Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad

- » High-purity silicon for computers (via SiCl₃ distillation)
- » Water heavy-water separation (boiling point difference only 1.4C)

Usually: Constant molar flows assumption

 Each section: Constant molar flows of liquid L and vapor V:

$$-V_{T} = V_{1} = V_{2} = V_{n} = V_{n+1}$$

$$-L_{T} = L_{1} = L_{2} = L_{n} = L_{n+1} = L_{n+1}$$

$$-V_{B} = V_{N} = V_{m} = V_{m+1}$$

$$-L_B = L_N = L_m = L_{m+1}$$

• Replaces energy balance

Holds for components with similar heat of vaporization

В

heating

McCabe-Thiele graphical method

Example: Benzene-Toluene continuous distillation

- F = 100 kmol/h
- $x_F = 0.45$, $q_F = 1.19$ (subcooled liquid)
- Desired products: x_D=0.95, x_B=0.1
- Given: $R = L_T / D = 4$
- · How many stages are required?
- x,y mole fractions bemzene (light component)

Comments

Number of stages

- Reboiler ("partial reboiler"): Gives 1 theoretical stage
- Total condenser: 0 stage
- Partial condenser: 1 theoretical stage
- N is usually (e.g., in Fenske's fomula, N = InS/Inα) the total no. of theoretical stages including reboiler and partial condenser
- Thus: N_{stages inside column} = N-1 (or N-2 for partial condenser)

"Total reflux" vs. "Total condenser"

We use "total" with (at least) two different meanings:

1."Total condenser" = all is condensed (so D is liquid)

2."Total reflux" = (all is condensed and) all is send back as reflux (so D=0 or more generally L>>D)

Proof of last formula is just algebra. From mass balance: $\frac{D}{F} = \frac{z_F - x_B}{x_D - x_B}$ Minimum flows: $\frac{L}{V} = \frac{x_D - y'}{x_D - x'}$ Gives: $\frac{L}{D} = \frac{L}{V-L} = \frac{L/V}{1 - L/V} = \frac{x_D - y'}{y' - x'}$ Introducing pure products $(x_D = 1, x_B = 0)$ and feed liquid: $z_F = x_F, x' = x_F, y' = y_F = \frac{\alpha x_F}{1 + (\alpha - 1)x_F}$ gives: $\frac{L}{F} = \frac{L}{D} \cdot \frac{D}{F} = \frac{1 - y_F}{y_F - x_F} x_F = \frac{1 - y_F}{(y_F/x_F) - 1} = \frac{1}{\alpha - 1}$

9. Special cases of distillation

- 1. Stripping column (no top part)
- 2. Enriching column (no btm part)
- 3. Stripper / absorber (no condenser or reboiler)
- 4. "Direct" steam injection (instead of heat)
- 5. Column with side stream
- 6. Partial condenser (gives 1 extra eq. stage)
- 7. More than one feed
- All cases: Exactly same principles (can use McCabe-Thiele)
- Start with material balances to derive operating lines
- Need equilibrium data!

IDEAL VLE (constant α)

Solution "5-min design"

- 1. Relative volatility: The mixture is relatively ideal and we will assume constant relative volatility. The estimated relative volatility at 1 atm based on the boiling points is $\ln \alpha \approx$ $(\Delta H^{vap}/RT_b) [(T_{bH} - T_{bL})/T_b]$ where $\Delta H^{vap} =$ $\sqrt{5.57 \cdot 6.82} = 6.16 \text{ kJ mol}^{-1}$, $T_b = \sqrt{T_{bH}T_{bL}} =$ 83.6 K and $T_H - T_L = 90.2 - 77.7 = 18.8$. This gives $(\Delta H^{vap})/(RT_b) = 8.87$ and we find $\alpha \approx 3.89$ (however, it is generally recommended to obtain α from experimental VLE data).
- Product split: From the overall material balance we get D/F = (z − x_B)/(x_D − x_B) = (0.8 − 0.00002)/ (0.99 − 0.00002) = 0.808.

DEAL VLE (consta	int α)
3. 4.	Number of stages: The separation factor is $S = (0.99 \times 0.99998)/(0.01 \times 0.00002) = 4950000$, i.e. $\ln S = 15.4$. The minimum number of stages required for the separation is $N_{\min} = \ln S/\ln \alpha = 11.35$ and we select the actual number of stages as $N = 23$ ($\approx 2N_{\min}$). Feed-stage location: With an optimal feed location we have at the feed stage ($q = 0$) that $y_F = z_F = 0.8$ and $x_F = y_F/(\alpha - (\alpha - 1)y_F) = 0.507$. Skoges-
	tad's approximate formula for the feed-stage loca- tion gives:
	$N_{\rm T} - N_{\rm B} = \ln \left(\left[\frac{(1 - y_{\rm F})}{x_{\rm F}} \right] \left[\frac{x_{\rm B}}{(1 - x_{\rm D})} \right] \right) / (\ln \alpha)$
	$= \ln \left(\left[\frac{0.2}{0.507} \right] \times \left[\frac{0.00002}{0.01} \right] \right) / 1.358$
	= - 5.27
	corresponding to the feed stage $N_{\rm F} = [N + 1 - (N_{\rm T} - N_{\rm B})]/2 = (23 + 1 + 5.27)/2 = 14.6.$

IDEAL VLE (constant α)

5. Energy usage: The minimum energy usage for a vapour feed (assuming sharp separation) is $V_{\min}/F = 1/(\alpha - 1) = 1/2.89 = 0.346$. With the choice $N = 2N_{\min}$, the actual energy usage (V) is then typically about 10% above the minimum (V_{\min}) , i.e. V/F is about 0.38.

Remark 1 The actual minimum energy usage is slightly lower since we do not have sharp separations. The recovery of the two components in the bottom product is $r_{\rm L} = (x_{\rm L,B}B)/(z_{\rm FL}F) = 0.9596$ and $r_{\rm H} = (x_{\rm H,B}B)/(z_{\rm FH}F) \approx 0$, so from the formulas given earlier the exact value for nonsharp separations is $V_{\rm min}/F = (0.9596 - 0.0 \times 3.89)/(3.89 - 1) = 0.332$.

Remark 2 For a liquid feed we would have to use more energy, and for a sharp separation:

 $V_{\min}/F = 1/(\alpha - 1) + D/F = 0.346 + 0.808 = 1.154$

Remark 3 We can check the results with exact stage-by-stage calculations. With N = 23, $N_F = 15$ and $\alpha = 3.89$ (constant), we find V/F = 0.374, which is about 13% higher than $V_{min} = 0.332$.

Remark 4 A simulation with more rigorous VLE computations, using the Soave-Redlich-Kwong (SRK) equation of state, has been carried out using the HYSYS (Hypnotech Ltd.) simulation package. The result is a slightly lower vapour flow due to a higher relative volatility (α in the range 3.99–4.26 with an average of 4.14). More precisely, a simulation with N = 23, $N_F = 15$ gave V/F = 0.291, which is about 11% higher than the minimum value $V_{\min} = 0.263$ found with a very large number of stages (increasing N > 60 did not give any significant energy reduction below V_{\min}). The optimal feed stage (with N = 23) was indeed found to be $N_F = 15$.

Thus, the results from HYSYS confirm that a column design based on the very simple short-cut methods is very close to results from much more rigorous computations.

	Enter title	
	, Use arrow to go through menus	
f ChemSep (TM) v6.22		
File Edit Solve Analysi	sis <mark>p</mark> atabanks Tools Help	
Components Components Components Soperation Soperations Soperations Soperations Soperations Paulus Outins Sobve options Paths	✓ Title Enter Simulation Information (optional) FileName: Title: Septel example Comments:	

Condenser pressure Column pressure Top pressure Pressure drop per stag Boltom pressure	101325 Constant pressure 101325	(N/m2) (N/m2) (N/m2) (N/m2)	Assume constant pressure (1 atm) in column (Normally the pressure drop is about 0.1 bar from the bottom to the top)
✓ Analysis ✓ Pressi Column and Stage Heat I Column heat loss Name column duty Stage heat exchange Insert	ures ✓ Heaters/Coolers Duties Q Qcolumn rs: Remove	(U/s) Efficiencies ×	Column specifications
 ✓ Analysis ✓ Pres Specify Stage Efficienci Default stage efficien Insert 	sures V Heaters/Cooler res ncy 1.00000 Remove	ts ✓ Efficiencies ×	Column specifications

Г	FOP: Specify x _D =0.95 BTM: Specify x _B =0.1	
┨ Chem5ep (TM) v6.22		
File Edit Solve Analysis	Databanks Tools Help	
🗋 🚅 🕞 👂 🛃 🌾 🛙		
 Title Components Operation ✓ Properties ✓ Thermodynamic: ✓ Properties ✓ Properties ✓ Properties ✓ Properties ✓ Properties ✓ Prosteries ✓ Properties ✓ Prosteries ✓ Prosteries ✓ Properties ✓ Properties	✓ Analysis ✓ Pressures ✓ Heaters/Coolers ✓ Efficiencies X Column specifications Column Product Specifications Top product name Top Condenser duty name Qcondenser Top specification Mole fraction of a component ■ 0.950000 (;) Benzene ▼ Bottom product name Bottom Reboiler duty name Qreboiler Bottom specification Mole fraction of a component ▼ = 0.10 (;) Benzene ▼ (;) Benzene ▼ (;) Benzene ▼ (;)	
	Product Guesses (optional) Use guesses (or initalization Reset	

tunForm	
Generating initial composit ion profiles Init 1594 milliseconds Stating Newtons method Ctrl-Break will terminate execution Iteration Error 0 3.7912E+01 1 4.9682E+01 2 3.4743E+00 3 6.2923E-01 4 3.7221E-02 5 2. 1718E-05 6 3.3261E-11 Convergence obtained in 6 iterations Generating equ Ilbrium data Time 2812 milliseconds FixMem driver done Process ended	
	•

Ta	results Streams						
	elect table: Streams	_	XI 64		Font Print		
	Stream	Feed1	Тор	Bottom			
	Stage Pressure (N/m2) Vapour fraction (-) Temperature (K) Enthalpy (J/kmol) Entropy (J/kmol/K)	6 101325 0.000000 320.000 -3.283E+07 -96660.1	1 101325 0.000000 354.324 -2.576E+07 -69806.8	9 101325 0.000000 379.111 -2.364E+07 -56702.3			
	Mole flows (kmol/s) Benzene Toluene	45.0000 55.0000	39.1176 2.05882	5.88235 52.9412			
	Total molar flow	100.000	41.1765	58.8235			
	Mole fractions (-) Benzene Toluene	0.450000	0.950000	0.100000			
	Mass flows (kg/s) Benzene Toluene	3515.13 5067.75	3055.64 189.702	459.494 4878.05			
	Total mass flow	8582.88	3245.34	5337.55			
	Mass fractions (-) Benzene Toluene	0.409551 0.590449	0.941546 0.0584537	0.0860871 0.913913			
	Vapour: Mole weight (kg/kmol) Density (kg/m3) Viscosity (N/m2.s) Heat capacity (J/kmol/K) Thermal cond. (J/s/m2/K)						
	Liquid: Mole weight (kg/kmol) Density (kg/m3) Viscosity (N/m2.s) Heat capacity (J/kmol/K) Thermal cond. (J/s/m2/K) Surface tension (N/m)	85.8288 845.987 4.4675E-04 153293 0.129008 0.0253779	78.8153 811.463 3.1339E-04 150927 0.123105 0.0210133	90.7383 785.444 2.4727E-04 179584 0.111220 0.0185499			

es Graj les	ohs McCabe-Thie	le Rating FU	G			
elect tabl	e: T/P/Flow profile	es	• ×	L Edit	Copy Font	Print
Stage	Temperatur (K)	Pressure (N/m2)	Flow rates Liquid	(kmol/s) Vapour	Feed	Product
1 2 3 4 5 6 7	354.324 355.809 358.220 361.523 365.176 368.414 372.082	101325 101325 101325 101325 101325 101325 101325 101325	128.905 127.319 125.216 123.061 121.408 243.557 242.304	RR=3.13055 170.082 168.495 166.393 164.238 162.584 184.733	100.000	41.1765 L
8 9	375.883 379.111	101325 101325	241.865 BR=3.1117	183.480 183.041		58.8235 L

