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Sep-tek.
Ch.11 (continued)

Distillation (Multistage with reflux)
Sigurd Skogestad

Distillation
• Separation of liquid mixtures by repeated evaporation

– multi-stage with reflux
– Old name: ”Rectification”

• Basis: Components have different boiling points (different volatility)
• Most common separation process in industry

– Chemicals
– Oil and gas

• ”Separating agent” = heat (thermal energy)
• 3% of world energy consumption is for distillation
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When use distillation?
• Liquid mixtures (with difference in boiling point)
• Unbeatable for high-purity separations because

• Essentially same energy usage independent of (im)purity!
» Going from 1% to 0.0001% (1 ppm) impurity in one product increases energy usage only by about 1%

• Number of stages increases only as log of impurity!
» Going from 1% to 0.0001% (1 ppm) impurity in one product increases required number of stages only by factor 3 (Proof using Fenske: 

ln(1.e-6)/ln(1.e-2)=3)

• Well suited for scale-up
» Columns with diameters over 18 m

• Examples of unlikely uses of distillation: 
» High-purity silicon for computers (via SiCl3 distillation)
» Water – heavy-water separation (boiling point difference only 1.4C)

Sigurd and distillation
• 1980-83 (Norsk Hydro): Steady-state design and simulation

– Crude oil, Mongstad refinery
– Petrochemicals, VCM
– Methanol-water, formic acid-water
– Mostly thermodynamics

• 1983-rest of life: Control and dynamics
• 1995-2000: Optimal batch (multivessel)
• 1997-present: Optimal integrated continuous distillation columns (Petlyuk, Kaibel)
• http://www.nt.ntnu.no/users/skoge/distillation/
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CONTINOUS DISTILLATION

I prefer to number the stages
from the bottom (with reboiler=1), 
BUT the book does it from the top.

(I prefer numbering from bottom, like in a building, because this makes more sense if the
equlibrium stage is a physical tray)
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Alternative: Packed column

Trayed column:

Both cases: Want intensive mixing and large surface area between phases

Lab 

Packed Tray Tray
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Distillation column modeling
• Equlibrium stage concept: Many flashes on top of each other!
• Each stage is an adiabatic flash:

– Component balance
– Energy balance
– Vapor-liquid equilibrium (VLE), y = K x

1. Detailed numerical solution is straightforward but requires computer
• Commercial: Unisim / Hysys, Aspen
• Free software (very nice!): ChemSep.org

2. Analytical solution
– Possible is certain cases
– Most common assumption: Constant molar flows (simplified energy balance)

• Constant K (VLE) + constant molar flows: Kremser-equations
• Constant relative volatility (VLE) + constant molar flows: Fenske, Underwood.

3. Graphical solution
• Graphical solution of component balances + VLE
• Any VLE + Constant molar flows: McCabe-Thiele

Stage n

Stage n-1

Stage n+1

Vnyn

Vn+1yn+1

Ln-1Xn-1

Lnxn

Equilibrium (VLE): yn = fn(xn,…)

Vn-1yn-1

Material balance stage i (out=in)*:
Ln xn + Vn yn = Ln-1xn-1 + Vn+1yn+1

The equilibrium stage concept

Note: Numbering is here from top (as in book).

* We usually make balances to end of column. 
Gives same result!
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B, xB

Top section

Btm section

Top operating line. Goes through point (xD,XD) and has slope LT/VT<1.
Proof: x=xD gives: y = (LT+D)xD/VT =  xD

y

yx

x
VT LT

Top operating line:
y and x
between stages
in top section
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yB

B, xB

Bottom operating line. Goes through point (xB,xB) and has slope LB/VB>1.

VBLB

y x

Bottom operating line:
y and x 
between stages
in bottom section

LB = LT + qF         
VT = VB+ (1-q)F
q = Fraction of liquid in feed

T=top section

B=btm section

4. Feed line (crossing of operating lines): 

Proof:
Top: VT y = L T x + D xDBot tom: VB y = L B x ¡ B xBAt crossing of these lines, y and x are same. Subt ract :
y (VT ¡ VB )| { z }

(1¡ q)F
= x (L T ¡ L B )| {z }

¡ qF
+ F xF

) y = ¡ q1¡ q x + x F1¡ q (feed line)

y and x for
intersection of 
operating lines

Liquid feed

Vapor feed

Subcooled liquid feed
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Usually: Constant molar flows 
assumption

• Each section: Constant molar flows of liquid L and vapor V:
– VT = V1 = V2 = Vn =Vn+1 – LT = L1 = L2 = Ln = Ln+1 = L
– VB = VN = Vm =Vm+1         – LB = LN = Lm =Lm+1

• Replaces energy balance
– Holds for components with similar heat of vaporization

Top

Btm

" Operat ing line" = Relat ionship between y and x between stages (from material
balance).
Top sect ion: y = L TVT x + DVT xD
Btm sect ion: y = L BVB x ¡ BVB xBCrossing (feed line): y = q

q¡ 1 x ¡ x Fq¡ 1

, Total balance at feed: L B = L T + qF , VT = VB + (1 ¡ q)F

Summary operating lines for 
Constant molar flows

cooling

heating

F

D

B
VB

VT

LB

LT
q = Fraction liquid in feed

Goes through (y,x)=(xD,xD) + (y,x)=(DxD/VT,0)=(xD/(R+1),0)
Goes through (y,x)=(xB,xB) + crossing of top/feed-lines
Goes through (y,x)=(xF,xF) + has slope q/(q-1)
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McCabe-Thiele graphical method
Example: Benzene-Toluene continuous distillation

• F = 100 kmol/h
• xF = 0.45, qF =1.19 (subcooled liquid)
• Desired products: xD=0.95, xB=0.1
• Given: R= LT/D = 4
• How many stages are required?

• x,y – mole fractions bemzene (light component)

B, xB

Top section

Btm section

LT

LB

VB

VT

VB
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McCabe-Thiele graphical solution
0.       Use overall mass balances to find product compositions, product flows and flows inside column.
1. Draw equilibrium curve: (x,y) on stages.
2. Draw upper operating line: (x,y) between stages. 

Starts in (xD,xD) and has slope LT/VT = R/(R+1) where R=L/D. Goes through (x,y)=(0,xD/(R+1))=(0, 0.19)
3. Draw feed lines (goes through (xF,xF) and has slope –q/(1-q). 

• Feed sat. liquid (q=1): Vertical. 
• Feed sat. vapor (q=0): Horizontal
• Partly vapor (0<q<1): Between (negative slope)
• Feed subcooled (q>1): Positive slope (see Figure below)

4. Draw lower operating line : (x,y) between stages. Starts in (xB,xB) and goes through crossing of feed line and upper operating line
5. Graphical solution to find number of stages: Start from product and switch between on stages (xn,yn) and between stages (xn,yn+1) by making staircase.
6. Optimal feed location (design): Switch between operating lines at feed line (=crossing of operating lines)
7. Given N and NF (more difficult): Need to guess product composition and iterate to fit in N stages

(x1,y2)

(x1,y1)

(x2,y3)

(x2,y2) (xD,y1) = (xD,xD) tot. condenser

Note: This feed (q) line is for subcooled liquid feed (q>1)

(0,0.19)

xB
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1

3.6

2
3 To find no. of stages in each section:

Often easier to start from both ends.
Let final stairs reach crossing (xF*,yF*)  

Counting from top to feed: 4.1 stages
Counting from btm to feed: 3.6 stages
Total: 7.7 stages

Previous slide:
Counting from top to btm: 7.6 stages

No. of stages in each section

(xF*,yF*) = crossing = optimal feed stage composition

If “too many” stages in top section:
Get “pinch zone” above feed 

“Pinch zone” = zone with small change in composition

1. Nonoptimal feed stage location
Some comments on distillation and McCabe-Thiele

Comments:
1. Exact location of feed stage is not critical unless the column is poorly designed 

with “too few” stages
2. Existing column: During operation, one may get non-optimal feed location (with 

pinch) because of changes in feed composition and product purities.
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2. Reboiler and condenser duty
• Reflux: L = LT
• Assuming constant molar flows:

LB = L + qF 
VB = LB – B = L + qF – B
VT = VB + (1-q)F = L + D

• Reboiler and condenser duty
• QB [J/s]= VB [mol/s] ·ΔHBvap [J/mol]
• QC [J/s]= VT [mol/s] ·ΔHDvap [J/mol] (total condenser)
• Note: If feed is liquid & total condenser: QB ¼ QC. 

Example: L=LT=(L/D)*D=4*41.17 = 164.68 kmol/h, 
VB = L + qF – B = 164.68 + 1.19*100 – 58.83 = 224.85 kmol/h
QB = VB ·ΔHBvap = 224.85*(1000/3600)*32.1*1000 J/s  = 2.0 e6 J/s = 2.0 MW

3. Minimum number of stages, Nmin(with total reflux, that is, infinite energy)
A. Graphical
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3. Minimum no. of stages, Nmin ( with total reflux)
• Assumption VLE: Constant relative volatility. Stage i (L=light component, H = heavy component):

• Repeat for all N stages

• Fenske’s formula for minimum no. of stages

• Applies also to column sections
• Example. Benzene-Toluene. 

Stage i

Stage i+1
Viyi

Vi-1yi-1

Li+1xi+1

Lixi

Total reflux:
Vi = Li+1yi = xi+1

B. Analytical (constant )

Number of stages increases only as 
log of impurity!

• Example: α=2. Binary separation with purities: 90% 
light in top and 90% heavy in bottom:

• Example: α=2. Binary separation with purities: 99.9% 
light in top and 98% heavy in bottom:
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Comments
Number of stages
• Reboiler (“partial reboiler”): Gives 1 theoretical stage
• Total condenser: 0 stage
• Partial condenser: 1 theoretical stage
• N is usually (e.g., in Fenske’s fomula, N = lnS/lnα) the total no. of theoretical stages including reboiler and partial condenser
• Thus: Nstages inside column = N-1 (or N-2 for partial condenser)

“Total reflux” vs. “Total condenser”
We use "total" with (at least) two different meanings:
1."Total condenser" = all is condensed (so D is liquid)
2."Total reflux" = (all is condensed and) all is send back as reflux (so 
D=0 or more generally L>>D)

4. Minimum reflux (minimum energy)
(with infinite number of stages)

Nonideal mixture:
A. Graphical
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• King’s formula, assuming pinch at feed (not in book):

4. Minimum reflux (minimum energy)
(with infinite number of stages)

B. Analytical (constant )

NOT IN BOOK

•Note: Essentially same energy usage independent of (im)purity!
Pure products:

Easy to remember!
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5. Design: “Optimum” reflux or 
How many stages (N)?

5A. Energy (V) vs. number of stages (N)
• Trade-off between number of stages and 
energy

• Actual V approaches Vmin for N 
approximately 2 x Nmin or larger, 
typically: 

N=2Nmin  Vmin + 25%  
N=3Nmin  Vmin + 3 %   
N=4Nmin  Vmin + 0.3 %Energy

Nu
mb

er o
f  st

age
s

Vmin

Nmin

Conclusion:
Recommend N= 2.5 Nmin (use higher value to save energy and simplify operation).

Gives actual boilup (energy) V ¼ 1.1 Vmin
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10.6B Equipment for absorption 
and distillation

Random/dumped packings
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Structured packing (1970’s)

Structured packings (today)

Mellapak (Sulzer)Koch-Glitsch
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6. Height of real columns (section 11.5) 
• N = no. of theoretical stages (total)
• Ninside = no. of theoretical stages inside column

= N - 1  (total condenser, assuming reboiler gives 1 theoretical stage)
= N – 2 (partial condenser)

– Tray columns:
• Ntrays = Actual number of trays inside column
• Eo=overall tray efficiency (typical 0.7)
• Ntrays = Ninside / EoComment: Sigurd does not recommend using Murphy or Point efficiency

– Packed columns: 
• H = height of packings [m]  = Ninside* HETP
• HETP = height equivalent to 1 theoretical plate
• Estimation of HETP: 

1. Mass transfer model
HETP ¼ H0G * f = f * V / (Ky a S) (10.6-55) (not very reliable, f = ln(1/A)/(1/A-1))2. Rule of thumb (recommended in practice)

– Random packing: HETP [m] = 18 Dp [m] (equation 11.5-11)
Dp = diameter of each packing element

3. (Best) Data from packing manufacturer 

7. Column operation and diameter

flooding

Similar for packed column

Packed:
Channeling / 
packing not wetted Liquid buildup

Liquid load

Gas load
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Column diameter
• In many cases the diameter is determined by the 

(superficial) gas velocity v [m/s]
v[m/s] = V[m3/s]  / A[m2]
Where for ideal gas: V[m3/s] = V[mol/s] · RT/p

• Example. Column at 2 bar with V = 50 mol/s and given vmax = 1.5 m/s. 
Temperature bottom (highest) = 400K.
– Then V [m3/s] = 50 mol/s · 8.31 J/K,mol · 400K /2.e5 Pa = 0.83 m3/s
– A [m2] = V[m3/s] / vmax [m/s] = 0.83 / 1.5 = 0.553 m2
– Column area A = (π/4) D2
– Conclusion: Diameter D = √(4A/π) = √(4· 0.553 / 3.14)  = 0.84 m

Trayed column
• Maximum vapor velocity is limited by entrainment
• Tray column. Fair correlation:
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Packed column
• Maximum gas load limited by flooding

Flooding, gives vmax

8. Trays vs. packings
• Packings:

+ Much smaller pressure drop (typically 1/10)
+ Usually: More stages for given column height
- Problems with liquid distribution in larger columns (can use structured packings, but more expensive)

• Trays:
+ More easy to clean
+ Better for large capacity columns
+ Larger holdup (typically, 2 times larger): Advantage for control (“have more time”)
- Can have inverse response in bottom of column (- effect - difficult to predict) 

• Overall: Differences are surprisingly small – also for process control 
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9. Special cases of distillation
1. Stripping column (no top part)
2. Enriching column (no btm part)
3. Stripper / absorber (no condenser or reboiler)
4. ”Direct” steam injection (instead of heat)
5. Column with side stream
6. Partial condenser (gives 1 extra eq. stage)
7. More than one feed

• All cases: Exactly same principles (can use McCabe-Thiele)
• Start with material balances to derive operating lines
• Need equilibrium data!

10. Multicomponent mixtures
• Most of the derivations apply to the multicomponent case
• Identify ”key components” (light and heavy, L-H) for split
• McCabe-Thiele: Plot xy-diagram for pseudo-binary, x = xL/(xL+xH)
• Fenske’s formula OK: Nmin = lnS / ln . 

 = relative volatility between L and H
S = separation factor between L and H
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11. Shortcut: ”How to design a 
distillation column in 5 min”

1. Multicomponent: Identify key components (LH)
2. Estimate relative volatility . Can use Sigurd’s formula*
3. Find split (D/F) from desired product purities
4. Stages (height of column): Find Separation factor S and Nmin = lnS / ln . Select N = 2.5 Nmin5. Feed stage: Can use another Sigurd-formula (last slide)
6. Reflux / Energy usage: Find Lmin=F/(-1) (feed liquid) and Vmin/F. Real V is about 10% higher
7. Diameter: A = (V[mol/s]RT/p ) / vmax. D = √(4A/π). Typical value: vmax= 2m/s.  

*Sigurd’s formula

Example: “5 min column design”
• Design a column for separating air
• Feed: 80 mol-% N2 (L) and 20% O2 (H)
• Products: Distillate is 99% N2 and bottoms is 99.998% O2• Component data 

– Nitrogen: Tb = 77.4 K,  Hvap=5.57 kJ/mol
– Oxygen: Tb = 90.2 K,  Hvap=6.82 kJ/mol

• Problem: 1) Estimate . 2) Find split D/F. 3) Stages: Find Nmin and 4) suggest values for N and NF. 5) Energy usage: Find Vmin/F for a) vapor feed and b) liquid feed. 
• Given: For vapor feed and sharp sep. of binary mixture: Vmin/F = 1/(-1)

IDEAL MIXTUREIDEAL VLE (constant α)
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Solution “5-min design”Also see paper  (“Theory of distillation”)

IDEAL MIXTUREIDEAL VLE (constant α)

IDEAL MIXTUREIDEAL VLE (constant α)
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IDEAL MIXTUREIDEAL VLE (constant α)
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11. Distillation design in practice: Numerical solution using 
“simulators”.Example using Chemsep

• http://www.chemsep.org/
• Written by Ross Taylor, Clarkson University
• Lite version: 

– max 50 stages and 5 components
– free and extremely simple to use

• Example 11.4-2: Benzene-Toluene
– Specify 8 stages, feed on stage 5 from top
– Specify product compositions, xD=0.95, xB=0.10
– Find: Reflux ratio L/D (was 4 but then we needed only 7.6 stages)

Enter title….
Use arrow to go through menus
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Data input...  components

... column configuration

Note: Program counts condenser as stage 1
even if it is not an equlibrium stage
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... thermodynamics

Here: Raoults law + idea enthalpy 
Normally use:
- Soave-RK equation of state (EOS) for relatively ideal mixtures like hydrocarbons
- Gamma-Phi (UNIQUAC, SRK) for non-ideal components

... feed data

Can write 1atm and program converts automatically

Note: Use 55 mol/s (instead og 55 kmol/h)

Normally choose “Split”, but does not matter here
since the feed is subcooled
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Assume constant pressure (1 atm) in column
(Normally the pressure drop is about 0.1 bar 
from the bottom to the top)

Assume 100% stage efficiency

Assume no heat loss

TOP: Specify xD=0.95 
BTM: Specify xB=0.1
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Press solve…

… results… Streams
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McCabe-Thiele diagram
23

4
5

6

9
=reboiler

8
7

Profiles

Before R= 4. Now we need less reflux (and less energy)
because we have more stages (increased from 7.6 to 8)
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Liquid phase composition

x

Stage

TOP

BTM

toluene

benzene

Vapor phase composition

y

Stage

TOP

BTM toluene

benzene
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Flow profiles

Stage

Flows

VL

BTM

TOP
Note: Not quite constant molar flows
because dHvap is different for components

Temperature profile

Temperature [K]

Stage

TOP

BTM
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Log (xL/xH)-plot (“key ratio profile”): 
Use to check feed location

log(xL/xH) straight line: 
Feed placement OK

Stage

BTM

TOP

Relative volatility

Stage



2.4 2.5 2.6

BTM

TOP
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1. More literature on distillation
• King (Wiley, 1980) on distillation design
• Shinskey (McGraw-Hill, 1984) on distillation control
• Kister (McGraw-Hill, 1990) on distillation operation

• General info: http://lorien.ncl.ac.uk/ming/distil/distil0.htm

• I.J. Halvorsen and S. Skogestad, ``Distillation Theory'', In: Encyclopedia of 
Separation Science. Ian D. Wilson (Editor-in-chief), Academic Press, 2000, pp. 
1117-1134. 

• S. Skogestad, Dynamics and control of distillation columns - A tutorial 
introduction., Trans IChemE (UK), Vol. 75, Part A, Sept. 1997, 539-562 
(Presented at Distillation and Absorbtion 97, Maastricht, Netherlands, 8-10 
Sept. 1997). 

• More:  see home page Sigurd Skogestad  http://www.nt.ntnu.no/users/skoge/
http://www.nt.ntnu.no/users/skoge/distillation

• Free steady-state distillation software with thermo package : 
http://www.chemsep.org/

Extra slides



36

Simple formula for feed stage 
location (Skogestad, 1987)

Example. C3-splitter. zFL=0.65, xDH= 0.005, xBL=0.1, =1.12.

IDEAL MIXTUREIDEAL VLE (constant α)


