INDEX

<u>Index Terms</u>	<u>Links</u>
A	
ABB	319
ABB 800xA TM	319
Accutune TM	322
actuator	2
adaptive techniques	295
adaptive control	295
adaptive feedforward	321
automatic tuning	293 295
gain scheduling	295 296
supervision	304
uses of	297
air-fuel ratio control	388
algebraic design	189
aliasing	413
AMIGO, Approximate MIGO design	225
based on SOTD model	242
comparisons	247
detuning	253
frequency response methods	238
noise filtering	251
PI control	228
PID control	230
test batch	226
analog implementation	408
anti-windup	76
antialiasing filter	414

<u>Index Terms</u>	<u>Links</u>	
apparent lag	26	
apparent time constant	26	
apparent time delay	26	
approximate inverses	141	194
auto-tuning	293	295
automatic reset	67	
automatic tuning	293	295
average residence time, T_{ar}	23	48
averaging control	122	
В		
back propagation	391	
back-calculation	79	
backlash	331	
bandwidth	132	
bandwidth rise time product	133	
basic feedback loop	96	
batch unit	86	
blend station	385	
blending	384	
BO, modulus optimum	198	
Bode plot	22	
Bode's integral	114	
bottom-up approach	367	
Bristol's relative gain	349	
bump test	47	
bumpless transfer	423	424
Butterworth filter	414	

C				
cancellation of poles and zeros	119	191	194	201
•	325			
cascade control	373			
applications	377			
control modes	375			
disturbance rejection	373			
tuning	376			
use of	374			
windup	376			
characteristic equation	103			
characteristic polynomial	17			
Chien, Hrones, and Reswick method	166			
CHR method	166			
Cohen-Coon method	167			
combined sensitivities	117			
complementary sensitivity function	116			
computer code	427			
computer implementation	412			
conditional integration	84			
continuous stirred tank reactor	40			
control error	4			
control paradigms	366			
control variable	2			
controllability ratio	26			
controller design	95			
controller gain, K	5	65		
controller outputs	427			
correlation techniques	52			
crisp variable	393			
critical gain	26			

Links

Index Terms

<u>Index Terms</u>	<u>Links</u>		
critical point	104		
cut-back	85		
D			
D-term	5	64	
Dahlin-Higham method	288		
DCS, distributed control systems	8		
dead time, see time delay			
decay ratio	52	130	
decoupling	354		
defuzzification	395		
delay margin	105	121	277
derivative action	68		
computer implementation	417		
derivative cliff	214		
derivative time, T_d	5	65	
design parameters	135		
differential equations	20		
direct adaptive control	295		
discretization	414		
distributed lags	31	38	
disturbance models	44		
disturbance rejection	204		
DMC, dynamic matrix control	289		
dominant pole design	183		
dominant poles	109		
doublet pulse	49		
drum level control	155		
dynamic matrices	289		
dynamic matrix control, DMC	289		
dynamic model	14		

<u>Index Terms</u>	<u>Links</u>		
E			
ECA40 TM	319		
$ECA600^{TM}$	319		
Emerson	321		
empirical tuning	169		
error feedback	74	98	
$EXACT^TM$	316		
excitation detection	305		
F			
feature-based models	23		
feedback	1	366	
feedback fundamentals	96		
feedback loop	96		
feedforward control	139		
adaptive	321		
from disturbance	154		
from set point	139	150	
incremental algorithm	422		
neutral	146		
filtering	73	99	125
Fisher-Rosemount	321		
force balance	408		
force feedback	410		
FOTD model	20	28	48
FOTDI model	36		
Foxboro	316		
FPGA	6		
frequency curve	22		
frequency response	21		
friction	330		

<u>Index Terms</u>	<u>Links</u>		
fundamental limitations	101		
fuzzy control	392		
fuzzy inference	394		
fuzzy logic	392		
G			
gain crossover frequency	105	132	
gain curve	22		
gain margin	104	121	
gain ratio, κ	27		
gain scheduling	43	295	296
Gang of Four	98		
Gang of Six	98		
Н			
Haalman's method	190		
half rule	58		
Hammerstein model	42		
Harris index	337		
heat conduction	37		
heat exchanger	39	377	
high frequency roll-off	73		
Honeywell	322		
hysteresis	331		
I			
I-PD controller	74		
I-term	5	64	
IAE, integrated absolute error	128		
Idle index	343		
IE, integrated error	128	273	

<u>Index Terms</u>	<u>Links</u>	
IFT, iterative feedback tuning	313	
IMC, internal model control	193	
implementation	407	
analog electronic	410	
computer based	412	
incremental algorithm	421	
pneumatic	408	
impulse response	19	
incremental algorithm	421	
windup	78	
indirect adaptive control	295	
integral action	4 6	7
integral control	4	
integral time, T_i	5 6	5
integrated absolute error, IAE	128	
integrated error, IE	128 27	3
integrated squared error, ISE	129	
integrated time multiplied absolute		
error, ITAE	128	
integrating processes	35	
integrator clamping	84	
integrator windup, see windup		
interacting tanks	31	
interaction index	350	
interaction of simple loops	347	
internal model control, IMC	193	
internal stability	106	
inverse response	36	
ISE, integrated squared error	129	
ITAE, integrated time multiplied ab-		
solute error	128	
iterative feedback tuning, IFT	313	

<u>Index Terms</u>	Links	
J		
jump- and rate limiter	383	
L		
lag	28	
lambda tuning	186	
limiters	382	
linear time-invariant system	15	
linearization	381	
load disturbances	44	
detection	307	
specifications	123	
loop assessment	334	
loop gain	66	
loop shaping	104	206
loop transfer function	103	
LOOPTUNE TM	323	
M		
manipulated variable, MV	2	
manual tuning	169	
maximum error, $e_{ m max}$	128	
maximum selector	386	
maximum sensitivity	113	
measurement noise	44	
median selector	388	
membership functions	392	
MEMS	6	
mid-range control	378	
MIGO, M-constrained Integral Gain		
Optimization	218	
This page has been reformatted by Knovel to p	rovide eas	sier navigation.

<u>Index Terms</u>	<u>Links</u>	
minimum phase	15	
minimum selector	386	
minimum variance control	46	289
mode switches	423	
model predictive control, MPC	285	
model reduction	56	
model-based diagnosis	337	
model-based tuning	298	
modeling from data	47	
modulus optimum, BO	198	
motion control	122	
moving horizon control	285	
multiple lag	29	
MV, manipulated variable	2	
N		
negative feedback	3	
neural network	389	
hidden layers	390	
learning	391	
neuron	389	
neutral feedforward	146	
non-minimum phase	15	
noninteracting tanks	29	
nonlinear elements	381	
normalized dead time τ	26	
normalized time delay, τ	26	
NOTD model	142	
Nyquist plot	22	
Nyquist's stability criterion	103	

<u>Index Terms</u>	<u>Links</u>	
О		
on-off control	3	
operational aspects	423	
optimization methods	196	
oscillation detection	310	338
oscillatory systems	34	
overshoot	130	
P		
P-term	5	64
pairing	351	
parallel systems	360	
parameter estimation	301	
pattern recognition	316	
performance assessment	133	336
periodic disturbances	370	
periodic variations	370	
phase crossover frequency	104	
phase curve	22	
phase margin	105	
phase margin design	163	
physical modeling	47	
PI control	5	
PI-D controller	74	
PID control	5	64
PID controller		
classical implementation	70	
discretization	414	
ideal form	72	
implementation	407	
interacting form	70	

<u>Index Terms</u>	Links	
PID controller (Cont.)		
ISA form	72	
non-interacting form	70	
parallel form	72	
series form	72	
standard form	72	
$PID\tau$ controller	316	
pneumatic implementation	408	
pole placement design	174	
poles	17	
PPI controller	279	316
prediction		
ability of controllers	5	
using derivative action	5	
using model	266	
predictive control	266	
predictive PI controller, PPI	279	
prefiltering	414	
preload	85	
process gain	24	
process variable, PV	2	
proportional action	65	
proportional band	82	
proportional control	4	
Protuner TM	324	
$Provox^{TM}$	321	
pulse step control	151	
pulse width modulation	429	
PV, process variable	2	

<u>Index Terms</u>	<u>Links</u>	
Q		
quadratic programming	286	
quarter amplitude damping	130	
R		
ramp unit	382	
rate constant, K_v	23	
rate limiter	382	
ratio control	384	
ratio station	385	
reaction curve	14	18
receding horizon control	285	
reference value	2	
relative gain array, RGA	349	
relay auto-tuning	300	
relay feedback	53	
repetitive control	368	
reset	65	67
resonance peaks	122	131
response time, $T_{\rm max}$	128	
RGA, Bristol's relative gain array	349	
rise time	129	
robust loop shaping	206	
robustness	118	195
robustness measure, Peter Hansen	121	
Rosenbrock's system	352	
RS3 TM	321	
rule-based methods	302	
rule-based tuning	169	

\mathbf{S}		
sampling	413	
SDM-20 TM	319	
selector control	386	
of air-fuel	388	
sensitivity crossover frequency	113	
sensitivity frequency	132	
sensitivity functions	111	
set point		
limitation	78	
specifications	129	
weighting	74	145
weights	74	
set point, SP	2	
settling time	130	
SIMC - Skogestad's Internal Model		
Controller	195	
Skogestad's half rule	58	
Skogestad's Internal Model Controller,		
SIMC	195	
SLPC-181	281	323
sluggish control loops	342	
Smith predictor	89	267
analysis	271	
ideal time delay	370	
integrating processes	283	
SO, symmetrical optimum	198	
SOTD model	51	54
SP, set point	2	
specifications	128	
spectral density	46	

Links

Index Terms

<u>Index Terms</u>	Links		
split-range control	378	380	403
stability	102		
margins	104	105	114
regions	106		
relation to poles	103		
state	18		
state models	18		
static gain	13		
static models	13	47	
static process characteristic	13		
steady-state error	66	130	
step response	14	18	
integrating	15		
monotone	15		
oscillating	15		
stick-slip motion	330		
stiction	330		
superposition principle	15		
supervision	304		
surge tank control	122	383	
symmetrical optimum, SO	198		
system structuring	398		
T			
tanks			
continuous stirred reactor	40		
interacting	31		
noninteracting	29		
Techmation	324		
three-position pulse output	429		
thyristors	427		
time constant	28		

<u>Index Terms</u>	Links			
time delay	15	17	28	266
apparent	26			
compensation	89			
normalized	26			
TITO system	348			
top-down approach	367			
tracking	79	424		
tracking time constant	80	83		
transfer function	19			
transient response	18			
transport delay	17	20		
triacs	427			
tuning maps	169			
two degrees of freedom	76	96		
U				
UDC 6000 TM	322			
ultimate frequency	26			
ultimate gain	26			
${f v}$				
valves	329			
friction	330			
hysteresis	331			
velocity algorithms	420			
\mathbf{w}				
Wiener model	42			
windup	76			
back-calculation	79			
cascade control	376			

<u>Index Terms</u>	<u>Links</u>
windup (Cont.)	
conditional integration	84
incremental algorithm	78
selector control	388
set-point limitation	78
tracking	79
Y	
Yokogawa	323
${f z}$	
zeros	17
multivariable systems	352
Ziegler-Nichols methods	159
commentary	168
frequency response method	161
integration time inequality	173
loop-shaping interpretation	162
relations	165
step response method	159