13.4 COMPLETE-MIXING MODEL FOR GAS SEPARATION BY MEMBRANES

13.4A Basic Equations Used

In Fig. 13.4-1 a detailed process flow diagram is shown for complete mixing. When a separator element is operated at a low recovery (i.e., where the permeate flow rate is a small fraction of the entering feed rate), there is a minimal change in composition. Then the results derived using the complete-mixing model provide reasonable estimates of permeate purity. This case was derived by Weller and Steiner (W4).

The overall material balance (Fig. 13.4-1) is as follows:

$$q_f = q_o + q_p {(13.4-1)}$$

where q_f is total feed flow rate in cm³(STP)/s; q_o is outlet reject flow rate, cm³(STP)/s; and q_p is outlet permeate flow rate, cm³(STP)/s. The cut or fraction of feed permeated, θ , is given as

$$\theta = \frac{q_p}{q_f} \tag{13.4-2}$$

The rate of diffusion or permeation of species A (in a binary of A and B) is given below by an equation similar to Eq. (6.5-8) but which uses cm³(STP)/s as rate of permeation rather than flux in kg mol/s · cm².

$$\frac{q_A}{A_m} = \frac{q_p y_p}{A_m} = \left(\frac{P'_A}{t}\right) (p_h x_o - p_l y_p)$$
 (13.4-3)

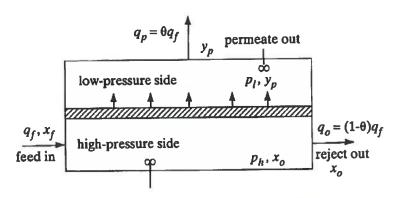


FIGURE 13.4-1. Process flow for complete mixing case.

Chap. 13 Membrane Separation Processes

where P'_A is permeability of A in the membrane, cm³(STP)·cm/(s·cm²·cm Hg); q_A is flow rate of A in permeate, cm³(STP)/s; A_m is membrane area, cm²; t is membrane thickness, cm; p_h is total pressure in the high-pressure (feed) side, cm Hg; p_l is total pressure in the low-pressure or permeate side, cm Hg; x_o is mole fraction of A in reject side; x_f is mole fraction of A in feed; and y_p is mole fraction of A in permeate. Note that $p_h x_o$ is the partial pressure of A in the reject gas phase.

A similar equation can be written for component B.

$$\frac{q_B}{A_m} = \frac{q_p(1-y_p)}{A_m} = \left(\frac{P_B'}{t}\right) [p_h(1-x_p) - p_l(1-y_p)]$$
 (13.4-4)

where P_B' is permeability of B, cm³(STP)·cm/(s·cm²·cm Hg). Dividing Eq. (13.4-3) by (13.4-4)

$$\frac{y_p}{1 - y_p} = \frac{\alpha * [x_o - (p_l/p_h)y_p]}{(1 - x_o) - (p_l/p_h)(1 - y_p)}$$
(13.4-5)

This equation relates y_p , the permeate composition, to x_o , the reject composition, and the ideal separation factor α^* is defined as

$$\alpha^* = \frac{P_A'}{P_B'} \tag{13.4-6}$$

Making an overall material balance on component A

$$q_f x_f = q_o x_o + q_p y_p ag{13.4-7}$$

Dividing by q_f and solving for the outlet reject composition,

$$x_o = \frac{x_f - \theta y_p}{(1 - \theta)}$$
 or $y_p = \frac{x_f - x_o(1 - \theta)}{\theta}$ (13.4-8)

Substituting $q_p = \theta q_f$ from Eq. (13.4-2) into Eq. (13.4-3) and solving for the membrane area, A_m ,

$$A_{m} = \frac{\theta q_{f} y_{p}}{(P'_{A}/t)(p_{h} x_{0} - p_{I} y_{p})}$$
(13.4-9)

13.4C Minimum Concentration of Reject Stream

If all of the feed is permeated, then $\theta=1$ and the feed composition $x_f=y_p$. For all values of $\theta<1$, the permeate composition $y_p>x_f$ (H1). Substituting the value $x_f=y_p$ into Eq. (13.4-5) and solving, the minimum reject composition x_{oM} for a given x_f value is obtained as

$$x_{\alpha M} = \frac{x_f \left[1 + (\alpha^* - 1) \frac{p_I}{p_h} (1 - x_f) \right]}{\alpha^* (1 - x_f) + x_f}$$
(13.4-12)

Hence, a feed of x_f concentration cannot be stripped lower than a value of x_{oM} even with an infinitely large membrane area for a completely mixed system. To strip beyond this limiting value a cascade-type system could be used. However, a single unit could be used which is not completely mixed but is designed for plug flow.