SUBPRO

A new
Norwegian research
innovation center on
subsea production
and processing

Sigurd Skogestad, NTNU

© 2015 Aker Solutions

OBJECTIVES AND GOALS

The primary objective of the SUBPRO center at NTNU is to become

· a leading international subsea research center

that provides

- top quality candidates,
- knowledge,
- basis for industrial innovations and technology

in partnership with the most important industrial players in the field.

OUR PARTNERS

UTC conference, Bergen, 18 June 2015

From NTNU side: Joining forces across disciplines

Co-Director: Professor Mary Ann Lundteigen, Reliability, Availability, Maintenance and Safety (RAMS)

From NTNU side: Joining forces across disciplines

Co-Director: Professor Mary Ann Lundteigen, Reliability, Availability, Maintenance and Safety (RAMS)

Faglig koordinator: Gro Mogseth

MAIN RESEARCH AREAS

Subsea systems engineering and operation

- Modelling and simulation of subsea components and systems
- System design: Design for more available and robust subsea systems
- Safety: Barrier philosophy for subsea facilities
- Operation: Condition based maintenance and performance optimization
- Control: Development of robust and selfoptimizing control strategies

© 2015 Aker Solutions

MAIN RESEARCH AREAS

Subsea separation

- Fundamentals of heterogeneous systems
- ➤ Solid/liquid separation
- Liquid/liquid separation and water management
- Gas-liquid separation
- Gas treatment

RESOURCES

- 30 million NOK per year over 8 years (30 million USD in total)
- About 20 PhD's and postdocs at any time
- Master students
- 18 professors at three NTNU departments cross discipline collaboration
 - Chemical Engineering
 - Petroleum Technology and Applied Geophysics
 - Production and Quality Engineering
- In kind contributions from industry partners (personnel, knowledge, data)

Duration of project: June 2015 – 2023

BUDGET (TENTATIVE)

PROJECT STRUCTURE

FIELD ARCHITECTURE

CASE 1 (Gas field)

CASE 2 («Arctic»)

CASE 3 (Mature oil)

SEPARATION

WATER MANAGEMENT

OIL TREATMENT

GAS TREATMENT

REMOTE OPERATION

RAMS
(RELIABILITY, AVAILABILITY, MAINTENANCE,
SAFETY)

SYSTEM CONTROL

RESEARCH AREA 1. FIELD ARCHITECTURE

Industrial challenges

- Standardization of subsea modules More effective separation and boosting systems.
- Reduce weight and size of systems / Modularization
- Cost effective strategies for development and operation of remote offshore oil reservoirs with low pressure and low temperature.

© 2015 Aker Solutions

Increase separation efficiency by avoiding choking

Long transportation to shore or existing production facilities / flow assurance issues: high water cut, low productivity wells, harsh environment.

Sub projects	Sub project leader
1.1 Subsea gate box	Sigbjørn Sangesland
1.2 Identification and assessment of field development concept for remote offshore	Milan Stanko
oil reservoirs	
1.3 Development of flexible numerical models for multiphase boosters	Jesus De Andrade

Research area reference group (Companies):

Input from industry partners is welcome!

Research area team:

- Sigbjørn Sangesland, Milan Stanko, Jesus De Andrade, Michael Golan; NTNU Department of Petroleum Engineering and Applied Geophysics
- Industry partners which are interested to contribute with in kind:
 Input from industry partners is welcome!

RESEARCH AREA 2. SEPARATION - WATER / OIL / GAS TREATMENT

Industrial challenges

- Modularization of sea bed systems /more compact unit design/standardization
- Improved separation efficiency / New separation concepts
- Water management (injection and disposal)
- ➤ H2S and CO2 handling
- Hydrate and wax control
 2015 Aker Solutions

Sub projects (PhD projects, Postdoc projects, industrial	Sub project leader
projects, lab projects etc.)	
2.1 Produced water quality and injectivity	Gisle Øye
2.2Particle formation, plugging, adhesion and transport of	Kristofer Paso
wax/asphaltenes	
2.3 Semi-processed well fluids / emulsions	Johan Sjöblom

Sub projects (PhD projects, Postdoc projects, industrial	Sub project leader
projects, lab projects etc.)	
2.4 Membrane and membrane contactors for subsea	Liyuan Deng
separation	
2.5 Combined H ₂ S and hydrate control	Hanna Knuutila
2.6 Particle breakup and contactor studies	Hanna Knuutila
2.7 Modelling and experimental investigations of fluid	Hugo Jakobsen
particle breakage	
28 Multi-scale modelling of interfacial mass transfer and	Brian A. Grimes
adsorption during coalescence	
29 Compact subsea separation concepts	Milan Stanko/Sigbjørn Sangesland

Research area reference group (Companies):

Input from industry partners is welcome!

Research area team:

- Johan Sjöblom, Gisle Øye, Kristofer Paso, Sebastian Simon, Brian Grimes, Hugo Jakobsen, Hanna Knuutila, Magne Hillestad, Liyuan Deng and Hallvard Svendsen, Department of Chemical Process Engineering
- Sigbjørn Sangesland and Milan Sanko, Department of Petroleum Engineering
- Participants from Department of Production and Quality Engineering

Industry partners which are interested to contribute with in kind: Input from industry partners is welcome!

RESEARCH AREA 3. REMOTE OPERATION

Industrial challenges

- Improving and complementing process models needed to support more robust and flexible dynamic control
- Design and operation with autonomous control strategy
- Achieving high reliability and availability
- Higher precision in condition based maintenance
- Safety operation with no negative impact on environment
 2015 Aker Solutions

Sub projects (PhD projects, Postdoc projects, industrial projects, lab	Sub project leader
projects etc.)	
3.1 New integrated safety and control philosophy subsea	Mary Ann Lundteigen
(short title: Subsea control and safety philosophy)	
3.2 Incorporating reliability and availability in the design of subsea systems	Mary Ann Lundteigen
(short title: Reliability and availability in design)	
3.3 Condition and prognostics based maintenance	Anne Barros
(short title: Prognostics-based maintenance)	

Sub projects (PhD projects, Postdoc projects, industrial projects, lab	Sub project leader
projects etc.)	
3.4 Model library for accurate and efficient steady-state and dynamic	Sigurd Skogestad
simulation of subsea processes	
(short title: Modelling and model library)	
3.5 Formalisms for control-oriented modelling of subsea systems	Olav Egeland
(short title: Control-oriented modelling)	
3.6 Improved control of demanding subsea processes	Christian Holden
(short title: Control of demanding processes)	
3.7 Estimation of un-measureable variables	Johannes Jäschke
(short title: Process state estimation)	
3.8 Control degrees of freedom for extending remaining useful life (RUL)	Johannes Jäschke
(short title: Control strategies for life extension)	
Research area reference group (Company and persons):	•

To be specified

Research area lead: Mary Ann Lundteigen

Research area project team: Sigurd Skogestad, Johannes Jäschke, Anne Barros, Christian Holden, Olav Egeland

Industry partners that are interested to contribute with in kind:

Input from industry partners is welcome!

4.1 Overview of sub projects

1. FIELD ARCHITECTURE

- 1.1 Subsea gate box
- 1.2 Identification and assessment of field development concept for remote offshore oil reservoirs
- 1.3 Development of flexible numerical models for multiphase boosters

2. SEPARATION

- 2.1 Produced water quality and injectivity
- 2.2Particle formation, plugging, adhesion and transport of wax/asphaltenes
- 2.3 Semi-processed well fluids / emulsions
- 2.4 Membrane and membrane contactors for subsea separation
- 2.5 Combined H₂S and hydrate control
- 2.6 Particle breakup and contactor studies
- 2.7 Particle breakup and contactor studies
- 2.8 Multi-scale modelling of interfacial mass transfer and adsorption during coalescence
- 2.9 Compact subsea separation concepts

3. REMOTE OPERATION

- 3.1 New integrated safety and control philosophy subsea
- 3.2 Incorporating reliability and availability in the design of subsea systems
- 3.3 Condition and prognostics based maintenance
- 3.4 Model library for accurate and efficient steady-state and dynamic simulation of subsea processes
- 3.5 Formalisms for control-oriented modelling of subsea systems
- 3.6 Improved control of demanding subsea processes
- 3.7 Estimation of un-measureable variables
- 3.8 Control degrees of freedom for extending remaining useful life (RUL)

Visit us at www.ntnu.edu/subpro

CONTACT PERSONS

Centre Director Prof. Sigurd Skogestad

Email: Sigurd.skogestad@ntnu.no

Phone: 00 47 913 71 669

Project coordinator Jon Lippe

Email: jon.lippe@ntnu.no

Phone +47 918 97 033

Co-director Prof. Mary Ann Lundteigen

Email: mary.a.lundteigen@ntnu.no

Phone: 00 47 930 59 365

Web site

www.ntnu.edu/subpro