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headspace concentration, the heat of sublimation can
be determined for various compounds.

Derivatization procedures carried out on crude
samples can produce materials with improved subli-
mation characteristics. This technique has been used
to produce volatile compounds of lanthanides and
actinides which have then been sublimed prior to
analytical determinations. Derivatives have been
made using B-diketones (hexafluoroacetylacetone or
acetylacetone), benzoyltrifluoroacetone and thenoyl-
trifluoroacetonates.

Low-temperature sublimation, which in some cir-
cumstances is termed freeze-drying, has been used to
separate water, as ice, from biological fluids such as
serum, urine or saliva. The technique has been parti-
cularly useful in paediatric cases where sample volumes
are extremely low. Determinations have then been ac-
complished using IR spectroscopy or mass spectro-
metry. Preparation of physiological samples for deter-
mination of deuterium oxide has included sublimation
techniques prior to spectrophotometric determinations.

Low-temperature sublimation has been used to pre-
pare samples for cryo-scanning electron microscopy
(SEM) analysis in order to examine herbicide particles
in a water suspension. The sublimation of herbicide-
containing frozen water droplets provides a suitable
etching of the surface for the SEM technique.

High-temperature sublimations are often the
methods of choice in sample preparations from min-
eral ores, particularly in the case of trace enrichment
of noble metals and the actinides and lanthanides
prior to activation methods. Temperatures of 800
1200°C are typical. The procedure is carried out in
silica tubes with entrainment gases, for example air or
argon, being used to increase the sublimation process.

Polycyclic aromatic compounds have been separ-
ated using sublimation techniques from a variety of
samples including coal, solids derived from oil, coal
and petroleum processing, and residues (soots) result-
ing from the use of such fossil fuels.
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Introduction

Distillation is a very old separation technology for
separating liquid mixtures that can be traced back to

A variety of miscellaneous applications have
been developed for separation from difficult matrices
and purification of specific materials. These include:

e Mercury separated from impurities by conversion
to its iodide followed by sublimation.

e Isolation of proazulene and chamomile from the
flower heads of plants.

e Isolation of aroma compounds from wheat and rye
samples prior to determination using isotope dilu-
tion methods.

e Determination of tin in casserite.

e Selective sublimation of molybdenum and tung-
sten.

"Sublimation is used in some procedures for the
preparation of samples for SEM in which gold is
sublimed in vacuum from a heated tungsten filament
to the sample being examined.

See also: ll/Distillation: Freeze-Drying.
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the chemists in Alexandria in the first century AD.
Today distillation is the most important industrial
separation technology. It is particularly well suited
for high purity separations since any degree of
separation can be obtained with a fixed energy con-
sumption by increasing the number of equilibrium
stages.

To describe the degree of separation between two
components in a column or in a column section, we
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introduce the separation factor:

S — (o /2t 1]

(1 /x11)p

where x denotes mole fraction of a component, sub-
script L denotes light component, H heavy component,
T denotes the top of the section, and B the bottom.

It is relatively straightforward to derive models of
distillation columns based on almost any degree
of detail, and also to use such models to simulate
the behaviour on a computer. However, such simula-
tions may be time-consuming and often provide
limited insight. The objective of this article is to
provide analytical expressions that are useful for
understanding the fundamentals of distillation and
which may be used to guide and check more detailed
simulations:

1. minimum energy requirement and corresponding
internal flow requirements

2. minimum number of stages

3. simple expressions for the separation factor

The derivation of analytical expressions requires the
assumptions of:

1. equilibrium stages
2. constant relative volatility
3. constant molar flows

These assumptions may seem restrictive, but they are
actually satisfied for many real systems, and in any
case the resulting expressions yield invaluable in-
sights, also for systems where the approximations do

not hold.

Saturated vapour leaving the stage
with equilibrium mole fraction y
and molar enthalpy h, (T, x}

Fundamentals

The Equilibrium-Stage Concept

The equilibrium (theoretical)-stage concept (Fig-
ure 1) is central in distillation. Here we assume va-
pour-liquid equilibrium (VLE) on each stage and that
the liquid is sent to the stage below and the vapour to
the stage above. For some trayed columns this may be
a reasonable description of the actual physics, but it is
certainly not for a packed column. Nevertheless, it is
established that calculations based on the equilib-
rium-stage concept (with the number of stages ad-
justed appropriately) fits data from most real columns
very well, even packed columns.

One many refine the equilibrium stage concept, e.g.
by introducing back-mixing or a Murphee efficiency
factor for the equilibrium, but these ‘fixes” often have
relatively little theoretical justification, and are not
used in this article.

For practical calculations, the critical step is usu-
ally not the modelling of the stages, but to obtain
a good description of the VLE. In this area there has
been significant advances in the last 25 years, espe-
cially after the introduction of equations of state for
VLE prediction. However, here we will use simpler
VLE models (constant relative volatility) which apply
to relatively ideal mixtures.

Vapour-Liquid Equilibrium

In a two-phase system (PH = 2) with N, nonreacting
components, the state is completely determined by
N. degrees of freedom ( f), according to Gibb’s phase
rule:

f=N.+2—PH 2]

Liquid entering the stage (x_ ... h ;)

Vapour entering the stage (yy ;,, b, .}

Vapour phase

Perfect mixing
in each phase

Liquid phase

Saturated liquid leaving the stage

Figure 1

with equilibrium mole fraction x
and enthalpy h (T, x)

Equilibrium-stage concept.
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If the pressure (P) and N, — 1 liquid compositions or
mole fractions (x) are used as degree of freedom, then
the mole fractions (y) in the vapour phase and the
temperature (T) are determined, provided that two
phases are present. The general VLE relation can then
be written:

[V, 2+ Yne-15 T :f(Pa X1y X evv Xne—1)

y, T) = £ (P, x) (3]

Here we have introduced the mole fractions x and y in
the liquid and vapour phases respectively, and we
trivially have ¥7_ 2, =1l and ¥_, 5, = 1.

In ideal mixture$, the VLE can be derived from
Raoult’s law which states that the partial pressure
p: of a component (i) in the vapour phase is propor-
tional to the vapour pressure (p?) of the pure compon-
ent (which is a function of temperature only:
p? = p?(T)) and the liquid mole fraction (x;):

pi = x;p(T) (4]

For an ideal gas, according to Dalton’s law, the par-
tial pressure of a component is proportional to the
mole fraction p; =y,P and since the total pressure

P=p,+p+ - +on. =%, 0i=Y,; x:p(T) we derive:

P mplT
y =l = ST ]
¥ % pH(T)

The following empirical formula is frequently used to
compute the pure component vapour pressure:

oo b ¢
lnp(T)~a+C+T+dln(T)+eT [6]

The coefficients are listed in component property
databases. The case with d =e=0 is called the
Antoine equation.

K-values and Relative Volatility

The K-value for a component i is defined as:
K; = y;/x;. The K-value is sometimes called the equi-
librium constant, but this is misleading as it depends
strongly on temperature and pressure (or composi-
tion).

The relative volatility between components i and
i is defined as:

_ (/1) _ A

“ = e K

[7]

For ideal mixtures that satisfy Raoult’s law we have:

v (y/x) _ K pi(T)
U)K pi(T)

(8]

Here p2(T) depends on temperature so the K-values
will actually be constant only close to the column
ends where the temperature is relatively constant. On
the other hand, the ratio p{(T)/p{(T) is much less
dependent on temperature, which makes the relative
volatility very attractive for computations. For ideal
mixtures, a geometric average of the relative volatil-
ities for the highest and lowest temperature in the
column usually gives sufficient accuracy in the com-
putations: o; = /% rop * %ijbotcom:

We usually select a common reference component
r (usually the least volatile or heavy component), and

define:

o = oy = p{(T)/p2(T) [9]
The VLE relationship (eqn [5]) then becomes:

o

Z X5
i

Yi

For a binary mixture we usually omit the component
index for the light component, i.e. we write x = x;
(light component) and x, =1 — x (heavy compon-
ent). Then the VLE relationship becomes:

o
y_l—i-(oc—l)x (1]
This equilibrium curve is illustrated in Figure 2.

The difference y — x determines the amount of
separation that can be achieved on a stage. Large
relative volatilities imply large differences in boiling
points and easy separation. Close boiling points im-
ply relative volatility closer to unity, as shown below
quantitatively.

Estimating the Relative Volatility from
Boiling Point Data

The Clapeyron equation relates the vapour pressure
temperature dependency to the specific heat of vapor-
ization (AH"?) and volume change between liquid
and vapour phase (AV'*):

dp°(T)  AH™(T)
dT ~— TAV*(T)

[12]
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<

Mole fraction
of light component
in vapour phase

Increasing o

Y

Mole fraction

of light component
in liguid phase

Figure 2 VLE for ideal binary mixture: y = ax/1 + (@ — 1)x.

If we assume an ideal gas phase, and that the gas
volume is much larger than the liquid volume, then
AV ~ RT/P, and integration of Clapeyron’s equa-
tion from temperature Ty; (boiling point at pressure
P.) to temperature T (at pressure py) gives, when
AH®P is assumed constant:

R \Ty

(-2
vap
Inp? ~ (Ai <i> +In Pref> + + [13]

This gives us the Antoine coefficients:
a, = (AH{™/R) (1/Ty) + In P, by = -AH{*"/R, ¢; = 0.
In most cases P = 1 atm. For an ideal mixture that
satisfies Raoult’s law we have o; = p(T)/p{(T) and
we derive:

_AH™ 1 AH™ 1
TR T, R T,

AHiVap _ AH}/ap
RT

[14]

In «

We see that the temperature dependency of the rela-
tive volatility arises from different specific heats of
vaporization. For similar values (AH* ~ AH}*®), the
expression simplifies to:

AH?* T.. — T, —
_ MY where T, = TyTy [15]
RT, T,
H_)
B

Ino; &

Here we may use the geometric average also for the
heat of vaporization:

AR*? = /AH(Ty) - AH;(Ty)

This results in a rough estimate of the relative volatil-
ity o, based on the boiling points only:

R AHP
oy v PTiTToTe where f = RT
B

[16]

If we do not know AH"™, a typical value § ~ 13 can
be used for many cases.

Example For methanol (L) and #n-propanol (H),
we have Ty =337.8K and Tpy=370.4K and
the heats of vaporization at their boiling
points are 35.3 and 41.8kJmol™' respectively.

Thus Ty =./337.8 - 370.4 =354K and AH™ =
/353 - 41.8 =38.4. This gives B =AH"™/RTy =
38.4/(8.83 - 354) = 13.1 and o x P! " 26354 £ 3.34
which is a bit lower than the experimental value.

Material Balance on a Distillation Stage

Based on the equilibrium-stage concept, a distillation
column section is modelled as shown in Figure 3.
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Figure 38 Distillation column section modelled as a set of con-
nected equilibrium stages.

Note that we choose to number the stages starting
from the bottom of the column. We denote L, and
V, as the total liquid and vapour molar flow rates
leaving stage n (and entering stages # — 1 and n + 1,
respectively). We assume perfect mixing in both
phases inside a stage. The mole fraction of species 7 in
the vapour leaving the stage with V, is y,,, and the
mole fraction in L, is x;,.

The material balance for component 7 at stage
n then becomes (in mol s ™):

dN;,

Lx —
dt ( l'lxl,l'l

= (Ln+1xi,n+1 - Vnyi,n) - Vn*lyi,n—l)

[17]

where N, is the number of moles of component 7 on
stage 7. In the following we will consider steady-state
operation, i.e: dN;,/dt = 0.

It is convenient to define the net material flow
(w;) of component ¢/ upwards from stage # to n + 1
(mol s 1):

Win = ViVin — Lov1%in 41 [18]
At cteacdy state, this net flow has to be the same
through all stages in a column section, i.e. w;, =
Win 41 = Wi

The material flow equation is usually rewritten to
relate the vapour composition (y,) on one stage to the
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liquid composition on the stage above (x, | ):
Ln +1
= T Xin+1 T W 19
Y, y, et Ty [19]

The resulting curve is known as the operating line.
Combined with the VLE relationship (equilibrium
line), this enables us to compute all the stage com-
positions when we known the flows in the system.
This is illustrated in Figure 4, and forms the basis of
McCabe-Thiele approach.

Assumption about Constant Molar Flows

In a column section, we may very often use the as-
sumption about constant molar flows. That is, we
assume L,=L,,;=L(mols™!) and V,_,=V,=
V(mols™!). This assumption is reasonable for
ideal mixtures when the components have similar
molar heats of vaporization. An important
implication is that the operating line is then a straight
line for a given section, i.e. y;, = (L/V)xi, 1 + wi/V.
This makes computations much simpler since the
internal flows (L and V) do not depend on composi-
tions.

The Continuous Distillation Column

We study here the simple two-product continuous
distillation column in Figure 5. We will first limit
ourselves to a binary feed mixture, and the compon-
ent index is omitted, so the mole fractions (x, vy, z)
refer to the light component. The column has N equi-
librium stages, with the reboiler as stage number 1.
The feed with total molar flow rate F(mols™!) and
mole fraction z enters at stage Np.

The section above the feed stage is denoted the
rectifying section, or just the top section, and the
most volatile component is enriched upwards to-
wards the distillate product outlet (D). The strip-
ping section, or the bottom section, is below the
feed, in which the least volatile component is
enriched towards the bottoms product outlet (B).
(The least volatile component is stripped out.) Heat is
supplied in the reboiler and removed in the conden-
ser, and we do not consider any heat loss along the
column.

The feed liquid fraction g describes the changes in
liquid and vapour flow rates at the feed stage:

AVy=(1—q)F
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(1) VLE: y = f(x)

(2) Material balance
operating line
y=(L/V)x+w/V

|
|
!
|
|
|
|
5
|
|
|
I
|
]

> X

Figure 4 Combining the VLE and the operating line to compute mole fractions in a section of equilibrium stages.

The liquid fraction is related to the feed enthalpy (hbz)
as follows:

> 1 Subcooled liquid
=1 Saturated liquid
= }%“H_"_"’!ﬁ ={0<g<1 Liquid and vapour
=0 Saturated vapour
<0 Superheated vapour
(21]

When we assume constant molar flows in each sec-
tion, we get the following relationships for the flows:

Vi=Vy+ (1 —9q)F

LBZLT+qF

[22]
DZVT—LT
B:LB—VB

Degrees of Freedom in Operation of a Distillation
Column

With a given feed (F, z and g), and column pressure
(P), we have only 2 degrees of freedom in operation of
the two-product column in Figure 5, independent of
the number of components in the feed. This may be
a bit confusing if we think about degrees of freedom
as in Gibb’s phase rule, but in this context Gibb’s rule

does not apply since it relates the thermodynamic
degree of freedom inside a single equilibrium stage.

This implies that if we know, for example, the
reflux (L) and vapour (V3) flow rate into the column,
all states on all stages and in both products are com-
pletely determined.

External and Internal Flows

The overall mass balance and component mass bal-
ance is given by:

F=D+B
(23]
Fz = Dxp, + By

Here z is the mole fraction of light component in the
feed, and xp, and xy, are the product compositions. For
sharp splits with xp, ~ 1 and xp &~ 0 we then have that
D = zF. In words, we must adjust the product split
D/F such that the distillate flow equals the amount of
light component in the feed. Any deviation from this
value will result in large changes in product composi-
tion. This is a very important insight for practical
operation.

Example Consider a column with z=0.5, %, =
0.99, x5 = 0.01 (all these refer to the mole fraction of
light component) and D/F = B/F = 0.5. To simplify
the discussion set F=1 (mols™'). Now consider
a 20% increase in the distillate D from 0.51 to



Il/DISTILLATION/Theory of Distillation 1123

Condenser
Q,
= D
Stage N - ™ xp
Ly
Ve Ly
Rectifying
section
F X Vi
z = “ " Feed stage N
q =
Stripping
Y Ls | section
Stage 2
K
=
B
Reboiler T X

Figure 5 An ordinary continuous two-product distillation

column.

0.6 (mol s 7'). This will have a drastic effect on com-
position. Since the total amount of light component
available in the feed is z = 0.5 (mol s ™), at least 0.1
(mol s™") of the distillate must now be heavy com-
ponent, so the amount mole faction of light compon-
ent is now at its best 0.5/0.6 = 0.833. In other words,
the amount of heavy component in the distillate will
increase at least by a factor of 16.7 (from 1% to
16.7%).

Thus, we generally have that a change in external
flows (D/F and B/F) has a large effect on composi-
tion, at least for sharp splits, because any significant
deviation in D/F from z implies large changes in
composition. On the other hand, the effects of
changes in the internal flows (L and V) are much
smaller.

McCabe—-Thiele Diagram (Constant Molar Flows,
but any VLE)

The McCabe-Thiele diagram where y is plotted as
a function x along the column provides an insightful
graphical solution to the combined mass balance (op-
eration line) and VLE (equilibrium line) equations. It
is mainly used for binary mixtures. It is often used to

find the number of theoretical stages for mixtures
with constant molar flows. The equilibrium relation-
ship y, = f (x,) (y as a function of x at the stages) may
be nonideal. With constant molar flow, L and V are
constant within each section and the operating lines
(y as a function of x between the stages) are straight.
In the top section the net transport of light compon-
ent w = xpD. Inserted into the material balance
eqn [19] we obtain the operating line for the top
section, and we have a similar expression for the
bottom section:

L
Top: y, = <T7>T(xn +1— Xp) +xp

[24]
L

Bottom: y, = (T/) (%5 4+1 — XxB) + X3
B

A typical McCabe-Thiele diagram is shown in
Figure 6.

The optimal feed stage is at the intersection of the
two operating lines and the feed-stage composition
(xg, ¥5) is then equal to the composition of the flashed
feed mixture. We have that z = gx + (1 — q)yp. For
g =1 (liquid feed) we find x; = z and for g = 0 (va-
pour feed) we find y; = z (in the other cases we must
solve the equation together with the VLE). The pinch,
which occurs at one side of the feed stage if the feed is
not optimally located, is easily understood from the
McCabe-Thiele diagram, as shown in Figure 8 (see
below).

Typical Column Profiles — Pinch

An example of a column composition profile is shown
in Figure 7 for a column with z=0.5, «=1.5,
N = 40, N = 21 (counted from the bottom, includ-
ing the reboiler), yp, = 0.90, x3 = 0.002. This is a case
where the feed stage is not optimally located, as seen
from the presence of a pinch zone (a zone of constant
composition) above the stage. The corresponding
McCabe-Thiele diagram is shown in Figure 8. We see
that the feed stage is not located at the intersection of
the two operating lines, and that there is a pinch zone
above the feed, but not below.

Simple Design Equations

Minimum Number of Stages — Infinite Energy

The minimum number of stages for a given separ-
ation (or equivalently, the maximum separation for
a given number of stages) is obtained with infinite
internal flows (infinite energy) per unit feed. (This
always holds for single-feed columns and ideal
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: VLE y= f(x)
1‘. = -
7 [}
2
7 Condenser
; Py
7 I
Farf==s 55 5 , Top section operating line
1 / y=x : slope (L;/V5)
Bottom section I\ ~ ~Optimal feed-
operating line | X stage location |
slope (Lg/V3) | / | N\ . .
y I/ | @———— | Theintersection of the
y; \ | operating lines is found
ya | | | alongthe g-line
% b | Slope g/(g-1)
’ | | |
/
I l I
¥~ Reboiler | | [
T 1 -
0 )'(B X 2 ;‘D !

Figure 6 McCabe-Thiele diagram with an optimally located feed

mixtures, but may not hold, for example, for extrac-
tive distillation with two feed streams.)

With infinite internal flows (total reflux) L,/F = oo
and V,/F =c0, a material balance across any part of
the column gives V, = L, , 1, and similarly a material
balance for any component gives V,y, = L, 1 1%, 4 1.
Thus, y, = x, . 1, and with constant relative volatility

we have:

_ Vi / Xin _ Xin+1 [XLn
YH,a! XHn XHn+ 1/ XHn

For a column or column section with N stages, re-
peated use of this relation gives directly Fenske’s

[25]

10 ==
0.9 - s
> ~
Y
0.8 ‘.
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A Y
0.7 - \
*
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c 06} z=050 '
g g=1.00
Eosf %=—4201
2 oal o =0.1000
- Xg = 0.0020 1
\
0.3 | %
N
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0.2 \
\\
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0 1 1 | 1
0 5 10 15 20 25 30 35 40
Bottom Stages Top

Figure 7 Composition profile (x, x.) for case with nonoptimal feed location. Continuous line, light key; dashed line, heavy key.
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Figure 8 McCabe-Thiele diagram for the same example as shown in Figure 7. Observe that the feed stage location is not optimal.

formula for the overall separation factor:

SEIER

For a column with a given separation, this yields
Fenske’s formula for the minimum number of stages:

[26]

InS

Npin = 1
In o

i [27]
These Fenske expressions do not assume constant
molar flows and apply to the separation between any
two components with constant relative volatility.
Note that although a high purity separation (large S)
requires a larger number of stages, the increase is only
proportional to the logarithm of the separation fac-
tor. For example, increasing the purity level in a prod-
uct by a factor of 10 (e.g. by reducing xgy from
0.01 to 0.001) increases N, by about a factor of
In 10 =2.3.

A common rule of thumb is to select the actual
number of stages N = 2N, (or even larger).

Minimum Energy Usage — Infinite Number of Stages

For a given separation, an increase in the number of
stages will yield a reduction in the reflux (or equiva-

lently in the boil-up). However, as the number of
stages approaches infinity, a pinch zone develops
somewhere in the column, and the reflux cannot be
reduced further. For a binary separation the pinch
usually occurs at the feed stage (where the material
balance line and the equilibrium line will meet), and
we can easily derive an expression for the minimum
reflux with N =c0. For a saturated liquid feed
(g = 1) (King’s formula):

"Lp — %'pp F

L =
T o—1

(28]
where 7 = xpD/zF is the recovery fraction of light
component, and 7y, of heavy component, both in the
distillate. The value depends relatively weakly on the
product purity, and for sharp separations (where
rop = land ryyp = 0), we have Ly, = F/(a — 1). Ac-
tually, eqn [28] applies without stipulating constant
molar flows or constant o, but then L, is the liquid
flow entering the feed stage from above, and « is the
relative volatility at feed conditions. A similar expres-
sion, but in terms of Vj_ entering the feed stage from
below, applies for a saturated vapour feed (g = 0)
(King’s formula):

Typ — %rLp
VB = —F

x—1 129]
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For sharp separations we get Vj,.= F/(a —1). In
summary, for a binary mixture with constant molar
flows and constant relative volatility, the minimum
boil-up for sharp separations is:

1

Feed liquid, g =1: Vj,.. = —1F +D

. [30]
Feed vapour,qg =0: V.. = —1F
o —

Note that minimum boil-up is independent of the
product purity for sharp separations. From this we
establish one of;the key properties of distillation: we
can achieve any product purity (even infinite separ-
ation factor) with a constant finite energy (as long as
it is higher than the minimum) by increasing the
number of stages.

Obviously, this statement does not apply to azeo-
tropic mixtures, for which « = 1 for some composi-
tions but we can get arbitrarily close to the azeotropic
composition, and useful results may be obtained in
some cases by treating the azeotrope as a pseudo-
component and using o for this pseudo-separation.

Finite Number of Stages and Finite Reflux

Fenske’s formula § = o applies to infinite reflux

(infinite energy). To extend this expression to real

columns with finite reflux we will assume constant

molar flows and consider three approaches:

1. Assume constant K-values and derive the Kremser
formulas (exact close to the column end for a high
purity separation.)

2. Assume constant relative volatility and derive the
following extended Fenske formula (approximate
formula for case with optimal feed-stage location):

Ly Ve
L/ Vi)™

Here Ny is the number of stages in the top section
and Nj in the bottom section.

3. Assume constant relative volatility and derive
exact expressions. The most used are the Under-
wood formulas which are particularly useful for
computing the minimum reflux (with infinite
stages).

Constant K-Values — Kremser Formulas

For high purity separations most of the stages are
located in the corner parts of the McCabe-Thiele
diagram where, according to Henry’s law, we may
approximate the VLE relationship, even for nonideal
mixtures, by straight lines:

Bottom of column:

y. = Hyx; light component; x; — 0)

Top of column:

yu = Hypey heavy component; xy — 0)

where H is Henry’s constant. (For the case of constant
relative volatility, Henry’s constant in the bottom is
H; = « and in the top is Hy; = 1/a.) Thus, with con-
stant molar flows, both the equilibrium and
mass-balance relationships are linear, and the result-
ing difference equations are easily solved analytically.
For example, at the bottom of the column we derive
for the light component:

Xip+1 = (Ve/Le)Hixr, + (B/Lp)xp

=sx n + (1 — Vy/Lp)xip [31]
where s = (Vp/Lg)H; > 1 is the stripping factor. Re-
peated use of this equation gives the Kremser formula
for stage Ny from the bottom (the reboiler would here
be stage zero):

Xy = g1 + (1= Va/Lg)(1 — s7/(s — 1)]
[32]

(assuming we are in the region where s is constant, i.e.
x; = 0). At the top of the column we have for the
heavy component:

Yin—1 = (Lv/Vi)(1/Hu)yu, + (D/Vr)xup

= ayu,n + (1 — Lt/Vr)xup [33]
where @ = (L1/Vy)/Hy > 1 is the absorption factor.
The corresponding Kremser formula for the heavy
component in the vapour phase at stage Nt counted
from the top of the column (the accumulator in stage
zero) is then:

Yaxe =@ xyp[l + (1 = Ly/Va)(1 —a /(g — 1)]

[34]

(assuming we are in the region where g is constant,
Le. xy ~ 0).

For hand calculations one may use the

McCabe-Thiele diagram for the intermediate com-
position region, and the Kremser formulas at the
column ends where the use of the McCabe-Thiele
diagram is inaccurate.

Example = We consider a column with N = 40,
Npg=21, a=15 2 =05 F=1, D=0.J5,
Vg = 3.206. The feed is saturated liquid and exact
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calculations give the product compositions
xpp = %13 = 0.01. We now want to have a bottom
product with only 1p.p.m. heavy product, i.e.
x5 = l.e — 6. We can use the Kremser formulas to
estimate easily the additional stages needed when we
have the same energy usage, Vg = 3.206. (Note that
with the increased purity in the bottom we actually
get D =0.505.) At the bottom of the column
H, =a=15 and the stripping factor is
s = (Vy/Lg)Hy = (3.206/3.711)1.5 =1.296.

With x5 = 1.e — 6 (new purity) and x; = 0.01
(old purity) we find by solving the Kremser equation
[31] for the top with respect to Nj that Ny = 34.1,
and we conclude that we need about 34 additional
stages in the bottoff (this is not quite enough since the
operating line is slightly moved and thus affects the
rest of the column; using 36 rather than 34 additional
stages compensates for this).

The above Kremser formulas are valid at the col-
umn ends, but the linear approximation resulting
from the Henry’s law approximation lies above the
real VLE curve (it is optimistic), and thus gives too
few stages in the middle of the column. However, if
there is no pinch at the feed stage (i.e. the feed is
optimally located), then most of the states in the
column will be located at the column ends where the
above Kremser formulas apply.

Approximate Formula with Constant Relative
Volatility

We will now use the Kremser formulas to derive an
approximation for the separation factor S. First note
that for cases with high purity products we have
S ~ 1/(x_pxup). That is, the separation factor is
the inverse of the product of the key component
product impurities.

We now assume that the feed stage is optimally
located such that the composition at the feed stage is
the same as that in the feed, i.e. Yy = yue and
XN = X1p- Assuming constant relative volatility and
using Hy = o, Hy =1/, a0 = (yoe/%ee)/(Yup/xue) and
N =Nr;+ Ny + 1 (including total reboiler) then
gives:

LA G
(LB/VB)NB (XuEyLr)

B V)1 —s7%)

c-[1+<1—LB> G 1) }
Ly (1—aiNT)
(-

where:

We know that S predicted by this expression is some-
what too large because of the linearized VLE. How-
ever, we may correct it such that it satisfies the exact
relationship S =0 at infinite reflux (where
Ly/Vs = Vi/Ly = 1 and ¢ = 1) by dropping the factor
1/(xeryrr) (Which as expected is always larger than 1).
At finite reflux, there are even more stages in the feed
region and the formula will further overestimate the
value of S. However, since ¢ > 1 at finite reflux, we
may partly counteract this by setting ¢ = 1. Thus, we
delete the term ¢ and arrive at the final extended
Fenske formula, where the main assumptions are that
we have constant relative volatility, constant molar
flows and that there is no pinch zone around the feed
(i.e. the feed is optimally located):

Ly VT
ST %]
where N = Nt + Nj + 1. Together with the material
balance, Fzz = Dxp + Bxg, this approximate formula
can be used to estimate the number of stages for
column design (instead of e.g. the Gilliand plots), and
also to estimate the effect of changes of internal flows
during column operation. However, its main value is
the insight it provides:

1. We see that the best way to increase the separation
§ is to increase the number of stages.

2. During operation where N is fixed, the formula
provides us with the important insight that the
separation factor § is increased by increasing the
internal flows L and V, thereby making L/V closer
to 1. However, the effect of increasing the internal
flows (energy) is limited since the maximum separ-
ation with infinite flows is § = o™

3. We sce that the separation factor S depends mainly
on the internal flows (energy usage) and only
weakly on the split D/F. This means that if we
change D/F then S will remain approximately con-
stant (Shinskey’s rule), that is, we will get a shift in
impurity from one product to the other such that
the product of the impurities remains constant.
This insight is very useful.

Example Consider a column with xpy = 0.01 (1%
heavy in top) and xz; = 0.01 (1% light in bottom).
The separation factor is then approximately
§=0.99x0.99/(0.01 x0.01) =9801. Assume we
slightly increase D from 0.50 to 0.51. If we assume
constant separation factor (Shinskey’s rule), then we
find that xpy changes from 0.01 to 0.0236 (heavy
impurity in the top product increases by a factor 2.4),
whereas xp; changes from 0.01 to 0.0042 (light
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impurity in the bottom product decreases by a factor
2.4). Exact calculations with column data: N = 40,
Np=21, a=15 z=05 F=1, D=0J,
L./F = 3.206, given that xp changes from 0.01 to
0.0241 and xp; changes from 0.01 to 0.0046
{(separation factor changes from §=9801 to
8706). Thus, Shinskey’s rule gives very accurate pre-
dictions.

However, the simple extended Fenske formula also
has shortcomings. First, it is somewhat misleading
since it suggests that the separation may always be
improved by transferring stages from the bottom to
the top section if (L/Vy) > (Vy/Lg). This is not gener-
ally true (and is not really ‘allowed’ as it violates the
assumption of Sptimal feed location). Second, al-
though the formula gives the correct limiting value
S = o for infinite reflux, it overestimates the value of
S at lower reflux rates. This is not surprising since at
low reflux rates a pinch zone develops around the

feed.

Example Consider again the column with N = 40,
Npe=21, a=15, =z=05 F=1, D=0.J5;
Lt =2.706. Exact calculations based on these data
give xyp = x5 = 0.01 and § = 9801. On the other
hand, the extended Fenske formula with Nt = 20 and
Ng = 20 yields:

0.34
=16586000 XTAS

(2.7606/3.206)*°
(3.706/3.206)*

=30774

S=1.5"x

corresponding to xyp = x5 = 0.0057. The error may
seem large, but it is actually quite good for such
a simple formula.

Optimal Feed Location

The optimal feed-stage location is at the intersection
of the two operating lines in the McCabe-Thiele
diagram. The corresponding optimal feed-stage com-
position (xg, yg) can be obtained by solving the
following two equations: z = gxz + (1 — g)yr and
ye = axg/(1 + (o0 — 1)xp). For g =1 (liquid feed) we
find x; = z and for g = 0 (vapour feed) we find y; = z
{(in the other cases we must solve a second-order
equation).

There exists several simple short-cut formulas to
estimate the feed point location. One may be derived
from the Kremser equations given above. Divide
the Kremser equation for the top by the one for the
bottom and assume that the feed is optimally located
to derive:

YuF _ XHD 5N~ NB)

XLF  XLB

Ly\™ Lo\ (1—a™™)
(V-r) [”(“VT) <a—1>]

AR Vi) (1 —s )
@) [l n) ey

The last big term is close to 1 in most cases and can be
neglected. Rewriting the expression in terms of the
light component then gives Skogestad’s short-cut for-
mula for the feed stage location:

(1 —yg) XB
a2
Ny — Ny = XF (1 —xp) [36]

In o

where yp and x; at the feed stage are obtained as
explained above. The optimal feed-stage location
counted from the bottom is then:

[N +1— (N — Ny

Np=Np+1=
F B+ 2

[37]

where N is the total number of stages in the column,

Summary for Continuous Binary Columns

With the help of a few of the above formulas it is
possible to perform a column design in a matter of
minutes by hand calculations. We will illustrate this
with a simple example.

We want to design a column for seperating
a saturated vapour mixture of 80% nitrogen (L) and
20% oxygen (H) into a distillate product with 99%
nitrogen and a bottoms product with 99.998% oxy-
gen (mole fractions).

Component data Normal boiling points (at 1 atm):
Ty, = 774K, Ty = 90.2 K, heat of vaporization at
normal boiling points: 5.57k]Jmol™" (L) and
6.82 k] mol ' (H).

The calculation procedure when applying the
simple methods presented in this article can be done
as shown in the following steps:

1. Relative volatility: The mixture is relatively
ideal and we will assume constant relative vola-
tility. The estimated relative volatility at 1 atm
based on the boiling points is Ilna=
(AH**/RTy) (T — Tor)/Ty] ~ where  AH™ =
JVS5.57 - 6.82 =616k mol™!, T, =./TyuTy =
83.6K and Ty — Ty = 90.2 — 77.7 = 18.8. This
gives (AH™)/(RT,) = 8.87 and we find « ~ 3.89
(however, it is generally recommended to obtain
o from experimental VLE data).

2. Product split: From the overall material balance
we get D/F = (z — xg)/(xxp — x) = (0.8 — 0.00002)/
(0.99 — 0.00002) = 0.808.
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3. Number of stages: The separation factor is
S =1(0.99x0.99998)/(0.01 x 0.00002) =4 950 000,
i.e. In S = 15.4. The minimum number of stages
required for the separation is N, =
In §/In o = 11.35 and we select the actual number
of stages as N =23 ( = 2N_.).

4. Feed-stage location: With an optimal feed location
we have at the feed stage (g = 0) that y, = z; =
0.8 and xp = yg/lot — (& — L)ye) = 0.507. Skoges-
tad’s approximate formula for the feed-stage loca-
tion gives:

B (1 —y5) Xp
NT—NB—ln<|: o }|:(1_xD):|>/(lnoc)
</ 0.2 0.00002
=In ([o.sw} ~ [ 0.01 D/l'%g

= —5.27

corresponding to the feed stage Ny = [N + 1 —
(Nt — Np)l/2 =(23 +1+5.27)/2 = 14.6.

5. Energy usage: The minimum energy usage for
a vapour feed (assuming sharp separation) is
Vi F = 1/{a — 1) = 1/2.89 = 0.346. With the
choice N = 2N,,;,,, the actual energy usage (V) is
then typically about 10% above the minimum
(Vi) 1-€. V/F is about 0.38.

This concludes the simple hand calculations. Note
again that the number of stages depends directly on
the product purity (although only logarithmically),
whereas for well-designed columns (with a sufficient
number of stages) the energy usage is only weakly
dependent on the product purity.

Remark 1 The actual minimum energy usage is
slightly lower since we do not have sharp separations.
The recovery of the two components in the bottom
product is 7 = (yzB)/(zpF) = 0.9596 and ry =
(2n1pB)/(zpF) & 0, so from the formulas given earlier
the exact value for nonsharp separations is
Voin/F = (0.9596 — 0.0 x 3.89}/(3.89 — 1) = 0.332.

Remark 2 For a liquid feed we would have to use
more energy, and for a sharp separation:

Viio/ F = 1/{e — 1) + D/F = 0.346 + 0.808 = 1.154

Remark 3 We can check the results with exact
stage-by-stage calculations. With N =23, Ny =13
and « = 3.89 (constant), we find V/F = 0.374, which
is about 13% higher than V;, = 0.332.

Remark 4 A simulation with more rigorous VLE
computations, using the Soave-Redlich-Kwong
(SRK) equation of state, has been carried out using
the HYSYS (Hypnotech Ltd.) simulation package.

The result is a slightly lower vapour flow due to
a higher relative volatility (« in the range 3.99-4.26
with an average of 4.14). More precisely, a simula-
tion with N =23, Ny = 15 gave V/F = 0.291, which
is about 11% higher than the minimum value
Viia = 0.263 found with a very large number of
stages (increasing N > 60 did not give any significant
energy reduction below V). The optimal feed stage
(with N = 23) was indeed found to be N = 15.

Thus, the results from HYSYS confirm that a col-
umn design based on the very simple short-cut
methods is very close to results from much more
rigorous computations.

Multicomponent Distillation —
Underwood’s Methods

We present here the Underwood equations for multi-
component distillation with constant relative volatil-
ity and constant molar flows. The analysis is based on
considering a two-product column with a single feed,
but the usage can be extended to all kinds of column
section interconnections.

It is important to note that adding more compo-
nents does not give any additional degrees of freedom
in operation. This implies that for an ordinary two-
product distillation column we still have only two
degrees of freedom, and thus we will only be able to
specify two variables, e.g. one property for each prod-
uct, Typically, we specify the purity (or recovery) of
the light key in the top and of the heavy key in the
bottom (the key components are defined as the com-
ponents between which we are performing the split).
The recoveries for all other components and the inter-
nal flows (L and V) will then be completely deter-
mined.

For a binary mixture with given products, as we
increase the number of stages, there develops a pinch
zone on both sides of the feed stage. For a multicom-
ponent mixture, a feed region pinch zone only devel-
ops when all components distribute to both products,
and the minimum energy operation is found for a par-
ticular set of product recoveries, sometimes denoted
as the preferred split. If all components do not distrib-
ute, the pinch zones will develop away from the feed
stage. Underwood’s methods can be used in all these
cases, and are especially useful for the case of infinite
number of stages.

The Basic Underwood Equations

The net material transport {w;) of component ¢ up-
wards through a stage # is:

[38]

w; = Vnyi‘n - Ln + lxi,n +1
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Note that w; is always constant in each column
section. We will assume constant molar flows
(L=L,=L,—1and V=V, =V, ;) and, assuming
constant relative volatility, the VLE relationship is:

(yi/x)
(/%)

04X

[39]

where o; =

We divide eqn {38] by V, multiply with the factor
oi/(o; — ¢), and take the sum over all components:

(xizxi,n
1 ot T — @) Lo X
- — _ = ] 4
VIG-9 T Yam, Vi-d

The parameter ¢ is free to choose, and the Under-
wood roots are defined as the values of ¢ which make
the left-hand side of eqn [40] unity, i.e.:

o,
i My

[41]
The number of values ¢ satisfying this equation is
equal to the number of components.

Most authors usually use a product composition or
component recovery (r) in this definition, e.g. for the
top (subscript T) section or the distillate product
(subscript D):

w; = wir = w;p = Dx;p = ripziF [42]
but we prefer to use w since it is more general. Note
that use of the recovery is equivalent to using net
component flow, but use of the product composition
is only applicable when a single product stream is
leaving the column. If we apply the product recovery,
or the product composition, the defining equation for
the top section becomes:

Stage-to-Stage Calculations

With the definition of ¢ from eqn [41], eqn [40] can
be simplified to:

OiXin

ey

1

Z XX
1

L aixi,n +1

Vzm—w‘

1

[44]

This equation will be valid for any of the Underwood
roots, and if we assume constant molar flows and

divide an equation for ¢, with the one for ¢, the
following expression appears:

2.5 1 +m 02X -
;m—¢g_(my'2m—¢u i
L == b L |4D |

&le,ﬂ +m qll)i -3:1.'\'.“”

i (oG — ) i o — ¢y)

and we note the similarities with the Fenske and
Kremser equations derived earlier. This relates the
composition on a stage (n) to a composition on an-
other stage (n + m). The number of independent
equations of this kind equals the number of Under-
wood roots minus 1 (since the number of equations of
the type as in eqn [44] equals the number of Under-
wood roots), but in addition we also have ¥ x; = 1.
Together, this is a linear equation system for comput-
ing x;, . when x;, is known and the Underwood
roots are computed from eqn [41].

Note that so far we have not discussed minimum
reflux (or vapour flow rate), thus these equations hold
for any vapour and reflux flow rates, provided that the
roots are computed from the definition in eqn [41].

Some Properties of the Underwood Roots

Underwood showed a series of important properties
of these roots for a two-product column with a re-
boiler and condenser. In this case all components
flows upwards in the top section (w;r>0), and
downwards in the bottom section (w;5 < 0). The
mass balance yields: wip=w;r —w;y where
w;y = Fz;. Underwood showed that in the top section
(with N, components) the roots {¢) obey:
o >y >0 > hy > 03> e > oy, > P

And in the bottom section (where w;, = w;3 < 0) in
general we have a different set of roots denoted
(¥) computed from Vp=Y;[eawip/{o — )] =
Yilosl —rip)zi/(o — )] = Yilou( — (1 — 7ip))zi/ (o — )]
which obey:

Wi > > >0 > s >0 > e >y, > o,
Note that the smallest root in the top section is
smaller than the smallest relative volatility, and the
largest root in the bottom section is larger than the
largest volatility. It is easy to see from the defining
equations that Vi—oo=¢ -« and similarly
Vi oo =y > .

When the vapour flow is reduced, the roots in the
top section will decrease, while the roots in the bot-
tom section will increase, but interestingly Under-
wood showed that ¢, > ¥, . ;. A very important result
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by Underwood is that for an infinite number of stages
Vo Vi =i > i 41

Then, at minimum reflux, the Underwood roots for
the top (¢) and bottom (i) sections coincide. Thus, if
we denote the common roots (#), and recall that
Vi — Vg = (1 — g)F, we obtain the following equa-
tion for the common roots (#) by subtracting the
defining equations for the top and bottom sections:

i

(o — 0)

1-q) =%

i

[46]

We call this expression the feed equation since only
the feed properties (g and z) appear. Note that this is
not the equation which defines the Underwood roots
and the solutions (#) apply as roots of the defining
equations only for minimum reflux conditions
(N =o0). The feed equation has N, roots (but one of
these is not a common root) and the N, — 1 common
roots obey: o, >0, > >0, > - > 00 _1 > .
Solution of the feed equation gives us the possible
common roots, but all pairs of roots (¢; and ¥; .. ;) for
the top and bottom section do not necessarily co-
incide for an arbitrary operating condition. We illus-
trate this with the following example.

Example Assume we start with a given product split
(D/F) and a large vapour flow (V/F). Then only one
component 7 (with relative volatility ;) can be distri-
buted to both products. No roots are common. Then
we gradually reduce V/F until a second component
7 (this has to be a componentj =i+ 1orj=i—1)
becomes distributed, e.g. for j = i + 1 one set of roots
will coincide: ¢, = ¥, , ; = 0,, while the others do not.
As we reduce V/F further, more components become
distributed and the corresponding roots will coincide,
until all components are distributed to both products,
and then all the N, — 1 roots from the feed equation
also are roots for the top and bottom sections.

An important property of the Underwood roots is
that the value of a pair of roots which coincide
(e.g. when ¢; = ;.1 = 6;) will not change, even if
only one, two or all pairs coincide. Thus all the
possible common roots are found by solving the feed
equation once.

Minimum Energy — Infinite Number of Stages

When we go to the limiting case of infinite number of
stages, Underwood’s equations become very useful.
The equations can be used to compute the minimum
energy requirement for any feasible multicomponent
separation.

Let us consider two cases: first we want to compute
the minimum energy for a sharp split between two
adjacent key components j and j +1 (r,p =1 and

#, 110 = 0). The procedure is then simply:

1. Compute the common root (6;) for which
a; >0, >, from the feed equation: (1 —g) =
Y lazi/(a; — 0)]

2. Compute the minimum energy by applying 0;
to the definition equation:

Vil F = p aizif(a; — 9]’)-

Note that the recoveries

{1f0ri£j
tip = .
. 0fori>j

For example we can derive King’s expressions for
minimum reflux for a binary feed (z. =g,
2y = (1 —2), 0, = &, oy = 1, and liquid feed (g = 1)).
Consider the case with liquid feed (g = 1). We find
the single common root from the feed equation:
0 =0o/(1 +(x—1)z), {observe «>0>1, as ex-
pected). The minimum reflux expression appears as
we use the defining equation with the common root:

LTmin

F F

VTmin D Gri,Dzi _ GVL,DZ

. Orup(l —z)
_F—_Z‘(oc,-—H)_a—G

1-6

and when we substitute for § and simplify, we obtain
King’s expression: Ly, /F = (r.p — argp)/(a — 1).
Another interesting case is minimum energy opera-
tion when we consider sharp split only between the
most heavy and most light components, while all the
intermediates are distributed to both products. This
case is also denoted the preferred split, and in this
case there will be a pinch region on both sides of the
feed stage. The procedure is:

1. Compute all the N. — 1 common roots (6) from
the feed equation.

2. Set rip =1 and ry_p = 0 and solve the following
linear equation set (N, — 1 equations) with respect
to [VT, 7205 73p --- ¥n_—1] (N — 1 variables):

. NL' ar. z.
VT = LR
i§1 (@, — 6,)
Ve 3 iz 47
jgll (ai_ch 1) [47]

Note that, in this case, when we regard the most
heavy and light components as the keys, and all the
intermediates are distributed to both products, King’s
very simple expression will also give the correct
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minimum reflux for a multicomponent mixture (for
q =1 or g =0). The reason is that the pinch then
occurs at the feed stage. In general, the values com-
puted by King’s expression give a (conservative) up-
per bound when applied directly to multicomponent
mixtures. An interesting result which can be seen
from King’s formula is that the minimum reflux at the
preferred split (for g = 1) is independent of the feed
composition and also independent of the relative
volatilities of the intermediates.

However, with the Underwood method, we
also obtain the distribution of the intermediates,
and it is easy to handle any liquid fraction (g) in the
feed.

The proceduse for an arbitrary feasible product
recovery specification is similar to the preferred split
case, but then we must only apply the Underwood
roots (and corresponding equations) with values be-
tween the relative volatilities of the distributing com-
ponents at the limit of being distributed. In cases
where not all components distribute, King’s min-
imum reflux expression cannot be trusted directly,
but it gives a (conservative) upper bound.

Figure 9 shows an example of how the components
are distributed to the products for a ternary (ABC)
mixture. We chose the overhead vapour flow
(V = Vi) and the distillate product flow (D =V — L)
as the two degrees of freedom. The straight lines,

Sharp A/BC split

which are at the boundaries when a component
is at the limit of appearing/disappearing (distri-
bute/not distribute) in one of the products, can be
computed directly by Underwood’s method. Note
that the two peaks (Pxp and Py¢) give us the minimum
vapour flow for a sharp split between A/B and B/C.
The point Ps¢, however, is at the minimum vapour
flow for a sharp A/C split and this occurs for a specific
distribution of the intermediate B, known as the pre-
ferred split.

King’s minimum reflux expression is only valid in
the triangle below the preferred split, while the
Underwood equations can reveal all component re-
coveries for all possible operating points. (The shaded
area is not feasible since reflux and vapour flow rates
have to be positive (V> D, V> (1 —g)F.)

Further Discussion of Specific Issues

The Energy Balance and the Assumption of
Constant Molar Flows

All the calculations in this article are based on the
assumption of constant molar flows in a section, i.e.
Vo=V,.1=Vand L,=L, ., =L. This is a very
common simplification in distillation computations,
and we shall use the energy balance to see when we
can justify it. The energy balance is similar to the

Sharp AB/C split

viF A AB
| |
: AB :
=BC | i > C D
\\__»: PEC 4‘-——'_"'-/
Phg BC
A The preferred split
(sharp A/C split) ABC v L L
ABC g ABC
—=
ABC Fq
AB Pac
BC A
ABC ABC X7
o] I
ABC _ /‘< | 6
- = I
T V=D(L=0) I
i :1 ) Infeasible m1-a
- ‘e D/F
0 1

Figure @ Regions of distributing feed components as a function of V and D for a feed mixture with three components: ABC.
F; represents minimum energy for sharp split between components /and j. For large vapour flow (above the top sawtooth), only one
component distributes. In the triangle below P, all components distribute.
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mass balance, but now we use the molar enthalpy (b)
of the streams instead of composition. The enthalpy is
computed for the actual mixture and will be a func-
tion of composition in addition to temperature (or
pressure). At steady state the energy balance around
stage 7 becomes:

thL,n - Vn—lhv,n—l = Ln+1/7L,n+1 - VnhV,n [48]
Combining this energy balance with the overall
material balance on a stage (V,_,—L,=
V., — L, 1= W where W is the net total molar flow
through a section, i.e. W = D in the top section and
W = B in the bottom section) yields:

=

bV,n—l - hL,n

-1
//"V,n - hL,n +1

WbL,n - bL,n+1

V.=V, [49]

bV,n - bL,n +1

From this expression we observe how the vapour flow
will vary though a section due to variations in heat of
vaporization and molar enthalpy from stage to stage.

We will now show one way of deriving the con-
stant molar flow assumption:

1. Choose the reference state (where & = 0) for each
pure component as saturated liquid at a reference
pressure. (This means that each component has
a different reference temperature, namely its
boiling point (T, at the reference pressure.)

2. Assume that the column pressure is constant and
equal to the reference pressure.

3. Neglect any heat of mixing such that

hL,n = YiXincruil Tn — pri)-

4. Assume that all components have the same molar
heat capacity, cp.

5. Assume that the stage temperature can be approxi-
mated by T, = Y, x;,T,,.. These assumptions give
by, =0 on all stages and eqn [49] for change in
boil-up is reduced to:

bV,n—l

Vn = Vn~l

5

6. The molar enthalpy in the vapour phase is
given as: by, = ¥; i, AHRE + 3 % 0ovi( T, — Typi)
where AHY® is the heat of vaporization for the
pure component at its reference boiling temper-
ature (Ty,).

7. We assume that ¢py is equal for all components,
and then the second summation term above will
become zero, and we have: by, = ¥ x;,,AHED.

8. Then if AHy? = AH"™ is equal for all components
we get by, = by, = AH"™, and thereby con-
stant molar flows: V, = V,_;andalso L, =L, ;.

At first glance, these assumptions may seem re-
strictive, but the assumption of constant molar flows
actually holds well for many industrial mixtures.

In a binary column where the last assumption
about equal AHY! is not fulfilled, a good estimate of
the change in molar flows from the bottom (stage 1)
to the top (stage N), due to this effect for a case with
saturated liquid feed (g = 1) and close to pure prod-
ucts, is given by: Vi/V, ~ AH}{?/AH*, where the
molar heat of vaporization is taken at the boiling
point temperatures for the heavy (H) and light (L)
components respectively.

Recall that the temperature dependency of the rela-
tive volatility is related to different heat of vaporiza-
tion also, thus the assumptions of constant molar
flows and constant relative volatility are closely
related.

Calculation of Temperature when Using Relative
Volatilities

It may seem that we have lost the pressure and tem-
perature in the equilibrium equation when we intro-
duced the relative volatility. However, this is not the
case since the vapour pressure for every pure compon-
ent is a direct function of temperature, thus it is also the
relative volatility. From the relationship P =Y p;, =
Y x; pX(T) we derive:

P = py(T) Z X0 [50]

Remember that only one of P or T can be specified
when the mole fractions are specified. If composition
and pressure are known, a rigorous solution of the
temperature is found by solving the nonlinear equa-
tion:
P =Y xpi(T) [51]
However, if we use the pure component boiling
points (T,), a crude and simple estimate can be com-
puted as:
Ta) xTy [52]
For ideal mixtures, this usually gives an estimate
which is a bit higher than the real temperature; how-
ever, a similar approximation may be done by using
the vapour composition (y), which will usually give

a lower temperature estimate. This leads to a good
estimate when we use the average of x and y, i.c.:

xi+y;
TzZ( 5 >Tbj

[53]
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Figure 10 Temperature profile for the example shown in Figure 7 (continuous line) compared with various linear boiling point

approximations.

Alternatively, if we are using relative volatilities we
may find the temperature via the vapour pressure of
the reference component. If we use the Antoine equa-
tion, then we have an explicit equation:

~ ﬁx + C, wherep? = P/Z]: x0;  [54]
This last expression is a very good approximation to
a solution of the nonlinear eqn [51]. An illustration of
how the different approximations behave is
shown in Figure 10. For that particular case (a fairly
ideal mixture), eqns [53] and [54] almost coincide.

In a rigorous simulation of a distillation column,
the mass and energy balances and the VLE have to be
solved simultaneously for all stages. The temperature
is then often used as an iteration parameter in order
to compute the vapour pressures in VLE computa-
tions and in the enthalpy computations of the energy
balance.

Discussion and Caution

Most of the methods presented in this article are
based on ideal mixtures and simplifying assumptions
about constant molar flows and constant relative
volatility. Thus there are many separation cases for
nonideal systems where these methods cannot be ap-
plied directly.

However, if we are aware of the most important
shortcomings, we may still use these simple methods
for short-cut calculations, for example, to gain insight
or check more detailed calculations.

See also: ll/Distillation: Historical Development; Instru-
mentation and Control Systems; Modelling and Simula-
tion; Vapour-Liquid Equilibrium: Theory.
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