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Preface

The Norwegian Dr.Ing (Ph.D) degree requires a basic research work and approx-
imately one full year of courses at graduate and postgraduate level. This report
presents the main scientific results from the research.

However, there are also interesting issues on how the results were obtained, which
are not covered. Some of these issues are the work progress, development and use
of computational tools like numerical methods for optimization, nonlinear equa-
tion solving, simulation and control, and the software itself.

In all basic research, the results themselves cannot be planned for, only the activ-
ities which may or may not lead up to new results. In this process, we sometimes
discover new interesting directions. This applies for the results presented in chap-
ters 3-6. The research started out in the direction of optimizing control, but it was
discovered that we were able to find some new basic relationships in a system of
integrated distillation columns, and that thread was followed in more detail.

My background is from the department of Engineering Cybernetics, NTNU,
where | graduated in 1982, and for me it have also been interesting to take the step
into Chemical Engineering. There are some obvious cultural differences in how
to approach an engineering task. I think it can be summed up in that the chemical
engineer focuses more on the design of a process, while the control engineer
focuses more on its operation. Clearly, a combination of these approaches is
needed. In control engineering, we must look more into the process and influence
the design to get more controllable units and plants. It also helps the control engi-
neer to have a basic understanding of the process behaviour. In process design,
chemical engineers should put more attention to the dynamic properties and con-
trol technology and use this knowledge to design more compact processes with
better overall performance. | feel that in particular for complex integrated proc-
esses, combined focus on process design and operation is vital since the potential
benefit of the integration can easily be lost if the process is not properly
controlled.

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



4

| have some years of experience from industry and as a research scientist at SIN-
TEF, the research foundation at NTNU. Unlike the work at SINTEF, where an
industrial customer usually is directly awaiting the results from a project, the cus-
tomer for the Dr.Ing. has several faces. There is a financial sponsor, a supervisor,
the candidate himself and the international community of researchers in the field.
It is clear that the most demanding “customer” has to be the candidate himself in
order to obtain the best results.

| have had numerous fruitful discussions with my supervisor, professor Sigurd
Skogestad at the Chemical Engineering Department. He has been a continuous
source of inspiration, and has provided invaluable contributions both in the
research work and to help me focus on the reader during writing of this thesis. In
Skogestad’s process control group Atle C. Christiansen and John Morud gave
important inputs on integrated column arrangements, and | will also mention
Bernd Wittgens, Truls Larsson, Audun Faanes, Eva-Katrine Hilmen, Tore Lid,
Marius Govatsmark, Stathis Skouras and the latest arrivals Espen Storkaas and
Vidar Alstad. | thank Hilde Engelien for reading the manuscript and giving valu-
able feedback. | shared an office with Edvard Sivertsen, who studied membrane
separation, and we discussed everything from thermodynamics to raising chil-
dren. | hope he forgives me for all the lecturing about distillation every time | felt
that | had discovered something. | am also grateful for discussions with the visit-
ing professors Valeri Kiva (1996/97) and David Clough (1999/2000). We also had
the opportunity to meet Felix Petlyuk who visited Trondheim in May 1997.

As an introduction to Petlyuk arrangements, NTNU participated in a European
research project within the Joule 3 programme: DISC, Complex distillation col-
umns. One spin-off was the visit by Maria Serra in june 1998, resulting in the
paper in Chapter 11. | also thank my employer SINTEF for support, in addition
to the grant from the Norwegian Research Council through the REPP programme.

Finally | thank my wife Toril, and my children @yvind, Berit and Maria for giving

me a wider perspective on things. The work has consumed a lot of time and atten-
tion for some years now and Berit, who is 10 years old, asked me: “How many
theses have you written now? Only one?”
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Summary

Distillation is the most widely used industrial separation technology and distilla-
tion units are responsible for a significant part of the total heat consumption in the
world’s process industry. In this work we focus on directly (fully thermally) cou-
pled column arrangements for separation of multicomponent mixtures. These
systems are also denoted Petlyuk arrangements, where a particular implementa-
tion is the dividing wall column. Energy savings in the range of 20-40% have been
reported with ternary feed mixtures. In addition to energy savings, such integrated
units have also a potential for reduced capital cost, making them extra attractive.
However, the industrial use has been limited, and difficulties in design and control
have been reported as the main reasons. Minimum energy results have only been
available for ternary feed mixtures and sharp product splits. This motivates further
research in this area, and this thesis will hopefully give some contributions to bet-
ter understanding of complex column systems.

In the first part we derive the general analytic solution for minimum energy con-
sumption in directly coupled columns for a multicomponent feed and any number
of products. To our knowledge, this is a new contribution in the field. The basic
assumptions are constant relative volatility, constant pressure and constant molar
flows and the derivation is based on Underwood’s classical methods. An impor-
tant conclusion is that the minimum energy consumption in a complex directly
integrated multi-product arrangement is the same as for the most difficult split
between any pair of the specified products when we consider the performance of
a conventional two-product column. We also preseniMpg-diagram, which is

a simple graphical tool for visualisation of minimum energy related to feed distri-
bution. TheV,,j-diagram provides a simple mean to assess the detailed flow
requirements for all parts of a complex directly coupled arrangement.

The main purpose in the first part of the thesis has been to present a complete the-
ory of minimum energy in directly coupled columns, not a design procedure for

engineering purposes. Thus, our focus has been on the basic theory and on verifi-
cation and analysis of the new results. However, based on these results, it is

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



straightforward to develop design procedures including rigorous computations
for real feed mixtures without the idealized assumptions used to deduce the ana-
lytic results.

In part 2 we focus on optimization of operation, and in particular the concept of
self-optimizing controlWe consider a process where we have more degrees of
freedom than are consumed by the product specifications. The remaining uncon-
strained degrees of freedom are used to optimize the operation, given by some
scalar cost criteriorin addition there will in practice always be unknown distur-
bances, model uncertainty and uncertainty in measurements and implementation
of manipulated inputs, which makes it impossible to precalculate and implement
the optimal control inputs accurately.

The main idea is to achiewelf-optimizing controby turning the optimization
problem into a constant setpoint problem. The issue is then to find (if possible) a
set of variables, which when kept at their setpoints, indirectly ensures optimal
operation.

We have used the ternary Petlyuk arrangement to illustrate the concept. It is a
quite challenging case where the potential energy savings may easily be lost if we
do not manage to keep the manipulated inputs at their optimal values, and the
optimum is strongly affected by changes in feed composition and column per-

formance. This also applies to the best control structure selection, and we believe
that the reported difficulties in control are really a control structure problem (the

task of selecting the best variables to control and the best variables to manipulate).

In this analysis we present in detail the properties of the Petlyuk arrangement, and
show how important characteristics depend on the feed properties and product
purity. We have used finite stage-by-stage models, and we also show how to use
Underwood’s equations to compute the energy consumption for infinite number
of stages for any values of the degrees of freedom. Such computations are very
simple. The results are accurate and in terms of computation time, outperform
simulations with finite stage-by-stage models by several magnitudes. The analy-
sis gives a basic understanding of the column behaviour and we may select
operating strategies based on this knowledge for any given separation case. In
some cases there will be a quite flat optimality region, and this suggests that one
of the manipulated inputs may be kept constant. We also show that the side-stream
purity has strong impact on the optimality region. One observation is that a symp-
tom of sub-optimal operation can be that we are unable to achieve high side-
stream purity, and not necessarily increased energy consumption.

In summary, the presented results contribute to improved understanding and
removal of some uncertainties in the design and operation of directly integrated
distillation arrangements.
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Notation and Nomenclature

It is attempted to define the notation used for equations in the text. However, the
most important nomenclature used for distillation columns are summarized:

\% Vapour flow rate

L Liquid flow rate

D,B,SProduct flows (, or net flow (D=V-L)

w;  Net component flow through a section (positive upwards)
ri Feed component recovery

R, Vapour split ratio at vapour draw stage

R,  Liquid split ratio at liquid draw stage

X Mole fraction in liquid phase

y Mole fraction in vapour phase
z Mole fraction in feed

q Liquid fraction (feed quality)
A,B,. Component enumeration
T Temperature

P Pressure

p; Partial pressure of componenti

p®  Vapour pressure

a Relative volatility, referred to a common reference component
(0] Underwood root in a top section

Y Underwood root in a bottom section

0 Common (minimum energy) Underwood root

A Specific heat of vaporization

AH Enthalpy change

AS Entropy change

R The universal gas constant (8.31 J/K/mole)

Ny,M Number of x where x=d,c,s: distributed, components, stages
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f() Functions
Superscripts

Cxy Column address in a complex arrangement: column array number x, array
row numbery. Unless it is obvious from the context, the column position is
given as the first superscript to the variables. The column address may be
omitted for the first column (C1)

ij Denotes sharp split between components i and j.
Subscripts

T,B  Top or bottom section

F.D,B,S,...Streams

min Minimum energy operation for a given column feed

i,j,A,B... Component enumeration

Example:Vgéli'r'f‘/B denotes minimgznf vapour flow in the top of column C21 for
sharp separation between A and\B; just denote a vapour flow in top of C21.

For some variables, the component enumeration will be given as the first sub-
script, and the position or stream as the secondxﬁ’.g) denotes composition of
component A in stream and is a scalar, whil¢ denotes the vector of all compo-
sitions in stream D. The second or single subscript denote a section or a stream.

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



Chapter 1

Introduction

1.1 Rationale

An important motivation for studying integrated distillation column arrangements

is to reduce the energy consumption. On a global basis, distillation columns con-
sume a large portion of the total industrial heat consumption, so even small
improvements which become widely used, can save huge amounts of energy. Sav-
ings in the magnitude of 20-40% reboiler duty can be obtained if a three-product
integrated Petlyuk column is operated at its optimum, instead of using a conven-
tional column sequence. However, we do not anticipate that all distillation tasks
are suitable for this technology, but we believe that increased use of properly
designed and operated directly integrated distillation arrangements can save sig-
nificant amounts of energy. In spite of that the knowledge of the potential energy
savings have been available for some time, there is still some reluctance from the
industry on applying complex integrated columns. Difficulties in design and con-
trol have been reported in the literature as the main reasons. Better understanding
of the characteristics of these systems is therefore required.

In operation of complex process arrangements we also face the problem of on line
optimization based on a general profit criterion. The need for on-line optimization

is normally due to unknown disturbances and changing product specifications. To
find practical solutions, we need good strategies for control design, which also are
robust in presence of measurement noise and uncertainties in the process model.
A very important issue here is the control structure design, i.e. the selection of
measurements and variables to be controlled, and the variables to be manipulated
by a control system. We know this problem area from conventional setpoint con-
trol, but on-line process optimization brings a new dimension to this issue.
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A process model, which can predict the response of manipulated inputs and exter-
nal disturbances, is always a good starting point for control design. However, in
complex arrangements of unit processes, the system behaviour is not easy to pre-
dict, even if the basic units are well described. Modern process simulators give us
the opportunity to study complex systems in great detail, but sometimes it is dif-
ficult to understand the basic properties that may become hidden in advanced
modelling packages. Thus, there is a need to identify new problem areas in inte-
grated systems and to explain the basic mechanisms.

1.2 Contributions of the Thesis

In this work, we hope to bring some contributions that improve the understanding
of complex integrated distillation columns and in that way help to reduce some of
the uncertainties that have caused the industrial reluctance. The focus is on
directly integrated (fully thermally coupled) distillation columns, denoted as Pet-
lyuk arrangements, both from the minimum energy design and optimal operation
viewpoints.

This thesis has two main parts.Part I: Design (Chapter 3-6), we use basic dis-
tillation equations for minimum energy calculations to explore the characteristics
of directly integrated columns. Analytical solutions for minimum energy in gen-
eralized directly coupled multi-product arrangements are deducedV{he
diagram is presented as a graphical tool for simple assessment of the overall min-
imum vapour flow as well as the requirements in the individual internal sections.

In Part Il: Operation (Chapters 7-11), the focus is on operation, mainly for con-
trol structure design. An integrated column arrangement, like the Petlyuk column,
has a quite complex behaviour and is a very good example of a process which
require on line optimization in order to obtain the potential energy savings in
practice. The approach denoted self-optimizing control (Skogestad et. al. 1999) is
analysed and is applied to Petlyuk arrangements. This is a general method for
selecting variables for setpoint control in order to obtain close top optimal opera-
tion based on a general profit criterion.

Note that the focus in this thesis is on the understanding of complex integrated
distillation columns. Thus, the more general problem of process integration on a
plant-wide basis has not been included. However, optimal utilization of available
energy is clearly an issue for a plant-wide perspective, and this should be a subject
for further work.

Below, the contributions in the individual chapters are outlined in more detail.
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1.3 Thesis Outline

1.3.1 Partl: Design

Chapter 2 is an introduction to basic distillation theory. It does not contain any
new results, but it is included to give the reader who is not familiar with distilla-
tion an overview of the basic concept used in the models throughout the thesis.
We restrict the analysis to ideal systems with the assumptions about constant rel-
ative volatility, constant molar flows and constant pressure. This may seem
restrictive, but it gives valuable insight and we present results that can be obtained
by simple computations. There is also a section on multi-component distillation,
which can be read as an introduction and brief summary of the following chapter.

Chapter 3 presents how to use the classical equations of Underwood for comput-
ing minimum energy and distribution of feed components in a 2-product
distillation column with multi component feed. Thg;,-diagram is introduced

to visualize the solutions. Thé,,;,-diagram and the equations behind it become
important tools for analysis and assessment of complex directly integrated col-
umns as described in the following chapters.

In Chapter 4 the exact solution for minimum vapour flow in a 3-product inte-
grated Petlyuk arrangement is analysed. It is shown how/tfiediagram can be

used for simple and exact assessment of both general and modified Petlyuk
arrangements. The minimum energy solution is generalized to any feed quality
and any number of components.

In Chapter 5the general methodology from Chapters 3 and 4 is applied to deduce
an analytic expression for minimum energy in directly coupled distillation
arrangements for M-products and N components. The main assumptions are con-
stant pressure and no internal heat integration. The solution is effectively
visualized in theéV/,,i;-diagram as the highest peak, and this in fact the same as the
most difficult product split between any pair of products in a single two-product
column. The analytical minimum energy result and the simple assessment of the
multicomponent separation task are assumed to be new contributions in the field.

In Chapter 6, multicomponent reversible distillation is used to analyse minimum
energy requirement on the background of the 2nd law of thermodynamics (mini-
mum entropy production). It is first conjectured that the result in chapter 5 gives
the minimum for any distillation arrangement without internal heat integration
(still at constant pressure). However, by introducing internal heat integration, it is
shown that it is possible to reduce the external heat supply further. The ultimate
minimum is obtained with an imaginary reversible process where all the heat is
supplied at the highest temperature and removed at the lowest temperature. Meth-
ods for calculating entropy production in the arrangements are presented, and
finally operation at several pressures is also briefly discussed.
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1.3.2 Part Il: Operation

Chapter 7 would be the starting point of this thesis if the results were presented
in chronological order. This chapter is recommended for a reader who want a
introduction to the Petlyuk arrangement, its operational characteristics and to the
concept of self-optimizing control. The content was first presented at the PSE/
ESCAPE conference in May 1997. Part | of this thesis, is really a spin-off from
more comprehensive studies of complex integrated columns, in order to achieve
better understanding of their operational characteristics.

In Chapter 8 the methods from Chapter 7 are applied to evaluate how various
feed properties affects the characteristics of the Petlyuk column with infinite
number of stages and sharp product splits.

Chapter 9 extends the analysis to non-sharp product specifications for the 3-
product case. Th¥,-diagram from Chapter 4 is particularly useful for this pur-
pose. It is shown that the optimality region is expanded from a line segment (in
the plane spanned by two degrees of freedom) for sharp product splits, to a quad-
rangle-shaped region where the width depends mainly on the side-stream
impurity. The results also explain why it may be impossible to reach high purity

in the side-stream in some cases when the degrees of freedom are not set properly.

Chapter 10is the most independent chapter in this thesis, and it can be read with-
out any knowledge about distillation. Here the focus is on the general concept of
self-optimizing control, which has been presented by Skogestad et al. (1999). A
method based on Taylor-series expansion of the loss function is presented. Note
that we have not covered other possible approaches for optimizing control, e.g.
EVOP (Box 1957) or use of on-line optimization. However, self-optimizing con-
trol is a tool for control structure design, thus it can be combined with any
optimizing control approach.

Chapter 11is the result of a simulation study where various candidate variables
for self-optimizing control for the 3-product Petlyuk column were evaluated.

Finally, Chapter 12 makes a summary and conclusion of the most important
results of the thesis and discusses directions for further work.

Several chapters are self-contained papers, presented at conferences and in jour-
nals. Thus the reader will find that the introductory parts in several chapters
contain some overlapping information, and that the notation may be slightly dif-
ferent in the first and second part.

In Appendix A-D some related results are included. We recommend in particular
Appendix D, which shows how to use a standard rigorous simulator with conven-
tional column models to find the optimal operating point for a Petlyuk column.
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Chapter 2

Distillation Theory

by
Ivar J. Halvorsen and Sigurd Skogestad

Norwegian University of Science and Technology
Department of Chemical Engineering
7491 Trondheim, Norway

This is a revised version of an article published
in the Encyclopedia of Separation Science by Aca-
demic Press Ltd. (2000). The article gives some of
the basics of distillation theory and its purpose

is to provide basic understanding and some tools

for simple hand calculations of distillation col-

umns. The methods presented here can be used to
obtain simple estimates and to check more rigorous
computations.
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2.1 Introduction

Distillation is a very old separation technology for separating liquid mixtures that
can be traced back to the chemists in Alexandria in the first century A.D. Today
distillation is the most important industrial separation technology. It is particu-
larly well suited for high purity separations since any degree of separation can be
obtained with a fixed energy consumption by increasing the number of equilib-
rium stages.

To describe the degree of separation between two components in a column or in
a column section, we introduce the separation factor:

_ (xl_/xH)T

MCYER @D

wherex denotes mole fraction of a component, subsdrigenotes light compo-
nent,H heavy component, denotes the top of the section, dhthe bottom.

It is relatively straightforward to derive models of distillation columns based on
almost any degree of detail, and also to use such models to simulate the behaviour
on a computer. However, such simulations may be time consuming and often pro-
vide limited insight. The objective of this article is to provide analytical
expressions that are useful for understanding the fundamentals of distillation and
which may be used to guide and check more detailed simulations. Analytical
expressions are presented for:

« Minimum energy requirement and corresponding internal flow
requirements.

e Minimum number of stages.
» Simple expressions for the separation factor.
The derivation of analytical expressions requires the assumptions of:
» Equilibrium stages.
« Constant relative volatility.
» Constant molar flows.

These assumptions may seem restrictive, but they are actually satisfied for many
real systems, and in any case the resulting expressions yield invalueable insights,
also for systems where the approximations do not hold.
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2.2 Fundamentals

2.2.1  The Equilibrium Stage Concept

The equilibrium (theoretical) stage concept (see Figure 2.1) is central in distilla-
tion. Here we assume vapour-liquid equilibrium (VLE) on each stage and that the
liquid is sent to the stage below and the vapour to the stage above. For some trayed
columns this may be a reasonable description of the actual physics, but it is cer-
tainly not for a packed column. Nevertheless, it is established that calculations
based on the equilibrium stage concept (with the number of stages adjusted appro-
priately) fits data from most real columns very well, even packed columns.

Saturated vapour leaving the stage

with equilibrium mole fractiory Liquid entering the stage(in,hy_in)
and molar enthalpl/(T,x) A +
Vapour phase
TP y Perfect mixing

in each phase

Liguid phase

Saturated liquid leaving the stage
with equilibrium mole fractiorx
and enthalpy, (T,x)

Vapour entering the stagg ., hin)

Figure 2.1: Equilibrium stage concept.

One may refine the equilibrium stage concept, for example by introducing back
mixing or a Murphee efficiency factor for the equilibrium, but these “fixes” have
often relatively little theoretical justification, and are not used in this article.

For practical calculations, the critical step is usually not the modelling of the
stages, but to obtain a good description of the VLE. In this area there has been
significant advances in the last 25 years, especially after the introduction of equa-
tions of state for VLE prediction. However, here we will use simpler VLE models
(constant relative volatility) which apply to relatively ideal mixtures.

2.2.2  Vapour-Liquid Equilibrium (VLE)

In a two-phase syster?H=2) with N, non-reacting components, the state is com-
pletely determined biX, degrees of freedonf)( according to Gibb’s phase rule;

f = Ng+2-PH (2.2)
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If the pressureR) andN¢-1 liquid compositions or mole fractiong)(are used as
degrees of freedom, then the mole fractioylsirf the vapour phase and the tem-
perature 7) are determined, provided that two phases are present. The general
VLE relation can then be written:

[V2, Yo oo Y1 T1 = F(P X X, oo Xy 1)

[y, T] = (P, %)

(2.3)

Here we have introduced the mole fractions x and y in the liquid an vapour phases
n n
respectively, and we trivially hav§ x =1 ang y, =1
i=1 i=1
In idealmixtures, the vapour liquid equilibrium can be derived from Raoult’s law
which states that the partial presspr@f a componentif in the vapour phase is

proportional to the saturated vapour pressyre () of the pure component. and the
liqguid mole fraction X;):

Pi = X pio(T) (2.4)

Note that the vapour pressure is a function of temperature only. For an ideas gas,
according to Dalton’s law, the partial pressure of a component is proportional to

the mole fraction times total pressug:= y;P  , and since the total pressure

P=p+py+...+py = Zpi = inpio(T) we derive:
| |

(¢] (o]
o= = 2D 25)
S xR

The following empirical formula is frequently used for computing the pure com-
ponent vapour pressure:

b

(o} _ f
Inp (T)~a+C————+T+dIn(T)+eT (2.6)

The coefficients are listed in component property data bases. The caskees#h
is the Antoine equation.
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2.2.3 K-values and Relative Volatility

TheK-value for a componentis defined asK; = y,/x; . The K-value is some-
times called the equilibrium “constant”, but this is misleading as it depends
strongly on temperature and pressure (or composition).

Therelative wlatility between componentsandj is defined as:

g et 2.7)

For ideal mixtures that satisfy Raoult’s law we have:

_ %) _ K e

a. = =
Do) K

(2.8)

Here pio(T) depends on temperature so the K-values will actually be constant
only close to the column ends where the temperature is relatively constant. On the
other hand the ratip®(T)/ pJQ(T) is much less dependent on temperature which
makes the relative volatility very attractive for computations. For ideal mixtures,
a geometric average of the relative volatilities for the highest and lowest temper-
ature in the column usually gives sufficient accuracy in the computations:

O = /% top i}, bottom:
We usually select a common reference componéuasually the least volatile or
“heavy” component), and define:

a; = a; = p(T)/p(T) (2.9)

|
The VLE relationship (2.5) then becomes:

a; X

ZO(ixi

y; = (2.10)

For a binary mixture we usually omit the component index for the light compo-
nent, i.e. we writex=x4 (light component) ana,=1-x (heavy component). Then
the VLE relationship becomes:

ax

y = T+ (a—Dx (2.11)
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This equilibrium curve is illustrated in Figure 2.2:

Mole fraction

of light
component 1
in vapour
phase

Increasingx

0 X e
Mole fraction of light

component in liquid phase

ax

Figure 2.2: VLE for ideal binary mixture/ = T+ (o —1Dx (@ -1)x

The differencey-x determine the amount of separation that can be achieved on a
stage. Large relative volatilities implies large differences in boiling points and

easy separation. Close boiling points implies relative volatility closer to unity, as
shown below quantitatively.

2.2.4  Estimating the Relative Volatility From Boiling Point Data

The Clapeyron equation relates the vapour pressure temperature dependency to
the specific heat of vaporizatioth(—lValo ) and volume change between liquid and
vapour phasez(vvap ):

dp’(T) _ AH"P(T)
T 1Av"3P(T)

(2.12)
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If we assume an ideal gas phase and that the gas volume is much larger than the
liquid volume, thenAVVaP=RT/ P . Integration of Clapeyrons equation from
temperaturdy, (boiling point at pressurB) to temperaturd (at pressurep )

then gives, whedAHYaP is assumed constant:

vap

0AH; 0
Inp’ = é‘ﬂf_pﬂlm+ InP E+ S___E_E (2.13)
PTER On,0 " refp T '
This gives us the Antoine coefficients:
AH®P vap
_~0ioglp _ . _

In most case®,; = 1 atm . Foran ideal mixture that satisfies Raoult’s law we
haveO(ij = pP(T)/ ij(T) and we derive:

vap vap vap vap
Inaij _ AH; i_AHJ- i_,_AHi —AH;, (2.14)
R Ty R Tbj RT

We see that the temperature dependency of the relative volatility arises from dif-

ferent specific heat of vaporization. For similar vaIuéS—I(ap: AH\J-/ap ), the
expression simplifies to:
—vap
AH " Tpi— Ty, -
Ina; = ——2_>2 = T.T.
i RT T where T, Thi T (2.15)
oot
B

Here we may use the geometric average also for the heat of vaporization:

This results in a rough estimate of the relative volatih'rtq' , based on the boiling
points only:

AR"P

T, —T,)/T
a =eﬁ( o~ 1)/ To wherep =

+ (2.17)
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If we do not knowAH " " , a typical valug= 13 can be used for many cases.

Example:For methanol (L) and n-propanol (H), we hailg;; = 337.8K
and Tz = 370.4K and the heats of vaporization at their boiling points
are 35.3 kJ/mol and 41.8 kJ/mol respectlvely Thus

TB = J/337. 8D370a4 354K and AH = J/35.30041.8= 38.4.
This givesp = AH ~"/RTg = 38.4/(8.83135% = 13.1 and
a = e13:1032.6'354 < 3 34 which is a bit lower than the experimental

value.

2.2.5 Material Balance on a Distillation Stage

Based on the equilibrium stage concept, a distillation column section is modelled
as shown in Figure 2.3. Note that we choose to number the stages starting from
the bottom of the column. We denadtg andV,, as the total liquid- and vapour
molar flow rates leaving stage(and entering stagas1 andn+1, respectively).

We assume perfect mixing in both phases on a stage. The mole fraction of species
i in the vapour leaving the stage wikh is y; ,, and the mole fraction i, is X; ,.

Stagen+1

b v Y
Wi,n

Stagen
I I

Wi n-1

Stagen-1

Figure 2.3: Distillation column section modelled as a set of connected
equilibrium stages

The material balance for componest stagen then becomes (imjol i/seg):

dN.
i,n _
dt - (Ln+1Xi,n+1_vnyi,n)_(LnXi,n_Vn—lyi,n—l) (2.18)
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whereN,; , is the number of moles of componern stagen. In the following we
will consider steady state operation, d&¥; /dt = 0

It is convenient to define the net material flow) of component upwards from
stagen ton+1 [mol i/seg:

Wi,n = Vnyi,n_Ln+1xi,n+l (2.19)
At steady state, this net flow has to be the same through all stages in a column sec-
tion, i.e.w; = w; g =W .
The material flow equation is usually rewritten to relate the vapour composition
(yn) on one stage to the liquid composition on the stage akigyg:(

L
n+1 1
Y, = —X + =W, (2.20)

Ln Vn i,n+1 Vn i
The resulting curve is known as tbperatindine. Combined with the VLE rela-
tionship (equilibrium line) this enables us to compute all the stage compositions

when we know the flows in the system. This is illustrated in Figure 2.4, and forms
the basis of the McCabe-Thiele approach.

y (1) VLE: y=f(x)

(2) Material balance
operating line
y=(L/V)x+w/V

T I P X
Figure 2.4: Combining the VLE and the operating line to compute mole
fractions in a section of equilibrium stages.
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2.2.6  Assumption about Constant Molar Flows

In a column section, we may very often use the assumption about constant molar
flows. Thatis, weassumg, = L, ; = L mpl/dandV, _; =V =V [mol/

sl. This assumption is reasonable for ideal mixtures when the components have
similar molar heat of vaporization. An important implication is that the operating
line is then a straight line for a given section, yign = (L/V)xi, n+1TW/V

This makes computations much simpler since the internal flaves (V) do not
depend on compositions.

2.3  The Continuous Distillation Column

We here study the simple two-product continuous distillation column in Figure
2.5: We will first limit ourselves to a binary feed mixture, and the component
index is omitted, so the mole fractions,y,? refer to the light component. The
column hasN equilibrium stages, with the reboiler as stage number 1. The feed
with total molar flow raté= [mol/se¢ and mole fractiorz enters at stagd.

Condenser
Qc
D
Stage N < Xp
Ly
Vilt
Rectifying
section
F
X
z FYF Feed stage N
| T i
Vglg Stripping
section
Stage 2

Q
r<_z )

- X

Reboiler

Figure 2.5: An ordinary continuous two-product distillation column
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The section above the feed stage is denoted the rectifying section, or just the top
section. Here the most volatile component is enriched upwards towards the distil-
late product outlet (D). The stripping section, or the bottom section, is below the
feed, in which the least volatile component is enriched towards the bottoms prod-
uct outlet (B). The least volatile component is “stripped” out. Heat is supplied in
the reboiler and removed in the condenser, and we do not consider any heat loss
along the column.

The feed liquid fractiorg describes the change in liquid and vapour flow rates at
the feed stage:

ALg = gF

AV, = (1-gF (2.21)

The liquid fraction is related to the feed enthalmy) @s follows:

% >1 Subcooled liquid
h —h 0 =1 Saturated liquid
—_ V,sat 'F _ [] L. 229
9= —— % " [00<g<1 Liquid and vapour (2.22)
AH E =0 Saturated vapour
0 <0 Superheated vapour

When we assume constant molar flows in each section, we get the following rela-
tionships for the flows:

Vi = Vg+(1-q)F

Ly = Ly +qF
B T
~ (2.23)

2.3.1 Degrees of Freedom in Operation of a Distillation Column

With a given feed £,z andq), and column pressur®), we have only 2 degrees

of freedom in operation of the two-product column in Figure 2.5, independent of
the number of components in the feed. This may be a bit confusing if we think
about degrees of freedom as in Gibb’s phase rule, but in this context Gibb’s rule
does not apply since it relates the thermodynamic degrees of freedom inside a sin-
gle equilibrium stage.

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



38

This implies that if we know, for example, the reflux{ and vapour Yg) flow
rate in the column, all states on all stages and in both products are completely
determined.

2.3.2 External and Internal Flows
The overall mass balance and component mass balance is given by:

F=D+B

Fz = DxD + BxB (2.24)

Herezis the mole fraction of light component in the feed, agdandxg are the
product compositions. For sharp splits wigh= 1 andxg = O we then have that
D=zF. In other words, we must adjust the product spliE such that the distillate
flow equals the amount of light component in the feed. Any deviation from this
value will result in large changes in product composition. This is a very important
insight for practical operation.

ExampleConsider a column with z=0.55%0.99, x3=0.01 (all these refer

to the mole fraction of light component) and D/F = B/F = 0.5. To simplify
the discussion set F=1 [mol/sec]. Now consider a 20% increase in the dis-
tillate D from 0.50 to 0.6 [mol/sec]. This will have a drastic effect on
composition. Since the total amount of light component available in the
feed 5 z=0.5[mol/sec], atleast 0.1 [mol/sec] of the distillate must now be
heavy component, so the amount mole fraction of light component in the
distillate is now at its best 0.5/0.6 = 0.833. In other words, the amount of
heavy component in the distillate will increase at least by a factor of 16.7
(from 1% to 16.7%).

Thus, we generally have that a changexternal flowgD/F andB/F) has a large
effect on composition, at least for sharp splits, because any significant deviation
in D/F from zimplies large changes in composition. On the other hand, the effect
of changes in thimternal flows(L andV) are much smaller.

2.3.3  McCabe-Thiele Diagram

The McCabe-Thiele diagram wheyés plotted as a functior along the column
provides an insightful graphical solution to the combined mass balance (“opera-
tion line”) and VLE (“equilibrium line”) equations. It is mainly used for binary
mixtures. Itis often used to find the number of theoretical stages for mixtures with
constant molar flows. The equilibrium relationship = f(x,) (y as a function
of x at the stages) may be nonideal. With constant molar flow, L and V are con-
stant within each section and the operating lineaq a function ok between the
stages) are straight. In the top section the net transport of light component
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w = x5D. Inserted into the material balance equation (2.20) we obtain the oper-
ating line for the top section. A similar expression is also derived for the bottom
section:

Top: y, = %ET(Xn+ 1= Xp) + Xp
(2.25)
Bottom: y, = %aa(xn+ 1—Xg) + Xg
A typical McCabe-Thiele diagram is shown in Figure 2.6:
y VLE y=f(x)
A _
4 |
20 Condenser
/ I
| |
Yoo —— = == Top section operating line
I~ Top perating
P 7 & y=x | Slope Lr/\y)
Bottom section [\
operating line | \/ Optimal feed :

Slope (g/Vp) 4 | N stage location

-— | The intersection of the

operating lines is found
along the §-line”.

Slopedg/(g-1)

|/
7

/
A
/ |
4 |

~

\

|
>~ x
Xp 1

! |
! |
| |
| |
Reboiler | | |
I I
XB Xg Z

Figure 2.6: McCabe-Thiele Diagram with an optimally located feed.

The optimal feed stage is at the intersection of the two operating lines and the feed
stage compositiorkg yg) is then equal to the composition of the flashed feed mix-
ture. We have that = gx +(1-q)yg . Fa=1 (liquid feed) we findx = z

and forg=0 (vapour feed) we find/r = z . For other casesgofve must solve

the equation together with the VLE.

At minimum reflux, a pinch zone, which is a zone of constant composition will
develop on both sides of the feed stage if it is optimally located.
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2.3.4  Typical Column Profiles— Not optimal feed location

An example of a column composition profile is shown in Figure 2.7 for a column
with z=0.5, a =1.5, N=40, N=21 (counted from the bottom, including the
reboiler), yy=0.90, %=0.002. This is a case were the feed stage is not optimally
located. The corresponding McCabe-Thiele diagram is shown in Figure 2.8: We
see that the feed stage is not located at the intersection of the two operating lines,
and that there is a pinch zone above the feed, but not below.

1 el ~I~ T T T - T T T T
ook S — Light key |
'R : - - Heavy key

N z

0.8} \ J
\
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\
07 B \ -
\
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0.3 * 1
\
\
0.2f \ ]
\
\
0.1F N
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Figure 2.7: Composition profileq(,x) for case with non-optimal feed location.
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Figure 2.8: McCabe-Thiele diagram for the same example as in Figure 2.7: Observe that
the feed stage location is not optimal.

2.4  Simple Design Equations

2.4.1  Minimum Number of Stages— Infinite Energy

The minimum number of stages for a given separation (or equivalently, the max-
imum separation for a given number of stages) is obtained with infinite internal
flows (infinite energy) per unit feed. This always holds for single-feed columns
and ideal mixtures, but may not hold, for example, for extractive distillation with
two feed streams.

With infinite internal flows (“total reflux”)L,/F=c0 andV,/F=c. A material bal-
ance across any part of the column giwgs= L,,+; and similarly a material
balance for any component give§ Y, = Ln+1 Xh+1- ThUS; Y, = Xp+1, @nd with

constant relative volatility we have:
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y X X X
a = L,n/ L, n - L,n+1/ L,n (2.26)

Yu,n XH,n XH,n+1 XH,n

For a column or column section witl stages, repeated use of this relation gives
directly Fenske’s formula for the overall separation factor:

oo 20O D40 _
OG-0 /0-0 = (2.27)
KHO, CHig

For a column with a given separation, this yields Fenske’s formula for the mini-
mum number of stages:

_InS
Nimin = g (2.28)

These Fenske expressions do not assume constant molar flows and apply to the
separation between any two components with constant relative volatility. Note
that although a high-purity separation (lageequires a larger number of stages,

the increase is only proportional to thegarithm of the separation factor. For
example, increasing the purity level in a product by a factor of 10 (e.g. by reduc-
ing Xy p from 0.01 to 0.001) increasdl,;, by about a factor ofn10 = 2.3

A common rule of thumb is to select the actual number of stdges 2N, ., (or
even larger).

2.4.2  Minimum Energy Usage— Infinite Number of Stages

For a given separation, an increase in the number of stages will yield a reduction
in the reflux (or equivalently in the boilup). However, as the number of stages
approach infinity, a pinch zone develops somewhere in the column, and the reflux
cannot be reduced further. For a binary separation the pinch usually occurs at the
feed stage (where the material balance line and the equilibrium line will meet),
and we can easily derive an expression for the minimum reflux With oo . For

a saturatetlquid feed(q=1) we have King's formula:

ro n—0or

_ LD H,D
Lrmin = _&’:’1—_': (2.29)
whererl_ p = XpD/zF s the recovery fraction of light component, ar,lpID

of heavy component, both in the distillate. The value depends relatively weakly
on the product purity, and for sharp separations (wheyey = 1 and
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'yp = 0), we havel ;= F/(a - 1). Actually, equation (2.29) applies without
stipulating constant molar flows or constantbut thenL;, is the liquid flow
entering the feed stage from above, ani$ the relative volatility at feed condi-
tions. A similar King's formula, but in terms o¥ 5 ..., entering the feed stage
from below, applies for a saturatedpour feedqg=0):

n

ry p—ar
_'H,B L, B
Vemin = — -1 F (2.30)
For sharp separations we gég ..., FAa -1). In summary, for a binary mixture
with constant molar flows and constant relative volatility, the minimum boilup for
sharp separationss:

Feed liquid, G=1: Vgyip= ——F +D

1 (2.31)

Feed vapour, 9=0: ¥ in = G—ilF

Note that minimum boilup has a finite lower limit for sharp separations. From this
we establish one of the key properties of distillatigve can achieve any product
purity (even “infinite separation factoriyith a constant finite energias long as

it is higher tharthe minimumby increasing the number of stages

Obviously, this statement does not apply to azeotropic mixtures, for vehich

for some composition. However, we can get arbitrary close to the azeotropic com-
position, and useful results may be obtained in some cases by treating the
azeotrope as a pseudo-component and wsiiog this pseudo-separation.

2.4.3  Finite Number of Stages and Finite Reflux

Fenske’s formul®= aN applies to infinite reflux (infinite energy). To extend this
expression to real columns with finite reflux we will assume constant molar flows
and consider below three approaches:

1. Assume constant K-values and derive the Kremser formulas (exact close to
the column end for a high-purity separation).

2. Assume constant relative volatility and derive the following extended Fen-
ske formula (approximate formula for case with optimal feed stage
location):
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N
GN(LT/VT) !

NB
(Lg/Vp)

(2.32)

HereNr is the number of stages in the top sectionldgith the bottom
section.

3. Assume constant relative volatility and derive exact expressions. The most
used are the Underwood formulas which are particularly useful for com-
puting the minimum reflux (with infinite stages).

2.4.4  Constant K-values— Kremser Formulas

For high-purity separations most of the stages are located in the “corner” parts of
the McCabe-Thiele diagram where we according to Henry’s law may approxi-
mate the VLE-relationship, even for nonideal mixtures, by straight lines;

Bottom of columny, = H, x; (light componentyx - 0)
Top of columnyy = Hy x4 (heavy componenky — 0)

whereH is Henry’s constant. For the case of constant relative volatility, Henry’s
constantinthe bottomisl, = a andinthetoHs, = 1/a . Thus, with con-
stant molar flows, both the equilibrium and mass-balance relationships are linear,
and the resulting difference equations are easily solved analytically. For example,
at the bottom of the column we derive for the light component:

X n+1 = (Vp/Lg)H x| +(B/Lg)x g

(2.33)

wheres = (Vg/Lg)H >1 isthe stripping factor. Repeated use of this equation
gives the Kremser formula for stadyg from the bottom (the reboiler would here
be stage zero):

XN, = sex g[1+(1-Vg/Lg)(1-s8)/(s— 1)] (2.34)

This assumes we are in the region where s is constan, k)

At the top of the column we have for the heavy component:

(Lt/V1)(A/Hy)Yy o+ (D/V)xy b

= ayy, nt (1-Ly/Vo)Xy p

Vi no
Hn-1 (2.35)
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where a = (Ly/V;)/Hy>1 is the absorbtion factor. The corresponding
Kremser formula for the heavy component in the vapour phase at $tage
counted from the top of the column (the accumulator is stage zero) is then:

Yh, N, = atx, pl1+(1- L/ Vo) (1-an)/(a-1)] (2.36)

This assumes we are in the region where a is constan,i=e0

For hand calculations one may use the McCabe-Thiele diagram for the interme-
diate composition region, and the Kremser formulas at the column ends where the
use of the McCabe-Thiele diagram is inaccurate.

Example We consider a column with N=40N21, a =1.5, =0.5, F=1,
D=0.5, Vg=3.2063. The feed is saturated liquid and exact calculations give
the product compositiongpp= x| g=0.01.

We now want to have a bottom product with only 1 ppm heavy product, i.e.
X_g = 1.e-6. We can use the Kremser formulas to easily estimate the addi-
tional stages needed when we have the same energy ugage063.

(Note that with the increased purity in the bottom we actually get B=0.4949
and Lg=3.7012). At the bottom of the colurh) = a = 1.5  and the
stripping factor iss = (Vg/Lg)H = (3 2063 3.7121.5 = 1.2994.

With x_g=1.e-6 (new purity) and<|_ Ng = 0.01 (old purity) we find by
solvmg the Kremser equation (2.34) with respect gaiat N3=33.94, and

we conclude that we need about 34 additional stages in the bottom (this is
not quite enough since the operating line is slightly moved and thus affects
the rest of the column; using 36 rather 34 additional stages compensates
for this).

The above Kremser formulas are valid at the column ends, but the linear approx-
imation resulting from the Henry’s law approximation lies above the real VLE
curve (is optimistic), and thus gives too few stages in the middle of the column.
However, if the there is no pinch at the feed stage, i.e. the feed is optimally
located, then most of the stages in the column will be located at the columns ends
where the above Kremser formulas apply.

2.45 Approximate Formula with Constant Relative Volatility

We will now use the Kremser formulas to derive an approximation for the sepa-
ration factor S. First note that for cases with high-purity products we have
S= 1/( % BXH, p) Thatis, the separation factor is the inverse of the product of
the key component product impurities.
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We now assume that the feed stage is optimally located such that the composition
at the feed stage is the same as that in the feed y|_|e = Yu, F and
X Ng = XL F Assumlng constant relative volatility and ' using | :
HH =1/a,a = (yLF/xLF)/(yHF/xHF) andN = Ny +Ng+1 (mcludlng

total reboiler) then gives:

(LT/VT) LI
S=a 2.37
(Lg/Vg)Ne(XHEYLF) (2:37)

wherec = [1+ %—EM}[ Eﬂ—ﬁ l-a )} (2.38)

LgO (s—1 Vg (a-1)

We know that S predicted by this expression is somewhat too large because of the
linearized VLE. However, we may correct it such that it satisfies the exact rela-
tionshipS = aN at infinite reflux (wherég/Vg = V{/Ly = 1 andc=1) by
dropping the factod/ (x4gy, g) (which as expected is always larger than 1). At
finite reflux, there are even more stages in the feed region and the formula will
further oversestimate the value of S. However, since ¢ > 1 at finite reflux, we may
partly counteract this by setting=1. Thus, we delete the term ¢ and arrive at the
final extended Fenske formula, where the main assumptions are that we have con-
stant relative volatility, constant molar flows, and that there is no pinch zone
around the feed, i.e. the feed is optimally located (Skogestad’s formula):

Nt
S=q E—tT—%—%\I— (2.39)
B

whereN = NT+NB+1 )

Together with the material balancEz- = Dxp+Bxg , this approximate for-
mula can be used for estimating the number of stages for column design (instead
of e.g. Gilliand plots), and also for estimating the effect of changes of internal
flows during column operation. However, its main value is the insight it provides:

1. We see that the best way to increase the sepa&isdo increase the
number of stages.

2. During operation wher is fixed, the formula provides us with the impor-
tant insight that the separation fac&is increased by increasing the
internalflows L andV, thereby makind./V closer to 1. However, the effect
of increasing the internal flows (energy) is limited since the maximum sep-
aration with infinite flows iS = aN
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3. We see that the separation fa@aepends mainly on the internal flows
(energy usage) and only weakly on the dpli. This means that if we
changeD/F thenSwill remain approximately constant (Shinskey’s rule),
that is, we will get a shift in impurity from one product to the other such
that the product of the impurities remains constant. This insight is very
useful.

Example Consider a column WIthD y = 0.01 (1% heavy in top) and

Xg | = 0.01 (1% light in bottom). The separation factor is then approxi-
matelyS = 0.99x 0.99( 0.0¥ 0.01= 9801 . Assume we increase D
slightly from 0.50 to 0.51. If we assume constant separation factor (Shins-
key’s rule), then we find tharb y  changes from 0.01 to 0.0236 (heavy
impurity in the top product increases by a factor 2.4), agq_ changes
from 0.01 to 0.0042 (light impurity in the bottom product decreases by a
factor 2.4). Exact calculations with column data: N=4@=R1, a =1.5,

7 =0.5, F=1, D=0.5, l3/F=3.206, gives thak, ,; changes from 0.01 to
0.0241 andxg | changes from 0.01 to O. 0046 (separation factor changes
from S= 9801 to 8706). Thus, Shinskey’s rule gives very accurate
predictions

However, the simple extended Fenske formula also has shortcomings. First, it is
somewhat misleading since it suggests that the separation may always be
improved by transferring stages from the bottom to the top section if
(Ly/V7) > (Vg/Lp). Thisis not generally true (and is not really “allowed” as it
violates the assumption of optimal feed location). Second, although the formula
gives the correct limiting valu& = aN  for infinite reflux, it overestimates the
value ofS at lower reflux rates. This is not surprising since at low reflux rates a
pinch zone develops around the feed.

Example:Consider again the column with N=40N21, a =1.5, 7 =0.5,

F=1, D=0.5; L1=2.706. Exact calculations based on these data gjy§=x

x g=0.01 and S = 9801. On the other hand, the extended Fenske formula
with Ny=20 and N;=20 yields:

= 1.81x (2.7606' 3.208%0 _ = 16586000 —O—:f’f = 30774

(3.706/ 3.20420 18.48

corresponding to xp= X g = 0.0057. The error may seem large, but it is
actually quite good for such a simple formula.

2.4.6  Optimal Feed Location

The optimal feed stage location is at the intersection of the two operating lines in
the McCabe-Thiele diagram. The corresponding optimal feed stage composition
(X Yp) can be obtained by solving the following two equations:
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z= qx+t(l-0qyg andyg =
we findxg = z and for g=0 (vapour feed) we finyg = z

axg/(1+(a-1)xg) . Forg=1 (liquid feed)

(in the other cases we

must solve a second order equation).

There exists several simple shortcut formulas for estimating the feed point loca-

tion. One may be derived from the Kremser equations given above. Divide the

Kremser equation for the top by the one for the bottom and assume that the feed
is optimally located to derive:

O Vqo (a-1)

, av#[“%ﬁb}
"

XL F

XH. D (N; —NB)
XL,B

(2.40)
O VgHi1-sNe

g—_m [HBI_L_BD (s=1) }

The last “big” term is close to 1 in most cases and can be neglected. Rewriting the
expression in terms of the light component then gives Skogestad’s shortcut for-
mula for the feed stage location:

(1-Y¢) Xg |0
i ).

Ina

Nt—Ng = (2.41)

whereygr andxg at the feed stage are obtained as explained above. The optimal
feed stage location counted from the bottom is then:

[N+ 1-(Nr—-Ng)]
2

Np = Ng+1 = (2.42)

whereN is the total number of stages in the column.

2.4.7  Summary for Continuous Binary Columns

With the help of a few of the above formulas it is possible to perform a column
design in a matter of minutes by hand calculations. We will illustrate this with a
simple example.

We want to design a column for separating a saturated vapour mixture of 80%
nitrogen (L) and 20% oxygen (H) into a distillate product with 99% nitrogen and
a bottoms product with 99.998% oxygen (mole fractions).
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Component data: Normal boiling points (at 1 atm),, = 77.4K, Ty = 90.2K,
heat of vaporization at normal boiling points: 5.57 kJ/mol (L) and 6.82 kJ/mol

(H).

The calculation procedure when applying the simple methods presented in this
article can be done as shown in the following steps:

1. Relative volatility:

The mixture is relatively ideal and we will assume constant relative volatil-
ity. The estimated relative volatility at 1 atm based on the boiling points is
gvap(Tp =T
Ina = AH_ ( bH_ L) where
RT, Ty
AHV@P = /557016.82= 6.16 kd/mo| T, = /TbHTbL = 83.6K and
T, —T, = 90.2— 77.7= 18.8. This gives(AHV2P)/(RT,) = 8.87

and we finda = 3.89 (however, it is generally recommended to olotain
from experimental VLE data).

2. Product split:

From the overall material balance we get
z — _

D _ %8 _ 0.8—0.00002 _ 0.808.

F xp—Xg 0.99- 0.00002

3. Number of stages:

0.99x 0.99998_
0.01x 0.00002
The minimum number of stages required for the separation is

Npin = INS/Ina = 11.35 and we select the actual number of stages as

N = 23 (=2N

The separation factor iS = 4950000 ,i.e.B=15.4.

min)'

4. Feed stage location
With an optimal feed location we have at the feed stag®) thatyg = z¢
=0.8 andxg = yg/(a—(a—-1)yg) = 0.507 .

Skogestad’s approximate formula for the feed stage location gives
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_ (1-Yp) Xg U
NT—NB—Ina X }[(1—&))}%('”0()

_ 0.2 7. 10.00002 _
= In 0.507}‘[ Soi |/ 1358 = —5.27

corresponding to the feed stage
Ng = [N+1-(Ny—=Ng)]/2 = (23+ 1+ 5.29/2 = 14.6= 15

5. Energy usage:

The minimum energy usage for a vapour feed (assuming sharp separation)
isVi/F = /(a—-1) = 1/2.89 = 0.346. With the choice

N = 2Nmin,_the actual energy usagé) (s then typically about 10%

above the minimum\(,,;,), i.e.V/F is about 0.38.

This concludes the simple hand calculations. Note again that the number of stages
depends directly on the product purity (although only logarithmically), whereas
for well-designed columns (with a sufficient number of stages) the energy usage
is only weakly dependent on the product purity.

Remark 1:

The actual minimum energy usage is slightly lower since we do not have
sharp separations. The recovery of the two components in the bottom prod-
uct ier, B = (xH' gB)/ (zgyF) = 0.9596 and _ _

g = (x,_‘ sB)/(zg F) = O,_ o) fr_om the formulas given earlier the exact
value for nonsharp separations is

Vni/F = (0.9596- 0.0x 3.8Y/(3.89- 1) = 0.332

Remark 2:
For a liquid feed we would have to use more energy, and for a sharp
separation
Vii/ F = /(a-1)+D/F = 0.346+ 0.808= 1.154

Remark 3:

We can check the results with exact stage-by-stage calculations. With
N=23,Ng=15 anda =3.89 (constant), we fisdF = 0.374 which is about
13% higher thaw,,;j;=0.332.

Remark 4:

A simulation with more rigorous VLE computations, using the SRK equa-
tion of state, has been carried out using the HYSYS simulation package.
The result is a slightly lower vapour flow due to a higher relative volatility
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(a inthe range from 3.99-4.26 with an average of 4.14). More precisely, a
simulation withN=23,Ng=15 gavev/F=0.291, which is about 11% higher
than the minimum valu®" . = 0.263 found with a very large number
of stages (increasing N>60 did not give any significant energy reduction
belowV' ..., ). The optimal feed stage (wi+23) was found to balg=15.

Thus, the results from HYSYS confirms that a column design based on the very
simple shortcut methods is very close to results from much more rigorous
computations.

2.5 Multicomponent Distillation — Underwood’s Method

We here present the Underwood equations for multicomponent distillation with
constant relative volatility and constant molar flows. The analysis is based on con-
sidering a two-product column with a single feed, but the usage can be extended
to all kind of column section interconnections.

It is important to note that adding more components does not give any additional
degrees of freedom in operation. This implies that for an ordinary two-product
distillation column we still have only two degrees of freedom, and thus, we will
only be able to specify two variables, e.g. one property for each product. Typi-
cally, we specify the purity (or recovery) of the light key in the top, and specify
the heavy key purity in the bottom (the key components are defined as the com-
ponents between which we are performing the split). The recoveries for all other
components and the internal flowisgndV) will then be completely determined.

For a binary mixture with given products, as we increase the number of stages,
there develops a pinch zone on both sides of the feed stage. For a multicomponent
mixture, a feed region pinch zone only develops when all components distribute
to both products, and the minimum energy operation is found for a particular set
of product recoveries, sometimes denoted as the “preferred split”. If all compo-
nents do not distribute, the pinch zones will develop away from the feed stage.
Underwood’s methods can be used in all these cases, and are especially useful for
the case of infinite number of stages.

2.5.1 The Basic Underwood Equations
The net material transpom) of component upwards through a stages:

Wi = Vnyi,n_Ln+ 1Xin+1 (2.43)

Note thatw; is constant in each column section. We assume constant molar flows
(L=L =L .1 and V=V,;=V+1), and assume constant relative volatility. The VLE
relationship is then:
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;X /X
y; = ——— whereq; = (i) (2.44)
3 aix (Ye/ %)

We divide equation (2.43) by, multiply it by the factora,/ (a;, —¢) , and take
the sum over all components:

GIXII’I
1 oW, _Z(Gi—@)_L O X n+1
RicErh S o RACED o

The parametep s free to choose, and the Underwood roots are defined as the
values ofg@ which make the left hand side of (2.45) unity, i.e which satisfy

V = it 2.46
) i21(ai_(p) (249

The number of valueg satisfying this equation is equal to the number of com-
ponentsNe.

Comment: Most authors use a product compositighdr component recovery
(r) in this definition, e.g for the top (subscript T) section or the distillate product
(subscript D):

W, =W, 1+ =W =Dxy=r1pzF (2.47)

but we prefer to use the net component molar flewy gince it is more general.
Note that use of the recovery is equivalent to using net component flow, but use
of the product composition is only applicable when a single product stream is
leaving the column. If we apply the product recovery, or the product composition,
the defining equation for the top section becomes:

i, D | i | D
Z(a o Z(a o (2.48)
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2.5.2 Stage to Stage Calculations

By the definition ofgp from (2.46), the left hand side of (2.45) equals one, and the
last term of (2.45) then equals:

(@i o= (a; = @)ax; )

|Xi,n O
Z(a ar L 2ee Ml 2T @ew

The terms withO(i2 disappear in the nominator apd  can be taken outside the
summation, thus (2.45) is simplified to:

a; |n+1 ] [
VZ -9 S wi (2.49)

This equation is valid for any of the Underwood roots, and if we assume constant
molar flows and divide an equation fay ~ with the one tpar , the following
expression results:

a; X a. X

|n+mD i%i,n [

P Ta;- 90 Bpkd“ © —(pk)D
O a.x |:| Hp
177, n+ mgj j i | n
 (0;—9;) 0 E\Z(O‘ (PJ)D

Note the similarities with the Fenske and Kremser equations derived earlier. This
relates the composition on a stage (n) to an composition on another stage (
The number of independent equations of this kind equals the number of Under-
wood roots minus 1 (since the number of equations of the type as in equation
(2.49) equals the number of Underwood roots), but in addition we also have
\;x = 1. Together, this is a linear equation system for compuixp Fem

enx; is known and the Underwood roots is computed from (2.46).

(2.50)

Note that so far we have not discussed minimum reflux (or vapour flow rate), thus
these equation holds for any vapour and reflux flow rates, provided that the roots
are computed from the definition in (2.46).
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2.5.3 Some Properties of the Underwood Roots

Underwood showed a series of important properties of these roots for a two-prod-
uct column with a reboiler and condenser. In this case all components flow
upwards in the top sectionf + 20 ), and downwards in the bottom section
(w; g<0). The mass balance yieldss, B=W W Whanqz,: = Fz
Underwood showed that in the top section (V\Np components) the rootsp( )
obey:

Oy >Q;>0,>0,> 05> .00 >y > O (2.51)

In the bottom section (where; |, = w; <0 ) we have a different set of roots
denoted 0 ) computed from

o (-, B)zF a,(—(1-r, p))zF
= ' 2.52
Z(a D M e il Yy ety (2:52)
which obeywl>a1> Wo>0,>P3>05> ... > Wy >0y, (2.53)

Note that the smallest root in the top section is smaller than the smallest relative
volatility, and the largest root in the bottom section is larger then the largest vol-
atility. It is easy to see from the defining equations that as

Vi-o 0O @ -0 andsimilarly as/g - o 0O  ; - 0

When the vapour flow is reduced, the roots in the top section will decrease, while
the roots in the bottom section will increase, but interestingly Underwood showed
that@, = ; , ; . Avery important result by Underwood is that for infinite number
ofstagesV - Vi, 0O @ -y, .

Thus, at minimum reflux, the Underwood roots for the tgp ( ) and bottgm ( )
sections coincide. Thus, if we denote these common r6ots , and recall that
V:-Vg = (1-0)F, and thatwI T-W, g =W g =zF we obtaln the fol-
lowing equation for the “minimum reflux” common root@ () by subtracting the
defining equations for the top and bottom sections:

aiz
(1-9q) = .Z(O‘i—e) (2.54)

We denote this expression the feed equation since only the feed propgeies (

) appear. Note that this is not the equation which defines the Underwood roots
and the solutions{ ) apply as roots of the defining equations only for minimum
reflux conditions N = « ). The feed equation Hesroots, (but one of these is
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not a common root) and tidx-1 common roots obey:

0,>6;>0,>8,>... >8y_ >0y, . Solution of the feed equation gives us
the possible common roots, but all pairs of roaps &nd g, , 4 ) for the top and
bottom section do not necessarily coincide for an arbitrary operating condition.
We illustrate this with the following example:

Assume we start with a given product sdiii) and a large vapour flow
(V/F). Then only one componen{with relative volatilitya; ) can be dis-
tributed to both products. No roots are common. Then we gradually reduce
V/F until an adjacent compongpri+1 orj=i-1 becomes distributed. E.g
forj=i+1 one setof roots will coincidep, = y, ., = 6; ,whilethe others
do not. As we reduc¥/F further, more components become distributed
and the corresponding roots will coincide, until all components are distrib-
uted to both products, and then all el roots from the feed equation

also are roots for the top and bottom sections.

An important property of the Underwood roots is that the value of a pair of roots
which coincide (e.g. whew, = ;. = 6, ) will not change, even if only one,
two or all pairs coincide. Thus all the possible common roots are found by solving
the feed equation once.

2.5.4  Minimum Energy — Infinite Number of Stages

When we go to the limiting case of infinite number of stages, Underwoods’s equa-
tions become very useful. The equations can be used to compute the minimum
energy requirement for any feasible multicomponent separation.

Let us consider two cases: First we want to compute the minimum energy for a
sharp split between twadiace_znt key (_:omponentsandj+1 (rj,D =1 and
Fi+1,0 = 0). The procedure is then simply:

1. Compute the common rocﬁj( ) for whicxt? > ej >0 4 q

az
from the feed equatiofl—q) = § ——=
,Z(ai -6)

2. Compute the minimum energy by applying the definition equationﬁ)for

Vmin _ L
F ,zl(ai—ej)'
| =

M fori<j

Note that the recoverigs , = fori> i
' ori> |
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For example, we can derive Kings expressions for minimum reflux for a binary
feed @ =z,z4 =(1-2 ,a, = a,a04 =1, and liquid feedg=1)). Con-

sider the case with liquid feedi£€1). We find the single common root from the
feed equation®® = a/(1+(a—-1)z) , (observa=26=1 as expected). The
minimum reflux expression appears as we use the defining equation with the com-
mon root:

L+mi Vo or. vz Or, bz Ory (1-2
Tmin _ YTmin_D _ D4 _ YLD H,D
F F F IZ(ai—e) a-0 1-9 (2.55)

and when we substitute f@r and simplify, we obtain King's expression:

L. r —ar
Tmin L,D H, D
= = . 2.
F a-1 (2.56)

Another interesting case is minimum energy operation when we consider sharp
split only between the most heavy and most light components, while all the inter-
mediates are distributed to both products. This case is also denoted the “preferred
split”, and in this case there will be a pinch region on both sides of the feed stage.
The procedure is:

1. Compute all th&l.-1 common roots )from the feed equation.

2.5etr; o = 1and ry p = 0 and solve the following linear equation set
with N.—-1 equations with respect o/, Mo o M3, D...rNc_l] N.—-1
variables):

NC
v - ari pz,
T =
izl(ai_el)

(2.57)

Note that in this case, when we regard the most heavy and light components as
the keys and all the intermediates are distributed to both products and Kings very
simple expression will also give the correct minimum reflux for a multicompo-
nent mixture (folg=1 or q=0). The reason is that the pinch then occurs at the feed
stage. In general, the values computed by Kings expression give a (conservative)
upper boundvhen applied directly to multicomponent mixtures. An interesting
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result which can be seen from Kings’s formula is that the minimum reflux at pre-
ferred split (forg=1) is independent of the feed composition and also independent
of the relative volatilities of the intermediates.

However, with the more general Underwood method, we also obtain the distribu-
tion of the intermediates, and itis easy to handle any liquid fractjpimthe feed.

The procedure for an arbitrary feasible product recovery specification is similar
to the preferred split case, but then we must only apply the Underwood roots (and
corresponding equations) with values between the relative volatilities of the dis-
tributing components and the components at the limit of being distributed. In

cases where not all components distribute, King’s minimum reflux expression
cannot be trusted directly, but it gives a (conservatippger bound

Figure 2.9 shows an example of how the components are distributed to the prod-
ucts for a ternary (ABC) mixture. We choose the overhead vapour NeW+)

and the distillate product flowD=V-L) as the two degrees of freedom. The
straight lines, which are at the boundaries when a component is at the limit of
appearing/disappearing (distribute/not distribute) in one of the products, can be
computed directly by Underwood’s method. Note that the two peaks énd

Pgc) gives us the minimum vapour flow for sharp split between A/B and B/C. The
point Pyc, however, is at the minimum vapour flow for sharp A/C split and this
occurs for a specific distribution of the intermediate B, known as the “preferred
split”.

Kings’s minimum reflux expression is only valid in the triangle below the pre-
ferred split, while the Underwood equations can give all component recoveries for
all possible operating points. The shaded area is not feasible since all liquid and
vapour streams above and below the feed have to be positive.
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VIE Sharp A/BC split Sharp AB/C split
A A AB
[ | AB ' 5
BC ! E : (64
D Pag BC Pec ;
A “The preferred split”,
[ (sharp A/C split) ABC \Y; * L
ABC EC ABC
ABC o
EAB Pac @
BC 1
ABC ABC A _—
— |
- |
ABg — \ | i
_ —
o V=D (L=0) |
—
V% - = Infeasible region 1q
VIF=(1-q)
-D/F
0 1

Figure 2.9: Regions of distributing feed components as functiovi afid D for a feed
mixture with three components: ABC; Represent minimum energy for sharp split
between componemntandj. For large vapour flow (above the top “saw-tooth”), only one
component distribute. In the triangle beloy-Pall components distribute.

2.6  Further Discussion of Specific Issues

2.6.1 The Energy Balance and Constant Molar Flows

All the calculations in this article are based on the assumption of constant molar
flows in a section, i.e/n =V,_.1 =V andin =Lysq1 = . This is a very
common simplification in distillation computations and we shall use the energy
balance to see when we can justify it. The energy balance is similar to the mass
balance, but now we use the molar enthalpydf the streams instead of compo-
sition. The enthalpy is computed for the actual mixture and will be a function of
composition in addition to temperature (or pressure). At steady state the energy

balance around stagebecomes:

thL, n_Vn— 1hV, n-1- I‘n+ 1hL, n+ 1_VnhV, n (2-58)
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Combining this energy balance with the overall material balance on a stage;
Vio_1—Ly = V,—-L, 1 = W, whereWis the net total molar flow through a
section, i.eW=D in the top section and\/=B in the bottom section) yields:

hL,n_hL,n+1

h —h
V,n-1 L’n+W

V. =V__
: 1hV,n_hL,n+1 hV,n_hL,n+1

(2.59)

From this expression we observe how the vapour flow will vary through a section
due to variations in heat of vaporization and molar enthalpy from stage to stage.

We will now show one way of deriving the constant molar flow assumption:

1. Chose the reference state (whier®) for each pure component as saturated
liquid at a reference pressure. This means that each component has a dif-
ferent reference temperature, namely its boiling pdl'r%( ) at the
reference pressure.

2. Assume that the column pressure is constant and equal to the reference
pressure.

3. Neglect any heat of mixing such that = zi X; ncPl_i(Tn—pri)
4. Assume that all components have the same molar heat capacity

5. Assume that the stage temperature can be approximated by
T, = éi_xi’nTb i- These assumptio_ns g_ivdaﬁn =0 onallstages and
the eql@tion (2.§9) for change in boilup is reduced to:

(2.60)

6. The molar enthalpy in the vapour phase is given as:

— vap vap .
th n- Zixi‘nApri + Zixi,nCPVi(Tn_pri) WhereApri is the

heat of vaporization for the pure component at its reference boiling temper-
ature (I'bloi ).

7. We assume thab,, is equal for all components, and then the second sum-

mation term above then will become zero, and we have:
vap

hV, n- Zixi,nApri :
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8. Then ifAH‘,S?,'iO = AH"®P s equal for all components we get

hV n = hV 1= AHvap, and thereby constant molar flows:
V,=V,_;andalsa, =L

n+1 -
At first glance, these assumptions may seem restrictive, but the assumption of
constant molar flows actually holds well for many industrial mixtures.

In a binary column where the last assumption about et}hﬁc/]a? is not fulfilled,
a good estimate of the change in molar flows from the bottom (sipigethe top
(stageN) for a case with saturated liquid feegiH1) and close to pure products, is
given by:V/V, :AHX'ap/AHKap . The molar heat of vaporization is taken at
the boiling point temperatures for the heavy (H) and light (L) components
respectively.

Recall that the temperature dependency of the relative volatility were related to
different heat of vaporization also, thus the assumptions of constant molar flows
and constant relative volatility are closely related.

2.6.2 Calculating Temperature when Using Relative Volatilities

It may look like that we have lost the pressure and temperature in the equilibrium

equation when we introduced the relative volatility. However, this is not the case

since the vapour pressure for every pure component is a direct function of temper-
ature, thus so is also the relative volatility. From the relationship

P = z p = in pP(T) we derive:

P = p?(T)inO(i (2.61)

Remember that only one &f or T can be specified when the mole fractions are
specified. If composition and pressure is known, a rigorous solution of the tem-
perature is found by solving the non-linear equation:

P=3x P (T) (2.62)

However, if we use the pure components boiling poifiig)( a crude and simple
estimate can be computed as:

T=3 %Ty (2.63)
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Figure 2.10: Temperature profile for the example in Figure 2.7 (solid line) compared with
various linear boiling point approximations.

For ideal mixtures, this usually give an estimate which is a bit higher than the real
temperature, however, similar approximation may be done by using the vapour
compositions ), which will usually give a lower temperature estimate. This
leads to a good estimate when we use the average of x and y, i.e:

.+ V.
T= Z g_' 5 yIBTbi (2.64)

Alternatively, if we are using relative volatilities we may find the temperature via
the vapour pressure of the reference component. If we use the Antoine equation,
then we have an explicit equation:

B
~ r o _
T~—-——6—-—-— +C, wherep, = P/z Xa; (2.65)
logp, — A, i
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This last expression is a very good approximation to a solution of the nonlinear
equation (2.62). An illustration of how the different approximations behave is

shown in Figure 2.10. For this particular case which is a fairly ideal mixture, equa-
tion (2.64) and (2.65) almost coincide.

In a rigorous simulation of a distillation column, the mass and energy balances
and the vapour liquid equilibrium (VLE) have to be solved simultaneously for all
stages. The temperature is then often used as an iteration parameter in order to
compute the vapour-pressures in VLE-computations and in the enthalpy compu-
tations of the energy balance.

2.6.3 Discussion and Caution

Most of the methods presented in this article are based on ideal mixtures and sim-
plifying assumptions about constant molar flows and constant relative volatility.
Thus there are may separation cases for non-ideal systems where these methods
cannot be applied directly.

However, if we are aware about the most important shortcomings, we may still
use these simple methods for shortcut calculations, for example, to gain insight or
check more detailed calculations.
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Chapter 3

Analytic Expressions and Visual-
Ization of Minimum Energy
Consumption in Multicomponent
Distillation:

A Revisit of the Underwood
Equations.

Ivar J. Halvorsen and Sigurd Skogestad

The classical Underwood equations are used to com-
pute the operational characteristics of a two-

product distillation column with a multicomponent
feed. The Vmin-diagram is introduced to effec-

tively visualize how the energy consumption is

related to the feed component distribution for all
possible operating points of the column. This dia-
gram becomes very useful when we later shall use

it for assessment of Petlyuk arrangements.

A preliminary version was presented at AIChE
Annual Meeting in Dallas, Texas, November 1999
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3.1 Introduction

3.1.1 Background

The equations of Underwood (1945,1946ab,1948) have been applied successfully
by many authors for analysis of multicomponent distillation, e.g. Shiras (1950),
King (1971), Franklin and Forsyth (1953), Wachter et. al. (1988) and in a com-
prehensive review of minimum energy calculations by Koehler (1995). Minimum
energy expressions for Petlyuk arrangements with three components have been
presented by Fidkowski and Krolikowski (1986) and Carlberg and Westerberg
(1989ab). However, minimum energy requirements for the general multicompo-
nent case is the topic of this chapter, and this issue has so far not been well
understood.

We use the basic Underwood equations to com- Vy

pute the distribution of all the components in D
the generalized multicomponent feed as a func- Ly

tion of the degrees of freedom in a two-product

distillation column (Figure 3.1). We assume F,q

constant molar flows, constant relative volatili- —»

ties and infinite number of stages.

A main result is a simple graphical visualiza- Vg Le
tion of minimum energy and feed component B
distribution for all possible operating points.

We denote this the Minimum Energy Mountain

Diagram or just th&/,....-diagram.
g J mind1ag Figure 3.1: Two-product

TheV,,j-diagram can be used for quick deter- distillation column  with
mination of the minimum energy requirement reboiler and total condenser
in a single binary column with a multicompo-

nent feed, for any feasible product

specification.

Interestingly, the methods presented in this chapter can also be used for Petlyuk
arrangements and for arrangements with side strippers and side rectifiers. This
will be treated in detail in the succeeding chapters.

Alternative methods for visualization of feed distribution regions for a single col-
umn have been presented by Wachter et. al. (1988) based on a continuum model
and by Neri et.al. (1998), based on equilibrium theory.

We will also discuss the behaviour of composition profiles and pinch zones, and
how the required number of stages depends on the component distribution.
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3.1.2  Problem Definition - Degrees of Freedom

With a given feed, a two-product distillation column normally has two degrees
freedom of operation. For a binary feed, this is sufficient to specify any product
distribution. In the case of a multicomponent feed, however, we cannot freely
specify the compositions in both products. In practice, one usually specifies the
distribution of two key components, and then the distribution of the non-key com-
ponents is then completely determined for a given feed. In some cases, the column
pressure could be considered as a third degree of freedom, but we will assume that
the pressure is constant throughout this chapter since the pressure has a limited
impact on the product distribution.

For every possible operating point we want to find the distribution, here given by
the set of recoverieR = [ry, T, ..., rNC] , the normalized vapour flow r&fe (

F) and the overall product spliD/F or B/F). This can be expressed qualitatively
for the top section as:

V
[?T g RT} = f(Speg, Spec, Feed propertiep (3.1)

It is sufficient to consider only one of the top or bottom sections as the recoveries
and flows in the other section can be found by a material balance at the feed stage.
The feed properties are given by the composition vegtihow rateF, liquid frac-
tion g and relative volatilitiesx . A recoveryr( ) is the amount of comporient
transported in a stream or through a section divided by the amount in the feed.

3.2 The Underwood Equations for Minimum Energy

Underwood’s methods for multicomponent mixtures (Underwood 1945, 1946ab,
1948) play a major role in our analysis, and here we summarize the most impor-
tant equations for minimum energy calculations. The analysis is based on
considering a two-product column with a single feed, but the usage can be
extended to all kinds of column section interconnections.

3.2.1 Some Basic Definitions

The starting point for Underwood’s methods is the material balance equation at a
cross-section in the column. The net material transpeft 6f component
upwards through a stage is the difference between the amount travelling
upwards from a stage as vapour and the amount entering a stage from above as
liquid:

w; = Vnyi'n—L (3.2)

n+1Xi,n+1
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Note that at steady state; is constant through each column section. In the fol-
lowing we assume constant molar floms=( =L, and V=\;=V,4+;) and
constant relative volatilityd; ).

In the top section the net product fl@v= V -L ., and:

Wit =X,

pD =r;i pzF (3.3)
In the bottom sectiorB = Lhe1—Vy and the net material flow is:
W, g = =X gB = ri gzF (3.4)
The positive direction of the net component flows is defined upwards, but in the
bottom the components normally travel downwards from the feed stage and then

we havew, 5 <0 . With a single feed stream the net component flow in the feed
is given as:

W, g = zF. (3.5)
A recovery can then be regarded as a normalized component flow:

= w/w g = w;/(zF) (3.6)

Atthe feed stagew,  is defined positive into the column. Note that with our def-
inition in (3.6) the recovery is also a signed variable.

3.2.2  Definition of Underwood Roots
The Underwood rootsy( ) in the top section are defined aNl the solutions of:

Vo = — (3.7)

In the bottom there is another set of Underwood rapts  given by the solutions of:

Vg = Z O(Ii—’tu (3.8)

Note that these equations are related via the material balance at the feed stage:
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W, 1 =W g =W ¢ =7z ¢F (equivalentto; —r; g = 1) (3.9
and the relationship between the vapour flows
V;-Vg = (1-0g)F (3.10)

whereq is the liquid fraction of the feefd

Calculation of the Underwood roots involves solving a straightforward polyno-
mial root problem, but we should be careful and make sure that the vector of
component flowsvy or wg is feasible. This also implies that in the multicompo-
nent case there is a “hidden” interaction between the unspecified elements in
and the Underwood roots.

3.2.3 The Underwood Roots for Minimum Vapour Flow

Underwood showed a series of properties of the ropts ( yand ) for a two-prod-
uct column with a reboiler and condenser. In this conventional column, all
components flow upwards in the top secticmL(r =0 ), and downwards in the
bottom section \(vil g <0 ). WithN, components there are for each@f apd
N, solutions obeying:

Ay >Q>0,>@y> 03> ... > 0> Oy (3.11)

>0, > Wy >0,>W3>053> 0 > P> e (3.12)

When the vapour flow is reduced, the roots in the top section will decrease, while
the roots in the bottom section will increase. Underwood (1946) showed that min-
imum vapour flow for any given product distribution is equivalent to one or more
pairs of roots coinciding to a common rog = Y; ., = 6, ).

Recall thatvT —VB = (1-qg)F . By subtracting the defining equations for the
top and bottom sections (3.7)-(3.8), we obtain the following equation which is
valid for the common roots only (denotéd ):

aiz

(1-q) = .Z(O(i_e) (3.13)

We denote this expression tfeed equatiorsince only the feed propertieg &nd
z) appear. It has alsN. roots, but one of these cannot be a common root due to
(3.11) and (3.12), so there afg-1 possible common roots which obey:
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0,>0,>0,>0,>... >0 _1>0y\,- (3.14)

Note that we can compute the common roots from the feed equation (3.13), with-
out knowing anything about the distribution of feed components in the products.

We will denote a roo, amctiveroot for the case whew, = Y, ; = 6,
Inserting the active root in the top and bottom definition equations gives the min-
imum flow for a given set of component distribut{@s orry).

_ oW, ¢ _ a;r Tle
Vimin = Za- oy O Vimin= D 5 =6 y (3.15)
T ! ] i

With N, active roots, this represents a setNy independent linear equations,
which may be used to find the exact set of the so-called distributing components
that appear in both products.

Note that the subscripnin indicates that we use a common active r@ot  as
opposed to an actual rogpt  in equation (3.7).

3.2.4  Computation Procedure

Our task is to find thé&l; product recoveries (or component flows) and the vapour
flow, given any pair of feasible specifications. The procedure on how to apply
Underwood’s equations for this purpose has been described by several authors,
e.g. Shiras (1950) and Carlberg and Westerberg (1989).

The key to the general solution is to identify ttistributingcomponents. A com-
ponent in the feed is distributing if it appears in both products, or is exactly at the
limit of becoming distributing if the vapour flow is reduced with an infinitesimal
amount.

The computation procedure is as follows:

Consider a set oy distributing components, denotefid, d,, ..., dy4 . The
recoveries in the top are tr|V|aIIy = 1 for all non-distributing light compo-
nents (<d; ), andr; T = =0 for the non-distributing heavy components
(i>dyg)- Then with aglven distribution set we know the,.— N, recoveries of
the non distributing components.

Then we use another of Underwood’s results: For any minimum vapour flow solu-
tion, the active Underwood roots will only be those with values in the range
between the volatilities of the distributing componemx%I (>6,> g, ). This
implies that withNy distributing components, the number of active roots is:

N, = Ng—1 (3.16)
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Thus, as illustrated in Table 3.1, we have enough information to determine the
solution in equation (3.1) completely, given the set of distributing components.

Table 3.1: Number of unknown variables and equations

Total number of variabled/¢;Ry) Nc+1
- | Specified degrees of freedom 2
= | Initially unknown variables Ne-1
- | Number of non-distributing components Ne-Ng
= | Remaining unknown variables Ng-1
- | Number of equations=number of active rodis= | Ng-1
= | Required extra equations 0

Define a vector X containing the recoveries of g distributing components
and the normalized vapour flow in the top section:

VT
X = |:rd1,T’rd2,T’ ...,I’de’T, Fi|

(3.17)

(superscript T denotes transposed). The equation set (3.15) can then be written as

a linear equation set on matrix form:
MIX =Z (3.18)

With the detailed elements in the matrices expanded, this is the same as:

M X A
I Y O O R o A O R e Hoooooon
[ ayz a a 1 HFBES “l gz
d,°d, d,%d, dygZng r - I
ay -0 0, -8, " a,-8, * dT a;-9
d, Y, d, ~ 9, d, ~ 9, =1 1 g
042 Oy Z4 z fa, 7 d;-1
d,%d, d,%d, dn%hg | o = sy a,z
Gdl ed2 Cxdz_edz ad1 edz fgo T izlai_ed
1 N
V4/F
4.4 dg 2, Ay Zd,, . LT G-1
oy -9 ay -9 ay -6 B > —
L dy dna-1 ~d2 Ang-1 d; Ang-1 la,—ede .
= -
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The elements in each column of M arise from the terms in (3.15) related to the
distributing components, and we have one row for each active root. Z contains the
part of (3.15) arising from the non-distributing light components with recovery
one in the top. The recoveries for the heavy non-distributing components are zero
in the top, so these terms disappear.

There areéN,=N4-1 equations (rows of M and Z) ard4+1 variables in X (col-
umns in M). Thus by specifying any two of the variables in X as our degrees of
freedom we are left witiNg-1 unknowns which can be solved from the linear
equation set in (3.18).

If we want to specify the product split as one degree of freedom, we introduce
D/F as an extra variable and the following extra equation:

D/F = 3117 (3.19)

Then the linear equation set (3.18) can be expanded to give:

M X z
- 61 _
- - -5 0,z
Gdlzdl adzzdz C(deZde -1 0|- _ i=1 Qj _edl
ad1_ed1 adz_edl ade_edl rdl,T d, -1 0.z
5
adlzdl adzzdz C(deZde 10 rdz,T - z ai _ed
. _ i= 2
ag —0y,  0Og —8y ag,,~Oq, = i=t (3.20)
-10 I’de’T d,-1 oz
Qg4,Z4, Ag,Zd, RENESN 1 ol |VT/F -5 #
— _ —_ — i~ Ydygo
adl ede-1 adz ede—l Gde ede-1 7D/F7 I_ld 1 Nd-1
z4 z4 A 0 -1 :
L 2 N ] -y 3
i=1 ]

Thus, the solution for the unknown recoveries when we spé&ifly andD/F is:
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—1 ] O
- 1=l gz 0
04,24, d,Zd, Qg Zdyg Z a; -0y E
i=1
Gdl—edl Gd2—9d1 O(de—Gd1 d, -1 oz B
r - Bl 10 g
d, T Y, %d, 4,7, Yy g% ‘Zl a; — 8y 10 V+ilO
— —_ I = —
ra,7| - | %,~ %, O4,~0q, g, ~ O, . = B
...... 5
d -1 q.z 10 E O
rde,T adlzdl adzzdz GdeZde - Z a—é—l— 01 B
— - Z a; -6y
Aq, ede—l dz ede—l g edef1 =1 Na-Y O
-1 0
|, Zy, o Hy, | ~ Z . E
i=1 ] 0

Note that equation (3.18) is only valid in a certain region of the possible operating
space, namely in the region where components numisgrexidy 4 are distribut-

ing to both products. However, we can verify the feasibility of any solution with
the following relation between the recoveries in an ordinary two-product column:

w W. W. w

> LTy 2T, 3T, . MNaTsg

Wi p Wop W3g WNe, F
or

1

(3.21)

1> rl,T2r2,T2r3,TZ 2Ty TzO

c

For arrangements with fully thermally coupled column sections, this relation does
not necessarily apply. This will be discussed in more detail in Chapter 4.2.3

The problem of finding the correct distribution set is dependent on how we spec-
ify the two degrees of freedom. An example of a specification which always gives
afeasible solutionis, , + =1 and,, + = 0 .Thatis, when we want to find
the minimum energy operation point for sharp split between a light key (LK)
component in the top and a heavy key (HK) in the bottom. Then we always know
that the common Underwood roots with values between the relative volatilities of
the keys will be active, thud; = LK ard} 4 = HK  andthe structure of equa-
tion (3.18) is thereby known.

For nonsharp key specifications, components lighter than the light key, and heav-
ier than the heavy key, may or may not be distributing. Then we usually have to

check several possible distribution sets. The correct solution is the one with the
highest number of distributing components that satisfy (3.21).

A practical approach is to apply an iterative procedure where we first assume that
all components are distributing. If this assumption is wrong, the set of recoveries
obtained from a solution will be infeasible (violates 3.21). The procedure is then
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to remove heavy components with recoverie O and light components with
recoveries > 1 from the set of distributing components until we have a feasible
solution. This ensures that we can find a solution with a finite (and small) number
of iterations. FON. components, the maximum number of distribution sets is:

No(N+1)/2 (3.22)

i.e. for a ternary case with feed components denoted ABC, the following sets may
be distributing: A or B or C or AB or BC or ABC. In cases where we specify one
of Vor D, or both, we always have to apply the iterative procedure when solving
for the recoveries since the set of distributing components is initially unknown.

For V>V, and an infinite number of stages there are no common Underwood
roots. Thus, at most one component may be distributing and its recovery is inde-
pendent of the actual value dfbut it is uniquely related t®d/F  through (3.19):

D/F =z, +z,... +14,2q, (3.23)

3.2.5 Summary on Use of Underwood’s Equations

The equations involved are illustrated in Figure 3.2. Note the important difference
between the feed equation (FEQ) which gives us the possible common roots, and
the definition equations (DEQ) at a cross-section above or below the feed, which
gives us the actual roots for a given flow and product distribution. The key to the
full solution is to identify the distribution of feed components, and thereby the set
of active common Underwood roots. When we specify the two degrees of free-
dom (DOF) as a sharp split between two key components, the distribution set is
obvious and unique. Otherwise we may have to check several possible sets. Any-
way, the computation time is in the order of microseconds on any available
computer (in year 2000)
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Top section
Top and bottom definition
DEQr: equations give the “actual’
/ - roots@ andy
Wi T oW
’ _ i, T
‘ Vi = z a; —
Net flow of T ¢
component i: : FEQ: The feed equation
W, £=Fz; ¢ _ | & gives the common

— (1-q) = z a,z “Vin -roots (0 ):
(1-q)F 4 T ai_e

I Solution procedure:
T I DEQg: 1. Obtain all® from FEQ.
L 2. Specify 2 variables (DOF)
Vapour part of Vs v = 9ivi B 3. Assume a distribution
the feed B a; -y (set of active roots)
4. Solve one of the resulting
DEQ sets (T or B)

Bottom section 5. Check feasibility and redo
from 3 if required

Figure 3.2: lllustration of Underwood’s equations. Positive directions of vapour flows
(solid) and net component flows:( dashed) are indicated. (Normally we hayg<0).

3.3 TheVj,-diagram (Minimum Energy Mountain)

A nice feature, due to the fact that we have only two degrees of freedom, is that
we are able to visualize the entire operating range in two dimensions, even with
an arbitrary number of feed components. In this work we choose to use the top
vapour flow(V1/F) and the product split, expressed by the distilldH), as
degrees of freedom and we will visualize the solutions in the two-dimensional D-
V plane (really normalized tB/F, V/F). The choice of vapouM/F) flow rate on

the ordinate provides a direct visualization of the energy consumption and column
load. Note also that it follows from the linear equation set (3.20) that the relation-
ship between the these flow rat€sY) and the recoveries is always linear for

a given set of distributing components. Thus, the function:

_ PV
Ry = f

P _T10
& =1 (3.24)
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is linear in each region with the same set of distributing components. At any
boundary between two of the regions, one component will be at the limit of being
distributing. These distribution boundaries are also straight line segments in the
D-V plane due to the linear properties of equation (3.20).

Va An important boundary is the transi-
V-boundary t_ion from V>_Vmin to V_:Vmin. It looks

VoV o like mountain peaks in the D-V-plane,

mn W P(;Sitgr?gtlon as illustrated in Figure 3.6, and this is

the background for denoting it the
Vmin-diagram or the minimum energy

Distribution mountain.

boundaries

There is a unique minimum energy
solution for each feasible pair of prod-

D uct recovery specifications, and the
Figure 3.3: TheVy,diagram for solution is always found below or at
ternary feed (ABC) the Vp,i-boundary.

Above theV,,j-boundary, the operation is not unique since we can always reduce
the vapour rate down to th¥,,boundary without changing the product
specifications.

Below theV,,j;-boundary we can identify a set of polygon regions for each set of
distributing components. For the ternary case in the figure, the regions where AB,
BC or all of ABC are distributing are indicated.

3.3.1 Feasible Flow Rates in Distillation

The D-V plane spans out the complete feasible operating space for the column,
both the minimum energy solutions and all others. This is quite simple to under-
stand from a operational viewpoird. and V- are just flows, and we can operate

a column with any feasible combination of flows through the separation stages. If
we alternatively specify two key component recoveries as degrees of freedom, we
can only span a sub-region of the operating space, and we do not know in advance
if our specification is feasible. Feasibility simply implies that we require positive
vapour and liquid flows in all sections:

V:>0,Vg>0,L+>0,L5>0 (3.25)

In an ordinary two product column we also reqire= V;—-L; =0 and
B = Lg—V, =0 (note that this is not a feasibility requirement for directly cou-
pled sections) which with a single feed translates to:

V;2max(1l- gF,D) and0<D/F<1 (3.26)
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3.3.2 Computation Procedure for the Multicomponent Case

The procedure for computing the required points to drawhg-mountain-dia-
gram for a general multicomponent calSg ¢omponents) is as follows:

1. Find all possible common Underwood roods [6,, ..., 6y _; ] fromthe
feed equation (3.13). ¢

2. Use equation (3.20) (or 3.18+3.19) to find the full solutions for sharp split
between every possible pair of light (LK) and heavy key (HK) specifica-
tions. Each solution gives the component recove@sminimum vapour
flow (Vpi/F) and product splitl)/F). These are the peaks and knots in the
diagram, and there afé (N, —1)/2  such key combinations, described in
more detail below:

- N1 cases with no intermediates (e.g. AB, BC, CD,....)
These points are the peaks in Yhg-diagram

- N¢-2 cases with one intermediate (e.g. AC, BD, CE,....)

These are the knots between the peaks, and the line segments
between the peaks and these knots form¥theboundary

- et.c.
- 2 cases WitlN.-3 intermediatesN.-1 components distribute)

- 1 case witiN.-2 intermediates (all components distribute)

This last case is the “preferred split” solution where the keys are the most
light and heavy components, and all intermediates distribute.

3. Finally we will find the asymptotic points where all recoveries in the top
are zero and one, respectively. These are trivially foundas=0 for
D=0 and Vq,i=(1-q)F for D=F (Note that this is the same ¥g;=0 for
B=0).

3.3.3 Binary Case

Before we explore the multicomponent cases, let us look closer at a binary case.
Consider a feed with light component A and heavy component B with relative
volatilities [a 5, og] , feed compositiorz = [z,, z5] , feed flow rake=1 and

liquid fraction g. In this case we obtain from the feed equation (3.13) a single
common roo, obeyingi,>6,>ag . The minimum vapour flow is found by
applying this root in the definition equation (3.15):

Vo o ['IN Z, Ogr Z
Tmin _ ZATAT?A B'B, TB (3.27)
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V-
T Vmin for

sharp A/B-spli :

] VA/B

Region (A) where AB- Tmin

only A is distributin .

(no B in distillate). /| Region (B) where

I only B is distributing
(no A in bottoms).

V:Vmin(rA-rB) -
-

VeV o N V>V, => NO active roots
A
\g A at the boundary of
Region (AB) where bo / becoming distributing
B at the boundary of] S A+B are distributing
becoming distributing .
(1-o)F P

Infeasible region: (V<D or V<(1-q)F

PO @ D
0

ZAF F

Figure 3.4: Thé&/,,i-diagram, or minimum energy mountain.
Visualization of the regions of distributing components for a binary feed case.

We also have from (3.19):

o

The procedure in section 3.3.2 becomes very simple in the binary case since there
is only one possible pair of key components (A,B). We obtain the following
results which we plot in the in thB-V-plane of theV,;, diagram in Figure 3.4.

First we find the operating point which gives sharp A/B-split:

O \Z
|:ZA, A g‘ }F
AA=YA
and then the asymptotic points:

Po :[rA, T’rB, T] = [0,0] :>[D’VTmin] = [0, O]
Py :[rA, T’rBl T] =[1,1] =>[D’VTmin] =[1,(1-q]F

PAB: [rA, T rB, T] = [1’ O] :>[D’VTmin]

These three points make up a triangle as shown in Figure 3.4. Along the straight
line Py-Pag We haveV=Vy,, for a pure top productr + = 0 ), and the line can
be expressed by:
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\% Oalpy 2
T A'A TAA _
= = W whereD = ra 12aF (3.29)

Similarly, along the straight linefg-P;, we haveV=V,,;, for a pure bottom prod-
uct (r, 1 = 1), and the line can be expressed by:

V (s V4 apr Z

T A%A B'B, 7B D

— = + : where= = z, +r, 2 (3.30)
AT B TB

Inside the triangle, we may specify any pair of variables amdhd,r,rg) and

use the equation set (3.27-3.28) to solve for the others. This is exactly the same
equation set as given in (3.20) for the general multicomponent case when both
components are distributing.

Above the triangleV,j;y-mountain) V>V, and we have no active Underwood
roots, so (3.27) no longer applies. However, since only one component is distrib-
uting, we have eithetrA’T =1 ag1=0 . This implies that the recoveries are
directly related td, and we have:

W)

= = a2 forgszA or% = Zp+rg 128 forEZZA (3.31)

which is equivalent to (3.23) in the general multicomponent case. Anywhere
above the triangle we obviously waste energy since the same separation can be
obtained by reducing the vapour flow until we hit the boundary to region AB.

V:>D andV>(1-q)F for feasible operation of a conventional two-product distil-
lation column. The shaded area represents an infeasible region where a flow rate
somewhere in the column would be negative. Note that the asymptotic paints (P
and R) are infeasible in this case.

We may also visualise the non-sharp split solutions with specified component
recoveries. This is illustrated in Figure 3.5 for the exam{éﬁrA ~0ssD) and

VT‘ rg = 0.25(D) (dashed lines). The unique solution with both specifications ful-

filled is at the intersection inside region AB. Note that YorV i, these become
vertical lines.

We also indicate the alternative coordinate system (dash&g)ahdB are used
as degrees of freedom. The relatiov{candD is trivial
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VT rar085 | 1p 025 Vg
A PAB !
I | A
Solution |
\ |
g I
/ \ |
/ \ |
/ \ |
1o /L e+ — — — — — Py
P [¢ B »
° 0 F D

Figure 3.5: Solution for a given pair of recovery
specifications visualized in thg,;,-diagram

3.3.4 Ternary Case

Figure 3.6 shows an example of thg,;-diagram, or “minimum energy moun-
tain” for a ternary feed (ABC). To plot this diagram we apply the procedure in
Section 3.3.2 and identify the following five points:

The peaks, which give/,,, for sharp splits A/B and B/C (no distributing
components):

[ OaZp
Pag: [rA7T,|’B’ 1] = [1,0] =>[D, Vil = ZA’GA_GA F

A\Z ARrZ
A“A BB
[10] =>[D'VTmin] = Z/-\+ZB'CX ¥ B:|F

Pgc: [rB’T,rC,T] A_eB O(B—G

The preferred split, which givé4,;, for sharp A/C-split (B is distributing):

apZy  OgPzg
Pacilra 1 Tc, 7l = [1,01=>[D, V] = [ZA+BZB’aA—GB+GB—OB "

OgZg (0 —0,)(0 ,—6g)

where is the recovery of B8 = rg/S =

and the trivial asymptotic points:
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VlF Sharp A/BC split Sharp AB/C split
A
N L R .
< >« > D
_ . ABC ' P VAB(B
Region A Pag: VTmin A BC: VTmin
. Region C
V>V min Region B O 9
above this “The preferred split] v T L
“mountain” AIC T T

ABC

—>

Fqz
. 14 VB N Le

Region ABC |

088 |

|

V3=D (L1=0)

Infeasible region
V1=(1-9)F or V=0

Figure 3.6:Vp,i-“mountain”-diagram for a ternary feed mixture (ABGY>Vyyi, above

the solid “mountain” B-Pag-Pac-Pgc-P;- Below this boundary/=V,;, for all cases, but

the distribution of feed components to the product are dependent on operating region.
These regions are denoted AB, BC and ABC from the distributing components. The
active roots are also indicated.

Po i [ra g 1l =[0,0] =>[D, Vil = [0, 0]
Py t[rarg 7l = [L 1] =>[D, V] = [L(1-9]F

The two peaks (B and By¢) give us the minimum vapour flow for sharp split
between A/B and B/C, respectively. The valleycP gives us the minimum
vapour flow for a sharp A/C split and this occurs for a specific distribution of the
intermediate component B, known as the “preferred split” (Stichimair 1988).

A part of theV,,j-boundary, namely the V-shapedd?Pac-Pgc curve, has been
illustrated by several authors, e.g. Fidkowski (1986), Christiansen and Skogestad
(1997). It gives the minimum vapour flow for a sharp split between A and C as a
function of the distillate flow. Figure 3.6, however, gives the complete picture for
all feasible operating points. In every region where more than one component
may be distributing to both products (AB, BC and ABC), at least one Underwood
root is active and we may find the actual flows and component distribution by
using equation (3.18) with the actual active roots. Note that at the boundaries one
of the components will be at the limit of being distributing.
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At boundaries B/AB and ABC/BGp 1=1 (ra g=0)
At boundary A/AB:rg =0 (g g=1)

At boundary C/CBrg =1 (g g=0)

At boundaries B/BC and AB/ABC¢ =0 (orr¢ g=1)

Comment: King’s minimum reflux formula (ref. Chapter 2) can be deduced
from the exact Underwood solution gjor a saturated liquid feed£1):

LT min _ Vimin—D _ 1 _ 1 (3.32)

However, King’s formula cannot be applied for sharp A/B or B/C split. If we try
this for example atAg, we clearly have:

Kings Lo, Underwoods L,

I I
opooe oL (3.33)

The underlying reason is that in the deduction of King’s formula, a pinch zone is
assumed to exist across the feed stage. However, this is only true in the region
where all components distribute, which is only in the triangle region ABC below
the preferred split, denoted Class 1 separations (Shiras 1950).

Example: Fora = [4, 2, 1] and equimolar, saturated liquid feed, we get:

Kings L, Underwoods L,
oooood oOooOod
1 __ 1 _, %470, _278Y 3 _ o4
a,/0g—=1 4/2-1 ap—04 4-2.76 ’

Note that King's formula predicts minimum reflux to be significantly above
the real minimum which is obtained by Underwood’s expression.

However, for the preferred split {R) we obtain:
Kings Lin ~ Underwoods |-

o o s s .
1 1
a,/oc-1 3

Here we must apply the more complex Underwood expression for pgint P
given at page 78.
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3.3.5 Five Component Example

A 5-component example is shown in Figure 3.7. Here we also plot the contour
lines for constant values of the recoveries in the top for each component in the
range 0.1 to 0.9.
V, i, ~diagram
1.5F r r r r r

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

ooooooooooooooooooooooooooooooooooooooooooooo

B
D ’
DE sib/e region \

<~ \

0.5F

Figure 3.7: Thé&/,,,i;-diagram for a 5-component feefe1).
Contour lines for constant top product recoveries are included.

Note that the boundary lines (solid bold) are contour lines for top recoveries equal
to zero or one and that any contour line is vertical YotV ;. This diagram
clearly shows how each component recovery depends on the operating point

(D,V).

Since we assume constant relative volatility only adjacent groups of components
can be distributing. In the example with five components ABCDE, the following
distributing groups exist: A, B, C, D, E, AB, BC, CD, DE, ABC, BCD, CDE,
ABCD, BCDE, ABCDE. To draw th&/,,j;-diagram forN, components, we must
identify the points () given in the procedure in Section 3.3.2.

Number of points (peaks and knotg) R (N, —1)/2 (3.34)

This is simply the sum of the arithmetic serfds-2+...+(N-1)} (one point with

no intermediates + two points with one intermediatefNg+1) points with no
intermediates). This number is equal to the number of distribution regions where
V=Vnin (10 for the 5-component example: AB, BC, CD, DE, ABC, BCD, CDE,
ABCD, BCDE, ABCDE). Note tha¥/>V,;;, only in the regions where just one
component distributes.
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Figure 3.7 also illustrates that some combinations of recovery specifications can
be infeasible, e.g.5 1=0.9 andrc 1=0.6. Observe that combined specification of

D and an intermediate recovery may have multiple solutions, @=§.2 and

rg 7=0.3. The specification of and a recovery will be unique, as will the speci-
fication of D andV. The specification of two (feasible) recoveries will also be
unique, and the solution will always be a minimum energy solutieN ;).

3.3.6  Simple Expression for the Regions Under the Peaks

In the V,j-diagram, the peaks represent sharp splits between adjacent compo-
nents { andj+1). In the region just under the peaks, the vapour flow is particularly
simple to compute since there is only one active root, (this is in fact the start of
step 2 of the general procedure in Section 3.3.2). We find directly from (3.15):

j—-1

a.z a.z A, 12
Vimin(Tj, 7 Fj+1,7) = a; I_|9_+G_J_(Ja.rj‘T aj.+lig.1 j+1,T
S i i~ Y j+17Yj (3.35)
= KotKirj K qfje 7
[f_
EZZD Zi' 1 T2 ealjen, T (3.36)

RecaIIO(J- > Gj >0 q and observe that the slopes under the peaks are given by:

a.z ., 1Z

kj = Jé >0 andkj+l:ngl<O (3.37)
o= Aj+17Yj

The contour lines under the peakgPPgc, Pcp and Ryg in Figure 3.7 are exam-

ples of lines where the slopes are given by equation (3.37). In the case of a

fcom{oletely sharp splllr,J =1 Mis1,T = = 0 ,the expression in (3.35) simpli-

ies to:

i+l J aiz :
Vimin = Z Y andD = z z (3.38)
i=1 ! ] i=1

Equation (3.38) gives us the peaks and (3.35) describes the behaviour in the
region under the peaks. Thus we can use these simple linear equations to describe
the local behaviour for a 2-product column where we specify a reasonable sharp
split between two groups of components.
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3.4 Discussion

3.4.1 Specification of Recovery vs. Composition

We have chosen to use component recovery (or net component flow), rather than
composition, which is used by many authors. One important reason is to get a lin-
ear equation set i, D andR inside each distribution region. If we choose to use
composition in (3.18), the equation set may again become linear if we divide by
D and compute the ratio V/D. But then we do not have the vapour flow (which we
use as energy indicator) directly available.

Another important reason is that when we apply the equations for directly coupled
columns, there is no single product stream since the product is the difference of a
counter flowing vapour and liquid stream. Then there is not any unique composi-
tion related to a certain specification\oAndD as degrees of freedom.

Nevertheless, for the final products, it is more common to use composition as
specification. But we choose to compute the corresponding recovery (or net com-
ponent flow) and use those variables in Underwood’s equations.

The relation between recovery and net component flow is simply that the recovery
can be regarded as a normalized component flow: wi/wi, . Wi/%zF)

In the following we switch between usingor w depending on which one is the
most convenient in a certain expression.

3.4.2 Behaviour of the Underwood Roots

TheVy,diagram is also very well suited to illustrate the behaviour of the Under-
wood roots in each sectiorp(P ) as we change the vapour flow. Recall that
Underwood showed that as the vapour flafy i reduced, a certain pair of roots
will coincide, and we ge¥=V,,j,. But how do we find which pair, and what hap-
pen to the other roots? Also, recall thégfi,is not a constant, but depends on how
we select the two degrees of freedom in the column.

We illustrate the behaviour with a ternary example in Figure 3.8. We have two
common roots§,, 6 ). In each of the three casgis D is kept constant and

is reduced from a large value in the region whepe/,,,i, until we are in region

ABC where all feed components distribute. The behaviour of the roots is com-
puted from the defining equations (3.7) and (3.8). Observe how theppaip 5
approaches the commonrddt  and how Y. approaches the other common
root 8 as we cross a distribution boundary to the region where each common
root becomes active.

Note also that in case where we pass through the preferred split, both common
roots become active at the same time. Observe that oneggot () in the top and
one 5 ) in the bottom, never coincide with any other root.
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Figure 3.8: Observe how a pair of Underwood roots coincide as vapour\ois (educed
and the operation cross a distribution boundary iVghg-diagram.

Figure 3.9a shows how the important ragg
regions AB or ABC where it is constaigt, = 0,
Figure 3.9b) for the rood

in the top, behaves outside the

. A similar result is shown in

in the bottom, outside the regions ABC or BC where

Y = Bg. Note that these contours are linear in each distribution region.

a) Contours of constant N

b) Contours of constant We

2

<,

Infeasible region

0.6 0.8

Figure 3.9: Contour plot of the most important roots a) in the top- and b) in the bottom
sections outside the region when these roots are active. Same feed as in Figure 3.8
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3.4.3 Composition Profiles and Pinch Zones

At minimum energy operation with infinite number of stages, the composition
profile will have certain pinch-zones where there are no changes from stage to
stage. Shiras (1950) denoted these as points of infinitude. The pinch zone is a cen-
tral issue in the deduction of Underwood’s equations for minimum energy
calculations. In this section we will present expressions for pinch zone composi-
tions and discuss important characteristics of the pinch zones and composition
profiles.

3.4.4  Constant Pinch-zone Compositions (Ternary Case)

Underwood showed how to compute the pinch zone compositions for cases with
infinite number of stages. In Underwood (1945) the following expression is used
to find a pinch zone composition in the top section for componhemated to
Underwood rook:

N _X%pD @ W @
T Lp (a-9) Ly (a-@)

(3.39)

In the bottom section, we simply apply the roots for the bottgm () and bottom
component flowsw; g) to get the corresponding pinch zone compositions (note
that each element, g is normally negative since we define the positive direction
upwards). Underwood (1945) also showed that we may get infeasible composi-
tions from this equation. We also see that as the roots approach a relative
volatility, the denominator term in (3.39) will approach zero, and so will the com-
ponent flow in the nominator. We can get around this numerical problem by
always assuming a very small component flow when computing the roots.

Let us use a ternary example with feed components A, B and C. From (3.39) we
find three compositions for each section. In region AB we remove the heavy C
from the top product. Thus, somewhere in the top section there will be a pinch
zone where only A and B appear. In this regi@n, will be an active root. The

actual pinch composition can be found by applyipg in (3.39). Note that we

compute the actual rootg( ) from (3.7) after we have computed Land  from
(3.18).

Wa T %8 W 1_ %8

X = ——7 ,X = = 1-X 3.40

We may use an alternative approach to find this pinch zone composition. We com-
bine the assumption about a pinck ([ = X; X ) in the top section

, in+1 =~ X PT
where component C is fully removed{ , = 0 ) with the material balance (3.2),
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the equilibrium expression, and the definition equation (3.15) where we apply the
root®, (whichwe know is the only active root in region AB). When we solve for
the pinch, we obtain:

ag(ap—6,) ap(Bp—0p)
X = X = e =1-X 3.41
A PT eA(GA_aB) B, PT BA(GA_GB) A PT ( )

Surprisingly, from (3.41), which is valid for any operating point within region
AB, we observe that the pinch-zone composition in the top section will be inde-
pendent of the operating poir¥,D) since6, is a constant. This issue was not
pointed out by Underwood, and it is not at all obvious from (3.40) since all vari-
ables in (3.40), except , are varying in region AB.

In the bottom section, all components will be present in the product, and here the
pinch zone will be determined by, (again nota common root). This pinch zone
will actually appear from the feed stage and downwards, but we will see an abrupt
composition change in the stages above the feed stage. Unlike the pinch in the top,
the pinch composition in the bottom will change as the operating point is moved
around in region AB.

When the column is operated in region BC, the roles will be exchanged and the
pinch zone composition on the bottom will be invariant, but the pinch zone com-
position in the top will vary witiD,V.

Finally in region ABC where both common roots are active, both pinch zone com-
positions will be constant and independenDoyi.

Example.We will illustrate this by a numerical ternary example whérel,
z=[0.330.330.33],a =[4 2 1], g=1The composition profile has been computed
using a stage-by-stage model with 50 stages in each section, which in practice is
an infinite number of stages for this example. In Table 3.2 we have given the data
for four operating points, which are all in the AB region. The pinch zone compo-
sitions are computed by (3.39) and the actual root applied is indicated in the first
column.
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Table 3.2: Operating point and pinch zone compositions for the example

Ogiirﬁttf”g 1: AB/B 2: AB 3: AB/ABC | 4: Pref. split
DV 0.37 0.98 037 0.77 0.36 0.62 0.44 0.78
farferfer | 1.00 0.10 0.00] 0.90 0.22 0.00 0.80 0.27 0J00 1.00 0.33 p.00
XD Xap Xcp | 0.91 0.09 0.00] 0.80 0.20 0.0p 0.75 0.25 0.0 0.75 0.25 (.00
Xag Xgg %cg | 0.00 0.47 0.53| 0.05 0.41 0.54 0.10 0.38 0.p2 0.00 0.40 (.60
Top ¢, |1.20-0.20 0.00 1.67 -0.67 0.00 2.22 -1.22 0.00| 2.22 -1.22 0.00
pinch g 0.45 0.55 0.00| 0.45 0.55 0.00{ 0.45 0.55 0.00| 0.45 0.55 0.00
comp. @ 0.18 0.05 0.77|0.25 0.19 0.56|0.33 0.33 0.33|0.33 0.33 0.33
Bottomy, |0.35 0.37 0.28]0.34 0.35 0.31] 0.33 0.33 0.33] 0.33 0.33 0.33
pinch g, |0.00 0.68 0.32|-0.050.68 0.37-0.11 0.70 0.41 0.00 0.61 0.39
comp. y. |0.00-0.27 1.27)-0.01-0.29 1.30| -0.02 -0.32 1.34 0.00 -0.27 1.27

The composition profiles along the column are shown in triangular diagrams in
Figure 3.10 and in composition against stage number in Figure 3.11. Note that the
pinch related tapg is constant in all these cases. In region ABC (cases 3 and 4),
we will see that the pinch-zone develops on both sides of the feed stagephus
and @ applied for the top and bottom sections give the same result. Also here,
the pinch zone composition is constant in the whole region ABC, and the compo-
sition can be found alternatively by solving a feed flash.

Itis also interesting to see that roots which are not common roots plays an impor-
tant role for the pinch. In the triangular diagrams in Figure 3.10, we see that the
composition profile develops along the straight line from one pinch point to the

next, even if the next pinch point is infeasible, it acts as an asymptotic point and
gives the direction of the profile.

At the point of preferred split, which is in fact the intersection of region AB, BC,
ABC and B, we will have three pinch zones in the column. One through the feed
stage as in region ABC, a second somewhere in the middle of the top section as
determined for region AB, and a third somewhere in the middle of the bottom sec-
tion as in region BC.
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Case 1: Region AB/A Case 2: Inside region AB
B A B

O X7 pinch &
|
|
|

0 XB Pinch
n (stages)
WX X

Case 4: Preferred split
B

C A

Figure 3.10: The composition profiles attempt to reach the theoretical pinch points.
Plot shows composition profiles in for the four cases given in Table 3.2.

Case 1: Region AB/A Case 2: Inside region AB

, 0 :
Top Feed Bottom Top Feed Bottom

Case 3: Region AB/ABC Case 4: Preferred split
- 1 -

0.8
0.6}
0.4

0.2

0 - 0 - .
Top Feed Bottom Top Feed Bottom

Figure 3.11: Composition profiles by stage number for the four cases given in table 3.2.
Note the constant pinch zone in the top section
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3.4.5 Invariant Multicomponent Pinch-zone Compositions

In the general case we will find that in every region where one or more compo-
nents are completely removed from one of the products, we will have an invariant
pinch zone composition. More precisely, this occurs in the regions below the
boundary for sharp split between the most extreme components. For example for
the 5-component case in Figure 3.7, the invariant pinch zone compositions appear
in regions AB, ABC, ABCD, ABCDE, BCDE, CDE and DE.

To select the proper root to be used in (3.39) the following rules apply:

* When there aré\,, 4 heavy components not distributed to the top prod-
uct, the rootgy._ yung apPplied in (3.39) will give us the invariant pinch
zone compoasition in the top for the whole distribution region. This applies
in each of the regions to the left of the preferred split (e.g. belgyP--
Pap-Pag in Figure 3.7). In the bottonyy;  will give the pinch below the
feed stage.

* Similarly, when there ar8l| 4 light components, not distributed to the
bottom (but all are distributed to the top product), the 4opt | ng
applied in (3.39) will give us the invariant pinch zone composition in the
bottom (e.g. for the regions belovw P Pge-PcePpe in Figure 3.7). In the
top @ Will give the pinch above the feed stage.

At the boundaries, where a component is at the limit of being distributing, two
pinch zones may appear in each section. Note that at the preferred split, there will
be a pinch zone through the feed stage, and we observe the invariant pinches in
the neighbouring regions in both column ends.

The behaviour of the pinch zones plays an important role in directly (or so-called
fully thermally) coupled columns. In the ternary case, the top pinch represents the
maximum composition of the light (A) component which can be obtained in the
first column when the reflux into the column is in equilibrium with the vapour
leaving the column. When the columns are connected, the minimum vapour flow
in the succeeding column will have its minimum when there is a pinch zone across
the feed region. And this minimum will be as low as possible when the amount of
light component is as high as possible.

Furthermore, in the Petlyuk column, we know that the energy requirement in the
succeeding column is constant in a certain operation region. This is easy to
explain from the fact that when the feed pinch composition in a binary column is
constant, the energy requirement will also be constant.
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3.4.6  Pinch Zones foNV>V i,

We have above discussed the pinch-zones for the case Vi#¥ég;,,. Above the
Vmir-mountain, in region B, we may still use equation (3.41), but we have to use

the actual root in the top sectign  , instead gf
ag(as—@p)
B\M A~ %A
X = = X =1-X , X =0 (3.42)
A PT OA(C A —0g) B, PT A PT®C, PT

When we combine this expression with the behavioupgf as shown in Figure
3.9a we know that the pinch-zone composition will be constant along the same
straight contour lines wherg, is constant.

A similar relation is found folp~ - and the pinch zone in the bottom when the col-
umn is operated in region B. This is also illustrated in Figure 3.9b.

ac(ag-We)
— _ _C\"B C _
XA,PB =0, XB,PB = m—)’XB,PB = 1_XB,PB (3.43)

3.4.7  Finite Number of Stages

Considering a ternary feed (A,B, and C) we will now look at the stage requirement
for a split close to sharp A/C split, with a specified impurity in the top and bottom
for a column with finite number of stages. Minimum energy for infinite number
of stages is easily found from thé,,-diagram as the V-shaped boundaries
between the regions AB/B and B/BC. However, with finite number of stages the
real minimum vapour flow\{r,in has to be slightly higher. We want to keep the
ratio Vemif Vmin below a certain limit, and this gives us the stage requirements.
Figure 3.12 shows the result foizmidVmin=1.05 for a given feed and impurity
constraints. The total number of stagbs-N1+Npg) is minimized for each oper-
ating point.

Observe that the largest number of stages is required close to the preferred split.
When we move away from the preferred split, the number of required stages in

one of the sections is reduced. The lesson learned from this is that if the column
is designed for operation on one side of the preferred split, this can be taken

advantage of by reducing number of stages in the appropriate section. However,
if the column is to be operated at, or on both sides of the preferred split, both sec-
tions have to be designed with its maximum number of sthydaghed).

The top section stage requirement is reduced to the left of the preferred split. The
reason is that the real minimum vapour fldy,,i, (dotted) is determined by the
requirement of removing A from the bottom which is given by the boundary AB/

B. At the same time the requiredy,;,” for removing C from the top is given by
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25 T T L T T T T
_______ B ______ N=max(N,)+max(N;)
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5 N=N_+N_
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vV .
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> T T ST 2=[0.330.330.33]
""" g=[1.00]

0.5 1 | 1 1 1
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D

Figure 3.12: Required number of stages in top and bottom sectiow¥Qy;,=1.05 and
separation between A and C with less than 1% impurity. The actual operating points
considered are shown (dotted) in W¥g-diagram.

the boundary between regions AB/ABC. This implies that we may take out stages
in the top because we have a much larger vapour flow than required to remove C.
Thus we really hav&/>>"V ..." and the requiredNt will then approach a lower
limit, Ntmin Which can be approximated by the wellknown Fenske equation
which can be applied between any two kelydH) and any two stages (here top

(T) and feedk)) and infinite reflux(=V):

109(§ 4, 7¢) X 1/ XH, T
o= T H TR where = ———=  (3.44)
min - log(a, /ay,) BH,TF XU E/ XH E

N
In the top section we have to consider separation between B and C, and in the bot-
tom, separation between A and B. Note that in this equation, the impurity
composition (e.gxc tin the top andky gin the bottom) will normally dominate
the expression, st,n will neither depend much on the feed pinch composition
nor on the intermediate (B) in the end.
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At the preferred split, the Fenske equation givés, ., =5 ahg . .=6 for

the feed data and purity requirement as in Figure 3.12. We may then for example
use the very simple rulbl = 2N_..  (see Chapter 2) as a first approach in a sim-
ple design procedure for each section. This rule would in fact be quite good for

the example above.

3.4.8 Impurity Composition with Finite Number of Stages

Note that in all distribution regions in\4,,;-diagram, except in the triangle below

the preferred split, one or more feed components will be completely removed
from one of the products with infinite number of stages. However, even with a
finite number of stages we will in practice remove these components almost com-
pletely. Consider now that we have designed the number of stages to give
satisfactory performance in a range on both sides of the preferred sphtelgd
andNg=12 in the previous example). Then, as we move the operation away from
the preferred split, we have botthN®>>N ;" and “V>>V ;" in one of the sec-

tions, and the impurity of the component to be removed in that section will be
much smaller than the required specification. Thus, in these cases the column acts
as atrue rectifier for the component to be removed. This means that in region AB
of the ternary example, when we move a bit away from the boundary AB/ABC,
the mole fraction of C in the top will become very small also for finite number of
stages. This can be observed in the composition profiles in Figure 3.11 for cases
1 and 2 where we observe that the C-composition approaches zero quite close to
the feed stage, and the top is in practice “over-purified”. A rough estimate of the
remaining impurity can be obtained by the Fenske equation (3.44) by using the
real number of stages and solve for the appropriate impurity.

3.5 Summary

TheV,,i-diagram gives a simple graphical interpretation of the whole operating
space for a 2 product distillation column. A key issue is that the feasible operating
space is only dependent of two degrees of freedom and th&t-thelane spans

this space completely. The distribution of feed components and corresponding
minimum energy requirement is easily found by just a glance at the diagram. The
characteristic peaks and knots are easily computed by the equations of Under-
wood and represent minimum energy operation for sharp split between all
possible pairs of key components. The diagram represents the exact solution for
the case of infinite number of stages, and the computations are simple and
accurate.

Although the theory has been deduced for a single conventional column, we shall
see in the next chapter that the simpig;-diagram for a two-product column
contains all the information needed for optimal operation of a complex directly
(fully thermally) coupled arrangement, for example the Petlyuk column.
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In this work we have only considered simple ideal systems. But it is clear that
such diagrams can be computed for non-ideal systems too. The key is to use com-
ponent property data in the pinch zones. The material balance equations have to
be fulfilled in the same way for non-ideal systems. It is also straightforward to
compute the knots and peaks from a commercial simulator e.g. Hysys, where we
use alarge number of stages and specify close to sharp split between each possible
pair of key components.
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Chapter 4

Minimum Energy for Three-
product Petlyuk Arrangements

The main result is an exact analytical solution of
minimum energy for separation of a multicomponent
feed in a 3-product Petlyuk column, and we also

show that this result is the same as the minimum
energy required for the most difficult binary

product split in an ordinary 2-product column. We
use the V ,,-diagram to effectively visualize the
characteristics of the minimum energy solution for
any given feed.

Some of the results in this chapter were first pre-
sented at the AIChE Annual meeting, Dallas Texas,
November 1999 with the title “Exact analytical
expressions for minimum energy in generalized Pet-
lyuk distillation column arrangements”.
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4.1 Introduction

A_ﬁ, In this Chapter we will analyse the mini-
o o D (A) mum energy solution for the three-product
Lt = Rly c21 Petlyuk arrangement as shown in Figure
¥ Main 4.1. Aq important contributio_n is to show
column the minimum energy requirement and

F.z,q detailed vapour flow requirements by just

(ABC) S (B) a glance at thé&/,,j-diagram. TheVp i
diagram was presented in Chapter 3 and
Eéﬁg%cr_ the results are directly based on Under-
C22 wood’s equations for multicomponent
vgt = RVEZ distillation in conventional columns
(Underwood 1945-48). We review the
Eb_' B(C) most important Underwood equations and

Figure 4.1: The integrated  gome minimum energy results for Petlyuk

Petlyuk arrangement  for 5 angements given by previous authors in
separation of ternary mixtures Section 4.2

The main treatment of the Petlyuk arrangement is given in Sections 4.5-4.8. The
analytic minimum energy expression has been given by Fidkowski and Kro-
likowski (1986) for the case of a saturated liquid ternary feed and sharp product
splits. In this paper, the minimum energy expressions are generalized to handle
any feed quality and nonsharp product splits. We also illustrate by two examples
that we easily handle more than three feed components.

We will also discuss some basic issues on how to apply the Underwood equations
on directly coupled columns like the Petlyuk arrangements: First, in the directly
coupled sections of the Petlyuk arrangement we have recycle flows from the main
column into the top and the bottom of the prefractionator. This is a new situation
compared to the conventional arrangements, and we must check carefully how the
recycle streams affect Underwood’s methods. This issue is treated in Section 4.3
and it turns out that with some restrictions on the recycle stream compositions, the
directly coupled columns can be treated as ordinary columns.

Second, in Section 4.4 we present the important result from Carlberg and Wester-
berg (1989) on how the Underwood roots carry over to succeeding directly
coupled column. This is a very important result and is a basis for the very simple
assessment we can do witNg;-diagram.

Finally we will relate the results to some other types of column integration, and
briefly discuss implications to stage requirements and control.
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4.2 Background

4.2.1 Brief Description of the Underwood Equations

Consider a two-product distillation column with a multicomponent fé&dajth
liquid fractionq and composition vectar of N components. The defining equa-
tion for the Underwood rootsp( ) in the top amd ( ) in the bottom are:

N
W, 1 a;W g

Bottom:Vy = !
@-9 e 2 (&

N
Top: V4 = z (4.1)
i=1

There will beN solutions for each root, and the sets from the top and bottom equa-
tions are generally different. Note that the net flow for a compovehig defined
positive upwards, also in the bottom. Underwood showed that with infinite
number of stages, minimum vapour flow is obtained when pairs of roots in the top
and bottom coincide. By subtracting the equations above, we obtain what we
denote the feed equation, which gives us the set of possible commof roots

VoV = Cawir-wig) o agF - (1-gF 4.2)

Underwood showed, that for ordinary columns, the number of each set of roots is
equal to number of componer(s), and they obeya; 2@, 26,2y, , 20, .4 ,

and that th€N-1) possible common roots are in the range between all volatilities.
When we apply the material balance at the feed stage, we observe that the possible
common roots depend only on feed composition and quality, and not on how the
column is operated. However, it is not obvious when we may apply the common
roots back into the defining equations, in particular for more than binary mixtures.
The general rule is that we may apply the common roots being in the range of vol-
atilities for the components distributed to both ends. We denote these roots active
roots. If we have any active roots theh= V..~ and there will be a unique solu-
tion for a given product purity specification. Otherwise V .-

Note that we assume constant pressure and constant relative volatilities, and then
the vapour liquid equilibrium (VLE) relationship between the vapgyeafd lig-
uid (X) compositions is given by:

Y = —— (4.3)
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4.2.2 Relation to Previous Minimum Energy Results

An analytical expression for the vapour flow in a three product Petlyuk column
with a ternary feed (components A,B and C) and liquid sidestream was obtained
by Fidkowski and Krolikowski (1986) for saturated liquid fea:(Q), and sharp
product splits.

Petlyuk _ . Petlyuk _ OOaZy  OpZy  QpZg U
Tmin Bmin max + [F (4'4)

\Y )
[Oa—04 ap—6g 0ag—6g7

Here,6,, 05 are the two common Underwood roots, obtained from (4.2) for the
prefractionator feed. Glinos et. al. (1986) also presented this solution and we dis-
cuss briefly its characteristics.

The prefractionator (column C1) has to perform a sharp A/C split. The minimum
vapour flow in the prefractionator column is obtained for a particular distribution
of the intermediate B component, denoted as the preferred split. The load on C21
and C22 will depend on the amount of intermediate B in each feed. Thus the min-
imum energy requirement in the top of column C22 or in bottom of C21 will
increase as the amount of B is increased in each of the feeds. Several authors, e.g
Fidkowski and Krolikowski (1986) and Christiansen and Skogestad (1997)
showed that the optimum can be obtained by operating the prefractionator in the
whole region between the preferred split and the so-called “balanced” split where
the vapour flow requirement in bottom of C21 and top of C22 becomes equal. This
implies that there is a “flat” optimality region and that the minimum vapour flow
can be obtained not only at a single operating point, but along a line segment in
the space spanned by the two degrees of freedom.

Fidkowski and Krolikowski (1986) deduced equation (4.4) by a quite detailed
algebraic procedure, via expressions for pinch-zone compositions at the connec-
tion points as function of the operating point of the prefractionator.

Here we will use another approach, more directly based on the Underwood equa-
tions. Such an approach was first presented by Carlberg and Westerberg (1989ab),
who also extended the solution to more than one intermediate component. In this
paper we extend the work of Carlberg and Westerberg and propose a very simple
graphical interpretation in the,,;,-diagram. This gives a powerful tool that can

be applied to any number of components, and for Petlyuk arrangements extended
to any feasible number of product streams with any given purity specifications.
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4.2.3 TheVi,-diagram for Conventional Columns

We here review the results from Chapter 3. Since a two-product column operated
at constant pressure has only two degrees of freedom we may visualize all possi-
ble operating points in th®-V plane. This is illustrated in th¥,,;,-diagram,
which is shown for a ternary feed (with components ABC) in Figure 4.2. The dia-
gram provides an informative visualization of the exact solutions for any given set
of feasible specifications and infinite number of stages.

V>me in
V+/F regions A,B and C b
A A/BC ABIC
PAB: VTmin PBC: VTmin \VJ L
: T T
Region B
Region A “The preferred splj Region C
AIC
F)AC: VTmin
ABC
. —>
Region AB Region BC Fgz
6
Region ABC
6,6 L
AYB 1q Vg Y B
V=Vpinin regions AB,BC and ABC
| B
0 1o

Figure 4.2: The&/,,j-diagram for a ternary mixture ABC. The components which
are distributed to both ends are indicated in each region, with the corresponding
active Underwood roots.

Each peak or knot in this diagram;(Rs the operating point for minimum vapour
flow and sharp split between the component maifvmin). The straight lines
between the peaks and knots are distribution boundaries, that is a boundary where
a component is at the limit of appearing or disappearing in one of the product
streams. We denote the distribution regions by the components being distributed
to both products when operating in that region. For example in region AB com-
ponents A and B are distributing to both products, whereas component C only
appear in the bottom product. In region A, B and C we have nho common Under-
wood roots andv > Vmin - Below the “mountain”, in regions AB, ABC or BC,
one or more pair of Underwood roots coincide and= V.., . The actual active
common roots are those in the range between the volatilities of the distributing
components.

In the following we will discuss how we also can use tg;,-diagram for
directly coupled columns like the Petlyuk arrangement.
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4.3 The Underwood Equations Applied to Directly Cou-
pled Sections

4.3.1  The Petlyuk Column Prefractionator

In the prefractionator of a Petlyuk column we can
still use the net component flowv) or feed recov-
’—’VT'VVT ery (r) to describe the separation carried out in the
r LpXT } D.wir column. From the material balance at any cross-
. section in the column:
vq

z Win = Vnyi,n_l‘n+ 1Xi+1,n (4.5)

LeXB
VaWe } BMe  Thus, for the column in Figure 4.3 the composition
in the flow leaving the column top is dependent on
Figure 4.3 The the composition of the incoming flow through the
prefractionator of a  Material balance:
Petlyuk arrangement
W: ++ L+X
_ L, T T™M,LT
Yivr = Ty (4.6)

Note that for a conventional column with total condenger; = y; , and we
have a unique relation between net component flow and the product composition
for a given distillate ﬂowyi LT =W /D , wher® = Vi-Lt

We may regard the vapour flow entering the Petlyuk column prefractionator at the
bottom and the liquid flow entering at the top as independent feeds with compo-
sitions & 1.\wg). Thus the number of degrees of freedom in operation is now
increased, because in additionltpandVg we may also consider the new “end-
feed” compositionsX 1;Yyp) as degrees of freedom. The important question is
how these new “feed” compositions affect the split of components from the main
feed ) to the top and bottom sections, in addition to our two main degrees of
freedom as expressed by the flow rai23/f) in theV,,-diagram.

The Underwood equations used to produceMthg-diagram have been deduced
from the material balance (4.5) and the vapour liquid equilibrium, without con-
sidering product compositions at all. Note, however, that the results are based on
the restrictionsw; + 20 andv, g <0 . In a conventional column, these condi-
tions are always fulfilled, but the prefractionator in Figure 4.3 may be operated in
modes where these restrictions are not met. Thus provided these restrictions are
fulfilled, the equations behind thé,,,-diagram will also apply for the Petlyuk
column prefractionator.
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Consider the ternary feed ABC with tNg;-diagram in Figure 4.2. Assume first
that we operate the column in region ABC. In this case a pinch zone will develop
on both sides of the feed stage with the pinch zone composition given from the
feed flash. The transport of components through the pinch zone is given by the
material balance (4.5), the VLE and the pinch conditiy¥X+1), and will not

be influenced by a composition far away from the pinch. Thus, in the whole ABC
region, the product split, given by for exampM?’T , is completely independent
of the “end” compositionsx(.\v/p)-

In region AB, we know that in a conventional colun, + = 0 . If some heavy
C component is present in the liquid entering the prefractionator top it has to be
transported downwards, and thus violates the condm%pTz 0 . However, if
we requirexC, LT =0 ,we make sure that the condiﬂqﬂT =0 is fulfilled.

This leads to the following general rule:

The \,jr-diagram for a conventional column can also be applied to the
Petlyuk prefractionator, provided that a component, which would have
been removed from one end in the conventional column, does not appear in
the end “feeds” of the Petlyuk prefractionator.

This means thatifv, = 0 for a given set BfandVy in the conventional col-
umn andx; T = O for the same setDBfandV+ in the Petlyuk prefractionator,

the same/mm diagram applies. The compositions of the other components in the
end “feeds” do not affect the product split (given Wy or r; 7). However, the
local compositions in the flows leaving the colum,w,1are affected through
the material balance equation (4.6).

Thus, the Petlyuk column prefractionator with an infinite number of stages has in
practice only 2 degrees of freedom in operation, as long as the above constraints
on the end-feeds components are fulfilled.

4.3.2  Composition Profiles

An operational and computational advantage with the directly connected prefrac-
tionator is that we may decouple the feed split, expressed by the recoygry ( )
or alternatively the net flow of each componew ¢ ), fromthe composition in
the flow leaving the column. In Figure 4.4 the profiles for the preferred split are
shown for a Petlyuk column prefractionator a), and a conventional column b). The
end-feed compositions have been set equal to the pinch zone compositions in each
end of the Petlyuk prefractionator. This implies that the vapour and liquid com-
positions in each end are at equilibrium.

Observe that the profiles develop similarly from the feed stage to the pinches in

each section where only two components are left. The differences are observed
towards the ends. In the conventional columns remixing occurs caused by recy-
cling of the condenser and reboiler products.
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a) Petlyuk column prefractionator b) Conventional column
1 -
0.8
&
= 0.6
1%2)
g
€04
o
@)
0.2
ol—= - ~ ol—= - ~
20 40 60 80 100 20 40 60 80 100
Top Bottom Top Bottom

Figure 4.4: Composition profiles at preferred split. Feed z&a33 0.33 0.33],
o =[4 2 1],g=1. End feeds in a) are set equal to pinch zone compositions.

If we change the composition of A/B returned at the top or B/C at the bottom in
a), we will get the same profile development from the feed towards the pinch
zones, and the same net flow X of components, but from the pinch to the column
ends the profile will move towards the end stage composition determined by (4.6).

Another very important feature is the profile of the components being removed.
Note that it approaches zero close to the column ends (heavy C is removed in the
top and light A in the bottom). This is a characteristic of operation aMhg-
boundary. IfV>V,,;,, this component composition would approach zero closer to
the feed stage. The number of stages in this example is large (50+50) so it can be
regarded as “infinite” number of stages.

4.3.3 Reverse Net Flow of Components

We have now stated that the prefractionator performs exactly like the conven-
tional column if we ensure that the end feeds do not contain any components that
would have been removed from that end with a conventional column.

However, in a Petlyuk configuration this is not always the case. Consider the sit-
uation where we operate in region AB (see Figure 4.5 at page 103, case i), and the
liquid entering the column from the top has a composition equal to the invariant
pinch zone composition given by equation (3.41). Then we reduce D until we
enter region A. In the conventional case, component B would no longer be distrib-
uted to both products, and no Underwood roots would be active. But in the
prefractionator we still have B in both sides. Note that at the border A/AB we have
wg =0, and as we reduce D furthevg twill become negative. Another interest-

ing observation, is that if we compute the pinch zone composition relateg to

from (3.41) (note thatp, = 6, ), then the pinch zone composition, which was
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infeasible in region AB (refer to table 3.2), becomes feasible in region “A”. And
at the same time, the invariant pinch relateaptp is still invariant in region “A”.
This implies that there are two different and feasible pinch compositions where
only two components appear, a situation which is simply impossible in a conven-
tional column.

Note that for a directly coupled column, where we for example may have
Wy >0 andwg <0, some of the “truths” from the classical Underwood
methods are no longer vaI|d but the basic equations are still very useful because
they are based on the plain material balance in equation (4.5) and the VLE (4.3).
Thus we only need to consider a few new types of operating regimes which occur
with the directly coupled columns.

V>Vmin

/ above the “V”

VA/F

Case iii)

Region »
DA Pac Vi -y Lt
A3 4
R .-\ Region
0 g
(®a) Caseil)\ .cv_pe
ABC
Region BC (%) Faz
88
Region ABC

Po

Figure 4.5: TheV,,j;-diagram for the Petlyuk column prefractionator is identical to the
diagram for the conventional diagram in region ABC and also in AB when C is not
present in the top-feed, and in BC when A is not present in the bottom-feed. However,
the V-shaped/,j-boundary for sharp A/C split (bold) is extended when B is present in
the end-feeds\g or Ly)
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Looking at theV,,;-diagram in region “A”, it turns out that the Underwood root
8, isthe single active root in this region when the following condition is fulfilled:

)
Xg LT XB/,\PT (4.7)

At the boundary AB/"A” the pinch zone composition related &, is
xg p7t = 0,anditwillincrease as we move the operation further into reglon A
The implication is simply that we may think of region AB as being extended into
region “A” as long as a sufficient amount of B is present in the top. This observa-
tion has been confirmed by simulations.

Similarly, if we consider the case where we operate in region BC, and move
across the boundary to “C” (casie Figure 4.5), but have<B vg>0 , we will
obtain reverse flow of component B from the bottom and upwards.

Another interesting case is if we operate to the left g ut above the V-shaped
Vmir-boundary (casei, Figure 4.5) and C-component is present in the top: We
will then obtainw. <0 orre <0 . Thus the C-component will simply “fall”
straight through the column. In this case correspondingly, the region BC where
B85 is active will be extended into region “B”. The limiting composition which
gives the required C-composition is also here given by the pinch equations by
Underwood. This case is particularly interesting for the lower part of the main col-
umn in a Petlyuk arrangement in cases where we allow impurities in the
sidestream product, and we will treat this further in Chapter 9.

Note also, that with a directly coupled column, the feasible range of operation is
changed. We still require positive vapour and liquid flow in sections, but negative
net product flow is now feasible, e.B. = V; —L; <0 s allowed, butis clearly
not optimal

The important implication is that the separation of the feed and energy require-
ment of the Petlyuk prefractionator is identical to a conventional column in the
important operating regions (B, AB, ABC, BC) close to the preferred split.

4.3.4 Reverse Flow Effects on the Underwood Roots

Underwood showed that the values of the roots from the defining equation are in
the range between the relative volatilities of components fow I1L 20 and all
W g < 0. With reverse component flow this result is no longer valid. This can be
shown by a simple example:

We consider our base case where= [4,2,1] z 5 [0.33 0.33 0.38
g = 1. Assume first that we are operating agfh Figure 4.5. The top
recoveries areR; = [1, 0, 0] . The three Underwood roots are found as

® = [@n Oz @] = [2.78 2 1. Note here thap, = 8,
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Then we move to the left along the V-shapgg¥oundary where we have
reverse flow of the B-component, e.g.Fgr = [1,-0.2 0] we obtain
@ = [2.78 2.28 1. We still havep, = 8, , but note that bogfp ~ and

@g are in the range betweem, awog, . If we increase the reverse flow
further, we will reach a pointwher@, @z and further increase will give
Pp<Pg.

Note that the definition of the Underwood roots is based on the material balance
(4.5) without any restriction on the direction of component flows, thus the equa-
tion for pinch zone compositions and minimum reflux are still valid.

4.4  “Carry Over” Underwood Roots in Directly Coupled
Columns

The first part of this section is mainly based on Carlberg and Westerberg (1989ab)
who pointed out that Underwood roots “carry over” from the top of the first col-
umns to the second column in the directly- or fully thermally coupled columns as
shown in Figure 4.6.

The vapour flow in the top of the prefractionator is given by the Underwood defin-
ing equation:

c1 O"W'(,:Tl
VT = Z—I ICl (48)
(o, —077)

Note that we generally have to apply the actual Underwood rapts (). The com-
mon roots @ ) only apply for minimum energy operation.

The top and bottom defining equations for column C21 VA
become:

c21 co1
c21 Wit c21 ;Wi
vV = YV = — (4.9 VvV
T c21,''B Cc21 T
Z(O(i —Q ) Z(cxi -y )

The material balance at the connection point gives:

V4 *L

Figure 4.6: Directly

The combination of these gives the feed equation for (tg@gpleclll CO'“mI”Z (fully
umn C21 where the common roo8S@1 ) appear; o maly couple )

c21 ,,C21_ ,,C1 C21_,yC21 — \,C1
Vi“=VgT = VT andwCEl-wCal = wCl (4.10)
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a. (WC21 021) q Wc1
c21 ,,C21 iT ~WiB i T c1
Vi VET = Z = Z =V (4.11)
T B c21 c21 T
| (al - (G - )

Here we observe that the feed equation of column C21 (4.11) is identical to the
top section defining equation for column C1 in (4.8). Thus the possible common
roots in column C21 are equal to the actual roots from the defining equation in the
top of column C1:

92l = ¢C1 (4.12)

The common rootsq ) of column C1 are found from the feed equation for the
main feed (note that we will omit the superscript C1 for column C1), which with
a ternary feed is the familiar expression:

9a%a  %8%  9c%c _ - 1-q (4.13)
aA—G ag-6 ac--6 '

Since an active common root represents a minimum vapour solution in a single
column, and8€21 = ¢C1 | we have the following relation for the ternary feed
example where we recover all of the light component in the top of C21 with the
middle and heavy component recovery equal to zero:

VEZL_OaZa o OaZa _ GpZp , _%aa (4.14)
= Czi%  _gCh €%, oCl '
AA=®Pa B Y N Y

Note that this also implies the following relation for the roots:

Ci C1l c21_ C21

OA S0y =0, =0, (4.15)

The minimum vapour flow in column C21 for any given o((tJeratlogzof C1 Elwhen
the common root in C21 is active. Then for the first rqgt™ =0, = @,
and:

c21

V 0 aZ
Tmin _ A“A
o <1 (4.16)

Ap=@Pp
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The absolute minimum solution is found Whepﬁl is equal to the common root
(901 04) Thlen thcezcommoln root of C1 becomes active in both columns at the
same tlmec()A =0, A =04 )

= (4.17)

As usual the notatiotV ,,i,’ represents the minimum vapour flow for a single col-
umn for a given feed. The outemin()” represents the effect of the operation of
C1 to the feed composition and the effective feed quality for column C21.

We may generalize this expression to any number of components and feasible
recoveries in the top with the following equation set (one equation for each root
0, 0[6;...8, car_,] given by theN§#1 components distributed to the top of
C21): Nor =

c21

?21 NdT a.zrC21
. mi 171 |T
min —— 4.18
) o (4.18)

D |—1(O( _ek )

The relation in (4.14) also shows that any sub-optimal operation of either column
C1 or C21 cannot be recovered by the other. The operation of both has to be opti-
mized simultaneously to achieve the overall minimum vapour flow in C21 as in
(4.18).

For a column C22 connected to the bottom of column C1, we will find equivalent
results. For the ternary feed case, with full recovery of the heavy component C in
the bottom of column C22 and middle and light component recovery is equal to
zero, the equivalent to equation (4.17) becomes:

. D/grfﬁn% —0cZc apZp  OpZg
min 4 = = + -(1-0) (4.19)
Clg F g ag—-6g a,—6g ag—6g

Note that we have not considered the actual compaositions in the junction streams.
However, we know from the results in Section 4.2.3, that the composition in the
return flow into the top of C1 has no influence on the product splitin C1 unless a
component which would have been removed in a conventional prefractionator
were to be introduced in that return flow. This implies that for nonsharp operation
of C1, (where all components distribute and all common roots are active) the
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return-flow composition has no influence at all. For preferred split operation, this
is also true when we ensure that there is no heavy (C) component in the return
flow.

In normal operation regimes of C1 and C21, the conditions are trivially fulfilled.
This is very important, and somewhat surprising because from a glance at a Pet-
lyuk arrangement, we might expect all kinds of complicated recycle effects due
to the two-way flows in the direct couplings.

For some types of sub-optimal operation, however, we expect that the picture is
more complicated. This is discussed further in Chapter 7 where we study the
behaviour of the Petlyuk column outside the optimal operation region. For exam-
ple, we may get reverse net flow of a component from the feed junction and
recycling of components through several columns in the arrangement.

Comment: We have previously used the feed composition and liquid fraction in
a feed equation. However, equation (4.11) is equivalent to the more familiar form
given in (4.2) or (4.13). The equivalent single stream feed flow &tecompo-
sition (2) and liquid fractiond) for column C21 are given by:

FC21 — V%l—L-?l = DC1

c21 c1
o= BN
FC21  pcC1 (4.20)
c1 c1
qC2L = el TG
FC21 DC1

The results for column C21 with a single feed stream, with properties given in
(4.20) give exactly the same results as described above.

4.5 Vqin-Diagram for Directly Coupled Columns

Since the feed to C21 is the top product from C1, minimum energy in C21 will
depend on the operation of column C1. In Figure 4.7 we illustrate how e
diagram for C21 depends on C1. We consider a ternary feed and operation of col-
umn C1 at point X, shown in the region wheve'V .. The V,;-diagram for
column C21 (dotted) will be determined by the Underwood root from the defining
equation in the top of C1 (4.16), and its peak,l?%él will be directly above

Pag-

AB
For any operating point X, we get a n&py,i-diagram for C21. Thus a change in
X will normally also affect Z as given by:
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c1  c21 Vmin-diagram
Vr AVT Z=f(X)  forC21
Feasible _-'. “-/ Operating
region __-' Cox point X for Viir-diagram

for C21

~ C1

/ for C1

Constant

C1 C1
Qp > GA

C1l

Figure 4.7: TheV,i-diagram for columns C1 (solid) and C2 (dashed) for a case where
C1 is operated aX (whereV>V,,;). If the operating poinX=Pxc (preferred split), the
Vmir-diagram for C21 will overlap the left-hand side of the diagram for C1.

L, C2LAB _ AaZpF C21,AB _
Z. VTmin = m, and D = ZAF (421)
A~ PA
However, observe that changes in X along the contour of a constant Underwood
root (see also Figure 3.9), do not affect Z.

If we specify a sharp A/C splitin C1 and want to recover all of the light A-com-
ponent in the top of C21, we first have to recover all of A in C1, which can only
be obtained for X at or above§E PSL PEE . The minimum vapour flow in
C21 will then be limited by ZP x5 , and this can only be obtained when C1 is
operated exactly at the,,;-boundaryP§t P& . The analytical solution has
been given in (4.17).

A particular interesting operation point is at the preferred splitl{’&% ), because
the diagram for C21 will then overlap the part of the diagram for C1 to the left of
the preferred split. This result is very important and will be used in the following
sections.

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



110

4.6 Minimum Energy of a Ternary Petlyuk Arrangement

4.6.1 Coupling Column C22 with Columns C21 and C1

Now we have the necessary background to deduce the simple analytical solution
for minimum vapour flow in the Petlyuk arrangement as shown in Figure 4.1. For
sharp A/C split in column C1 and sharp A/B split in column C21, minimum
vapour flow requirement in the top of C21 is given by equation (4.16):

c21_.,C21 _ OaZp
Vit v, = —SCF (4.22)
Up—Pp

We can also find the equivalent for the bottom flow in C22 for sharp B/C split
from equation (4.19):

c22_.,c22 _ —UcZc

VEPevi® = Sk (4.23)
dc—Wc

Due to the direct coupling we know that the absolute minimum vapour flow in
C21is found when we operate column C1 in a region whggre= 6 5 . Similarly,
the absolute minimum for vapour flow in C22 is found when C1 is operated in a
region wherey~ = Bz . For sharp product splits, the preferred split is the only
point of operation where both common roots carry over to C21 and C22 at the
same time. Any other solution will give a larger value for the minim vapour flow

in at least one of C21 or C22 so we know that we really only have to consider the
solution at preferred split operation of C1. Now we relate these expressions to the
required vapour flow in the bottom reboiler of the Petlyuk arrangement.

Petl . 21 ., C22
Vimin = max mirf( \F 21 —(1- q)F, min( V) (4.24)
For sharp product splits, we can express this as:
00,z —0~Z2~ 0
Vgﬁwtiln = maxG—2A- —(1-q), —==(F (4.25)
(A= 0A ¢ =00

We may use the feed equation (4.13) to remove the feed quality(feq)F from
the Underwood expressions, as we have done in (4.26). In addition we here relate
the minimum vapour flow to the top condenser:
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Oaxz a,z OnpZs [
Vil = VESL +(1-)F = mag—2a, AT BB F (4.26)
Ma—87 0p—6g 0ag—6g[

This expression (4.26) is identical to the result of Fidkowski and Krolikowski
(1986) in equation (4.4), but (4.26) is more general in that it is also valid for an
arbitrary feed qualityd). Note from (4.13) tha) affects the solution for the com-
mon Underwood rootsi(,, 65 ) and not only the tefry)F

This minimum solution implies that either C21 or C22 may get a vapour flow
larger than its minimum value. However, this only affects the local behaviour of
that column, and not the product compaosition and the operation of the prefraction-
ator and the other column. The reason is that, although the composition in the
connection point to the prefractionator may be altered and in theory might influ-
ence the separation in the prefractionator, treduct compaositionhas no
influence on the recovery of feed components unlessm@vedcomponent is
reintroduced, or there israverse flowof components back into the column. Thus
we have to verify that the heavy C cannot reach the feed junction to C21 and that
the light A cannot reach the feed junction to C22 in the main column.

It is quite easy to show that none of these situations occur at the optimal solution
by the following argument: Assume that we operate C1 along the V-shaped min-
imum energy region which is at the boundaries AB/B or BC/B in Figure 4.2. This
ensures that the intermediate B-component is distributed to both ends of C1, and
that the component C is removed from the top and A from the bottom. In C21 the
B component is transported downwards since no B shall appear in the top, and
since C is heavier than B, no C can be transported upwards in C21 at the same
time. This must also be true if the vapour and reflux in C21 are increased above
the minimum value as long as we keep the distillate product rate constant. A sim-
ilar argument can be applied for the light component A in C22. For the junction
C21- C22 at the sidestream outlet, we know that B is transported out of each col-
umn end. And sinc&/ = V there will be no A from C21 and no C from C22

in the sidestream.

min
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4.6.2  Visualization in theV,,,-diagram

By a closer inspection of the vapour flow rates for the Petlyuk arrangement, we
observe that all the important information can be found in\pg-diagram for
the feed to the prefractionator (C1). Figure 4.8 illustrates this for our ternary
example. The expressions for the peaks, shown in Chapter 3, are simply:

yCLAB o7
Tmin ATA

Pag: = 4.27
ABT a6, (4.27)
vELBIC O,z 0RZ

PBC: Tmin  _ A“A + BB (4.28)

- LPetl . .
These are exactly the same terms as the expressm)hﬁfmn in equation (4.26)

(the notation i/j in the superscript denotes sharp i/j-split in a two-product column).

Similarly we find for the vapour flow requirement into the bottom of the Petlyuk
column:

Petl 1,A/B ,,C1,B/
VBmin = ma)‘(\F VBminC) (4.29)

Bmin

This leads to the following important conclusion for pure product specifications:

The minimum vapour flow rate requirement in the Petlyuk column with
three pure products is the same as the minimum vapour flow for the most
difficult of the two sharp component splits A/B or B/C in a single conven-
tional distillation column.

This is characterized as the highest peak in thg-tiagram.

This is illustrated in the equation below where we use the column drawings as
superscripts (the Petlyuk column is shown as a dividing wall column).

A A AB
B - Max (4.30)
BC c
VBmi% VBmin ,VBmi

We will show that we can obtain detailed information about the minimum vapour
in the column and in all sections of the column from one single diagram. In the
following we assume that we operate the prefractionator at its preferred split.
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4.6 Minimum Energy of a Ternary Petlyuk Arrangement 113

Then both common roots in C1 carry over to column C21 and C22. If we look at
the expressions for how the minimum vapour flow in C1 and C21 depends on the
net component flows in the region wheg is active in both columns, we find
exactly the same functional expression:

C21

_.Cc1 _ OaWp 7 OgWg 7
TminkWa, 7 Wa, 1) = Vimin(Wa, 1 Wg, 1) = + (4.31)

V
ap—=8, ag—6p

Note that this is a functional relation, and these columns are of course never oper-
ated with the same set of component flows. The maximum amount of feed to C21
is given by the net distillate flow from C1 at the preferred split, thus the diagram
for C21 cover the part of C1 to the left of the preferred split. The minimum vapour
flow in the bottom of C21 is found by the material balance at the connection point,
and since column C1 is assumed to operate at the preferred split we have:

cz21 _ ,,C21 C1l,A/C

This implies that the origin of the coordinate system in¥hg-diagram for C21
[DC2L vE21], (shown dasheds == == = in Figure 4.8) coincide with the dia-
gram for C1 PC1, vE1 ], (thin solid ———— ), and also that the boundary
lines coincide around the peakg? It is also obvious that we requié§21>0
thus the feasible part of the diagram for C21 is the part abgve P

A similar approach can be done for tig,-diagram for C22. Here, the simplest
way is to use the functional relation for the bottom flows:

Cc22

_ C1 _0gWg g OcWc g
VeminWe, B We, 8) = Vemin(We, B We, B) = + (4.33)

ag—6g ac—6g
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A

c22 _

—,,CLBIC
VBmin

Bmin

C1
VT =0 » C1

ca1 _ CLAC C22 _ _ClLAIC

F =D F =B
Figure 4.8: TheV,,rdiagrams for columns C21 and C22 in a Petlyuk arrangement
overlaps the diagram for C1 when C1 is operated at the preferred split. Thus, minimum
vapour rates for all column sections in the Petlyuk arrangement can be found directly
from theV,-diagram of a single two-product column (the prefractionator C1).

By using the material balance at the connection we find that the origin Mhe
diagram for C22 expressed bpf22 V&2 ] (dash-dottoes s ), can be
placed exactly at &, and this diagram will overlap the C1-diagram to the right
of Py, also here with the feasible region abovgcPsince we require
VE2 = VG- Veri,>0.

We may now read the required minimum vapour flows in all sections of the Pet-
lyuk arrangement directly from thé,,;,-diagram for the prefractionator feed as
shown in Figure 4.8

Thus in order to find if C21 or C22 gives the highest vapour flow requirement in
the Petlyuk column, we simply have to find the highest peak inthg-diagram

for a two-product column with the same feed. It does not matter if we refer the
peaks to the top or the bottom (e.g. with the coordinate syférh Vgl shown
thin dotted --------- ). Thus, for the case shown in Figure 4.8 we observe by a
glance at the diagram thagRis the highest peak and therelgel = vB/C

min Bmin
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4.6.3 Nonsharp Product Specifications

The general expression (4.31) for the vapour flow in column C21 is valid for any
feasible distribution of A and B component to the top. Similarly, equation (4.33)
can be used when the B and C components both appear in the bottom of column
C22. Thus, given the recoveries of each pair of distributing components to the top
and bottom of the Petlyuk arrangement we may also handle the nonsharp case by
equation (4.24). However, nonsharp product specifications will be treated in full
detail in Chapter 9 where we among other things will show that the implication to
the shape and extent of the optimality region is particularly interesting.

4.6.4 The Flat Optimality Region

We return to the sharp product split case and study the characteristics of the flat
optimality region by comparing the peaks in ¥g;-diagram. When we consider

the preferred split operation we have in general three different solution cases,
characterized by the requirement for minimum vapour flow from column C21 and
C22 in the main column:

c22 cz21 C1AB_,,C1,BIC
1. C22 controlsV g in> Vimin= (1 =DF  o¥gnin <VBmin
c22 c21 C1,A/B C1,B/IC

2. Balanced: Vg in = Vimin—(1=9F oNVgin~ = Vemin

C22 c21 C1LAB_,,C1B/C
3. C21 controlsVg 1 in<Vimin—=(1=DF  oVg.in > Vemin

In Cases 1 and 3, there are different vapour flow requirements in bottom of C21
and top of C22. The difference is given directly as the difference between the
height of the peaks in Figure 4.8. For a balanced main column (Case 2) the peaks
are equal. The highest peak always sets the overall requirement.

When we implement the vapour flow in the reboiler we simply use:

c22 Petl
Vg™ = Vgmin (4.34)
and in the top we have
c21 Petl
Vi< = Vgmio+ (1-q)F (4.35)
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2r + Sharp AJBC spiit
\Petlyuk (Dcz ) ¢ Sharp AB/C split
1al min o Preferred split (sharp A/C)
. 21 _g;~C21 c1_
_ V0 for 09=p,
16+ —— distribution boundaries
etlyuk _ A/BC B/C
1.4F Viwn _max(vmin 'V:nin )
N N S Feed:
AN : B B/C .
Lol PN Vo a=[421
e . N 2=[0.330.33 0.33]
; P :\\ : q=1.0
[=} N
T ! Cf ik
3 ) . 4~ Balanc vielk =137
Q N - 1
g 0.8 II - point \/Conventional _, 3
’ f : min -
/ : : 2 H
/ : > Opt_lmallty Petlyuk savings = 33%
0.6+ ! S region
1 : :
/ N
0.41 I' Pref d : :
reterrea : : .
II Spllt V:VT:VB since q:l
02F . S
/ Dpref Dba/
0 1 1 : : 1 1
0 0.2 0.4 0.6 0.8 1

Prefractionator Distillate flow D “Y/F

Figure 4.9:Vyrdiagram for the prefractionator (C1), witP€U (DC)  for the
Petlyuk column in the same coordinate system.

Let us now assume we have the situation in Case 1. It is obvious that since
VvE2L>min(VE2L) | the rootB, cannot be active in C21. The amount of distil-
late product is the total amount of A from the feed, and we have the following
defining equation with this specification, from which we can solve for the root.

c21 _  9aZpaF pet
VT = ——Ccxa "~ VBmin+ (1— CI)F (436)
A= Papal

We have two limiting cases. The first is when we operate the prefractionator at the
preferred split. The®, is active in C1, and since it will carry over to the feed
equation in C21 we clearly waste vapour flow in C21. The other limiting case is
when we move the operation point of C1 along the boundary BC/B until
0%t = @%&2L,. Inthis case the vapour flow in C21 is a lodgl;, solution in C21,

c22°="\/Cc21 in(\vC21 i i ince
thusV¥<e = V¥5i, > min(VESi,) - Now the main column is balanced since:

C22 — yC22 C1lyCl = yC21 C1yCl - yC21
vE22 = vE22 (DCL yCly = vg2l (DCL vCl) = V& (4.37)
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4.7 Improved 2nd Law Results in Petlyuk Arrangements 117

Outside this flat optimality region, the overall vapour flow requirement increase
rapidly. Figure 4.9 gives an example where we have plotted the balance point, and
also shows how the overall minimum vapour flow for the Petlyuk column depends
on the prefractionator net product flo)(

In this example, we may find the real roqif,,,, ) inthe top of C1, (which carries
over to C21) related to the balance point from:

vPhetl o 7 AnZ O ,Z
Tmln: A“A + BB _ A“A (4.38)

F ap—8g ag—8g  Ap—Qppy

Knowing @, andgg = 05 inthe balance point, we find the actDandV for
the prefractionator directly from the defining equations for the Underwood roots.
TheVy,rdiagram for C21 whep, = @y, is shown dashed in Figure 4.9.

If the peak Rg were the highest, we would have a Case 3 situation, with the opti-
mality region to the left of the preferred split. We may summarize

The flat optimality region is found from the preferred split and on the V-
shaped minimum energy boundary for sharp A/C split towards the highest
peak. The extent of the optimality region depends on the difference of the
height of the peaks.

4.7 Improved 2nd Law Results in Petlyuk Arrangements

Several authors e.g. Carlberg and Westerberg (1989b), Agrawal and Fidkowski
(1998b), Annakou and Mizsey (1996), mention that a typical Petlyuk column,
where all the heat input is done at the highest temperature level, and all the heat
removal is done at the lowest temperature level, has a drawback compared to con-
ventional arrangements where some heat is added and removed at intermediate
levels. Even if the overall vapour flow rate, which can be regarded as a first law
(of thermodynamics) effect, is always less than in a conventional arrangement
(Fidkowski and Krolikowski 1987), the temperature range between heat input and
removal is always the largest boiling point difference, which gives low perform-
ance in terms of the second law effect. Thus, in order to recommend a Petlyuk
arrangement, the first law effect must dominate over the second law effect with
respect to the utility requirement.

However, when the peaks in tMg,;-diagram are of different height, this implies

that a change in vapour flow could be allowed at the sidestream stage. In the case
when the vapour flow requirement in the lower end is larger, this may easily be
realised by extracting some of the sidestream product as vapour. This may be done
either directly, or by withdrawing all the liquid from C21 and returning it slightly
cooled, exactly sufficient to condense the required change in vapour at the return
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stage. In cases where the vapour flow in C21 is higher, some of the heat can be
supplied at the sidestream stage. The maximum flow rate is still given by the high-

est peak, but not all of it has to be supplied or removed at the most extreme

temperatures.

A heat exchanger at the sidestream stage as
mcwdensef illustrated in Figure 4.10 can ensure that both

D C21 and C22 are operated at minimum
energy at the same time. The actual change in

c21 vapour flow can easily be found from the

Vmir-diagram as the difference height of the

| two peaks Rg and Ryc (seeAV in Figure
> S 4.8). The prefractionator now has to be oper-
oref cl L ‘§ ated exactly at its preferred split.
refrac-

tionator E;ghaaﬂggt The cases where the second law effect cannot

co2 be improved is for a balanced main column.

5 Then the vapour flow requirements are the

same in the top and bottom and this is also the

Reboiler  the case where we obtain the largest vapour
Figure 4.10: Petlyuk arrangementiow rate savings, compared to the best of
with extra heat exchanger at theonventional direct or indirect split configu-
sidestream stage. rations (ref. Chapter 8). In these cases the first
law effect is most likely to dominate over the
second law effect.

We have not done a detailed comparative study with other types of columns and
heat integration, taking a heat exchanger at the sidestream stage into considera-
tion, but it is clear that some results in other studies, e.g. Annakou and Mizsey
(1996), Agrawal and Fidkowski (1998b), would have been more favourable for a
Petlyuk arrangement if this extra heat exchange ability had been included.

4.8 Minimum Energy with Multicomponent Feed

In many cases we separate more than three feed components in the 3-product Pet-
lyuk arrangement as shown in Figure 4.1. Thus we have to specify one or more
composite products. The basic minimum energy expression in this case will still
be given by the largest minimum energy requirement from either column C21 or
C22 as in equation (4.24).

Note also that the Underwood roots carry over from the prefractionator to col-
umns C21 and C22 in the same way for any number of components in the feed.
This implies that if we operate the prefractionator at its preferred split, all the
common underwood roots carry over, and this implies tha¥thg-diagrams for
column C21 and C22 will overlap the diagram for column C1 also in the multi-
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component case. Note that thig,-diagram is based solely on the properties of
the feed to column C1 and characterise distribution regions in an ordinary 2-prod-
uct column. The fact that we can use the same diagram for the whole Petlyuk
arrangement is very important and gives us a powerful and simple tool for assess-
ment of any given separation task in a Petlyuk arrangement.

481 The General Rule

We extend the rule given in Section 4.6.2 for a ternary feed and sharp component
splits, to a general multicomponent feed and three composite products. We simply
replace the term “component” with “product”:

The minimum vapour flow requirement in the Petlyuk column with three
products is the same as the minimum vapour flow for the most difficult of
the two possible product splits (top/middle- or middle/bottom-products) in
a single conventional distillation column.

This is characterized as the highest peak in the resultigg-diagram for
the products.

The following examples show qualitatively the characteristics of the solution. To
obtain analytical solutions for minimum vapour flow and product splits we simply
apply the computational tools based on the Underwood equations presented in
Chapter 3.

Two examples, with N=5 components (ABCDE) in the feed, will here be used to
illustrate how to use th¥,j-diagram to find the minimum energy solution. We

do not give any particular feed properties, thus the diagrams should be interpreted
qualitatively.

4.8.2 Example: Sharp Component Splits in Products

First consider a case where we want AB in the top product, CD in the sidestream
and pure E in the bottom. ¥,j-diagram is shown in Figure 4.11.

In the prefractionator we have to remove AB from the bottom and E from the top.
This is obtained along the “V”- shaped boundagcHPgp-Pge-PcePoe (solid

bold). The “preferred” solution for the prefractionator is to operatesgt i col-

umn C21 know that the diagram for C21 overlap the diagram for C1 to the left of
the preferred split when column C1 is operated at the preferred split. Column C21
shall perform a sharp AB/C separation and the minimum energy solution then
simply found at Bc. Similarly, in column C22 the peakdg gives the corre-
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sponding minimum vapour flow for sharp split between CD/E. Thus the Petlyuk
arrangement requirement is simply given by the highest pgaloPPyg, which
is the encircled g in the figure.

| B | C D

v ; ; . .
A | PA B I 1 1 E

The prefractionator must
be operated betweegPand B,
2, -
D
0 1
Figure 4.11:V,,-diagram for 5 component feed used to find minimum vapour flo
requirements in a 3 product Petlyuk arrangement for sharp product splits AB/CD/E

In this case we will also have a flat optimality region. It is shown qualitatively that
if we move the operation of column C1 to the left of the preferred split, along the
boundary BCD/CD, the peakjg will start to increase. At Ry it becomes equal

to Psc and the main column is balanced, and the prefractionator (C1) is operated
at R4 Thus, minimum vapour flow for the Petlyuk column can be obtained only
when the prefractionator is operated along the line betwggeamtl B ;.

Note that a peak in the,,;,-diagram is simply the vapour flow requirement for a
particular sharp split in an ordinary two-product column. Thus the minimum
vapour flow requirement for the Petlyuk arrangement is given by most difficult
split between two of our specified product groups, if the separation was to be car-
ried out in a conventional 2-product column.

This is illustrated in “equation” (4.39). In this examplgfis an higher peak than

Pgc or Ppg, but this does not matter since we do not attempt to split the D and C
components into separate products (subscript T,B is not used since we may con-
sider either tops or bottoms).
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A B ABCD
o = Max (4.39)
DE E
Ve Viin, Vmin

4.8.3 Example: Nonsharp Product Split

In the next example, as shown in Figure 4.12, we use the same fe&tl ardia-

gram, but we change the product specifications so that all the light A component
is recovered in the top, all the C component in the sidestream and all heavy E in
the bottom. However, in this case we allow B to appear in both top and sidestream
products, and D to appear in both the sidestream and bottom products.

| B | c | D |
V . : ' '
A | Pag | . . c

Figure 4.12:Vj-diagram for 5 component feed used to find minimum vapour flow
requirementsnr a 3 product Petlyuk arrangement. Specification with nonsharp product
splits AB/BCD/DE.

The solution is still quite simple to obtain from thg,;-diagram. In the prefrac-
tionator we need to remove A from the bottom and E from the top, and the
minimum vapour flow in the prefractionator is found at the preferred spjit P
This time all common roots carry over, and C21 and C22 becomes columns with
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4-component feeds. However, the interesting point of operation in column is the
sharp split between A and C. Since bétg, 6 carry over from C1, the minimum
vapour flow in the top of C21 is trivially found apR. Similarly Pcg will give the
requirement in C22. Again, the separation is found to be exactly the same as the
most difficult product split when we compare one and one such split in an ordi-
nary 2-product distillation column as shown in “equation” (4.40).

A8 B ABCD

Bep = Max (4.40)
CDE ™DE
VminDE Vmin, Vinin

Note that in both these examples, the bold lines represent minimum energy solu-
tion for sharp split between a pair of the specified (composite) products in either
top or bottom of an ordinary two-product column.

4.9 Discussion

An important observation is that when there is a significant difference between the
two peaks which gives us the vapour requirement in the upper (C21) and lower
(C22) part of the main column, some parts of the arrangement will be operating
with unnecessary high vapour flow. Here we will discuss some other alternatives
of integrations, and finally we will discuss stage requirements and control issues.

49.1 The Conventional Reference

For separating a mixture into three products we usually compare the Petlyuk
arrangement with the best of a conventional direct split (DS) or indirect split (IS).

In the latter, we here use a partial condenser and vapour feed to the second col-
umn. Consider a ternary mixture (ABC). The vapour flow in the first column (C1)

is given by the peak g in the Vi, -diagram for indirect split anddg for direct

split. The second column require a n¥®y;,, computation, which is trivial since

the feed to C2 is binary. If we want to analyse the bottom vapour rates, we may
draw theV,,;;-diagram for C2 into the diagram for C1 with a bias given by flow
rates in C1, as illustrated in Figure 4.13
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Indirect split (IS) Direct split (DS)

A A
AB
Cc2 F.z.q
ABC B
c1
F.z,q B
ABC c2
1 BC
c C
VBCZ
Pas Vg2 Pac
VBCl VBC1
DCl

Figure 4.13: Conventional indirect- and direct split arrangements.
Plot showsV,-diagram for C1 with diagram for C2 in the same axes.

Fidkowski and Krolikowski (1987) showed that the Petlyuk arrangement always
performed better. For some cases it is very easy to see this froviy theiagram.

For example when the peaks are of similar height, the energy requirement to the
whole Petlyuk arrangement is the same as the requirement to only the first column
of the conventional arrangement.

TheV,,-diagram is first of all attractive to assess the minimum energy and feed
distribution in the first column for any multicomponent arrangement, and for
completely directly coupled arrangements. For other than directly coupled col-
umns, we have to compute new diagrams for succeeding columns, and we do not
get same type of simple and informative visualization as we have shown for the
Petlyuk arrangement.

49.2 Extra Condenser or Reboiler in the Prefractionator

Several authors, e.g. Agrawal and Fidkowski (1998) have pointed out that in some
cases, the overall minimum vapour flow rate may be unaffected if a condenser is
used at the prefractionator top as shown in Figure 4.14. Let us stay with the 3 com-
ponent example. If a partial condenser is introduced at the prefractionator, we no
longer have the direct coupling to column C21. Thus the common Underwood
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roots in C21 have to be found by a solution of the feed equation for C21, where
the feed is given by the distillate from C1. TNg,-diagram for C21 has to be
calculated for the given feed quality. In Figure 4.14 we have showN/{jyedia-

gram for column C21 plotted into the diagram for C1 for three different feed
qualities to C21. We refer the diagram to the requirement of reboiler vapour flow
in all the following cases:

i) Direct coupling (Petlyuk arrangemer\qc_;,22 = V?Zl—(l—q)F
ii) Partial condenser:qC21 =0 O ngz V$21+ VBCl—DC1

iii) Total condenser: qC21 =1 0 ngz = V$21+ VBCl

Note how the diagrams for cas€sandiii ) are attached to the preferred split oper-
ating point for the prefractionator. The maximum peak gives directly the
requirement for reboiler vapour flow. The main column becomes balanced when
vg2l = vE22  Note thatv£22 is unaffected by the connection type between
columns C1 and C21, bt §2t  will increase with the amount of condensation

and recycle in the top of column C1.

G pil AR

Pec C21_~C1
- FC2Lp
A c21
3 1 ¢4
% Fas
c22
c21 Vimin
— VBmin F.z.q .
VBCZZ,iii Y Preferred (ABC) —
/ - Y Prefrac- ©
C1,pref .
czzﬁ VBmin tionator c22
Vg _
D
/N b Y

C1,pref -
VTCl -0 Vg p _Dc1,pref (1-q)F
Figure 4.14:V,,-diagram for 3-component feed ABC (solid) for the modified Péditlyu
arrangement with a condenser at the prefractionator top. Dashed lingg,g@iagram
for C21 in with a partial if) and a total i{i) condenser in C1, referred to the reboile
vapour flow requirement.

We have chosen an example where the FE%E is still bejgwmfér Caseii),

with a partial condenser. Thus column C22 is still determining the overall require-
ment of the configuration, and the introduction of the partial condenser does not
affect the highest peak. However, since the difference between the peaks is
smaller, we now have less flexibility in operation of the prefractionator since the
flat optimality region will be more narrow.
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When we increase the condensation duty to achieve a total condenser, we show as
Cassiii ) an example where the vapour flow requiremerR gl exceggsind
this system will have poorer performance than the Petlyuk arrangement.

This analysis shows that a combined arrangement as in Figure 4.14 may require
the same minimum vapour flow as the Petlyuk arrangement only for cases where
the peak B¢ is significantly higher than peakp. It is also straightforward to
compute thevi-diagram for C21 for any given case and do a detailed check as
shown in the figure.

Similarly, a combined arrangement with a direct coupling between column C1
and C21 and an extra reboiler at the bottom of C1 and conventional feed to C22
may require the same total minimum vapour flow as a Petlyuk arrangement only
if the peak Rg is significantly higher thangg.

4.9.3 Use of a Conventional Prefractionator Column

A configuration with a conventional prefractionator

column with its own reboiler and condenser as 2L b
shown in Figure 4.15 was studied by ChristiansenrF¢?:=p¢!
(1997). This approach may in some cases come q
close to the Petlyuk arrangement in terms of overall
vapour flow, but never better. In other cases, the
minimum vapour flow will be higher than with the F.z.q
conventional configurations. In Appendix C it is (ABC)
shown that the optimum is always found when thF)eF\
prefractionator is operated exactly at the preferr{;tr'(ge1
split (when the relative volatilities are constant in
the whole system). We will also have an operating
point where the main column is balanced, but in the %_, B
this case there is no completely flat optimality
region since the total vapour flow with a balancéd@'®
main column will always be slightly above th@refractionator arrangement
requirement at preferred split operation.

C21

frac-

ator Cc22

ure 4.15: Conventional

4.9.4 Heat Integration

In all minimum energy discussions, heat integration between some of the columns
will always be an option. Heat integrated arrangements can be a practical alterna-
tive to Petlyuk arrangements in some cases. It is difficult to make general
statements about such applications because there is a large variety of engineering
solutions, implementation, and availability of utilities, so we will not discuss heat
integrated arrangements and operation at different pressure levels in further detail.
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4.9.5 The Two-Shell Agrawal Arrangement

@Condenser Agrawal (1998) presented the alternative
D (thermodynamically equivalent) arrangement

Shell 1 VTCl shown in Figure 4.16 as a more operable sys-
(highP) | ¢ |€% (SIQV‘?I”PZ) tem than the typical Petlyuk arrangement in
M Figure 4.1 (or the an equivalent dividing walll
F.z,q system). Note that the bottom section of the
' E_’ S main column (C22) with its reboiler (C22B)
cl Cc22T is placed in the first shell as the prefractiona-
Prefrac- g\ tor (C1), and the top section of C22 (C22T) is
tionator v V.52 placed in the second shell together with the
T upper part of the main column, C21. The
C22B main advantage with this configuration,
E’S’B according to Agrawal (1998), is that both
Reboiler vapour streams between the shells have the

Figure 4.16: Agrawal’s columnSame direction. With a hlgher pressure in the
arrangement makes precise vapofirst column the vapour is easily controllable
flow control simpler. by valves. The liquid flows will be returned

from the second shell to the first, and the pres-
sure difference can be overcome by pumps. Note also that due to the higher
pressure in the reboiler, the overall temperature difference between the reboiler
and the condenser will be smaller.

A similar configuration with a higher pressure in the second shell is also an alter-
native. Then C21 is split between the two shells, and the vapour direction is from
the second to the first (not shown).

Assuming that the relative volatility is independent of pressure (which is reason-
able for cases where we can assume constant molar flows and constant relative
volatilities in the first place), the minimum vapour flow rates will be identical to
the ones found earlier for the Petlyuk column.

4.9.6 A Simple Stage Design Procedure

Triantafyllou and Smith (1992) presented a design procedure for the ternary
arrangement based on a separate prefractionator column model, i.e. equivalent to
the structure in Figure 4.15. Here we will present a simpler and more direct stage
design approach and we discuss qualitatively how we can design the number of
stages in a Petlyuk arrangement, and how the required number of stages depends
on the feed properties and how the column is operated.

Itis difficult to compare the capital cost of arrangements based on counting stages
only. The cross sectional area will also be different, and mainly dependent on the
vapour rate. The total sum of the product of stage count and vapour rate in each
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section may be a suitable indicator of the total cross section area. But in general
the cost of a stage in each section can be different, dependent on the type of
arrangement.

However, when we fix the number of stages, the real minimum vapour flow
(Vrmin Will be higher thaV,,;,,. The ratioVgmi{Vmin<1.1 is typical design rule.

The required number of stages in each column section depends primarily on the
relative volatilities of the components and product purity specifications. The min-
imum number of stages (for infinite reflux ratio) can be found from the Fenske
equation applied to each section. For removal of the heavyHtgyt{e minimum
number of stages between feed st&eafd the topT) is:

Ne = In(S) _ Xy _1 17/ X, T
Tmin |n(CXH_1/CXH)' Xy -1, F/XH,F

(4.41)

The impurity of the component to be removed will dominate the separation (S) in
each section. Thus, in (4.41) we may approxingtel/ oT

In order to apply (4.41) for the prefractionator we need the compositions. A good
estimate can be found by using the pinch zone compositions, described in Chapter
3. In addition we need to estimate a required impurity for the component to be
removed. These values will normally be in the same order of magnitude as the
impurity specification of the sidestream product. For more accurate estimates, we
can compute the net component flows from the prefractionator, and use the mate-
rial balance (4.6) and the vapour-liquid equilibrium where we may assume
equilibrium between the vapour and liquid flow in the junction.

Skogestad’s simple design ruls:= 2N ... (ref. Chapter 2) will typically give a
real minimum vapour flon\(gip) in the range between 5-10% aboyg;, found
for infinite number of stages, for the same separation.

4.9.7 Possible Reduction of Stages

For the dividing wall column, or similar type arrangements where we do not con-
trol vapour flow individually in every section, some parts can be operated with a
significant higher vapour rate than the minimum requirement as found from the
Vmir-diagram. In sections whek&>>V i, we normally have/>>V g ,intoo, and

we may remove some of the stages and still achieve the required separation.

Thus in addition to the feed properties, product purities and the structure of the
arrangement, the stage requirement is also affected by how the column is operated
inside the optimality region.
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As shown in Chapter 3, operation at the preferred split will always require the
highest number of stages in the prefractionator. Thus, if we operate on each of the
sides, along the V-shaped curve which gives a sharp A/C split, we may remove
stages in either the top or bottom of column C1.

The actual overrefluxed sections will depend on the feed properties (which deter-
mine the highest peak in thé,;-diagram) and how the column is operated
within the optimality region. Thus it is vital to analyse all possible combinations
of feed composition and other properties, before stages are removed in a section.

Figure 4.17 shows three different feed property cases. In Case 1 and 3, one of the
peaks is higher. For example in Case 1, the lower main column (C22) and the pre-
fractionator top (C1T) will always require full number of stages. But observe that
as operation is moved along the optimality region from the preferred split (P) and
to the balance point for the main column (R) the stage requirement in the bottom
of C1 will be reduced, and as we approach R the requirement in the top of C21
will increase sincev 21 will approach the actual vapour flow determined by
VE22 (the highest peak). In another feed region where the other peak is higher
we get the situation in Case 3. At the boundary, we have Case 2 where the peaks
are equal and the preferred split is the only optimal operation point. Then we need
full number of stages in all sections. Q represent the operation point where mini-
mum number of stages is required for a given ov¥kgbh,idVemin ratio.

O: over-refluxed

P Q R
Case 1:
c21 \C1 g
c1 @ : Minimum reflux
l H H Case 2:P=Q=R
C22

L]

Figure 4.17: Some of the sections (dark) have to be operated close to the real minimum
reflux and will require the highest number of stages for a gWgRi{Vmin ratio. The feed
properties, which determine the highest peak in Yhg,-diagram, and selection of
optimal operating point along P-R determine the requirement to each section.
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Observe that in order to remove stages, we must know if we always have feed
properties that will give either Case 1 or Case 2 or Case 3, and we must decide on
how to operate the prefractionator (in P, R or Q).

4.9.8 Short Note on Operation and Control

The analytical solution for minimum energy is simple when we know the feed
composition, relative volatilities and feed quality. In practice we have to face
unknown disturbances, uncertainties in measurements and implementation of
control inputs, model uncertainties and non-ideal equilibrium properties. Thus it
will be impossible to compute the desired optimal values for the flow rates and
implement these on a plant.

However, when we keep each individual column at its preferred split, we have
identified that this leads to optimal operation. This implies that we do not need to
know the feed properties, the only requirement is that we have to measure some-
thing which can tell us if we are operating close to the preferred split or not. We
do not need to measure the criterion value.

The characteristic of the preferred split is that we remove (almost completely) the
most volatile feed component from the bottom and the least volatile from the top.

Thus, by keeping the impurities of these components at setpoints fixed at small
values we ensure that the operation is at the preferred split, even if we do not know
the feed (Christiansen 1997). The actual values are determined by the allowed
impurities in the final products.

For a binary feed, the preferred split is the same as the minimum energy solution
for sharp split between the two keys, and it is well known (Shinskey 1984), (Gor-
don 1986), that minimum energy operation is obtained by keeping both product
impurities at the specification limit.

This implies in general that we must measure the composition in each junction,
and that we have full flexibility in adjusting two degrees of freedom for each of
the three internal columns (C1, C21 and C22). In practice, a full set of composi-
tion measurements and full flexibility in operation will not always be available.
Thus, strategies that utilize less expensive measurements, like temperatures, must
usually be applied. In multicomponent mixtures with more than two components,

a component with low concentration will not influence the temperature at all,
since the composition of the other components will dominate, thus an impurity
measure based on temperature is not practical. However, we may use temperature
differences to indicate presence of pinch zones, and close to the product outlets
we also have close to binary mixtures, and the temperature will be a more direct
composition indicator.
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In Chapters 7 and 11 we have studied the issue of selecting the best measurements
for this kind of optimizing control problem in order to obtain close to optimal
operation by simple feedback control. This kind of approach has been denoted
self-optimizing controby (Skogestad et. al. 1999). The conclusion from these
studies is that a good control strategy is vital in order to obtain operation close to
the minimum energy for a Petlyuk arrangement. Even though the theoretical sav-
ings compared to conventional arrangements can be large, an inadequate control
approach may lead to operation far from the optimum, and the entire saving
potential may easily be lost.

An open loop policy, however, e.g when we fix some draw ratios or reflux rates,
is deemed to fail for Petlyuk arrangements in most cases. This is due to the fact
that the energy requirement will increase rapidly outside the optimality region,
and due to the always present disturbances and uncertainties we will neither be
able to compute the optimal flow rates in each column nor implement these with
sufficient accuracy. But with a properly designed feedback control strategy, based
on insight in the actual column characteristics, optimal operation of a Petlyuk
arrangement is clearly feasible.

4.10 Conclusion

The minimum energy solution for a 3-product Petlyuk arrangement has been ana-
lysed. The solution is very easy to visualize in Wg,-diagram for the feed, and
is given by the following rule:

The minimum total vapour flow requirement in a multi-component Petlyuk
arrangement is determined by the highest peak in thg-tliagram related
to the specified product splits.

Alternatively, since the/,,i-diagram originally just characterize a two-product
column with a multicomponent feed, this may also be expressed as:

The minimum total vapour flow requirement in a Petlyuk arrangement is
the same as the required vapour flow for the most difficult split between two
of the specified products if that separation was to be carried out in a single
conventional two-product column.

In addition to the overall vapour flow requirement, we find the individual vapour
flow requirement for each column section, directly from the same diagram. The
Vpinrdiagram is based on feed data only, and was originally intended to visualize
minimum energy regions and distribution regions for all possible operating points
in an ordinary two-product distillation column with multicomponent feed. The
computational effort is minimal, and the solutions are exact for infinite number of
stages. Thus the methods are well suited for quick screening of a separation task
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and to initialize computation in more rigorous distillation models, e.g. rigorous
Petlyuk column model as used for optimization by DiUnnebier and Pantelides
(1999).

The plain Petlyuk arrangement will probably be most attractive when the peaks
in the Vj-diagram are of similar height. Otherwise, combined arrangements
may give similar performance in terms of minimum vapour flow, and even better
performance in terms of separation work.

In Section 4.3 we have presented some interesting properties of the composition
profile and the pinch zones in directly coupled columns. This is an important basis
for understanding and for extension of Underwood’s methods to these kind of col-
umns. There are some restrictions on the recycle flow compositions, but for
normal operating regions these restrictions are not violated. Thus, the other results
in this Chapter have been found by applying the Underwood equations just as for
ordinary 2-product columns. The restrictions becomes more important for non-
sharp product splits (Chapter 9) and for operation outside the optimality region
(Chapter 7).

Note that we do not propose in detail how to compare costs for different arrange-
ments. The results herein give minimum vapour rates in all sections, and we also
have given a rough estimate of stage requirements, in numbers. However, there
are still a large variety of possible practical implementations, and it is impossible
to give a general formula for capital costs utility costs for these. But hopefully, the
results herein have contributed to a better understanding of directly coupled col-
umns, so that a chemical engineer can better consider these solutions in suitable
application areas.
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Chapter 5

Minimum Energy for Separation
of Multicomponent Mixtures
In Directly Coupled Distillation

Arrangements

The main result is an exact analytical solution of
minimum energy in a generalized and extended Pet-
lyuk arrangement for separation of a N-component
feed into M products. The solution is very simple
to visualize by the V min -diagram and is given by
the highest peak. Interestingly, the minimum

energy solution in a complex integrated Petlyuk
arrangement is equal to the most difficult split
between a pair of the products, as if each single
split was to be carried out in an ordinary 2-prod-
uct column. In addition to the overall minimum
vapour flow we obtain flow rates and feed distri-
bution for all internal columns in the

arrangement.
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5.1 Introduction

Analytical expressions for minimum energy in a ternary Petlyuk arrangement
with infinite number of stages have been available for some time (Fidkowski and
Krolikowski 1986), (Glinos et. al. 1986). Carlberg and Westerberg (1989) pre-
sented solutions for an arbitrary number of intermediate components. In Chapter
4 we showed how the solution can be visualized in\thg,-diagram. This gives

us a very simple tool to asses the properties of the solution and the detailed vapour
flow requirement in all column sections, and may also be used to handle general
multicomponent feeds and arbitrary product specifications. In this paper we will
extend this approach to the general multi-product case.

However, as mentioned by Christiansen (1997), the general analytic solution for
minimum energy for separation of a multicomponent feed by distillation into mul-
tiple products have not been given in the literature for more than three products,
and the extension to any number of products is the main result of this paper. More
precisely, we present an analytical expression for minimum energy requirement
for the separation dil components intd/1 products (where normalli <N ) in

a generalized extended Petlyuk arrangement, where all columns are directly (fully
thermally) coupled. The assumptions are constant relative volatility, constant
molar flows, constant pressure and infinite number of stages.

This result is a direct extension of the results for a 3-product Petlyuk column pre-
sented in Chapter 4, and is based on Underwood’s equations (1945,1946,1948)
and theV,,;-diagram from Chapter 3. We will limit ourselves to sharp product
splits in most of the presentation, but the expressions are general, and can easily
be extended to nonsharp product specifications.

First we will deduce the minimum energy solution for the 4-component 4-product
case, and discuss some of its properties. Then we will show that the solution is
easily extended to any number of components and products. We focus on a stand-
ard configuration shown in Figure 5.1. This configuration can be extended to any
number of products by adding more arrays of directly coupled columns.

Remark: There exist a very large variety of possible realisations for extended
Petlyuk arrangements, which are equivalent in terms of energy requirement. For
example in a recent article (Agrawal 2000) it is shown that for a 4-product col-
umn, sections can be arranged together in 32 different configurations. For the 5-
product column the number is 448 configurations which are equivalent in terms
of minimum energy requirement. There are of course many important differences,
i.e. in how easy itis to set individual vapour and liquid flow rates in practice, how
the column arrangement behaves for non-optimal operation, how easy it is to con-
trol, possibility for operation at more than one pressure level, practical
construction issues, etc.
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5.2 Four Components and Four Products

5.2.1 Extended Petlyuk Arrangement

AB

C21
ABC E > B

F,z,q C1 * B

ABCD X

b

Figure 5.1: The Petlyuk arrangement extended to four products.
Vapour and liquid flow rates can be set individually in each internal
2-product column.

We will now extend the procedure developed in Chapter 4 to the generalized 4-
product Petlyuk arrangements as shown in Figure 5.1. An important key to the
optimal solution is how the Underwood roots carry over to succeeding directly

coupled columns (Carlberg and Westerberg 1989). This is described in Section
4.4,

A V,,irdiagram for a given feed to the prefractionator (column C1) is shown in
Figure 5.2. As shown in Chapter 3, the peaks represent minimum energy opera-
tion for sharp split between adjacent components. For sharp split between
componentsj and j+1, only one common Underwood (which obeys

a; < ej <aj, 1) Is active and the peak;(P;) can be expressed by:
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i

. yilitl _ Oi3F ili+1
Pj,j+1- VJIJmin = Z . D = z zF (5.1)
i=1 ") i=1
V. ABC/D
TA A/BCD V?f]fﬁD VTmin < - P
Tmin \\l\ - CD
\ “a Psc
\ c D
) B !
A |
I c2
| BC Psc CD
c21
AB Pec % / Bc
Pac \ /
N \ Py / BCD
ABC N\ / 6 B
eA eB B YC
Py
ABCD 6, 65 6c o
—_ N — — —_— —_— — —_— —_— —_— —_— —_— —_— —_——_— —_——_— — = VB :O
PO (1'Q)F
>
0 F D

Figure 5.2:Vi-diagram for a given 4-component feed (ABCD) to the prefractionator.
The set of distributed components and corresponding active Underwood roots are
indicated in each distribution region. The preferred split isgt P

5.2.2  Minimum Vapour Flow Expressions

The common Underwood roots are given as tie solutions of the feed
equation:

N o.z
. . | _
Feed equation: .Zlai_e =1-q (5.2)
| =

The solutions obeya; 26, 20,20,2>... 26 _; 20y ,andfoi=4 with the

feed components enumerated A,B,C and D, we have 3 soluign$, 0 ). We
assume that column C1 is operated at its preferred split, thus all of these roots will
be active. Components ABC and the intermediate réQtHg will carry over to
C21 and Components BCD and the roétg 6 will carry over to C22. The
Vmin-diagrams for C21 and C22 will overlap the diagram for C1 to the left and
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right of the preferred split, equivalent to the ternary case shown in Figure 4.8.
However, the recovery of B and C in the bottom of C21 and top of C22 will be
limited to the amount in the feeds, which is given by C1 operated at the preferred
split (Pap)- Thus the peaks for sharp BC splitin C21 and C22 will be alogg P

Psc and Ryp-Pgc, respectively (see the dashed contour lines for constant recov-
ery of B and C in the figure).

We operate C21 at its preferred split too. This implies operatiorpati® the
Vmin-diagram in Figure 5.2. Then thg,,j-diagram for C31 will also overlap the
diagram for C21 to the left of £, which already overlaps the diagram for C1.
Minimum vapour flow in C31 is then determined by the common Bgtwhich
carries over from C1 and C21. For full recovery of the light A in the top of C31
and sharp A/B-split, we may simply write the minimum vapour flow expression
directly from Underwood’s equations.

c31 _ 9aZpn _ ABCD _ ,ABCD
VTmin - GA_eA - VTmin - VBmin +(1_q)F (5-3)

This is simply the expression in (5.1) for the pealgfn the V,,,j-diagram, and
as we have indicated in the equation, this is exactly the same minimum vapour
flow needed to separate A from BCD in an ordinary two-product column.

Similarly, column C22 will be operated at its local preferred split (g)° The
root B¢ carries over from C1 and C22 to C33, and we can write the following
expression for the minimum vapour flow in the bottom of column C33:

c33 a;Z ABC/D _ |,ABC/D

VBmin*t (1-0Q)F = ;B a__léc = Vimin = Vemin T (1-9F (.4)
i=AB,C !

We recognize this as the expression for the pegkiR theV,,,;;-diagram, but note

that we must be consistent and refer the peaks invffjg-diagram to either the
top flow (V1) or the bottom flow\(g) when the feed quality # 1

We may also use the feed equation (5.2) and express the vapour flow with the
heavy components, i.e:

ABC/D a;z UpZp
Ve = Z —(1-Q)F = - 5.5
Bmin . ’Cai_ec ( q) aD_eC ( )

The expressions in (5.3) and (5.4) give requirements for a total vapour rate in the
top of the Petlyuk column, and represent the pealsdhd Rp in theV,,,i-dia-
gram. But does the middle pealgdalso have a physical meaning?
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It certainly has, and again we return to the Underwood equations. The total
amount of the A and B products is transported upwards through the top sections

of C21 and C32. The rocﬁB

c21

VTmin+ VTmin -

C32

is active in both C32 and C21, and we simply write:

C2

_ DO(AZAF uBWB'Tlm agWg T

C32
+

0

(5.6)

Ma—6g 0ag—6g0 ag—6g

. 21 2 . : .
Slncewg’ T+ wg,3T = zgF , we recognize this as the expression for pgak P

c21  ,c32 _ ApZpF oapzgF AB/CD
VIio +VI o = = - (5.7)
Tmin Tmin Tmin
ap—8g ag-6g

AB/CD _ ,,C22 C32 AB/CD _ ,,C21 C32

Note that VBmin - VBmin+VBmin and VTmin - VTmin+VTmin are
. . AB/CD _ ,AB/CD

directly related sinc&g i” = Vrin —(L—a)F

5.2.3  Visualization in theV,,;,-Diagram

The V,,j-diagram contains complete information about every minimum vapour
flow and product split for each individual column in Figure 5.1. This can be found
by a detailed walk-through of the Underwood equations for each column and the
material balance equations at the junctions, but we illustrate it more directly in
Figure 5.3.

Feed data for this example is given &1, g=0.8, z=[0.25 0.25 0.25 0.25],
0=[14,7, 3, 1]. The feed compositiorg), relative volatilities ¢;), and recoveries

(r rinthe table) are given for components A,B,C,D respectively. We have applied
the general procedure from Chapter 3 for computing the numerical values for the
peaks and knots, and the results are given in Table 5.1:

Table 5.1: Data for peaks and knots inhg,-diagram

Pas Pac Pcp Pac Psp Pap
sharp A/B | sharp B/C| sharp C/D | B distributing| C distributing| preferred split
V1min| 0.8975 0.9585 1.0248 0.6350 0.7311 0.5501
D 0.2500 0.5000 0.7500 0.3663 0.5839 0.449¢
riT 1,0,0,0 1,1,0,0 1,1,1,0 1,047,000 1,1,0.340 1,0.57,0p2,0
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Observe in Figure 5.1 how the vapour flow in each individual column appear as a
difference between the peaks and knots. Thus, for preferred split operation in each
column, all internal flows and component recovery can be found from the data in
Table 5.1. The relations are quite trivial and come from the material balance equa-
tions at the column junctions.

1.2 T T T T T T T T T
AB/CD ABC/D The highest peak
A/BCD Trnin Tmin p. A
VTmin N ~ ~~a CD
1F $ y

(1-a)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
D/F

C1l Cl

- D -t B -
C21 C21 C22 Cc22
- :B ! i D Lot B
C31 C31 C32 C32 C33 C33

- D > B - D > <& - D > B >
- A - B - Lo -t D >

Figure 5.3V,i-diagram showing the minimum vapour flows and product splits for every
section in the Petlyuk arrangement in Figure 5.1 when each column C1, C21 and C22
operates at its preferred split (note that the subsaripshould be on every vapour flow).

To better understand Figure 5.3, in Figure 5.4 we show a detail of a general N-
componen¥,-diagram where we illustrate how to find the corresponding net
product flows in addition to the minimum vapour flows in the top and bottom sec-
tion of an individual column. For components in the range X-Y, the preferred split
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will be at Ry. For sharp X/Y-split, the column must be operated at or above the
V-shaped boundary,R.1-Pxy-Px+1 y. Note that when we have a binary feed, the
V-shaped curve collapse to a vertical line and the “preferred split” is a top peak.

Note how the minimum vapour flow requirements in the top and bottom is given
by the A -shaped trianglexB v-Pxy-Px y+1 below Ry.

Sharp X/Y split above the “V”

P N
Xyl '/9 F\’x+1,v

Y w1r-By-2 N
8%
Bx+1:-By-26v.1 L
A A
Bx.6x-1,-Ov-2 Fy=V1Vg
VBmin -
VTmin F_Fv+FL t :;
B.0x-1,10v.26y.1 Y XY F =L-L
(=Lrlg
Px,v+1 _
v Px-1. y Fv=VrVe
=(1-q)F \&
D B

v
Px.1,v+1

Figure 5.4: Detail from &/jrdiagram which shows how to find the minimum vapour
flow and net product rates in one of the internal two-product columns in a generalized
Petlyuk arrangement with feed components in the range X-Y. When the column is
operated at its local preferred splity{?) all common roots are active and we indicate
(right) how they carry over to succeeding columns.

This principle in this illustration will also be valid when X and Y are composite
products and also when the X/Y split is nonsharp. We will discuss this further in
Section 5.3.

5.2.4  The Highest Peak Determines the Minimum Vapour Flow

Consider now the case when all the vapour flow has to be supplied in the bottom
reboiler and all products are liquids. The only extra vapour flow is the vapour frac-
tion in the feed.

For the four-product case, we have found three sets of vapour flow requirements,
represented by the three peaks inthg,-diagram. Thus it is clear that the highest

of these requirements (either referred to the top or the bottom), must determine
the overall requirement for vaporization in the arrangement.
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This very nice and simple result directly generalizes what was shown for the 3-
product Petlyuk column in Chapter 4, and in the Section 5.3, we will extend this
to any number of feed components and products. However, before we move on
the general case, let us discuss some more properties of the solution in the next
subsections.

5.2.5 Composition at the Junction C21-C22-C32

If we consider minimum energy operation of columns C21 and C22 separately,
each will have a certain pinch zone composition around their feed stage and in
each end. The ideal direct coupling of the top of C22 to the bottom of C21 should
be done with equilibrium composition between the liquid and vapour flows at the
corresponding pinch zone composition. However, if the pinch zone compositions
in the top of C22 differs from the pinch composition in the bottom of C21, there
will be a certain loss due to mixing. In this case the coupling of C21 and C22
should really be done at different feed stages in C32. However, we will show that
when the columns are properly operated, the streams at the junction between C21
and C22 will have the same composition. In Chapter 3 (and also in Appendix A)
it is shown how the pinch zone composition, where two components appeatr, is
related to the actual Underwood root in the range between the relative volatilities
of the components. Thus, the pinch zone compositions, expressed by the B-com-
ponent (when A is removed in bottom of C21 and D is removed in top of C22) are
given by:

€21 —nC2
XS0 = G—C(GB ve™) andxg% = G—C(GB %" (5.8)

When C21 and C22 are operated at their preferred split, theeg)ot will be active
in both columns, thugi&?! = 9§22 = 65 amg21 = xB

This result does not require any accurate operation of C1 since we observe in Fig-
ure 5.2 thaBg is active in all regions adjacent gg,PHowever, operation of C1
away from the preferred split {B) will influence the other roots carried over to
C21 and C22 which are related to the top and bottom products, and the minimum
energy results in (5.3) and (5.4) can then not be obtained. For example when col-
umn C1 is operated above and to the right g5 Rhe actual root in the top

@, >0, and therebyw$31 (9,) > VESL (6,)
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5.2.6 Flows at the Feed Junction to C32

We have required that we can set the liquid and vapour
c21 flow rates individually in each internal two-product
column. Let us take a closer look at the general type of
XBP C32 the directly coupled feed junction to C32 as illustrated
Feo | in Figure 5.5. The positive direction is defined into
BC — |k C32.In C21 and C22 we assume that we know the feed
— — = rates (including feed quality). Then when we set the
Y F [ four flow-rates in these columns, the vapour and liquid
xgp) > feed flows to C32 are determined by:
c221
C32 cz22 ,,C21

Fooo = Vi~-Vg
Figure 5.5: The Directly ca32 col  Co22 (5.9)

coupled feed junction. Fo =Lg Ly

In some cases one of these streams can be negative and this implies that we must
withdraw either a vapour or liquid stream from the feed stage of C32. Anyway,
we only need one vapour flow and one liquid flow for a given case, and one of
these may be a reverse flow. The total feed is normally positive since:

FC32 _ F\C/;32+ ngz = p©?24gt?t = p©32, g&32 (5.10)

But recall that with directly coupled sections, negative product flows are feasible,
but usually far from optimal. Note also that we may find the equivalent feed qual-
ity and composition as if this feed was to be supplied as a single stream:

32 = %/ FC% (5.11)

Example The feed junction flows to C32 can easily be found from the-V
diagram in Figure 5.3. The vapour portion of the feed to C32

(FG32 = 0.10) is the vertical difference (V-direction) betwegsprRind

Pgc, and the net total feedC32 = 0.22 ) is the horizontal difference (D-
Direction). In this case wee see that the liquid portion of the feed
(FE32 = FC32_FE32 = 0.12) is positive too.
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5.2.7 Composition Profile - Simulation Example

A composition profile from a simulation example is shown in Figure 5.6. There
are 30 stages in each column sectibiF60 in each column), and in practice this

is close to infinite number of stages for this case (with purity requirements around
99.9%). The flow rates are taken from tkg,-diagram in Figure 5.3 and are
applied directly in the simulator. This simulation is a practical confirmation of the
analytical expressions for flows and pinch zones and for the minimum energy
behaviour.

Observe the characteristic of a preferred split pinch zone at all feed junctions, and
that one component is completely removed in the end of each column. Note also
that the pinch zone composition in each column end is identical to the feed stage
composition in the succeeding column. In each section, the compositions of the
remaining components increase monotonously from the feed pinch to the end-
pinch without any remixing. Note that if a column had its own reboiler and con-
denser, remixing at the end is inevitable (ref. Section 4.2.3 and Figure 4.4).

B A
C31
/(
AB | gt
C
Junction pinch C21
> A
""" N B
D ABC C
C1 C32
A
.......... 4 BC ol )
D
C22
A BCD B
| g Pp C
0 molfraction 1 D
C33
a=[14731] B +—4 co | =
z=[0.250.250.25 0.25] 0 molfraction 1
q=1[0.80]
Stages:60 in each column
c D
0 molfraction 1

Figure 5.6: Composition profiles for the Petlyuk arrangement in Figure 5.1 (or 5.13).
Each column is operated at its preferred split with vapour flows and product splits taken
from Table 5.1 data as shown in thfg,;-diagram in Figure 5.3. Observe the pinch zones

in all junctions and how one component is removed in each column end.
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5.3  Minimum Energy for N Components and M Products

We are now in position to compute the minimum vapour flow in a general
extended Petlyuk arrangement with any number of feed comporénasd any
number of productsM). We will start from the basic 4-product arrangement in
Figure 5.7, which can be extended to any number of products by adding more sets
of directly coupled columns. There is only one reboiler and condenser, always at
the outlets for the final bottom and top products, respectively.

For an M-product arrangement, there are
M —1 cross-sections that may have inde- 11 ,J\_ﬁ, A
pendent total vapour flow requirements
through all intersected columns. These

intersections represent the product splits in 12 % >

the system. We have chosen to use the par-
O B
Og
B

ticular set 11, 12 and 13 forM=4 which ABC
C
O
Oc

& /

intersect all internal top sections as shown in 13
Figure 5.7. Note that only the A-product

pass through intersection I1, thus 11 reprez,q
sent the A/BCD split. 12 represent the AB O
BC split since all of A and B but none of CABCD 8¢
and D pass here. Finally 13 represent the
ABC/D split. This can easily be extended to Oc
the general M-product case. BCD

When each internal column operates at its ﬂ
preferred split, all the common Underwood cD
roots @a,0g and 6. for N=4) given by the

feed equation (5.2) for the prefractionator

feed will carry over to the succeeding col-

umns as indicated in Figure 5.7.

Cc
D

Th te that i h col fi Figure 5.7: Extended 4-product
€n, hote that in éach column section, lyuk Arrangement with all columns

!oy each intersectio_n line (11,12 or 13), the@perated at preferred split. The active

is one common active Underwood root (e @nderwood roots are indicated. The

Bg is active in column C21 and C32 inte[ntersections represent the product
sected by 12). We can apply this root in thglits.

defining equation for each column cross-

section and find the total vapour flow through the intersections. For sharp product
split, the net product flows are simply the amount of the main product component
in the feed. The flow through I1 is trivially:

c31 F
11 _ 9aAWpA T OAZAF c1ABCD

min ~ - ~ YTmin
ap—68s Op—6y

(5.12)
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At intersection 12 we know that all the light A component pass through the top of
C21 too, and for the B-component we hawg?! + w32 = zzF . None of the
heavier C and D components are present. The middle Underwood@g)ois (
active in both C21 and C32, thus we have:

V2 - o (wCEt + w3 _ a;zF VABICD 5 1o
min i :;,B O(i_eB i :Z,Bai_eB Tmin

At 13 we know that all of components A, B and C are passing, but none of the
heavy D. The rootf) is active in all columns (C1, C22 and C33) and we get:

o (WEE +wC22+ wEsd) a;zF
= viPIB14)

13 (AN i
V.. = ! ! ! =
min i:;,B,C O‘i_ec i:Z,B,C a; - C

Again we recognize these expressions as the vapour flow at the three peaks in the
Vmir-diagram for the prefractionator feed and from equations (5.3, 5.4 and 5.7).

5.3.1 Vy, for N Feed Components and N Pure Products

The important observation from the three and four product examples is that the
maximum vapour flow rate through any horizontal cross-section in a generalized
Petlyuk arrangement with N feed components and M=N pure products is found
directly as the highest peak in thg,,-diagram for the feed.

The expression for a peak is given in equation (5.1) (deduced in Chapter 3), so if
we relate the vapour to the top of the Petlyuk arrangement, the minimum vapour
flow is given by:

Petl j
Voimi max oz O
Tmin 14 .
FoT %Z G__B_EforJD{l,Z...,N—l} (5.15)
i

where theN-1 common rootsf;...0,,_, ) are found by the feed equation (5.2).

Note that the solution is exactly the same as the most difficult split between two
component groups in an ordinary 2-product distillation column. The expression
in (5.15) for each value dfis the height of peakin theV,,;,-diagram referred to

the top.

The resultin (5.15) is amazingly simple, and it is also worth to note that we
can find all flow rates in all sections of the complex column arrangements
as shown in Figure 5.3.
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5.3.2 GeneralV,,, for N Feed Components and M Products

For each extra product, we have to add another array of columns to the structure
in Figure 5.7. The total number of internal directly coupled two-product columns
to separateM products is:(M-1)+(M-2)+...+2+1 = M(M-1)/2. There areM-1
product splits, and these can be relatetd minimum energy operating points
(peaks) in thé/,;-diagram.

However, we have often more components (N) in the feed than number of prod-
ucts (M). Thus, we have to consider split between products, which may be
specified as an aggregate of components. Fortunately, the characteristic of mini-
mum energy operation is unchanged. Each internal two-product column should
only separate the components belonging to the most extreme products in its feed
(in terms of relative volatility).

A Vpir-diagram for M composite products can easily be drawn into the general
N-component diagram. The procedure is similar; we compute the peaks and knots
in the diagram from the minimum energy operation given by sharp split between
each possible pair of products. Note that this does not mean sharp split between
individual components if some components are allowed in more than one product.

In Figure 5.8 we illustrate for a given example how to use\thg-diagram to
assess minimum energy operation when M<N. The diagram (solid) is drawn for
a given 8-component feed (ABCDEFGH) which shall be separated into four prod-
ucts (WXYZ) in an extended 4-product Petlyuk arrangement (Figure 5.7). The
product specifications are given in Table 5.2. Based on these we can specify the
required two degrees of freedom for each possible pair of product splits in a single
two-product column. The resulting split specifications are given in Table 5.3, and
the minimum energy solution for each split (1/J) gives us the peaks and kngts (P

in theVp,-diagram for the M products shown (bold dashed) in Figure 5.8.

Table 5.2: Specification of feed component recoveries in products W,X,Y and Z.

Light key Heavy key
Product impurity Components| impurity Comment
specification specification
W - AB 0% C all of A, any
amount of B
0%A B,C,.D,E <10% E the rest of B
Y <10.0%D D,EF 0% G
Z 0% F G,H - Sharp F/G split
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me —diagram

Case:

O(=}25.0 20.016.010.08.04.02.5 1.0;

z:10.125 0.1250.1250.1250.1250.1250.125 0.125 ]
q:

Sharp A/G-split

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
D

0.2

Figure 5.8: Assessment of minimum vapour flow for separation of a 8-component feed
(ABCDEFGH) into 4 products (WXYZ). The plot shows thg,;,-diagram for the feed
components (solid) and the equivalent diagram for the products (bold dashed) is easily
obtained from the product split specifications given in Tables 5.2 or 5.3.

Table 5.3: All possible product split specifications, by two key recoveries

Lightkey Heavy

Split |- Col in top key in top

VTmin Comment

W/X | C31 100% A 0% C 0.9632 Sharp A/C split, B distributes.

XY |C32 >90% D <10% E 1.3944 Nonsharp D/E split

Y/iz | C33 100% F 0% G 1.2093 Sharp F/G split

W/Y | C21 100% A <10% E 0.5569 Sharp bottom, nonsharp top

Xiz | C22 >90% D 0% G 0.7477  Nonsharp top, sharp bottom

W/z | C1 100% A 0% G 0.4782 “Preferred split” A/G, not A/H
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The highest peak determines the maximum minimum vapour flow requirement in
the arrangement. In this example this is the middle pegk ®hich is directly
related to column C32 (note th¥t,ivalues in Table 5.3 are for the given split

in a two-product column, and that the required flow in the individual columns
appear as we have shown in Figure 5.3). With a single reboiler, all the heat for
vaporization has to be supplied in the bottom and since the other peaks are lower,
columns C33 and C31 will get a higher vapour load than required. However, with
heat exchangers at the sidestream stage, we only have to supply heating for the
requirement given by % in the bottom reboiler and heating for the difference
between Ry and Rz in the bottom of C32, which is at a lower temperature. We
may also take heat out due to the difference betwgeraRd Ry above C32.

Observe that R, is of similar height as i. This implies that we are able to sep-
arate the light component A as a pure product in the top with a similar vapour flow
requirement as given by®. Thus, we can see directly from the diagram that we
may change specification of product W to be pure A without consuming any more
energy (but then we cannot take out any heat above C32 of course).

The diagram also illustrates that non-sharp product specifications can be handled
quite easily. Note how the peak follows the contour lines for. + = 0.1 and
ro + = 0.9. ’

D, T

The same example could be used for cases where M=N too.

As a last comment on our example, observe that the “preferred” split igat P

We put “preferred” in quotes since we have earlier defined the preferred split at
minimum energy for the most extreme component split which would be A/H here.
But since H never need to be separated from the other components, we do not
need that split. Instead we only separate products W and Z in the prefractionator
(C1), which really is a split between components A and G. Thus, we may say that
Pwz represents the preferred split for our four aggregate products.

5.4  Verification of the Minimum Energy Solution

Here we reformulate minimization of energy as an optimization problem and ver-
ify that the solution given in equitation (5.15) (the highest peak), really is optimal
for the extended Petlyuk arrangement. We will do this by two steps. First by deter-
mining the feasible region of operation for the given product specifications, and
second by showing that no changes in any degrees of freedom within the feasible
region may reduce the minimum vapour flow requirement.

We will limit the presentation t&N components ant=N pure products. How-
ever, the result will also be valid for the general case, e.g. the example in section
5.3.2 above.
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5.4.1 Minimum Vapour Flow as an Optimization Problem

We formulate the criterion function as the maximum of the minimum vapour flow
requirements through any of the intersections 11, 12,.... I(M-1).

J(u) = max Vi v'? . viM =D (5.16)

Hereurepresents our degrees of freedom in operation, and we have in general two
degrees of freedom for every column, e.g. expressed by {for each. Thus:

dim(u) = M(M —1) (5.17)

The main constraints are given as the final prod@c} $pecifications. We may

also treat arrangements with a lower number of degrees of freedom, by specifica-
tion of a set of flow constraints, expressed as the equg(ity=0. An example is

if we restrict the feed to column C32, in the 4-product column in Figure 5.1, to be
a single liquid stream; theg(u) = V§?1-V$22 = 0 expresses the constraint.

With given feed propertiesF( a, z, g and sharp product split specification, the
optimization criterion can be expressed as:

Jopt = mlijn J(u)
Pi —
my . (5.18)
subject to constraint§](Pj = o izi)d
o ri o # J)D
g(u) = 0 .

HereP; denote product number

5.4.2 Requirement for Feasibility

The feasible region is the operation region where we have fulfilled the operational
constraints in (5.18). Here we only consider the pure products specifications, and
no additional constraints (rg{u)=0).

Then feasible operation requires operation on, or above-imped boundary in
theVyi-diagram for each column. For example in the 4-component example, the
feasible region for the prefractionator is on or aboyg+Pac-Pap-Pep-Pcp-

Note that theV,,;,-diagram for the succeeding columns only overlap the prefrac-
tionator diagram when this is operated at its preferred split. In other cases we must
find the new,,j-diagram for each column, given by the actual Underwood roots
for the proceeding columns (ref. Chapter 4).
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This is easy to show by the following argumentation for the 4-product column:

Assume first close to preferred split operation in all columns. Then change
the operation of C1 so we allow some light A to be transported downwards
in C1 and into C22. This A have to will be transported upwards in C22
since it is more volatile than B which also is transported upwards, and then
some amount of A have to be present at the feed junction to C32. A portion
will have to enter C32, and since A still is more volatile than B, it will also
be transported upwards in C32 and will appear in the product stream from
the junction C31/C32 where we have specified a pure B product.

We may do this “experiment” with a sloppy split for any of C1, C21 and C22. In
all these columns, the most heavy feed component for every column has to be
fully removed in the top, and the most volatile have to be fully removed from the
bottom in order to obtain sharp product splits in the final columns of the sequence.

5.4.3  \Verification of The Optimal Solution

We have already shown in Section 5.3 that the expression for each peak represent
the minimum vapour flow through a given intersection when all columns in the
extended Petlyuk arrangement are operated at their respective preferred splits.
But, we may ask if it possible to change the operation in some part of the arrange-
ment away from the local preferred split and thus reduce the highest peak.

In the following we will show that this is not possible.

An important characteristic of the direct coupling is that the actual Underwood
roots in a column sectiorp(in tops andy in bottoms) carry over as a common
root (0) to the succeeding column (Carlberg and Westerberg 1989), (see. Section
4.4). We combine this with Underwood’s minimum energy results which states
that for a given colump, 26, 2y, , 4

Consider now the top of the 4-product arrangement. It is clear that the first roots
in the columns C1, C21 and C33 have to obey:

05312 0$31 = 21> 0521 = C1>0G1 = 0, (5.19)
The vapour flow in the top of C31 is generally expressecpﬁ?ll , thus we obtain:
o,z F 0z F o,z F 0,z F
1_ YA%A AZA AZA A“AT  _  A/B
vEsl = = VAB  (5.20)

Cc31~ c21° Clqg.—
Up—@g Ap— Q= Op—Qx Ja Oa

This expression shows that there is ho way to operate columns C1, C21 or C31 so
that the vapour flow requirement in the top of C31 is reduced below the minimum
which is given by the peak g in the V,,j-diagram. The minimum solution is
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only obtained when we operate column C1 in a region witge is active. This
is only obtained along the curvgf-Pac (really also along R--Pag, but then we
remove component C and not only D in the top of C1, and then we might remove
column C21 completely). In addition C21 must also kekp active, which is
obtained along i-Pag, and at last, C31 must be operated exactlygf. F'his

line of argumentation is easy to extend to the general N-component N-product
case.

Operation of columns C22, C32 and C33 have no direct impacggntRus there

is no way to operate these columns to reduce the pggkFhis shows that the
peak Rg represent the absolute minimum vapour flow for the top of the Petlyuk
arrangement also for other operation points than preferred split for each internal
column.

Similarly, in the bottom of columns C1, C22 and C33 we have:
PS31< 0833 = PS2l<pS2l = Sl oS! = o, (5.21)
which gives:

\/C33 = apzpF apzpF apzpF apzpF _ \/ABCID (5.22)
B lIJ831—0(D_41821—0(D_UJ81—0(D_90—0‘D Bmin .

Thus, all the bottom columns have to be operate With active in order to keep
the minimum requirement in the bottom of C31 at pegk. P

For sharp split, this is only obtained for C1 alongyPPgp, C22 along Bp-Pcp
and C33 at Rp. Thus R represents the minimum vapour flow in the bottom of
the Petlyuk arrangement for any operation of the arrangement.

It is important to note that we have to operate column C1 exactly at its preferred
split (Pyp) to avoid increased vapour requirements in C31 or C33. Thus operation
of C1 in the region above the preferred split will increase the vapour requirement
represented by the peakggRor Pop.

However, column C1 have no such direct impact on the middle pgak Fhe

only requirement is that the roft;  is active, since this root has to carry over to
C33 via both C21 and C22. This is trivial as long as both B and C are distributed
to both products. However, it is a bit more complicated if C21 or C22 is operated
outside the region wher@;  is active. Then the resulting root in C32 will be dif-
ferent from the corresponding root in C21 and the expression for the total flow
through intersection 12 will be more complicated than for the case in equation
(5.13).
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Assume now that we keep the vapour flows and product splits constant in columns
C1 and C22. Thus, any change in vapour flow through intersection 12 must come
through the bottom of C32 so:

Av!Z = AVE32 (5.23)

min Bmin

This can be expressed by the common Underwood root in C32 and the amount of
C-component into the feed junction of this column.

C32
chz _ GCWC,F

Bmin ~ gC32_ (5.24)
B

Oc
When the product splits in C21 and C22 are kept constant, this vapour rate

depends only on the behaviour of the common Underwood root in C32, which is
given as the solution of its feed equation:

c32 Cc22_\C21
OgWg'F  OcWET—-WE'B

VC32 -

= yC22_y\C21
== A = vE22_v¢ (5.25)

Note that the net component feed rates to C32 is given directly from the material
balance at the junctiowC21 = wC22—wC2l . We assume that C22 is operated
at its preferred split. Thu®g is active in C22. In C21, we may have operation
outside the activédy  region, thus we have to use the actualyggot . The right
hand side of (5.25) can now be written as:

c21 c21 c22 c22
UgWEB UAcWEB | OgWE5  OcWES
ag-WE? a-y&?l ag-6g ac-6g

vE22_yC2l = (5.26)
By careful inspection of the structure of the feed equation (5.25-5.26), we observe

that we always hav%cﬂeg’% 0 and that the solution have to obey:
¢

0,2 05322 YS2L (5.27)
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Thus, we have that for suboptimal operation of C21, the actual Underwood root
W&?1 decreases fromits original optimal valyg?® = 6; . Due to the structure
of equation (5.26), the important Underwood ré§{32  also decrease, and from
equations (5.25) and (5.24) we see that the flow through the intersection 12 must
increase.

We may similarly analyse the operation of C22 outside the region whgre is
active, and get to the conclusion that this will also increase the vapour rate through
the cross-section 12.

It is clear that this result is independent of any changes in distribution of B and C
components from column C1, C21 and C32. For each distribution case, we may
start with6g active in both C21 and C22. Then any operation outside the active
region in either C21 or C22 or both, will lead to an increase in the required flow
through intersection 12.

We have not carried out a detailed proof for the general N-component M-product
case for other than the far left and right peaks. But we expect that this can be done
by the same line of argumentation as we used to state that the middle peak cannot
be reduced for any feasible operation of C21 and C22. Numerical evidence also
supports this.

5.4.4 Summary of the Verification

The generalized minimum energy solution in (5.15) requires that we are able to
set two degrees of freedom (e,V+) individually for each internal column in
Figure 5.1. Then we are able to operate each column at its preferred split, and
thereby ensure that the common Underwood roots found from the prefractionator
feed equation, carry over to all succeeding columns. If any part in the sequence of
columns is operated away from the preferred split, the vapour flow requirement in
some of the cross-sections have to increase, in other words; one or more of the
peaks related to the specified product splits have to increase.

In order to fulfil the product specifications, a sharp split has to be performed
between the most extreme products in each column. This requires operation at or
above the local V-curve, which has its minimum in the local preferred split.

Note that the operation of each column has direct impact on the operation of all
succeeding columns that separate one of the same products. For example, the pre-
fractionator in our 4-component example separates out the light A in the bottom.
But so does C21 and C31, thus if the vapour flow in C1 is above the exact mini-
mum energy requirement for sharp A separation (which is algggHRp), then

the minimum requirement in the succeeding columns will also increase.
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In general, if a column has its preferred split g§/Pand is operated above this
point, all succeeding columns with knots and peaks related to either X or Y will
in general be affected. Any sub optimal operation somewhere in the arrangement
cannot be recovered in the succeeding columns.

5.4.5 The Optimality Region

When the peaks are of different height, we may operate some of the columns away
from the preferred split as long as the highest peak is not affected, and the other
peaks do not grow above this one. This give rise to “flat” regions in the plot for
overall energy requiremenvge“ , as function of the degrees of freedom.

We illustrate this by an example in Figure 5.9. Singg) ks the highest peak, the
optimality region for C1 is along &»-Pgp. However, somewhere the actual
Underwood root in the top of C1 related to the AB-split will get a value which
makes the peakiR’ given by @, 5, equal the peakdp. This line segment lim-

its the optimality region for both column C1 and C21, and this is very similar to
the result from the ternary case discussed in Chapter 4.

c1 o . _
VAT %E%ngilgrrg%'%q X Possible increase Maximum allowed
and C22 at g, in peak Bc ,VBmin

Pcp Sets the overall
Vmin requirement

Petl _  ABC/D
- VBmin ~ VBmin

Possible optimality
region for C22

Actual C22
operation (X)

Optimality Actual C1
region for C1  operation (X)

C1
VT =0

Figure 5.9: Vj-diagram for 4-component feed ABCD with optimality regions for
operation of columns C1, C21 and C22. The contour lines for congignt and a given
constant0§21  which makeyA/BCD = ABICD = yABC/ID  5re ‘shown (dashed).
These boundaries are the upper bounds for the optimality regions.
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Similarly, C22 has to be operated alongd”Pcp. This optimality region is lim-

ited by how C21 is operated, since both affect the cross-section 12 through the
Underwood root 8532 ) given by equation (5.25). In Figure 5.9 we have indi-
cated the operation agB. Then we may find the optimality region for C21 in the
marked region above,R. Note how operation of C1 limits the lower part of the
optimality region for C21 through the contour for constpgt through X.

5.5 Discussion

5.5.1  Arrangement Without Internal Mixing

To avoid mixing of the streams in the feed to C32, we might consider a structure
as shown in Figure 5.10. For a generalized M-product arrangement of this type
we would get several parallel columns, performing split between the same set of
components, but without any mixing of internal products. However, in the follow-
ing we will show that when all the columns in Figure 5.1 and Figure 5.10 are
operated at their respective preferred split, the result will be identical.

A

C32b

BCD

C33

D

Figure 5.10: Alternative directly coupled column arrangement without internal
mixing of streams. C32a and C32b are parallel columns for BC separation
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The feed equation for column C32 equals the sum of the feed equations for C32a
and C32b:

c21_,,C32a ,,C32a ,,C22 _ ,,C32b ,,C32b

c22 C21 C32 C32 C32

Sincebg isactiveinbothC21and CA2,  will also be arootin the feed equation
in all these three cases. Furthermore, in each of the columns C32a, C32b, C32 it
will be the only active root since main task of these columns is to separate the keys
B and C, thus the feed equation root in the range between the volatilities of the
keys will determine minimum vapour flow. Then it is trivial to show that the sum

of vapour flows out of the top of C32a and C324{322+ V320 ) equsfs’?

We have:

C32a, C32 Cc21
\/C32a, \,C32b _ agwg 1 +wg7) _ Op(ZgF-wg'5) (5.30)
Tmin Tmin O(B_eB GB_eB )

The amount transported via CSWEZ% ) will be the same in the two cases since
the preferred split solutions in C21 only depends on the feed to C21. This con-
firms that the column C32 does the same job as the sum of C32a and C32b:

C32a C32a _  C32 C32a C32b _,,C32

But what about sub-optimal operation? Can this arrangement reduce the peaks?

For the arrangement in Figure 5.10, the equivalent to the flow through cross-sec-
tion 12 in Figure 5.7 is:

vI2 = V%1+Vg21+ V%32a+V$32b (5.32)

It is easy to show that when the ro@ is active in all these columns, we get an
identical expression asin (5.13), a\d&z{n = Vr'nzin . Let us keep operation of C1,
C22 and C32b constant, but assume that we increase the vapour flow in C21. This
can be expressed in terms of the actual Underwood root in the bottom of C21

W <8 which replaceédg  when it is not active. Thus

VIZ_VIZ = (VE2HWe) -VERH(8g)) + (VERAWE) -VERHER) (5:33)
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Here the actual root will carry over to C32a, and since all B-component trans-
ported downwards in C21 will be transported upwards in C32a, the terms
involving net transport of B will disappear. According to Underwood
85 = Y >0 . Note also that the net flow of C component in the bottom of C32
is a negative number since C is transported downwards while the positive direc-
tion is upwards. Thus we have:

21
VIZ_yl2 = [ucwg,zé_acwgyzém _ ~acWE(0g - W)
Mt me-We ac-6g0  (ac—-Wc)(ac—6g)

>0 (5.34)

We conclude for the 4 component example that the arrangement in Figure 5.10
has the same main characteristics as the arrangement in Figure 5.1. Although
there is a slight difference in suboptimal operation, it cannot reduce the vapour

flow requirement through any of the cross-sections below the minimum vapour

result given by (5.15).

5.5.2  Practical Petlyuk Arrangements (4-product DWC).

In the Petlyuk arrangement in Figure 5.1 or in Figure 5.13, we assume that we can
adjust the vapour and liquid flow individually in all columns. The more practical
arrangement in Figure 5.11 is a bit less flexible since all the vapour flow has to
come from the bottom reboiler, and similarly, the liquid flow comes from the top
condenser. It will generally have a higher energy requirement although it may be
the same in some cases (see example). Since we extract only liquid sidestream
products, also in the junction into the feed of C32. We get a simpler configuration,
which also may be implemented as a dividing wall column (DWC) in a single
shell, as indicated in Figure 5.11b.

However, operation is by no means simple and we still have 9 manipulated inputs
left, and when 4 are used for product purity, there are 5 left. These must be set
properly in order to achieve the optimal operation given by the highest peak in the
Vmin-diagram.

The cross-sectional area is usually designed for a maximum vapour load. We
know that there may be large differences between each section, e.g in C31 from
Figure 5.2. However, in cases where the peaks are similar, we know that the total
vapour requirement is similar in any cross section (11,12 or 13). Thus as indicated

in Figure 5.11b, the DWC can be implemented in a single shell with a constant

diameter, and with quite different, but suitable cross-sectional areas for the inter-
nal columns. This is one issue which makes DWC implementations attractive.
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a) Implemented in three b) Implemented in a single shell
individual shells as a dividing wall column (DWC)

% C31 C31 A

(_%AB
21
ABC C B Ic:21\
-~
LYl o
F.z, c1
- "5 |22 o 1 es
ABCD S (| N I
—P» CLBC—>
c22 ABCD |7 Syl |
ﬂ , c I T
BCD N L (L ¢
-
fyacp |
fco, | cooh/
C33 b

Figure 5.11: Practical 4-product Petlyuk arrangements with some flow restrictions:
We allow only liquid feed to C32 and liquid intermediate side products B and C.

We apply the sam¥,,;j-diagram as in Figure 5.3 also in this case. We start by
determining the requirement of the prefractionator (C1). The original diagram is
of course valid for C1 and we chose to operate C1 at its preferred split, which is
at Byp. Then all the common roots from C1 carry over to C21 and C22. However,
in Figure 5.11 we have the restrictiola! = V22 . Here column C22 controls
the vapour requirement sin&%}nin < V%%m . Thus minimum vapour for column
C21 is somewhere on the line between the points X,Y in Figure 5.12. First we try
to operate C21 in X. Then the ro@t,  carries over all the way to C31, and the
vapour flow requirement will be given by,p. However,05 will not carry over

to C22. Instead a larger root will carry over and the requirement for C32 will be
given by Pgc. But as illustrated in the figure, this gives a higher vapour flow
requirement than &, which was our original highest peak. However, here we
may increase the net product flow from C21 and move operation to Z. In this case
V>Vinin C21, and none of the common roots are active. Both C31 and C32 will
be affected, and the new minimum vapour requirements are givengydid

P’gc respectively. In this example, we get a resulting diagram whgpesHll is

the highest peak, and the minimum vapour flow requirement for this less flexible
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1.2 T

0.4 0.5 0.6 0.7 0.8 0.9 1
D/F

Figure 5.12: Vp,-diagram for 4-component feed ABCD with the less flexible Petlyuk
arrangement in Figure 5.11. Vertical arrows are vapour flow requirements in each column
section. Feed data=[0.25 0.25 0.25 0.25}x=[14,7 ,3,1],0=0.8

Petlyuk arrangement is the same as the fully flexible arrangement. Itis quite clear,
however, that we may use another feed and find cases where the less flexible
arrangement can never reach the minimum requirement of the fully flexible con-
figuration. For example if the pealBwere at the same height agd?in Figure

5.12. Then either of the peaksA g’ or P'gc would be higher than the original
three peaks for any operation of C21 along the line Y-Z.

In summary, the solution is still simple to find by thg,;-diagram, but we get

new peaks for the columns where the preceding column cannot operate at its pre-
ferred split. This can be done accurately by Underwood’s equations, but we can
also look directly at the diagram and find an approximate solution graphically.
Note how the peak Rp rise and P3¢ fall as the operation of C21 is moved on

the line from X towards Y.

Another important lesson is that we may change operation in some parts of the
arrangement within the optimality region, without affecting the highest peak. The
extent of this region is dependent on how different the peaks are and the practical
impact is that some of our degrees of freedom do not need to be set accurately,
only within a certain range.
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5.5.3 Heat Exchangers at the Sidestream Junctions

Condenser. In order to set all flow rates independ-
m A ently for the columns in the last array
(e.g. C31, C32 and C33), we may with-
AB draw both vapour and liquid, or we may
F‘ c31 e.g. withdraw liquid products and use a
heat exchanger where the duty corre-
ABC C21 sponds to the change in vapour flow (see
B Figure 5.13). The required vapour
Heat change is given directly in thé;-dia-
F.2,q c1 * B exchanger  gram as the difference between the
C32 height of neighbouring peaks.

ABCD X

Note that we do not need any heat
exchange at the internal feed junctions,
c since we can withdraw any required lig-
Heat uid or vapour flow from the feed stage of
ﬂCD exchanger  the succeeding column as discussed in
the previous section.

BCD

C33

In addition to obtaining full flexibility in
Ez\ D controlling the two degrees of freedom
Reboiler IN each internal column, this structure
Figure 5.13: The general extended alsO gives a better result with respect to
Petlyuk arrangement with heat the second law of thermodynamics com-
exchange at the sidestream junctions. pared to the case when we supply all the
heat in the bottom and remove it in the
top and withdraw only liquid products. Thg,;,-diagram gives minimum vapour
requirements for every section for the specified separation, but when the peaks are
different we may supply or remove some of the heat at the boiling points of the
intermediate components. The highest peak will set the same vapour flow require-
ment through the most demanding intersection in both cases.

Example In Figure 5.3 R is the highest peak and we must supply

VE33 = 1.02 in the bottom reboiler. The difference in vapour flow in

C33T and C32B\($33 —v§32 = 0.07 ) is the difference betwegp P

Tmin Bmin
and Rsc. Similarly the difference betweepgand Ry gives the difference

between C32T and C31W£32 —V§31 = 0.06 ).
If the peaks to the left were higher than the peaks to the right, we may still supply
all the heat in the reboiler, but then columns C33 and C32 will be overrefluxed.
But with heat exchangers in the sidestream junctions, we can supply each column
with its minimum requirement.
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5.5.4  The Kaibel column or the'} column”
The Kaibel column (Kaibel 1987) is a directly cou-

pled arrangement for separating 4 components as @,A
shown in Figure 5.14. The interesting part is the co1
extra column section (C2x whete=V) for separat- AB

ing B/C in the main column. However, the sharp B/
C split is performed already in the prefractionator
(C1), so section C2x is really not needed, and can be E_, B
replaced by heat-exchange between bottom of C21

and top of C22, denoted th¢-“ column” by (Chris-ABCD

tiansen 1997). c1 C2x
The minimum vapour flow requirement in the Kaibel

. —» C
column is always outperformed by the full Petlyuk

arrangement in Figure 5.1. This is simple to see from
theV-diagram, in Figure 5.2 as shown by the fol-

lowing argument for example: b c22

In the Petlyuk arrangement, the overall vapour
requirement is given by the highest peak. In the Kai- E{;’ D

bel column, C1 is not operated at the preferred spliyre 5.14: The Kaibel
butata Sharp B/C Spllt, which is given by the midcgﬂ'angement for separatiofh o
peak (Rc). If this is the highest peak, it is clear that4-component feed

the Kaibel column requires a higher reboiler vapour

rate, since it require this vapour rate for C1, and we

must in addition have some vapour flow for the separation of C/D in the top of
C22. If Bg¢ is not the highest peak, we observe that when C1 is operatgegat P
none of the common roo8, ay are active in C1 and cannot carry over to
C21 or C22. Then, as shown in Section 5.4.3, the expressions for minimum
vapour in each of C21 and C22 have to be higher than the pgakaé Rp.

5.5.5 Required Number of Stages - Simple Design Rule

The proposed stage design for ternary Petlyuk arrangements given in Chapter 4
can be applied for the extended arrangements too.

We can calculate the pinch zones in all junctions for all columns at preferred spilit.
This is trivial when we know all flow rates and component distribution from the
Vmin diagram.

Then a minimum number of stagdd;,,) can be found from the Fenske equation
(ref. Section 4.9.6) for each section for a given impurity of the component to be
removed in that section. This impurity can be set according to the impurity
requirement in the products.
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The simple design ruleN = 2N, will typically give a real minimum vapour
flow (Vrmin in the range between 5-10% abo¥g;, found for infinite number of
stages, for the same separation.

This simple design rule may of course be adjusted by more rigorous column com-
putations and cost functions.

5.5.6 Control

M-product columns will of course be more complicated than the more familiar
ternary Petlyuk arrangements. However the characteristic of optimal operation is
similar, and is given by keeping each individual column at its preferred split.

By keeping the impurities of the components to be removed in each section at set-
points fixed at small values we ensure that the operation is at the preferred split,
even if we do not know the feed. The magnitude of the allowed impurity setpoints
in intermediate columns should be set according to the allowed impurities in the
final products.

5.6 Conclusion

We have shown that the results can indeed be extended to general multicompo-
nent-multi product arrangements.

An explicit analytical solution for minimum vapour flow for a generalized and
extended Petlyuk arrangement has been found. The solution is very easy to visu-
alize in theVy,-diagram for the feed, given by the following rule:

The minimum total vapour flow requirement in a multi-component, multi-
product Petlyuk arrangement, is determined by the highest peak in the
Vpinrdiagram.

Alternatively, since the/,-diagram originally just characterize a two-product
column with a multicomponent feed, this may also be expressed as:

The minimum total vapour flow requirement in a multi-component, multi-
product Petlyuk arrangement is the same as the required vapour flow for
the most difficult split between two of the specified products if that separa-
tion is to be carried out in a single conventional two-product column.

We note that this is a direct extension of the results for the 3-product Petlyuk
arrangement from Chapter 4.

Note that the rule above applies to any feasible product specifications, both in
cases with equal number of feed components and products, and for any possible
component grouping in the products in cases where the number of products is less
than the number of feed components.
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In addition to the overall vapour flow requirement, we find the individual vapour
flow requirement for every column section, directly from the same diagram. The
Vmin-diagram is based on feed data only and was originally intended to visualize
minimum energy regions and distribution regions for all possible operating
points, in an ordinary two-product distillation column with multicomponent feed.

In order to adjust two degrees of freedom in each internal column, we may in gen-
eral need a two-way flow connection for either vapour or liquid at internal feed
junctions. Also at the sidestream stages we may use heat exchanger to combine
the function of setting all degrees of freedom, and to supply or remove heat at
intermediate temperature levels. Practical arrangements with less degrees of free-
dom may also reach the same minimum vapour flow.

Although arrangements with more than 3 products may be feasible, the results for
general M product systems have mainly theoretical interest. The most important
result is that we can find the minimum target value for the vapour flow required
for separation of a multicomponent feed by distillation in directly coupled
arrangements.

The result is exact, but it is important to note that we have assumed constant pres-
sure, and that we have not considered any internal heat exchange inside the
system.

The latter may as shown in Chapter 6, give some further energy savings.
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Chapter 6

Minimum Energy Consumption
In
Multicomponent Distillation

In the evaluation of minimum energy consumption

(1st law) we here also discuss minimum entropy pro-
duction, or lost work (2nd law). This leads us to
the reversible Petlyuk arrangement. However the

total required heat supply is higher in this case
than for the typical (adiabatic) Petlyuk arrange-

ments, but there is a potential for further

reduction by use of internal heat integration.

This principle can also be applied to general
arrangements (not only reversible) and we compare
set of alternative distillation arrangements for a
given feed example. One interesting result is that

it is possible to go below the minimum energy, as
given for the extended Petlyuk arrangement pre-
sented in Chapter 5, by use of internal heat

integration.

We also conjecture that the generalized extended
adiabatic (not reversible) Petlyuk arrangement
require less energy than any other adiabatic
arrangement at constant pressure and without
internal heat integration.
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6.1 Introduction

In this chapter we use the extended Petlyuk arrangement presented in Chapter 5
as a basis and discuss methods for further reduction of the energy consumption in
multicomponent distillation. Some important questions are: Is the directly cou-
pled Petlyuk arrangement always the best? Is it possible to find an ultimate target
for minimum energy? Can reversible distillation give further energy reductions?
What about internal heat exchange and operation at several pressure levels?

We here define “best” by the following two measures:
1. Minimum Energy (first law efficiency)
2. Minimum Entropy Production (second law efficiency)

The surrounding plant, environmental issues, capital and energy costs have strong
influence on the importance of each of these measures to the overall economy.
However, we will not consider any economic measure, but present some theoret-
ical distillation arrangements and show by some examples how we can make
arrangements, which approach the “best” in both the above senses. We will
present the entropy calculations in more detail below.

In section 6.2 we show that for arrangements with adiabatic column sections and
no internal heat exchange, the directly (fully thermally) coupled arrangements
require less energy than other types of adiabatic column integration. We do not
discuss the entropy production in this section, so this can be seen as an introduc-
tion and stating of the minimum energy level for a large class of distillation
systems.

The reversible Petlyuk arrangement (Petlyuk 1965) plays an important role in this
paper, and we show how to compute compositions and vapour flows in section
6.4. The basic theory of reversible distillation is included in Appendix Section
6.10.

In Section 6.5 we compare set of alternative distillation arrangements for a given
feed example. One interesting resultis that it is possible to go below the minimum
energy, as given for the extended Petlyuk arrangement presented in Chapter 5, by
use of internal heat integration.

We also briefly discuss operation at several pressure levels in section 6.6.

6.1.1 Some Terms

We first define some important terms used in this chapter. A cokautionis a

set of connectedquilibrium stagesind we will mainly discuss sections with infi-

nite number of stages. We introduce the texdiabatic columrsection, as used

by Petlyuk et. al. (1964), to denote a column section with constant molar flows
and no heat exchange along the section. Thus, the directly coupled columns pre-
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sented in Chapter 4 and 5 and typical conventional arrangements contain
adiabatic sections. Inon-adiabatic sectionge can supply or remove heat con-
tinuously at any stage in the section.réversible sectioris an infinite non-
adiabatic section where the heat is supplied or removed in a way that eliminates
mixing irreversibility between neighbouring stages. In a colamangementve

put together a number of sections, reboilers and condensers to perform a certain
separation task. Sections may diesctly (fully thermally) coupledpy two-way

liquid and vapour streams or may be coupled via condensers or reboilers. We also
divide sections at stages with feed streams or side-draw stream$/ifilmeum
energyis the minimum required external heat supply to reboilers and to non-adi-
abatic column sections in order to carry out the specified separation task in a given
arrangement and is related to the first law of thermodynamics. Sometimes we use
the total requirement fovaporizationor vapour flowas measure of the energy
requirement.

We will also discuss theeparation work(exergy) which is related to the second
law, where we also consider the temperature levels of the supplied and removed
heat in the system. Reversible distillation requires minimum separation work.

6.1.2  Basic Assumptions
We make the following basic assumptions, which are used throughout this paper:

1. Ideal mixtures with constant relative volatiltity)@nd constant molar
flows (in adiabatic sections)

2. Constant and equal heat of vaporizationfgr all components
3. Raoult’s and Dalton’s laws
4. |deal gas in the vapour phase and negligible liquid volume

In Section 6.10 (Appendix) it is shown that with these assumptions, the tempera-
ture-composition-pressure relationship-x-P) for a multicomponent mixture
(see Petlyuk (1964) for a binary mixture) is given by:

1 _ R |:Pref 1
_—I_ = )\ ZCX X|:|"'_I_br (61)

HereT, | is the boiling point for the reference component at the reference pres-
surePs. However, when considering temperature differences, these constants
disappear. The universal gas consRs8.31 [JKmorl1)].

In the entropy calculations we assume that the feed and the products are saturated
liquids such that the heat supplied equals the heat removed.
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6.1.3 Minimum Entropy Production (2nd law efficiency)

The difference between the actual work which can be extracted from a process
and the ideal reversible work is the “lost work” given by:

VVlost = TOAStotaI (6'2)

whereT, is the temperature of the surroundings A&, is the total entropy
change (entropy production). The lost work is zero only for a reversible process
where AS,,;, = 0, but in general we have from the second law of thermody-
namics that:

ASppa = ASgy,+AS20 (6.3)

Here, AS is the entropy change in the system (e.g. the distillation column) and
AS;,,, is the entropy change in the surroundings. Note it is a state function
and is thereby a fixed number for a given separation task. We consider ideal mix-
tures for which the entropy change when mixidgpure compounds at constant
pressure and temperature is givensbgdnotes mole fraction):

NC
AS = —RZ xIn(x;) (6.4)

i=1

However, the entropy change in the surroundings depends on the actual process,
and can be calculated from:

As = 99 (6.5)

sur T

wheredQ is the actual heat transferred at system temperature T. The integral has
to be taken around the system boundaries where heat transfer to the surroundings
occur. When the heat is supplied or removed at discrete temperature @yats (

T;), for example in a reboiler and a condenser of an ordinary distillation column,
the integral in (6.5) can be replaced by summation:

Q.
NS, = _ZT_JJ (6.6)
J

If we can find a process where the total entropy chanf ) is zero (or
AS,,, = —AS), itis reversible.
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A normalized measure of the work loss, or entropy production is given bethe
ative entropy productigrdefined here as:

ASpiar  ASy, +AS

sur
= 6.7
as - T Ias ©
Thus, to check the second law efficiency, we simply need to compsig, for

the actual distillation arrangement. The entropy chaf\§e is known from (6.4)
when applied to the feed and all the products.

6.1.4  Minimum Energy (1st law)

Even thought the net heat supply is zef@lQ = 0 ) it is useful to distinguish
between heatingdQ> 0 ) and coolind@Q<0 ). Wewrd® = dQ, +dQ. .
where the heatindQ, = max(dQ, 0) and coolirtQ:- = min (dQ, 0) . Note
that the total heat supply equals the total cooling and is given by:

Qy = fdQH =-Q¢ = _fdQC (6.8)

This is a useful measure from an energy point of view (1st law).

Ideally we want to have botAS;,, small (small lost work, i.e. good 2nd law
performance) andQ, small (small total heat supply, i.e good 1st law
performance).

The ideal separation process with a minimum valu@gf is areversible process
with all the heating at the highest temperatufe,( ) and all the cooling at the low-
est temperaturel( ). For this process we have from (6.6):

- _z |:QH QCD QHDi_iD (6.9)
H TLD oy T
Since the process is reversible, we ha%g . = -AS , i.e. we have that:
_ —AS
Rrmin = ST 17 49
O " T
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The vaporization rate\( ) is related to the heat@y = AV . For anideal distil-
lation process with a pure light component at press¥jre in the top and a pure
heavy component in the bottom at presskye , the reciprocal temperature dif-
ference is computed by (6.1) and we obtain:

0
L _1 - Rong,,+m2to (6.11)
0
Then the minimum vaporization rate can alternatively be expressed by the relative
volatility and pressures:
—AS _ -AS/ R

rev,min ~ )\Di 0 -
Or T

\Y,

(6.12)

_1 PO
T, Ina'—“““ﬁ%

A theoretical reversible process with this behaviour can be obtained by using an
ideal heat pump which transforms the required amount of heat from the two
extreme temperature levels, to the intermediate temperature levels as required in
the reversible distillation column (e.g. in Figure 6.2a at page 186). We could also
imagine to adjust the pressure continuously along the column to keep the temper-
ature constant at two levels, but this would also require reversible compression
and expansion between stages which is even more “theoretical” than the heat-
pump solution.

Any irreversible process that supplies and removes heat at the same temperature
levels, e.g. an adiabatic distillation column, will require higher vaporization rate
than given by (6.12) according to the second law of thermodynamics.

6.1.5 Summary of some Computation Examples

We show by some numerical examples that it is possible to go below the minimum
energy requirement for the typical adiabatic Petlyuk arrangement (to be given in
equation 6.13) by use of heat integration, even if we keep constant pressure in the
system. In Table 6.1 we have summarized the energy consumption (minimum
vapour flow) and the relative entropy production (relative lost work) for some
conventional column arrangements and some examples of Petlyuk arrangements
with internal heat exchange which are described in Section 6.5. The table is sorted
in descending order by the required by external heat supply. Note, however, that
the same ordering does not apply to the lost work.

We will in the rest of this paper show in more detail how these results are
obtained.
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Table 6.1: Comparison of minimum energy (external heat supply) and relative
entropy production (lost work) for a set of column arrangements for a given feed

, . External | Relative
Configuration ,
A . Energy Entropy Comments:
(Ad: Adiabatic e : _
_ Vmin= | Production (HE: Heat exchange)
Non: Non-ad.)
TAQ/A A0S0/ 10S
Direct Split, no HE | Ad 2.072 0.59 C1:A/BC, C2: BIC
(conventional)
Indirect Split, no HE | Ad 2.032 1.21 C1:AB/C, C2: A/B
(conventional)
Side Rectifier Ad 1.882 0.86 C1:A/BC, C2: B/CI
(directly coupled)
Side Stripper Ad 1.882 1.05 C1:AB/C, C2: A/B
(directly coupled) Figure 6.1, page 177
Reversible Petlyuk | Non 1.667 0.00 Figure 6.2a page 186
Column
Conventional prefract Ad 1.556 0.63 C1:A/C, C21:A/B,
tionator arrangement C22: B/C, no HE
Petlyuk Column Ad 1.366 0.72 Figure 6.2b page 186
(typical) without side-HE
Petlyuk Column + | Ad 1.366 0.54 Figure 6.2b page 186
side-HE
Petlyuk + HE across| Ad+ 1.222 0.54 Example Hection 6.5
the dividing wall Non
Petlyuk + HE from | Ad 1.181 0.49 Example Hection 6.5
sidestream to feed
Petlyuk + total mid- | Ad+ 1.000 0.26 Example 1&ection 6.5
dle HE Non
Reversible Petlyuk | Non 1.000 0.05 Example Section 6.5
with internal HE
Reversible process | Non 0.793 0.00 Example 0Section 6.5
with only two temper- Theoretical minimum
ature levels ref. Section 6.1.4
In the calculation of the numerical values we have assumed constant pressure, and
the following feed dataFF = 1 g =[4,2 1 z = % % %} g=1
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6.2 The Best Adiabatic Arrangement Without Internal
Heat Exchange

Petlyuk (1965) showed that it is possible to device a reversible Petlyuk arrange-
ment (see Section 6.5) with zero lost separation work and thus requires minimum
separation work compared to any other separation process.

However, it has also been conjectured that the adiabatic Petlyuk arrangement,
where all the heat is supplied in the bottom reboiler at the maximum temperature,
requires minimum energyf,i,) compared to any other adiabatic distillation
arrangement (without internal heat exchange). However, no proof has been found
in the literature (Petlyuk 2000), except for the ternary case. For the ternary case
Fidkowski and Krolikowski (1987) showed that the 3-product Petlyuk arrange-
ment always has a smaller vapour flow than any arrangements with side-strippers
or side-rectifiers and they showed that these also performed better than the con-
ventional direct and indirect split sequences.

For the generalized adiabatic Petlyuk arrangement presented in Chapter 5, the
minimum energy requirement for separation of a feed mixtutd.afomponents
is given by:

i
Petlyuk _ Oo;zF O .
min = mjax B——:——E wherej O {1, N.-1} (6.13)

=1 ! J

\Y

where®, are thé\.-1 common Underwood roots found from the feed equation
(qis liquid fraction in the feeds) andz is the feed composition):

iR 6.14

Note that all the heat can be supplied in the bottom reboiler and be removed in the
top condenser, but, in some cases, some of the heat may be supplied or removed
at the product outlets (Chapter 4 and 5).

In the following we consider adiabatic column sections, and we verify that the
adiabatic Petlyuk arrangement is indeed the best distillation arrangement when
we regard the total requirement for vaporization at constant pressure, and when
we do not consider any internal heat exchange within the arrangement.

6.2.1 Direct Coupling Gives Minimum Vapour Flow

First we will show that the direct (fully thermal) coupling minimises the vapour
flow requirement through any column junction.
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Cc21

VI1=V$21 __Q -V

Heat * A 12
Q c21 v n

Net feed F‘:21 :DC1

I
L I
I

»

(p t Ll
» \__/ o og?!

Figure 6.1: General column interconnection junction. The direct (full
thermal) coupling give®§?! = @,  which impliemin(max Vviv'yy)
and a zero external heat exchange at the interconneQtd).(

Let us consider a general junction at the top of the prefractionator (C1) and the
succeeding column (C21) as illustrated in Figure 6.1. To simplify we assume a
ternary feed, but similar results can be obtained for any number of components
and at any junction in an arrangement.

We assume that the two degrees of freedom in column C1 &g, V$1 ) are
fixed. In Chapter 4 we showed that the composition in the recycle fIchl( )
from C21 to C1 normally has no effect on the net component flows from C1 to
C21. This is so unless a component which would have been removed in an ordi-
nary column (with a condenser) is not introduced in the recycle flow to the
directly coupled column. For reasonable operation of the system this will nor-
mally not be a problem.

At the interconnection to C21 we allow for supply or removal of heat (still with
fixed D€L, vE&L). This will then only affect the effective liquid fractiom§2! )

to column C21 and have no impact on the component flomfél( ). Recall that
direct coupling implies that the reflux in C1 is taken directly as a side-draw from
C21 and that the vapour flow from C1 is fed directly to C21. In this case the exter-
nal heat exchange is zero, and we obtain an equivalent liquid fraction given by:

g2t = 1-v&Y/p! (6.15)

Note that we always havg®21<0  with direct coupling, which is equivalent to a
superheated vapour feed. Heat removal (e.g. a condenser) will inafedse and
heat supply (superheater) will decrease its value.
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The most important effect of the direct coupling is that the Underwood roots in
the top of C1 “carry over” as the common (minimum energy) Underwood roots
for C21 (Carlberg and Westerberg 1989). Theg2! = ¢§1 , which is vital in
the following analysis.

For a given operation of the first column (not necessarily at minimum energy), the
vapour flow, and net component flows in the top can be related to a certain Under-
wood root @ ), here given by the defining equation in column C1 (we omit the
superscript C1 ow and@ ):

a W AW a~w
AA+BB+CC

VEL = (noteD! = Yw) (616

ApA=FPa Ag=0Pp Ac—@p
Consider now any type of interconnection to the succeeding column (C21). At

minimum energy operation in C21 the flow rates are determined by the compo-
nent distribution and the common Underwood roots. Thus:

c21 c21 c21
AWK OgWg Acwe

V_l(_32.1 =
min —ac2il —ac2il —ac21
ap—0g7" ag—6x ac-0x (6.17)
c21 c21 c21 '
vC2l = oA (WE ‘WA)+°‘B(WB —Wg) +O‘C(Wc —We)
Bmin — c21 c21 c21
ap—0% ag— 0% ac—0x

The common Underwood roots can be found from the feed equation of C21 (6.18)
and will depend on the external heat through the feed quality. The net component
flow and net distillate flow in C1 are constants.

AAWp OgWp UcWe
_QpC21 —QaC21 —aC21
ap 0 ag 0 ac 0

= (1-q¢2hpCl (6.18)

Note that for any reasonable operation of columns, all net component flows are
positive in the top sections and negative in the bottom sections. This implies that
the minimum vapour flow in the top section will increase as the common Under-
wood root increase and the vapour flow in the bottom section will decrease.

In the following we fix the operation of column C1 such thdt1  andwall , and
thereby allg. are constant, and we want to find the value of the common Under-
wood root in C21 6%1 ) which minimize the maximum vapour flow rates through
any of the intersections above or below the feed junction (see Figure 6.1):
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, 11,12\
énglgl%nax(v Vv )there (6.19)

Vil = vE2l andv!? = vELl+vE2l (6.20)

A typical dependency o'l anw'’ asa function@;ﬁ1 is shown in Figure

6.1, and we see that the analytical solution is given by:

. 11,12\
2ra(gfrex V) (6.21)
Proof dVIl Y 2
For normal operating conditions, we haa,ceeg_m> 0 an%_deA21< 0

This implies thamin %nax(vll,vlz)g is found whewi' - = v'?

By applying8%2! = @, in equations (6.16-6.20) we obtaih = v'2
Q.E.D.

In conclusion, minimization of the vapour rate through any intersection (11 or 12)
is found when the common Underwood roots in column C21 equal the actual
roots in the top section of C1. This is exactly what we obtain with a direct cou-
pling. Note that the proof does not require the first column to be operated at
minimum energy and that it is valid for any distribution of components in C1.

6.2.2 Implications for Side-Strippers and Side-Rectifiers

A direct implication of the result in Section 6.2.1 above is that arrangements with
side-strippers (like in Figure 6.1 with a direct coupling) or side-rectifiers, will
always have a lower total need for vaporization than the corresponding indirect
split or direct split configurations. This was also shown by Fidkowski and Kro-
likowski (1987) for the ternary case, but it is straightforward to extend the result
in Section 6.2.1 to the general multicomponent case.

6.2.3  The Adiabatic Petlyuk Arrangement is Optimal
The result in Section 6.2.1 gives rise to the following conclusion:
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We assume constant relative volatilities, constant molar flows, constant
pressure and no internal heat integration. Then the generalized adiabatic
Petlyuk arrangement has the lowest need for vaporization compared to any
other adiabatic distillation arrangement for separation of an arbitrary feed
mixture into its pure components when

This result is based on the simple argument that at any junction where we might
consider another type of connection than the direct coupling, the required vapour
flow through the junction, and thereby through a cross-section of the whole
arrangement, will increase.

We have not presented a complete proof, so the above conclusion is a conjecture.
However, for the ternary case, it has been proved by Fidkowski and Krolikowski
(1987), when considering conventional arrangements and side-strippers as alter-
native configurations.

A qualitative explanation is that the direct (full thermal) coupling can be regarded
as ideal heat integration. For example when a side stripper configuration is used
instead of an indirect split configuration, the direct coupling replaces a condenser
(which in practice has an inevitable loss). This is probably the background for the
term “full thermal coupling” used by many authors. However, here we will use
the term “direct coupling” which relates to that both the vapour and liquid flows
are coupled directly between two columns. In addition, we obtain reversible mix-
ing at the junctions when we keep the vapour and liquid flows in the junctions at
equilibrium.

6.3  Entropy Production in Adiabatic Arrangements

6.3.1 Adiabatic Column (Section)

We consider a column (or just a section) with constant vapour flg)y (
Qy = AV = -Q and known composition and pressure in the fGpand bot-
tom B). Then equation (6.6) combined with (6.11) gives:

0y (a:x +)Ps0
ASyy = WHE - 20 = Rvinpe——RTBp (6.22)
O Tg O) (@;x; g)P1O

Note that this expression is independent of the heat of vaporization, the boiling
point temperatures and the absolute pressure. In the case of constant pressure and
when all the heat is supplied in the bottom where only the heavy key (H) appear,
and is removed in the top where only the light key appear (L), (6.22) is simplified

to:
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AS,

ur = RVIna (6.23)
(Note that this could be found from equation (6.12) when repla®ing i, with

VandAS with-AS, ,, , and constant pressure).

Example: We may apply (6.23) to adiabatic binary distillation. Combined
with Kings formula for Vi, (for g = 1) we obtain:

AS,

= REE@=D2p g (6.24)

a-1

ForthefeedF =1 a =2 z= 0.5,we obtain\SSur = RO1.50n 2 .
The actual entropy changkS = -R[n2 (6.4), and the relative entropy

production(AS, ,,+ AS)/|AY = 0.5.

6.3.2 Adiabatic Petlyuk Arrangements

The entropy production in adiabatic Petlyuk arrangements (see Figure 6.2b at
page 186) can be found by the expression for single adiabatic sections. We may
use combinations of (6.23) for nonsharp products or (6.23) for sharp product
splits. Consider a ternary case (components ABC with relative volatilities
dc, 0g, 0 and saturated liquid feed) where we have sharp product splits and
that we have the possibility to change the vapour flow at the sidestream Stage (
(by supply or removal of heat). Then, given by the minimum vapour flaysn(

the reboiler B) and condensef}:

_ 1 10 Nl 1m
AS.. = A B =0y U =
B T
sur EV Drs TBD DTT TSDD (6.25)

AR(VgInage+Vyina,p)

When the vapour flow is constant through the arrangement we have
Vg =V; =V, (VE?A' = maxX(Vgmip VTmin )» @nd from (6.25 or directly
from 6.23) we obtain:

AS,

ur = RVIno o (wherelna y¢ = Inoagc+Ina,g) (6.26)

Note thatmax Vg, V1)(Inagc+ Inag) =2 Vglnage+VyIna g - Fromthisit

is simple to see that the entropy production when we have constant vapour flow
through the arrangement as given by (6.26) is always larger then the expression
in (6.25) where we allow for supply or removal of heat at the sidestream stage.
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6.4 Reversible Distillation

Reversible multicomponent distillation have been described by Grunberg (1956),
Petlyuk et. al. (1964 and 1965) and Fony6 (1974ab). An overview is also found in
the textbook by King (1980). Here we show in detail how to compute flow rates

and composition profiles in a reversible arrangement for separation of multicom-
ponent feed, and we will relate this to the adiabatic Petlyuk arrangement.

The sources of irreversibility in a distillation process come from mixing of fluids
with different composition and temperature. This may happen at the feed stage,
in the top or bottom when fluid is returned to the column, and also inside the col-
umn when there is a composition difference between neighbouring stages. In
adiabatic distillation, there will always be a set of stages inside the column sec-
tions with significant composition differences resulting in irreversible interstage
mixing, even with infinite number of stages.

To obtain reversible operation we consider infinite non-adiabatic sections. We
assume that at any stage,(there is a local pinch zone with constant composition
(i.e. X, 4+ 1 = X,) such that we obtain reversible mixing between neighbouring
stages. Then the material balance for compof(igmett an arbitrary stage is given

by:

Note that the net component flawy is always constant inside any type of section.
From (6.27) we get the requirement for vapour flow through the stages:

w, —x,D w; +x;B
Top:V; = Vi—X Bottom:Vg = V=X
i~ i

(6.28)

Note that this expression is valid for any componéntl(he net product flows are
trivially given byD = Zw; + andB = 2w, 5 .

A characteristic of theeversible distillationcolumn is that some of the heat is
supplied continuously along the bottom (stripping) sections and removed along
the top (rectifying) sections, as opposed to the conventional adiabatic arrange-
ments, where there are no heat exchange along the column sections.

In Appendix Section 6.10 we present the reversible distillation theory in more
detail. We show that when the vapour flow is set according to (6.28), the entropy
to the surroundings is described by:

dSyy, = RY (wd(inx)) (6.29)
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For any given reversible arrangement, it is then trivial to show that integration of
(6.29) along all the reversible sections giaS, . = —-AS (whag is given

by (6.4)). In the appendix, this is shown in detail for a reversible binary column.
Below, we treat the reversible Petlyuk arrangement more carefully.

6.4.1 The Reversible Petlyuk Arrangement

In multicomponent distillation, Petlyuk (1965) and Fony6 (1974) list two main
properties which limits the possibilities for reversible operation:

1. We cannot remove more than one component in each end of a 2-product
column. This is due to the fact that we need a pinch zone across the feed
stage, and this is only possible for so-called Class 1 separations (Shiras
1950). If we relate this to thé,-diagram (ref. Chapter 3), reversible
operation is only possible at the preferred split, where we remove exactly
one feed component in each end, or in the triangle below, where all com-
ponents may be distributed to both ends.

2. We require that the top reflux is in equilibrium with the vapour flow leaving.
This is not possible with an ordinary condenser unless the liquid flow rate
is zero. Similarly the vapour flow into the bottom must be in equilibrium
with the liquid flow out. This cannot be done reversibly in a single con-
denser or reboiler in the case of more than 2 components.

Note that both these limitations can be overcome with a Petlyuk arrangement. We
already have reversible mixing in all junctions and by using infinite reversible sec-
tions, the whole arrangement becomes reversible. In the following we will present
a procedure for computing reversible heating or cooling along the sections, and
the corresponding composition profiles. Figure 6.2a illustrates the results for a
given ternary example.

The vapour and liquid rates trough the feed stage can be found by assuming a
pinch at the feed stage, for example by applying Underwood’s (1948) equations
for minimum reflux for the stages immediately above and below the feed. The
recoveries (or net component flomg) of all components are completely deter-
mined when we specify two independent variables at the feed stage.

Away from the feed stage we can express the compositions and flow rates as a
function of a single free variable, e.g. the composition of the component which is
to be removed in that section. (This can be shown by inspecting the equations
involved). When we remove the maost extreme volatile comporiir & section

(its composition has to approach zero before the end and the materiak gy

we may apply equation (6.28/6.60) fek. Then the following expression applies

for both the top and the bottom section (with different componkeatsd net flows

w;, of course):
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0 0
0o, O
V(x) = —zwi/D?—lg (noteD = H'w; 1 andB = -y W, g ) (6.30)
l i% ' !
O

Interestingly, the composition of an arbitrary compon@nhion a certain stage
depends linearly on the mole fraction of the componddt Which is to be
removed, and its mole fraction at the feed stage of that column.

01-x

0
X = X hm, fori#zk (6.31)
' "FEL - % fO

Herek refers to the least volatile component in the top section, and the most vol-
atile component in a bottom section. Equation (6.31) can be proved by inserting
(6.31) into (6.30), and verifying that the material balance (6.27/6.58) is fulfilled
for all component flows.

Now we extend this to compute flow rates and compositions in the whole arrange-
ment. The compositions in all feed junctions are found by applying (6.31)
recursively for every section. The limiting pinch composition in the top of the first
column (the prefractionator), when the heavy componietit ) is removed, can

be found by setting=0.

LF (6.32)

Similarly, wheni=L denotes the light component, the composition in the liquid
leaving the bottom (where, = 0 x, = 0 ) becomes:

X:
Cl - LF
xCl. = (6.33)
PB
" 1-X F

When the direct (fully thermal) coupling is between pinch zones at the same com-
position, the mixing will be reversible. Then the “pinch”-compositions given by
(6.32 and 6.33) express the “feed-stage” composition in the succeeding columns
and we simply reuse the same equations for that column, but with one component
removed from its feed. Going through the whole arrangement, we find that at an
arbitrary junction (column Cx) the “feed composition” is uniquely determined by
the first feed stage compositiox:{, and the range of components present at the
junction L<i<H).
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X:
¥ = —LF ,andx“¥ = 0 fori<L and >H (6.34)

Example: With a ternary saturated liquid feed (components ABC)

. c21 z c22 Z
Xg = z and (6.34) givesx, ¢ = A y Xg E = ——

The net component flows at the feed stages in each column can again be computed
by using the preferred split in every column inside the arrangement.

The entropy change to the surroundings is given by equation (6.29/6.62) for each
section. For our ternary example shown in Figure 6.2a, we may write the total
entropy change as:

— ASC1T 4 ASC1B 4 AGC21T 4 ASC21T 4 AGC22T 4 AGC22T
ASSUr - ASsur +ASSU|’ +ASSU|’ +ASSUr +ASSUr +ASSU|’ (635)

Since we have pinch in the junction regions, the terms involving any intermediate
junction composition will cancel out due to the material balance for each net com-
ponent in the junction. For example the terms involving the contribution from the
light component at the feed junction at C21 are given as:

C1 .Gl , ,C2L,C2h c21_ . Cl . C21  C21, C21_ o
Wa TINXa 7+ (Wa g=Wa T)INXA F = (W T+ Wp g=Wp 1)INXs F =

Thus, the total entropy change in the surroundings will depend only on the prod-
uct and feed compositions and we obté&6_ . = -AS , which proves that we
have a reversible process.

The solution for a ternary case is illustrated in Figure 6.2a. Numerical values are
shown for the compositions and flow rates in the end of every section.

The solution procedure is summarized below:

» The net component flows are computed for the prefractionator (C1) feed by
specifying a sharp A/C splitand pinch across the feed stage (preferred split)
(ref. Chapter 4).

* The net component flow rates in columns C21 and C22 are trivial since we
require pure products, and the junction feed flows are given from C1.

 All junction compositions are computed from (6.34)

» Vapour flow in each end is computed from (6.30)
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—. — Heat —
AQ/=-0.663 D=0.333 removed D=0.333
Feed: Y x=[100] —-AQ/\= Y x[100]
F=1 V4=1.072
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a) Reversible Petlyuk Arrangement

Total heat supply: QF1.667
(Q/\=0.333+0.667+0.444+0.222)

a) Adiabatic Petlyuk Arrangement
Total heat supply: QF1.366

Figure 6.2: The reversible Petlyuk arrangement (a), has heating and cooling along the
sections. In the (irreversible) adiabatic Petlyuk arrangement (b), all heat is supplied in the
bottom reboiler. Minimum required internal flow rates and the resulting junction
compositions (x) are shown for the given feed. (The heat removal at the side-stage for the
adiabatic arrangement (b) is optional).
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6.4.2 Comparing Reversible and Adiabatic Arrangements

The internal flows and pinch zone compositions for the adiabatic Petlyuk arrange-
ment shown in Figure 6.2b are computed by the methods presented in Chapters 3
and 4. The composition profile in the prefractionators are shown in Figure 6.3.
Recall from Chapter 3 that the adiabatic profile also follow straight lines from the
feed to the pinch composition at the ends in the triangular diagram.

B

Junction
into C22| Profile with
extra heat

¥ 0.6 added in C1B

o=
Junction z=[0.330.330.33]
into C21 q=

\|

054 x5

XBP |
0.5

Adiabatic profile

Reversible profile

C

Figure 6.3: Composition profiles in the prefractionators (C1) for the adiabatic and
reversible arrangements shown in Figure 6.2.

However, in the reversible arrangement the pinch composition at each end of C1
results in a lower vapour flow requirement in the succeeding columns, compared
to the adiabatic arrangement. This is easy to see qualitatively: In C22 the mole
fraction of C is increased at its feed stage, leading to a lower boilup ratio, and sim-
ilarly in C21 the mole fraction of the light A is increased at the feed stage, leading
to a lower reflux ratio.

Note that even if the reversible arrangement in Figure 6.2a is thermodynamically
optimal with respect to minimising the lost work, the numerical example shows
that the total heat supply is higher than for the (irreversible) adiabatic arrangement
in Figure 6.2b.

The most important similarities and differences between the reversible and the
adiabatic arrangements are listed below:

» The flows through the prefractionator feed stage and the recoveries of feed
components from the prefractionators are identical.

« The pinch zone compositions at the ends of the prefractionator differ and
resultin a a lower requirement for energy in the succeeding columns for the
reversible prefractionator.

» The total amount of required heat supply for vaporization is higher in the
given reversible arrangement for our example.
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6.5 A Case Study: Petlyuk Arrangements
with Internal Heat Exchange

We here show by a set of numerical examples that by use of internal heat integra-
tion it is possible to reduce the external heat supply requirement below the well
known minimum vapour flow values given by Fidkowski and Krolikowski (1986)
for the ternary case, and generalized in equation (6.13) (Chapter 5) to any multi-
component case.

The basis for this possibility is that the temperature range in some of the column
sections overlaps, and some of the removed heat can be utilized as heat supply to
other sections and in that way reduce the need for external heat supply.

The examples are based on the ternary case in Figure 6.2. For all cases we have:

AS = ~RezInz = —8.31E§|n = —9.13 JK-Imol] (6.36)

1
3

6.5.1 Example 0: Theoretical Minimum Energy Limit

Recall that the absolute minimum heat supply in a reversible process is when all
the heat is supplied at the highest temperature, and is removed at the lowest tem-
perature as shown in (6.12). For the given feéd=< 1 ), the correspondingly
minimum need for vaporization by external heat supply in a hypothetical revers-
ible “distillation” process is:

_ Sz (3/3)In1/3 _
rev,min ~ na, = ina = 0.7925 (6.37)

Vv

6.5.2 Example 1: Internal Heat Exchange
in the Reversible Arrangement

The total need for heat supply for vaporization in all three bottom sections of the
reversible arrangement in Figure 6.2a, is given by:

Qy _ Vg§2+AVC1B+AVCZlB:1+g+é _

= = 1.667 (6.38)

©ol|H

However, by careful inspection of the available heat from coolth@{(T) ) and
required heatingdQ(T) ) at each temperattrgfer the given case we find that

the heat required in the middle sections C1B and C21B can be supplied by the
heat removed from C22T and C1T and the sidestream condenser (the details of
this procedure is not shown, but ordinary Temperature-Heat diagrams can be
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6.5 A Case Study: Petlyuk Arrangements with Internal Heat Exchange 189

used). Thus, in theory, minimum heat supply, when the possibilities for internal
heat exchange case is utilized, is given by the requirement for heat supply in C22B
only:V§22 = 1.0. We may also calculate the entropy to the surroundings by
(6.29) for sections C22B and C21T and along the middle sections, where the
externaldQ=0, we use (6.5 or 6.50) directly (this part yields the two first terms):

Cc21 c22

Vv Vv
- _TF BF 221 vC22 _ \wC21|nC21y —
ASy,/ = @—@—R(V\/& sINXg¥E —wg5lnxg4) = 9.60  (6.39)

We get alittle entropy productiodS;,,, > —-AS ) due to some irreversibility in the
heat exchanger system since we take out some heat which is returned at slightly
lower temperature levels. However, the separation in the column is not affected.

Note that in the general case we might @&, ' <-AS from (6.39). However,
this would only imply that we are unable to obtain full heat exchange in the mid-
dle sections, and (6.39) would then not represent the condifB:tg

All the external heat is now supplied in the bottom reboiler and along the bottom
section of C22, and is removed along the top of C21 and in the top condenser. The
internal flows and compositions will be identical to the case in Figure 6.2a.

Example 1a .We may alternatively operate the top and bottom as adiabatic sec-
tions and supply all the required heat in the bottom remove it in the top (we still
consider the same heat exchange in the middle sections). The entropy change in
the surroundings will in this case simply be given by equation (6.23):

AS

<ur = RVE?2na ,, = 8.3101.000n 4= 11.52 (6.40)

6.5.3 Example 2: Heat Exchange Across the Dividing Wall

Usually, capital costs prevent distributed reboilers and condensers along the sides
of column sections. However, in a Dividing Wall Column (DWC) the sections are
closely integrated, and it is interesting to study if we may get positive energy
effect for free, from the potential of heat transfer across the dividing wall. The
idea is to distribute the heat transfer inside the Petlyuk arrangement, and possibly
obtain reduced energy consumption in the reboiler.

The beneficial directions are always from section C1B to C22T and from C1T to
C21B. However, the temperature profiles along the sections may not always give
a driving force in the beneficial directions. In addition, the heat transfer surface
area may not be sufficient. This implies that the desired heat transfer coefficient
will depend on feed properties and flow rates. Lestak et al. (1994) considered heat
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transfer across the wall for a given case, and it was found that it could be benefi-
cial to allow for heat transfer along a part of the dividing wall and insulate the
other part. But the overall reduction in heat input was found to be small.

In our example we may try to operate only sections C1B and C22T reversibly. The
upper parts (C1T, C21T and C21B) will then require the same flows as in the adi-
abatic arrangement. Note that the demand in C1B is higher than the available heat
in C22T, so we can never reach fully reversible operation in C1B. However, by
using equations (6.46) and (6.49) we can adjust the feed junction composition to
C22 until we get a heat balancay$22 = AV§? ). This occurggt= 0.571
which glvesV01/F = 0.611 and the need for boilup is reduced with about 8%,
from VC22/F = 1.366 in the pure adiabatic caseV§?%/F = 1.222

An alternative approach is to use forced heat integration at one, or more, pairs of
stages. For example by using a part of the vapour flow from a stage in C22T as a
heating fluid at a suitable stage in C1B. This may give better flexibility in opera-
tion compared to a passive heat transfer across the wall, but it will be more
expensive in implementation and operation.

6.5.4 Example 3: Pre-heating of the Feed by
Heat Exchange with the Sidestream

The result obtained when all the available internal heat is utilized is not very real-
istic. However, it is possible to obtain positive results with a much simpler
approach. In the adiabatic arrangement in Figure 6.2b, a large portion of the side-
stream is available as vapour. If the feed temperature is below the boiling point of
the pure intermediate, it is possible to transfer heat from the sidestream to the
feed. Stage temperatures for the example is obtained from equation (6.52) where
we assume that the heavy component boiling poiﬁ'tdgC = 310K and heat of
vaporization\ = 25kJ/ kg (which is close to n-pentane properties at 100kPa).

With equimolar feed, the feed stage temperafige= 285.1K while the pure B-
component boiling pointi§' ) 5 = 289.3K . However, as the amount of vapour

in the feed is increased, the feed stage temperature will be increased, and the
amount of sidestream available as vapour will be decreased. The vapour flows
have been computed from thg,-diagram methods presented in chapter 4.

For the given case we find that with a liquid fractign= 0.7620 , all the heat
from condensing the sidestream is transferred to the feed. The resulting liquid
feed stage composition is changed from = [0.333 0.333 0.333 to
xg = [0.2778 0.3398 0.3835 and the feed stage temperature becomes
Te = 287.0K, which is still beIowa g - The important mole fraction of the
intermediate B-component in pinch zone at the feed junction to C22 is reduced
from xgp = 0.608 to xgp = 0.560 and the vaporization rate in the reboiler is
reduced fromV§2%/F = 1.364 to/§2%/F = 1.181 .
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The total need for vaporization per unit feed in both columns in a conventional
direct split configuration i2.032 in this case. The savings in reboiler duty com-
pared with the plain Petlyuk arrangement is 32.8% and can in theory be increased
to 41.8% when we heat the feed by condensing the vapour portion of sidestream.

This kind of heat integration is only possible when the feed temperature is below
the sidestream temperature, and excess vapour is available at the sidestream stage.
However, if there are other available streams in the plant at suitable temperature
levels, the heat exchange does not have to be done directly between the sidestream
and the feed stream, but with other streams.

Unlike the ideal heat exchange within the reversible arrangement, heat exchange
with the sidestream can be implemented in practice, and we may get significant
positive effects for units with realistic size and efficiency.

6.5.5 Summary of the Examples

The main results have been summarized in Table 6.1. The numbers should speak
from themselves, but here are some observations:

» The Adiabatic Petlyuk column has the lowest energy consumption com-
pared to the arrangement without heat integration. This will also be a
general result (ref. Section 6.2 and Fidkowski and Krolikowski (1987)).

» The heat-integrated arrangements have even lower energy consumption
than the Adiabatic Petlyuk column.

» The conventional direct split configurations require less separation work
than the typical Petlyuk arrangement where all the heat is supplied in the
bottom and is removed in the top. Note also that the different reversible
arrangements may have quite different requirements for total heat supply

» However, the Petlyuk column with an heat exchanger at the sidestream
stage (Figuré.2b)has lower lost work than any of the arrangements with-
out heat integration (this result may be case specific).

« Forthe given feed data, the extremely simple configuration with heat trans-
fer to the feed from condensation of the available sidestream vapour flow
(Ex 3) seems very promising, both with respect to small minimum energy
requirement, small lost work, and possibility for practical realization.

However, we cannot make general conclusions from Table 6.1 since the data are
only valid for the particular feed used in the example.
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6.6 Operation at Several Pressure Levels

The pressure has a large impact on distillation and is widely used in the industry
to get a suitable temperature range in each column. This is important for optimal
use of available utilities, and for optimal heat integration within a plant. We will

not go into much detail on this issue, but we will look at three examples below
where we combine heat exchange and different pressure levels. Note that we here
assume no loss related to the compression or expansion or in the heat exchangers.

6.6.1 Example 1: Feed Split (Binary Case)

The configuration in Figure 6.4 shows a case where the
A feed is split into two streams where 50% is separated at
high pressure and 50% at low pressure. The pressures are
adjusted so the temperature in the reboiler of the low-pres-
sure column is equal to the condenser temperature of the
high pressure columnT(,), and we assume perfect heat
exchange. (Note that in practice we would require a certain
temperature difference).

Heat
removed

T

AB

A If the columns are adiabatic, it is trivial to find that the min-
imum boilup ¥,,ip) in the high-pressure reboiler will be
50% less than in a single column since the feed is reduced
by 50% (we assume constant relative volatility).

However, we may also check the requirements for a revers-
ible system. The required pressure ratioRig/P, = a
which is found from equation (6.1) by equating the boiling

, . points of pure light component at high pressure and pure
Figure 6.4: Binary heayy component at low pressure yJ, thus the relation

ration i
separation - at WO o veen temperature spans are given by:
pressures

1 1 _ g1l 1g_ 5,01 10

— - = 20— —-=—5= 20 -= 6.41

T Ty DTM THD ( )
Minimum separation work will of course be identical for any separation process,
but minimum required vaporization in reversible distillation depends on the tem-
perature span as given by (6.12). For the temperature span in Figure 6.4 we obtain:

\Y = _Zzilnzi — l-D_zZiInZiD (6.42)
rev,min |0ga+|ogPH/PL 20 IOgCX 0 '
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This result is 50% below the requirement for a single reversible column. Thus the
efficiency of the adiabatic systeM ., i/ Vimin Wil be the same in the two
cases, provided that the heat exchange between the columns is ideal.

This is an example where we trade heat supply with temperature span, but without
changing the consumption of separation work. A typical application area is if a
plant has available hot utility at high temperature, e.g. from an exothermal process
like a methanol reactor. Then the configuration in Figure 6.4 is a practical arrange-
ment that make the best use of the available energy.

6.6.2 Example 2: Double Effect Direct Split (DEDS)

For the ternary case we may consider a heat-inte- Heat
grated direct split configuration (double effect removed
column). Figure 6.5 shows an example where the
upper column (C1) performs a sharp A/BC split and

the lower (C2) the B/C split. Column C2 is operated ~ ABC
at a higher pressure so reboiling in column C1 can be
obtained by full heat integration with the condenser g Tm
in column C2. The required minimum pressure ratio
(for ideal heat exchange) can be found from (6.1):

Pum

Ph/PL = ag(zg + 7o)/ (agzg + acz0)  (6.43)

The temperature levels can be computed from (6.1)

for a given reference pressure level and correspond- Heat
ing boiling point of the reference component, and a  SuPplied
given heat of vaporization.

The required vapour flow from the bottom reboiler inFigure  6.5:  Double
column C2 can be found by Underwood’s equationg/fect  Direct  Split

for C1 and King's formula for C2 (Chapter 2): ]EODrE3'?pSr)O dui‘:';‘l%:rri;?]

vEz2. 0o,z OpZg + O ~ZA[]
Bmmzmam A“A +(1—q), BB CCD (6.44)
F (A=Y Og—0c 0O

A double effect indirect split (DEIS) will be equivalent. Then the first column will
normally be operated at high pressure, and will carry out the sharp AB/C split.

We may operate both columns at their minimum vapour flow at the same time, by
adding or removing additional external heat in the middle heat exchanger so both
expressions on the right hand side in (6.44) are fulfilled.
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6.6.3 Example 3: Double Effect Prefractionator Column (DEPC)

Consider an arrangement with a separate conventional prefractionator column,
but where the condenser in the prefractionator is directly heat integrated with the
reboiler of the main column as shown in Figure 6.6 (Bildea and Dimian 1999),
(Fonyd et. al. 1999) (Emtir et.al. 1999). In order to get direct heat transfer, the
pressure in the prefractionator must be higher than in the main column. Note that
all the external heat is supplied in one reboiler and is removed in one condenser,
just as for the Petlyuk column. However, the main difference is operation at more
than one pressure level.

All external heat For any given split in C1 (distribution of the
removed here ‘ﬁA middle B-component) we will obtain a certain
product composition in the topx§-, x5 )
The pressure ratio can be found from (6.1) by
P equating the temperatures in top of C1 (A+B

components) and the bottom of C22 (pure C):

Cc21

e
P,/P, = (O‘AX,CA:,lT + GBX&]'T)/GC (6.45)

C22  This ratio is obviously higher than for the direct
split case (DFDS: 6.43) since for DSPC we need
All external heat to have the same temperature for the mix of all
supplied here :}T—r c thelight A+ some B from C1 and pure Cin C22,
while for DEDS we only adjust the pressure
Figure 6.6: Separateuntil the temperature of the mix of all B+C from

prefractionator  arrangement1 equals pure C in C2.

with double effect heat o .
exchange (DEPC) The minimum vapour flow (when we consider

total condensation in C1) is the maximum of the
minimum requirement in each of the three columns. The absolute minimum will
be determined by the requirement for the preferred prefractionatorvm(ﬁ ).
However, in cases where one of the main columns has a higher requirement, we
have to supply some extra heat, either in the reboiler to C1 or to C22 or C21
directly.

6.6.4 Relation to the Petlyuk Column and th&/,,i,-diagram

Minimum vapour flow in an adiabatic Petlyuk column is determined by the high-
est peak in th&/,,,j-diagram (Chapter 4) as shown in Figure 6.7. Originally, this
diagram characterize minimum vapour flow and feed component distribution in a
two-product column (Chapter 3), and interestingly we also find the lower bound-
aries for minimum vapour flow in the double effect columns directly from the
same diagram. The peaks correspond to minimum vapour flow for sharp product
splits (A/BC and AB/C) and the “valley” in the middle correspond to the preferred
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A/C split where the intermediate component is distributing. The diagram in the
figure show a case were the A/BC split is simpler than the AB/C split, thus in

selection between DEDS or DEIS, the preferred choice will be DEDS (note that
this rule does not apply to conventional DS and IS configuration without heat inte-
gration, where we compare the sum of vapour requirement in both columns for
the two configurations).

DEDS:

V o lowest (left) peak
A (e p VAIBC  Petlyuk column:

VAB/C o— highest peak
min

Figure 6.7: Minimum energy for
the Petlyuk column, the DEDS
and the DEPC illustrated in a
Vpinrdiagram for a ternary feed
(ABC)

DEPC
preferred split

The results are summarized in Table 6.2 below, where we also give data based on
the same feed as used for the examples in Table 6.1.

Table 6.2: Relation between minimum vapour flows

Configuration Vinin Diagram | AS,,,/1AS
Petlyuk column, | = max(vé/ilaq VnAw?A =1.366 | = Highest 0.72
(with side HE) peak (0.54)
DEDSorDEIS | =min (VABC VABIC) | =1072 | =Lowest | 064
(with extra HE) peak (0.59)
DEPC > \JAIC =0.778 | =Preferred 0.63

min split

Note that we do not have an equality for tig;-expression in the table for the
double effect columns when the splitin column C1 is very simple and require very
low vapour flow compared to the split in next column(s).

The numbers in parenthesis apply to cases where we utilize the possibility for heat
exchange at an intermediate temperature level. At the sidestream stage for the Pet-
lyuk column, and in the heat exchanger in the DEDS column in order to reach
minimum vapour flow in all sections simultaneously. For the DEPC configura-
tion, the given feed data actually results in the same the minimum vapour flow in
all three internal columns.
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As in the binary feed split example, the double effect columns are also configura-
tions where we trade an increased temperature range for a lower amount of heat
supply. The temperature range in the DEDS/DEIS configurations will be larger
than for the Petlyuk column, and the DEPC will have the largest range.

Due to the operation at several pressure levels, and thereby at different tempera-
ture ranges, we must be careful when comparing minimum vapour flows with the
results for constant pressure in Table 6.1.

However, the entropy production (lost work) in the double effect columns are the
same as for the corresponding configurations without heat integration. This
implies that we do not improve the energy consumption (total heat supply) related
to the theoretical reversible process with all heat exchanged at the most extreme
temperatures.

6.7 Discussion

6.7.1 Plant-wide Issues

The general principle for any internal heat exchange configuration is to approach
a reversible process, and at the same time approach the case where most of the
external heat supply and heat removal occur at the most extreme temperatures.

However, heat integration should be considered on a plant-wide basis, and not
only within aisolated plant segment, and as in all design problems, the investment
cost must always be considered in comparison to the potential energy cost
savings.

6.7.2 Heat Exchange at the Sidestream Stages

As discussed in Chapter 4 and 5, the adiabatic Petlyuk column has normally dif-
ferent minimum vapour requirements above and below the sidestream stages. It
follows trivially from equation (6.6) that if these differences in vapour flow rates
are obtained by adding or removing heat at the sidestream stages, the separation
work will be reduced, thus the 2nd law efficiency will be improved. However, the
total requirement for vaporization will not be affected.

Note that many authors generally state that Petlyuk arrangements has a higher net
work consumption than conventional systems (e.g Carlberg and Westerberg
1989), but this is normally without considering any heat exchange at the side-
stream stage. Data for the example in Table 6.1 is an example where we reach an
opposite conclusion when we utilize the possibility for removing heat at the inter-
mediate temperature level at the sidestream stage. (Here the relative entropy
production @S,/ |AS 9.54for the column in Figure 6.2b while the direct

split configuration hadS .,/ |AS G59.
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6.7.3  Non-Uniqueness of Heat Supply in Reversible Columns

The entropy change in the reversible system is unique, but there are many possible
reversible process paths, and each will result in a different amount of heat con-
sumed by vaporization. Note that the total entropy expression is independent of
the junction compositions, thus if we can alter the junction compositions by a
reversible sub-process, we can find alternative reversible paths.

Consider the ternary feed case again. The net component flow rates are given by
the conditions at the feed stage. At the bottom of section C1, we have only B and
C present. We omit the column superscript in the equations below where the net
flow rates (g andwc) are computed for the bottom of C1 (note thaE0). The
reversible vapour flow (6.60) in the bottom of C1 and up to the feed stage in C22
can then be expressed as a functiomgét the feed junction (wherey=0). Note

that these expressions also are valid for the adiabatic arrangement since it is based
on a pinch assumption in the zone around the junction.

OcWg AgWe

c1 _
Ve (xg) = (0g—ac)Xg (ag—0ac)(1-Xxg)

+(Wg+We), X, = 0 (6.46)

In the process of removing the light component A, we have already shown that
reversible operation follows a linear profile (Figure 6.3) towards the pinch com-
position given by (6.33). However, after the light A is removed completely, we
may add a new subsection at the bottom of C1, denoted C1B’. By exchanging heat
along the side of C1B’ to obtain the vapour flow given in (6.46) we may alter the
final junction compositiong in both directions. We may reduce it by further heat-
ing until we reach the limiting composition when the vapour flow into the bottom
of C1B’ becomes zero. Then

Wg
Xg = (6.47)
V=0 WB + WC

This is exactly the same condition as when we use an adiabatic prefractionator
with its own reboiler, and saturated liquid feed to C22.

The effect on vapour flow in C22 can also be expressed as a functignlofthe
bottom (C22B) the net flow of component C is identical to the net flow in the pre-
fractionatorwg=0, and the vapour flow up into the feed stage becomes:

agWe

Vgéz(XB) = — (GB_GC)(l_ XB)

+We (6.48)
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F Cl
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we=0 L Figure 6.8: Modified reversible arrangement.
In section C1B’ we have only B and C
> Wg present, and we may alter the compositign
::ﬁ“ into C22, and therebwgé2 , by heating or
> cooling reversibly, but without affecting the
dQ s— total net work consumption in the system.
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Note that this is exactly the same expression that will determine minimum boilup
in an adiabatic columnw~ = (1-2)F,xg =z g =1 gives Kings’s formula
for V

min)'
An interesting issue, however, is how the total amount of vaporization flow in the

integrated system is affected by the choicexgf  in areversible arrangement. The
total amount of vaporization in the bottoms of C22 and C1, is given by

o-(—w,
VEE (VEEVEY = Ve S ) (649)
B~ YcC/”B
Note that the material flomsg andw are negative in the bottom sections and the
vapour flow at the feed stage of ngl% ) is independentrrrom (6.49) we
see that if we reduceg by adding more heat along C1B’, the total amount of
vaporization in C1 (including C1B’) and C22 increase.
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This suggest that we should cool along C1B’, but, we still have to supply the same
heating along the bottom of C1B. The picture is changed, however, if we allow
internal heat exchange inside the system. Thus, if the heat removed in C1B’ is
reused in C1B we may still apply (6.49). Then the limiting point of operation is
whenV§! = V§E , which gives the same flows as in the adiabatic case.

Thus, this confirms that it is possible to find a reversible arrangement with exactly
the same heat supply requirement, and the same external flows and junction com-
positions as in the adiabatic Petlyuk arrangement, but this requires that we allow
internal heat exchange inside the system. In this example we cool along C1B’ and
supply the same amount of heat back along C1B which seems a bit strange.

6.7.4  Practical Issues

In the design of an optimal separation system, we must apply a cost function
which properly reflects the real operational costs and investment cost. Thus, there
is no particular configuration which is optimal for a given separation task. In some
cases, the optimal solution of a given cost criterion will be close to minimum
energy, and in other cases closer to minimum lost work. This is dependent of
prices on equipment, energy, raw materials and products, and on the available
temperature ranges for heating and cooling utilities within a plant.

Zero lost work (entropy production) may be an unrealistic target since the capital
cost of realizing a (close to) reversible process may become very high (infinite
column sections, infinite number of heat exchangers infinite area in heat exchang-
ers e.t.c.). For simulations of reversible columns we really need “infinite” number
of stages. In adiabatic distillation columns, “infinite” number of stages can be
simulated in practice wittN = 4xXN,. -

Proper control and operation of a given distillation system is very important to
obtain the full potential in terms of low energy consumption, product quality and
volume. This is particularly important for complex arrangements like the Petlyuk
arrangements, and for closely heat integrated arrangements.

6.8 Conclusion

Reversible distillation gives valuable insight in the energy requirement for multi-
component distillation. However, even if the reversible arrangement is optimal
with respect to entropy production or lost work (2nd law), we may have irrevers-
ible (adiabatic) systems with less energy consumption (1st law). Without
considering any internal heat exchange, the adiabatic Petlyuk arrangement seems
to achieve less minimum energy requirement than any other distillation system.
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Internal heat exchange can be used for further reduction of the minimum external
energy (heat supply). Heat exchange can be applied in any system where the tem-
perature ranges where we need heat supply overlaps temperature ranges where
heat is available. Thus, it can be applied for the ideal reversible arrangement as
well as for the adiabatic Petlyuk column and also for conventional column
arrangements. With a given total temperature range, the minimum energy target
can be defined by a theoretical reversible distillation process where all the energy
is supplied at the highest temperature and removed at the lowest temperature.

We have briefly discussed how pressure can be used to adjust temperature range
in a distillation system, but this issue is by no means fully covered in this work,
and it seem clear that this is an important area for further studies.
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6.10 Appendix: Reversible Distillation Theory

In areversible process the total entropy production is zero, thus, for reversible dis-
tillation we trivially haveAS, ,, = —AS . However, we here show in more detail
how we can obtain a reversible distillation process by applying heating and cool-
ing along infinite non-adiabatic column sections in a particular way. Then, by
computingAS, . from (6.5) we verify that this process really is reversible by

showing that we obtaiAS;, = -AS

In a distillation column where the feed and products are saturated liquids, the heat
supplied equals the heat removed, t =0 . For entropy calculation in dis-
tillation sections, we need to relaté heat flow and temperature to flows and
compositions, and in the following we will deduce some useful expressions. A
similar procedure is presented by Petlyuk (1964) for a binary mixture, but here we
present a general procedure for multicomponent mixtures.

By applying integration by parts (Petlyuk 1964), we obtain:

_ _gdQ _ 1 N Am - o
AS,,, = 6= =-= $dQ + dQ = = 6Qd=
sur T T oo _fDDéDEEjDrDD -f bt (6.50)
=0 z0
We express all variables as function of composition, thus we con€ifigrand
T(X). The integration path will then be from the bottom to the top of the column
and (6.50) can be expressed as:

Xt dD—l 0
AS,,, = ETI—(X)Dd 6.51
sur IQ(X) dx X ( . )
Xg
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6.10.1 Temperature-Composition-Pressure Relationship
Let us first find an expression for the temperature and the differéfitialx)).

We consider ideal components obeying Raoult's lgy= Py, = x;p? , Where

p; is the partial pressure of componénp/ is the vapour pressure, y  are the
liquid and vapour phase mole fractions. According to Dalton’s law, the total pres-
sureP = Zp, = Zx;p? . The relative volatility for any component related to a
reference component is then giveny = p°/p? . We divide the pressure with
p°(T) and obtain:P/ pP(T) = Z(pIO(T)/p (T))x; = Za;x; . Note that the
temperature relation is through the vapour pressure of the reference component,
given by:In(p2(T)) = InP ¢ + ()\/R)(l/Tb —L/T) . HereT,, is the boll-

ing point of a pure reference component at the reference presB}g]e ( ). This
expression is obtained by integration of the Clausius-Clapeyron equation (Chap-
ter 2) when we assume constant heat of vaporizaymegligible liquid volume

and the ideal gas law. Then the temperature-composition-pressure relationship for
the multicomponent mixture is given by (ref. Petlyuk (1964) for binary mixture):

1- |nmﬁzcx XD+ (6.52)

We needd(1/T)in (6.50) and by derivation of (6.52) we obtain:

dx
a0 = R] RdP (6.53)

(6.54)

X

;”jxj

In the following we assume constant pressure. We can substitute the VLE into
(6.53) and the relation betweeii1l/ T) and the compositions is then given by:

do- R _R d
d z = XIZ(yi—Xi)—Xi— (655)
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Note that we have used the fact thadx, = 0 (when the sum is taken over all
components) to obtain the expression with the fa¢yor-x;) . This form is useful
when we shall evaluate the integral (6.50) as we will show in (6.61).

6.10.2 The Reversible Vapour Flow Profile

Now, we need to express the heat supply as a function of compaosition along a sec-
tion. When we consider ideal components with equal and constant heat of
vaporization { ), the heat input is directly related to vaporization and
condensation:

dQ = AdV = -AdL (6.56)

whereL andV are the local liquid and vapour flow rates through the stages. Thus
we can apphQ(x) = AV(X) together witth(1/T(x))from (6.55) in the entropy
expression in (6.50). Note that the contribution from reboilers and condensers is
given by discrete terms likeQ/T  asin (6.6).

To find the functionV(x) which gives reversible operation we study the internal
properties of a column section. To avoid irreversible mixing, we assume infinite
number of stages so that we can consider any local stags pelonging to a zone

of constant composition such thap,n = Xin+1 - (Such a pinch condition is
usual to assume also in adiabatic distillation for computing of minimum flows, but
only in a certain zone of the section). The material balance on an arbitrary stage
(n) inside a section is given by:

Vnyi,n_Ln+1Xi +1,n — Wi (6.57)
We use the pinch assumption, omit the stage index and obtain:
Vy, —Lx = w, (6.58)

Herew; is the net molar flow of componen{defined positive upwards, and into
feed stages). The total net flow is obtained by taking the sum over all components:

V-L = ZWi (6.59)

Note that in the top we ha@ = ZWi + andin the bot®ns —Z W g
| |
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By eliminating the liquid flow ) we can express the vapour flow at any stage in
a top or a bottom section as function of the stage composition for any given com-
ponent {):

w; —x,D w; +x;,B
Top:V; = = Bottom:Vg = =
i i

(6.60)

6.10.3 Entropy Production in a Reversible Section

Note that the component flows (and thus also D and B) are always constant inside
a given section. Then equation (6.60 top) combined with (6.55) in (6.50) gives:

dx0
ASy,, = fAvd g 'fxdy_x)ﬁzw. X?E

_ O dx0O dx 0 (6.61)
= Rf,ZB( xD)——X—D Rf§BN7D_D§;2§
0

Note that the expression for vapour flow) (n (6.60) is valid for any component
(i) so we could use it inside the summation and cancel the fdgier;)

The final expression is independent of both relative volatility and heat of vapori-
zation. We will get the same expression for both the top and bottom sections:

) 0 dxQ ~ 0 dx0
AS,,, = Rf,ZDN'_E or on differential formds,,, = RZ D=L (6.62)

The net component flows\) are always constant in a section, thus the integral

in (6.62) gives us the logarithmic termmg; ) that appear in the system entropy
expression (6.4). For a given separation case, we have to find the net component
flows (w;), but this is usually quite simple for the given set of specifications.

We show the application of the equations for reversible vapour flow and entropy
production in detail for a binary case below, and discuss some of its properties (a
multicomponent case is treated in Section 6.4.1).
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6.10.4 Reversible Binary Distillation

The net component flows in each section of a binary distillation column are
uniquely given by the two product specifications, here as the composition of the
light component %p,xg ) (We usex; = X andx, = 1-x ). Thus,

From (6.59) and (6.60), the resulting vapour and liquid flows in the top becomes:
Xp — X Xp—Y L+ Xp-Yy

Vr=Dym o Lr=Dymy and go= o (6.63)

Similarly we find for the bottom:

- X X=X L - X
Vo=B B | =gl B gyq B-YTT6 (6.64)
y—X y—X Vg  X—Xg

The entropy change of the surroundings as given in (6.62) becomes:

o o %o 0 0 X ¢ s
AS.. =R - (d(Inx)Z+ S By 5 [ d(inx) (6.65)
T ER A e f A

Note thatxi,,: =z an(tiF = xi’DD+xi,BB , thus we obtain:

AS,, = RID(XpIn(Xp) + (1 =Xxp)In(1—xp)) +
B(xgIn(xg) + (1—x5)In(1-x3)) - (6.66)
F(zin(2+(1-2In(1-2)]1/F

and we find thatAS , + AS = 0 by computing the actual state change of the
system entropyAS from equation (6.4). Thus, we conclude that by applying the
liquid and vapour flow rates as in (6.63) and (6.64), we have reached a reversible
system, and it follows from the second law of thermodynamics that no further

reduction in net work can be obtained.
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The following two characteristics of reversible operation are very important for
minimum energy results and will also be valid for the multicomponent case:

» We have to supply heat below the feed and remove heat above the feed.
(See Figure 6.9)

» The vapour flow has its maximum through the feed stage and this flow rate
is identical to the minimum vapour flow in an adiabatic column (with con-
stant molar flows). (See Figure 6.9 and the McCabe diagram in Figure
6.10)

General comments and observations:

» Note that for feasible (positive) liquid flow rates in the top, the highest lig-
uid composition in the top is really n&g, butxy* which is in equilibrium
with yp=xp. ThenL=0 andV;=D. However, raising the purity frong,*
on the top stage t, in the product can be done by equilibrium vaporisa-
tion and then a direct condensation of the vapour to liquid, which is a
reversible process for a binary mixture. And since the integsgy‘tis
shown to give the reversible work expression, and the process on the final
stage and condensation of the product is also reversible, we may integrate
(6.65) toxp even if the equations gives a negatiyén for x>xp*.

* Note that the local slope of the operating lihg/{/7) at [X,)] is the same as
the line throughXp,xp] and [x,)], as illustrated in the McCabe-Thiele dia-
gram in Figure 6.10.

» For pure products, the flow expressions can be simplified (shown for the
top):

a _ Lty
(a—1)x’ Lr = D(0(—1)x andVT ax (6.67)

V; =D
The slopel/V at the top becomeSa andL; = Fz(a —1) , while for non-
pure product, the slope at the top is zeregt Jyp] and Ly =0

For nonsharp-splits the liquid flow into the top is zero (see Figure 6.9), but
as we approach pure products, the heat exchange close to the top will
approach the amount required in the condenser for sharp splits (given by
equation (6.67) for=1). The behaviour in the bottom is equivalent.
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Figure 6.9: Reversible binary distillation: Internal flow ratég.,V,e,) as function of
composition. Minimum flow rates in an adiabatic column are also indicateg, ¥min-
Note thaf\/-,—LT=D andLB-VB=B
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Figure 6.10: Reversible binary distillation in a McCabe-Thiele diagram.
The operating point is always at the equilibrium curve anywhere in the column.
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Chapter 7

Optimal Operation of Petlyuk
Distillation:
Steady-State Behaviour

Ivar J. Halvorsehand Sigurd Skogestad

Norwegian University of Science and Technology, Department of Chemical Engineering,
7034 Trondheim, Norway

Published in Journal of Process Control
Volume 9, May 1999, 407-424

Abstract.

The “Petlyuk” or “dividing-wall” or “fully thermally coupled” distillation col-

umn is an interesting alternative to the conventional cascaded binary columns
for separation of multi-component mixtures. However, the industrial use has
been limited, and difficulties in operation have been reported as one reason.
With three product compositions controlled, the system has two degrees of
freedom left for on-line optimization. We show that the steady-state optimal
solution surface is quite narrow, and depends strongly on disturbances and
design parameters. Thus it seems difficult to achieve the potential energy sav-
ings compared to conventional approaches without a good control strategy. We
discuss candidate variables which may be used as feedback variables in order
to keep the column operation close to optimal in a “self-optimizing” control
scheme.
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7.1 Introduction

The thermally integrated “Petlyuk” arrangement has several appealing features.
For the separation of a three-component mixtlirgntafyllou and Smith (1992)
report typical savings in the order of 30% in both energy and capital costs com-
pared to traditional arrangements with two columns in series. However, an
important question remains: Is this process unit difficult to operate and is it pos-
sible in practice to achieve the energy savings?

Condenser The Petlyuk column, shown in
Figure 7.1, has at steady state
five degrees of freedom, which

Liquid split (R) »D
S V3 L T O’IXDt may be selected as the follow-
B e OP ProAUCt ing manipulative inputs: Boilup
Prefractionator (V), reflux (L), mid product
el )l 4 side-stream flow$), liquid split
Feed R - » S (R=L,/L) and vapour split
Fzq . Side-stream  (R=V2/V). There may be up to
L product four product specifications:
“The Dividing 1. Top purity &-.. )
Wall 6~ |: ba

< 2. Bottoms purity X5 )
3@/ Vapour split (R) 3. Side-stream purityxg,, )
> Bxg 4. Ratio of the light and heavy

Reboiler Bottom product component impurity in the side-
stream product{g 4/ Xg. )-
jre 7.1: The Petlyuk Distillation Colum

, . However, Wolff, et. al.
plemented in a single column shell.

(1994,1996ave reported dis-
continuities in the range of
feasible operation if all these product compositions are specified. This is related
to the fact that column sections 4 and 5 (see Figure 7.1) are tightly coupled and
we cannot independently adjust the amount of light and heavy component in the
intermediate side-stream product. This may be a disadvantage compared to a con-
ventional arrangement with two columns. On the other hand, if the number of
controlled outputs is reduced from four to three, by not considering the ratio of
light/heavy impurity-components in the side-stream, the feasibility problem dis-
appears. Thus in this paper we will focus on this simpler task of three-point
control, where the purities of the main component in each product are specified

(XDa’ XBc’XSb)'

1. Also at SINTEF Electronics and Cybernetics,
N-7465 Trondheim, Norway

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



7.1 Introduction 213

The remaining extra two degrees of freedom can then be used for other purposes,
and in particular for minimizing the operating cost, which in our case is the energy
consumptionV).

The practical problem of keeping operation at optimum is illustrated in Figure 7.2
which may represent the energy consumptb(Criterion) as a function of the
liquid split R (Free control variable). We are nominally operating at the optimum
but then the optimal operating point has moved due to some unknown distur-
bance, and we want to compute the optimal move in our available manipulative
variable in order to follow the real optimum. With model uncertainty and
unknown disturbances it may be difficult to tell in which direction the free varia-
ble should be moved in order to bring the process closer to the real optimum.

Criterion
Result of
Plant | Real move Model
\  operating ; A
\ ot " _“Assumed )
b ~ O ~ . operating -
Real = 7 point -
; o point
optimum S Model optimum
- pu
-+ > Free control
Optimal ~ Computed Vvariable
move move

Figure 7.2: Optimization problems with unknown
disturbances and model uncertainties

Three main approaches to deal with this problem are: Model based methods,
experimenting methods (e.g. EVOP) and feedback methods. In this paper we will
focus on the feedback method. This is the simplest method, requiring the least
modelling effort for implementation, and is therefore the preferred choice if it
gives acceptable performance. In our case the objective is to use the two extra
manipulated inputs (e.@® andR) to minimize the energy consumption per unit
feed {/F). The key step for the feedback method is to translate this optimization
problem into a setpoint problem. The issue is then to find a set of variables which,
when kept constant at their setpoints, indirectly ensures optimal operation. Figure
7.3 illustrates this idea.

Since the criterion functionM) in our case is also a possible free variable, one

seemingly viable solution for the Petlyuk column would be to simply implement
the optimal minimum heat input in an open loop fashion, i. e. to perform an opti-
mization to compute the minimum &f with respect to the degrees of freedom

(uDOF)!
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minV
= (7.2)

0
UpoFr

and then simply s&t=V,,. However, there are at least three serious problems:
1. Operation is infeasible fM<V,, so we would need to useV,,.

2. The optimal value 0¥, changes with operation, and it would require a good
model and measurements of the disturbances to recompute it.

3. Measurement or estimation of the acwia generally difficult and inac-
curate, which makes it even more difficult to k&¥egose toV,,

Thus, this open-loop policy is clearly not viable. As good candidate variables for
feedback control we want variables which avoid the three problems above and sat-
isfies the following requirements:
1. The optimal candidate feedback value should not be at an unconstrained
extremum (likevV=V,)
2. The optimal value of the variable should be insensitive to disturbances.

3. The accuracy of the measurement of the variable should be good and the
variable should be easy to control, using the available extra degrees of

freedom.
Criterion A Real Resultof Real
Plant move. op_ertatlng
: poin
Real e
optimum |’ o
T > -
\ ¥o Free control
 Computed A
|| movep variable
Optima‘l <‘ ‘
move | Ideal feedback variable
Feedbac \ \
variable ) ~—Maximum variation

\
/1 Setpoint
=
1 - | Operation will be in this

-4 range
U

Figure 7.3: Optimization by controlling a suitable
feedback variable to a setpoint.
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Often we may find variables which have an extremum when the criterion func-
tions is at its minimum. Although these cannot be used for feedback, they may be
used in experimental methods, or as indicators to process operators.

A variable related to the gradient of the criterion function fulfils requirements 1
and 2.

In general it is not always possible to find a feedback variable with the required
property of turning the optimization problem into a setpoint problem. However,
for processes with a large number of states, and a large number of ways to com-
bine measurements, good candidates may exist, but they may not be easy to find.
Skogestad and Postlethwaite (1998¢sent a method for selecting the best can-
didate feedback variables from a set of available alternatives (see their remark on
page 405). We will not consider this procedure here, but rather aim at obtaining
insight into the column behaviour that may be used for selecting candidate feed-
back variables.

Some interesting questions for the Petlyuk column are: Which variables should
be used as the degrees of freedom in order to achieve the best practical result?
(The choice(R,, R,) mentioned above is not necessarily the best.) Can we leave
both degrees of freedom constant? Or can we leave one variable constant and use
the other one for our optimization task? Or do we need to use both degrees of free-
dom for on-line optimization? How large changes in disturbances can we accept?

7.2 The Petlyuk Column Model

We use a stage-by-stage model with the following simplifying assumptions: Con-
stant pressure, equilibrium stages with constant relative volatilities, constant
molar flows, no heat transfer through the dividing wall. This model is very simple,
but it contains the most important properties of a column. The model and column
data are given in Table 1. Since we focus on the steady-state properties we do not
need to include data for tray and condenser holdups.

To model the column in Figure 7.1: we use 6 sections of stages (the numbers
inside the column are section numbers). In our case study a three-component (ter-
nary) feed, consisting of componergsb andc is separated into almost puae
(97%) in the top product D, almost pubg97%) in the in the side stream S, and
almost puree (97%) in the bottom product B.

The input, output and disturbance vectors are defined next. There are five degrees
of freedom which we select as the following manipulated inputs:

u=[LV,SRRJ

Three outputs (compositions) are controlled:

Yy = [Xpa Xgo Xspl
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The disturbances associated with the feed are:

d =[F z,z,q]
In addition to the outputs in y, we will propose later some other measurements to
be used for optimization purposes. We will also present results from a model
where we assume infinite number of stages and sharp product splits, but with the
same feed.

7.3  Optimization Criterion

We assume that it is optimal to keep the product purities at their specifications (i.e.
the setpoints are 97% purity). This is reasonable in most cases unless the product
values are very different or energy is very cheap. The column has 5 degrees of
freedom at steady-state so with 3 setpoints specified we have 2 degrees of free-
dom left for optimization. We choose as a base case the two remaining degrees of
freedom to bd&r, andR,. (Note that other choices could have been made.)

With the three product purities given, the only operation variables that affect the
operating costs are the reboiler and condenser duty. Both are proportional to the
boilup rateV, and as the optimization criterion we therefore choose to minimize
the scalar “costJ=V/F (we normalize the throughput£1) and minimizingv/F

is then equivalent to minimizing).

With our assumptions the steady state optimization problem can be written on the
following general form:

minJ = minV(u;, y, d) = Vopt(ys, d) (7.2)
U U

whereu; = [R;,R,] denote the degrees of freedom. The other three manipu-
lated inputsu, = [L,V, § are not degrees of freedom any more since their
values are determined indirectly by the product purity setpots ( ugand . The
solution to (7.2) yields the optimal values of the degrees of freedom as a function
of the external disturbanced) @nd the product specificationg( ),

Ug, opt = U(yg d) (7.3)

In many optimization problems, the optimal solution is at some “active” con-
straint(s), and the optimizing control task can be reduced to controlling the active
constrained variables. However, for our application the optimal solution is usually
not at a constraint. Thus, the optimal solution to the problem in (7.2) is a point
where the gradienﬂ]Vul = 0 which usually is much more difficult to find and
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implement. The reason is that we do not really know the disturbatheesu-
rately, and unless we have a very good model we do not even know the function
to be minimized in (7.2).

We will leave this problem for a while, and assume that we know the model and
the disturbances, and we will investigate the shape of the cost fundtidf), (that
is, how it depends on changes in product purity specifications and disturbances.

7.3.1  Criterion with State Space Model

With a stage-by-stage model, we can formulate the criterion with the model equa-
tion included as equality constraints:

minJ=V
[x, u]

subject to the constraints: (7.4)
f(x,ud =0
h(x, u d y) <0

Heref is the column model anldis a set of equality or inequality constraints. The
states X) consist of two component compositions on each equilibrium stage. For
our column, the total number of states is 100 (there are 48 stages plus reboiler and
condenser). Typicallyy will contain product specifications (e.g,, >0.97 )and
other operational constraints like an allowed range for the inputs u (e.g
Umin < US Uy 4,) @nd internal flow constraints, e.g. to avoid flooding (the latter
constraints are not considered here, but such problems have to be dealt with in
industrial columns).

Itis important to note that the problems and solutions for equations (7.2) and (7.4)
are identical. The difference is that with (7.4) we get the solution expressed by the
full state and input vectorxju and we can easily use our model equations
directly.
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7.4 Results From the Model Case Study

7.4.1 Optimal Steady State Profiles

We here consider the optimal steady state solution with three compositions spec-
ified and with the two remaining degrees of freedom chosen such that the vapour
boilup V (energy consumption) is minimized. The results for our base case are

shown in Table 1.

Table 7.1: Optimal steady-state solution

Parameter/Variable Base case
Relative volatility pia,0g,0¢] [4,2,1]

Feed compositionz}, z,,z] [1/3 1/3 1/3]
Feed liquid fractior 0.477
Y<=[XparXspXad [0.97,0.97,0.97]
Ug optlRI R [0.450,0.491]
Vopt 1.498

XsdXsc 0.937

Figure 7.4:a shows the resulting optimal composition profiles along the column
for the base case in Table 1 and optimal profiles for various feed disturbances is
shown in Figure 7.4:b. We observe that the stage with maxirwommposition

is the side-stream stage, which intuitively seems reasonable.We also observe that
the prefractionator (dashed lines) separateem c almost completely. Thus we

can regard sections 1+2 as a column of separati@fi@m c, sections 3+4 as a
binary column for separation efandb, and sections 5+6 as a binary column for
separation ob andc. The “tricky” part is that the amount df in the “feeds” to
“columns” 3+4 and 5+6 depends on the control inpus[R,R], and that we

have the same vapour flow from the lower part of the main column through to the
upper part (from section 5 to 4).

Normally, composition measurements along the column are not available, but
temperatures, which are closely related to compositions, may be used to obtain
important information. In Figure 7.5: the temperature profile is shown for a case
where the three pure-component boiling points are set to 0, 50 and 100 “degrees
for light, medium and heavy component, respectively.
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Figure 7.4: a) Optimal composition profiles for
componentsa, b andc in pre-fractionator (dashed) and
main column (solid) for the base case in Table 1.
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Figure 7.4: b) Optimal composition profiles for vari-
ous disturbances in the feed compositien ( 0.05) and
the liquid fraction £ 0.1).
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At the product locations, the temperature profile is close to the pure product boil-
ing point, and the temperature profile will normally have large gradients where
the composition profile has large gradients.

100
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801 Section 2/5

Section 1/4
70
Section 6

@
S

Section 3

Temperature [C]
a
3

IS
S

30

20

10

5 10 5 20 2 %
Stage number, Top=1, Bottom=32

Figure 7.5: Optimal temperature profile in pre-

fractionator (dashed) and main column (solid) for the

base case in table 1.

7.4.2 The Solution Surface

In the following the three product compositions are specified (97% purity). We
first study the dependency of the solution surface to variatidRsaind R,

V = V(R,R) (7.5)

This is shown in Figure 7.6: (surface) and Figure 7.7: (contour plot) for the base
case (which has a partly vaporized fageD.48). The surface actually looks like
the hull of a ship, and there is a quite flat region (“bottom of the valley”) between
points P and R. The minimum vapour flow at the “bottom™s,=1.498, but
observe that the vapour flow increase rapidly if we do not kégR]] at their
optimal values [0.450,0.491]. In the “worst” direction, which is normal to the line
PR, the boilup increase by 30% for a chang®jr R, of just 5%. Whereas, in

the “best” direction, along the line PR, we can make a change 10 times larger in
R or R, (50%) before the boilup increases by 30%. This is further illustrated in
Figure 7.8 and Figure 7.9 which give cross-sections of the surface in the bad and
good directions respectively. We note that for the case gvith a reduction oR,

by just 2% in the bad direction results in infinite boilup.
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The conclusion of this is that at least one of the two degrees-of-freelfianiR,)

have to be adjusted during operation in order to be able to keep the energy con-
sumption close to its minimum (i.e. operate along the line PR). But is seems
possible that one degree of freedom, for instaRgean be left uncontrolled (con-
stant), provided that the other degree of freed®n,is adjusted to keep the
operating point along the “bottom of the valley” (along PR).

is

0.9-

Vapor split RV
o o o o o
S o1 = ~ J
T T T

o
w
T

o
N
T

o
i

0.6 0.7 0.8

0.4 0.5
Liquid split R,

Figure 7.7: Contour plot of corresponding to Figure
7.6:..
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7.4.3 Effect of Disturbances

If disturbances move the optimum in the “bad” direction normal to PR, then this

results in large increases in V unless we adiystnd/or R, in order to remain in

the “bottom of the valley”. We find in our case that changes in feed liquid fraction

(9), middle feed componenkgy) and sidestream product compositiog ), will

move the optimal operating point in the “bad” direction. The other feed composi-
tion changes and setpoint changes will move the operation in the “good” direction
along the “bottom of the valley” and thus require less attention. The fact that
changes in the feed liquid fractiog)(moves optimum in the bad direction normal

to PR is illustrated in Figure 7.8.

In addition, we see from Figure 7.8 that changeslirave a dramatic effect on the
shape of the solution surface. When the feed is saturated liquid ,(the optimal
surface becomes almost vertical very close to the optimum. The practical impli-
cation of this is that witlR, andR, fixed close to their optimal values, the system
may become unstable, since we may easily enter a region where there is no feasi-
ble solution (no amount of energy can fulfil the composition requirements). For a
subcooled liquid@>1), the solution surface “bends over”, and we may have mul-
tiple solutions of V for the same product compositions. In open loop, all these
operation conditions are reachable and stable. But with composition control
active, and tuned for the lower branch, operation on the upper branch is unstable.

Feed flow changes are normally a major disturbance, but do not affect the steady
state operation if we keep product compositions4nd split ratios g, R, ) con-

stant (since these are all intensive variables). However, feed flow changes will
affect the composition control and optimization during a transient.

7.4.4  Transport of Components

Interesting insight into the behaviour of the column are obtained by considering
how each component moves through the column sections towards the products.
Define thenet upwards flow yof componenj through stageas:

Wi = Viyi - LisaXieg (7.6)

At steady statev; is constant through each sedtiofihe ratio ofw; to the
amount in the feed is threcovery

~ Wk, |
rk’j = F_ZJ (77)
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Figure 7.8: The solution surface fofis very steep and depends strongly Rnin the
“bad” direction normal to PR. The whole surface is also strongly dependent on the fee

liquid fraction ).
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Figure 7.9V depends only weakly oR, whenR, is adjusted so we stay in the “goodF P
direction. Note that the axis scaling are the same as in Figure 7.8:

At optimal operation we find that the component flowg () are as indicated in
Figure 7.10. For example, if we look at the lighttomponent, then most of the
flow takes the “shortest” way out to the top product. Some light product “slips”
down the prefractionator and this mostly ends up in the side stream. Interestingly,
for the optimal solution there is no net flow of light component downwards in the

section above the side stream, thawig, , is close to zero. For the heavy com-
ponent €) the behaviour is similar, but reversed.The intermediat®emponent

distribute quite evenly along the two paths.

Ivar J. Halvorsen
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Figure 7.10: Components taking the “shortest” way.

In the following we will in particular consider the effect of changing the recovery
(B) of componenb at the top of the prefractionator:

_ _Wip
B=rip= Fz, (7.8)

7.5 Analysis from Model with Infinite Number of Stages

The limiting case with an infinite number of stages in each column section pro-
vides a lower bound\{,,j,) on the energy usage. Although this value cannot be
achieved in practice, one can usually come within 10-20% of the lower bound, so
it provides very useful information also for practical distillation. The advantage
of using infinite number of stages is that one does not need to consider the issue
of selecting the number of stages. Furthermore, excellent theoretical results for
the Petlyuk column have been presented-lllkowski and Krolikowski (1986)
Through careful treatment of the Undewrood equations, they have shown that the
minimum energy solution for the Petlyuk column is obtained by operating the
prefractionator along its minimum energy characteristic in the range between the
preferred split StichImair (1988) and up to a point where the upper and lower
part of the main column atmlanced

Christiansen and Skogestad (19%@rived similar results for the closely related
case with a separate prefractionator (with its own reboiler and condenser), and
they suggested a control structure based on controlling either the impurity of
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heavy key at the top of the prefractionator, or the impurity of light key at the pre-
fractionator bottom. (The particular choice depends on whether the upper or
lower parts of the main column determine minimum reflux.)

We will now use the case with infinite stages to study more carefully how various
disturbances and other parameters affect the task of keeping the operation point
close to the optimum.

7.5.1 Minimum Energy Consumption for a Petlyuk Column.

We first recapitulate the most important results freittkowski and Krolikowski
(1986) Their results are derived for a saturated ligwjg) ternary feed, constant
relative volatilities, constant molar flows, infinite number of stages and sharp
splits. InHalvorsen and Skogestd@999) we have extended Fidkowski’'s result
to handle any liquid fractionq). Fidkowski and Krolikowski use the recovery of
the middle component in the net flow out of the top of the prefraction@tor ( ) and
the “reflux” into the prefractionatorl(; ) as the two degrees of freedom. We will
later map3 andL, to our choice of degrees of freedoRy,andR,. Note that min-
imizing the main column boilup\) is equivalent to minimizing the main column
reflux ().

At minimum reflux Cp,ip) for the Petlyuk column, minimum reflux constraints
have to be satisfied for both columns in Figure 7.1: In the prefractionator (section
1+2), and in either the upper (section 3+4) or lower (sections 5+6) parts of the
main column.

First consider the prefractionator which separates the teatarynixture intoab
andbc. For a sharp split betweemnandc, the minimum refluxI(,) as a function
of the recoveryB has a distinct minimum at theeferred split(B = Bp), as
shown in Figure 7.11 for our base case feed.

The main column can be regarded as two binary columns, but their reflux flows
are not independent. For large valuef3of , most obtlecemponent will have to

be separated in the upper part of the main column while the lower part gets an
almost pures-feed. Thus the reflux requirement for the upper part of the main col-
umn will determine the overall main column reflux and the lower part will be
over-refluxed. For low values @ we have the opposite case, and for an interme-
diate value = By , reflux requirements are the same for both parts; at this point
the main column ibalanced
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7.5.2  Solution Surface for Infinite Number of Stages

Fidkowski and Krolikowski (198@pund that the minimum overall reflux ;)

is not obtained at a single value of the recovBry , but rather tharéiasregion
whereL=L ,j,for a range of recoveries between the preferred split for the prefrac-
tionator (B, ), and the valueB; ) which makes the main column balanced. This
is illustrated in Figure 7.11.

The flat region may be wide or narrow, depending on the relative valu@s, of
and Bz and we may have cases with eitifiey>Br  Ber<pg (like in our
example). Only for the special caBg =Bz  do we have a sharp minimum. Note
that the value of3, corresponding to the preferred split is always optimal, but
depending on the value 8f; , it will be in the left or right end of the flat region.

Minimum reflux in main column and prefractionator

Ler Lin®

14r

=
N
T

Reflux rate

N

081

2,=[0.330.330.33]

«=[4.002.00 1.00]
q=05

0.6

0.4 I I I I I I )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recovery of middle component in prefractionator top (B)

Figure 7.11: The prefractionator reflux(Lhas a sharp minimum at the preferred split
(P"). The overall column refluxL( is minimal in aflat region (P"-R") for recoveries
between the preferred spl = 0.5 ) and a balanced main colin« 0.625 ).

The corresponding solution surfa¢ér|,R,) computed by the infinite stage model
and sharp product splits is shown in Figure 7.12 (surface) and Figure 7.13 (con-
tour) and is seen to be very similar to the surface for the case study shown
previously in Figure 7.6 and Figure 7.7.

As already noted, there is a flat region WithV,,,j, along a straight line from'P

to R in the (R, R,) -plane. The fact that the optimum is flat betweeril R

is an important result, and this fully confirms the results based on numerical com-
putations on the column with a finite number of stages.
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Figure 7.12: The solution surfadé(R, R,)  for the limiting case with infinite stages an
sharp splits contains the same characteristics as found in Figure 7.6
Figure 7.13: The contour lines foW (R, R,) are straight lines between the fou
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characteristic corners. (The “bad” direction is normal*ﬂa*B)
Contour plot ofV corresponding to Figure 7.12.

In appendix 7.10.2 we summarize the resultslalvorsen and Skogest#l999)
and present analytical results for generating the rest of the solution surface. We
find that for a given value of the main column boildg=const, V>V, the con-
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tours in the(R,, R,) -plane are straight lines between four characteristic corner
lines (C1-C4). These contour line corners (C1-C4) are illustrated in Figure 7.13
where each line represent a particular operating condition for each particular edge
(dotted) of the solution surfas4R;,R)):

Corner line 1 (C1):

Preferred splitin the prefractionator. Over-refluxed main colugnr. Bp ,
Ly =Ly ps L>Liin

Corner line 2 (C2):
Along the left branch of the minimum reflux characteristics for the prefrac-
tionator.<Bp ,L; = L1,min(|3) L= Lyin(B:Ly)

Corner line 3 (C3):

Over-refluxed prefractionator (above the V-shaped minimum curve). Bal-
anced main column

B=PBr(L), Ly =Ly g(L), L>Lyiy (Ly>Ly min(BR));
Corner line 4 (C4):

Along the right branch of the minimum reflux characteristics for the pre-
fractionator, but above the point representing a balanced main column.

B> BR’ I‘1 = Ll, min(B)’ L = I‘min(B' Ll)
Note that line C2 and C4 apply for our example whBpe< B . WRgr» B
we instead get the similar lines C2’ and C4’:
Corner line 2’ (C2):

Along the right branch of the minimum reflux characteristics for the pre-
fractionator>Bp Ly = Ly min(B) L = Lyin(B:Ly)

Corner line 4’ (C4’):

Along the left branch of the minimum reflux characteristics for the prefrac-
tionator. Above the point representing a balanced main column.

B < BR’ I‘1 = Ll, min(B)’ L = I‘min(B' I‘1)

As we approach minimum boilup/EV,,;,), lines C1 and C2 (or C2’) approach
point P (optimum at preferred prefractionator spft,= Bp )andline C3and C4
(or C4") approach point Rloptimum at balanced main colunfh,= Br )
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The path C2-RR"-C4 on the solution surfacé(R;,R,) represent an important
limiting case of operating conditions: There the minimum reflux constraints are
met in both the prefractionator and in the main column. That{s= L; :,(B)

andL = Li(B,Lg) = Lyin(B) -

In the whole operating region to thight of the path C2-BR"-C4 in Figure 7.13

we over-reflux the prefractionator (operating above the V-shaped minimum char-
acteristics), while we keep the main column at its minimum reflux:
Li>Ly min(B) andL = L_..(B,L;) . This part corresponds to surfaces in the
([3 L,)-plane found irFidkowski and Krolikowsk{1986). Note also that the case

of a balanced main column is always within in this region (along C3).

In the whole operating region to theft of the path C2-RR"-C4 in Figure 7.13

we operate the prefractionator exactly at its minimum characteristic
(Ly = Ly min(B)), but we over-reflux the main columb>L .. (B,L;) . The
computation of the surface in this region is a new contribution as it was not con-
sidered byFidkowski and Krolikowski1986).

Finally, we must note that the “good direction” is along the path GRRC3
(which is coinciding with the path C2:FR"-C4 only along the line FR"). Oper-
ation along the “good” path gives the minimum\éfvhen we keep one degree of
freedom constanfj or R ). Observe that C1 is to the left of the path C2# -
C4 and C3is to the right.
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7.5.3 Analyzing the Effect of the Feed Enthalpy

The effect of changing the liquid fraction is shown in Figure 7.14 (contour plot)
and Figure 7.15 (cross section in the bad direction) for the infinite stage model.

Contour plots of V(RrR‘) for various values of g

09t Vina~120%

0.8
0.7
Cc3
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0.4]-2,=[0.330.330.33]
=[4.002.001.00]

I I I I I I )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R

Figure 7.14: Liquid fraction affects the shape of the surface in addition to the
position of the optimal operating line in tHg,K,) plane.

The results in Figure 7.15 are in agreement with similar computations for the
finite column model in Figure 7.8. As we increasgéhe surface between corner
lines C4 and C1 first becomes vertical and then starts to bend over when we
increase the liquid fraction past saturated liouiiel 1

7.5.4 How Many Degrees of Freedom Must we
Adjust During Operation?

Is it possible to obtain reasonable energy savings if we keepRyndR, con-
stant? The answer is clearly “no” for our case study, as we have already found that
the energy usage (boilly) increases very sharply as we move away in certain
directions from the flat region. This is further illustrated in Figure 7.16, where we
show the boilup as a function & for various fixed values dR, (this is not quite

as bad as we move normal to P*R, but note the difference in axis scaling when
comparing the curve for g=0.5 in Figure 7.15 with Figure 7.16). We clearly see
from the sharp minimum of the V-shaped curves (solid lines) Rpatould have

to be determined very accurately in order to obtain a vallé r@fasonable close

to the minimum. For instance, R, is set only 5% away from its optimal value,
energy increase compared to the optimum is between 10% to 30%.
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Figure 7.15: Cross-sections of the surfaces in Figure 7.14: in the “bad” direction
normal to PR (taken at the middle of the liné#¥).

Boilup as function of R for some fixed values of R,
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Figure 7.16: We have to adjust the liquid split on line in order to operate on minimum
energy consumption.

Having established that we cannot keep both degrees of freedom constant, we ask:
Can we leaveneconstant? Since the vapour flows are usually the most difficult

to adjust in practice, and since it seems reasonable in many cases that the vapour
split is constant if we make no adjustments, we will analyze what happens when
we keepR,~ constantand then adjust the other degree of freedom @¢.
optimally.
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Minimum boilup as function of R, when R)is optimised
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Figure 7.17: Minimum energy can be obtained if the vapour split is set within the flat
region. Plot show as a function oR, whenR, is optimized for each value &,

Figure 7.17 shows how the boilup)Y depends ortRV whenR, is optimized for
every value ofR, (i.e. along the “good” C1 ‘RR"-C3 path in Figure 7.12:). As
mentioned above, we must chd3gin the flat region IRV <R v<Ry,) in order to
achieve minimum boilup. Importantly, R, <R, we very soon
loose energy compared to the optimal operat%n\(m,n 100%) even ifR, is
adjusted optimally. FOR,, < RV , the best we can do is to adiidb operate

the prefractionator exactly at |ts preferred split and minimum reflux, while the
main column is over-refluxed (along C1). And fB; >R, . the best we can do
is to adjustR, to operate the main column at the balance line, while the prefrac-
tionator is over-refluxed (along C3).

Also recall from Figure 7.16 that even wik), in the flat region, we will need to
adjustR,. We conclude that it is acceptable to keep one degree of freedoiR je.g
constant, as long as it is selected as to operate within the flat region, and as long
as the other degree of freedom is adjusted optimally.
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7.5.5 Sensitivity to Disturbances and Model Parameters

We want to check if the simple strategy of keepRgconstant will work. In Fig-
ure 7.18 we show the set of “flat region” (minimum energy) line segment P
for variations of feed enthalpyg€[0.4 0.5 0.6]) and 2% feed composition changes
in different directions:

[z, Z,] = [1/3,1/3] +0.0F cog(y), sin(y)] .,y = [0, 30, ..., 360°]

Effect of varying feed parameters to optimal operation line

0.71 2% variation in zin all directions R

Balanced main column

0.65

Max constant R =0.59

Vapour split RV

05F

Preferred split
«

& '
&
q=05 N P

0.45 015 O,‘E)5
Liquid split R‘
Figure 7.18: For the selected set of disturbances, a val& bétween 0.53 and 0.59
guarantees operation in the flat region.

When the light feed fraction is increased and the heavy reduced, the poants P

R move closer together, reducing the flat region. Changgsésult in sideways
movement of the BR" line. The possible region fdR, that ensures operation in
the flat region for all possible disturbances in our example is indicated by the quite
narrow region between the solid and dashed lines.

7.5.6 A Simple Control Strategy with one Degree of
Freedom Fixed

Based on the observations above we propose a control strategy whereRye fix
and useR; as a manipulated input (we could also make the opposite choice):

1. Keep a fixed value fdR, in the flat regiorR,, [J [Rv’ p,RV’ Ir]

2. Control the product compositions at their setpoints (e.g. by manipulating
L,S and V).

3. Control some feedback variable such fas being adjusted close to
optimally.
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Provided that we can find the right feedback variable, this strategy will be accept-
able if the magnitude of feed disturbances and other uncertainties do not bring the
selectedR, outside the flat region. If the latter is not satisfied, we will also have to
adjustR, to keep the operation within the flat region.

A particular difficult case occurs if some disturbance moves the balance point for
the main column to the other side of the point of the preferred split. In this case
R, will usually have to be adjusted, and we may have to change the control strat-
egy for adjustindR.

7.5.7 Liquid Fraction:
Bad Disturbance or Extra Degree of Freedom?

In general, adding more heat in the feed (i.e. reducing liquid fracfjosill be

less efficient than adding the same heat in the reboiler. However, recall from Fig-
ure 7.15 that the position of the minimum energy linéRB will be directly
affected by the feed enthalpy and this may be used to our advantage. For instance,
in a case where we cannot adj&t and we are operating outside the “flat” min-
imum energy region, we may add heat or cool the feed to move the solution
surface into the flat region. Flow constraints in the column sections may be
another motivation for introducing the feed enthalpy as a degree of freedom.

It is also possible introduce an extra degree of freedom by extracting both liquid
and vapour products in the sidestream, again for the purpose of moving the solu-
tion surface as desired.

In summary, largeincontrolledvariations in the liquid fraction should be avoided,
but adjustments of the feed enthalmy ¢an be used as a mean to move the solu-
tion surface in a desired manner.

7.5.8 Relations to Composition Profiles

Each of the different surface segments in Figure 7.12 corresponds to a character-
istic composition profile. The location of the pinch zones on these profiles can be
used to identify the actual operation point, and this information may then be used
in an optimizing control strategy. In Figure 7.19 we show composition profiles
computed from the stage-by-stage column model, with a sufficiently large
number of stages to be a good approximation of an infinite column. Adding more
stages will just extend the flat pinch regions. We show composition profiles for 6
different operating points: Optimal operatioiV,,,;,) at P (upper left) and R
(upper right), and suboptimal operatiov=1.3V,,;,) along the four corner lines
C1to C4. We used the infinite stage model to compute the control inputs for each
case (e.g. Figure 7.13).
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At operating point P we have pinch zones on both sides of the prefractionator
feed, and at the lower “feed” to the main column, whereas the upper part of the
main column is over-refluxed. At point Rve have pinch zones at both “feeds” to
the main column (the column is balanced), but here the lower end of the prefrac-
tionator is over-refluxed (remember that we hBpe g, and in the case @,>Br

we would get an anti-symmetric result). Along C1 (middle left) we have a similar
prefractionator profile as at Pbut along C1 both parts of the main column is
over-refluxed. And similarly, along C3 (middle right) the main column is bal-
anced at minimum reflux (like in |, whereas the prefractionator is over-refluxed
along C3. Along C2 (lower left) we over-purify the “wrong” (upper) side of the
prefractionator, and along C4 (lower right) we over-reflux the “wrong” (lower)
end of the main column.

Optimal operation at preferred prefractionator split (Pw) Optimal operation with balanced main column (R')
1

0.8
0.6

0.4

Composition

0.2

0 0
Top Feed/Side Bottom Top Feed/Side Bottom

Operation at V=130% at corner 1 (C1) Operation at V=130% at corner 3 (C3)
1

Composition

0 0
Top Feed/Side Bottom Top Feed/Side Bottom

Operation at V=130% at corner 2 (C2) Operation at V=130% at corner 4 (C4)
1

Composition

(0] 0
Top Feed/Side Bottom Top Feed/Side Bottom

Figure 7.19: We can extract important information about the actual operating paimt fro

the composition profiles in the “infinite” Petlyuk column. Prefractionator compasitio
profiles are shown dashed. Locations of feed, sidestream, and connection stages are
indicated (dotted). Feed datg[0.33,0.33,0.33]0=[4,2,1],9=0.5.

The optimal “pattern” in our case study, whdlg <fg, is to have a pinch zone
above the prefractionator feed, and a pinch zone on both sides of the lower main
column “feed”. If this is the case, we know that the operation is along [ifRe P
None of the suboptimal operating points have this “signature”. Note also that for
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operation along R’ the upper part of the main column and the lower end of the
prefractionator, are over-refluxed. In cases <3 both pinch zones move to
the other end. If we do not know the relative magnitud@gandfg, a possible
approach is to operate at point &l the time, that is, with pinch zones dwth
sides of the prefractionator feed (or no end of the prefractionator overpurified).

The corresponding column with a finite number of stages and non-sharp splits
studied earlier (Table 1 and Figure 7.4:) does not have pinch zones, and this tells
us that we probably have too few stages. However, that model is not intended as
a column design example, but rather to illustrate the problem of optimizing con-
trol. And more importantly, in spite of low number of stages in our case study
example, the main properties of that solution surface is very close to the results
from the infinite stage model.

7.6 Candidate Feedback Variables

The results from computations using models with both finite and infinite number

of stages show that we must continuously adjust at least one of the two degrees of
freedom (e.gR)) if operation close to optimal is desired. As mentioned above, we
would like to implement this in a feedback fashion, by finding some measure-
ment, which when kept at a constant value, indirectly ensures optimal operation.
Candidates for such measurements are composition measurements on individual
stages, temperature measurements and combinations thereof and flow measure-
ments from individual sections of the column. Temperatures are easy to measure,
flows are more difficult, and even more so are compositions.

We consider next a few candidate measurements (Y1-Y6) for feedback control.
The analysis is mainly based on observations from the model with a finite number
of stages.

7.6.1  Position of Profile in Main Column (Y1).

An interesting observation from our case study using the finite stage model is that
the maximum composition of the mid-component occurs at the location of the
side-stream when the column is at its optimum (Figure 7.4:b). A measurement of
the stage numbewith the maximum value of the intermediate compongnt
therefore seems to be a very good candidate for feedback optimization. However,
we would need on-line composition measurements on several stages, so it is dif-
ficult to use in practice.
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7.6.2 Temperature Profile Symmetry (Y2)

The temperature profiles on both sides of the dividing wall show some interesting
symmetry properties. We define the average difference temperature of the temper-
ature profiles on each side of the dividing wall as a symmetry measureDiBgt (

If the vectorT, , contains the temperature profile in sectio@ndx denotes the
average of the elements of in the vector x, then

DTg = (Tp’ 1—Tp, Nk (Tp,Z_Tp, 5) (7.9)

In a practical applicatio®Tg can be based one or more pairs of difference tem-
peratures in sections above and below feed and side stream. The temperature
profile shown in Figure 7.5 is for optimal operation. In Figure 7.20 we show the
profiles if we move away from the optimum in the four directions towards P and

R and normal to PR in Figure 7.6. Interestingly we find tbat is close to con-

stant along directions parallel to the “bottom of the valley” of the solution surface
(along PR in Figure 7.6), as illustrated in Figure 7.21. When we move away from
the bottom of the valley normal to PR, the profile symmetry changes, aidilige
becomes more positive towards the right side and more negative to the left side of
PR (see Figure 7.7).

Temperature

10 15 20 25 30 5 10 15 20 25 30
Normal to PR, DT >0 Towards R

Temperature

5 10 15 20 25 30 5 10 15 20 25 30
Towards P Normal to PR, DT <0

Figure 7.20: Temperature profiles for the base case for off-optimal operation in
directions along the bottom valley towards R (upper right) and P (lower left),

and in the “bad” directions normal to PR to the left (upper left plot) and to the right
(lower right plot)
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If we choose to adjust the liquid splR() to controlDTg, we can replace the liquid
fraction () with the setpoint foDTgas a degree of freedom. The contour plot of
the surfac&/(DTgR)) for the base case is shown in Figure 7.22 and when we com-
pare this to the contour &f(R,R)) in Figure 7.7 we observe that the region close
to the optimum now is quite flat in both directions of the degrees of freedom for
V(DTgR)) as opposed tv(R,R,) which is quite steep in the direction normal to
line PR. This “flatness” is a very important property since it implies that the
energy consumption will not be very sensitive to the degrees of freedom in the flat
region.

Unfortunately, the optimal value @Tg, (which may be non-zero) is sensitive to
feed composition disturbances. HoweueT,g is easy to measure and apply in a
practical control strategy.

7.6.3  Impurity of Prefractionator Output Flows (Y3,Y4)

A key to optimal operation is to operate the prefractionator at minimum reflux
characteristid; = L; ,;1(B) Christiansen and Skogestad (19%hpwed that
this is achieved by:

1. 3>Bp: Control the impurity of the heavy component in the top. (Y3)
2. B<Bp: Control the impurity of the light component in the bottom. (Y4)
In both cases the uncontrolled end of the prefractionator should be over-purified.

In cases whefBp and 3 are close or may change order, we would have to use
both degrees of freedom if we want to track the optimum. Since we know that
operating the prefractionator at the preferred split always will be optimal, inde-
pendent of where the balance point is, we can look for a strategy which keeps the
prefractionator operating point at the preferred split all the timg,@p). This

can be obtained by using both degrees of freedom for two-point control of both
the prefractionator impurities (Y3 and Y4).

We also have to ensure that the main column is operated at its minimum reflux.
But this is indirectly achieved by controlling all three product purities.

7.6.4  Prefractionator Flow Split (Y5)
Consider the net “distillate” flow leaving the top of the prefractiondy. (

Note that this is not a physical stream, but a difference between the vapour and
liquid flows in the top of the prefractionator. It may even become negative if the
column is not operated well. For sharp spliBs; = z, + Bz, (for a normalized
feed F=1), so by adjustindg>; we directly affect the distribution of the middle
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Lines with constant DT,
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Vapor split R

I I I I I I I
0.6 0.7 0.8

0.4 0.5
Liquid split R

Figure 7.21: Operation at constddTg implies operation at a line parallel to the good PR
direction on the solution surface. Plot show contour lines of con&i&g(solid) projected
on the contour lines of(R,R,) (dashed) for the base case in Table 1.

Figure 7.22: Contour plot 0#(DTgR,) for the base case. The region close to the optimum
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Vapor split R

o
IS

03!

is now quite flat in both directions.

componentlf). We would expecp to be in the range [0,1], and thils to be in

the range%,,2,+2,]. This insight is correct, as we find in some non-optimal oper-
ating points thaf3 or evenD,; may be negative, corresponding to circulation
around the dividing wall. Boilup as a function ofily is illustrated in Figure 7.23,
where we see thd@, changes almost proportionally to the boilup when we move
along the solution surface in the bad direction normal to PR. Thus if we were able
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351

151

1 L
-0.2 0

I I ,
0.2 0.4 0.6 0.8 1 12
Prefractionator "distillate flow" D =V, ~L

Figure 7.23: BoilupV as function of the prefractionator “distillate” floviDg) in the
“bad” direction normal to PR.

to measure the net prefractionator distillate flby then we could achieve close
to optimal operation by adjustirfg (orL,) to keepD, at a setpoint. Unfortunately
such a flow measurement is difficult to obtain in practice.

We can also expred3, in terms ofR, andR,. A simple overall material balance
for the prefractionator yields:

D, = RV-RL+(1-q) (7.11)

whereL andV are the overall reflux and boilup for the main column. This shows
thatR, R andq affectsD4 in a similar way.

Another very interesting observation is that is tWats a function oD, behaves
very “nicely” (Figure 7.23), compared to the very non-linear relationship between
V andR, (Figure 7.8) where we may even have multiple solutions in some cases.
This shows that if we were to use an open-loop policy, it would be better to keep
D, rather tharR, constant. For example, fgF=1 we see upon comparing Figure
7.8 and Figure 7.23 that a very small reductioriRjryields a large increase M
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since the surfac¥(R,R)) is very steep close to the optimum. On the other hand,
from Figure 7.23 and Figure 7.24 we observe that this is not the caséwais
an independent variable.

Contour plots of \/(d,Rv) for some values of q

0.85 |Optimal operating line, V=100%

L L L L L L L L L
03 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
D1

Figure 7.24: The surface Y(;,R)) is less sensitive to variations in feed liquid fraction
than the equivalent \R,R,) when we fix both degrees of freedom. (Plots for model with
infinite stages)

7.6.5 Temperature Difference over Prefractionator (Y6)

It is possible to find variables that have an extremal value whenV .. . Such
variables cannot be used for feedback setpoint control approaches because the
steady-state changes sign at the optimum. However, it is often difficult to directly
measure the criterion valu¥); In such cases other variables may be used instead
as an indicator of the criterion value and, used for example, in an on-line experi-
menting method (like EVOP).

One such variable ithe temperature difference over the pre-fractionafg6).

We observe from the model with a finite number of stages that the temperature
difference over the pre-fractionator always has its maximum when the boilup is at
its minimum. Although it is simple to measure, the actual maximum value
depends on disturbances and product purities, so it may be difficult to tell the dif-
ference between the effect of non-optimal operation, or a disturbance, like
changed feed composition.
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Bad direction

Criterion function:

V=f(R.R)

Difficult to use directly

<

Y1: Position of max- Ideal Properties,
imumb-composition difficult to measure

Close to ideal properties,

easy and cheap measurement, but
setpoint is sensitive to feed
composition

Y2: Temp. profile
symmetry measure
DTs

Y3: Heavy key Very close to ideal properties. Valid
impurity in prefrac. when Bp<fr and R, p<R<R, R
top | Somewhat difficult to measure.

Y3 and Y4: | Very close to ideal properties. Use
Impurity  of  non- both degrees of freedom. Can track
keys in both ends of the preferred prefractionator split
the prefractionator operating point. (B

Reasonable properties. may be dif-
ficult to measure. Better than fixing

R

Has an extremum value at the opti-
mum. Not suited for feedback, but
contains important information.

Y5:Prefractionator
flow splitD,

Y6: Temperature
difference over
prefractionator.

DY

Figure 7.25: Some candidate feedback variables
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7.6.6 Evaluation Of Feedback Candidates

A qualitative evaluation of the various alternative measurements introduced
above is shown in Figure 7.25. The criterion function is the boiltgnd in par-

ticular we need to avoid movement in the “bad” direction normal to PR. The
position of the maximunib-composition in the main column is promising as a
feedback variable since it at least for our case study, is not affected by distur-
bances at all, but it may be difficult to measure or estimate. The other variables
are affected by disturbances and setpoints, thus keeping one of these constant may
lead to operation away from the optimum as illustrated in the figure.

Nevertheless, the improvement may be significant, compared to keeping for
exampleR, at a constant value. Feedback from the impurity of the heavy key in
the top of the prefractionator (Y3 or Y4) is very interesting, but in this case one
or two composition measurements are probably required.

7.7 Conclusions

The Petlyuk distillation column will most likely require some kind of optimizing
control in order to realize its full potential for reduced energy consumption. This
is because the solution surface of the criterion function is very steep in one direc-
tion, and the operation is very sensitive to certain disturbances. The simplest
strategy is to achieve “self-optimizing” control by feedback control of a variable
which characterize optimal operation. In this paper we have obtained some rela-
tionships between optimal operation and some measurements which can be
deduced from the composition profile or the states. This may be used to select
candidate feedback variables. Optimization by feedback, or “self-optimizing con-
trol”, should be compared to nonlinear model-based optimization methods, and
evaluated for complexity and performance.
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7.10 Appendix

7.10.1 Model Equations for the Finite Dynamic Model

The model equations are quite standard and are described below. The component
mass balance on a staig@Eounting from the top) for componenjdl[a, b, c] is
at steady state given by:

Li _1(Xig, i —Xi,j) +Vie1(Yisg, j —yi,j) =0 (7.12)
With constant relative volatility, the equilibrium is given by:

A%, j

zajxi,j
]

Yij = (7.13)
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The column is modelled by connecting the stages and sections as shown in Figure
7.1. We assume constant molar flows, thus- v, , , and L, inside a sec-
tion, andM™,; = const. The liquid and vapour splits are assumed to be realized by
splitting the flows at two specified ratios. (Note that indices 1-6 here denote the 6
column sections)

L; = RLj

(7.14)
Va2 = RV
The practical implementation of liquid split and side-stream withdrawal may
involve full withdrawal of all downcomer flow into an external accumulator, and
controlled flow back into the column again. The vapour split may be more diffi-
cult to implement in practice, but practical solutions do exist.

The feed enthalpy factor is given in terms of the liquid fraation

0 >1 Subcooled liquid
E =1 Saturated liquid
g 0<1ln >0 Liquid and vapor (7.15)
E =0 Saturated vapor
O <0 Superheated vapor

More precisely, the flow changes at the feed stiaje dre given by:

L, =L +QF

V.= Vi, +(1-Q)F

(7.16)

and the following expression is added to the component mass balance in (7.12) at
i=f.

aF(z—-x )+ (1-aF(z;-y; ;) (7.17)

A simple temperature model is used here: We just assume that the temperature on
a stageif is the mole fraction average of the boiling points for each compo-
nent ().

=5 TeX (7.18)
j=a,b,c
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7.10.2 Analytic Expressions for Minimum Reflux

These results are basedeidkowski and Krolikowski (1986 he original equa-
tions were only valid for saturated liquid feegH1), but this has been extended
to include any liquid fractiond) (Halvorsen and Skogestad, 1999). For sharp
product splits and normalized feed, the minimum reflux value for the Petlyuk col-
umn is given by:

O,z a0 Oz, O
L. = max A%n - 9a%B BZB
[Ma—08x 0p—6g 0ag—6g0

(7.19)

Theroots §,, 65 ) are solutions of the Underwood equation for the prefractionator
feed:

ApZp N OgZg N OcZc

=(1-09 (7.20)

Note that the Underwood roots obeys the following inequality:
ap>80,>0ag>0g>0.
The prefractionator has a V-shaped minimum reflux charactetigtic; ,{B) as

shown in the lower part of Figure 7.26 and for sharp a/c split it can be expressed
analytically by:

a,0 a0
A~Ya Og—9Y9y
Ly, min(B) = O (7.21)
0 aaBg N agOgP
a8 0g—6g

Equation (7.21) has a distinct minimum which represent the absolute minimum
energy operating point for the prefractionator: This is dentiiecpreferred split
(Stichimair,1988). Analytical values for prefractionator reflux () and middle

key recovery Bp) at the preferred splitan be found by equating the two straight
lines of (7.21). Note that in generd, is dependent of feed composition and lig-
uid fraction via (7.20), but in the special case of saturated ligBidis only
dependent on the relative volatilities:

O —0a
Bp = =——F for q=1 (7.22)

Up—ac
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Further elaboration of the result show that the minimum energy for the whole Pet-
lyuk column occurs not at a single point, but is constant in the range of fractional
recoveries [§) between thepreferred split(Bp), which yields minimum energy
consumption in the prefractionator, and for a cerfixfg, for which we will find

that the minimum energy requirements is fulfilled at the same time for both the
upper and lower parts of the main column, also denadxdlanced main column

The prefractionator has to be operated at its minimum characteristics:
L1 =L1 mirB) (7.21), with 3 betweenBp and Bg. We may have three different
cases:1Bp>PRr, 2) Bp<Pr and 3)Bp=Pgr, Where the last one is a special case
where the solution is reduced to a single point in {i&{)-plane at the preferred
split. Figure 7.26 show an example whBgx Bg.

The analytical expressionin (7.19) is deduced by requiring minimum reflux in the
prefractionator and in the main column. The main column can be regarded as two
binary columns separating components a/b and b/c. Since the columns are con-
nected, we cannot specify the reflux in each part freely, thus when we set the main
column reflux {) and the two degrees of freedom (h@randL,) all other flows

are determined. Minimum reflux requirement can then be expressed in these three
variables for both parts of the main column.

We can find a functior 1PPE(3, L)  which gives the minimum reflux require-
ment (into the main column top) when we only consider the upper part of the main
column, and similarlyLlewer(g,L;) gives the minimum reflux requirement (into

the main column top) when we only consider the lower part of the main column.

Then the main column minimum reflux as givenin (7.19) can be found by solving

Limin(B, L) = max( LyRRE(B, Ly), LISWET(B, Ly)) (7.23)

subject tol; > Ly min(B)

The properties of the solution surfacg;(B,L;)  can be studied further by consid-
ering each ot.uppeip, L,) andlewer(p,L,) .Fortunately, these functions are found
to be linear inB andL;. Thus we can express these functions as straight lines in
the (B,L,) plane for a constarit. Solved with respect to the prefractionator reflux
(L,) we can find the simple analytic expressions in (7.24) wjigper and (7.25)

with Llower,

Bzgap
L = Lupeer — (7.2
(ap—0pg)—
L upper
min
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The lower part of the main columnThe upper part of the main column
determine minimum reflux for determine minimum reflux for

small valuesf 3 large values of
rl\élrﬁhnxcgumn Balanced main column

Lmin(B)

> p

. Constant
Prefractionator Y Eqal2)

reflux (q) Eq. (A.I3)

Ll,mir{B)

Figure 7.26: Minimum reflux for the whole Petlyuk columy) pas aflat minimum region
(P'R") for recoveries in the range between the preferred spfif &nd a balanced main
column Bg), while minimum reflux ;) for the prefractionator itself has a sharp
minimum at the preferred split.

(1-B)zgac
Ly = Ligier—zg— — (7.25)
(GB_GC)_ lower =
I‘min +ZA+ZC_(1_q)

Note that these equations are only valid when there is a pinch zone around the cor-
responding main column “feed” location and we have shalipsplit in the
prefractionator and shaggb andb/c splits in the two main column parts.

We can interpret (7.24) as a level contour for the surfaea urpe(p, L,) in the
(B,Lq)-plane when we only consider the minimum reflux requirement for the
upper part of the main column. Similarly equation (7.25) represents a contour line
for L =Lower(B,L,) in the B,L,)-plane when we only consider the minimum
reflux requirement for the lower part.
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The operating points in th@(L1)-plane fora balanced main column (lgg) are
found at the intersection of the lines described by (7.24) and (7.25) for the same
main column reflux i = Llower = Lupper ) For the case of saturated liquid feed
(g=1), the solution can be expressed by

Br = La.—(L+F(zy+ 7))

, (7.26)
4 Zga g

The reason for the flat optimum (see Figure 7.26) is that the level lines given by
(7.24) and (7.25) coincide with the corresponding branches of the minimum
reflux characteristic for the prefractionator (7.21) at the optimum. The proof for
g# 1 follow the same procedure as Hidkowski and Krolikowski (1986)[he
result is the simple analytical expression for the overall minimum reflux in equa-
tion (7.19) which is valid also for any liquid fractiog) (

We might have expected the optimum to be at the preferred prefractionator split
(P) or at a balanced main column (RThe fact that all points on the straight line
P R are optimal is very important.

7.10.3 Mapping V@B,L,) to V(R|,R,)

We here consider the surfa@€R;,R) for the case with infinite number of stages.
From equations (7.24) and (7.25) we see that for a fixed reflyxt{e level con-

tour of L(3,L,) (and then alsd/(3,L,))are straight line segments in th@,1(,)-
plane (see the dashed level line for constanh Figure 7.26 which represent
operating lines from equations (7.24) and (7.25)). Recall also the definition of the
split ratios, and observe hol|, can be expressed as a functionLgf,,andf in

the case of sharp product splits (Feed is normalized):

L \% L.+z, +zB—-(1-0)
-1 - _2_"1 "a '®
R =T =¥ L+z,+(1-0q) (7.27)

Thus, for constant reflu}{, any straight line in the,L;)-plane map to a straight
line in the R,R))-plane.

The optimum which occur on a line segment in tRg ¢)-plane will then also be
a straight line segment in th&®(R )-plane. Fidkowski's equations, extended to
handle any feed liquid fractiom), together with equation (7.27) gives us the tool
to compute all possible level lines on the surf&¢&,R,) with the feed composi-
tion, liquid fraction and component relative volatilities as parameters.
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Each level line is a polygon with four characteristic corners:

C1.Operating therefractionatorat preferred split and minimum reflux
(L1,pBp), over-refluxing the main columiXL ;).

C2.0Operating along tHeft branchof the prefractionator characteristic
(L1=L1 min(B), B<Bp), L from intersection of (7.21) and (7.25)

C3.0Operating wherthe main column is balanced {lzBr), While the pre-
fractionator is over-refluxed-(>L 1 yi{B))

C4.Operating along theght branchthe prefractionator, above the balance
point.C1=L1 min(B), B>BR), L from intersection of (7.21) and (7.24)

Note that corner lines C1,C2 and C3,C4 coincide at each end of the optimum line
in the R,R)-plane. (The list items above are valid Bp<pr. In the case of
Bp>Br We have to reformulate item 2 and 4)

It is interesting to observe that the poifi,(L; p) map to a curve in theR,R))-
plane when we increase the main column reflux. (Corner 1.)

And for g=1, operating along the right branch of the prefractionator, above the
balance point (Corner 4) map into a single point in BydR()-plane.

The constant energy level lines from corner 2 via corner 3 to corner 4 are directly
described by the equations (7.24) and (7.25).
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Chapter 8

Use of Short-cut Methods to
Analyse Optimal Operation of
Petlyuk Distillation Columns

Ivar J. Halvorsen and Sigurd Skogestad

Norwegian University Of Science and Technology (NTNU)
Department of Chemical Engineering, N7491 Trondheim, Norway

Presented at PRESS99, Budapest, Hungary, May 1999

Abstract:
Analytical methods are used to compute important operational parameters for an
infinite staged Petlyuk column as a function of feed composition, feed enthalpy,
and relative volatilities. The computational effort is very low, and the methods can
be used to get a very good picture of the applicability of a Petlyuk column for a
specific separation task. It is found that the largest energy savings are obtained for
the set of feed compositions when the prefractionator is operated at its preferred
split and both the upper and lower parts of the main column operate their respec-
tive minimum reflux condition at the same time. The position of this boundary
region relative to the actual feed is very important when we consider important
operational aspects of the column.

Keywords: Petlyuk distillation column, dividing wall column, optimizing control,
minimum energy
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8.1 Introduction

The fully thermally coupled distillation arrangement, (Petlyuk 1965), has several
appealing features for separation of a three-component mixture. However, the
industrial usage has been quite limited, even though it is 50 years since Wright's
patent (1949) for a dividing wall column. The sole industrial exception has been
BASF, e.g. (Kaibel 1997), which have several dividing wall columns in operation
and regard it as standard technology. Recently, a Japanese and a British applica-
tion have been reported, (Parkinson 1998) and (Lestak et al. 1999). Theoretical
design studies and results from pilot plant operation have been presented by (Tri-
antafyllou and Smith 1992) and (Mutalib and Smith 1998). Recent theoretical
studies are presented by (Mizsey et. al. 1998) and (Agrawal and Fidkowski
1998a,b). All authors report typical savings in the order of 30% in energy costs,
and that the implementation as a dividing wall column can also save considerable
capital costs compared to traditional arrangements with two binary columns in
series.

In this paper we use analytical methods for infinite staged high purity columns.
The methods can be used to quickly check if a Petlyuk arrangement is suitable for
a particular separation case, and indicate requirements for the level of automatic
control and the design of number of stages in each column section.

8.2 The Petlyuk Distillation Column

The Petlyuk column, shown in Figure 8.1, has at steady state five degrees of free-
dom. These may be selected as the following manipulated input variables: Boilup
(V), reflux (L), mid product side-stream flov), liquid split (Ri=L/L) and vapour

split (R~=V2/V). There are three main product purity specifications: Tag,( ),
bottom (xg ) and side-streanx§, ). A very important issue is then that we have
more degrees of freedom (5) than product specifications (3 in this example). The
two extra degrees of freedom can be used for optimization purposes, like minimi-
zation of the energy consumption. When the column is operated optimally, the
infinite staged Petlyuk column always consumes less energy than the correspond-
ing conventional solution, (Fidkowski 1987). However, this optimal operation
may be difficult to achieve in practice since the optimal operation depends
strongly on the feed properties and the remaining degrees of freedom.(Wolff and
Skogestad 1994) and (Halvorsen and Skogestad 1999a).

In the following we will choose L,V and S to control the product purities, and let
(R,R,) be the remaining two degrees of freedom (note that other choices may be
made). The overall energy consumption will then be a function of the degrees of
freedom R,R), the feed propertiesz(d and the product specifications
(Xpar Xgo Xsp)- We choose to use the reboiler vapour fldws a measure of the
energy consumption.
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Our aim is to adjusR and

Condenser -
R, in order to keep
o ' V = V,,- The optimal
Liquid split (R) VoV L »D.Xxp  values F£ and R, can be
IR R Top product  found by minimizing the
Prefractionator ¥ boilup with respect to the
..l 14 degrees of freedom as
ST . .
Feed S shown in equation (8.1).
—p —> , . .
F.z,q P Side-stream The optimal bO.IIUp vODt )
205 product will be a function of feed
) o properties and product
The Dividing < specifications.
wall” 6 -
\% - An important observation
Vapour split (R)  for the Petlyuk column is
that V=V, for a broad
» Bxg range of values ofR,R)).
Reboiler Bottom product This implies that the opti-
Figure 8.1: The Petlyuk distillation arrangemefum is quite flat and that
implemented as a Dividing Wall Column exact values forig,R ) may

not be required. However,
this observation is limited to a certain direction in tRg R )-plane. This indicates
that one of the degrees of freedom can be left constant, like in the trivial cases.We
will follow up this idea and investigate how the optimal region depend on the feed
properties and relative volatilities.

Vopt(q’ 2 Xpar Xgo XSb) &ni%VV(RI’ Rv’ O 2 Xpa Xge XSb)
I (8.1)

(R|' RV)opt - f(q’ Z )ba’ XBC' XSb)

8.3 Computations with Infinite Number of Stages

We here limit ourselves to sharp split8{, = Xg. = Xg, = 1 ) and infinite
number of stages. Only the main procedure is outlined here; for details see (Hal-
vorsen and Skogestad 1999a,b) and also (Fidkowski 1986) for the minimum
reflux computation. We assume a ternary feed mixture with composition
z = [ z,, zg, ] for the light, intermediate and heavy components respectively.
We use normalized feedr€1), with liquid fractiong (whereg=0 implies satu-

rated vapour andj=1 implies saturated liquid). We assume constant molar
overflow and constant relative volatilities = [a 5, 05, 0] , referred to a com-
mon reference component (usually C). Then we can compute the solution surface
V(R,R, 0,z a).V(R,R) for a given set ok,qanda is shown in Figure 8.2
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(surface) and Figure 8. 3 (contour). Note the flat region WitV ,,,;, along a
straight line from Pto R in the (R, R,) -plane. This corresponds to the opera-
tion along the V-shaped prefractionator minimum reflux characterlstlcs
(Ly = Ly min(B) ). between the point of the preferred sp[ﬁp( ) in, And the
value B ) which makes the main column balanced in R is defined as the
recovery of the intermediate B-component leaving the prefractionator top.

The flat region may be wide or narrow, depending on the relative valu@s, of
andBr andwe may have cases with eitfgr> By Bp< Bg (like in figure 8.2
and 8.3). Only for the special cagg, =Bz  do we have a sharp minimum. The
mapping between the variablel,(; ), which is convenient when we look at the
prefractionator, and our chosen degrees of freeBmR,) are straightforward
from the definition, and the line segment P*R* is described by the points
(R|, pr R, p) in P* and(R,l r Ry, r) inR*. The minimum boilup rate for the Pet-
lyuk column, which is the boilup when operating along P*R*, is given by:

00RZ A~z a~z~ [
vhe = mascs Pl e = 8.2)
A—0g Yp—0c Ug—Qc[]

The Underwood roots(,, 65 ) obey, >6, >0z >605> o and can be found
by solving equation (8.3):

aANZ ARZ O~z
AA+ BB+CC

The minimum vapour flow for the prefractionator for sharp A/C splitis then given
by:

max oz, 0gzZgB0
+
0 8,0 A— 6 0ag—6[

Vl, min(B) = (8-4)

We can find the point of preferred spliBf ) by solving (8.4) for the value of
V1 min When both Underwood roots are active (which is at the minimum of the
w7 -shapedV; mi{B)). The point of a balanced main cqumﬁF( ) can be found
by solving the equations for the level lines for the same minimum main column
reflux for the upper and lower part fiRPe" = L'n?i"ger ). These level lines can be
expressed as two straight lines intfg ;  )-plane for the upper and lower part
of the main column:
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350
300
g 250
§% 20
3
1
100
03 0.4
) 0.5 06 0.2
o7 0.8 09 0 Vapor splitR,
Liquid split R/
Figure 8.2: The solution surfacé(R,R,) for the case
with infinite stages and sharp splits
Contour plot of V(R,R‘)
i
Cc3
09
0.8
orr At balanced
main column
;‘)o.sf
E‘O.S* At preferred
prefractionator
split
0.4
I‘?P’im\ﬁ'l%%i/’na“"" 2,=0.330.330.33]
03 ne. V=  =[4.00 2.00 1.00]
q=05
0.2 c1 V=300%
ot ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9
Liquid split R/
Figure 8.3: The contour lines f&f(R,R)) are straight lines
between the four characteristic corners.
Bzpa
L, = Lupper B_A (8.5)
Z,8
A“B
(a A—d B) -
Lupper
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(1-B)z50
— C
(GB_GC) lower =2
I‘mln +ZA+ZC_(1_Q)

For non-optimal operation, away from the line P*R*, the details of how to com-
pute an arbitrary point on the solution surfaq&,R)) is given in (Halvorsen and
Skogestad 1999). A short summary is given here: The contoursv/fezofst,
V>V in the (R, R)) -plane are straight lines between four characteristic cor-
ner lines (C1-C4) which represent a particular operating condition for each
particular edge (C2 and C4 are g <Bg ).

» C1: Preferred split in the prefractionator. Over-refluxed main column.

» C2: Along the left branch of the minimum reflux characteristics for the
prefractionator.

« C3: Balanced main column, and over-refluxed prefractionator (above the
V-shaped minimum curve).

e C4: Along the right branch of the minimum reflux characteristics for the
prefractionator fo3 > B

The minimum boilup when we fix one & or R, is along the path C1PR'-C3:
This path is given by/(R op(R)),R) or V(R R\,Opl(R|)) Full savings can only be
obtained if the chosen constant value is in a flat region, (eRg if < R <R, R ),
and in addition the other must be optimized for that choice, @g?, c,Iot(l-'\’\,)
when we choose to fiR)).

8.4 Results with the Analytical Methods or some Separa-
tion Cases

8.4.1 When do we get the Largest Savings with the Petlyuk
Column?

The energy savings that can be obtained with a Petlyuk configuration will depend
on the feed properties, the product specifications and the relative volatilities. Our
reference for computing the savings is the best of the conventional configuration
with direct split (DSL) or indirect split (ISV) (with vapour feed to the second col-
umn). In the triangular plots in Figure 8.4 we show the contours of the savings as
a function of the feed compositidiz,, zz] , for three sets of relative volatilities
with saturated liquid feed.
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Observe that the largest saving is obtained for the set of the particular feed com-
positions when the operating point for a preferred prefractionator split equals the
operating point for a balanced main column. This is the situation whemiR-

cides with R and we hav8, = By . Thisis denoted the “boundary curve” in the
following figures. On the side of this boundary closest to pure C-feed we always
have Bp <Bg , and on the side most close to pure A-feed we always have
Bp> [3R The situation when R’ is also special when we consider the opera-
tional aspects. In that situation we have no flat region on the solution surface, and
this implies that we have to adjust both degrees of freedom on-line in order to
maintain optimal operation for even small feed disturbances. The particular feed
composition when we have the largest energy savings will be either at the inter-
section with the dashed curve where the boilup for the conventional direct split
equals the indirect split configuratiory g5, = V,gy ) or at the end-points for
the boundary curve f§p = Bg

Thus we get the largest theoretical savings in the region where the column is most
difficult to operate optimally, and where we also require the largest number of
stages, see (Halvorsen and Skogestad 1999hb).

. a) Difficult separation .. D) Medium difficult sep.

Case: a=[1.44 1.20 1.00], g= 1.00 Case: a=[4.00 2.00 1.00], g= 1.00

Maximum saving is 45.3% for

Maximum saving is 35.6% for
Z':[0.26 0.720.02] 0.8

0.8 2,7(0.500.18 0.32]

o
=)

5% Contour lines

o
o

5% Contour lines

Molfraction of B

I

N
I
~

Molfraction of B

0.2 0.2

C 0.2 0.4 0.6 0.8 A [} 0.2 0.4 0.6 0.8 A
Molfraction of A Molfraction of A

c) Easy separation

B

Case: a=[25.00 5.00 1.00], g= 1.00

Maximum saving is 18.6% for

2710.680.14 0.18] Figure 8.4: Contour plots of the
savings as function of feed
5 composition with the Petlyuk column
. e BB compared to the best of the
conventional direct split or indirect
split configurations.

aap/0pc=1 for all three casesx(j=a;/
9.

0.8

o
>

5% Contour lines

Molfraction of B

o
>

0.2

Molfraction of A
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8.4.2  Sensitivity to Changes in Relative Volatility Ratio
and Liquid Fraction

The sensitivity of the boundary curve {8 =B to variationsiRg/ag-s  ,Iis
very strong as shown for the difficult separation case in figure 8.5a and 5b. In fig-
ure 5¢ we observe that changing the feed liquid fract@gmdtates the boundary
curve around an invariant point.

B

Case: a=[1.44 1.31 1.00], g= 1.00 Case: a=[1.44 1.10 1.00], g= 1.00

Maximum saving is 39.1% for

Maximum saving is 40.0% for
2,=(0.18 0.02 0.80] 0.8

0.8 2,=[0.740.020.24]

o
=)

5% Contour lines

o
>

5% Contour lines

\

ST NN W;%

[} 0.2 0.4 0.6 0.8 A C
Molfraction of A Molfraction of A
c)
B

Molfraction of B
Molfraction of B

o

~
o
~

0.2

Case: 0=[4.00 2.00 1.00], g={-0.5:0.25:1.5] a) and b) show the difficult case from
Contournes for B,y figure 8.4a), here with
—— Liquid feed ( g>=1) Opg/0pc setto 1/1.2 and 1.2.

‘‘‘‘‘‘ Liquid and vapor (0< g<1)
' Vapor feed ( g<0)

0.8

o
=)

¢) The plots show boundary curves for
different feed liquid fractions in the
range from superheated vapour (g=-
0.5) in steps of 0.25, through to sub-
cooled liquid (g=1.5)

Molfraction of B

o
>

0.2

(¢} 0.2 0.4 0.6 0.8 A
Molfraction of A

Figure 8.5: Variation iroag/0pgc has strong impact on the boundary curve fige Bg.

The plots show contour lines of the savings with the Petlyuk column compared to th
conventional indirect or direct split. The difficulty of the A/C split

is the same as in Figure 8.4.

8.4.3 When Can we Obtain Full Savings with
Constant Vapour and Liquid Splits?

Assume that the design value for the vapour split has been R%t,ﬂéigure 8.6a
illustrates the contour lines for constant vapour split values of the end-points of
P*R*, R, p(solid) andR, g (dashed) as a function of feed composition. In order to
be able to operate in the flat optimal region, we must have a feed composition such

that RV, p< RS < RV, R - (We have alway:RV’ p< RV, R )
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ThIS is illustrated with the shaded area in figure 8.6a for an example with
RV—06 Observe that in the feed region close to the boundary curve for
Bp = Bgr. an operation strategy with constdﬂ? will only give us full savings
forone partlcular feed composition, but further away from the boundary curve, an
exact value oRV is not required.

The extent of the flat region increases as we move away from the boundary curve.
In Figure8.6b,V(R opry:RY) is shown for some selected feed compositions, and
we note flat regions.

a) o b)

Case: a=[1.44 1.20 1.00], g= 1.00 75

0
RV

27[0.40.3]
2=[0.30.3]
27[0.20.3]
27[0.70.2]
27[030.2]
27[050.1]
z7[0.40.1]
2=[0.30.1]
z7[0.20.1]

0_
038 R,=0.60

Constant R 6.5

- VR

Constant R

Molfraction of B
Boilup V

i k 25
C 0.2 0.4 0.6 0.8 A 0.4 0.5 0.6 0.7 0.8 0.9 1
Molfraction of A Vapour split R,

Figure 8.6: a) The contour lines for constﬂ@,tp andR, r meet at the boundary where

Bp = BR For the example wr[r'RV =0.6, full Petlyuk column savings can only be
achieved in the shaded region.

b) The plot show/(R on(R),R,) for some selected feed compositiansThese

are the path C1-P-R-C3 (see figure 8.2 and 8.3) on ¥égtR,,z) which gives the
minimum energy as function of one degree of freedom when the other is opti-
mized. (The endpoint markers on each curve are at the minimum conventional
boilup for each case.)

c) c) Case wher® andR, have been set
Case: a=[1.44 1.20 1.00], g= 1.00 to the Optim&' values for
Constant [ R, R ]<057 0.63] z=[0.33,0.33,0.33]. The narrow shaded

area show the feed composition region
et where the Petlyuk column perform bet-
""" P ter than the conventional solution when
we fix bothR, and R,

0.8

o
=)

Molfraction of B

o
>

0.2

Molfraction of A
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In Figure 8.6¢c we show an example where wee keep both degrees of freedom con-
stant. Now the region where Petlyuk column saving is positive is even more
limited. In Figure 8.6¢ it seems almost impossible to save energy without adjust-
ing R and/orR, to move that narrow region if the feed composition changes.

Let us make a short summary: To operate at minimum energy we first have to
ensure thaRS is in the flat region in order be able be within the solution surface
V(R ,R) between P*and R* at all. This task seem quite easy unless when the feed
composition is close to the boundary curve. Second, we must find the optimal
value ofR, for the particularRS , to ensure that we actually operat®tiR* and

not somewhere to the sides of P*R*, wher¢R ,R,) may be quite steep. With

both R andR, constant, the probability of hitting P*R* on a solution surface,
which is moved around by changesznganda, will be very small, so this will

only be a feasible strategy if the operating conditions are reasonable steady, and
for cases where the solution surface is not very steep (which can be the situation
for easier separations than for the case in Figure 8.6c).

8.5 A Simple Procedure to Test the Applicability
for a Petlyuk Arrangement

Feead regon where a We present a short procedure for evalu-
fixedR, 4is optimal ating separation cases by the following
_ simple example: We consider the three
/Eeed rgglon wher€iteeq composition regions: 1,11 and III,
P~ PR

shown in the triangular diagram in fig-
ure 8.7. The boundary curves for
Bp = Bg (in region X) are computed
for the expected variations of relative
volatility and liquid fraction. For feed
case |, we have an intersection with the
C A region X, thus this case will require on-
Figure 8.7: Check the applicability of Aine adjustme.nt of both degrees of free—
Petlyuk arrangement for a given fee§OM 10 achieve the full theoretical
property range energy saving. For case Il and Il we
know that there will be a flat region on
the solution surface, and the optimal operation will be on the left and right branch
of the prefractionator characteristic, respectively. However, if we want to have a
fixed vapour splitR, o), the feed have to be within the region Y in order to get the
full benefits of the theoretical energy saving. Thus only the feed case Il will be
suitable for instance with a DWC with the constant vapour split if we are required
to achieve the full theoretical savings of the Petlyuk arrangement. For another
value ofR, 4 region Il may also be suitable for operation with a fixed vapour split.
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8.6 CONCLUSION

Simple analytical Underwood methods developed for the infinite staged Petlyuk
column with sharp product split can be used to compute the theoretical perform-
ance of a Petlyuk arrangement for any set of feed properties and operational
situations. For every set of feed parameters and relative volatilities the full surface
V(R,R)) can easily be computed and analysed. We observe that the best possible
energy savings is obtained close to the feed composition region where the operat-
ing point for preferred split of the prefractionator coincide with the situation that
we have the same minimum reflux requirement in the upper and lower part of the
main column, i.e when the main column is balanced. This region is also the most
difficult region for operation since we have to adjust both degrees of freedom on-
line. However, if the feed composition is away from the boundary line, then opti-
mal operation (in terms of minimum boilup) can be obtained with a strategy
where one of the degrees of freedom, e.g. the vapour split, is kept constant.

The results shown in this paper are valid for sharp product splits, and therefore
relevant for high purity distillation. In Chapter 9 the case of non-sharp splits,
including new analytical expressions for the infinite stage case, is treated further
and it is shown that in particular the sidestream purity is closely related to the
extent of the flat region o¥(R,R)). A typical symptom of a real column if we
have a feed composition outside the feasible regions for high purity operation, is
that we will be unable to produce high purity products, even if the energy input to
the column is above the theoretical minimum. So instead of an increase in energy
consumption for non-optimal operation, we may experience a decreasing product

purity.
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Chapter 9

Optimal Operating Regions for
the Petlyuk Column -
Nonsharp Specifications

Ivar J. Halvorsen and Sigurd Skogestad
Unpublished

Abstract:
Nonsharp product purity specifications bring a new dimension to the flat optimal-
ity region of a 3-product Petlyuk arrangement. In the sharp product split case, the
optimality region is a line segment in the plane spanned by the two remaining
degrees of freedom. However, when we allow a certain sidestream impurity, opti-
mal operation is achieved in a wider quadrangle shaped region. An important
practical implication is that suboptimal operation of a Petlyuk arrangement may
result in reduced sidestream purity, and not necessarily increased energy con-
sumption. It will normally also be simpler to operate the Petlyuk column when we
do not require high sidestream purity. In this paper we deduce analytical expres-
sion for minimum energy and the detailed boundaries of the optimality region for
any product purity specification. We also discuss the implications of four product
purity specifications.
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9.1 Introduction

/rﬁ’ The objective of this paper is to present the gen-
o o1 L D eral minimum energy solution for nonsharp
Lt™ = Rly product splits for the integrated Petlyuk distilla-
e tion column shown in Figure 9.1, and to discuss
v~ ('\:"Oél‘li;‘mn important aspects of operation of such columns.
S The configuration in Figure 9.1 has five degrees
of freedom after the level control loops in the top
Prefrac- and bottom are closed. These are the main col-
tionator umn reflux (4 ), boilup ¥g ) and the
c1 Co2 c22 sidestream flow rate§f which are used for prod-
Ve = RV uct composition control plus the reflux and
VBEb_, B vapour flow in the prefractionator, represented

by the split ratiosR,R,). The latter two degrees
Figure 9.1: The integrated Of freedom are here used for minimizing the

Petlyuk arrangement for €nergy requirement.

separation of ternary MixtUres  geyera| quthors (Fidkowski and Krolikowski

1986), (Glinos et. al. 1989), (Carlberg and West-
erberg 1989), (Christiansen 1997) have presented expressions for the minimum
energy solution for sharp product splits, and have pointed out that the minimum
energy solution will be along a line segment in a plane spanned by the two
selected degrees of freedom. With optimal values of the remaining two degrees of
freedom, the energy requirement for the Petlyuk arrangement is typically 30%
lower than in conventional column sequences. In Chapters 7 and 8 we show how
the column behaves not only at the optimum, but in an arbitrary region around the
optimum for the sharp product split case. In Chapter 7 and 11 we also present a
case study for finite number of stages and nonsharp product splits, mainly from
an operational point of view.

It turns out that the impurity specification in the sidestream product has a very sig-
nificant impact on the optimality region and thus on how the remaining two
degrees of freedom should be used. We will show that the optimality region in the
case of a nonsharp sidestream specification is extended from a line segment to a
gquadrangle-shaped region, with a width given by the sidestream purity only.

We will also discuss the observations by Wolff and Skogestad (1996) about
“holes” in the operational region when we want to specify a certain amount of
light and heavy impurity in the sidestream.
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9.2 The Basic Methods

The analysis and presentation is based onthg-diagram (Chapter 3) which is
based directly on Underwood’s equations for minimum energy for infinite
number of stages (Underwood 1946, 1948ab). Chapters 4 and 5 shows how to
apply these methods for minimum energy calculations for directly coupled
arrangements. Here we give a brief review of the most important issues.

9.2.1 The Underwood Equations

The actual Underwood roots in the top () and bottapn ( ) of a two-product col-
umn are defined by the following relationships between the vapour ipar{d

the net component flows\ defined positive upwards) through a cross-section in
the top 1) and in the bottomB) of the column:

_ o<W T
= Z Ty and Vg = o= (9.1)

The solutions obeya; 2@ =26,>2y,,,20;,4 . Minimum vapour flow is
obtained when one or more pairs of roots coincidet 6, = §; , ; ). These are
obtained by solving the feed equation which arise when we subtract the equations
above.

Vo V o,z 0z A~z
1B _AAL, BB, _CC -1 g (9.2)
F F a,-8 oag-6 a.-6

Here the feed compositior)(appears smcezvI T—W; g =W =2zF .Fora

ternary case we obtain two common Underwood r06§§ 0g . ) bysolving (9.2)
and the correct active ones to apply is the ones between the volatilities of the dis-
tributing components. The minimum vapour flow when root k is active

(¢ = 6, = Wy, 4), isthen:

oW 1 a. W

— 1, —
Vimin = Zm’ and VBmin = ZO( _ k (9.3)
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9.2.2 TheV,,,-Diagram

Vr Pac Figure 9.2 illustrates &,;,-diagram
A for a given ternary feed mixture
Pas C  (ABC) in a two-product column, e.g.
A B BC for the prefractionator (C1) in Figure
AB 9.1. We use the top vapour flow {¥
% and the net product splitD{F) as
0a Pac

degrees of freedom. The peaks repre-
sent minimum energy for sharp split
ABC 6,08 between A/BC (Rg) or AB/C (Pgc).

. Sharp split between A/C require
D:VTT-T operation above the V-shapedgd?
ThePAC'PBC’ with minimum vapour flqw

\?et the preferred split (®2). In the tri-
Angular regions under  the
“mountain”, a set of components AB,
ABC or BC may be distributing to
both products, and in each of these regions the active Underwood roots will be the
ones between the relative volatilities of the distributing products. Above the
“‘mountain”, V>V, only one component may distribute and there are no com-
mon Underwood roots.

Figure 9.2: The V,,diagram.
distributing components and the acti
Underwood roots are indicated in each regi

9.2.3 TheV,,,-diagram Applied to the Petlyuk Arrangement

For directly coupled columns, like the Petlyuk arrangements, the actual Under-
wood roots in one section carry over as common roots to the succeeding column
(Carlberg and Westerberg 1989). Thus, we have:

pC21 - (PCl andeC22 = ljJCl (9_4)

This was used in Chapter 4 to show that for column C1 operated at the preferred
split, we obtaif§?! = 651 and®§?! = 65! . The,,-diagrams for C21 and
C22 overlap the diagram for C1, and minimum vapour flow for the Petlyuk
arrangement for sharp product split is simply given by the highest peak in the
Vmir-diagram, thus (we omit superscript C1):

Petl — A/BC \/AB/C
Vimin = Max(Vi'=s VEES) (9.5)
A/BC ABIC
Vimin _ 9aZa VTmin _ 9aZa OgZg _—UcZc
F ap—6p F Op—Y9g Qg—bp Uc—0p
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9.2.4 The Optimality Region for Sharp Product Splits

Somewhat surprising, the minimum boilup solution for the arrangement is not
unique, and the optimality region is the minimum boilup region in the space
spanned by the two remaining degrees of freedom, here chosen as the net flow
leaving the prefractionator and the vapour flow in the prefractionator
(DCL vEL),

As shown by Fidkowski and Kro-
likowski (1986), and revised in the

Vmir-diagram in Figure 9.3, the opti.vTA

mality region is the line segment

Vin-diagram for C21
whenga“"=gapa

Psc

Pabpal

(Pac-Ppg)- That is, from the pre- PaB
ferred split (R¢), along the V-shaped
Vmirrboundary (Rg-Pac-Pgc) for AB
sharp A/C split, towards the highest 64
peak. At Ry, Vgr%%n = V'?r%izn’
which we denote a balanced main

column.

Phal

Optimality
region

PAC:
Preferred split

ABC B0

»

In Figure 9.3 B¢ is the highest peak. D=V L,
At the balance point, the active

Underwood root in the top of c2figure 9.3: Optimality region for the
carries over from the top of Cfrefractionator column (C1) of a Petlyuk

(®x.1) and we have: arrangement shown in thg,i-diagram.
Abal .

VAB/C

A/BC
Vimin . 9aZa _ VTmin . GaZp OgZg
F T F o 0 (9.6)
OpA~Papal Op—Yg Upg—Up

The distribution of the intermediate B in C1 and the balance point operating point
(Ppa) can then be found by:

c1 c1
Vel = 9aZa  9BWEThal _ _ 9a%a  %BWE Thal 9.7)

Thal = = :

ap—6g ag—0p Aa=Pabal 9B~ Pabal
The preferred split (&) is found when botl®, anfl;  are active:
c1 c1

yCl = IaZa , 9BWE Tpref _ _%aZa . %BWE Tpref (9.8)

Tpref — - :

P ap—=6g ag—6p ap=6s  ag=8,
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9.3 Non-Sharp Product Specifications

9.3.1 Relation Between Compositions, Flows and Recoveries

For sharp product splits, the net component flows and product flows are trivially
given by the feed compositions. However, with nonsharp products, these are
related through the overall material balance and the specifications.

We consider a ternary feed mixture with components A, B and C and composi-
tions (za,zg,2c). We choose to specify the products by the composition of the main
component in each of the three product streams; at thdxph@f the side$) and

in the bottom B) (xA D X, s XC, g) (note that wheiB is used in subscripts, the
first position refer to component and the second to product or section). In normal
operatlng regions, there will be no heavy component in the top product
(Xc p = 0), and no light component in the bottom produgf(g = 0 ). How-
ever, in the sidestream, we may have both Ilgh;\% ) and hea&gyg )
impurities. Sincex, g+ Xg g+ Xc g = 1 , we only need one of the sidestream
impurities in addition to the three main speC|f|cat|ons to determine the product
streams uniquely. We here choose to useg as a free variable. The overall
material balance for the column gives:

ZA XA D XA 'S 0 D D
Zg|F = (1—XA, D) XB, s (1_XC, p)||S| = M¢|s
Z¢ 0 (l-x55 X9 Xcg |LB B
D “A
or |s| = MY zg|F (9.9)
B Z
Observe that the product specification matiiy, = | for sharp product splits,

and this gives a particular simple solutidh= z,F, S= z3F, B = z-F

For use of Underwood equations for directly coupled sections it is convenient to
use net component flows). These are found easily when the product flows and
compositions are known:

Wa p = Xa pD Wp s = Xp &9 wppg=0
Wg p = (1-Xp p)D Wg g= Xg &S Wg g = (1-Xc g)B (9.10)
Wep=0 We s= 1-Xg s=Xa s We g = Xc B
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Note that the product flowdX,S,B and the product net flowsw are a function

of the unspecified amount of impurity in the sidestream. Thus, if we also specify
a fourth variable in the products (e.gA' s ) the solution for flows and product
recoveries is unique. We will discuss this later in Section 9.6.3.

9.4 Minimum Vapour Flow for Non-Sharp Product
Specifications

As shown in Chapter 4 for the 3-product Petlyuk column, and in Chapter 5 for the
general M-product case, the minimum vapour flow for the Petlyuk column is the
same as the maximum of the minimum energy required for any pair of product
splits in a binary column. This is also valid for nonsharp product splits and we
may apply equation (9.5) directly, but now with the vapour flows related to the
nonsharp product splits between D/SB and DS/B.

vPell = max \R/SB yDS/B) = may(\L21 vE22 +(1-q)F) (9.11)

Tmin min' ¥ Tmin min’ ¥ Bmin

We know that the minimum values for columns C21 and C22 are obtained for C1
operated in region ABC whefg, carry over to C21 8pd to C22. Thus

ca1 C12
O AW oW
AVAT  98WB T

D/SB + veal (9.12)

ap=0p ag—06p

DS/B GBWE,ZBZ GCW(CTZZ c22
Vinin = g—o. Ta.—o. T A-DR) Vet (1-aF - (9.13)
B~ VB c— B

Note that to compare the vapour flow requirements for the two splits \gheh ,
we have to refer to either the top or the bottom. The difference is given by the
vapour fraction in the fee@1-q)F).

The four component flows\) are uniquely given from the product specifications
and can be computed from equations (9.9-9.10). In the case of pure products, we
trivially get WE’ZT:L = z,F, —W82§ = z.F ,wngZ = wgzg = 0 and we obtain

the well known expressions for sharp product splits as given in (9.5).

However, since we only specify the main components in each of the three prod-
ucts, the impurity specification in the sidestream, here representegylgy ,isa
remaining degree of freedom. Thus, in general the solution to (9.11) has to be
minimized with respect o, 5
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Petlyuk . 21 Cc22
Vrmin = in (MaX Vrnin(a, o) VeminXa 9 + (1=0F)) (9149

We illustrate the behaviour of the minimum energy operating points in Figure 9.4.

Note thatV§22 (x, o is minimized fox, g = 0 an¥$£2l(x, o s mini-

mized forx, g = 1-xg g Which is the same as =0 .

xasl-xgs, Pec

/\

petl_ | C22
Vi A Vimie Vemid0)+(1-0)F

N

c21 Pag
VTminXa,9

c22
VBmidXa,9+(1-a)F

BC D=V Ly

»
»

Figure 9.4: Behaviour o/ {21 (x, o and V§22 (x, o in the TheVp,-diagram
for a given feed. The plot shows the solution of a typical Case 1 where column C22
controls the overall requirement in the Petlyuk Arrangement.

In Figure 9.4, we obviously havé§22 (0) + (1-q)F 2L (1-x; o . This
implies that the requirement in C22 controls the overall requirement, and the solu-

tion to (9.14) is given by:

Petlyuk _ |,C22
Tmin = Vemin(©) + (1= 0)F, atx, g = 0 (9.15)

\%

We classify this asolution Case Jland one characteristic is that we have only the
heavy C component as impurity in the sidestream at the optimum.

Similarly, when the peak A is significantly higher than g, we will have an
optimal solution with only light A impurity in the sidestream (Case 3). We may
only get a solution where the optimum is obtained for a combination of A and C
impurity in the sidestream when the peaks are of similar height (Case 2). Cases 2
and 3 are illustrated in Figure 9.5.

These three cases are equivalent to similar cases for sharp product splits, and we
summarize the characteristics of the possible solutions:
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1. C22 controlsVRell 5 €22 (0) + (1-q)F ¥$2L(1-xg3 o for

Tmin Tmin

Xp s = 0 andxc'S = 1—xB'S

2. Balanced: VPell €22 (x  J+(1-qF ¥E2L(x, o for

min Bmin Tmin

3. C21 controlsVEeY  wE2l (0) w§22 (1-x5 9 +(1-q)F for

The solution for the balanced case 2 is also quite simple 8if#e (X, o and
V2l (xa o areclosetolinearin, g (itis exactly linear if the purity specifi-

cations in'top and bottom are equal, e.g. WREN, = Xc g )

\):'ﬁglin X =0 el _\G21
Vi Yr = 1-x VT A AS Tmir= YTminl1-%8 9
ca1,  Xas0 SRS cal
VTmin(XA,S) ' c22 VTmin(XA § XA,§1-XB,S
VBmirXa,9+(1-a)F
c22
VeminXa,9+(1-a)F
- D=VrLt D=V+L
,r > > T-T
Case 2: Balanced C21 and C22 Case 3: C21 controls

Figure 9.5: Behaviour ofv£2l (x4 9 and VS22 (x, o in the V-diagram for

Case 2, when the columns are balanced, and Case 3, when columns C21 controls.

Note that the reduction in energy requirement when impurity is allowed in the
products is almost linearly dependent of the impurity specifications, and that we
do not obtain much energy saving by reducing the purity requirements.

Example:V.Fr’l%ti'n = 1.366 for sharp product splits where the feed is given
by:a =[4,21,z=[1231/3 1/3] andq = 1 . For 99% side-

stream purity in the sidestream, the requirement is reduced by just 1.0% to
VTP%ﬁ'n = 1.352. Similarly, For 99% purity in all products, we obtain 1.6%

reduction, tovRet! = 1.343 .
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Since energy savings in Petlyuk columns typically are in the range of 20-40%
compared to conventional arrangements, the further reduction due to impure
product specifications will be insignificant and we will not recommend to use the

minimum energy for non-sharp split as a design target.

However, optimal operation is much stronger affected by non-sharp product split
specifications. This is because operation outside the optimality region may easily
lead to losses comparable to the whole potential savings, or we will be unable to
fulfil the purity specifications, in the sidestream in particular.

9.5 The Optimality Region

During operation of the column, the two remaining degrees of freedom (DOF)
determine the actual operating point. The optimality region are all the possible
operating points which results in minimum energy consumption as given by equa-
tion (9.14).

We here use the operating point for the prefractionator, given by the top vapour
flow and the product spIit\(%1 anBC1 ) as the two degrees of freedom. Later
we will map this to the split ratiof(,R,) used e.g. in Chapter 7.

In the following sub-sections we will mainly use Case 1 in the deduction of the
optimality region, and finally we will show the behaviour of Case 2 and 3
solutions.

9.5.1 Possible Impurity Paths to the Sidestream

There are two different paths any impurity may travel to the sidestream. Assume
(Case 1) that we allow a certain amount of heavy impurity §. Component C

may travel upwards in column C22E22 ), but it may also travel over the top in
C1 and downwards in column C2WEL = -w&%l  sineec2l = 0 ). The
material balance at the sidestream stage yields: ’

Wg,z%—wglzBl = We g = X S (9.16)

The minimum vapour flow into the bottom of the arrangement does not depend
on the actual path. Since we may allow heavy C in the top of C1, this implies that
the optimality region can be extended into regions where the prefractionator per-
forms non-sharp splits too. In the following we will analyse the extent of this
optimality region carefully.

Normally we expectw((izT2 >0 . However, the direction of the heavy component
C in column C22 may be different from what we normally expect. Thus the mate-
rial balance (9.16) can still be fulfilled even #w&3>w, g andc?2<0 .

This behaviour is only possible due to the direct coupling between C21 and C22.
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It is in fact also possible to transport C upwards in column C21 and downwards
into column C1. Although it may be feasible, this possibility has to be far from
the optimal operation. This is clear since we cannot transport C upwards in C21
as long as B is transported downwards, which is the normal operation mode of
C21.

9.5.2 The Optimality Region for Case 1

In Case 1, that is when column C22 controls the vapour flow requirement,
Xp s = = 0 at the optimum and all product flows (D,B and S) and net component
flows in the productsw; p) are uniquely given by (9.9-9.10). The overall mini-

mum vapour flow reqwremeMTPr?qtl'n = V§22 +(1-q)F is given by (9.13).

The distribution of components in the prefractionator is not unique. However,
smcexA s = 0 we must havwng = 0 toavoid any lightimpurity in the side-
stream, and we must also ensure that the Underwoodgpot s active. This limits
the optimality region to the region BC in th&,j-diagram for the prefractionator
which is to the right of the preferred split {P More specific, the region is the
quadrangle RR;-R,-P,-Py, as illustrated in Figure 9.6, and we will show how the
boundaries of this quadrangle can be computed.

Operation in region BC depends on the distribution of the intermediate B compo-
nent and the heavy C component, and is given by the Underwood equation:

E c1 c1

ct _ 9aZa" Y8We 1 YcWe T
Tmin —

ap—8g 0g—08g ac-0p

(9.17)

We have usetv§Y = z,F  sinagzl; = 0 . Note also thaf>6

The preferred split (B is obviously a feasible operating point for column C1, but
any point inside either region Ba% not active), region AB;(  not active and
ngT <z,F) or region ABC (vg* <z,F ) will violate a requirement for the
optimal solution in (9.13). Thus the boundarles ABC/BG-f) and B/BC (R-

R;) will limit the optimality region.

Recall from Section 9.2.4 that the optimality region for sharp product splits is
found along a straight line in thé,,-diagram from the preferred split towards
the highest peak, until thiealancedpoint where the vapour flow requirements
from both columns (C21 and C22) are equal. This will be true for the nonsharp
case too and this is the ling4R; in figure. To find the balance point we use the
fact that the actual Underwood ro@%2! ) is carrjed over from the top of column
C1 and balanced operation we can find this regt (= 651 ) from:

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen
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A A Bmin — YBmin ~
7 e
/ AN Boundary B/BCwhere /
N wEl = /
/ CT
/ c22 _
/ / <+— WC,T =0

/ /
,/ Region BC
, 4 —Equation (9.23) limits
/ / maximum negativavs %
/ 4 "2
/ ~
/ Preferred p, _ & — - Balanced C21 and C22.
/ split Line given by equation
/ \ (9.19) for constant
, N Cl = oC1
Eg%lon P, Regionwhere %A~ = @K bal
/ wE22<0
Boundary ABC/BC
wherew§}; = 0
;DCl

Figure 9.6: Optimality region for non-sharp side-product specification. The overall
vapour flow in the Petlyuk arrangement is constant and optimal for the prefractionator
column operated inside the optimality region (the bold quadranefgR,-R,-Py).

The plot shows a Case 1 solution, where column C22 controls the minimum vapour flow
requirement.

a WC21 o WC21
c21, C1, _ A"A D B"B,D _ ,,Petlyuk
VTmin((pA ) = + c1 VTmin (9.18)

UpA=@Papal A~ Pppal

Then we apply this root in the definition equation for column C1, and we have:

o,z F a WCl a WCl

Cc1

Vel = A%A +_.BBT ce, T (9.19)
Cc21 21 Cc21

C
Op=@Papal Ag=Pabal Ac—Papal

By solving equations (9.19) and (9.17) together we find all possible solutions
along the straight line RR, in Figure 9.6. R is found at the B/BC boundary by
applyingw& = 0 .

Note that just as in the sharp split case, the extent of the line segméit iB

mainly determined by the difference between the height of the peaks, which again
depends on feed properties and composition.
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Now we need to find the last side in the optimality region quadrangle, given by
the line R2-P2. This obviously have to do with the maximum amount of heavy C
which can be allowed to be transported above the top of the prefractionator.

9.5.3 Net Flow of Heavy C into Top of Column C22

We know from Chapter 4 that the composition in the top of C22 does not affect
the product split or Underwood roots in C22 as long as there are no net flow of
components into the top of C22. Thus we know that the optimality region at least
cover the rang® < WSIZTZ <wg g - However, simulation studies indicated that the
optimality region was larger and that a certain amount of “negative” or “reverse”
net flow (W&22<0) could be allowed. In the following we derive the limiting
value for the reverse net flow of component C from column C21 and into the top
of C22.

In Chapter 4 we showed that we may alleversenet flow of a component into

the top or bottom end of a directly connected column, without affecting the min-
imum energy calculations provided that the particular component composition
did not exceed the pinch zone composition related to the active Underwood root.
Thus for the connection C21-C22 this limits the flow of component C into the top
of when the pinch zone composition in top of C22 equals the side product com-
position. The expression for the pinch zone related to a particular root is given by
Underwood (1946), and by simple manipulation this can be expressed by the net
component flow in the top of column C22.

c22 o c22

C226; Wt Y —We, T

Xe,pT T Tc22a_—6, 8, —a
L%~ s c22 9g~Uc c22

WS =W
C,T — B, T
ag—6g

(9.20)

Note that when the flow of component C is slightly positive, this expression will
give a negative value for the pinch composition (recgl <65 <ag ). In this
case, the composition of the flow entering with the liquid into the top of column
C22 will not affect the separation of the feed. Thus for conventional columns, this
composition has no physical meaning. However for directly coupled columns,
where we may have reverse net flows into the column ends, this pinch zone com-
position becomes positive and meaningful W{E, 1<0 . Theimplication for the
optimality region is that Underwood rofg  will only be active when:

C220
Xc s2XC T (9.21)
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By combining (9.20) and (9.21) we can find the limiting amount of negative flow
of heavy C in the top of C22 as a function of the sidestream specification (which
has to be equal to the limiting pinch composition), and the amount of intermediate
B travelling upwards:

c22 0 X [0 —06g0 c22
we Pt = S me eBDNB 2 (9.22)
' —Xc, d1¥PBg~

By using the material balance we can express this relation in terms of net compo-
nent flow of B and C in the prefractionator. Thus, the maximum amount of heavy
C that can travel upwards in the prefractionator, when we still are in the optimality
region, is given by:

: 0 Xc s [T —6g0
Vpeﬂ - S)t, S_%_ XC ED B e E(ZBF WB T—BXB B) (9 23)

min

max( V\ng)

Since the product flows are constant when the product compositions are constant,
this limit gives a linear relation betweanSl.  amgl.  which give. a straight
line when plotted in th¥/,;, diagram as shown by the ling-R, in Figure 9.6.

This analysis completes all sides of the flat optimality region quadrangle for Case
1.

The boundary line obtained fonf&%2 = 0 is also shown in the figure, but this
line has no affect on the optimality region. However, sinvgg%2 = 0 gives
WEZ2 = We £ —We g, this implies that the line will go through the minimum
energy operating point for column C22 (close to the pegk) Parallel to the B/

BC boundary so it will be fairly easy to draw this line and thereby get an indica-
tion on the width of the optimality region.

9.5.4 Optimality Regions for Case 3

The optimality region for Case 3, that is when the pegk B higher than B

and the upper part of the main column (C21) controls the overall minimum vapour
flow to the Petlyuk column, may be derived by mirroring the analysis for Case 1.
The equivalent to equation (9.23), which here gives the minimum amount of light
A over the top of the prefractionator (is:

. c1 0 Xp s H0A=8,0
min(wy 1) = DxA’D—%L X 13 6,1 Dxg p WB T) (9.24)
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9.5.5 Optimality region for Case 2 (Balanced Main Column)

In Case 2 we require that both, afgd  are active in column C1. This implies
that the optimality region for column C1 has to be in region ABC, which is at or
below the preferred split. Now we may have both light A impurity in the bottom

of C1 and heavy C impurity in the top. The limits, however, will still be given by
equations (9.23) and (9.24) and the result is that the optimality region becomes a
triangle just below the preferred split. In this region, the main columns C21 and
C22 are balanced/£22 (xp o = VE&L (XA o )-

The optimality regions for Case 2 and 3 are illustrated in Figure 9.7

Note that at the limiting situation for the transition from Case 1 to Case 2, the opti-
mality region will collapse to the line P1-P2 along the boundary ABC/BC and for

the transition from Case 3 to Case 2 the optimality region will collapse to a line
along AB/ABC.

Note particularly that the preferred split operating point will be part of the opti-
mality region for all possible cases, just as for the case of sharp product splits.

Petlyuk
Vminy
C22 Petlyuk
vE21l VEiin Vinin”
Tmin VC21

Tmin \

Optimality regions
Case 2: Balanced C21 and C22 Case 3: C21 controls

Figure 9.7: The optimality regions for cases 2 and 3.

9.5.6  Effect of the Feed Composition

The boundaries between Case 1/Case 2 and Case 2/Case 3 depend on the feed
composition. In Figure 9.8 these are illustrated for the given example. The
allowed impurity in the sidestream is specified to 3%, and the top and bottom
products are close to pure products. To the left of the boundary, we will have Case

1 solution with only heavy C in the sidestreary g=0), and to the right we will

get Case 3 solution with only light A in the sidestreatn &3%). Between these
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boundaries, there will be Case 2 solution with as certain amount of both A and C
in the sidestream. For sharp product splits, the region where we have a Case 2
solution collapse to a single boundary curve (dashed).

0 Sharp split Feed:
1% 204,  boundary a=[4.0 2.2 1.0]
g=10
z= Position in diagram

0.8

°
o

Case 2 Purity specification:
XAB:lOO%

XBs= 97%
Xcp=100%

or impurity:
XastXcs=3%

Molfraction of B

o
~

=30,
02 Xas=3%

Case 3

C 0.2 0.4 0.6 0.8 A
Molfraction of A

Figure 9.8: How the feed composition affects the solution type for 3% impurity in the
sidestream. For case 2, the contours for constant light impurity in the sidestrgapn (x
are shown. For sharp split, case 2 solutions collapse to a single boundary line (dash-dot)

9.5.7  Sensitivity to Impurity Specification-Example

We here introduce the split ratios as an alternative set of degrees of freedom: lig-
uid split R, = L$1/L$21 and vapour spliR, = V§1/V§?? . Figure 9.9 shows
the optimality region in th&/,,;-diagram (a) and thB-R, plane (b) for 0%, 3%

and 6% impurity allowed in all products. At sharp product split specifications (0%
impurity) the optimality region is the well known line segment (P-R).

Note that the width between the lineg-R; and B-R, is mainly determined by

the sidestream impurity. The impurity in the top or sidestream has minor impact.
The extent P-R is quite similar to the sharp-split case, and is mainly determined
by the difference in vapour requirement in the main column, when the prefrac-

tionator is operated at the preferred split, simply given by the different height of

the two peaks in th¥,;-diagram.

9.6 Operation Outside the Optimality Region

In Chapter 8 and 7 we have presented the energy consumption as a function of the
degrees of freedom for sharp product splits and infinite number of stages and for
a case with nonsharp split and finite number of stages. We will now discuss the
solution surfacé\/ge“(Rl, R,) for nonsharp product splits, and infinite number
of stages.
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Optimality regions
a)Vv,_. —digram b) R,R -plane

1.15
1.1

H&Fl.OS

0.95

0.48 0.5 0.52 0.54 0.56 0.4 0.45 0.5

DCl R |

Figure 9.9: The sidestream impurity specification opens up the optimality region from
the line P-R (bold) for sharp product splits, to a quadrangle where the width mainly is
determined by the sidestream impurity. Feed z=[1/3,1/3,1/3], q&0.5, =[4,2,1].

9.6.1 The Solution Surface - Simulation Example

In Figure 9.10a we show the optimality region for 97% purity in all three prod-
ucts. FeeddataiB =1 z=[1/31/31/3] o =[4,21 g=05 .The
total number of stagesN = 440 , distributed in the individual sections as
NE2L = N§22 = 30 and N§T = N§T = N§2L = NE22 = 40, This is in
practice “infinite” number of stages for this separation task.

a) V(R,R) - 3% product impurity b) V(R,R, ) = Shaip product splits
0.7 0.7r ca Cc3
0.65 0.65r
0.6 0.61
> >
@ 0.55 100.00% @ 0.55¢
0.5 05¢r c2 100.00%
100.05% 105%
b b
o 110&05% o c1 115%
b |
0.4 115% 0.4 (Y
0.35 : : : : : 0.35 : : : : :
0.35 0.4 0.45 0.5 0.55 0.6 0.35 0.4 0.45 0.5 0.55 0.6
R R

! !
Figure 9.10: The whole solution surfasg R, R,) is widened for non-sharp products.
The plots show contours of the solution surfaces for 3% product impurity (a) and for
sharp product splits (0)M=100%in the optimality region). Note the characteristic sharp
corners denoted C1-C4 on the sharp-split contours.
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Figure 9.10a shows contour plots fei§??  at 0.05%, 5% 10% and 15% above
Vgﬁnﬁ'n. Observe that the optimality region computed for infinite number of stages
(dashed) fits the 0.05% contour very well. This is a practical confirmation of the
theoretical results.

We may compare with the corresponding sharp split case, shown in Figure 9.10b.
The nonsharp solution surface is wider, not only at the optimality region, but at
every contour of constant vapour flow. Thus for a given inaccuracy in implemen-
tation of the optimal degrees of freedom, it is more likely that there is a lower loss
in the nonsharp case. However, the energy consumption increases rapidly outside
the optimality region in both cases, so we still have to pay attention to setting the
split ratios at proper values.

For the sharp split case, every contour is a quadrangle where each corner corre-
sponds to a particular limiting mode of operation (ref. Chapter 7). We also clearly
observe the same characteristic main “corners” for the non-sharp case, but not the
corner “lines” has been “widened”.

9.6.2 Characteristics of the Solution

The highest peak in th¥-diagram also determines the component that may
appear as impurity in the sidestream during optimal operation. Figure 9.11 illus-
trates that the impurity will be either light A or heavy C in large parts of the
operating space. It is only possible to get both components as impurities to the
sidestream when the main column is balanced or with nonsharp prefractionator
operation, which only may occur along the corner regions C1-C4 (bold).

a) Case 1 C4

b) Case 3 C4 C3

C3
Only heavy C

impurity in S

Only heavy C
impurity in S

C2

Optimality
region (line)
c2
c1 Optimality
region (line)
. Only light A
c1 Only light A impurity in S

impurity in S

Figure 9.11: Typical appearance of light (A) and heavy (C) impurity in the sidestrea
dependent of the operating point in tRgR,-plane. The plot show an example for a)
Case 1 and b) Case 3 for a close to sharp product splits. (ref. Figure9.10b) (We have no
shown a Case 2 example, but then the optimality “line” would just collapse to aesing|
point where all corner lines would meet)
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Let us examine more closely the behaviour of the material flows of light and
heavy impurities in the prefractionator and to the sidestream for the non-sharp
case. In Figure 9.12 we show the net component flow as a function of the position
along the contour of 10% loss.

0.025 T T

3~ AmountA | T As
002F Amount C © T upwards in| o8
downwards | \C21 bott W
0.015F in C22 top ! ! OO wepr |
N \
\
0.01F . L |
\//
0.005 A Sidestrean
AN impurity
L7 ) |

0

I
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8

C3 ¢4 C1 c2
Figure 9.12: Net component flow] of components A and C in the prefractionator
(PB,BT) and in the sidestreant), The abscissa (s) is the position along the 10%
contour, starting between C2 and C3. Note how A and C is exchanged in the sidestream
in four corner regions C1, C2, C3 and C4.

Between the “corners” C1-C4, the impurity is either only A or only C as we have
illustrated in Figure 9.11. Inside each corner region the impurity in the sidestream
change from only light A to only light C. These corner regions (C1, C2 C3 and
C4) are also illustrated in Figure 9.13. Note also that we observe that some heavy
C-component travel downwards in the top of column C22 between corners C4 and
C1, as we have shown in Section 9.5.3.

9.6.3  Four Composition Specifications

We here specify a fourth product specification, which implies that we specify a
certain amount of both light A and heavy C in the sidestream, e.g. by specifying
the ratiox , gXc's orjusixA s - As shown above, in Section 9.6.2, the only pos-
sible solutlons are found in the corner regions on the solution surface. In Figure
9.13 we illustrate how the corner lines (C1-C4) for the sharp split case shown in
Figure 9.10b have been widened to corresponding regions (shaded) with a signif-
icant width for the non-sharp case in Figure 9.10a.

The solution for a given specification ofo, g hasto be on a curve inside these
corner regions. We here specﬁyA s= X, s=15 % The possible solutions
are found at the two separate branches (bold) in the middle of the (shaded) corner
regions. The minimum energy solution is a single point at one of these branches
(or possibly at two alternative equal minima, one at each branch).

As discovered by Wolff et. al. (1993) and discussed by Morud (1994) there can be
a “hole” in the operating range since there is a region of the vapour split where we
have no solutions with the given specifications.
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V(R,R ) = 3% product impurity V(DCl, Vf;‘l ) — 3% product impurity
C4 C3
0.7} 1.4¢
0.65} Optimality
region for 1.3}
067 3 specs.

& 0.55 Q-
0.5} 11r Optimality
045! 1l region for 3

X 1.5% specs.

Vminl

0.9 Cl
0.35 - - - - g - - - -
0.35 0.4 0.45 0.5 0.55 0.6 0.3 0.4 0.5 0.6 0.7
R/ pCl

Figure 9.13: The solutions for constar 5=1.5% are at two branches (bold) in the
corner regions (shaded) found on the solution surfaces for 3% product impurity. Here
visualized both in th&® R, plane and th&/,;, -diagram (right) (ref. case in Figure 9.10).

This is quite simple to understand from the figure since the solutions are found at
two separate branches. For example if we specify con&amt 0.55 (see Figure
9.13), we may nhever reach any solution WhEAe >0 , even if we still have four
manipulated inputs to control four specifications.

Note also that these branches are outside the optimality region for three product
specifications, thus, the minimum vapour requirement with four specifications
has to be slightly higher.

For Case 2 solutions (not shown) the two branches will join at the optimality
region for one particular value & g(see section 9.4). For all others, we still have
two separate branches, but these will be quite close since the optimality region
will almost collapse to a single point.

Control of the fourth specification can be difficult unless we know the particular
branch we are on, and in some cases also unless we know on which side of the
optimum we are on. The reason is that the sign in a control loop may change from
one branch to another, and even from one side of the optimum to the other, or we
may end up in the “hole” where the specification is infeasible. For example, based
on Figure 9.13awe canfik,  atapproximately 0.43 andRge  to comAr@

if we know that we are operating at the lower branch. But at the upper branch this
would only work forR, set to the right of the optlmurh/{nln ) and the sign in the
control loop is changed. To complicate the picture further, the feed may change,
and we may go from a Case 1 solution via Case 2 to Case 3, which actually splits
and rejoins the pairs of corner regions which make up a branch (see Figure 9.11).
However, we have not studied the control problem in further detail, and solutions
to the above problems may be found.
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9.6.4  Failure to Meet Purity Specifications

The operation of the column will be limited by constraints such as maximum
available energy, maximum vapour flow in different column sections, and limita-
tions on how we can manipulate the degrees of freedom (DOF). For example in a
dividing wall column, it may be preferable for cost saving and simplification of
the construction to fix the vapour split at design and omit any manipulative device
for it.

If the degrees of freedom have been set outside the feasible region for a given feed
and the available energy, then the specified purity cannot be obtained. What actu-
ally happens will depend on how the composition control is implemented, and the
selection and implementation of the additional two degrees of freedom.

We will use a simple numerical example to illustrate this. For the given feed used
in Figure 9.14 we plot the optimality region for sharp split and 97% purity.
Assume that we fix the split rations Bt=0.46 andR =0.577 as illustrated. In the
sharp split case, this is at the contour that gives 20% increased vapour flow. How-
ever, in the 97% purity case we are on the edge of the optimality region and the
vapour flow is in fact 5.6% below minimum vapour flow for sharp split. If the
vapour flow is limited below the 20% level, sharp split is simply infeasible with
the selected split ratios.

R/,Rv—plane

0.7}

0.65}
06l Optimality

. regions for:
" 0.55¢ 3% impurity (dashed)

o5l 0% impurity (bold P-R)

0.45¢1 V=120%V i, for sharp splits
0.4r

0.35 : : : : '

0.35 0.4 0.45 0.5 0.55 0.6

R

Figure 9.14: A sub-optimal set of the two degrees of freedom may either give increased
energy consumption or reduced product purity, in particular in the sidestream.

However, note that it is indeed possible to maintain high purity with minimum
energy at all times if we are able to keep the degrees of freedom ReR, )
within the optimality region (P-R).

Since this region is affected by feed property changes, the degrees of freedom
(one or both) should also be adjustable in a suitable range for the expected upsets
in order to track a moving optimality region.
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9.7 Conclusions

The flat optimality region for the 3-product Petlyuk column with a ternary feed
and non-sharp product specifications has been analysed in detail and we present
analytic expressions for the minimum vapour flow and the optimality region
boundaries. The analysis also explains the “holes” in the operating region when
we specify four product compositions.

The main result in this paper, however, is that the flat optimality region is
extended from a line-segment in the space spanned by the two degrees of freedom
for the sharp split case, to a quadrangle-shaped region when we allow nonsharp
products. In summary: Increased sidestream impurity extends the width of the flat
optimality region.

A consequence of this result is a new understanding of the observed product puri-
ties and energy consumption in real Petlyuk columns. In the case of sub-optimal
operation, for example due to limitations on how to set the remaining two degrees
of freedom, then the specified purity may be infeasible or require energy con-
sumption far above the optimal value. However, the symptom of sub-optimal
operation is very likely to be low purity in the sidestream rather than increased
energy consumption. We illustrated by an example for a given feed, that 3% side-
stream impurity can be equivalent to 20% energy loss.

However, in this case, we could achieve high purity without significant increase
in energy by simple adjustment of the degrees of freedom.

Thus, the results in this paper should be used for better understanding and inter-
pretation of product quality obtained in Petlyuk columns. When we design an
operation strategy that includes proper use of the degrees of freedom, this column
arrangement has the ability to produce high purity products, also in the side-
stream, with low energy consumption.
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9.9 Appendix:
Alternative Proof of the Optimality Region for Case 1

Let us look closer at the vapour split in the feed junction to C22. For C1 operated
in region BC we have:

C1 c1
ci1 _ YUgWg'g AcWg'g
Vemin = g6, a6

B~Ys UOc—Yp

(9.25)

Since the active Underwood root carries over to C22, we also have

c22 c22

ve2 _ OgWg 5  OcWE T
Tmin —

ag—6g ac-6g

(9.26)
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Consider a small change in the operation of the prefractionator inside region BC,
expressed by a change in the net flows of components B atwvgj(3 Awng ).
We note thaﬂwgls = 0 everywhere in BC. The feed and the product flows and
compositions have to be constant, thus the changes in each component flow have
to be identical in the bottom of C1 and top of C22 to fulfil the material balance:

Awgly = —AwE%2 andAwg; = —-Awg % (9.27)
The change in vapour flow into the prefractionator is then given by:

c1 _ 0‘BAWBC,lT O‘cAwg,lT _ BAWB §% «a chsz c22
AVg" = ¥ = = AV 9(9.28)

The change in the vapour flow into the bottom of the Petlyuk column will then be:

Cc22 Cc22
AVEF = avEteavi?® = o (9.29)

This shows that there is a region for operation of column C1 which does not affect
the overall requirement. The assumptions behind this result are given by:
1. Awg’; = 0 and6y active in C1 which is limited by:
- Region BC for C1 (below R, and to the right of PP,)
2. 0g active in C22, which is limited by

- BB active in C1

- Maximum reverse flux of component C into C22 top (abox8J)

3.v&22 >vE2L which is limited by:

= @Pp<Qppg (tothe left of R-Ry)
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Chapter 10

Self-Optimizing Control:
Local Taylor Series Analysis

by
Ilvar J. Halvorsen, Sigurd Skogestad and John Morud

This chapter is a revised version of Paper 229¢
presented at AIChE Annual Meeting, Miami Beach,
16-20 Nov. 1998, Paper 229c. with the title: Self-
Optimizing Control: The Basic Idea and Taylor
Series Analysis.
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10.1 Introduction

The concept ogelf-optimizing controhas been presented by Skogestad and co-
workers in several papers and conference presentations (Skogestad et. al. 1999),
(Skogestad 2000a,b), (Skogestad and Postlethwaite 1996). Section 10.2 is an
overview, mainly taken from Skogestad’s papers. The main focus in this Chapter
starts in section 10.3 where we present a Taylor series expansion of the loss.

10.1.1 The Basic Idea

We consider a process where we have more degrees of freedom than product spec-
ifications, thus the remaining degrees of freedom can be used to optimize the
operation, given by some scalar cost criter{@h In some cases the optimum is
found at a constraint, such problems are routinely solved and implemented today
using model predictive control, often based on linear models.

A more difficult case is when the optimum is not at the constraints. An example
is the optimal split into parallel streams in the preheating to a crude oil distillation
column. The reason that these problems are more difficult is that they are more
sensitive to the model, and that the optimal solution may be difficult to implement
due to uncertainty. For example, in the crude oil preheat problem, it may be diffi-
cult to find the correct optimal split because there is no simple measurement of
the energy recovery, which we want to maximize. Also, even if we were able to
compute the desired split, it is difficult to implement it exactly in practice.

There are several solutions to these problems. A widely used approach is to use
an optimizer above the regulatory layer, and computing optimized setpoints peri-
odically, for example based on based on:

1. Steady state models
2. Non-linear dynamic model-based optimization (an extension of MPC),
3. On-line experimenting methods (e.g. EVOP) (Box 1957)
However, if possible we would like to avoid the reoptimization and use:
4. Feedback methods (with constant setpoints).

We focus on the feedback method as it is the simplest and is the preferred choice
if it gives acceptable performance. The main idea is to achieve “self-optimizing
control” by turning the optimization problem into a constant setpoint problem.
The issue is then to find (if possible) a set of variables which, when kept at their
setpoints, ensures optimal operation. For example, in the crude oil preheat prob-
lem, a commonly used feedback solution is to try to keep the temperatures at the
points of remixing at the same value. This often gives reasonably optimal
operation.
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In practice, we have to accept a certain loss compared to the optimal cost function.

Self-optimizing control is when we can achieve acceptable loss with con-
stant setpoint values for the controlled variables

We can regard the tergelf-optimizingas a generalization of the terself-regu-
lating. Self-regulation is when acceptable performance is obtained without active
control.

In a perfect idealized plant, where there are neither unknown disturbances nor
model uncertainties, the selected approach for control would not matter, but in the
real world, some choices are clearly better than others.

The main step in the analysis is to find and evaluate any variables that have the
best self-optimizing control properties. Thus it is not yet another control algo-
rithm, but an important step in contsitucturedesign.

Sometimes the self-optimizing solution is obvious, and is applied as “best engi-
neering practice”. For example why we control compositions or temperatures in
a distillation column where the products are intermediates. When we do the plant
optimization we also find the boilup and reflux rates, and we could chose to apply
these directly. However, we know from “best engineering practice” that composi-
tion control gives a solution that is much more robust against unknown feed
property changes and uncertainties in implementation of flow rates and in the col-
umn model. In new processes, often consisting of closely integrated units, the
“best engineering practice” may not be obvious at all, and we need to have anal-
ysis and design methods that can help us find the best practical control structure.
These methods must take the real world’s uncertainties and unknown distur-
bances into consideration, and based on economic considerations discriminate the
good choices from the bad ones.

In a typical plant, the cost is normally determined by steady-state parameters, and
in the following we will primarily consider steady-state models. However, before
we take the final decision on the control structure, the dynamic properties must be
analysed and evaluated.

10.2 Selecting Controlled Variables for Optimal Operation

10.2.1 The Performance Index (cost)

We assume that the optimal operation problem can be quantified in terms of a sca-
lar performance index (cost), such that the objective of the operation is to
minimize J with respect to the available degrees of freeddmay be a purely
economic objective, but is more generally a weighted sum of the various control
objectives. For the optimization itself it does not really matter which variables we
use as degrees of freedom as long as they form an independent set. Let the “base
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set” for the degrees of freedom be denatgthese may consist, for example, of
a subset the physical manipulator¥. In addition, the cost will depend on the
unknown disturbanced (which here is assumed to include uncertainty in the
model and uncertainty in the optimizer). We can then wi{ted). The nominal
value of the disturbances is denotig and we can solve the nominal operating
problem and obtainy,(dp) for which:

min J(u, do) = Jop(Uiopi(do). do) = Jopy(lo) (10.1)

From this we can obtain a table with the corresponding optimal value of any other
dependent variable, including the optimal value of any measureggnp).

The issue is now to decide how to best implement the optimal policy in the pres-
ence of uncertainty by selecting the right set of controlled variablegth
constants setpointg = Cypdg). Here it is assumed that the number of controlled
variablesy equals the number of independent varialblesr more exactly that we
starting fromc=f(u,d) can derive the inverse relationship:

u=f "(c,d) (10.2)

where the functiofi - exists and is unique.

Instead of evaluating the mean value of the performance index, it may be better to
evaluate the always positive loss function. The loss function expresses the differ-
ence between the actual operating costs (e.g. obtained when we'aijustier

to keepc at a given setpoint) and the optimal operating cost (obtained with

U=Ugp((d)),

L(u,d) = I(u,d) - Jopd) (10.3)

The objective of the operation is to minimidéor some average @, or equiv-
alently to minimize the los&. The loss function is zero if we use the optimal
policy u=uyn(d). The loss has the advantage of providing a better “absolute scale”
on which to judge whether a given set of controlled variabliss‘good enough”,

and thus is self-optimizing.
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(a) uconstrained flat optimum (b) uconstrained sharp optimum  (c) constrained optimum

Figure 10.1: Major classes of optimizing control problems

Three main types of problems are illustrated in Figure 10.1. In case (a) the loss-
function is flat, and if we keep the inpui£ug) constant, the loss will be small for

the expected disturbance. Thus we already have self-optimizing control by apply-
ing a constant directly. In case (b) the situation is more complicated because
small disturbances will lead to a large loss with the constant input approach. Here
we need to adjust the input to track the moving optimum. In a self-optimizing
approach we will look for another variable to keep constant, while we use the
original input (1) as a manipulated control variable for this purpose. In the last
case (c) we do not need to search for the optimum for disturbasices d;,
instead we focus on implementation of an active constraint. This is normally sim-
pler than to track a moving optimum, e.g. it is easy to keep a valve fully open.
However, if the constraint becomes inactive for some disturbaniggsye need

a system which can handle transition between constrained and unconstrained
operation. This is an important issue, but we do not treat this further in this paper.

10.2.2 Open-loop Implementation

Let us first consider an open-loop implementation where we attempt tolkeep
constant at the valug,. With this implementation the operation may be non-opti-
mal (with a positive loss) due to the following reasons

1. The value ofis is different from the optimal valug,,(d).

2. The actual value afis different fromug (due to an implementation error
caused by imperfect control).

This can be seen more clearly if we write the actual input as:

u=ug+e, (10.4)
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whereg, is the implementation error far In process controljis often a flowrate,
and it is difficult in practice to obtain exactly the desired valyesoe, may be
large.t

Introducing the optimization error:
€y,0pfd) = Us - Ugpd(d) (10.5)

Then the difference between the actual and optimal input, which causes a positive
loss, can be written:

U - Uppi(d) = Us - Ugpl(d) + &, =€y opfd) + & (10.6)

i.e. it is the sum of the optimization error and the control error. In summary, the
open-loop policy is often poor; both because the optimal input value often de-
pends strongly on the disturbance &yis large), and because we are not able
to implemenu accurately (s is large).

10.2.3 Closed-loop Implementation

In theory, the truly optimal solution would be to use some “optimizing controller”
which uses the measurements information (feedback) to correct the model and es-
timate the disturbanag; and based on this computes a new optimal vajjsgd).

The main problem with this approach is the modelling effort, and the lack of the-
oretical tools to ensure robustness (insensitivity to uncertainty).

As mentioned, in practice, a simpler closed-loop implementation is preferred if it
yields acceptable operation (loss). This approach uses directly the measurements
Cm, Of the selected controlled variables and adjusts an inner feedback loop to
achievecy, = c;, where in most cases = cyp(dp), i.€.cs comes from solving the
nominal optimization problem. The idea is that by keepigg cs we achieve an
operation where the deviatian- uq,(d) is smaller than for the open-loop policy

(in the open-loop policy we keapconstant, but this is not optimal in the face of
disturbances). This may happen becatgsgd) is relatively insensitive tal and/

or because may more accurately controlled. Next we formalize these ideas.

We here rewrite the problem with the variabteas independent variables rather
than the original independent variables (inputdlowever, note that we as a spe-
cial case may choose=u, or some of the elements in the vectomay be the
original input variables. Thus, the open-loop implementation is included as a spe-
cial case.

1. The implementation erre, may be reduced in some cases if we measure the variabte
implement an inner control loop with setpoint However, also in this case there will be a control
and a measurement error; if we use integral action then at steadg;stétequal the steady-
state measurement error (noise).
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If we compare the open-loop and closed-loop policies then the question is:

Is it best to adjust the input variables u such that i # &, (where g is
the implementation error for the input u), or is it better to adjust t4¢,d)
in feedback fashion such that c g4€e (where e is the implementation
error for control of ¢)?

More generally, if there are many alternative sets of variablegiich can be
measured and controlled, which set should be used? If wg, letpresent all the
candidate measured variables then we can write:

C=9(YmU) (10.7)

where the functiorg is free to select. An open-loop policy is obtained with
9(YpW=u. Linearized in terms of deviation variables (10.7) becomes:

Ac = Cy Ay, + Cy AU (10.8)

The issue is then to find the optimal choice for the matricgandC,, but under
the restriction that the number of controlled variablgs)(equals the number of
independent inputs). If we use only feedback thed,=0. If we do not allow
“combined” controlled variables, then the mat@x= [ C; C, ] is a a “selection
matrix” with only one nonzero element in each row.

To compare the alternative choices we may evaluate the objective function, or
equivalently the loss function, for alternative values of the disturbdrased the
implementation erroe;. The optimal choice for controlled variablegi.e. opti-

mal choice of the matriX) is then the one that minimizes some average value of
the loss:

L(u,d) = L(f Y(cste,d),d) (10.9)

for the expected set of disturbanak§] D, and expected set of implementation
(control) errorse [J E. In the simplest case we select the setpointssas,(dg),
but the value oty may also be the subject to an optimization.

The difference between the actual and optimal outputs, which causes a positive
loss, can be written:

C - Copt(d) =Cs+€- Copd(d) = egp(d) +€ (10.10)

i.e. itis the sum of the optimization erreg,(d) = Cs - Cop(d) and the control error
e. As already mentioned, if there were no uncertainty ¢=ely ande.=0), then it
would make no difference which variatld¢hat were chosen.
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Figure 10.2 illustrates an example where we may reduce the loss due to the dis-
turbances by keeping the varialdeconstant instead of the input However,

some loss must be expected due to the error associated with each approach, and
for small disturbances the worst case error contribution will usually dominate the
loss.

Loss L(d) Worst case u=ug+e,
A . contribution . Open loop
from errors U=Ug
/ , C=Cgtec
/ _ Closed loop
// c=cg
T > d
do disturbance

Figure 10.2: Loss as a function of disturbances for open loop and closed loop operation.
The plot also illustrates the worst case contribution from the uncertainties and errors
associated with each approach (dashed).

10.2.4 A Procedure for Output Selection (Method 1)

We are now in a position to formulate a procedure for selecting controlled outputs
c. Preferably, one should find several candidate sets of candidate outputs, which
could be further analysed to see if they are adequate with respect to other criteria
that may be relevant, such that the input-output controllability (including the pres-
ence of right half-plane zeros).

1. Define the optimal operation problem (including specifying the cost func-
tion J to be minimized).

2. Solve the optimization problem at a given nominal operating point. That s,
find ugp(dg) by solving the nominal optimization problem

mliJn J(u, dy) (10.11)

where
u — “base set” for th&l, degrees of freedom
dp — nominal value of the parameters (disturbances)

3. This yields a table with the nominal optimal values of all variables,
Copt(do))-
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4. Define the uncertainty for:

- the optimization: Define the magnitude or set of unknown distur-
bancesd D) (including any changes that occur between each
reoptimization). Treat also errors in the data and model for the opti-
mizer as disturbances.

- each candidate output variabig: Define the magnitude or set of
control error ¢ (] E (e.g. due to measurement error)

5. Repeat for eaatandidate sedf N, output variablesy(s)

- Evaluate the cost functiaifc,d) with fixed setpoints

c=cgte (10.12)

wherecs=Cyp = Copf(dp) is taken from the above table.
Do this for all disturbancesli] D) and all control erroree(d E).

- Compute the “mean” cosl,,qan(0r equivalently, the lods)

6. Select as the controlled outputs the candidate set with the lowest “mean”
cost (or retain all the sets with an acceptable loss for further screening)

Comments:
1. Instead of evaluating the cdstve may equivalently evaluate the lass

2. There are many possibilities for defining thean costJean fOr
example,

- mean cost over a finite set (e.g., maximum, nominal, minimum values
for each disturbance and each control error)

- mean cost from “Monte-Carlo” evaluation of given distributiordof
ande

- worst-case loss (compared to true optimal)

3. The computation load can be significantly reduced if we use alocal analysis
based on a Taylor series expansiod of L. This is discussed in Section
10.4.
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10.3 Local Taylor Series Analysis

In this section we study the problem of selecting controlled outputs by expanding
the cost function around a nominal optimal unconstrained operating point. To this
end, we assume that the cost functiaa smooth, or more precisely twice differ-
entiable, at the operating point we are considering.

We assume that the nominal disturbanadiand that the nominal operating point
is optimal, i.e:

Ug=Ugpdg) and  G=Cqpd(do) (10.13)

so that we havé(up,dp) = Jop We next consider a disturbance and input change
so that the new disturbance is:

d=dp+Ad (10.14)
and the new input is:
u=ug+Au (10.15)

whereAuis the input change. The inputvill generally be different from the opti-
mal input,uyp(d), and we define the deviation from the optimal value as:

AU = U - Ugp(d) (10.16)
Note thatAu’ is not the same adu, and more preciselfyu = u - Uyn(dp). In order

to track the optimum we requites = 0, which impliesAu = Ugp(d)- Ugpd(do)-

The issue is now what effect a nonzero valudofwill have on the operation (as
quantified by the value of the loss function

10.3.1 Expansion of the Cost Function

A second order Taylor expansion of the cost function can be written compactly on
matrix form as:

.
_ Aul , 1|Au Au 3
(U, d) = I(uy, do) + [JI Jﬂ [Ad} +§[Ad} H[Ad} +0 (10.17)

J..J
whereH is the Hessian matrix dfwith respect t Au H = |Tuu~ud
Ad ‘]du ‘Jdd
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All derivatives are evaluated at the optimal nominal operating point (dtif
andu=uy=Uq,{(dp)), as indicated by using the subscgptVe have:

T
00 _ @ o@®og @ol -
Jy = = =0
7 B~ | Guy (ugy  uly
- T
00 _ @ g@o @O
J. =
¢ odb  |Gd, T} (d,,  Bod, [,
2.8 B f
3 = JE | v U;0U,
U ol 2 2
%J 3 235 . (10.18)
I U,0ui)  Dusn |
_bad
g% 0 g% 0
o % 0 _ |®udd;n, $udd,n, T
ud uad[b 5 5 du
] U ] U
ll 0 ...
%uzadl[b %uzadng

Note thatJ,=0 because the Jacobian with respect to the independent variables
must be zero at the optimum when it is unconstrained. Note also that
ulJ,qd = (dTI4,u)7 sinced 4 = IJ, andalsa™J,d = dTJ u sincethe
result of the expression is scalar. The Hessian matrix is always symmetdjg, so
andJyqare symmetric. Since the expansion is performed at the point wiee

a minimum, we have thaLuTJuuAu is positive for any nonzero vefiari.e.

Juuis positive definite,, > O (if the minimum is a saddle themJTJuuAu is zero

in some direction and,, is positive semidefiniteJ,,>0 ). Equation (10.17)
written in separate terms inandd gives:

T T 1 T
J(u, d) = J(ugy, dg) + I, (u=uy) +J4(d—dy) +§(u—u0) Juu(u=Up)
1 . . . (10.19)
+§(d—do) Jgq(d—=dg) +(d—dy) Jq,(u—uy) +O
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10.3.2 The Optimal Input

The nominal operating pointif,dy) is assumed to be optimal so we have

Up = Uppi(do), and as noted the Jacobian must be z&po Q). Next, consider a dis-
turbance and a corresponding optimal input change so that the new operating
point is {1,d) and the new Jacobian is:

7 0
J, = a—J(u d) (10.20)
A first-order expansion of the Jacobian at the nominal point gives:
. T 2
J, = Iyt I (Uu—Uy) +J,4(d=dy) +O (10.21)

We assume that we change the input so that the new operating point is also opti-
mal, i.e.u=u0p,(d). Then we must also have that the Jacobian is zeraJ'|e0,
and we get:

0 = Iy (Ugpi(d) — Ugp(dg)) + I g(d — dy) (10.22)

Solving with respect to the input we find that a first-order accurate approximation
of the optimal input when there is a disturbance change, is:

-1
Ugpi(d) = Up =I5 dg,(d — dg) (10.23)

ThusAu {(d) —u, the optimal control action which will track a moving
optlmum as |IIusFrated in Figure 10.3:

J

J(u,ab) J(u,cp+Ad)
/

/
/

-

\
\
\
AN
. >

Uo Ug+AUgp

Figure 10.3: Optimal control move
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10.3.3 Expansion of the Loss Function
Let us now consider the loss function

L(u,d) = J(ud) - (ugpdd).d) (10.24)

By applying the Taylor series expression in equation (10.19) and combining it
with the loss function (10.23) we obtain the following interesting expression for
the loss (where the error term©f  is omitted):

L(u, d) = %(u—uopt(d))TJuu(u—qut(d)) = I, AU (10.25)

where Au' = u—u, (d) . This tells that the loss is a function of the deviation
(Au’) from the optimal input which also intuitively is reasonable.

Here the Hessiad,,, is evaluated in the nominal optimal gogt). We might
consider],,; evaluated at the current optimal p@igh(d),d). However this does

not matter as long as we only consider Taylor series expansion to the second
order. This can be seen by expresslpg in ternds, of . Wehave =0 and

‘]uu' = ‘]uu + ‘]l]—ud(d - dO) + ‘]qu(uopt(d) - uopt(do)) (10.26)

When we replacd,, witd,, in (10.25) and remove the third order terms, we
will get exactly the same expression.

Note that the impact from the disturbancii§ only throughu,,(d). This tells us

that if the disturbances are small, or the disturbance has a small effect on the opti-
mal input, the loss will also be small if we have an acceptable nominal input. The
curvature described by the Hessidp, determine the “flatness” of the loss
function.

10.3.4 Loss With Constant Inputs

Assume there is a disturbance change, but we attempt to keep the input fixed at its
nominally optimal valuei, i.e.:

Ug = Ug (10.27)

whereug = Ugp{(d). We use the word “attempt”, since in practice there will be an
implementation error so the actual input will be:

u=ug+e, (10.28)
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wheree, is the implementation error for the input. Then from (10.23) the devia-
tion from the optimal input is:

AU’ = U - Ugpy = Jyy Mg Ad + 6 (10.29)

and we can evaluate the resulting loss from (10.25):

L(e, Ad) = %AdTJduJaﬁJudAd+}eTJ e,+eld Ad  (10.30)

2 u-uu-u

The last cross-term which may be negative may lead us to think that the loss can
be negative, but it can never be, due to the quadratic form in (10.25). However, a
lucky combination of errors and disturbances may give us zero, but the design
should rather be based on the worst combination.

10.3.5 Loss with Constant Controlled Outputs

As already mentioned, the outputare related to the inputs and disturbances by
the relationship:

¢ =f(u,d) (10.31)

The corresponding linearized relationship in terms of deviation variables
(Ac=c-cg, etc.) is:

Ac = GAu + GgAd (10.32)

whereG = (3f/ou)T andGy = (0f/ad)T. Assume there is a disturbance change, but
we attempt to keep the control output fixed at its nominally optimal veduee.:

Cs=Cy (10.33)

wherecy = Copdg). We use the word “attempt”, because, in practice, there will be
an implementation error so the actual controlled output will be:

c=cgte (10.34)
wheree is the implementation error (typically, the sum of the measurement error
and the control error). We have in this case= e, so the corresponding input

change is:

Au=-GlGd +Gle (10.35)

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



10.3 Local Taylor Series Analysis 301

and from (10.23) the resulting deviation from the optimal input is:
AU’ = U - Ugpy = Gy gy - G1Gg)Ad + Gle (10.36)

The optimal choice for the controlled outputs is still the one that minimizes the
“mean” value of the loss:

L =Au T3, AU (10.37)
for the expected disturbances (as expressed by the magniitidand the

expected control error (as expressed by the magnituee ldbte that the matrices
Jyu @andJy, are independent of the choice of controlled outputs.

10.3.6 Loss Formulation in Terms of Controlled Outputs

Equation (10.37) witl\u’ from (10.36) is a bit cumbersome. An alternative form
is to express the loss directly in terms of the controlled outputs. A similar deriva-
tion as for the inputs, see (10.25), gives:

L =Ac T, AC (10.38)
whereAc’ = ¢ - Cop(d) and;

Joe=G T, G? (10.39)
(the latter follows fromAc’ = GAU’)., We see thatl.. depends directly on the
choice of the controlled outputs through the ma@‘;, and to kee@.. and thus
L small,we want G* small The deviation between the actual and optimal output,
Ac’, will be nonzero due to the presence of two generally independent terms;

AC'= gy € (10.40)

where:

€opt = Cs - cop,(d) (10.412)

is the optimization error (introduced by attempting to keegi cq rather than at
Copt(d)), and:

e=C-Cg (10.42)
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is the implementation or control error (introduced by incorrect measurement and
poor control of).

We may also express the optimization error directly in terms of the disturbance.
Using the linearized model in (10.32) and noting tyat, we get:

—opt = Copt(d) —Co = G(Ugp(d) —Up) + G4Ad (10.43)
Inserting the expression fag(d) from (10.23), we find:

€opt(d) = Cs - Copl(d) = Gy gy - G d (10.44)

We will return to this expression in Section 10.6.

Remark.Obviously, substitution of (10.44) and (10.40) into (10.38) gives the
same expression for the loksas a function of andAd, as the one we obtain by
substituting (10.36) into (10.25).

10.3.7 “ldeal” Choice of Controlled Outputs

If we for the moment disregard the control ergithen the ideal choice of con-
trolled outputs would be to hawgy(d)= s - Cop(d)=0 for any value ofd. Here
Cs=Cqis constant, so to achieve this we need the optimal value of output to be inde-
pendent of the disturbance. An example of such an ideal output would be to have
a direct measurement of the gradient of the cost function with respect to the input
(since it is optimal for any disturbance to have this gradient zero, we could
directly specify its setpoint at zero). In particular, consider the following output:

¢ = f(u,d) = adJ(u,dy/du + B = aJy(u,d) + (10.45)

wherea andp are constants. To see that this output would be “ideal”, we linearize
(10.45) to get

Ac=aJ,,Au+ad,q Ad (10.46)

i.e. we find thaiG = aJ,, andGy = aJ,q" = aJy, which upon substitution into
(10.44) gives,,=0.

However, as we see when studying, for example, selection of measurement loca-
tions in a distillation column, the implementation ereanay be a very important
factor, and the “ideal” choice of controlled outputs from (10.45) may not be the
best after all.
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10.4 A Taylor-series Procedure for Output Selection

The key to the selection is to evaluate the loss for the expected set of disturbances
and control errors for the set of all possible measurement models. The computa-
tions for procedure presented in Section 10.2 can be very time-consuming, but
they can be reduced significantly if we use the Taylor series approximation above.

Let us first normalize the inputs so each element contributes equally to the loss,
using the transformation:

1/2 12,
u, = Jy (u—uopt) = J, Au (10.47)
Then the loss (10.25) can be expressed by:
1Tt 1
L = 5u, u, = 5]uj3 (10.48)

where ||uZ , denotes the 2-norm of the vectgr Note that the square root
(defined as3}/231/2 = 3 ) is not unique, but we here chose the particular
implementation ofJ}/2 =V 2¥2v[  where the singular value decomposi-

u
tionof g isgivenbyd ,, = U, SUVEU .2,y Isthe diagonal matrix of singular

values, sorted in descending order. Since the Hessian is symmetric and positive
definite, the singular values equals the eigenvalues (which are all positive real
numbers) and the input direction equals the output directions, thus, the orthonor-
mal matricesU,, = V,, -

For a feedback policy we may from (10.36) express the normalized input as:
U, = I, A3y Ygy - G1Gg)Ad + G le] (10.49)

Let the elements in the positive diagonal matridklg and W, represent the
expected magnitudes of the disturbances and the control errors, i.e. let:

Ad = W,Ad andAe = W,AR

where the scaled disturbanasd dved are of unit magnitude, i.e. satisfy:

ladl, < 1 and|ad), <1

Minimization of the losd. for any (worst-case) combination of disturbances and
control errors is then equivalent to minimizing the induced 2-norm (maximum
singular value) of the matrix
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M = [My, M,]
where o= 31237ty _gle)w
1~ uu( uu*ud d) d (10-50)

- 11/2a71
MZ_‘]U(JG We

Thus, if we assume that the disturbances and control errors are two-norm
bounded, we have that:

L. = max (L) = 25(M) (10.51)

max
ad a2
and the procedure (which is a Taylor-version of method 1) becomes:
1. Define the optimal operation problem (specify the cost fungdjion

2. Solve the optimization problem at the given hominal operating point and
find the second-order derivatives of the cdgtandJ,q, at this nominal
optimal operation point.

3. For each candidate set of controlled variables obtain the linear model
Ac = GAu + GjAd.

4. Define the uncertainty:

- The elements in the diagonal mati¥%, represents the magnitude of
each disturbance.

- The elements in the diagonal matkh represents the magnitude of
the control error for each outpei{e.g. due to measurement error).

5. For eacltandidate setompute the singular value of the matvix

6. Select as the controlled outputs the candidate set with the lowest value of

the worst case los§, ., = %G(M)

Best Linear Combination of Measurements.

We can easily use this approach to search for the best linear combination of meas-
urementsy,,, and independent inputsto control. Write

Ac = C1Ayy, + Col\u (10.52)

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



10.5 Visualization in the Input Space 305

where we are free to choose the matri€gsand C,. However, we make the
restriction that the number of controlled variable'sYequals the number of inde-
pendent inputsu(s) (recall the comments following (10.8)).

We first identify all the candidate measuremegpisnd obtain the linear model:
Ay, = GAu + G, Ad (10.53)

We also need to identify (or at least estimate) the control error (measurement
noise) associated with controlling the measurements and inputs, and collect these
in the diagonal matriced,,andW;,,

The matrices used in the procedure above then become:
G= C2 + Cle

Gg =C1Gmg
and thg'th diagonal element in the matrix control error mathixis given by:

_ 202
We i = [ CiWai
|

whereC = [C; Cy] andW,, = diag{ Wer, Weyt -

We may envisage finding the optimal choice @idenotedC,, which minimizes
the worst case lods, .«

min 6(M(C)) (10.54)

The large number of possible self-optimizing structures implies that engineering
insight of the process may help to rule out a large number of bad structures, and
to propose a set of good candidates, from which the best solution can be found.

10.5 Visualization in the Input Space

We here obtain some insight by considering the loss fundigrin the input
space. In Figure 10.4 we illustrate a case whdimm(d)=3, dim(u)=2 and
dim(c)=dim(e)=2 For each possible disturbance, we can map the optimal input
(Uppi(d)) from the disturbance space into the input space. Similarly we can map
the corresponding action of the feedback controller which attempts tode®ep
between the same spaces, but in addition we must map the effect of the possible
errors and uncertainties. The key is to keep the magnituge ¢)-y,(d)| small

at least in the large loss directiom). The loss function is characterized by the
Hessianl,,, The singular value decompositionXVT = Juyu » Where the singu-
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U2 Contour of L=(u-tgp(d)) Iy (U-tpp(d))

ds A Low loss
. direction {,)
Uopd(d) [
dibD
d
r— ="
- dy GG I
d; : : Up=Uopi(do)
| | Large loss
eleDE G \\ direction ¢;)
\‘ L — ellE, for given d
Control
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€

Figure 10.4: The best self-optimizing control structure minimize the worst casellpss (
for a givendID in presence of uncertainties and errelfe. The controller signalu(d):
dashed ellipse) should ideally track the moving optimurgy(d): solid ellipse). In
addition we get a contributioruf(e)) from errors and uncertainties[{E). The resulting
controller outputi(d,e)may be anywhere inside the shaded region (for a gijeNote
that the main directions of the Hessiad,[j, the matrices G and G4G* and the
mappinguy(d) plays important roles.

lar valuesZ = diag(o,,0,) and corresponding directioN's= [V, v,] ), is
useful to describe its properties. In the 2-dimensional input space as shown in the
figure, the loss function is an ellipsoid and the eccentricity of an elliptic contour
is given by ,/1-0,/0, . The axis of the contour whekel is 1/, /o, in the

large loss direction which is given by, arid’A/o_2 in the low loss direction
given byv, .

If the loss ellipsoid has a large eccentricity,(» 0, ), we usually only need to
consider the projection ofig(d,e)-y,(d)) onto the worst directiony ). In such
cases we may also choose to keep some of the inputs constant (e.g. in Figure 10.4
we could choose to keag constant and only use, to keep operation close to

the moving optimum). Note that the loss ellipsoid moves around with its mini-
mum inug,(d). Its shape, however is determinedJpy, and this is accurate to the
second order in the Taylor series expansion.
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In the general case, alarge condition numbek,gimplies that in some directions

the loss function will be quite flat, and we do not have to compensate for distur-
bances and errors which moves the optimum in these directions. It also suggest
that we can reduce the number of variables to keep constant by feedback control.
Thus, for each singular value of low significance to the loss, we can reduce the
dimension of c.

10.6 Relationship to Indirect and Partial Control

Here we consider a special problem which from the outset is a setpoint problem
in term of the “primary” outputy, , and we want to penalize the quadratic
weighted derivation, that is:

1 1
J= é(yl—yls)TW(yl—yls) = Ee]Wel (10.55)

whereW>0is a weighting matrix. In this case the optimal cost for any disturbance
is to haveJyp = 0, so we have that the loss equals the cbst,J. Furthermore
Y1, opt=Y1s: and we may write

€ = Y1—Y1s = (Y1=Y10) —~(Y1s—Y10) = Ay —AYyq (10.56)

where we have selected the nominal operating point suchythat vy, ¢ . To
make the problem interesting we assume that the “ideal” choice of outpyis

can or should not be used because direct contrgj @ difficult or impossible.

We therefore instead consider controlling the secondary ouwp(its. we choose
c=Yy,). The idea is to find a set of variablgg such that keeping, close to the
setpointy, indirectly achieves good control gf (i.e.y, is kept close ty, ). The
linear model relating the variables is

Dy, = G,;Au+ Gy,Ad (10.57)

DY, = G,Au+ Gy,Ad (10.58)

whereAu = u - ug, etc. We assume that the nominal operating paigtg) is opti-
mal, i.e.y10=Y1s

1. Let us first use our derived relationships to confirm that the outpyts
would be ideal (this is really just a check of our derived formulas). We
assume here that the setpoitsare constant (since we assumed in the
derivation above thalis constant), i.e. we havky; ~0 ande; =Ay;. We
get
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T

1 T
Q(GlAU +Gy4Ad) W(GjAu + Gy,Ad) (10.59)
and we get that

(G,Au+ Gy Ad) WG,

[
1

Juu = GIWG1 (10.60)
‘]ud = GIWGdl

and from (10.44) we get as expected

e

— — -1 —_
opt = Cs—Copt(d) = (G313, —Gyp)Ad = 0 (10.61)

2. Let us next consider the more interesting case of selecting where we
keep the setpoints constayys = Yoo Rewriting the linear model gives
(Havre 1998)

G51G,y,) Ad—Ay,

© - %E& 2* (D%Déﬁ (1062)

y d

whereP are called the partial control gains. To derive (10.62) we first solve
(10.58) with respect ta

and then substitute this into (10.57) and use the factAiat e, andAy;
=g + Ay, s to get (10.62).

To minimize the cost functiohwe wante; =y, - y;ssmall. Equation
(10.62) shows how, is affected by disturbanceisby the control error for
the secondary variables,, and by changes in the setpoigig Let us here
disregard setpoint changes for the primary outputs, i.A.\et=0. If we
furthermore

- scale the outputg, such thaiv=I

- scale the outputg, such that the expected control ersgiis of mag-
nitude 1
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- scale the disturbances such that the expected disturbance dktinge
is of magnitude 1

then we see from (10.62) that to minimieg(andJ) we should attempt to
minimize the combined norm of the matri¢gsandPy (appropriately

scaled). This simple approach has been used on a distillation case study
(Havre 1998). To show that we can not use temperature measurements
located at the end of the column because of sensitivity to controlegrror
(measurement noise) (as seen since the scaled mgatsixarge), and we

can not use measurements close to the middle at the column yield because
of sensitivity to disturbances (as seen since the scaled mRgigxarge).

The best balance between sensitivity to measurement noise and distur-
bances is found when the measurements are located somewhere between
the end and the middle of the column.

3. An alternative form of (10.62) is
€1 = ¥Y1—Y1s = Py(€ %€ op) (10.64)

where by definitiore, i = Y,5—Y, opdd: Y19

is the difference between the chosen constant setpoigbfgs~y,o and
the optimal valug/, o(d)y;¢) that corresponds t® =y, - y;s= 0. We may
obtaine; o by settinge; = 0 in (10.58) and solving fa@,. We get

Py € opt=AY15- Py d (10.65)
and substituting this into (10.62) gives (10.64). Expression (10.64) is rather

obvious, but it is nevertheless very useful in some cases, and forms the
basis for the rule of minimizing the minimum singular value (see below).

CommentAnother way of deriving (10.64) is to use (for at)y
Y1 - Y1opt=G1 (U - Ugpy (10.66)
Y2 - Y20pt = G2 (U - Ugpy) (10.67)

which sincey; - Y1opt= Y1 - Y1s= €1 @NdY3 - Yoopt= (Y2 - Y29 + (Y25~ Y20p)
=e- e20ptdirectly gives (10.64).

4. By replacing?, andPy by the corresponding transfer function matrices,
Py(s) andPy(s), we can extend these results to nonzero frequencies.
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10.7 Maximizing the Minimum Singular Value (Method 2)

Let the matrixG represent the effect on the controlled variabtesf a small
change in the “base set” of independent variablég.:

Ac = GAu (10.68)

Then, a common criterion (rule) in control structure design is to select the set of
controlled outputshat maximizes the minimum singular value of the gain matrix,
o(G) (Yu and Luyben (1986) refer to this as the “Morari Resiliency Index”). Pre-
viously, this rule has had little theoretical justification, and it has not been clear
how to scale the variables. However, as indicated by Skogestad and Postlethwaite
(1996) the rule may be derived by considering a local approximation of the loss
function. It is desirable to select the controlled variables such that the loss is min-
imized. Thus, the loss depends on the quarntityly, Which we obviously want

as small as possible. Now, for small deviations from the optimal operating point
we have that the candidate output variables are related to the independent varia-
bles byc - Cop= G(U - Ugpy), OF

U - Ugp= G™H(C - Copy) (10.69)

Since we wanu- uq,: as small as possible, it therefore follows that we should
select the set of controlled outputsuch that the product & andc - CoptiS @s
small as possible. Thus, the rule is (Skogestad and Postletwhite 1996):

Assume that we have scaled each output ¢ such that the expected value of
(c - Gpy is of magnitude 1 (including the effect of both disturbances and
control error, but note that this scaling may not be possible). Then select
the output variables ¢ which minimize the norm df hich in terms of

the two-norm is the same as maximizing the minimum singular value of G,
a(G).

The rule above involves minimizingAuf|, = ||u—uO [”2 whereas we really
want to minimize the loss. Frorh = Au'TJuuAu' we see that these conditions
are the same provided it is possible to scale the inputs  such that the Hessian
juy 18 unitary (magnitude one in all directions) because [eri, = L[|,
Interestingly, we note that this rule does not depend on the actual expression for
the objective functiod, but it does enter indirectly through the variationogfy

with d, which enters into the scaling.

Let us analyse this further, based on the full loss expression in the inpand
output spacegy.
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10.7.1 Directions in the Input Space

We here take a closer look at the expression for the normalized (10.49), and sub-
stitute the singular value decompositions for expressions with the Hessi&h and

-1/2

_ 1/2 -1 ~ 12, ~1\\p, ~
U, = (3, Vug=Jue G G)Wydd + (3, G WE (10.70)

z

The first term is the contribution from the disturbance compensation, and the sec-
ond term is the uncertainty and error contribution. Let us first consider the case

when the error term dominates. Then we should minindillgféG_l . By singular
value composition we find
12,-1 _ 1/2yT LT
JuuG T = Vil Ei ViuVeZe Vg (10.71)

This is an interesting expression, which we will return to in Section 10.7.2 below
where we use it to investigate the loss in the output space.

Observe in particular the produ\z’ﬂuVG . These matrices contains the directions
associated with the singular values@findJ,,. The product, gives a “permuta-
tion” between the singular values of G ald

The worst case is when the strongest directiord,jfis aligned with the weakest

directions of G. Therl/ Og will be paired wittyﬁuu and the worst case contri-

bution is /6UU/QG

This implies that the smallest singular value of G ) becomes important in
cases where the error term is significant compared to the disturbance term, and in
particular when there are no dominating directions in the Hessjgr=(g,,, )

If there are some dominating directions)jp (G,,,» g,,,), itis preferable to align
the strong input directions of G with the strong directions of the Hessian. Then
v]I,Vg = | and;

_1 .
sl2vT V5o = diag{( /ouu’ D/ 0g, 1 ( /cuu’ )/ 0g 2 -} (10.72)

The worst case contribution from this termrsax((,/o,,, )/ 0g ;)
I ] 1

This alignment is normally what we want in control since we want the strongest
effect on the error in the most important direction. Now does not have to be
responsible for the worst case loss, and the procedure which is based om minimiz-
ing g5 may not be the best choice.
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When the disturbance term of the loss is dominating, we have to consider the first
term in equation (10.70). Thus the requirements to G which minimize the contri-
bution from errors could be a bad choice for counteracting the effect from the
disturbances. The properties Gf becomes important and we need the more
comprehensive procedure based on the complete loss expression (10.51).

10.7.2 Analysis in the Output Space

Assume that we have been able to scale the outputs suclthﬁtﬁhﬁs 1 when
|ad], <1 and [|A€], <1 . Then we introduce the transformation (ref. Section
10.7.1)

c,=JY2GIAc. (10.73)

Now the loss can be expressed by the transformed outputs by equation (10.38) in
a similar expression as equation (10.48) for the transformed inputs

L = AcTG Ty, GlAC = %czTcZ = %||cz||§ (10.74)

Note that each elementr, has the same impact on the loss. Itis clear that if the
Hessian J,) is unitary, maximizing the minimum singular value®f o(G), is a

good solution. If not, we may still use a quite simple approach by minimizing the
maximum singular value of the produg(J}/2G=1) , but this require that we
evaluatej,, -

However, in the multivariable case the scaling is not trivial. If it is not possible to
find a suitable scaling whelfdcl,<1  we mustreturn to the full procedure given

in Section 10.4. The problem is that the full space definefiAy|, < 1 may not
be reached in some directions for the given space spanned by disturbances and
errors. Thus the singular val@gG) or eveng (J1/2G=1) may be associated with

a direction wheretlAf:'”2 «1 and in that case this method may imply a large loss
whereas in reality the loss is small.

However, use of this rule may be computationally much simpler than evaluating
the mean value af of the loss function.
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10.8 Application Examples

10.8.1 Toy Example

To give a simple “toy example”, lek=(u-d)® where nominallydy=0. For this prob-

lem we always havd,,(d)=0 corresponding tel,,{(d)=d. Now consider three
alternative choices for the controlled output (e.g. we can assume they are three
alternative measurements)

¢y = 0.1¢-d); C,=20;  c3= 10u - 5d=10(u-d)+5d

For the nominal case wittlh=0 we have in all three cases thgg},(dg)=0 so we
select in all three caseg=0. Since in all cases,,(d)=d, the optimal value of the
controlled variable for the three cases @ygy(d) = 0, Coopt (d)=20d anctzqp=5d.

Method 1:

The losses can for this example be evaluated analytically, and we find for
the three cases:

Ll = (10e1)2; L2= (005e2—d)2, L3 = 01e3 -0.5d 2

(For example, in case 3, we hawe(cz+5d)/10 and withc; = c3ste3 = e3 we get
J=(u-d), = (0.1e3+ 0.5d - d),). If we further assume that the variables have been
scaled such thafAd|,<1 an eﬂ <1 then the worst-case values of the
losses aré; = 100,L,=1.05, = 1.1025 and.3= 0.6, = 0.36, and we find thaiut-

put G is the best overall choice for self-optimizing contrblowever, with no
control errorc, is the best, and with no disturbancess the best.

Observe also tha, is proportional to the gradient df and that the corresponding

loss does not depend on the magnitude of disturbances, but in this example the
error will dominate, andz which is not a perfect gradient, have much better error
properties. However, for increased disturbances, thellgssll increase, while

the L, will remain constant.

Method 2.

For the three choices of controlled outputs we h@ye= 0.1,G,=20 andG5;=10,
ando(G,) = 0.1,0(G,)=20 ando(G3)=10. This would indicate that, is the best
choice, but this is only correct with no disturbances. The reason for the error is
that we have not scaled the output variables properly; in particular, we have not
take into account the effect of the disturbances on the magnitedecgfi(d).

Let us now scale the variables properly. We hayg=d, so we havec; 40,
C2,0pt=20d andcs op=5d. Forcy we then have that] - ¢; op{ = 1 + 0 (the control
error is 1 plus the variation i op{(d) due to disturbances is 0), and we find that

IGy(c1 - ¢1,0pd] = 1/0.1 (1+0) = 10
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Similarly;
IG5 4(c; - Cp,opdl = 1/20 (1+ 20) = 1.05
IG5 ™(¢3 - C3.opd| = 1/10 (1+5) = 0.6

and we find as expected thafis the best choice. Thus, the two methods agree.
In this monovariable case the scaling was quite trivial, but in a mulitvariable case,
the scaling may be difficult.

10.8.2 Application to a Petlyuk Distillation Column

The Petlyuk distillation column (Figure 10.5)
frﬁ» D have been used for case studies in several papers
by the author. A qualitative analysis have been
presented in Chapter 7, and an evaluation based
Y~ Main on computation on a full model have been pre-
column sented in Chapter 11.

LY = RL;

The cost function is the reboiler vapour flow.
(J(u,dFVp), The disturbances are feed composi-
tion, feed quality, feed flow rate, and the three
C22 product purity specifications. Refluk+), boilup
vg' = R Vg (Vg) and sidestream flowrate (S) are used for
Vg E{)—' B composition control (D and B are used for level
control). Note that we want to minimize one of
the manipulated inputs. The remaining degrees of
freedom are then the draw ratios for the liquid
and vapour to the prefractionatar = [R, R,] ).
The cost function has a quite sharp minimum, and
the optimal solution is affected by the distur-
bances. Thus this is an obvious case for on-line optimization, and self-optimizing
control is a possible approach since there are a large number of measurable vari-
ables which may have self-optimizing control properties.

Prefrac-
tionator

Figure 10.5: The integrated
Petlyuk  arrangement for
separation of ternary mixtures

Here we will bring a short summary of the procedure and results from the diploma
work by Storkaas (1999) (in Norwegian). The Taylor series method presented in
Sections 10.3 and 10.4 was used to evaluate self-optimizing control based on a
combination of four temperature measurements. The nominal cost-function and
its Taylor series approximation J((u,d))zJ(uo,d0)+(u-u0)TJuu(u-uo).
(Ug=Uqp{(dg)) shown in Figure 10.6 for the nominal set of disturbances as a func-
tion of the control inputs. The cost function is quite non-linear, but we observe
that the approximation (dashed) capture the main shape of the cost function
around the optimum.
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RI
Figure 10.6: Contour plots of the cost function for the Petlyuk coluwgiu,dp)). and the
Taylor series expansion (dashed). Feed1/3,1/3,1/3],a=[5.6 2.8 1], g=0.5 u=[R|,R]
(ref. Storkaas 1999)

Since the cost function has clearly distinguishable strong and weak directions, we
choose to keep one of the degrees of freedom constant (typically the vapour split
R,). Storkaas (1999) studied the problem of minimizing reboiler vapour flow in
presence of disturbances in feed composition, quality and flow rate and uncer-
tainty in product purity setpoints and implementation of split ratios. The
candidate variables were limited to a combination of four temperature
measurements:

c=2Ty Ty 2T\ 2Ty (10.75)

whereN; indicates a given stage for that measurement. In this case, the number of
possible solutions is finite, and the optimization problem in (10.54) was solved
simply by evaluating all solutions.

The background for selecting from this set is the qualitative analysis given in
Chapter 7. It was observed that the temperature profiles in the prefractionator and
the main column had some symmetry properties which was different on each side
of the optimum, and by taking the difference temperatures above and below the
feed and sidestream, we can get a candidate variable.
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Although we have not studied controllability in detail, simulation experience indi-
cates that the Petlyuk arrangement is not very difficult to control, provided that
we do not use infeasible setpoints. Similar interactions as found in ordinary 2-
product distillation are found in the Petlyuk column too. However, increasing the
number of control loops from 2 to 4 or even 5 seems quite feasible. This have been
confirmed by some simulation case studies in the diploma work by Gilleshammer
(2000)

10.9 Discussion

10.9.1 Trade-off in Taylor Series Analysis

We must consider an important trade-off when we apply the Taylor series method.
The Taylor series expansions are accurate for small perturbations, but we only
need to compensate for large disturbances and uncertainties that contribute to a
significant loss. This implies that the Taylor-series method will not be sufficient

if there are severe nonlinearities which cannot be represented by the second order
Taylor series expansion for the expected range of disturbances and inputs.

We may compensate some of this when we do the numerical computations of the
Hessian. Response surface methods (Box 1987), which adapts a quadratic form
to based on a set of data points may give better result for large deviations than
local methods, normally applied for numerical differentiation. We really need the
best accuracy for the loss function in the region around the acceptable loss,
instead of close to the nominal optimum.

However, as a screening tool, and to get important information about the worst
disturbance directions, the Taylor-based methods presented here are valuable.
The main advantage is the simplicity in checking a large number of measurement
models without the need for excessive model computations.

10.9.2 Evaluation of Loss

The method based on minimizing the maximum singular value 0£10.54) is
equivalent to minimizing the worst case loss for normalized disturbances and
errors specified bjad|, < 1 anfhe, <1

This method has two main drawbacks:

» The worst case loss may not be the appropriate measure in some cases. For
example when the disturbance associated with the worst case loss is very
rare. Thus, other methods, e.g. minimizing the average loss based on dis-
turbance probabilityp(d)), may sometimes be more suitable.
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Minimizing averaged loss:

min (L (d)p(d)3d (10.76)
csé Cs

» The real disturbance and error regions may not fit the above type of norm
specification.

A typical example is when we may specify d; a) |Ad|, <1
the possible range for each individual distub») ||Ad|| <1 2
bance a#Adi"2 <1 "2 /

Then the specificatiorHAa”zs 1 may give \, \<
misleading results, at least if the largest sin- q

gular values inM. are close. This is b d=
illustrated in Figure 10.7: Here we have \lda 1
foundd, as the worst disturbance by the Sin'Figure 10.7° Norm bounded
gular value method. Butl, which obey gisturbance specification may be
|Adi||2 <1 may give a larger loss, but this is conservative. Herel, and d,, are
not found by the singular value method sincehe worst disturbances in region a)
||db||2 >1. and b) respectively.

An alternative is to make a sufficient dense

grid of possible disturbance vectod [ D ), and compute the corresponding set
of losses directly from (10.49). This is also easy to combine with weighted loss
computation.

However, the simplicity of computing(M_) is appealing, and if we examine the
associated directions in disturbances, errors and inputs, and also check the accu-
racy of the Taylor series expansion more carefully in this directions, we obtain
valuable information for evaluation of self-optimizing control structures.

10.9.3 Criterion Formulation with Explicit Model Equations

We have used an unconstrained cost functi@nd)where the dimension af
equals the number of remaining degrees of freedom in the system, when all spec-
ifications are fulfilled. The nonlinear process model is implicit in the cost
function, and so are also the product specifications and other constraints. An eval-
uation ofJ(u,d)usually implies solving the process model internally.

However, process models are normally given in another form, e.g. in state-space
form, and it can be convenient to separate the criterion, the basic model, the prod-
uct specifications and the measurement model in the formulation. Morud (1995)
showed how to expand the cost functidgx,u,d)in a second order Taylor series
with a model in state-space forrf(x,u,d)=0 (wherex is the state vector). The
nominal solution is found by minimizing the Lagrange function:
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xr,nlijr,])\La(X’ u A, d) = Xrinilr,I)\(J(x u d +Af(x u, d) (20.77)

For second order Taylor series expansion of the loss, we need to expand both the
model and the criterion to second order.

Note that we here have the same number of the remaining degrees of freedom as
in the expressiod(u,d) Direct computation of the Hessial, from J(u,d) usu-

ally requires that we must solve the full model for every perturbatiamandd.
However the dimension &, is normally quite small compared to the Hessian of

the Lagrange function in the alternative approach. The best approach with respect
to computational load will depend on the complexity and availability of the
model, the dimension of the state, and available optimization tools.

10.9.4 Active Constraint Control

The approach outlined in Section 10.2 may be extended to include problems with
equality and inequality constraints:

min J(u, d)
u
subject to g,(u, d) = 0 (10.78)
g,(u,d)<0

Problems with equality constraints are relatively straightforward, especially if we
can identify a single variable (manipulated or measured) directly related to the
constraint; this should then be included as a controlled variables c (“active con-
straint control” (Arkun 1980)). The main effect is then that each constraint
removes a degree of freedom for the optimization. The same argument holds for
inequality constraints where the optimal policy is always to keep the same con-
straint active (i.e. satisfy them as equalities for any disturbance).

The more difficult problems are when we have a inequality constraint which is
active only under certain conditions (disturbances), and the constraint is not
directly expressed by a direct manipulated or controlled variable. For such cases
one must be careful to avoid infeasibility during implementation, for example,
there may be a disturbance such that the specified value of the controlled variable
can only be achieved with a nonphysical value of the input (e.g. a negative flow-
rate). The on-line optimization is usually for simplicity based on the nominal
disturbancedp), and two approaches to avoid infeasibility are then:
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* to use back-offs for the controlled variables during implementation, or

* to add safety margins to the constraints during the optimization (Narraway
1991), (Glemmestad 1997).

Alternatively, one may solve the “robust optimization problem”, where one also

optimize ¢ for all the possible disturbances. A fourth, and better approach in

terms of minimizing the loss, is to track the active constraint, but this requires a
more complex control system. In particular, model predictive control is very well

suited and much used for tracking active constraints.

10.9.5 Controllability Issues

Of course, steady-state issues related to thekars not the only ones to be con-
sidered when selecting controlled outputs. It may happen that the “optimal”
controlled outputs from a steady-state point of view, may result in a difficult con-
trol problem, so that dynamic control performance is poor. This may be analysed
using an input-output controllability analysis. For example, in distillation column
control it is well known (Skogestad 1997) that controlling both product composi-
tions may be difficult due to strong two-way interactions. In such cases, one may
decide to control only one compaosition (“one-point control”) and use, for exam-
ple, constant reflux/F (although, this may not be optimal from a steady-state
point of view). Alternatively, one may choose to over-purify the products to make
the control problem easier (reducing the sensitivity to disturbances).

10.9.6 Why Separate into Optimization and Control

Why is the controller decomposed? The first reason is that it requires less compu-
tation. This reason may be relevant in some decision-making systems where there
is limited capacity for transmitting and handling information (like in most sys-
tems where humans are involved). It does not, however, hold in today’s chemical
plant where information is centralized and computing power is abundant. Two
other reasons often given are failure tolerance and the ability of local units to act
quickly to reject disturbances (e.g. Findeisen et al., 1980). These reasons may be
more relevant, but as pointed out by Skogestad (1995-2) there are probably even
more fundamental reasons. The most important one is probably to reduce the cost
involved in defining the control problem and setting up the detailed dynamic
model which is required in a centralized system with no predetermined links.
Also, decomposed control systems are much less sensitive to model uncertainty
(since they often use no explicit model). In other words, by imposing a certain
control configuration, we are implicitly providing information about the behav-
iour of the process, which we with a centralized controller would need to supply
explicitly through the model.
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ABSTRACT

In a Petlyuk distillation column, two extra degrees of freedom can be used for
optimisation purposes. It has been reported that a typical energy saving of 30%
is achievable with a Petlyuk distillation column, compared to conventional dis-
tillation arrangements. However, the optimal steady-state operation point can
be difficult to maintain in practice. In this work we have studied the perfor-
mance of some self-optimising control configurations for the Petlyuk distilla-
tion column in presence of disturbances and uncertainties. The results show
that self-optimising control can be used to improve the robustness of optimal
operation by adjusting a degree of freedom in a feedback control loop by keep-
ing a suitable measurement variable at a setpoint.
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11.1 Introduction

In most processes there are some extra degrees of freedom that can be used for
optimisation purposes. The optimal operation point can be difficult to maintain if
disturbances and model uncertainty are present. Self-optimising control is an
approach to solve this problem by turning the optimisation problem into a set
point problem. The key idea is to find a measurable variable with constant value
at optimal operation. If this variable can be found, a feedback control loop is
closed to keep the variable at the set point, and to keep indirectly the process at
optimal operation. Since self-optimising control results in a feedback control
loop, it will be robust against disturbances and model uncertainties compared to
any open loop model based optimisation methods. The application of self-opti-
mising control to the Petlyuk distillation column was already addressed in
(Halvorsen and Skogestad, 1998). Some candidate measurable feedback variables
for the Petlyuk distillation column were proposed and analysed in a qualitative
way. This work has to be seen as a continuation of that one in which a more care-
ful evaluation is performed. New candidate feedback variables have been
proposed and a quantitative study has been done to see the performance of the
controlled system in face of various process disturbances and model uncertainties.

11.2 Energy Optimization in the Petluyk Column

The thermally coupled distillation column known as Petlyuk column (Petlyuk
1965), shown in figure 1 is a complex distillation arrangement to separate a ter-
nary mixture of A (the more volatile), B (intermediate volatility) and C (the less

volatile).
"Prefractionator" A AB L A
v "Main column"
N L
ABC | |1 B ABC B
! ! 1 1 Rv" V
BC \%

Figure 11.1: The Dividing Wall Column (left) and the fully thermally coupled column
(right) are thermodynamically equivalent.
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The Petlyuk column has been given special attention due to very high reported
energy savings. (Triantafyllou and Smith, 1992) reported savings of 30% compatr-
ing the Petlyuk column with the conventional trains of columns. Considerable
investment capital savings can be obtained if the arrangement is implemented in
a single shell (Divided Wall Column). The complex design of the Petlyuk column
offers some extra degrees of freedom which permit an optimisation that is not pos-
sible in the conventional ternary distillation designs.

11.3 Optimising Control Requirement for the Petlyuk
Column

We assume that the Petlyuk column reboiler and accumulator levels are stabilised
by the distillate flow D) and the bottoms flowR). Then it has five degrees of free-
dom: boilup ¥), reflux (L), side stream flowS), liquid split (R)) and vapour split

(R)). Of these five degrees of freedom, three are used to control the compositions
of the three products (composition of component A in the distillate, composition
of B in the side stream and composition of C in the bottoms stream). Wolff and
Skogestad (1996) showed that the LSV control structure gives acceptable per-
formance. It consists in the control of A composition by the refluxthe control

of the B composition by the side stream flo# &nd the control of C composition

by the boilup ¥). LSVis the control structure assumed in this work. Therefore,
liquid split (R) and vapour splitR) are the two extra variables to be used for
optimisation purposes. The energy consumption, here represented by the boilup
vapour rate Y) will be used as the criterion. When the composition loops are
closed and the products purityya,Xsg Xgc) are controlled to their specifications,

the product specifications setpoinkg {5 XsgsXsco Will replace the composition
control loop inputsl(,SandV), as degrees of freedom. These setpoints will affect
the optimal operation point in addition to the disturbances in the feed flow rate
(F), feed compositionzf and feed liquid fractiongj.

It was shown (Halvorsen and Skogestad, 1997, 1998) that the optimal operation
point of the Petlyuk column is not robust when no optimising control is applied
in addition to the product composition control. The optimal values of the two
degrees of freedoni( R,) used for optimisation are sensitive to feed disturbances
and product set points changes. The objective function suM@ReR) is very

steep in some directions and if no adjustment of these remaining degrees of free-
dom (DOF) is applied, the operation may get far from optimal. Therefore, some
control is required to maintain the optimal operation when disturbances and
uncertainties are present. However, in accordance with the work of (Halvorsen
and Skogestad, 1998), we will fiR, and useR, as the only manipulated variable

to indirectly achieve the energy control. Two reasons justify this decision. First
the energy surfac¥(R R)) is quite flat close to the minimum in a narrow long
region in a certain direction in th@, R)-plane, permitting that for any given
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constaniR,,, we can find &, o 1 that makes the value &, =V(R) opt,1, Rvo)

be close to the absolute minimum when both values of the remaining DOFs are
optimised:Vop=V(R) opt, Ry,0pd- Rio Must be set in a reasonable neighbourhood
to R, opt The flat region was shown by (Fidkowski 1986) for infinite stages and
sharp product splits. The extent of the flat region is determined by the feed prop-
erties (composition and liquid fraction), and the relative volatility of the
components. Second, if we consider a dividing wall column (DWC) (Wright
1949),R, would be a difficult variable to manipulate in normal operation since its
value will be naturally given by the pressure equalisation on each side of the
dividing wall.

11.4 Self-optimising Control for the Petlyuk Column

The concept of self-optimizing control is presented in (Skogestad et. al. 1998 and
1999). A brief introduction for our Petlyuk column case study will be given here.
The idea behind self-optimising control is to find a variable which characterise
operation at the optimum, and the value of this variable at the optimum should be
less sensitive to variations in disturbances than the optimal value of the remaining
degrees of freedom. Thus if we close a feedback loop with this candidate variable
controlled to a setpoint, we should expect that the operation will be kept closer to
optimum when a disturbance occur.

We defineu to be our remaining degrees of freedom which we will use as manip-
ulative variables for optimising control, addo include the external disturbances,

the setpoint specifications for all the closed control loops and any remaining
degrees of freedom not used as manipulative variables. In our general case
u=(R R)) andd=(z,q,%a,XspXgc), but when we fixR =R, and useR, as the only
manipulative variable we will have=R, andd=(z,q,a,XspXsc:R/0)- The opti-

mal solution is found by minimising/(u,d) with respect tou. Thus both the
optimal value of the criterion functiol,,; and the corresponding solutiai

will be a function of.

Vop(d) = anV(u, d) = V(up(d). d) (11.1)

The combined set dfu,d) determines an operation point uniquely, and also the
values of any internal states and measurements. (In this simplified presentation
we do not consider any bifurcations.) Assume now that we choose a measurement
variablec=g(u,d), and that the inverse functiar=g™(c,d) exists. Then we may
applyu= g'l(cs,d) wherecsis the setpoint foc. The ideal relation would of course

be to find a functiog(.) where: Ifcs=g(Ugpt 0 do), then

u=g l(cs,d) Uopd(d). These properties |mpIy that we want the nominal setprint

to be msensmve to the disturbances, and that c characterise the optimum so that
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(c- ¢ is proportional to {-uyy) for any disturbance in the region where c is close
to . An example of an ideal function g(.) is the gradieniMgti,d) with respect
tou:

g(u, d) = OyV(y d (11.2)

In the real world, we cannot expect such an ideal function to exist, but there may
be variablesd) whereV (g (csp d), d) «V(u,, d) , whenwe compare the case

of keepingc constant at the nominal valwg,, to the case where we keep u at the
nominalug, for a set of disturbances d around a nomigal

So why not look around for the candidates?

A very important feature of the feedback implementation in self-optimising con-
trol is that we do not need to know the functigfiL(cs,d) accurately since the
feedback controller will adjust the input u until czio spite of uncertainties and
unknown disturbances. Thus we may find the best variabtg{u,d) with the
wanted properties by using a rigorous model and advanced optimisation, but the
realisation ofg'l(cs,d) in the plant may simply be with a conventional PID con-
troller, neither with the need for an on-line model nor any on-line optimisation.
The task of finding a good candidate for self-optimising control is primarily a con-
trol structure problem (e.g. the task of selecting variables for inputs and outputs).
When a self-optimising feedback variable is found, this variable can be treated
like any other output in the task of finding the best regulatory design (e.g. finding
the best input output pairing, choosing PID controllers and/or model predictive
control etc.).

In the rest of this paper we will present results from a quantitative evaluation of
V(u,d)and V(g'l(cs,d),d) compared td/(Up,d) for a set of candidate measure-
ment variables and a set of disturbances around a nominal operational point.

11.5 Self-optimising Control:
A Petlyuk Column Case Study

11.5.1 The Nominal Optimal Solution

The non-linear model used to simulate the column behaviour in presence of dis-
turbance and uncertainties was described in (Skogestad and Halvorsen, 1998). It
is a stage by stage model where the main assumptions are: constant pressure, con-
stant relative volatility, constant molar flows and constant tray efficiency. The
relative volatilities are assumed to be (4:2:1). The number of stages is 8 in each
of the 6 sections plus a reboiler and total condenser. (Note that the number of
stages is not based on any rigorous column design. Our optimal boilup is about
40-50% higher than a theoretical minimum boilup with infinite number of stages,
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which indicates that our number should probably have been increased. However,
detailed design of the column is not an issue in this paper.) The nominal operation
point is selected with equimolar feer;(1/3,1/3,1/3), partly vaporised, liquid
fraction g=0.477, and 97% purity for all three products. The nominal optimal
solution is found a¥,; = 1.497, forR, = 0.450 anR, = 0.491.

This optimum, and all other optimal operating points for different sets of the dis-
turbancesd) are found by applying a constrained optimisation solver with the full
non-linear model.

11.5.2 Proposed Output Feedback Variables

The set of candidate feedback variables is based on discussions in (Halvorsen and
Skogestad 1998) and (Christiansen 1997). The selection is based on qualitative
evaluation and process insight. Alternative approaches based on Taylor series
expansion of the criterion function is outlined by Skogestad et. al. (1996, 1997,
1998), but these methods are not considered in this study. A brief description of
each of the considered feedback variables is given below.

» D4/F: The net flow from the top of the prefractionator to the main column
divided by the feed flow.
D,=V;- Ly. Thus it is not a flow but a difference between two flows.

» [3: Fractional recovery of the intermediate B-component leaving in the pre-
fractionator top.
A similar behaviour aB is expected aB,=z,+ Bzg with a sharp A/C
split.

* AN: the number of trays between the tray from where the side stream is
withdrawn and the tray that has the highest B-composition. This is based
on the observation that for optimal operation, the B-composition had its
maximum at the sidestream withdrawal stage.

* AN'is the continuous variable that corresponds to a cubic interpolation of
the discrete variabl8N. AN’ will be able to follow the optimum more
closely. NominalAN is O.

« DTS a measure of the temperature profile symmetry. It is defined as
DTS=5(Ty ;- T4 )*+Z( Ty — Ts,), whereTy ; is the temperature of tray i of
sectionN. The temperature of each tray is calculated assuming the contri-
bution of each component with its equilibrium temperature proportional to
its fraction. The set point dTSis 6.38.DTSwas observed to be constant
along the direction of the minimum surfa?éR, R,) where it was most flat.

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



11.6 Robustness Study Simulation 329

. ychz the C-composition of the net flow from the prefractionator distillate
to the main columnyP: is calculated as the net C in the vapour from the
prefractionator to the main column minus the net C in the liquid from the
main column to the prefractionator divided by the net flow from the pre-
fractionator to the main column.

« yBL, is the equivalent tg°' in the prefractionator bottom.

* Yo: Ratio of net flow downwards towards the sidestream and the sidestream
flow. This variable is implemented as a feedforward from flow measure-
mentsR, = 1-yg*S/L-(1- Rg)*VIL.

11.6 Robustness Study Simulation

Because of the reasons given abdRehave been used as a manipulated variable
for the optimisation loop whil&, has been kept constant. Thus, the control sys-
tem has become a four- loops control system. PID controllers are used to close all
control loops. This applies both for the three composition control loops and in the
optimisation loop. Since we are interested in steady-sate considerations, the tun-
ing of the controllers to obtain good control performances has been set aside. To
study the robustness of each of the proposed optimisation control structures, a set
of simulations has been carried out. Closing the optimising loop with each of the
proposed feedback variables at a time, simulations have been done for steps in
each uncertainty and disturbance variable. The process was simulated from the
nominal initial conditions until a new steady-state was obtained. The different
control structures brought the process to different steady state operation condi-
tions when the disturbances were applied. The boilup values of these controlled
operations are the object of our comparisons.

Feed flowratek), feed composition#,,zz) and feed liquid fractiond) have been

the considered disturbance uncertainties. Uncertainties in the measurement of the
product purities and in the measurement of the feedback variables have also been
considered. Uncertainties have been simulated through step changes in the inputs
and in the set points. (To simulate error in the measure of the optimisation con-
trolled variable and in the measure of the product compositions, setpoint changes
have been applied).

For each source of upset, some values around the nominal values have been ana-
lysed. In Table 1 the specific considered upset values are shown in the second
column with the values applied. For each disturbance or uncertainty, the values of
the objective function (boilufy) for each self-optimising optimisation control
structure is computed. Values are compared to the pseudo optimal valueRyhere

is fixed at its nominal value and onBj is adjusted for minimal boilup. We also
computed the overall optimal value (where b&landR, are adjusted for mini-
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mal boilup). Values are shown in the rightmost columns in Table 1. We also
compare results to the values for constgrandR,, that is with no control action
in the self-optimising control loop.

11.7 Discussion of the Results

After doing all the simulations the following results are obtained:

D4/F is not a good feedback variable. It handles disturbances in the feed
flow very well because it maintains the proportionality between internal
flows. It brings the system not far from the optimum for set point changes
and disturbances in g. However, it behaves very bad in response to feed
composition disturbances, worst than fixing Byéo the nominal value. We

can say that it is not a good option because it fixes a flow, not a feature of
the system.

B has the better behaviour in response to feed composition disturbances.
With ych it has the best behaviour for feed vapour fraction disturbances.
In front of product composition set point changes it is almost as good as
DTS which is the best one. As it is a recovery and not a flow, it faces feed
flow disturbances quite well. Lastly, robustness against bad measurement
is acceptable. It is a variable characteristic of the whole system.

AN has the problem that it only indicatBsto change when the changes in
the profile are large because of the discreteness of the vaddiiles better
thanAN. Other variables are better thd\’ for the normal disturbances

and uncertainties. But surprisingly, it is the best solution for large changes
in feed composition. It has to be noticed it only takes the main col-
umn into account.

DTSis found to be the best feedback variable for changes in the set points
of the product compositions and for set point changes in its self value. It
faces well disturbances in the feed flow because it is not a flow. Its behav-
iour in front of feed composition and vapour fraction disturbances is not
bad. This feedback variable takes into account the two sides of the Petlyuk
column, the prefractionator and the main column.

ych has shown to be a good feedback variable, too. Facing feed vapour
fraction disturbances it is comparabld3tdts behaviour in response to
changes in its setpoint value is almost as good as fddifevariable. And

its behaviour in response to set point changes in the product compositions
and disturbances in the feed composition is not bad. But it does not respond
well in response to feed flow disturbances because it is a composition and
not a recovery. ADTS, )9'C is a characteristic of the whole column.
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« yBL, has given unstable solutions as was predicted (Christiansen 1997).
This is due to that the flat region is on the right branch of the prefractionator
characteristic for our case, and this variable is expected to be best for the
opposite case.

» The feed forward proposed control has also given very good results. How-
ever, it will not have the advantages and simplicity of feedback control.

When comparing the overall optimum values with the optimum values with fixed
vapour split R free,R, fixed), we find the loss with a fixeld, is quite small. This
confirms it is possible to be close to the minimum by using only one of the two
extra degrees of freedom as a manipulated variable.

11.8 Conclusions

Self-optimising control has been seen to be a good method for the energy optimi-
sation of a Petlyuk column. Three output feedback variables give very good
robust control of optimal operation in a self-optimising control scheme. They are
B, DTS andych. For robustness against feed flow disturbanBesmdDTSare

better tharyBlA because this last variable is a composition and not a recovery. For
feed composition disturbancpss the variable that maintainscloser to the min-
imum, howeverDTSandych have also acceptable results. Facing feed vapour
fraction disturbancesP'. is the best of the three but the other two are not far
from it. Facing set point changes in the product compositiDissis again the

best feedback variable, being very cIos@tandych the worst of them. Lastly,
DTSandych behave better in response to bad measurements of themselves than
B. In a real case, we will decide on one of the three variables depending on the
information we have about what are the more probable disturbances. Also techni-
cal aspects will be have to consider. It has to be remarked, for exampl®TBat

can be calculated with only temperature measurements, which is a great advan-
tage. The measurementyﬂlc andp involve composition measurements which
normally is more complicated and expensive.
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0.399 0.333 1607 0.41p 1560 0421 1536 0430 1.550 132 01436 1531
0.333 0.399 1580 0.418 1562 0426 1557 0432 1585 157 01433 1.654
0.267 0.333 1541 0.485 1504 0477 1487 0.469 1510 1482 01463 1481
0.333 0.267 1444 048] 1.430 043 1428 0469 1489 1428 0470 1425
0.379 0.379 1664 0.400 1.601 0411 1567 0424 14601 164 01429
0.379 0.286 147§ 0.446 1475 0447 1472 0449 1471 1470 01453
0.286 0.379 1537 0.458 1532 0453 1529 0451 1528 126 01446
0.286 0.286 1505 0.496 1.455 0485 1440 0477 1539 1438 01474
1-q 0.627 1451 0.483 1.44D 0475 1.4p1 0482 1354 1.448 0[478 1.446
0.575 1.473] 0.461 1.472 0.463 1.4y3 0466 1498 1.472 0464 1.472
0.523 1.498| 0.45Q0 1.498 0.450 1.498 0.450 1.498  0.450 1.498
0.471 1.526| 0.433 1.525 0.437 1526 0433 1546 1525 0436 1.%24
0.418 1.557| 0.41§ 1.554 0.424 1.5%7 0.416 1.626 1554 0421 1.%52
Purity [ 0.97 | 0.97| 0.97| 1.498 0.450 1498 0.4p0 1.498 0.450 1.498  0{450 1.498
097 | 0.97| 098| 1.721 0456 1.715 0.440 1.927 0455 1.fy34 1{726 (.457
097 | 097| 096| 1371 044p 1382 0.4p6 1371 0446 1.873 1{370 (445
097 | 0.98| 097| 1551 0.44p 1552 0.448 1556 0.452 1554 1/551  (.443
097 | 0.96| 0.97| 1467 0.453 1.467 0.452 1469 0449 1468 1/467 (453
098 | 0.97| 097| 1564 0456 1.584 0.445 1569 0451 157 1/564 0,457
096 | 0.97| 097| 1466 044 14y 0453 1467 0451 1467 1[466 0447
Error 10 1.499( 0.453 1.500 0.455 1.512 0.462
-10 1.499| 0.448 1.499 0.44p 1.513 0.4B9

S90UB13)9Y 6'TT

€ee



334

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



Chapter 12

Conclusions and Further Work

12.1 Contributions

The main contribution in this work is on the improved understanding of energy
consumption and minimum energy operation in directly (fully thermally) inte-
grated distillation arrangements (generalized Petlyuk columns). We have shown
that the minimum total vapour flow requirement in a multi-product arrangement
is given directly by the minimum vapour flow for the most difficult binary split
between two of the product component groups in the feed mixture. The results are
based on Underwood’s classical equations, and we present exact analytical solu-
tions for ideal mixtures with constant relative volatility and infinite humber of
stages.

The V,,,j-diagram has been introduced as a useful tool for assessment of any
multi-component separation task. The total required energy consumption and the
vapour load and separation carried out in all parts in a directly integrated column
arrangement can be obtained by just a glance a¥ghgdiagram. Both the ana-
lytical expressions for minimum vapour flow for more than three components and
products, and the visualization by tMg,;,-diagram are believed to be original
material.

When we consider integrated distillation arrangements operating at constant pres-
sure and without internal heat integration, we conjecture that the directly coupled
extended Petlyuk arrangement has the lowest energy consumption. However, by
analysing the separation task in the view of reversible distillation, which gives
minimum separation work (zero lost work or entropy production), we find that the
external requirement for heat supply can be further reduced when we utilize pos-
sibilities for internal heat transfer between different column sections in the
arrangement.
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We also focus on operation. Although the minimum energy expression for ternary
Petlyuk arrangements has been known for some time, important aspects in oper-
ation have not been fully covered in the literature. There have been, and probably
still is, reluctance from the industry to use directly coupled arrangements. One
reason has been given as difficulties in control. This thesis reveals that the choice
of control strategy is of vital importance for successful operation. The main rea-
son is that the energy consumption increases rapidly outside the optimality
region, and the optimality region itself is affected by unknown disturbances.
Thus, we must carefully use the available degrees of freedom to track the optimal
operation region. Otherwise, the potential saving will most likely be lost. Note
also that a low purity in the sidestream product is also an indicator of suboptimal
operation.

Thus, the difficulties in control that are reported in the literature are most likely
due to bad selection of control structures. Such control problems can be solved by
choosing a suitable set of measurements and manipulated inputs, and the control
itself may be realized by conventional single control loops (e.g. Pl-controllers).

In Chapter 7 we analysed the most important operational characteristics of the 3-
product Petlyuk column using a finite stage model, and we showed how to com-
pute the solution surface (vapour flow as function of the degrees of freedom) for
infinite number of stages, outside the region of optimal operation. The computa-
tions for infinite number of stages are based on analytic equations and the
computational load for this limiting case is extremely small compared to compu-
tations on even the simplest finite stage-by-stage models.

The concept of self-optimizing control has been used for control structure design,
and in particular to propose variables that should be controlled to a setpoint, and
at the same time, this ensure close to optimal operation. First we used qualitative
methods to propose some good candidates in Chapter 7, and some of these were
evaluated in Chapter 11 with a full model. The conclusion is that is not only fea-
sible, but probably also required in practice, to use some kind of self-optimizing
control in order to maintain close to optimal operation.

A general method for analysis of self-optimizing control based on Taylor-series
expansion of the loss function is given in Chapter 10.

We emphasize that during the design of closely integrated process units we must
also focus on control and operation. A common misunderstanding in the process
design community is to think that contradmes by itselfSimilarly, in the control
community, some think that all problems can be solved with more complex con-
trol algorithms. However, the results in this thesis show that by understanding the
process, the control strategy can be quite simpleybutave to do it right

It is not enough to compute the optimal operation point. We also need a strategy
to implement and maintain optimal operation in practice.
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12.2 Further Work 337

12.2 Further Work

12.2.1 Process Design

The main results presented in this thesis are developed for ideal systems with con-
stant relative volatility and constant molar flows. However, based on the new
understanding, it is straightforward to develop engineering procedures for real
zeotropic mixtures. Appendix D contains a simple example of how to use a stand-
ard simulator with standard two-product columns to find the characteristics of the
minimum energy solution for a directly coupled arrangement.

We have assumed constant pressure. However, operation on different pressure
levels is widely used in process design, and this issue calls for further studies also
for directly integrated columns. This also applies for internal heat integration.

There is a large number of different ways to interconnect the internal column sec-
tions in directly coupled arrangements. However, the minimum energy solutions
will in general be the same, but there will obviously be other features which can
be very important for industrial realizations which makes some arrangements
more suitable than others. Some examples are required physical size (height),
design of the internals, and need for pumps and valves in the connections. A very
important issue is how to implement control devices for adjusting the liquid and
vapour splits during the operation.

Another important issue is process integration within a large plant. The results on
directly coupled columns should be incorporated in the process integration
toolboxes.

The extension to azeotropic mixtures and integration of reactive sections also
require further studies.

12.2.2 Control Structure Design

We have shown that it is very important to adjust the degrees of freedom on-line
in order to track the minimum energy operating point. However, we have not car-
ried out a detailed controllability study where we look at the combined
requirements for composition control and minimum energy operation.

We should also pay attention to the trade-off between column design and contol-
lability. For example, one issue is how the number of stages affects the
controllability.

The principle of selfoptimizing control for selection of controlled variables is
promising, and the methods can be developed further. This is a general method-
ology and the directly coupled arrangements are just one application area. The
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idea is to achieve robust and simple control structures. This issue is of great
importance both when we use simple and conventional controllers or advanced
control with on line optimization.

Animportant subject for research is how to treat operational constraints. This may
involve how to handle situations when it is infeasible to fulfil all constraints, and
how to recover in such conditions. For example, in the 3-product Petlyuk arrange-
ment we may relax the purity specification in the sidestream in a controlled
manner when we are not able to supply sufficient energy or adjust the degrees of
freedom to the optimal solution.

12.2.3 Advanced Control

Model based predictive control has been applied with success on a series of proc-
ess control applications, and we should also consider such methods for directly
coupled arrangements. However, the most widespread solutions are designed for
setpoint control only. The main advantages compared to conventional solutions
are their ability to handle constraints and multivariable process interactions.

In a directly coupled distillation arrangement we need to operate close to mini-
mum energy. Thus we really need to include a general profit criterion on-line in
addition to setpoint deviation criteria. Typical solutions today involve steady state
optimization at the highest level, which computes the setpoints for the lower
levels.

Note that advanced control methods do not replace the need for good control
structure design. Thus selfoptimizing control is well suited for control structure
design also when we consider advanced model based methods. One consequence
is that the models required for optimization may become simpler.

12.3 Postscript

In this work, Matlab® has been the main computation tool. In addition | have
sometimes used Maple in my search for analytical results, but pen and paper is
still the most important tool in this context. Hysys models with more rigorous
thermodynamic properties have been used to verify some of the results from the
simple models based on constant relative volatility and constant molar flows.

Simulation studies with simple stage-by-stage models have played an important
role during the work with this thesis. For example, the existence of the analytic
results has in several cases first been indicated by simulation studies. We have also
used simulations to get a practical confirmation of analytic results yet not proved.
However, since we have been able to present analytic results on central issues,
these detailed simulation results have been omitted in the final thesis.
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Appendix A

Prefractionator Pinch Zone
Compositions

We consider the case with a ternary feed (ABC) and an ordinary 2-product distil-
lation column with infinite number of stages, constant relative volatility and
constant molar flows. Consider operation in a region where we remove the heavy
C component from the top completely. The material balance around the top of the
column is then expressed by:

Vi—Lr =W, ++W
TTHT AT WB T
B (A.1)
Veyan—btXan+ 1= Wa T
Somewhere in the top section there will be a pinch zone with constant composi-

tion. We choose a staga<p) in this pinch region where; | = x; D+l - Then
multiply the fist equation witlg p and subtract from the second:

I—T(y/.\ p~ XA, p) = Wu(l- YA, p) —WgYa P (A.2)
Since we assume that C is completely removed, the equilibrium is given by:

A AXA
N

Ya = whereN = o, X, +0g(1—X,) (A.3)
It is easy to show from (A.3), that we have the following relations:

(ap—0g)(1—Xp)Xp
YA=XA = N

( '4)
_ ag(l-x,)
_’]__yA = T
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When we apply these equilibrium expressions on (A.2) we can eliminate the
vapour composition and express the liquid rate as a function of the net component
flows and the pinch zone composition:

L = Walg WeOA

(A.5)

We can also express this by Underwood’s equation, and whed we choose to
apply the root between the relative volatilities of component A and B:

W, 0O WO
= Ada . Welp (A6)
Ua=@Pp U=y

Note that for a constant Underwood robg;is linear inw, andwg. This implies
that the pinch composition is uniquely related to the actual Underwood root, and
by equating the coefficient expressionsvigrin (A.5) and (A.6) we find:

_ ag(aa—®p)
“Ap T Qp(ap,—ap) A

This can be verified by checking the coefficientigrin (A.5) and (A.6) too.

For minimum energy operation, the actual Underwood r@g} équals the com-
mon Underwood rooty) which can be found from the feed equation, and the
expression in (A.7) is constant in the whole part of the minimum energy region
where component C is fully removed:

_ag(a,—8,)
Xa p = G—A(O‘A_O‘B) (A.8)

This is not obvious at all from Underwood’s (1946) own pinch composition
expression:

w (
AT B
X = = (A.9)
AP Lt (0p—®p)
Here, only the relative volatility is constant wheg=0, and it is somewhat sur-
prising that the pinch composition really is a constant.
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In the bottom section we can apply the same procedure to find the pinch zone
composition for the case when component A is fully removed, and the result is:

ac(ag—we)
= < B > A.10
XB, p, PGp—00) (A.10)

(Note thatpg her is a stage in the bottom section pinch zone. We agply since
haveag <y <ad; anoka by = 1-Xc, D sincezA’ by = 0 ).

There is only one minimum energy operating point where A is removed from the
bottom and C from the top, and that is at the preferred split. In that case both com-
mon Underwood root are activg, = 8, apd = 65

Note also that sinc@,>86, andl-<6g the pinch zone compositions related
to the common underwood roots represent extreme values, thus:

ag(a—6,)

« < dc(ag—0g)
AP Bp(ay—ap)

andxg , = ———
B. P~ Bg(ag—ac)

(A.11)

In order to get the highest possible A-component composition in the top pinch,
and the lowest possible B-component (or highest possible C-component) compo-
sition in the bottom pinch, we have to operate the column at minimum energy, and
more precisely at the preferred split.
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Appendix B

Alternative Deduction of Mini-
mum Energy in a Petlyuk
Arrangement Based on Pinch
Zone Compositions

In binary distillation, we obtain minimum energy when there is a pinch zone
through the feed stage. We may apply the same procedure as in Appendix A and
express the minimum reflux by the feed pinch composition:

W A0 Wi
A%B B A

IS + B.1

Tmin (Ap—0g)Xpa pp (ApA—0R)(Xp Fp—1) (B4

Now assume sharp product split, thwg=0. We clearly observe that if we are
able to increase the feed pinch zone composition we obtain a smaller value for
minimum reflux.

Let us now assume that this column (C2) is directly coupled to a prefractionator
column (C1) with a ternary feed and which is operated in the region only A+B
appear in the top. Then there is no way that the light component composition at
the feed junction is higher than the pinch zone composition. Thus we obtain

. _ Wplp _ Walg
L A L a5(a,=6,)
(0A=%8)5 Ta, —an)
Aldp—0p
0,w 0,z
. _ AYA ASp
min (L) = a0, = GA_GAF (B.2)

We recognize this expression as the minimum reflux in the upper part of the main
column in a Petlyuk arrangement. A similar procedure can be used for a column
connected to the bottom (not shown here).
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We have assumed sharp splits both in the prefractionator (sharp A/C split) and in
the succeeding binary column (A/B split). However this is really not necessary.
To allow a small amount of B in the top of C2, simply keep the second term in
(B.1).

It is more complicated to understand non-sharp A/C split in the prefractionator,
because if some C is allowed in the top, there will be no pinch zone as described
in Appendix A in the top of the prefractionator. However, the heavy C will have
to be completely removed somewhere above the feed junction of column C2, so
there have to be a pinch zone in C2 where only A and B appear.

Now we can use the results by (Carlberg and Westerberg 1989) which showed
how the Underwood roots carry over form the prefractionator to the directly cou-
pled column C2. When the prefractionator is operated at minimum energy with
8, as an active root, this root will carry over to C2. Thus the pinch zone compo-
sition just above the feed in C2 will be given by exactly the same expression as
the pinch composition in the top of C1 when assuming sharp A/C split. And con-
sequently, when we compute the minimum reflux in the top of C2 we can still use
equation (B.1), but instead of the feed stage, we have to consider a stage in the
pinch where C has been removed. Then we get the same expression for minimum
reflux, and it is independent of the amount of C going above the top of the pre-
fractionator!. However, it is required that C1 is operated in the minimum energy
region wherep, = 0, = Qg .
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Appendix C

Minimum Energy with a Sepa-
rate Prefractionator Column

fESL D (A) In a Petlyuk arrangement, the optimality
FC2LCL region is flat for operation of the prefraction-
o1 | |4 ator from the preferred split along the branch

Main of the V-shaped minimum energy character-
?Column istic, and towards the highest peak in the
Vpirrdiagram. Christiansen (1997) studied
ﬁ_’ S®  the configuration shown in Figure C.1 with a
separate prefractionator with its own reboiler

and a partial condenser, and found that in this

C22 case the corresponding operating regime did
not give constant overall energy. In a series of

%_> cases he found that the preferred split opera-

B tionwas optimal, but he left an open question

Figure C.1: Conventional whether there might be cases where a bal-

prefractionator arrangement  anced main column can be optimal.

F.z,q
ABC
(ABC) .

Prefrac-
tionator

Here we will use Underwood’s equations and
show that the preferred split operation is always optimal. The proof is based on
the assumption of constant molar flows, and the same constant relative volatilities
in the prefractionator and the main column.

Christiansen (1997) showed that the prefractionator must be operated along the
V-shaped minimum energy characteristic for sharp split between the light (A) and
heavy component (C). The recovef) of the intermediate component (B) in the

top of the prefractionator is used as a free variable, an the total amount for vapor-
ization in the two reboilers is given as:

Voin(B) = Vo (B) + Vi (B) (C.1)
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The expression fOme is exactly the same as for the Petlyuk column. The
expression for the main column becomes simpler, although the principle of solu-
tion is the same: The maximum of the minimum reflux requirement of the upper
or the lower part determines the main column minimum energy (Christiansen
1997):

vM L
Vi "(B) = max VorPe(B), Vi *'(B) (C.2)
upper Zp+ Bzg
mln (B) - a l
AB~
(C.3)
Lower(B) agc(l-PB)zg + 2z
Vimin GBC_l
Observe that Vmi"ﬂn has a distinct minimum foB = By, where
#ﬁnper(BBm) ,I;ﬁnwer(BBal) As for similar condition in the Petlyuk column

we denote this operating point as a balanced main column, but the val@g for

is in general different from the correspondipg for the Petlyuk column.

An important distinction from the expressions for the Petlyuk column can be

observed: The main column energy consumption is not influenced by the prefrac-
tionator reflux (or vapour flow) when the prefractionator has its own reboiler and

condenser. The only influence is through the distribution of the middle compo-

nent, expressed with the middle component recov@ry ( ) in the prefractionator
distillate.

Recall that the prefractionator has its minimum boilup at the preferred split given
uniquely by Bp . As for the Petlyuk column there are two distinct cases:

Bp <Bgy andBp>Pg, - In the case whefip >Bg,,  the expression for the

total boilup in the region betwee, afiy,, is determined by the minimum
reflux requirement for the upper part of the main column and the left branch of
the prefractionator characteristic.

T_he slope of minimum characteristic with respecfto fiar,, <B <Bp is then
given by:
gz agZ 0 agz,(0a—6,) 0O
dvSP By = B8 + BB - 5 BB AR g (cy

ag—6, ap-Og _E(GA—O‘B)(O‘A_O‘B)D

d_B min
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Recallthato , >0, >0z >05>0a . and thisimplies that all factors in the paren-
thesis in equation (C.4) is positive and then this slope is negative. Thus, the
minimum of V ;. .(B) isgound app inthis case. Similarly we have for the case
when By <Bg, thatV,:,(B) is determined by the right branch of the prefrac-
tionator characteristic and the lower part of the main columrfox B < Bg

0RZ ORpZ 0RZ,(6g—0r)
() = —EE__EB _ _FBA_Cs0 ()
dp ag—06g ag—a. (ag—06g)(ag—ac)

And since we this time are to the right 8  the minimum is now also found at
Bp-

The conclusion is that operation at the preferred prefractionator split is
always optimal

C.1 Different Relative Volatilities

Note that the slope expressions above are deduced by assuming the same relative
volatilities in the main column as in the prefractionator. However, with a separate
reboiler and condenser we may easily use different pressures in the columns and
thereby different values of the relative volatilities. In that case we may in fact get
into the situation where the minimum is foundat,

If we look at this a bit closer we find the following expression for the case
Bp <Bgg Where the superscripis MU andML denotes values at the feed stages
for the prefractionator, and the upper and lower part of the main column.

PO
M Bs Gech
BCB[ p MLO

d..sp _ O(:;ZB O(QLZB _ [Pc QpcO
d_BVmin(B) P T ML ML T 0[] (C.5)
DBC BC

P
act

The interesting factor is inside the parenthesis in the numeratoE(J:f = a'\Bﬂé

we know fromM(LS) th%t this expression is positive, and the optimum will if&-at
However, ifags <apc the slope expression in (C.5) may become zero or even
change sign, which then implies that the optinlal ~ will chang3ig, . The
lower main column will have an higher temperature, and for example with most
hydrocarbon mixtures the relative volatility at a given pressure will decrease with
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increasing temperature. An equivalent observation can l\l%e maFge for cases where
Bp > Bg, - @and then we also may get a sign change oftf@l; < 0 5 5 . But nor-
mally the upper feed is at a lower temperature than the prefractionator feed, and
we would expect a increase in the relative volatility with a typical hydrocarbon
mixture.

It is quite easy to take changing volatilities with temperature into consideration
with this configuration since the parameters should be taken at the feed stage con-
ditions for the corresponding column. The feed compositions to the main column
will be binary mixtures of AB and BC given by:

_ A
> -
L (1-P)z |

X = —
BT~ (1-B)zg+ 2

In addition we need to know the pressure, and then the state at the feed stages are
determined, and we can find the actual relative volatilities.
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Appendix D

Minimum Energy of a Petlyuk
Arrangement based on
Rigorous Simulation

We have presented simple analytic expressions based on Underwood’s equations
for the minimum energy solution in a generalized Petlyuk arrangement (ref.
Chapter 3-5). This result is based on the simplifying assumptions of constant
molar flows and constant relative volatilities. These assumptions can be relaxed,
but we then need to replace the analytic solution by more time-consuming numer-
ical simulations. A procedure is outlined here.

D.1 V,,,-Diagram from Rigorous Models

TheV,,i-diagram is a quick tool to determine the approximate characteristic of a
Petlyuk arrangement for separation of a given feed. One approach is to obtain the
relative volatilities from rigorous component data, e.g by a feed flash simulation,
and then we can extract the composition, relative volatilities and feed quality from
the solution and the procedures from Chapters 4 and 5 can be applied directly.

We should note that thé,;-diagram obtained this way must be used with some
care when the molar flows and/or the relative volatilities change along the col-
umn. Then the actual Underwood roots will change as well, also at minimum
energy operation, and the minimum energy conditions at the feed stage of a suc-
ceeding column will be affected. Thus thg,;,-diagram will be correct at the feed
stage for preferred split in the prefractionator, but some deviations must be
expected for flows through the succeeding columns.

An alternative approach, where we do not need to use any Underwood equations,
is to run a set of simulations on a standard 2-product column with a reasonable
large number of stages (typicékN,,i,). In each simulation we specify close to
sharp split between all possible pairs of feed components. We record vapour flow
through the feed stage (V), and distillate product flow (D) for each simulation.
Recall that withN components, there aild(N— 1)/2  possible pairs which gives
the number of peaks an knots, and also the required number of simulations.
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D.2 Optimal Petlyuk Column Requirements from Rigor-
ous Simulations of Standard Distillation Columns

The next natural step is to apply a rigorous simulator for more detailed case stud-
ies, but Petlyuk arrangements are normally not found (year 2001) in the standard
libraries of the most widely used process simulators (e.g. Hysys, Aspen etc.).
Thus, it can be a bit complicated to configure a particular Petlyuk arrangement
and to find the optimal values of the available degrees of freedom related to the
flow splits (draw ratios) between the prefractionator and main column.

However, it is possible to do a very quick assessment of the optimal operation of
a Petlyuk arrangement, by using standard distillation column units with simple
product specifications and without need for configuration and optimization on a
full Petlyuk arrangement model.

Figure D.1 shows a configuration with conventional columns which is computa-
tionally equivalent to the ternary Petlyuk arrangement in Figure D.2. This is true
for normal operation of the Petlyuk arrangement, where components being
removed in the ends of the prefractionator does not appear in significant compo-
sitions in the recycled flows into the column ends (ref. Chapter 4).

In the directly (fully thermal) coupled prefractionator (C1) in the Petlyuk arrange-

ment (Figure D.2), there is zero external heat exchange between the
prefractionator column sections and the succeeding columns. This can be
obtained also with a conventional prefractionator column by superheating the top

_| .CynCl
All heat duty from 9="L1 7D

condensation used \

for superheating

B
F.z
C1
D
Cc22 c22
.4
All required reboiler
heat duty from
subcooling B ﬁ—b B
quBCl/BC1
Figure D.1: Figure D.2:
Computational equivalent to Petlyuk arrangement

the Petlyuk arrangement
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product and sub cooling the bottom product with the exact heat duties removed in
the condenser and supplied in the reboiler. We consider ideal units with no loss,
and then the conditions at the feed stage of the succeeding columns will be iden-
tical to the directly coupled configuration.

A characteristic of the optimal solution of a generalized Petlyuk arrangement is
that every column operates at its local preferred split. This is utilized in the fol-
lowing practical procedure for determination of all Petlyuk arrangement streams
based on simulations of the equivalent arrangement:

1. Configure the equivalent arrangement (Figure D.1) in a process simulator.

2. Specify close to preferred split in the prefractionator by specifying small
recoveries (or compositions) of the light component in the bottom and the
heavy component in the top.

3. In columns, C21 and C22 apply the final product specifications. Adjust the
impurity specifications (the light and heavy components) in the top of C22
and bottom of C21 until the sum fulfils the requirements to the sidestream.

4. The flow rates into the directly coupled prefractionator of a Petlyuk
arrangement are simply determined by the change in flow rates through the
feed stages in C21 and C22 of the equivalent arrangement.

5. The boilup rate in the Petlyuk arrangement is determined by the vapour
rates through C21 and C22. By comparing the heat duties in the condenser
of C22 and reboiler of C21, itis simple to determine the boilup requirement
in a single main column. If the condenser duty of C22 is largest, the heat
duty in the reboiler of C22 will also be the required heat duty in the reboiler
of the Petlyuk arrangement. Otherwise we either have to supply the differ-
ence at the feed stage, or increase the boilup in C22 until the duties
becomes equal.

The solution obtained in this manner will be very close to the optimal solution of
the Petlyuk arrangement.

Recall that we only need two specifications in each of the columns in the equiva-
lent arrangement. The system is trivially solved without the need for any
optimization procedure and there are no recycle streams between the columns that
may give complications to simulation solvers.

Note that we also find which of the columns C21 or C22 that determine the
requirement for the boilup in the Petlyuk arrangement with a single reboiler and
condenser. If the difference is large, we may consider a Petlyuk arrangement with
a suitable heat exchange at the sidestream stage.
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We may of course configure a Petlyuk column model from the beginning, and
apply an available optimizer to find the minimum energy solution. However, the

result from the procedure above will provide an excellent initialization. Note also

that the quite steep solution surfaces and flat optimality regions may give numer-
ical problems in some optimization solvers.

Stage design can also be based in the equivalent model in Figure D.1. Remember
to use the corrected feed quality) (o each column. The stage requirement in
directly coupled section will be a bit lower than for sections with its own reboiler
and condenser. This is due to that we do not have any remix-zones close to the
column ends when the arrangement is operated at the optimum.
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