 30%
is achievable with a Petlyuk distillation column, compared to conventional dis-
tillation arrangements. However, the optimal steady-state operation point can
be difficult to maintain in practice. In this work we have studied the perfor-
mance of some self-optimising control configurations for the Petlyuk distilla-
tion column in presence of disturbances and uncertainties. The results show
that self-optimising control can be used to improve the robustness of optimal
operation by adjusting a degree of freedom in a feedback control loop by keep-
ing a suitable measurement variable at a setpoint.
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11.1 Introduction

In most processes there are some extra degrees of freedom that can be us
optimisation purposes. The optimal operation point can be difficult to maintai
disturbances and model uncertainty are present. Self-optimising control i
approach to solve this problem by turning the optimisation problem into a
point problem. The key idea is to find a measurable variable with constant v
at optimal operation. If this variable can be found, a feedback control loop
closed to keep the variable at the set point, and to keep indirectly the proce
optimal operation. Since self-optimising control results in a feedback con
loop, it will be robust against disturbances and model uncertainties compare
any open loop model based optimisation methods. The application of self-o
mising control to the Petlyuk distillation column was already addressed
(Halvorsen and Skogestad, 1998). Some candidate measurable feedback va
for the Petlyuk distillation column were proposed and analysed in a qualita
way. This work has to be seen as a continuation of that one in which a more c
ful evaluation is performed. New candidate feedback variables have b
proposed and a quantitative study has been done to see the performance
controlled system in face of various process disturbances and model uncertai

11.2 Energy Optimization in the Petluyk Column

The thermally coupled distillation column known as Petlyuk column (Petly
1965), shown in figure 1 is a complex distillation arrangement to separate a
nary mixture of A (the more volatile), B (intermediate volatility) and C (the le
volatile).

C

A A

C

B B

AB

BC

L

V

R  L

R  V

L

V
ABC ABC

"Prefractionator"

"Main column"

Figure 11.1: The Dividing Wall Column (left) and the fully thermally coupled colum
(right) are thermodynamically equivalent.
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The Petlyuk column has been given special attention due to very high repo
energy savings. (Triantafyllou and Smith, 1992) reported savings of 30% com
ing the Petlyuk column with the conventional trains of columns. Considera
investment capital savings can be obtained if the arrangement is implement
a single shell (Divided Wall Column). The complex design of the Petlyuk colu
offers some extra degrees of freedom which permit an optimisation that is not
sible in the conventional ternary distillation designs.

11.3 Optimising Control Requirement for the Petlyuk
Column

We assume that the Petlyuk column reboiler and accumulator levels are stab
by the distillate flow (D) and the bottoms flow (B). Then it has five degrees of free
dom: boilup (V), reflux (L), side stream flow (S), liquid split (Rl) and vapour split
(Rv). Of these five degrees of freedom, three are used to control the composi
of the three products (composition of component A in the distillate, composit
of B in the side stream and composition of C in the bottoms stream). Wolff a
Skogestad (1996) showed that the LSV control structure gives acceptable
formance. It consists in the control of A composition by the reflux (L), the control
of the B composition by the side stream flow (S) and the control of C composition
by the boilup (V). LSV is the control structure assumed in this work. Therefo
liquid split (Rl) and vapour split (Rv) are the two extra variables to be used fo
optimisation purposes. The energy consumption, here represented by the b
vapour rate (V) will be used as the criterion. When the composition loops a
closed and the products purity (xDA,xSB,xBC) are controlled to their specifications
the product specifications setpoints (xDAS,xSBS,xBCS) will replace the composition
control loop inputs (L,SandV), as degrees of freedom. These setpoints will affe
the optimal operation point in addition to the disturbances in the feed flow
(F), feed composition (z) and feed liquid fraction (q).

It was shown (Halvorsen and Skogestad, 1997, 1998) that the optimal oper
point of the Petlyuk column is not robust when no optimising control is appl
in addition to the product composition control. The optimal values of the t
degrees of freedom (Rl,Rv) used for optimisation are sensitive to feed disturbanc
and product set points changes. The objective function surfaceV(Rl,Rv) is very
steep in some directions and if no adjustment of these remaining degrees of
dom (DOF) is applied, the operation may get far from optimal. Therefore, so
control is required to maintain the optimal operation when disturbances
uncertainties are present. However, in accordance with the work of (Halvo
and Skogestad, 1998), we will fixRv and useRl as the only manipulated variable
to indirectly achieve the energy control. Two reasons justify this decision. F
the energy surfaceV(Rl, Rv) is quite flat close to the minimum in a narrow lon
region in a certain direction in the(Rl, Rv)-plane, permitting that for any given
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



326

are
od
nd
rop-
e
ht
its
the

and
re.
rise
d be
ining
iable
r to

ip-
,
ing
case

he
ation
ment

o that
constantRvo, we can find aRl,opt,1 that makes the value ofVopt,1=V(Rl,opt,1,Rvo)
be close to the absolute minimum when both values of the remaining DOFs
optimised:Vopt=V(Rl,opt, Rv,opt). Rvo must be set in a reasonable neighbourho
to Rv,opt. The flat region was shown by (Fidkowski 1986) for infinite stages a
sharp product splits. The extent of the flat region is determined by the feed p
erties (composition and liquid fraction), and the relative volatility of th
components. Second, if we consider a dividing wall column (DWC) (Wrig
1949),Rv would be a difficult variable to manipulate in normal operation since
value will be naturally given by the pressure equalisation on each side of
dividing wall.

11.4 Self-optimising Control for the Petlyuk Column

The concept of self-optimizing control is presented in (Skogestad et. al. 1998
1999). A brief introduction for our Petlyuk column case study will be given he
The idea behind self-optimising control is to find a variable which characte
operation at the optimum, and the value of this variable at the optimum shoul
less sensitive to variations in disturbances than the optimal value of the rema
degrees of freedom. Thus if we close a feedback loop with this candidate var
controlled to a setpoint, we should expect that the operation will be kept close
optimum when a disturbance occur.

We defineu to be our remaining degrees of freedom which we will use as man
ulative variables for optimising control, andd to include the external disturbances
the setpoint specifications for all the closed control loops and any remain
degrees of freedom not used as manipulative variables. In our general
u=(Rl,Rv) andd=(z,q,xDA,xSB,xBC), but when we fixRv=Rvoand useRl as the only
manipulative variable we will haveu=Rl andd=(z,q,xDA,xSB,xBC,Rvo). The opti-
mal solution is found by minimisingV(u,d) with respect tou. Thus both the
optimal value of the criterion functionVopt and the corresponding solutionuopt
will be a function ofd.

(11.1)

The combined set of(u,d) determines an operation point uniquely, and also t
values of any internal states and measurements. (In this simplified present
we do not consider any bifurcations.) Assume now that we choose a measure
variablec=g(u,d), and that the inverse functionu=g-1(c,d) exists. Then we may
applyu=g-1(cs,d),wherecs is the setpoint forc. The ideal relation would of course
be to find a functiong(.) where: Ifcs=g(uopt,0,d0), then
u=g-1(cs,d)=uopt(d). These properties imply that we want the nominal setpointcs
to be insensitive to the disturbances, and that c characterise the optimum s

Vopt d( )
min

u
V u d,( ) V uopt d( ) d,( )= =
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(c- cs) is proportional to (u-uopt) for any disturbance in the region where c is clos
to cs. An example of an ideal function g(.) is the gradient ofV(u,d)with respect
to u:

(11.2)

In the real world, we cannot expect such an ideal function to exist, but there
be variables (c) where , when we compare the cas
of keepingc constant at the nominal valuecs0, to the case where we keep u at th
nominalu0, for a set of disturbances d around a nominald0.

So why not look around for the candidates?

A very important feature of the feedback implementation in self-optimising c
trol is that we do not need to know the functiong-1(cs,d) accurately since the
feedback controller will adjust the input u until c= cs in spite of uncertainties and
unknown disturbances. Thus we may find the best variablec=g(u,d) with the
wanted properties by using a rigorous model and advanced optimisation, bu
realisation ofg-1(cs,d) in the plant may simply be with a conventional PID con
troller, neither with the need for an on-line model nor any on-line optimisati
The task of finding a good candidate for self-optimising control is primarily a co
trol structure problem (e.g. the task of selecting variables for inputs and outp
When a self-optimising feedback variable is found, this variable can be tre
like any other output in the task of finding the best regulatory design (e.g. find
the best input output pairing, choosing PID controllers and/or model predic
control etc.).

In the rest of this paper we will present results from a quantitative evaluatio
V(u,d)andV(g-1(cs,d),d) compared toV(uopt,d) for a set of candidate measure
ment variables and a set of disturbances around a nominal operational poin

11.5 Self-optimising Control:
A Petlyuk Column Case Study

11.5.1 The Nominal Optimal Solution

The non-linear model used to simulate the column behaviour in presence of
turbance and uncertainties was described in (Skogestad and Halvorsen, 19
is a stage by stage model where the main assumptions are: constant pressur
stant relative volatility, constant molar flows and constant tray efficiency. T
relative volatilities are assumed to be (4:2:1). The number of stages is 8 in
of the 6 sections plus a reboiler and total condenser. (Note that the numb
stages is not based on any rigorous column design. Our optimal boilup is a
40-50% higher than a theoretical minimum boilup with infinite number of stag

g u d,( ) V u d,( )u∇=

V g
1–

cs0 d,( ) d,( ) V u0 d,( )«
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which indicates that our number should probably have been increased. How
detailed design of the column is not an issue in this paper.) The nominal opera
point is selected with equimolar feed,z=(1/3,1/3,1/3), partly vaporised, liquid
fraction q=0.477, and 97% purity for all three products. The nominal optim
solution is found asVopt = 1.497, forRl = 0.450 andRv = 0.491.

This optimum, and all other optimal operating points for different sets of the d
turbances (d) are found by applying a constrained optimisation solver with the f
non-linear model.

11.5.2 Proposed Output Feedback Variables

The set of candidate feedback variables is based on discussions in (Halvorse
Skogestad 1998) and (Christiansen 1997). The selection is based on quali
evaluation and process insight. Alternative approaches based on Taylor s
expansion of the criterion function is outlined by Skogestad et. al. (1996, 19
1998), but these methods are not considered in this study. A brief descriptio
each of the considered feedback variables is given below.

• D1/F: The net flow from the top of the prefractionator to the main colum
divided by the feed flow.
D1= V1- L1. Thus it is not a flow but a difference between two flows.

• β: Fractional recovery of the intermediate B-component leaving in the p
fractionator top.
A similar behaviour asD1 is expected asD1=zA+ βzB with a sharp A/C
split.

• ∆N: the number of trays between the tray from where the side stream
withdrawn and the tray that has the highest B-composition. This is ba
on the observation that for optimal operation, the B-composition had i
maximum at the sidestream withdrawal stage.

• ∆N’ is the continuous variable that corresponds to a cubic interpolation
the discrete variable∆N. ∆N’ will be able to follow the optimum more
closely. Nominal∆N is 0.

• DTS: a measure of the temperature profile symmetry. It is defined as
DTS=Σ(T1,i- T4,i)+Σ( T2,i – T5,i), whereTN,i is the temperature of tray i of
sectionN. The temperature of each tray is calculated assuming the co
bution of each component with its equilibrium temperature proportional
its fraction. The set point ofDTSis 6.38.DTSwas observed to be constan
along the direction of the minimum surfaceV(Rl, Rv) where it was most flat.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



11.6 Robustness Study Simulation 329

e
e
he
-

am
e-

le
s-

se all
the
tun-

e. To
a set
the
ps in

the
ent
ondi-
olled

of the
been

inputs
con-
nges

n ana-
cond
es of
l
re
• yD1
C: the C-composition of the net flow from the prefractionator distillat

to the main column.yD1
C is calculated as the net C in the vapour from th

prefractionator to the main column minus the net C in the liquid from t
main column to the prefractionator divided by the net flow from the pre
fractionator to the main column.

• yB1
A is the equivalent toyD1

C in the prefractionator bottom.

• γ0: Ratio of net flow downwards towards the sidestream and the sidestre
flow. This variable is implemented as a feedforward from flow measur
ments:Rl = 1-γ0*S/L-(1- Rv0)*V/L.

11.6 Robustness Study Simulation

Because of the reasons given above,Rl have been used as a manipulated variab
for the optimisation loop whileRv has been kept constant. Thus, the control sy
tem has become a four- loops control system. PID controllers are used to clo
control loops. This applies both for the three composition control loops and in
optimisation loop. Since we are interested in steady-sate considerations, the
ing of the controllers to obtain good control performances has been set asid
study the robustness of each of the proposed optimisation control structures,
of simulations has been carried out. Closing the optimising loop with each of
proposed feedback variables at a time, simulations have been done for ste
each uncertainty and disturbance variable. The process was simulated from
nominal initial conditions until a new steady-state was obtained. The differ
control structures brought the process to different steady state operation c
tions when the disturbances were applied. The boilup values of these contr
operations are the object of our comparisons.

Feed flowrate (F), feed composition (zA,zB) and feed liquid fraction (q) have been
the considered disturbance uncertainties. Uncertainties in the measurement
product purities and in the measurement of the feedback variables have also
considered. Uncertainties have been simulated through step changes in the
and in the set points. (To simulate error in the measure of the optimisation
trolled variable and in the measure of the product compositions, setpoint cha
have been applied).

For each source of upset, some values around the nominal values have bee
lysed. In Table 1 the specific considered upset values are shown in the se
column with the values applied. For each disturbance or uncertainty, the valu
the objective function (boilupV) for each self-optimising optimisation contro
structure is computed. Values are compared to the pseudo optimal value wheRv
is fixed at its nominal value and onlyRl is adjusted for minimal boilup. We also
computed the overall optimal value (where bothRl andRv are adjusted for mini-
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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mal boilup). Values are shown in the rightmost columns in Table 1. We a
compare results to the values for constantRl andRv, that is with no control action
in the self-optimising control loop.

11.7 Discussion of the Results

After doing all the simulations the following results are obtained:

• D1/F is not a good feedback variable. It handles disturbances in the fe
flow very well because it maintains the proportionality between interna
flows. It brings the system not far from the optimum for set point chang
and disturbances in q. However, it behaves very bad in response to fe
composition disturbances, worst than fixing theRl to the nominal value. We
can say that it is not a good option because it fixes a flow, not a featur
the system.

• β has the better behaviour in response to feed composition disturbanc
With yD1

C it has the best behaviour for feed vapour fraction disturbanc
In front of product composition set point changes it is almost as good 
DTS, which is the best one. As it is a recovery and not a flow, it faces fe
flow disturbances quite well. Lastly, robustness against bad measurem
is acceptable. It is a variable characteristic of the whole system.

• ∆N has the problem that it only indicatesRl to change when the changes in
the profile are large because of the discreteness of the variable.∆N’ is better
than∆N. Other variables are better that∆N’ for the normal disturbances
and uncertainties. But surprisingly, it is the best solution for large chang
in feed composition. It has to be noticed that∆N’ only takes the main col-
umn into account.

• DTSis found to be the best feedback variable for changes in the set po
of the product compositions and for set point changes in its self value
faces well disturbances in the feed flow because it is not a flow. Its be
iour in front of feed composition and vapour fraction disturbances is n
bad. This feedback variable takes into account the two sides of the Petl
column, the prefractionator and the main column.

• yD1
C has shown to be a good feedback variable, too. Facing feed vap

fraction disturbances it is comparable toβ. Its behaviour in response to
changes in its setpoint value is almost as good as for theDTSvariable. And
its behaviour in response to set point changes in the product composit
and disturbances in the feed composition is not bad. But it does not resp
well in response to feed flow disturbances because it is a composition
not a recovery. AsDTS, ydC is a characteristic of the whole column.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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• yB1
A has given unstable solutions as was predicted (Christiansen 199

This is due to that the flat region is on the right branch of the prefractiona
characteristic for our case, and this variable is expected to be best for
opposite case.

• The feed forward proposed control has also given very good results. H
ever, it will not have the advantages and simplicity of feedback contro

When comparing the overall optimum values with the optimum values with fix
vapour split (Rl free,Rv fixed), we find the loss with a fixedRv is quite small. This
confirms it is possible to be close to the minimum by using only one of the t
extra degrees of freedom as a manipulated variable.

11.8 Conclusions

Self-optimising control has been seen to be a good method for the energy op
sation of a Petlyuk column. Three output feedback variables give very g
robust control of optimal operation in a self-optimising control scheme. They
β, DTS andyD1

C. For robustness against feed flow disturbances,β andDTSare
better thanyB1

A because this last variable is a composition and not a recovery.
feed composition disturbancesβ is the variable that maintainsV closer to the min-
imum, howeverDTSandyD1

C have also acceptable results. Facing feed vapo
fraction disturbances,yD1

C is the best of the three but the other two are not f
from it. Facing set point changes in the product compositions,DTS is again the
best feedback variable, being very close toβ andyD1

C the worst of them. Lastly,
DTSandyD1

C behave better in response to bad measurements of themselves
β. In a real case, we will decide on one of the three variables depending on
information we have about what are the more probable disturbances. Also te
cal aspects will be have to consider. It has to be remarked, for example, thatDTS
can be calculated with only temperature measurements, which is a great a
tage. The measurement ofyD1

C andβ involve composition measurements whic
normally is more complicated and expensive.
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b Rl=

0.450

Optimum forRvo

=0.491

Optimal ref-
erence

Rl V Vopt,1 Rl Vopt

.797 0.450 1.797 1.797 0.450 1.797

.498 0.450 1.498 1.498 0.450 1.498
.198 0.450 1.198 1.198 0.450 1.198
1.498 0.450 1.498 1.498 0.450 1.498

1.536 0.430 1.550 1.532 0.436 1.531
1.557 0.432 1.585 1.557 0.433 1.554
1.487 0.469 1.510 1.482 0.463 1.481
1.428 0.469 1.489 1.428 0.470 1.425
1.567 0.424 1.601 1.564 0.429
1.472 0.449 1.471 1.470 0.453
1.529 0.451 1.528 1.526 0.446
1.440 0.477 1.539 1.438 0.474
.451 0.482 1.554 1.448 0.478 1.446
.473 0.466 1.498 1.472 0.464 1.472
.498 0.450 1.498 0.450 1.498
.526 0.433 1.546 1.525 0.436 1.524
.557 0.416 1.626 1.554 0.421 1.552
1.498 0.450 1.498 0.450 1.498
1.727 0.455 1.734 1.726 0.457
1.371 0.446 1.373 1.370 0.445
1.556 0.452 1.554 1.551 0.443
1.469 0.449 1.468 1.467 0.453
1.569 0.451 1.57 1.564 0.457
1.467 0.451 1.467 1.466 0.447
.512 0.462
.513 0.439
Disturbances DTS yD1
C

Name  value V Rl V Rl V

F 1.2 1.797 0.450 1.804 0.457 1
1 (Nominal) 1.498 0.450 1.498 0.450 1

0.8 1.198 0.450 1.198 0.441 1
zA/zB 0.333 0.333 1.498 0.450 1.498 0.450

0.399 0.333 1.602 0.412 1.560 0.421
0.333 0.399 1.580 0.418 1.562 0.426
0.267 0.333 1.541 0.485 1.504 0.477
0.333 0.267 1.444 0.481 1.430 0.473
0.379 0.379 1.664 0.400 1.601 0.411
0.379 0.286 1.476 0.446 1.475 0.447
0.286 0.379 1.532 0.453 1.532 0.453
0.286 0.286 1.505 0.496 1.455 0.485

1-q 0.627 1.451 0.483 1.449 0.475 1
0.575 1.473 0.467 1.472 0.463 1
0.523 1.498 0.450 1.498 0.450 1
0.471 1.526 0.433 1.525 0.437 1
0.418 1.557 0.416 1.554 0.424 1

Purity 0.97 0.97 0.97 1.498 0.450 1.498 0.450
0.97 0.97 0.98 1.727 0.455 1.775 0.440
0.97 0.97 0.96 1.371 0.446 1.382 0.456
0.97 0.98 0.97 1.551 0.446 1.552 0.448
0.97 0.96 0.97 1.467 0.453 1.467 0.452
0.98 0.97 0.97 1.564 0.456 1.584 0.445
0.96 0.97 0.97 1.466 0.448 1.47 0.453

Error 10 1.499 0.453 1.500 0.455 1
-10 1.499 0.448 1.499 0.446 1

Table 11.1:  D
ata show

 the boilup (
V
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Chapter 12

Conclusions and Further Work

12.1 Contributions

The main contribution in this work is on the improved understanding of ene
consumption and minimum energy operation in directly (fully thermally) int
grated distillation arrangements (generalized Petlyuk columns). We have sh
that the minimum total vapour flow requirement in a multi-product arrangem
is given directly by the minimum vapour flow for the most difficult binary sp
between two of the product component groups in the feed mixture. The result
based on Underwood’s classical equations, and we present exact analytical
tions for ideal mixtures with constant relative volatility and infinite number
stages.

The Vmin-diagram has been introduced as a useful tool for assessment of
multi-component separation task. The total required energy consumption an
vapour load and separation carried out in all parts in a directly integrated col
arrangement can be obtained by just a glance at theVmin-diagram. Both the ana-
lytical expressions for minimum vapour flow for more than three components
products, and the visualization by theVmin-diagram are believed to be origina
material.

When we consider integrated distillation arrangements operating at constant
sure and without internal heat integration, we conjecture that the directly cou
extended Petlyuk arrangement has the lowest energy consumption. Howev
analysing the separation task in the view of reversible distillation, which gi
minimum separation work (zero lost work or entropy production), we find that
external requirement for heat supply can be further reduced when we utilize
sibilities for internal heat transfer between different column sections in
arrangement.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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We also focus on operation. Although the minimum energy expression for tern
Petlyuk arrangements has been known for some time, important aspects in
ation have not been fully covered in the literature. There have been, and prob
still is, reluctance from the industry to use directly coupled arrangements.
reason has been given as difficulties in control. This thesis reveals that the ch
of control strategy is of vital importance for successful operation. The main r
son is that the energy consumption increases rapidly outside the optim
region, and the optimality region itself is affected by unknown disturbanc
Thus, we must carefully use the available degrees of freedom to track the op
operation region. Otherwise, the potential saving will most likely be lost. N
also that a low purity in the sidestream product is also an indicator of subopt
operation.

Thus, the difficulties in control that are reported in the literature are most lik
due to bad selection of control structures. Such control problems can be solve
choosing a suitable set of measurements and manipulated inputs, and the c
itself may be realized by conventional single control loops (e.g. PI-controller

In Chapter 7 we analysed the most important operational characteristics of th
product Petlyuk column using a finite stage model, and we showed how to c
pute the solution surface (vapour flow as function of the degrees of freedom
infinite number of stages, outside the region of optimal operation. The comp
tions for infinite number of stages are based on analytic equations and
computational load for this limiting case is extremely small compared to com
tations on even the simplest finite stage-by-stage models.

The concept of self-optimizing control has been used for control structure des
and in particular to propose variables that should be controlled to a setpoint
at the same time, this ensure close to optimal operation. First we used qualit
methods to propose some good candidates in Chapter 7, and some of these
evaluated in Chapter 11 with a full model. The conclusion is that is not only f
sible, but probably also required in practice, to use some kind of self-optimiz
control in order to maintain close to optimal operation.

A general method for analysis of self-optimizing control based on Taylor-se
expansion of the loss function is given in Chapter 10.

We emphasize that during the design of closely integrated process units we
also focus on control and operation. A common misunderstanding in the pro
design community is to think that controlcomes by itself. Similarly, in the control
community, some think that all problems can be solved with more complex c
trol algorithms. However, the results in this thesis show that by understanding
process, the control strategy can be quite simple, butwe have to do it right.

It is not enough to compute the optimal operation point. We also need a stra
to implement and maintain optimal operation in practice.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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12.2 Further Work

12.2.1 Process Design

The main results presented in this thesis are developed for ideal systems with
stant relative volatility and constant molar flows. However, based on the n
understanding, it is straightforward to develop engineering procedures for
zeotropic mixtures. Appendix D contains a simple example of how to use a st
ard simulator with standard two-product columns to find the characteristics o
minimum energy solution for a directly coupled arrangement.

We have assumed constant pressure. However, operation on different pre
levels is widely used in process design, and this issue calls for further studies
for directly integrated columns. This also applies for internal heat integration

There is a large number of different ways to interconnect the internal column
tions in directly coupled arrangements. However, the minimum energy solut
will in general be the same, but there will obviously be other features which
be very important for industrial realizations which makes some arrangem
more suitable than others. Some examples are required physical size (he
design of the internals, and need for pumps and valves in the connections. A
important issue is how to implement control devices for adjusting the liquid a
vapour splits during the operation.

Another important issue is process integration within a large plant. The result
directly coupled columns should be incorporated in the process integra
toolboxes.

The extension to azeotropic mixtures and integration of reactive sections
require further studies.

12.2.2 Control Structure Design

We have shown that it is very important to adjust the degrees of freedom on
in order to track the minimum energy operating point. However, we have not
ried out a detailed controllability study where we look at the combin
requirements for composition control and minimum energy operation.

We should also pay attention to the trade-off between column design and co
lability. For example, one issue is how the number of stages affects
controllability.

The principle of selfoptimizing control for selection of controlled variables
promising, and the methods can be developed further. This is a general me
ology and the directly coupled arrangements are just one application area
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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idea is to achieve robust and simple control structures. This issue is of g
importance both when we use simple and conventional controllers or adva
control with on line optimization.

An important subject for research is how to treat operational constraints. This
involve how to handle situations when it is infeasible to fulfil all constraints, a
how to recover in such conditions. For example, in the 3-product Petlyuk arra
ment we may relax the purity specification in the sidestream in a contro
manner when we are not able to supply sufficient energy or adjust the degre
freedom to the optimal solution.

12.2.3 Advanced Control

Model based predictive control has been applied with success on a series of
ess control applications, and we should also consider such methods for dir
coupled arrangements. However, the most widespread solutions are design
setpoint control only. The main advantages compared to conventional solu
are their ability to handle constraints and multivariable process interactions.

In a directly coupled distillation arrangement we need to operate close to m
mum energy. Thus we really need to include a general profit criterion on-lin
addition to setpoint deviation criteria. Typical solutions today involve steady s
optimization at the highest level, which computes the setpoints for the lo
levels.

Note that advanced control methods do not replace the need for good co
structure design. Thus selfoptimizing control is well suited for control struct
design also when we consider advanced model based methods. One conseq
is that the models required for optimization may become simpler.

12.3 Postscript

In this work, Matlab® has been the main computation tool. In addition I ha
sometimes used Maple in my search for analytical results, but pen and pap
still the most important tool in this context. Hysys models with more rigoro
thermodynamic properties have been used to verify some of the results from
simple models based on constant relative volatility and constant molar flows

Simulation studies with simple stage-by-stage models have played an impo
role during the work with this thesis. For example, the existence of the ana
results has in several cases first been indicated by simulation studies. We hav
used simulations to get a practical confirmation of analytic results yet not pro
However, since we have been able to present analytic results on central is
these detailed simulation results have been omitted in the final thesis.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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Appendix A

Prefractionator Pinch Zone
Compositions

We consider the case with a ternary feed (ABC) and an ordinary 2-product d
lation column with infinite number of stages, constant relative volatility a
constant molar flows. Consider operation in a region where we remove the h
C component from the top completely. The material balance around the top o
column is then expressed by:

(A.1)

Somewhere in the top section there will be a pinch zone with constant comp
tion. We choose a stage (n=p) in this pinch region where . Then
multiply the fist equation withyA,P and subtract from the second:

(A.2)

Since we assume that C is completely removed, the equilibrium is given by:

 where (A.3)

It is easy to show from (A.3), that we have the following relations:

(A.4)

VT LT– wA T, wB T,+=

VTyA n, LTxA n 1+,– wA T,=

xi p, xi p 1+,=

LT yA p, xA p,–( ) wA 1 yA p,–( ) wByA P,–=

yA

αAxA

N
-------------= N αAxA αB 1 xA–( )+=

yA xA–
αA αB–( ) 1 xA–( )xA

N
----------------------------------------------------=

1 yA–
αB 1 xA–( )

N
---------------------------=
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When we apply these equilibrium expressions on (A.2) we can eliminate
vapour composition and express the liquid rate as a function of the net compo
flows and the pinch zone composition:

(A.5)

We can also express this by Underwood’s equation, and whenwC=0 we choose to
apply the root between the relative volatilities of component A and B:

(A.6)

Note that for a constant Underwood root,LT is linear inwA andwB. This implies
that the pinch composition is uniquely related to the actual Underwood root,
by equating the coefficient expressions forwA in (A.5) and (A.6) we find:

(A.7)

This can be verified by checking the coefficient forwB in (A.5) and (A.6) too.

For minimum energy operation, the actual Underwood root (φA) equals the com-
mon Underwood root (θA) which can be found from the feed equation, and th
expression in (A.7) is constant in the whole part of the minimum energy reg
where component C is fully removed:

(A.8)

This is not obvious at all from Underwood’s (1946) own pinch compositi
expression:

, (A.9)

Here, only the relative volatility is constant whenwC=0, and it is somewhat sur-
prising that the pinch composition really is a constant.

LT

wAαB

αA αB–( )xA p,
-------------------------------------

wBαA

αA αB–( ) xA p, 1–( )
---------------------------------------------------+=

LT

wAαA

αA φA–
-------------------

wBαB

αB φA–
-------------------+=

xA p,
αB αA φA–( )
φA αA αB–( )
--------------------------------=

xA p,
αB αA θA–( )
θA αA αB–( )
--------------------------------=

xA p,
wA T,
LT

-------------
φB

αA φB–( )
------------------------=
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In the bottom section we can apply the same procedure to find the pinch
composition for the case when component A is fully removed, and the resul

(A.10)

(Note thatpB her is a stage in the bottom section pinch zone. We apply si
have  and  since ).

There is only one minimum energy operating point where A is removed from
bottom and C from the top, and that is at the preferred split. In that case both c
mon Underwood root are active:  and .

Note also that since and the pinch zone compositions rela
to the common underwood roots represent extreme values, thus:

 and (A.11)

In order to get the highest possible A-component composition in the top pin
and the lowest possible B-component (or highest possible C-component) co
sition in the bottom pinch, we have to operate the column at minimum energy,
more precisely at the preferred split.

xB pB,
αC αB ψC–( )
ψC αB αC–( )
---------------------------------=

ψC
αB ψC αC< < xB pB, 1 xC pB,–= xA pB, 0=

φA θA= ψC θB=

φA θA≥ ψC θB≤

xA pT,
αB αA θA–( )
θA αA αB–( )
--------------------------------≤ xB pB,

αC αB θB–( )
θB αB αC–( )
--------------------------------≥
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Appendix B

Alternative Deduction of Mini-
mum Energy in a Petlyuk
Arrangement Based on Pinch
Zone Compositions

In binary distillation, we obtain minimum energy when there is a pinch zo
through the feed stage. We may apply the same procedure as in Appendix A
express the minimum reflux by the feed pinch composition:

(B.1)

Now assume sharp product split, thuswB=0. We clearly observe that if we are
able to increase the feed pinch zone composition we obtain a smaller valu
minimum reflux.

Let us now assume that this column (C2) is directly coupled to a prefraction
column (C1) with a ternary feed and which is operated in the region only A
appear in the top. Then there is no way that the light component compositio
the feed junction is higher than the pinch zone composition. Thus we obtain

(B.2)

We recognize this expression as the minimum reflux in the upper part of the m
column in a Petlyuk arrangement. A similar procedure can be used for a col
connected to the bottom (not shown here).

LTmin

wAαB

αA αB–( )xA Fp,
----------------------------------------

wBαA

αA αB–( ) xA Fp, 1–( )
-----------------------------------------------------+=

LTmin( )
xA Fp,
min

wAαB

αA αB–( ) xA p,( )max
----------------------------------------------------

wAαB

αA αB–( )
αB αA θA–( )
θA αA αB–( )
--------------------------------

---------------------------------------------------------= =

LTmin( )min
θAw

A

αA θA–
-------------------

θAz
A

αA θA–
-------------------F= =
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We have assumed sharp splits both in the prefractionator (sharp A/C split) a
the succeeding binary column (A/B split). However this is really not necess
To allow a small amount of B in the top of C2, simply keep the second term
(B.1).

It is more complicated to understand non-sharp A/C split in the prefractiona
because if some C is allowed in the top, there will be no pinch zone as desc
in Appendix A in the top of the prefractionator. However, the heavy C will ha
to be completely removed somewhere above the feed junction of column C2
there have to be a pinch zone in C2 where only A and B appear.

Now we can use the results by (Carlberg and Westerberg 1989) which sho
how the Underwood roots carry over form the prefractionator to the directly c
pled column C2. When the prefractionator is operated at minimum energy w

as an active root, this root will carry over to C2. Thus the pinch zone com
sition just above the feed in C2 will be given by exactly the same expressio
the pinch composition in the top of C1 when assuming sharp A/C split. And c
sequently, when we compute the minimum reflux in the top of C2 we can still
equation (B.1), but instead of the feed stage, we have to consider a stage
pinch where C has been removed. Then we get the same expression for min
reflux, and it is independent of the amount of C going above the top of the
fractionator!. However, it is required that C1 is operated in the minimum ene
region where .

θA

φA θA ψB= =
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Appendix C

Minimum Energy with a Sepa-
rate Prefractionator Column

In a Petlyuk arrangement, the optimality
region is flat for operation of the prefraction
ator from the preferred split along the branc
of the V-shaped minimum energy characte
istic, and towards the highest peak in th
Vmin-diagram. Christiansen (1997) studie
the configuration shown in Figure C.1 with a
separate prefractionator with its own reboile
and a partial condenser, and found that in th
case the corresponding operating regime d
not give constant overall energy. In a series
cases he found that the preferred split oper
tion was optimal, but he left an open questio
whether there might be cases where a ba
anced main column can be optimal.

Here we will use Underwood’s equations an
show that the preferred split operation is always optimal. The proof is base
the assumption of constant molar flows, and the same constant relative volati
in the prefractionator and the main column.

Christiansen (1997) showed that the prefractionator must be operated alon
V-shaped minimum energy characteristic for sharp split between the light (A)
heavy component (C). The recovery (β) of the intermediate component (B) in the
top of the prefractionator is used as a free variable, an the total amount for va
ization in the two reboilers is given as:

(C.1)

S (B)

B (C)

C21

C22

C1

F,z,q

Prefrac-
tionator

(ABC)

qC21

FC21=DC1

Figure C.1: Conventional
prefractionator arrangement

D (A)

Main
column

Vmin
SP β( ) Vmin

Pref β( ) Vmin
Main β( )+=
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The expression for is exactly the same as for the Petlyuk column.
expression for the main column becomes simpler, although the principle of s
tion is the same: The maximum of the minimum reflux requirement of the up
or the lower part determines the main column minimum energy (Christian
1997):

(C.2)

(C.3)

Observe that has a distinct minimum for wher

. As for similar condition in the Petlyuk column

we denote this operating point as a balanced main column, but the value for

is in general different from the corresponding  for the Petlyuk column.

An important distinction from the expressions for the Petlyuk column can
observed: The main column energy consumption is not influenced by the pre
tionator reflux (or vapour flow) when the prefractionator has its own reboiler a
condenser. The only influence is through the distribution of the middle com
nent, expressed with the middle component recovery ( ) in the prefraction
distillate.

Recall that the prefractionator has its minimum boilup at the preferred split gi
uniquely by . As for the Petlyuk column there are two distinct cas

and . In the case when , the expression for t
total boilup in the region between and is determined by the minim
reflux requirement for the upper part of the main column and the left branc
the prefractionator characteristic.

The slope of minimum characteristic with respect to for is th
given by:

(C.4)

Vmin
Pref

Vmin
Main β( ) max Vmin

Upper β( ) Vmin
Lower β( ),( )=

Vmin
Upper β( )

zA βzB+

αAB 1–
---------------------=

Vmin
Lower β( )

αBC 1 β–( )zB zC+

αBC 1–
----------------------------------------------=

Vmin
Main β βBal=

Vmin
Upper βBal( ) Vmin

Lower βBal( )=

βBal

βR

β

βP
βP βBal< βP βBal> βP βBal>

βP βBal

β βBal β βP< <

βd
d

Vmin
SP β( )

αBzB

αB θA–
-------------------

αBz
B

αA αB–
--------------------+

αBz
B

αA θA–( )

θA α–
B

( ) αA αB–( )
--------------------------------------------------

 
 
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Recall that and this implies that all factors in the pare
thesis in equation (C.4) is positive and then this slope is negative. Thus,
minimum of is found at in this case. Similarly we have for the ca
when that is determined by the right branch of the prefra
tionator characteristic and the lower part of the main column for

(5)

And since we this time are to the right of the minimum is now also found
.

The conclusion is that operation at the preferred prefractionator split is
always optimal.

C.1 Different Relative Volatilities

Note that the slope expressions above are deduced by assuming the same r
volatilities in the main column as in the prefractionator. However, with a sepa
reboiler and condenser we may easily use different pressures in the column
thereby different values of the relative volatilities. In that case we may in fact
into the situation where the minimum is found at .

If we look at this a bit closer we find the following expression for the ca
where the superscriptsP, MUandML denotes values at the feed stage

for the prefractionator, and the upper and lower part of the main column.

(C.5)

The interesting factor is inside the parenthesis in the numerator. If
we know from (5) that this expression is positive, and the optimum will be at
However, if the slope expression in (C.5) may become zero or e
change sign, which then implies that the optimal will change to . T
lower main column will have an higher temperature, and for example with m
hydrocarbon mixtures the relative volatility at a given pressure will decrease w

αA θA αB θB α>
C

> > >

Vmin
SP β( ) βP

βP βBal< Vmin
SP β( )

βP β βBal< <

βd
d

Vmin
SP β( )
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αBz
B
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βP
βP

βBal
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βd
d

Vmin
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zB

αB
P θB–
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αB
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increasing temperature. An equivalent observation can be made for cases w
, and then we also may get a sign change of for . But n

mally the upper feed is at a lower temperature than the prefractionator feed
we would expect a increase in the relative volatility with a typical hydrocarb
mixture.

It is quite easy to take changing volatilities with temperature into considera
with this configuration since the parameters should be taken at the feed stage
ditions for the corresponding column. The feed compositions to the main colu
will be binary mixtures of AB and BC given by:

(C.6)

In addition we need to know the pressure, and then the state at the feed stag
determined, and we can find the actual relative volatilities.

βP βBal> αAB
M αAB

P<

yA f,
U zA

zA βzB+
---------------------=

xB f,
L 1 β–( )zB

1 β–( )zB zC+
-----------------------------------=
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Appendix D

Minimum Energy of a Petlyuk
Arrangement based on
Rigorous Simulation

We have presented simple analytic expressions based on Underwood’s equ
for the minimum energy solution in a generalized Petlyuk arrangement (
Chapter 3-5). This result is based on the simplifying assumptions of cons
molar flows and constant relative volatilities. These assumptions can be rela
but we then need to replace the analytic solution by more time-consuming nu
ical simulations. A procedure is outlined here.

D.1 Vmin-Diagram from Rigorous Models

TheVmin-diagram is a quick tool to determine the approximate characteristic
Petlyuk arrangement for separation of a given feed. One approach is to obtai
relative volatilities from rigorous component data, e.g by a feed flash simulat
and then we can extract the composition, relative volatilities and feed quality f
the solution and the procedures from Chapters 4 and 5 can be applied direc

We should note that theVmin-diagram obtained this way must be used with som
care when the molar flows and/or the relative volatilities change along the
umn. Then the actual Underwood roots will change as well, also at minim
energy operation, and the minimum energy conditions at the feed stage of a
ceeding column will be affected. Thus theVmin-diagram will be correct at the feed
stage for preferred split in the prefractionator, but some deviations mus
expected for flows through the succeeding columns.

An alternative approach, where we do not need to use any Underwood equa
is to run a set of simulations on a standard 2-product column with a reason
large number of stages (typical4xNmin). In each simulation we specify close to
sharp split between all possible pairs of feed components. We record vapour
through the feed stage (V), and distillate product flow (D) for each simulati
Recall that withN components, there are possible pairs which giv
the number of peaks an knots, and also the required number of simulations

N N 1–( ) 2⁄
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D.2 Optimal Petlyuk Column Requirements from Rigor-
ous Simulations of Standard Distillation Columns

The next natural step is to apply a rigorous simulator for more detailed case s
ies, but Petlyuk arrangements are normally not found (year 2001) in the stan
libraries of the most widely used process simulators (e.g. Hysys, Aspen e
Thus, it can be a bit complicated to configure a particular Petlyuk arrangem
and to find the optimal values of the available degrees of freedom related to
flow splits (draw ratios) between the prefractionator and main column.

However, it is possible to do a very quick assessment of the optimal operatio
a Petlyuk arrangement, by using standard distillation column units with sim
product specifications and without need for configuration and optimization o
full Petlyuk arrangement model.

Figure D.1 shows a configuration with conventional columns which is compu
tionally equivalent to the ternary Petlyuk arrangement in Figure D.2. This is t
for normal operation of the Petlyuk arrangement, where components b
removed in the ends of the prefractionator does not appear in significant com
sitions in the recycled flows into the column ends (ref. Chapter 4).

In the directly (fully thermal) coupled prefractionator (C1) in the Petlyuk arrang
ment (Figure D.2), there is zero external heat exchange between
prefractionator column sections and the succeeding columns. This can
obtained also with a conventional prefractionator column by superheating the

B

C21

C22

F,z,q

Figure D.2:
Petlyuk arrangement

q=-LT
C1/DC1

C1

D

D

B

q=LB
C1/BC1

B

D

All required reboiler
heat duty from
subcooling

All heat duty from
condensation used
for superheating

D

S

B

C21

C22

C1

F,z,q

Figure D.1:
Computational equivalent to

the Petlyuk arrangement
N
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product and sub cooling the bottom product with the exact heat duties remov
the condenser and supplied in the reboiler. We consider ideal units with no
and then the conditions at the feed stage of the succeeding columns will be
tical to the directly coupled configuration.

A characteristic of the optimal solution of a generalized Petlyuk arrangemen
that every column operates at its local preferred split. This is utilized in the
lowing practical procedure for determination of all Petlyuk arrangement stre
based on simulations of the equivalent arrangement:

1. Configure the equivalent arrangement (Figure D.1) in a process simula

2. Specify close to preferred split in the prefractionator by specifying sm
recoveries (or compositions) of the light component in the bottom and
heavy component in the top.

3. In columns, C21 and C22 apply the final product specifications. Adjust
impurity specifications (the light and heavy components) in the top of C
and bottom of C21 until the sum fulfils the requirements to the sidestre

4. The flow rates into the directly coupled prefractionator of a Petlyuk
arrangement are simply determined by the change in flow rates through
feed stages in C21 and C22 of the equivalent arrangement.

5. The boilup rate in the Petlyuk arrangement is determined by the vapo
rates through C21 and C22. By comparing the heat duties in the conde
of C22 and reboiler of C21, it is simple to determine the boilup requireme
in a single main column. If the condenser duty of C22 is largest, the h
duty in the reboiler of C22 will also be the required heat duty in the reboi
of the Petlyuk arrangement. Otherwise we either have to supply the dif
ence at the feed stage, or increase the boilup in C22 until the duties
becomes equal.

The solution obtained in this manner will be very close to the optimal solution
the Petlyuk arrangement.

Recall that we only need two specifications in each of the columns in the equ
lent arrangement. The system is trivially solved without the need for a
optimization procedure and there are no recycle streams between the column
may give complications to simulation solvers.

Note that we also find which of the columns C21 or C22 that determine
requirement for the boilup in the Petlyuk arrangement with a single reboiler
condenser. If the difference is large, we may consider a Petlyuk arrangement
a suitable heat exchange at the sidestream stage.
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We may of course configure a Petlyuk column model from the beginning,
apply an available optimizer to find the minimum energy solution. However,
result from the procedure above will provide an excellent initialization. Note a
that the quite steep solution surfaces and flat optimality regions may give nu
ical problems in some optimization solvers.

Stage design can also be based in the equivalent model in Figure D.1. Reme
to use the corrected feed quality (q) to each column. The stage requirement
directly coupled section will be a bit lower than for sections with its own reboi
and condenser. This is due to that we do not have any remix-zones close t
column ends when the arrangement is operated at the optimum.
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



352
NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen


	Minimum Energy Requirements in Complex Distillation Arrangements
	Preface
	Summary
	Summary 5
	1 Introduction 21
	1.1 Rationale 21
	1.2 Contributions of the Thesis 22
	1.3 Thesis Outline 23
	1.3.1 Part I: Design 23
	1.3.2 Part II: Operation 24


	2 Distillation Theory 27
	2.1 Introduction 28
	2.2 Fundamentals 29
	2.2.1 The Equilibrium Stage Concept 29
	2.2.2 Vapour-Liquid Equilibrium (VLE) 29
	2.2.3 K-values and Relative Volatility 31
	2.2.4 Estimating the Relative Volatility From Boiling Point Data 32
	2.2.5 Material Balance on a Distillation Stage 34
	2.2.6 Assumption about Constant Molar Flows 36

	2.3 The Continuous Distillation Column 36
	2.3.1 Degrees of Freedom in Operation of a Distillation Column 37
	2.3.2 External and Internal Flows 38
	2.3.3 McCabe-Thiele Diagram 38
	2.3.4 Typical Column Profiles — Not optimal feed location 40

	2.4 Simple Design Equations 41
	2.4.1 Minimum Number of Stages — Infinite Energy 41
	2.4.2 Minimum Energy Usage — Infinite Number of Stages 42
	2.4.3 Finite Number of Stages and Finite Reflux 43
	2.4.4 Constant K-values — Kremser Formulas 44
	2.4.5 Approximate Formula with Constant Relative Volatility 45
	2.4.6 Optimal Feed Location 47
	2.4.7 Summary for Continuous Binary Columns 48

	2.5 Multicomponent Distillation — Underwood’s Method 51
	2.5.1 The Basic Underwood Equations 51
	2.5.2 Stage to Stage Calculations 53
	2.5.3 Some Properties of the Underwood Roots 54
	2.5.4 Minimum Energy — Infinite Number of Stages 55

	2.6 Further Discussion of Specific Issues 58
	2.6.1 The Energy Balance and Constant Molar Flows 58
	2.6.2 Calculating Temperature when Using Relative Volatilities 60
	2.6.3 Discussion and Caution 62

	2.7 Bibliography 62

	3 Analytic Expressions and Visualization of Minimum Energy Consumption in Multicomponent Distilla...
	3.1 Introduction 64
	3.1.1 Background 64
	3.1.2 Problem Definition - Degrees of Freedom 65

	3.2 The Underwood Equations for Minimum Energy 65
	3.2.1 Some Basic Definitions 65
	3.2.2 Definition of Underwood Roots 66
	3.2.3 The Underwood Roots for Minimum Vapour Flow 67
	3.2.4 Computation Procedure 68
	3.2.5 Summary on Use of Underwood’s Equations 72

	3.3 The Vmin-diagram (Minimum Energy Mountain) 73
	3.3.1 Feasible Flow Rates in Distillation 74
	3.3.2 Computation Procedure for the Multicomponent Case 75
	3.3.3 Binary Case 75
	3.3.4 Ternary Case 78
	3.3.5 Five Component Example 81
	3.3.6 Simple Expression for the Regions Under the Peaks 82

	3.4 Discussion 83
	3.4.1 Specification of Recovery vs. Composition 83
	3.4.2 Behaviour of the Underwood Roots 83
	3.4.3 Composition Profiles and Pinch Zones 85
	3.4.4 Constant Pinch-zone Compositions (Ternary Case) 85
	3.4.5 Invariant Multicomponent Pinch-zone Compositions 89
	3.4.6 Pinch Zones for V>Vmin 90
	3.4.7 Finite Number of Stages 90
	3.4.8 Impurity Composition with Finite Number of Stages 92

	3.5 Summary 92
	3.6 References 93

	4 Minimum Energy for Three-product Petlyuk Arrangements 95
	4.1 Introduction 96
	4.2 Background 97
	4.2.1 Brief Description of the Underwood Equations 97
	4.2.2 Relation to Previous Minimum Energy Results 98
	4.2.3 The Vmin-diagram for Conventional Columns 99

	4.3 The Underwood Equations Applied to Directly Coupled Sections 100
	4.3.1 The Petlyuk Column Prefractionator 100
	4.3.2 Composition Profiles 101
	4.3.3 Reverse Net Flow of Components 102
	4.3.4 Reverse Flow Effects on the Underwood Roots 104

	4.4 “Carry Over” Underwood Roots in Directly Coupled Columns 105
	4.5 Vmin-Diagram for Directly Coupled Columns 108
	4.6 Minimum Energy of a Ternary Petlyuk Arrangement 110
	4.6.1 Coupling Column C22 with Columns C21 and C1 110
	4.6.2 Visualization in the Vmin-diagram 112
	4.6.3 Nonsharp Product Specifications 115
	4.6.4 The Flat Optimality Region 115

	4.7 Improved 2nd Law Results in Petlyuk Arrangements 117
	4.8 Minimum Energy with Multicomponent Feed 118
	4.8.1 The General Rule 119
	4.8.2 Example: Sharp Component Splits in Products 119
	4.8.3 Example: Nonsharp Product Split 121

	4.9 Discussion 122
	4.9.1 The Conventional Reference 122
	4.9.2 Extra Condenser or Reboiler in the Prefractionator 123
	4.9.3 Use of a Conventional Prefractionator Column 125
	4.9.4 Heat Integration 125
	4.9.5 The Two-Shell Agrawal Arrangement 126
	4.9.6 A Simple Stage Design Procedure 126
	4.9.7 Possible Reduction of Stages 127
	4.9.8 Short Note on Operation and Control 129

	4.10 Conclusion 130
	4.11 References 131

	5 Minimum Energy for Separation of Multicomponent Mixtures in Directly Coupled Distillation Arran...
	5.1 Introduction 136
	5.2 Four Components and Four Products 137
	5.2.1 Extended Petlyuk Arrangement 137
	5.2.2 Minimum Vapour Flow Expressions 138
	5.2.3 Visualization in the Vmin-Diagram 140
	5.2.4 The Highest Peak Determines the Minimum Vapour Flow 142
	5.2.5 Composition at the Junction C21-C22-C32 143
	5.2.6 Flows at the Feed Junction to C32 144
	5.2.7 Composition Profile - Simulation Example 145

	5.3 Minimum Energy for N Components and M Products 146
	5.3.1 Vmin for N Feed Components and N Pure Products 147
	5.3.2 General Vmin for N Feed Components and M Products 148

	5.4 Verification of the Minimum Energy Solution 150
	5.4.1 Minimum Vapour Flow as an Optimization Problem 151
	5.4.2 Requirement for Feasibility 151
	5.4.3 Verification of The Optimal Solution 152
	5.4.4 Summary of the Verification 155
	5.4.5 The Optimality Region 156

	5.5 Discussion 157
	5.5.1 Arrangement Without Internal Mixing 157
	5.5.2 Practical Petlyuk Arrangements (4-product DWC). 159
	5.5.3 Heat Exchangers at the Sidestream Junctions 162
	5.5.4 The Kaibel column or the “ column” 163
	5.5.5 Required Number of Stages - Simple Design Rule 163
	5.5.6 Control 164

	5.6 Conclusion 164
	5.7 References 165

	6 Minimum Energy Consumption in Multicomponent Distillation 169
	6.1 Introduction 170
	6.1.1 Some Terms 170
	6.1.2 Basic Assumptions 171
	6.1.3 Minimum Entropy Production (2nd law efficiency) 172
	6.1.4 Minimum Energy (1st law) 173
	6.1.5 Summary of some Computation Examples 174

	6.2 The Best Adiabatic Arrangement Without Internal Heat Exchange 176
	6.2.1 Direct Coupling Gives Minimum Vapour Flow 176
	6.2.2 Implications for Side-Strippers and Side-Rectifiers 179
	6.2.3 The Adiabatic Petlyuk Arrangement is Optimal 179

	6.3 Entropy Production in Adiabatic Arrangements 180
	6.3.1 Adiabatic Column (Section) 180
	6.3.2 Adiabatic Petlyuk Arrangements 181

	6.4 Reversible Distillation 182
	6.4.1 The Reversible Petlyuk Arrangement 183
	6.4.2 Comparing Reversible and Adiabatic Arrangements 187

	6.5 A Case Study: Petlyuk Arrangements with Internal Heat Exchange 188
	6.5.1 Example 0: Theoretical Minimum Energy Limit 188
	6.5.2 Example 1: Internal Heat Exchange �������������������in the Reversible Arrangement 188
	6.5.3 Example 2: Heat Exchange Across the Dividing Wall 189
	6.5.4 Example 3: Pre-heating of the Feed by ������������������Heat Exchange with the Sidestream 190
	6.5.5 Summary of The Examples 191

	6.6 Operation at Several Pressure Levels 192
	6.6.1 Example 1: Feed Split (Binary Case) 192
	6.6.2 Example 2: Double Effect Direct Split (DEDS) 193
	6.6.3 Example 3: Double Effect Prefractionator Column (DEPC) 194
	6.6.4 Relation to the Petlyuk Column and the Vmin-diagram 194

	6.7 Discussion 196
	6.7.1 Plant-wide Issues 196
	6.7.2 Heat Exchange at the Sidestream Stages 196
	6.7.3 Non-Uniqueness of Heat Supply in Reversible Columns 197
	6.7.4 Practical Issues 199

	6.8 Conclusion 199
	6.9 References 200
	6.10 Appendix: Reversible Distillation Theory 201
	6.10.1 Temperature-Composition-Pressure Relationship 202
	6.10.2 The Reversible Vapour Flow Profile 203
	6.10.3 Entropy Production in a Reversible Section 204
	6.10.4 Reversible Binary Distillation 205


	7 Optimal�Operation of Petlyuk Distillation: Steady-State Behaviour 211
	7.1 Introduction 212
	7.2 The Petlyuk Column Model 215
	7.3 Optimization Criterion 216
	7.3.1 Criterion with State Space Model 217

	7.4 Results From the Model Case Study 218
	7.4.1 Optimal Steady State Profiles 218
	7.4.2 The Solution Surface 220
	7.4.3 Effect of Disturbances 222
	7.4.4 Transport of Components 222

	7.5 Analysis from Model with Infinite Number of Stages 224
	7.5.1 Minimum Energy Consumption for a Petlyuk Column. 225
	7.5.2 Solution Surface for Infinite Number of Stages 226
	7.5.3 Analyzing the Effect of the Feed Enthalpy 230
	7.5.4 How Many Degrees of Freedom Must we Adjust During Operation? 230
	7.5.5 Sensitivity to Disturbances and Model Parameters 233
	7.5.6 A Simple Control Strategy with one Degree of Freedom Fixed 233
	7.5.7 Liquid Fraction: Bad Disturbance or Extra Degree of Freedom? 234
	7.5.8 Relations to Composition Profiles 234

	7.6 Candidate Feedback Variables 236
	7.6.1 Position of Profile in Main Column (Y1). 236
	7.6.2 Temperature Profile Symmetry (Y2) 237
	7.6.3 Impurity of Prefractionator Output Flows (Y3,Y4) 238
	7.6.4 Prefractionator Flow Split (Y5) 238
	7.6.5 Temperature Difference over Prefractionator (Y6) 241
	7.6.6 Evaluation Of Feedback Candidates 243

	7.7 Conclusions 243
	7.8 Acknowledgements 243
	7.9 References 243
	7.10 Appendix 244
	7.10.1 Model Equations for the Finite Dynamic Model 244
	7.10.2 Analytic Expressions for Minimum Reflux 246
	7.10.3 Mapping V(b,L1) to V(Rl,Rv) 249


	8 Use of Short-cut Methods to Analyse Optimal Operation of Petlyuk Distillation Columns 251
	8.1 Introduction 252
	8.2 The Petlyuk Distillation Column 252
	8.3 Computations with Infinite Number of Stages 253
	8.4 Results with the Analytical Methods or some Separation Cases 256
	8.4.1 When do we get the Largest Savings with the Petlyuk Column? 256
	8.4.2 Sensitivity to Changes in Relative Volatility Ratio and Liquid Fraction 258
	8.4.3 When Can we Obtain Full Savings with Constant Vapour and Liquid Splits? 258

	8.5 A Simple Procedure to Test the Applicability for a Petlyuk Arrangement 260
	8.6 CONCLUSION 261
	8.7 ACNOWLEDGEMENT 261
	8.8 REFERENCES 261

	9 Optimal Operating Regions for the Petlyuk Column - Nonsharp Specifications 263
	9.1 Introduction 264
	9.2 The Basic Methods 265
	9.2.1 The Underwood Equations 265
	9.2.2 The Vmin-Diagram 266
	9.2.3 The Vmin-diagram Applied to the Petlyuk Arrangement 266
	9.2.4 The Optimality Region for Sharp Product Splits 267

	9.3 Non-Sharp Product Specifications 268
	9.3.1 Relation Between Compositions, Flows and Recoveries 268

	9.4 Minimum Vapour Flow for Non-Sharp Product Specifications 269
	9.5 The Optimality Region 272
	9.5.1 Possible Impurity Paths to the Sidestream 272
	9.5.2 The Optimality Region for Case 1 273
	9.5.3 Net Flow of Heavy C into Top of Column C22 275
	9.5.4 Optimality Regions for Case 3 276
	9.5.5 Optimality region for Case 2 (Balanced Main Column) 277
	9.5.6 Effect of the Feed Composition 277
	9.5.7 Sensitivity to Impurity Specification-Example 278

	9.6 Operation Outside the Optimality Region 278
	9.6.1 The Solution Surface - Simulation Example 279
	9.6.2 Characteristics of the Solution 280
	9.6.3 Four Composition Specifications 281
	9.6.4 Failure to Meet Purity Specifications 283

	9.7 Conclusions 284
	9.8 References 284
	9.9 Appendix: Alternative Proof of the Optimality Region for Case 1 285

	10 Self-Optimizing Control: Local Taylor Series Analysis 287
	10.1 Introduction 288
	10.1.1 The Basic Idea 288

	10.2 Selecting Controlled Variables for Optimal Operation 289
	10.2.1 The Performance Index (cost) J 289
	10.2.2 Open-loop Implementation 291
	10.2.3 Closed-loop Implementation 292
	10.2.4 A Procedure for Output Selection (Method 1) 294

	10.3 Local Taylor Series Analysis 296
	10.3.1 Expansion of the Cost Function 296
	10.3.2 The Optimal Input 298
	10.3.3 Expansion of the Loss Function 299
	10.3.4 Loss With Constant Inputs 299
	10.3.5 Loss with Constant Controlled Outputs 300
	10.3.6 Loss Formulation in Terms of Controlled Outputs 301
	10.3.7 “Ideal” Choice of Controlled Outputs 302

	10.4 A Taylor-series Procedure for Output Selection 303
	10.5 Visualization in the Input Space 305
	10.6 Relationship to Indirect and Partial Control 307
	10.7 Maximizing the Minimum Singular Value (Method 2) 310
	10.7.1 Directions in the Input Space 311
	10.7.2 Analysis in the Output Space 312

	10.8 Application Examples 313
	10.8.1 Toy Example 313
	10.8.2 Application to a Petlyuk Distillation Column 314

	10.9 Discussion 316
	10.9.1 Trade-off in Taylor Series Analysis 316
	10.9.2 Evaluation of Loss 316
	10.9.3 Criterion Formulation with Explicit Model Equations 317
	10.9.4 Active Constraint Control 318
	10.9.5 Controllability Issues 319
	10.9.6 Why Separate into Optimization and Control 319

	10.10 References 320

	11 Evaluation of self-optimising control structures for an integrated Petlyuk distillation column...
	11.1 Introduction 324
	11.2 Energy Optimization in the Petluyk Column 324
	11.3 Optimising Control Requirement for the Petlyuk Column 325
	11.4 Self-optimising Control for the Petlyuk Column 326
	11.5 Self-optimising Control: A Petlyuk Column Case Study 327
	11.5.1 The Nominal Optimal Solution 327
	11.5.2 Proposed Output Feedback Variables 328

	11.6 Robustness Study Simulation 329
	11.7 Discussion of the Results 330
	11.8 Conclusions 331
	11.9 References 331

	12 Conclusions and Further Work 335
	12.1 Contributions 335
	12.2 Further Work 337
	12.2.1 Process Design 337
	12.2.2 Control Structure Design 337
	12.2.3 Advanced Control 338

	12.3 Postscript 338

	A Prefractionator Pinch Zone Compositions 339
	B Alternative Deduction of Minimum Energy in a Petlyuk Arrangement Based on Pinch Zone Compositio...
	C Minimum Energy with a Separate Prefractionator Column 344
	D Minimum Energy of a Petlyuk Arrangement based on Rigorous Simulation 348
	Chapter 1
	Introduction
	1.1 Rationale
	1.2 Contributions of the Thesis
	1.3 Thesis Outline
	1.3.1 Part I: Design
	1.3.2 Part II: Operation




	Part I: Design
	Chapter 2
	Distillation Theory
	2.1 Introduction
	(2.1)

	2.2 Fundamentals
	2.2.1 The Equilibrium Stage Concept
	Figure 2.1: Equilibrium stage concept.

	2.2.2 Vapour-Liquid Equilibrium (VLE)
	(2.2)
	(2.3)
	(2.4)
	(2.5)
	(2.6)

	2.2.3 K-values and Relative Volatility
	(2.7)
	(2.8)
	(2.9)
	(2.10)
	(2.11)
	Figure 2.2: VLE for ideal binary mixture:

	2.2.4 Estimating the Relative Volatility From Boiling Point Data
	(2.12)
	(2.13)
	(2.14)
	(2.15)
	(2.16)
	where (2.17)

	2.2.5 Material Balance on a Distillation Stage
	Figure 2.3: Distillation column section modelled as a set of connected equilibrium stages
	(2.18)
	(2.19)
	(2.20)

	Figure 2.4: Combining the VLE and the operating line to compute mole fractions in a section of eq...

	2.2.6 Assumption about Constant Molar Flows

	2.3 The Continuous Distillation Column
	Figure 2.5: An ordinary continuous two-product distillation column
	(2.21)
	(2.22)
	(2.23)

	2.3.1 Degrees of Freedom in Operation of a Distillation Column
	2.3.2 External and Internal Flows
	(2.24)

	2.3.3 McCabe-Thiele Diagram
	(2.25)
	Figure 2.6: McCabe-Thiele Diagram with an optimally located feed.

	2.3.4 Typical Column Profiles — Not optimal feed location
	Figure 2.7: Composition profile (xL,xH) for case with non-optimal feed location.
	Figure 2.8: McCabe-Thiele diagram for the same example as in Figure 2.7: Observe that the feed st...


	2.4 Simple Design Equations
	2.4.1 Minimum Number of Stages — Infinite Energy
	(2.26)
	(2.27)
	(2.28)

	2.4.2 Minimum Energy Usage — Infinite Number of Stages
	(2.29)
	(2.30)
	(2.31)

	2.4.3 Finite Number of Stages and Finite Reflux
	(2.32)

	2.4.4 Constant K-values — Kremser Formulas
	(2.33)
	(2.34)
	(2.35)
	(2.36)

	2.4.5 Approximate Formula with Constant Relative Volatility
	(2.37)
	where (2.38)
	(2.39)

	2.4.6 Optimal Feed Location
	(2.40)
	(2.41)
	(2.42)

	2.4.7 Summary for Continuous Binary Columns

	2.5 Multicomponent Distillation — Underwood’s Method
	2.5.1 The Basic Underwood Equations
	(2.43)
	where (2.44)
	(2.45)
	(2.46)
	(2.47)
	(2.48)

	2.5.2 Stage to Stage Calculations
	(2.49)
	(2.50)

	2.5.3 Some Properties of the Underwood Roots
	(2.51)
	(2.52)
	which obey: (2.53)
	(2.54)

	2.5.4 Minimum Energy — Infinite Number of Stages
	(2.55)
	(2.56)
	(2.57)
	Figure 2.9: Regions of distributing feed components as function of V and D for a feed mixture wit...


	2.6 Further Discussion of Specific Issues
	2.6.1 The Energy Balance and Constant Molar Flows
	(2.58)
	(2.59)
	(2.60)

	2.6.2 Calculating Temperature when Using Relative Volatilities
	(2.61)
	(2.62)
	Figure 2.10: Temperature profile for the example in Figure 2.7 (solid line) compared with various...
	(2.63)
	(2.64)
	where (2.65)


	2.6.3 Discussion and Caution

	2.7 Bibliography


	Chapter 3
	Analytic Expressions and Visualization of Minimum Energy Consumption in Multicomponent Distillati...
	3.1 Introduction
	3.1.1 Background
	Figure 3.1: Two-product distillation column with reboiler and total condenser

	3.1.2 Problem Definition - Degrees of Freedom
	(3.1)


	3.2 The Underwood Equations for Minimum Energy
	3.2.1 Some Basic Definitions
	(3.2)
	(3.3)
	(3.4)
	. (3.5)
	(3.6)

	3.2.2 Definition of Underwood Roots
	(3.7)
	(3.8)
	(equivalent to ) (3.9)
	(3.10)

	3.2.3 The Underwood Roots for Minimum Vapour Flow
	(3.11)
	(3.12)
	(3.13)
	. (3.14)
	or (3.15)

	3.2.4 Computation Procedure
	(3.16)
	Table 3.1: Number of unknown variables and equations
	(3.17)
	(3.18)
	(3.19)
	(3.20)
	(3.21)
	(3.22)
	(3.23)


	3.2.5 Summary on Use of Underwood’s Equations
	Figure 3.2: Illustration of Underwood’s equations. Positive directions of vapour flows (solid) an...


	3.3 The Vmin-diagram (Minimum Energy Mountain)
	(3.24)
	Figure 3.3: The Vmin-diagram for ternary feed (ABC)
	3.3.1 Feasible Flow Rates in Distillation
	(3.25)
	and (3.26)

	3.3.2 Computation Procedure for the Multicomponent Case
	3.3.3 Binary Case
	(3.27)
	(3.28)
	Figure 3.4: The Vmin-diagram, or minimum energy mountain. Visualization of the regions of distrib...
	where (3.29)
	where (3.30)
	for or for (3.31)

	Figure 3.5: Solution for a given pair of recovery specifications visualized in the Vmin-diagram

	3.3.4 Ternary Case
	Figure 3.6: Vmin-“mountain”-diagram for a ternary feed mixture (ABC). V>Vmin above the solid “mou...
	(3.32)
	(3.33)


	3.3.5 Five Component Example
	Figure 3.7: The Vmin-diagram for a 5-component feed (F=1). Contour lines for constant top product...
	Number of points (peaks and knots) Pij: (3.34)


	3.3.6 Simple Expression for the Regions Under the Peaks
	(3.35)
	(3.36)
	and (3.37)
	and (3.38)


	3.4 Discussion
	3.4.1 Specification of Recovery vs. Composition
	3.4.2 Behaviour of the Underwood Roots
	Figure 3.8: Observe how a pair of Underwood roots coincide as vapour flow (V) is reduced and the ...
	Figure 3.9: Contour plot of the most important roots a) in the top- and b) in the bottom sections...

	3.4.3 Composition Profiles and Pinch Zones
	3.4.4 Constant Pinch-zone Compositions (Ternary Case)
	(3.39)
	, (3.40)
	, (3.41)
	Table 3.2: Operating point and pinch zone compositions for the example
	Figure 3.10: The composition profiles attempt to reach the theoretical pinch points. Plot shows c...
	Figure 3.11: Composition profiles by stage number for the four cases given in table 3.2. Note the...


	3.4.5 Invariant Multicomponent Pinch-zone Compositions
	3.4.6 Pinch Zones for V>Vmin
	, , (3.42)
	, , (3.43)

	3.4.7 Finite Number of Stages
	Figure 3.12: Required number of stages in top and bottom section for V/Vmin=1.05 and separation b...
	(3.44)


	3.4.8 Impurity Composition with Finite Number of Stages

	3.5 Summary
	3.6 References


	Chapter 4
	Minimum Energy for Three- product Petlyuk Arrangements
	4.1 Introduction
	Figure 4.1: The integrated Petlyuk arrangement for separation of ternary mixtures

	4.2 Background
	4.2.1 Brief Description of the Underwood Equations
	Top: ����Bottom: (4.1)
	(4.2)
	(4.3)

	4.2.2 Relation to Previous Minimum Energy Results
	(4.4)

	4.2.3 The Vmin-diagram for Conventional Columns
	Figure 4.2: The Vmin-diagram for a ternary mixture ABC. The components which are distributed to b...


	4.3 The Underwood Equations Applied to Directly Coupled Sections
	4.3.1 The Petlyuk Column Prefractionator
	Figure 4.3: The prefractionator of a Petlyuk arrangement
	(4.5)
	(4.6)


	4.3.2 Composition Profiles
	Figure 4.4: Composition profiles at preferred split. Feed data z=[0.33 0.33 0.33], =[4 2 1], q=1....

	4.3.3 Reverse Net Flow of Components
	Figure 4.5: The Vmin-diagram for the Petlyuk column prefractionator is identical to the diagram f...
	(4.7)


	4.3.4 Reverse Flow Effects on the Underwood Roots

	4.4 “Carry Over” Underwood Roots in Directly Coupled Columns
	(4.8)
	Figure 4.6: Directly coupled columns (fully thermally coupled).
	, (4.9)
	and (4.10)
	(4.11)
	(4.12)
	(4.13)
	(4.14)
	(4.15)
	(4.16)
	(4.17)
	(4.18)
	(4.19)
	(4.20)


	4.5 Vmin-Diagram for Directly Coupled Columns
	Figure 4.7: The Vmin-diagram for columns C1 (solid) and C2 (dashed) for a case where C1 is operat...
	Z: , ��and ��� (4.21)


	4.6 Minimum Energy of a Ternary Petlyuk Arrangement
	4.6.1 Coupling Column C22 with Columns C21 and C1
	(4.22)
	(4.23)
	(4.24)
	(4.25)
	(4.26)

	4.6.2 Visualization in the Vmin-diagram
	PAB: (4.27)
	PBC: (4.28)
	(4.29)
	(4.30)
	(4.31)
	(4.32)
	(4.33)
	Figure 4.8: The Vmin-diagrams for columns C21 and C22 in a Petlyuk arrangement overlaps the diagr...

	4.6.3 Nonsharp Product Specifications
	4.6.4 The Flat Optimality Region
	(4.34)
	(4.35)
	(4.36)
	(4.37)
	Figure 4.9: Vmin-diagram for the prefractionator (C1), with for the Petlyuk column in the same co...
	(4.38)



	4.7 Improved 2nd Law Results in Petlyuk Arrangements
	Figure 4.10: Petlyuk arrangement with extra heat exchanger at the sidestream stage.

	4.8 Minimum Energy with Multicomponent Feed
	4.8.1 The General Rule
	4.8.2 Example: Sharp Component Splits in Products
	Figure 4.11: Vmin-diagram for 5 component feed used to find minimum vapour flow requirements in a...
	(4.39)


	4.8.3 Example: Nonsharp Product Split
	Figure 4.12: Vmin-diagram for 5 component feed used to find minimum vapour flow requirements in a...
	(4.40)



	4.9 Discussion
	4.9.1 The Conventional Reference
	Figure 4.13: Conventional indirect- and direct split arrangements. Plot shows Vmin-diagram for C1...

	4.9.2 Extra Condenser or Reboiler in the Prefractionator
	Figure 4.14: Vmin-diagram for 3-component feed ABC (solid) for the modified Petlyuk arrangement w...

	4.9.3 Use of a Conventional Prefractionator Column
	Figure 4.15: Conventional prefractionator arrangement

	4.9.4 Heat Integration
	4.9.5 The Two-Shell Agrawal Arrangement
	Figure 4.16: Agrawal’s column arrangement makes precise vapour flow control simpler.

	4.9.6 A Simple Stage Design Procedure
	(4.41)

	4.9.7 Possible Reduction of Stages
	Figure 4.17: Some of the sections (dark) have to be operated close to the real minimum reflux and...

	4.9.8 Short Note on Operation and Control

	4.10 Conclusion
	4.11 References


	Chapter 5
	Minimum Energy for Separation of Multicomponent Mixtures in Directly Coupled Distillation Arrange...
	5.1 Introduction
	5.2 Four Components and Four Products
	5.2.1 Extended Petlyuk Arrangement
	Figure 5.1: The Petlyuk arrangement extended to four products. Vapour and liquid flow rates can b...
	Pj,j+1:����,�������������� (5.1)

	Figure 5.2: Vmin-diagram for a given 4-component feed (ABCD) to the prefractionator. The set of d...

	5.2.2 Minimum Vapour Flow Expressions
	Feed equation:����� (5.2)
	(5.3)
	(5.4)
	(5.5)
	(5.6)
	(5.7)

	5.2.3 Visualization in the Vmin-Diagram
	Table 5.1: Data for peaks and knots in the Vmin-diagram
	Figure 5.3: Vmin-diagram showing the minimum vapour flows and product splits for every section in...
	Figure 5.4: Detail from a Vmin-diagram which shows how to find the minimum vapour flow and net pr...


	5.2.4 The Highest Peak Determines the Minimum Vapour Flow
	5.2.5 Composition at the Junction C21-C22-C32
	and (5.8)

	5.2.6 Flows at the Feed Junction to C32
	Figure 5.5: The Directly coupled feed junction.
	(5.9)
	(5.10)
	(5.11)


	5.2.7 Composition Profile - Simulation Example
	Figure 5.6: Composition profiles for the Petlyuk arrangement in Figure 5.1 (or 5.13). Each column...


	5.3 Minimum Energy for N Components and M Products
	Figure 5.7: Extended 4-product Petlyuk Arrangement with all columns operated at preferred split. ...
	(5.12)
	(5.13)
	(5.14)

	5.3.1 Vmin for N Feed Components and N Pure Products
	(5.15)

	5.3.2 General Vmin for N Feed Components and M Products
	Table 5.2: Specification of feed component recoveries in products W,X,Y and Z.
	Figure 5.8: Assessment of minimum vapour flow for separation of a 8-component feed (ABCDEFGH) int...

	Table 5.3: All possible product split specifications, by two key recoveries


	5.4 Verification of the Minimum Energy Solution
	5.4.1 Minimum Vapour Flow as an Optimization Problem
	(5.16)
	(5.17)
	(5.18)

	5.4.2 Requirement for Feasibility
	5.4.3 Verification of The Optimal Solution
	(5.19)
	(5.20)
	(5.21)
	(5.22)
	(5.23)
	(5.24)
	(5.25)
	(5.26)
	(5.27)

	5.4.4 Summary of the Verification
	5.4.5 The Optimality Region
	Figure 5.9: Vmin-diagram for 4-component feed ABCD with optimality regions for operation of colum...


	5.5 Discussion
	5.5.1 Arrangement Without Internal Mixing
	Figure 5.10: Alternative directly coupled column arrangement without internal mixing of streams. ...
	, (5.28)
	(5.29)
	(5.30)
	and =. (5.31)
	(5.32)
	(5.33)
	(5.34)


	5.5.2 Practical Petlyuk Arrangements (4-product DWC).
	Figure 5.11: Practical 4-product Petlyuk arrangements with some flow restrictions: We allow only ...
	Figure 5.12: Vmin-diagram for 4-component feed ABCD with the less flexible Petlyuk arrangement in...

	5.5.3 Heat Exchangers at the Sidestream Junctions
	Figure 5.13: The general extended Petlyuk arrangement with heat exchange at the sidestream juncti...

	5.5.4 The Kaibel column or the “ column”
	Figure 5.14: The Kaibel arrangement for separation of a 4-component feed

	5.5.5 Required Number of Stages - Simple Design Rule
	5.5.6 Control

	5.6 Conclusion
	5.7 References


	Chapter 6
	Minimum Energy Consumption in Multicomponent Distillation
	6.1 Introduction
	6.1.1 Some Terms
	6.1.2 Basic Assumptions
	(6.1)

	6.1.3 Minimum Entropy Production (2nd law efficiency)
	(6.2)
	(6.3)
	(6.4)
	(6.5)
	(6.6)
	(6.7)

	6.1.4 Minimum Energy (1st law)
	(6.8)
	(6.9)
	(6.10)
	(6.11)
	(6.12)

	6.1.5 Summary of some Computation Examples
	Table 6.1: Comparison of minimum energy (external heat supply) and relative entropy production (l...


	6.2 The Best Adiabatic Arrangement Without Internal Heat Exchange
	, where (6.13)
	(6.14)
	6.2.1 Direct Coupling Gives Minimum Vapour Flow
	(6.15)
	Figure 6.1: General column interconnection junction. The direct (full thermal) coupling gives whi...
	(note ) (6.16)
	(6.17)
	(6.18)
	where (6.19)
	and (6.20)
	arg() = (6.21)


	6.2.2 Implications for Side-Strippers and Side-Rectifiers
	6.2.3 The Adiabatic Petlyuk Arrangement is Optimal

	6.3 Entropy Production in Adiabatic Arrangements
	6.3.1 Adiabatic Column (Section)
	(6.22)
	(6.23)
	(6.24)

	6.3.2 Adiabatic Petlyuk Arrangements
	(6.25)
	    (where ) (6.26)


	6.4 Reversible Distillation
	(6.27)
	Top: �����������Bottom: (6.28)
	(6.29)
	6.4.1 The Reversible Petlyuk Arrangement
	(note and ) (6.30)
	, for (6.31)
	(6.32)
	(6.33)
	, and for and (6.34)
	(6.35)
	Figure 6.2: The reversible Petlyuk arrangement (a), has heating and cooling along the sections. I...

	6.4.2 Comparing Reversible and Adiabatic Arrangements
	Figure 6.3: Composition profiles in the prefractionators (C1) for the adiabatic and reversible ar...


	6.5 A Case Study: Petlyuk Arrangements with Internal Heat Exchange
	(6.36)
	6.5.1 Example 0: Theoretical Minimum Energy Limit
	(6.37)

	6.5.2 Example 1: Internal Heat Exchange �������������������in the Reversible Arrangement
	= (6.38)
	(6.39)
	(6.40)

	6.5.3 Example 2: Heat Exchange Across the Dividing Wall
	6.5.4 Example 3: Pre-heating of the Feed by ������������������Heat Exchange with the Sidestream
	6.5.5 Summary of the Examples

	6.6 Operation at Several Pressure Levels
	6.6.1 Example 1: Feed Split (Binary Case)
	Figure 6.4: Binary separation at two pressures
	(6.41)
	(6.42)


	6.6.2 Example 2: Double Effect Direct Split (DEDS)
	Figure 6.5: Double effect Direct Split (DEDS) configuration for 3-product separation
	(6.43)
	(6.44)


	6.6.3 Example 3: Double Effect Prefractionator Column (DEPC)
	Figure 6.6: Separate prefractionator arrangement with double effect heat exchange (DEPC)
	(6.45)


	6.6.4 Relation to the Petlyuk Column and the Vmin-diagram
	Figure 6.7: Minimum energy for the Petlyuk column, the DEDS and the DEPC illustrated in a Vmin-di...
	Table 6.2: Relation between minimum vapour flows


	6.7 Discussion
	6.7.1 Plant-wide Issues
	6.7.2 Heat Exchange at the Sidestream Stages
	6.7.3 Non-Uniqueness of Heat Supply in Reversible Columns
	, (6.46)
	(6.47)
	(6.48)
	Figure 6.8: Modified reversible arrangement. In section C1B’ we have only B and C present, and we...
	(6.49)


	6.7.4 Practical Issues

	6.8 Conclusion
	6.9 References
	6.10 Appendix: Reversible Distillation Theory
	(6.50)
	(6.51)
	6.10.1 Temperature-Composition-Pressure Relationship
	(6.52)
	(6.53)
	(6.54)
	(6.55)

	6.10.2 The Reversible Vapour Flow Profile
	(6.56)
	(6.57)
	(6.58)
	(6.59)
	Top: �����������Bottom: (6.60)

	6.10.3 Entropy Production in a Reversible Section
	(6.61)
	or��on differential form: (6.62)

	6.10.4 Reversible Binary Distillation
	   , ����� ���and��� (6.63)
	    ,���� ����and���� (6.64)
	(6.65)
	(6.66)
	, and (6.67)
	Figure 6.9: Reversible binary distillation: Internal flow rates (Lrev,Vrev) as function of compos...
	Figure 6.10: Reversible binary distillation in a McCabe-Thiele diagram. The operating point is al...





	Part II: Operation
	Chapter 7
	Optimal�Operation of Petlyuk Distillation: Steady-State Behaviour
	7.1 Introduction
	Figure 7.1: The Petlyuk Distillation Column implemented in a single column shell.
	Figure 7.2: Optimization problems with unknown disturbances and model uncertainties
	Figure 7.3: Optimization by controlling a suitable feedback variable to a setpoint.
	(7.1)


	7.2 The Petlyuk Column Model
	7.3 Optimization Criterion
	(7.2)
	(7.3)
	7.3.1 Criterion with State Space Model
	(7.4)


	7.4 Results From the Model Case Study
	7.4.1 Optimal Steady State Profiles
	Table 7.1: Optimal steady-state solution
	Figure 7.4: a) Optimal composition profiles for components a, b and c in pre-fractionator (dashed...
	Figure 7.5: Optimal temperature profile in pre- fractionator (dashed) and main column (solid) for...


	7.4.2 The Solution Surface
	(7.5)
	Figure 7.6: Optimal solution surface. V(Rl,Rv) (base case)
	Figure 7.7: Contour plot of V corresponding to Figure 7.6:.

	7.4.3 Effect of Disturbances
	Figure 7.8: The solution surface for V is very steep and depends strongly on Rl in the “bad” dire...
	Figure 7.9: V depends only weakly on Rl when Rv is adjusted so we stay in the “good” PR- directio...

	7.4.4 Transport of Components
	(7.6)
	(7.7)
	Figure 7.10: Components taking the “shortest” way.
	(7.8)



	7.5 Analysis from Model with Infinite Number of Stages
	7.5.1 Minimum Energy Consumption for a Petlyuk Column.
	7.5.2 Solution Surface for Infinite Number of Stages
	Figure 7.11: The prefractionator reflux (L1) has a sharp minimum at the preferred split (P*). The...
	Figure 7.12: The solution surface for the limiting case with infinite stages and sharp splits con...
	Figure 7.13: The contour lines for are straight lines between the four characteristic corners. (T...

	7.5.3 Analyzing the Effect of the Feed Enthalpy
	Figure 7.14: Liquid fraction affects the shape of the surface in addition to the position of the ...
	Figure 7.15: Cross-sections of the surfaces in Figure 7.14: in the “bad” direction normal to P*R*...

	7.5.4 How Many Degrees of Freedom Must we Adjust During Operation?
	Figure 7.16: We have to adjust the liquid split on line in order to operate on minimum energy con...
	Figure 7.17: Minimum energy can be obtained if the vapour split is set within the flat region. Pl...

	7.5.5 Sensitivity to Disturbances and Model Parameters
	Figure 7.18: For the selected set of disturbances, a value of Rv between 0.53 and 0.59 guarantees...

	7.5.6 A Simple Control Strategy with one Degree of Freedom Fixed
	7.5.7 Liquid Fraction: Bad Disturbance or Extra Degree of Freedom?
	7.5.8 Relations to Composition Profiles
	Figure 7.19: We can extract important information about the actual operating point from the compo...


	7.6 Candidate Feedback Variables
	7.6.1 Position of Profile in Main Column (Y1).
	7.6.2 Temperature Profile Symmetry (Y2)
	(7.9)
	Figure 7.20: Temperature profiles for the base case for off-optimal operation in directions along...
	Figure 7.21: Operation at constant DTS implies operation at a line parallel to the good PR direct...
	Figure 7.22: Contour plot of V(DTS,Rv) for the base case. The region close to the optimum is now ...

	7.6.3 Impurity of Prefractionator Output Flows (Y3,Y4)
	7.6.4 Prefractionator Flow Split (Y5)
	(7.10)
	Figure 7.23: Boilup V as function of the prefractionator “distillate” flow (D1) in the “bad” dire...
	(7.11)

	Figure 7.24: The surface V(D1,Rv) is less sensitive to variations in feed liquid fraction than th...

	7.6.5 Temperature Difference over Prefractionator (Y6)
	Figure 7.25: Some candidate feedback variables

	7.6.6 Evaluation Of Feedback Candidates

	7.7 Conclusions
	7.8 Acknowledgements
	7.9 References
	7.10 Appendix
	7.10.1 Model Equations for the Finite Dynamic Model
	(7.12)
	(7.13)
	(7.14)
	(7.15)
	(7.16)
	(7.17)
	(7.18)

	7.10.2 Analytic Expressions for Minimum Reflux
	(7.19)
	(7.20)
	(7.21)
	(7.22)
	(7.23)
	Figure 7.26: Minimum reflux for the whole Petlyuk column (L) has a flat minimum region (P*R*) for...
	(7.24)
	(7.25)
	, (7.26)


	7.10.3 Mapping V(b,L1) to V(Rl,Rv)
	(7.27)




	Chapter 8
	Use of Short-cut Methods to Analyse Optimal Operation of Petlyuk Distillation Columns
	8.1 Introduction
	8.2 The Petlyuk Distillation Column
	Figure 8.1: The Petlyuk distillation arrangement implemented as a Dividing Wall Column
	(8.1)


	8.3 Computations with Infinite Number of Stages
	(8.2)
	(8.3)
	(8.4)
	Figure 8.2: The solution surface V(Rl,Rv) for the case with infinite stages and sharp splits
	Figure 8.3: The contour lines for V(Rl,Rv) are straight lines between the four characteristic cor...
	(8.5)
	(8.6)


	8.4 Results with the Analytical Methods or some Separation Cases
	8.4.1 When do we get the Largest Savings with the Petlyuk Column?
	Figure 8.4: �Contour plots of the savings as function of feed composition with the Petlyuk column...

	8.4.2 Sensitivity to Changes in Relative Volatility Ratio and Liquid Fraction
	Figure 8.5: �Variation in aAB/aBC has strong impact on the boundary curve for bP=bR. The plots sh...

	8.4.3 When Can we Obtain Full Savings with Constant Vapour and Liquid Splits?
	Figure 8.6: a) The contour lines for constant Rv,P and Rv,R meet at the boundary where . For the ...


	8.5 A Simple Procedure to Test the Applicability for a Petlyuk Arrangement
	Figure 8.7: Check the applicability of a Petlyuk arrangement for a given feed property range

	8.6 CONCLUSION
	8.7 ACNOWLEDGEMENT
	8.8 REFERENCES


	Chapter 9
	Optimal Operating Regions for the Petlyuk Column - Nonsharp Specifications
	9.1 Introduction
	Figure 9.1: The integrated Petlyuk arrangement for separation of ternary mixtures

	9.2 The Basic Methods
	9.2.1 The Underwood Equations
	, ����and���� (9.1)
	(9.2)
	, ����and����� (9.3)

	9.2.2 The Vmin-Diagram
	Figure 9.2: The Vmin-diagram. The distributing components and the active Underwood roots are indi...

	9.2.3 The Vmin-diagram Applied to the Petlyuk Arrangement
	and (9.4)
	(9.5)

	9.2.4 The Optimality Region for Sharp Product Splits
	Figure 9.3: Optimality region for the prefractionator column (C1) of a Petlyuk arrangement shown ...
	(9.6)
	(9.7)
	(9.8)



	9.3 Non-Sharp Product Specifications
	9.3.1 Relation Between Compositions, Flows and Recoveries
	or (9.9)
	  � (9.10)


	9.4 Minimum Vapour Flow for Non-Sharp Product Specifications
	(9.11)
	= (9.12)
	= (9.13)
	(9.14)
	Figure 9.4: Behaviour of and in the The Vmin-diagram for a given feed. The plot shows the solutio...
	, at (9.15)

	Figure 9.5: Behaviour of and in the Vmin-diagram for Case 2, when the columns are balanced, and C...

	9.5 The Optimality Region
	9.5.1 Possible Impurity Paths to the Sidestream
	(9.16)

	9.5.2 The Optimality Region for Case 1
	Figure 9.6: Optimality region for non-sharp side-product specification. The overall vapour flow i...
	(9.17)
	(9.18)
	(9.19)


	9.5.3 Net Flow of Heavy C into Top of Column C22
	(9.20)
	(9.21)
	(9.22)
	(9.23)

	9.5.4 Optimality Regions for Case 3
	(9.24)

	9.5.5 Optimality region for Case 2 (Balanced Main Column)
	Figure 9.7: The optimality regions for cases 2 and 3.

	9.5.6 Effect of the Feed Composition
	Figure 9.8: How the feed composition affects the solution type for 3% impurity in the sidestream....

	9.5.7 Sensitivity to Impurity Specification-Example
	Figure 9.9: The sidestream impurity specification opens up the optimality region from the line P-...


	9.6 Operation Outside the Optimality Region
	9.6.1 The Solution Surface - Simulation Example
	Figure 9.10: The whole solution surface is widened for non-sharp products. The plots show contour...

	9.6.2 Characteristics of the Solution
	Figure 9.11: Typical appearance of light (A) and heavy (C) impurity in the sidestream dependent o...
	Figure 9.12: Net component flow (w) of components A and C in the prefractionator (PB,BT) and in t...

	9.6.3 Four Composition Specifications
	Figure 9.13: The solutions for constant xS,A=1.5% are at two branches (bold) in the corner region...

	9.6.4 Failure to Meet Purity Specifications
	Figure 9.14: A sub-optimal set of the two degrees of freedom may either give increased energy con...


	9.7 Conclusions
	9.8 References
	9.9 Appendix: Alternative Proof of the Optimality Region for Case 1
	(9.25)
	(9.26)
	and (9.27)
	(9.28)
	(9.29)



	Chapter 10
	Self-Optimizing Control: Local Taylor Series Analysis
	10.1 Introduction
	10.1.1 The Basic Idea

	10.2 Selecting Controlled Variables for Optimal Operation
	10.2.1 The Performance Index (cost) J
	(10.1)
	u=f -1(c,d) (10.2)
	L(u,d) = J(u,d) - Jopt(d) (10.3)
	Figure 10.1: Major classes of optimizing control problems

	10.2.2 Open-loop Implementation
	u = us + eu (10.4)
	eu,opt(d) = us - uopt(d) (10.5)
	u - uopt(d) = us - uopt(d) + eu = eu,opt(d) + eu (10.6)

	10.2.3 Closed-loop Implementation
	c = g(ym,u) (10.7)
	Dc = C1 Dym + C2 Du (10.8)
	L(u,d) = L(f -1(cs+e,d),d) (10.9)
	c - copt(d) = cs + e - copt(d) = eopt(d) + e (10.10)
	Figure 10.2: Loss as a function of disturbances for open loop and closed loop operation. The plot...

	10.2.4 A Procedure for Output Selection (Method 1)
	(10.11)
	c = cs + e (10.12)


	10.3 Local Taylor Series Analysis
	u0=uopt(d0) ����and ���c0=copt(d0) (10.13)
	d = d0 + Dd (10.14)
	u = u0 + Du (10.15)
	Du’ = u - uopt(d) (10.16)
	10.3.1 Expansion of the Cost Function
	(10.17)
	(10.18)
	(10.19)

	10.3.2 The Optimal Input
	(10.20)
	(10.21)
	(10.22)
	(10.23)
	Figure 10.3: Optimal control move

	10.3.3 Expansion of the Loss Function
	L(u,d) = J(u,d) - J(uopt(d),d) (10.24)
	(10.25)
	(10.26)

	10.3.4 Loss With Constant Inputs
	us = u0 (10.27)
	u = us + eu (10.28)
	Du’ = u - uopt = Juu-1JduDd + eu (10.29)
	(10.30)

	10.3.5 Loss with Constant Controlled Outputs
	c = f(u,d) (10.31)
	Dc = GDu + GdDd (10.32)
	cs = c0 (10.33)
	c = cs + e (10.34)
	Du = -G-1GdDd + G-1e (10.35)
	Du’ = u - uopt = (Juu-1Jdu - G-1Gd)Dd + G-1e (10.36)
	L = Du’TJuuDu’ (10.37)

	10.3.6 Loss Formulation in Terms of Controlled Outputs
	L = Dc’TJccDc’ (10.38)
	Jcc = G-TJuuG-1 (10.39)
	Dc’= eopt + e (10.40)
	eopt = cs - copt(d) (10.41)
	e = c - cs (10.42)
	(10.43)
	eopt(d) = cs - copt(d) = (GJuu-1Jdu - Gd)D d (10.44)

	10.3.7 “Ideal” Choice of Controlled Outputs
	c = f(u,d) = a¶J(u,d)/¶u + b = aJu(u,d) + b (10.45)
	Dc = aJuu Du + aJudTDd (10.46)


	10.4 A Taylor-series Procedure for Output Selection
	(10.47)
	(10.48)
	uz = Juu1/2[(Juu-1Jdu - G-1Gd)Dd + G-1e] (10.49)
	and
	and
	(10.50)
	(10.51)
	Dc = C1Dym + C2Du (10.52)
	Dym = GmDu + GmdDd (10.53)
	G = C2 + C1Gm
	Gd = C1Gmd
	(10.54)

	10.5 Visualization in the Input Space
	Figure 10.4: The best self-optimizing control structure minimize the worst case loss (L) for a gi...

	10.6 Relationship to Indirect and Partial Control
	(10.55)
	(10.56)
	(10.57)
	(10.58)
	(10.59)
	(10.60)
	(10.61)
	(10.62)
	(10.64)
	Py e2,opt = D y1s - Pd D d (10.65)
	y1 - y1opt = G1 (u - uopt) (10.66)
	y2 - y2opt = G2 (u - uopt) (10.67)

	10.7 Maximizing the Minimum Singular Value (Method 2)
	Dc = GDu (10.68)
	u - uopt= G-1(c - copt) (10.69)
	10.7.1 Directions in the Input Space
	(10.70)
	(10.71)
	(10.72)

	10.7.2 Analysis in the Output Space
	. (10.73)
	(10.74)


	10.8 Application Examples
	10.8.1 Toy Example
	10.8.2 Application to a Petlyuk Distillation Column
	Figure 10.5: The integrated Petlyuk arrangement for separation of ternary mixtures
	Figure 10.6: Contour plots of the cost function for the Petlyuk column (VB(u,d0)). and the Taylor...
	(10.75)



	10.9 Discussion
	10.9.1 Trade-off in Taylor Series Analysis
	10.9.2 Evaluation of Loss
	(10.76)
	Figure 10.7: Norm bounded disturbance specification may be conservative. Here da and db are the w...

	10.9.3 Criterion Formulation with Explicit Model Equations
	(10.77)

	10.9.4 Active Constraint Control
	(10.78)

	10.9.5 Controllability Issues
	10.9.6 Why Separate into Optimization and Control

	10.10 References


	Chapter 11
	Evaluation of self-optimising control structures for an integrated Petlyuk distillation column
	11.1 Introduction
	11.2 Energy Optimization in the Petluyk Column
	Figure 11.1: The Dividing Wall Column (left) and the fully thermally coupled column (right) are t...

	11.3 Optimising Control Requirement for the Petlyuk Column
	11.4 Self-optimising Control for the Petlyuk Column
	(11.1)
	(11.2)

	11.5 Self-optimising Control: A Petlyuk Column Case Study
	11.5.1 The Nominal Optimal Solution
	11.5.2 Proposed Output Feedback Variables

	11.6 Robustness Study Simulation
	11.7 Discussion of the Results
	11.8 Conclusions
	11.9 References
	Table 11.1: Data show the boilup (V) and liquid split (Rl) with self-optimising control, using on...



	Chapter 12
	Conclusions and Further Work
	12.1 Contributions
	12.2 Further Work
	12.2.1 Process Design
	12.2.2 Control Structure Design
	12.2.3 Advanced Control

	12.3 Postscript


	Appendix A
	Prefractionator Pinch Zone Compositions
	(A.1)
	(A.2)
	where (A.3)
	(A.4)
	(A.5)
	(A.6)
	(A.7)
	(A.8)
	, (A.9)
	(A.10)
	and (A.11)


	Appendix B
	Alternative Deduction of Minimum Energy in a Petlyuk Arrangement Based on Pinch Zone Compositions
	(B.1)
	(B.2)


	Appendix C
	Minimum Energy with a Separate Prefractionator Column
	Figure C.1: Conventional prefractionator arrangement
	(C.1)
	(C.2)
	(C.3)
	(C.4)
	(5)

	C.1 Different Relative Volatilities
	(C.5)
	(C.6)



	Appendix D
	Minimum Energy of a Petlyuk Arrangement based on Rigorous Simulation
	D.1 Vmin-Diagram from Rigorous Models
	D.2 Optimal Petlyuk Column Requirements from Rigorous Simulations of Standard Distillation Columns
	Figure D.1: Computational equivalent to the Petlyuk arrangement
	Figure D.2: Petlyuk arrangement





