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Predictive Control

8.1 Introduction

A PI controller only considers present and past data, and a PID controller also
predicts the future process behavior by linear extrapolation. There have been
many attempts to find other ways of predicting future process behavior and to
take this into account when making the control actions. Good predictions can
improve controller performance, particularly when the process has time delays,
which are common in process control. Time delays can arise from a pure delay
mechanism caused by transport or time for computation and communication.
Delays may also be caused by measurements obtained by off-line analysis.
They also appear when a high-order system or a partial differential equation
is approximated with a low-order model as in heat conduction. Time delays
appear in many of the models discussed in this book. A new controller that
could deal with processes having long time delays was proposed by Smith in
1957. The controller is now commonly known as the Smith predictor. It can
be viewed as a new type of controller but it can also be interpreted as an
augmentation of a PID controller. There are also many other controllers that
have predictive abilities. The model predictive controller is a large class of
controller that is becoming increasingly popular.

In this chapter we start by presenting the Smith predictor in Section 8.2.
This controller can give significant improvements in the response to set-point
changes, but the Smith predictor can also be very sensitive to model uncer-
tainties. This is shown in Section 8.3 where we analyze the closed-loop system
when a Smith predictor is used. The analysis also shows that the concepts
of gain and phase margin are not sufficient to characterize the robustness of
the system. The reason for this is that the Nyquist curve of the loop transfer
function can have large loops at frequencies larger than the gain crossover fre-
quency. The robustness is well captured by the properties of the Gang of Four,
and there is also another classical robustness measure, the delay margin, that
gives good insight. A special type of the Smith predictor called the PPI con-
troller is discussed in Section 8.4. This controller is simpler and more robust.
Model predictive control, a more general form of prediction that is gaining in
popularity, is discussed in Section 8.6.
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Figure 8.1 Block diagram of a system with a Smith predictor.

8.2 The Smith Predictor

To describe the idea of a Smith predictor we consider a process with a time
delay L, and we factor the process transfer function as

P(s) = P0(s)e−sL, (8.1)

where the transfer function P0 does not have any time delays. Figure 8.1 shows
a block diagram of a closed-loop system with a Smith predictor. The controller
consists of an ordinary PI or PID controller C0 and a model of the process P̂,
factored in the same way as the process, connected in parallel with the process.
If the model is identical with the process the signal yp represents the output
without the delay or, equivalently, a prediction of what the output would be
if there were no delays. By using the model it is thus possible to generate a
prediction of the output. The signal yp is fed back to the controller, and there
is also an additional feedback from the process output y to cope with load
disturbances. If the model P̂ is identical to the process P and if there are no
disturbances acting on the process the signal ε is zero. This means that the
outer feedback loop gives no contribution, and the input-output relation of the
system is given by

Gyysp
= PC0

1 + P0C0
= P0C0

1 + P0C0
e−sL. (8.2)

The controller C0 can thus be designed as if the process has no time delay,
and the response of the closed-loop system will simply have an additional time
delay.

The system shown in Figure 8.1 can also be represented by the block dia-
gram in Figure 8.2, which is an ordinary feedback loop with a process P and
a controller C, where the controller has the transfer function

C = C0

1 + C0(P̂0 − P̂) = C0

1 + C0 P̂0(1 − e−sL) . (8.3)
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Figure 8.2 Another representation of a system with a Smith predictor.

The transfer function P̂0e−sL is the transfer function of the process model used
to design the controller. The controller C is thus obtained by wrapping a feed-
back around the controller C0. The input-output relation of the controller C

can be written as

U(s) = C0(s)(E(s) − P̂0(s)(1 − e−sL)U(s)), (8.4)

where U(s) and E(s) are the Laplace transforms of the control signal and
the error. The term P̂0(s)(1 − e−sL)U(s) can be interpreted physically as the
predicted effect on the output of control signals in the interval (t − L, t). The
Smith predictor can thus be interpreted as an ordinary PI controller where the
effects of past control actions are subtracted from the error. The controller can
be compared with a PID controller, which predicts by extrapolating the current
process output linearly, as is illustrated in Figure 3.5. This type of prediction is
less effective for systems with time delays because future process outputs are
strongly influenced by past control control actions rather than current inputs.

The properties of the Smith predictor will be illustrated by an example.

EXAMPLE 8.1—FIRST-ORDER SYSTEM WITH TIME DELAY

Consider a process with transfer function

P(s) = Kp

1 + sT
e−sL. (8.5)

A PI controller that gives the characteristic polynomial

s2 + 2ζ ω 0s + ω 2
0

for the process without delay is designed as described in Section 6.4. The con-
troller is

C0(s) = K
(

1 + 1
sTi

)
,
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Figure 8.3 Responses of a closed-loop system with Smith predictor. The process has the
transfer function P(s) = e−sL/(s + 1), and the figure shows response for L = 1 and 8. The
dashed line is the load disturbance.

where

K = 2ζ ω 0T − 1
Kp

Ti = KpK

ω 2
0T

.

(8.6)

Figure 8.3 shows the responses of the system to a unit step change in the set
point and a load disturbance in the form of a unit step in the process input.
The load disturbance is applied at time t = 15 in all cases. The time constant is
equal to one in all cases, and the time delay L is changed. The PI controller is
designed to give a closed-loop system with ω 0 = 2 and ζ = 0.7 for the process
without delays. The figure shows that the responses to set point have the same
shape but with a delay that changes with the process delay. The shape is the
same as for a system without the time delay. This property of the system is
quite remarkable.

The shapes of the responses to load disturbances change with the time delay
L. With increasing time delay it will take a longer time for the system to react.
The initial part of the responses are similar but with different delays. Because
of the varying delay the time to recover from the disturbance varies with the
time delay.

Analyzing the results it may appear remarkable that it is possible to obtain
such good responses even when the time delay is as long as L = 8. In the fol-
lowing we will analyze the systems obtained when using the Smith’s predictor
to better understand its behavior.

The Predictor

It follows from (8.3) that the Smith predictor can be viewed as the cascade
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connection of an ordinary controller C0 and a block with the transfer function

Cpred = 1

1 + C0(P̂0 − P̂) = 1

1 + C0 P̂0(1 − e−sL) . (8.7)

To obtain the responses shown in Figure 8.3 the transfer function Cpred com-
pensates for the time delay of the process. Intuitively this can be understood
in the following way. Assume C0 P̂0 	 −1; it then follows from (8.7) that

Cpred 	 esL.

This means that the transfer function Cpred(s) acts like an ideal predictor.
We can therefore expect that the transfer function Cpred behaves like an ideal
predictor for frequencies where C0(iω )P̂0(iω ) is close to −1. Notice that it is
not possible to have C0(iω )P̂0(iω ) = −1 for any frequency because the transfer
function (8.2) is then unstable. The properties of the transfer function (8.7)
will be illustrated by an example.

EXAMPLE 8.2—PREDICTOR FOR FIRST-ORDER SYSTEM WITH TIME DELAY

Consider the same system as in Example 8.1. Assuming that there are no
modeling errors it follows that P̂ = P = P0e−sL. Combined with a PI controller
the predictor becomes

Cpred = 1
1 + C0(P0 − P) = 1

1 + KpK (1 + sTi)
sTi(1 + sT) (1 − e−sL)

. (8.8)

It follows from (8.8) that Cpred(iω ) = 1 for ω L = 2π , 4π , 6π , . . . and that Cpred(s)
goes to 1 for large s. The transfer function Cpred has the series expansion

Cpred(s) = Ti

Ti + KpK L

(
1 + KpK L

Ti + KpK L

(
T + L

2
− Ti

)
s + . . .

)
.

The static gain of Cpred decreases with increasing L and is always less than
one. Figure 8.4 shows the Bode plot for the transfer function for L = 8. The
figure shows that the transfer function gives a very large phase advance, more
than 800○. A comparison with the phase curve of an ideal predictor shows that
the system does approximate an ideal predictor well for certain frequencies.
The solid and dashed curves are very close for those frequencies where the
gain curve has peaks. Notice, however, that the gain curves are different. The
ideal predictor has constant gain, but the gain of the transfer function Cpred

changes with several orders of magnitude.
We will now investigate how the large phase advance is created. Figure 8.5

shows Nyquist curves of the transfer function Cpred for Kp = 1, T = 1, K = 1.8,
Ti = 0.45, and L = 1, 2.5, 4, and 8. For L = 1 the largest phase advance is
close to 90○. The phase advance increases with increasing L, as is indicated in
the curve for L = 2.5 where the circular part of the Nyquist curve increases.
The Nyquist curve goes to infinity for L = 2.99, which indicates that the
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Figure 8.4 Bode plot of the loop transfer functions Cpred(s) given by (8.8) for L = 8
(solid) and for the ideal predictor esL (dashed).

transfer function has poles on the imaginary axis. For larger L the Nyquist
curve encircles the origin, which means that the phase advance is more than
360○. The curve for L = 4 shows that the largest phase advance is more than
450○. As L is increased further the Nyquist curve again goes to infinity for
L = 6.40, and for larger L there are two encirclements of the origin, indicating
that the phase advance is more than 720○. The curve for L = 8 shows that the
largest phase advance is more than 800○.

To deform the curve for L = 2.5 continuously to the curve for L = 4 in
Figure 8.5 the curve must go to infinity for some intermediate value of L. In
the particular case the Nyquist curve of Cpred goes to infinity for L = 2.99,
6.40, 9.80, 13.40, 17,00, 20.6, . . .. This means that the transfer function Cpred

is unstable for some values of L. It has two poles in the right-half plane for
2.99 < L < 6.40, four poles in the right half plane for 6.40 < L < 9.80, etc. For
the simulation with L = 10 in Figure 8.3 the predictor transfer function has
six poles in the right half plane. The predictor (8.3) thus achieves very large
phase advances through poles in the right half plane.

There are severe drawbacks with unstable controllers. It follows from Bode’s
integral (4.28) that poles in the right half plane increase the sensitivity. The
remarkable response to set-point changes shown in Figure 8.3 thus comes at
a price. Some of these issues will be discussed in the next section.

8.3 Analysis of Smith Predictor Control

The closed-loop system obtained when a process is controlled using a Smith
predictor will now be investigated. Let the process transfer function be P, the
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Figure 8.5 Nyquist plots of the transfer function Cpred for the system in Example 8.2
with L = 1, 2.5, 4, and 8. The plot for L = 1 and 2.5 all circles clockwise, the plot for
L = 4 first makes one counterclockwise loop before making the clockwise loops, the plot
for L = 8 first makes tow counterclockwise the remaining loops are clockwise.

transfer function of the Smith predictor (8.3), and we find

Gyysp
= PC

1 + PC
= PC0

1 + P̂0C0 + (P − P̂)C0
= P0C0

1 + P0C0
e−sL

Gyd = P

1 + PC
= P

(
1 + (P̂0 − P̂)C0

)
1 + P̂0C0 + (P − P̂)C0

= P

(
1 − P0C0

1 + P0C0
e−sL

)

−Gun = C

1 + PC
= C0

1 + P̂0C0 + (P − P̂)C0
= C0

1 + P0C0

−Gyn = 1
1 + PC

= 1 + (P̂0 − P)C0

1 + P̂0C0 + (P − P̂)C0
= 1 − P0C0

1 + P0C0
e−sL,

(8.9)

where the last equality is obtained by assuming that the model is perfect, i.e.,
P̂ = P. The form of the transfer function from set point to process output Gyysp

shows that apart from the time delay the set-point responses are the same
as for the system without time delays. The transfer Gun from measurement
noise to the control signal is the same as the transfer function from set point
to controller output. This transfer function is the same as for a system without
a delay.

272



8.3 Analysis of Smith Predictor Control

Stability

It follows from (8.9) that the closed-loop system has poles at the open-loop
process poles and at the zeros of of the function

1 + P̂0C0 + (P − P̂)C0 	 1 + P̂0C0,

where the approximation is valid when P̂ 	 P. The zeros of this function can
be chosen to be stable by a proper controller C0. To have a stable closed-loop
system it must also be required that the process be stable. This means that the
Smith predictor does not work for processes with unstable open-loop dynamics.
Modifications to eliminate this difficulty will be given in Section 8.5.

Response to Load Disturbances

When modeling errors are neglected the response to a load disturbance at the
process input is given by the transfer function

Gyd = P

(
1 − P0C0

1 + P0C0
e−sL

)
;

see (8.9). The second term has a time delay L. If a disturbance occurs at time
0 it follows that the response in the interval 0 ≤ t < L is the same as the
response of the open-loop system. A typical illustration is given in Figure 8.3.

Assume that the process P is stable with static gain Kp and that controller
C0 has integral action with integral gain ki. A series expansion of Gyd for small
s gives

Gyd(s) 	 Kp

(
1 − Kpki

s + Kpki

(1 − Ls)
)

= Kp

s + Kpki Ls

s + Kpki

	
(

KpL + 1
ki

)
s.

(8.10)
Since Gyd(0) = 0 there is no steady-state error for a step change in the load
disturbance. Furthermore, the integrated error for a load disturbance in the
form of a unit step is

I E = KpL + 1
ki

. (8.11)
Notice that the first term KpL only depends on the process and that the second
term 1/ki only depends on the controller.

The transfer function P has a pole at the origin for processes that have
integral action. For such processes and a controller with integral action we
have P(s) 	 Kv/s and C(s) 	 ki/s for small values of s. This implies that

Gyd(s) 	 Kv

s

(
1 − Kvki

s2 + Kvki

(1 − Ls)
)

= Kv

s

s2 + Kvki Ls

s2 + Kvki

	 Kv L. (8.12)

This means that there will be a steady-state error for processes with integration
even if the controller has integral action. The recovery from load disturbances
will therefore be very slow for processes with slow dynamics. Notice that the
closed-loop system is stable even though P contains an integrator. The reason
is that the integrator of P is canceled with a zero of the transfer function
1 − PC0/(1 + P0C0). Several modifications of the Smith predictor have been
proposed for processes with integration. This will be discussed in Section 8.5.
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Figure 8.6 Gain curves for the sensitivity functions for the system in Example 8.3 with
L = 0 (dash-dotted), 0.25 (solid), 1 (dashed), and 8 (dotted).

The Sensitivity Functions

In the ideal case P̂ = P, it follows from (8.9) that the sensitivity and the
complementary sensitivity functions are

S = 1 − PC0

1 + P0C0
= 1 − P0C0

1 + P0C0
e−sL = 1 − T0e−sL

T = PC0

1 + P0C0
= P0C0

1 + P0C0
e−sL = T0e−sL,

(8.13)

where T0 is the complementary sensitivity function for the nominal system
without delay. Notice that the gain curves of T and T0 are identical. The gain
curve of the complementary sensitivity function is independent of L.

EXAMPLE 8.3—SYSTEM OF FIRST ORDER WITH TIME DELAY

For the first-order system in Example 8.1 where the controller C0 was designed
to give ω 0 = 2. The sensitivity functions are

T(s) = KpK (1 + sTi)
sTi(1 + sT) + KpK (1 + sTi) e−sL = sω 2

0T/(2ζ ω 0T − 1) + ω 2
0

s2 + 2ζ ω 0s + ω 2
0

e−sL

S(s) = 1 − T(s).

Figure 8.6 shows the gain curves of the sensitivity functions for L = 0, 0.25,
1, and 8, which corresponds to ω 0 L = 0, 0.5, 2, and 16. The largest sensitivity
increases rapidly with L; we have Ms = 1.1, 1.4 1.6, and 2 for L = 0, 0.24, 0.4,
and 1.2, respectively. For L > 1.2 the maximum sensitivity remains close to
Ms = 2. Also notice that the sensitivity for low frequencies increases rapidly
with increasing L.
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The differences between the low-frequency properties of the sensitivity func-
tions in Figure 8.6 are easily explained from (8.10). The low-frequency asymp-
tote of the gain curves of the sensitivity function intersects the unit magnitude
line for ω = ki/(1 + ki KpL). For the system in the figure we have Kp = 1 and
ki = 4, and the intersections are denoted by circles in Figure 8.6.

The sensitivity functions shown in Figure 8.6 are typical for systems with
Smith predictors. The complementary sensitivity function is close to one for
frequencies up to the bandwidth ω b of the nominal system without time delay.
The sensitivity function has the typical oscillatory behavior shown in the figure.
It intersects the line �S� = 1 several times. For large delays the sensitivity
crossover frequency is approximately ω sc = ki/(1 + ki KpL), reflecting the fact
that the attenuation of load disturbances is poor for large L. Also notice that
the largest peaks of the sensitivity function are close to Ms = 2 in the frequency
range where �T(iω )� 	 1.

Robustness

For controllers with integral action we have T(0) = 1. Let ω b be a frequency
such that �T(iω )� is close to 1 for 0 ≤ ω ≤ ω b. If ω bL ≥ π it then follows from
(8.13) that the maximum sensitivity is around Ms = 2. In order to have smaller
sensitivities it is therefore necessary to require that ω bL is not too large. It
follows from (4.32) that it is possible to have perturbations in the process such
that

�∆P(iω )�
�P(iω )� < 1

�T(iω )�
without making the system unstable. For frequencies less than ω b the right-
hand side is equal to one. The inequality then implies that the uncertainty
region is a circle with center at P(iω ) that passes through the origin. If we
only consider variations in the phase admissible variations are therefore 60○

or π /3 rad. Since the phase change is ω L we find

�ω b∆L� < π

3
,

which gives the following estimate of permissible variations in the time delay

�∆L�
L

< π

3ω bL
	 1

ω bL
. (8.14)

Controllers with large values of ω bL thus require that the time delay be known
accurately. Consider, for example, the system in Figure 8.3 with L = 8. In this
case we have ω bL = 16, which implies that the permissible error in the time
delay is at most 6 percent.

The Loop Transfer Function

Analysis of the sensitivity functions indicates that the robustness of a closed-
loop system with a Smith predictor may be poor when ω bL is large. An analysis
of the loop transfer function gives additional insight.
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Figure 8.7 Nyquist plots of the loop transfer function for a FODT system, (8.5), with a
Smith predictor controller. The critical point −1 is marked with a +.

When there are no modeling errors the loop transfer function obtained using
a Smith predictor is

PC = PC0

1 + C0(P0 − P) = P0C0e−sL

1 + P0C0(1 − e−sL) . (8.15)

Figure 8.7 shows the Nyquist plots of the loop transfer function for different
values of L. For L = 1 the Nyquist plot has a loop of moderate size. The loop
increases with increasing L, as is seen by comparing the cases L = 1 and L = 2
in Figure 8.7. The loop is almost circular for L larger than 2. For L = 2.99
the loop is infinitely large, and for 2.99 < L < 6.40 the loop transfer function
has two encirclements of the critical point, one for positive and another for
negative ω . Notice that we have only shown the branch of the Nyquist plot
corresponding to 0 ≤ ω < ∞. The unstable poles are the poles of the predictor
transfer function (8.7). The number of encirclements increases as L increases.
For L = 8 there are four encirclements of the critical point.

Figure 8.8 shows the Bode plots of the loop transfer function for the cases
L = 1 and L = 8. The loop transfer functions change drastically with L. The
gain crossover frequency is 0.82 for L = 1 and decreases to about 0.13 for L = 8.
These values agree quite well with the performance limit ω gc L 	 1 given by
(4.57). Notice that the gain curve for L = 8 has several crossings at higher
frequencies. The gain crossover frequency is smaller for L = 8 even if the rise
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Figure 8.8 Bode plots of the loop transfer function (solid) and the process transfer
function (dashed) for a FOTD system (8.5) with a Smith predictor. The curves on the left
are for L = 1, and those on the right for L = 8.

time for set-point changes are the same for both systems. The high peaks of
the gain curve correspond to the loops in the Nyquist plot in Figure 8.7.

The Bode plot of the open-loop system is shown in dashed lines in Figure 8.8.
Notice that the controller gives a large phase advance at the frequencies cor-
responding to the first two peaks, which represent the unstable poles of the
controller.

The Delay Margin

The classical robustness measures, gain margin and phase margin, do not
capture the properties of Nyquist curves of the type shown in Figure 8.7, where
the Nyquist curve has large loops. This is illustrated in Figure 8.9, which
shows Nyquist plots of the loop transfer function for the case L = 2 and for a
system where the time delay of the process has been increased with 30 percent.
The figure shows that the system becomes unstable when the time delay is
increased by 30 percent. Notice that it is the large loop that crosses the critical
point −1 and not the part of the Nyquist curve close to the gain margin. The
robustness measure called the delay margin is introduced to capture this effect.
The delay margin is defined as the change in the time delay required to make
a system unstable. For the systems with L = 2 and L = 8 in Figure 8.7 the
delay margins are 27 percent and 7 percent, respectively.

Notice that the sensitivity functions also capture the robustness in the cases
of loop transfer functions like the ones shown in Figure 8.7. The sensitivity to
variations in the time delay can be estimated by (8.14), which gives delay
margins of 25 percent and 6 percent for the systems in Figure 8.7 with L = 2
and L = 8. These numbers are close to the numbers obtained by using the
delay margin.

Another way to quantify robustness is to explore the sensitivity of the closed
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Figure 8.9 Nyquist plots of the loop transfer functions for the system in Example 8.1
with L = 2 in the nominal case (solid line) and when the time delay is increased by 30
percent (dashed line).

loop to variations in the process parameters. For the FOTD process we have

P(s) = Kp

1 + sT
e−sL

Hence,
log P = log Kp − log (1 + sT) − sL

Differentiation this gives

dP

P
= dKp

Kp

− sdTp

1 + sTp

− sdL = dKp

Kp

− sdTp

1 + sTp

− sL
dL

L

For systems with large time delays the last term is dominating, which means
that the sensitivity to time variations in the time delay is the critical constraint.
Equation (4.32) then gives

�dL�
L

< 1
ω L�T(iω )� ,

and we obtain the following estimate of the delay margin:

dm = max
�dL�

L
< max

1
ω L�T(iω )� .

Summary

The Smith predictor makes it possible to obtain dramatic improvements of
the set-point response as illustrated in Figure 8.3. The controller is obtained
in a very simple way by first designing a controller C0 for a nominal system
P0 that does not have the time delay. The Smith predictor is then obtained
by cascading C0 with a predictor Cpred, which effectively eliminates the time
delay. An interesting feature of the Smith predictor is that it uses past control
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actions for prediction. It is in principle possible to compensate for any delay.
The controller may, however, have unstable poles. The product ω bL, where ω b

is the bandwidth of the nominal closed-loop system T0 = P0C0/(1+P0C0) and L

is the time delay L, are crucial parameters. The number of unstable controller
poles grows with ω bL. Controllers with poles in the right half plane have poor
robustness. Admissible variations in the time delay are inversely proportional
to ω bL. To have a robust closed-loop system it is therefore necessary to restrict
ω bL. In Example 8.3 we found, for example, that to have Ms = 1.4 it was
necessary to have ω bL < 0.5.

8.4 The PPI Controller

In this section we will discuss special cases of the Smith predictor that give
controllers of a particularly simple form. The Smith predictor discussed in
Example 8.1 was based on the FOTD model. The design criterion was to find a
controller that gives a second-order system with poles having relative damping
ζ and frequency ω 0 for the system without delay. Another possible design
is to choose a controller that cancels the process pole and makes the other
closed-loop pole equal to s = −1/Tcl , where Tcl is the desired response time
of the closed-loop system. This design method gives the following controller
parameters;

K = T

Tcl Kp

, Ti = T .

The loop transfer function of the nominal system without delay is P0C0 =
1/(sTcl), and the controller has the transfer function

C(s) = 1 + sT

KpsTcl

1
1 + 1

sTcl
(1 − e−sL) . (8.16)

The loop transfer function is

P(s)C(s) = 1
sTcl

1
1 + 1

sTcl
(1 − e−sL) . (8.17)

Since the process pole is canceled it should be required that the process pole
is fast in comparison with the dominant closed-loop dynamics; see Section 6.6.
There is one tuning parameter: the closed-loop response time Tcl .

The input-output relation of the controller (8.16) can be written as

U(s) = 1 + sT

KpsTcl

E(s) − 1
sTcl

(
1 − e−sL

)
U(s)

= 1 + sT

KpsTcl

(
E(s) − Kp

1 + sT

(
1 − e−sL

)
U(s)

)
= 1 + sT

KpsTcl

Ep(s),

(8.18)

where Ep(s) is the Laplace transform of the predicted error

ep(t) = ysp(t) − y(t) − ỹ(t),
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Figure 8.10 Block diagram of an implementation the PPI controller with Tcl = T = Ti.

and

Ỹ(s) = Kp

1 + sT

(
1 − e−sL

)
U(s).

The term ỹ(t) represents the effect on the output of control actions taken in the
interval (t− L, t). The controller can thus be interpreted as a PI controller that
acts on a predicted error, which is the actual error compensated for past control
actions that have not yet appeared at the output. The controller is called the
predicting PI controller or the PPI controller.

The controller is particularly simple if Tcl = T . The input-output relation
of the controller then becomes

U(s) = K E(s) + e−sL

1 + sTi

U(s).

A block diagram describing this equation is given in Figure 8.10. Notice the
strong similarity with the PI controller shown in Figure 3.3. There are also
versions of this controller where the gain is replaced by a PD controller.

The Predictor

The PPI controller (8.16) is a cascade combination of a PI controller and a
predictor with the transfer function

Cpred(s) = 1
1 + 1

sTcl
(1 − e−sL) . (8.19)

Apart from frequency scaling the predictor is completely characterized by the
ratio Tcl/L. It can be shown that the predictor does not have poles in the right
half plane for any values of Tcl. The reason for this is that the loop transfer
function of the nominal system without delay has constant phase.

A series expansion of the transfer function (8.19) for small s gives

Cpred(s) 	 1
1 + L/Tcl − sTcl(L/Tcl)2/2 + . . .

	 1
1 + L/Tcl

(
1 + 1

2
(L/Tcl)2

1 + L/Tcl

Tcls + . . .

)
.

(8.20)

The static gain is Cpred(0) = 1/(1+ L/Tcl), and it also follows that Cpred goes to
1 as s goes to infinity. Figure 8.11 shows the Bode plot of the predictor (8.19).
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Figure 8.11 Bode plots for the predictor (8.19) (solid), a predictor based on differentia-
tion (dotted), and the ideal predictor esT (dashed).

For comparison we have also given the Bode plots for an ideal predictor esTpred ,
where

Tpred = 1
2

(L/Tcl)2

1 + L/Tcl

, (8.21)

and a predictor based on differentiation. The predictor based on differentiation
has been adjusted to give the same maximum gain as the predictor (8.19).
There are differences between the predictors. The ideal predictor has unit gain
for all frequencies; the other predictors have higher gains at high frequencies
and lower gains at lower frequencies. The predictor (8.19) provides larger phase
advance than the predictor based on differentiation, but the phase advance falls
off rapidly for higher frequencies.

Design Choices

The choice of the design parameter Tcl is a compromise between robustness
and performance. The response time is directly given by Tcl; fast response time
requires a small Tcl . Robustness is governed by the ratio Tcl/L. The sensitivity
function is given by

S = 1 − e−sL

1 + sTcl

.

Figure 8.12 shows the maximum sensitivity as a function of Tcl/L. Notice
that the largest sensitivity has the property Ms ≤ 2. To have Ms ≤ 1.6 requires
Tcl > 0.66L and Ms ≤ 1.4 requires Tcl > 1.4L. To have a reasonable robustness
the desired response time cannot be chosen much shorter than L. It follows
from (8.14) that the largest relative error in the time delay is given by

�∆L�
L

≤ Tcl

L
.

281



Chapter 8. Predictive Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

Tcl/L

M
s

Figure 8.12 Maximum sensitivity Ms for the closed-loop system with the PPI controller
(8.16) as a function of Tcl/L.

If maximum sensitivities as high as Ms = 2 are allowed and if the time delay
is known precisely it is possible to allow smaller ratios Tcl/L.

For well-damped systems the integrated error IE is a performance measure
that is easy to compute. From (8.18), the PPI controller in time domain is

u(t) = T

KpTcl

e(t) + 1
KpTcl

∫ t

0
e(t)dt − 1

Tcl

∫ t

0

(
u(t) − u(t − L))dt. (8.22)

To compute the integral error for the PPI controller it will be assumed that
the system is initially at rest and that a load disturbance in the form of a unit
step is applied to the process input. Since the controller has integral action,
we have u(∞) = 1. Therefore,∫ ∞

0

(
u(t) − u(t − L))dt = L.

After a unit load disturbance, it follows from (8.22) that

u(∞) − u(0) = 1 = 1
KpTcl

∫ ∞

0
e(t)dt − L

Tcl

.

The integral error thus becomes

I EPPI = Kp(L + Tcl).

The integrated error consists of two terms. The first term, KpL, is due to
the time delay and cannot be influenced by the controller. The second term,
KpTcl , may be made small by specifying a short closed-loop time constant Tcl .
A small value of Tcl will, however, result in poor robustness.

It is interesting to compare the performance of the PPI controller with the
performance of PID controller. In Section 4.9, it was shown that the integral
error for a PID controller is

I EPID = Ti

K
= 1

ki

.
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Figure 8.13 Modified Smith predictor for integrating processes.

It follows from (7.7) that a PID controller for delay-dominated processes tuned
for Ms = 1.4 has ki KpL = 0.5. This gives I E = 2KpL, which is close to the value
I E = 2.4KpL obtained for the PPI controller. We thus obtain the conclusion
that the PPI controller does not give significantly better performance at load
disturbances than a PI controller if both controllers have the same robustness.
The main advantage of the PPI controller is its ability to improve set-point
responses; see Figure 8.3.

8.5 Predictors for Integrating Processes

The basic Smith predictor has useful properties, but it also has some severe
drawbacks. It cannot be used for unstable systems, and it gives a steady-state
error for load disturbances for processes with integration. Several modifications
have therefore been proposed.

For processes with integration it has been suggested to modify the Smith
predictor, as shown in Figure 8.13, in order to obtain zero steady-state error for
a constant load disturbance. The reason for the modification can be understood
from the principle of internal model control. The signal d̂ that is fed back is
an estimate of the load disturbance.

From Figure 8.13 the transfer functions from set point ysp and load distur-
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Figure 8.14 Modified Smith predictor for integrating processes.

bance d to output y are given by

Y = PC0(1 + K P̂)
1 + C0(P̂0 − P̂) + P(K + K C0 P̂0 + C0) Ysp

+ P(1 + C0(P̂0 − P̂))
1 + C0(P̂0 − P̂) + P(K + K C0 P̂0 + C0) D.

(8.23)

When s → 0, the following approximations hold:

C0 	 ki

s
P̂0 − P̂ 	 Kv

s
(1 − e−sL) 	 Kv L.

If we also assume that P̂ = P, it can be shown that the transfer function
between ysp and y becomes one, and the transfer function between d and y

becomes zero when s → 0.
Another modification for integrating processes is given in Figure 8.14. The

variable yp is an estimate of the undelayed measurement signal

Y = P0(U + D).

The estimation is given by

Yp = P̂0(U + K (Y − Ŷ)).

When P̂0 is stable, the value K = 0 can be used, corresponding to the original
Smith predictor. For integrating processes, it is, however, necessary to have
K �= 0.
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From Figure 8.14 the transfer functions from set point ysp and load distur-
bance d to output y are given by

Y = PC0(1 + K P)
1 + K P̂ + P̂0 − P̂ + PC0(1 + K P̂0) Ysp

+ P(1 + K P̂ + P̂0 − P̂)
1 + K P̂ + P̂0 − P̂ + PC0(1 + K P̂0) D.

(8.24)

Under the assumption that P̂ = P, it can be shown that the transfer func-
tion between ysp and y becomes one, and the transfer function between d and
y becomes zero when s → 0.

8.6 Model Predictive Control

Model predictive control is based on the prediction of future process behav-
ior based on a process model and optimization of the process behavior over a
finite time horizon. Feedback is obtained by applying the initial part of the
control signal and repeating the process over a shifted time horizon. This pro-
cedure is called receding horizon control or moving horizon control. Referring
to Figure 8.15 the algorithm can be described as follows:

1: Develop a process model.

2: Consider the situation at time t. Past process inputs u and past process
outputs y are observed; see Figure 8.15. The future behavior of the process
is predicted under the assumption that the process model and the future
control signals uf = u(τ ), t ≤ τ < t + th are known.

3: The control signal uf is determined to give the desired future behavior.

4: The initial part of control signal uf is applied over the interval [t, t + h].
5: Change time to t + h, and repeat the procedure from Step 2.

The steps can be performed in many different ways, and there are a large
number of algorithms. Different process models can be used; physical models,
input-output models, and state models. The method can be applied both to
single-input single-output systems and to systems with many inputs and many
outputs.

The desired behavior can be specified in many ways. A common procedure
is to specify the desired future behavior by a mathematical model, for example,
one that tells how to approach the set point. The deviation from the desired
behavior can be formulated as an optimization problem to minimize the devi-
ation between actual and desired behavior, possibly with a penalty on control
actions. Step 2 is an open-loop optimization problem where optimization is car-
ried out over a finite time horizon. Feedback is obtained by only applying the
initial part of the control signal. The horizon is then shifted forward, and the
optimization is then repeated.
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Figure 8.15 Illustration of the model predictive control.

Model predictive control is particularly simple for sampled systems where
the control signal is constant over the sampling intervals. Parameter h can then
be chosen as the sampling interval, and the prediction horizon th is typically
chosen as a small number of sampling intervals. Most predictive controllers
are also developed for sampled systems.

A very useful property of model predictive control is that constraints on the
control signal and the process output can be taken into account. A common
choice is to formulate the problem so that efficient algorithms for quadratic
programming can be used. A key difficulty with model predictive control is to
ensure stability when the prediction horizon is finite. Much research has been
devoted to this problem.

A Simple Example

To illustrate the ideas we will give details in a simple case. Consider the sam-
pled process model

y(t)+ a1 y(t− h)+ ⋅ ⋅ ⋅ + an y(t− nh) = b1u(t− h)+ b2u(t−2h)+ ⋅ ⋅ ⋅ + bnu(t− nh),
(8.25)

where y is the process output and u the process input. Consider the situation
at time t. The past behavior is completely characterized by

Y t = (y(t), y(t − h), ⋅ ⋅ ⋅ , u(t − h), u(t − 2h), ⋅ ⋅ ⋅ ). (8.26)

Using the model it is straightforward to predict future values of process output
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as a function of current and future control signals:

Ut = (u(t), u(t + h), . . . , u(t + Nh)). (8.27)
The desired future behavior can be characterized by specifying a reference
trajectory for future process outputs, as indicated in Figure 8.15 and giving
a loss function that penalizes deviations e(t) = y(t) − yd(t) from the desired
output yd(t) and the increments of the control actions ∆u(t) = u(t) − u(t − h)

J(u(t), u(t + h), . . . , u(t + Nh)) =
t+N∑
k=1

e(t + kh)2 + ρ(∆u(t + (k − 1)h))2. (8.28)

There may also be constraints on process inputs and outputs and on the incre-
ment of the control signal.

Future control signalsUt are then computed by minimizing J subject to the
constraints. The control signal u(t) is then applied, and the whole procedure
is repeated. The control signal is a function of past inputs and past outputs

u(t) = F(y(t), y(t − h), . . . , y(t − nh), u(t − h), y(t − 2h), . . . , u(t − nh)),

where the function F is obtained implicitly by solving an optimization problem.
A particularly simple case is when the process model is of first order in the

increments of process inputs and outputs, which we illustrate by an example.

EXAMPLE 8.4—MPC FOR FIRST-ORDER SYSTEM

Let the process model be

∆ y(t + h) = −a∆ y(t) + b∆u(t),

where ∆ y(t) = y(t) − y(t − h) and ∆u(t) = u(t) − u(t − h). Let the desired
trajectory be a signal yd(t) which starts at y(t) and approaches the set point
ysp exponentially with time constant Tcl. The desired process output at time
t + h is then

yd(t + h) = y(t) + (
1 − e−h/Tcl

)(ysp − y(t)).

Assuming that there are no penalties on the control actions the desired process
output can then be achieved in the next sampling period. Equating y(t + h)
with yd(t + h) gives

y(t+h) = y(t)+∆ y(t+h) = y(t)−a∆ y(t)+b∆u(t) = y(t)+(
1−e−h/Tcl

)(ysp− y(t)).

Solving this equation for ∆u(t) gives

∆u(t) = 1 − e−h/Tcl

b
(ysp − y(t)) + a

b
∆ y(t),

which is a PI controller with gains

k = a

b

ki = 1 − e−h/Tcl

b
.
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Notice that the proportional gain only depends on the process model and that
the integral gains depend on the desired response rate Tcl.

It is straightforward to deal with systems having many inputs and outputs.
It is also possible to include constraints. There are many special cases and
variants of model predictive control. A few of them will be discussed briefly;
for more details we refer to the references.

The Dahlin-Higham Algorithm

One of the earliest model predictive controllers was developed for control of
paper machines. The algorithm is based on a process model in terms of the
FOTD model

P(s) = Kp

1 + sT
e−sL,

and the desired response to set-point changes is given by

Gyysp
= 1

1 + sTcl

e−sL.

Assuming that the control signal is constant over sampling intervals of length
h = L/n, where n is an integer, gives the sampled process model

y(t + h) = ay(t) + Kp(1 − a)u(t − nh).

The desired response to set points is given by the difference equation

yd(t + h) = ad yd(t) + (1 − ad)ysp(t − nh).

Introducing the backward shift operator q−1 defined by

q−1 y(t) = y(t − h), (8.29)

the process model can be written as

y(t) = Kpq−(n+1)

1 − aq−1 u(t) = P(q−1)u(t).

Let the controller be characterized by

u(t) = C(q−1)(ysp(t) − y(t)).

The input-output relation for the closed-loop system is then

y(t) = P(q−1)C(q−1)
1 + P(q−1)C(q−1) ysp(t).

Using the backward shift operator the desired response is given by

yd(t) = (1 − ad)q−(n+1)

1 − adq−1 ysp(t) = Gd(q−1)ysp(t),
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where ad = e−h/Tcl . Equating this with the process output gives

P(q−1)C(q−1)
1 + P(q−1)C(q−1) = Gd(q−1) = (1 − ad)q−(n+1)

1 − adq−1 .

Solving this equation with respect to C(q−1) gives

C(q−1) = Gd(q−1)
P(q−1)(1 − Gd(q−1)) = (1 − ad)(1 − aq−1)

Kp(1 − adq−1 − (1 − ad)q−(n+1)) .

The controller can then be described by

u(t) = 1 − ad

Kp

(e(t) − ae(t − h)) + adu(t − h) + (1 − ad)u(t − (n + 1)h).

This controller has integral action, and past inputs are used for prediction.

Dynamic Matrix Control (DMC)

In dynamic matrix control the process is modeled by the finite impulse response
model

y(t) = b1u(t − h) + b2u(t − 2h) + ⋅ ⋅ ⋅ + bnu(t − nh), (8.30)
and the criterion is to minimize the loss function

J
(
u(t), u(t + h), . . . , u(t + (n − 1)h)) =

n∑
k=1

e2(t + kh),

where

e(t+ kh) = yd(t+ kh)−b1u(t+ kh−h)+b2u(t+ kh−2h)+ ⋅ ⋅ ⋅+bnu(t+ kh−nh).

Since e is a linear function of future control variables and the loss function
is quadratic the optimization is straightforward. Notice that the model (8.30)
also holds if there are many inputs and outputs. The coefficients bi are then
matrices. They were called dynamic matrices since they reflect the dynamics
of the response in the original paper, which motivated the name DMC. In
standard control terminology the parameters are simply the coefficients of the
impulse response. In the early use of dynamic matrix control it was common
practice to determine the matrices bi from a simple impulse or step response
measurement.

A drawback with DMC is that a large number of parameters may be re-
quired if the process dynamics are slow. The DMC algorithm was later gener-
alized to QDMC (Quadratic Dynamic Matrix Control), which also can handle
constraints on the control signal.

Minimum Variance Control

The minimum variance controller is a predictive controller for systems with
random disturbances where the criterion is to minimize the variance of the
fluctuations in process output. The algorithm was originally developed for con-
trol of paper machines where the stochastic nature of the disturbances is as
important as the process dynamics. We start by a simple example.
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EXAMPLE 8.5—MINIMUM VARIANCE CONTROL

Consider a model

y(t + h) = −ay(t) + bu(t) + e(t + h) + ce(t),

where u is the control variable, y the process output, and e a sequence of
independent random variables with zero mean value and standard deviation
σ . The sampling period is h.

Consider the situation at time t. The process output y(t) is known and the
output at time t+h can be given arbitrary values by choosing the control signal
u(t). The random signal e(t + h) is independent of past inputs and outputs
Y t given by (8.26). Furthermore, e(t) can be computed from past inputs and
outputs Y t. The control law that minimizes the deviation from the set point
ysp is given by

u(t) = ay(t) − ce(t)
b

,

If this control law is used we find that y(t) = e(t), which means that the output
is white noise. The computation of e(t) from past inputs is thus trivial, and the
control law becomes

u(t) = a − c

b
y(t).

In the general case, the process model is

a(q−1)y(t) = b(q−1)u(t) + c(q−1)e(t). (8.31)

where u is the process input, y the process output, and e is a sequence of in-
dependent Gaussian random variables with zero mean and variance σ . a(q−1),
b(q−1), and c(q−1) are polynomials in the backward shift operator

a(q−1) = 1 + a1q−1 + a2q−2 + . . . + anq−n

b(q−1) = bq− + b+1q−−1 + . . . + bnq−n

c(q−1) = 1 + c1q−1 + c2q−2 + . . . + cnq−n.

For simplicity we have chosen to let all polynomials be of the same degree.
This is no lack of generality because we can allow trailing coefficients to be
zero. The coefficient b is the first non-vanishing coefficient in the polynomial
b(q−1). The number  is an important parameter called the input-output delay,
and we also introduce the polynomial b′(q−1) = qb(q−1).

It is natural to assume that there are no factors common to all three poly-
nomials a(q−1), b(q−1), and c(q−1). The polynomial c(q−1) is assumed to have
all its zeros outside the unit disc. The model (8.31) captures the dynamics both
of the process and its disturbances.

Minimum variance control is closely related to prediction, and we will there-
fore first determine a predictor for the process output when the input u is zero.
The prediction of y  steps ahead is given by

c(q−1) ŷ(t + ) = g(q−1)y(t),
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where the polynomial g(q−1) is given by

a(q−1) f (q−1) + q−lg(q−1) = c(q−1).

Notice that the dynamics of the predictor are given by the polynomial c(q−1)
in the model (8.31). The prediction error

ε (t) = f (q−1)e(t)

has the variance

Eε 2 = σ 2
−1∑

0

f 2
k . (8.32)

The simple minimum variance control strategy is given by

u(t) = − s(q−1)
r(q−1) y(t) = − g(q−1)

b′(q−1) f (q−1) y(t), (8.33)

and the control error is
y(t) = f (q−1)e(t). (8.34)

The error under minimum variance control is thus equal to the error in predict-
ing the output  steps ahead. The control error is a moving average of order
 − 1. It is thus easy to determine if a process is under minimum variance
control simply by computing the correlation function of the output. Since the
control error is a moving average of order  − 1 its covariance function is zero
for all lags greater than .

The robustness of minimum variance control is strongly influenced by the
choice of sampling interval. It is good practice to choose h larger than L/2.

8.7 Summary

The performance of a PI controller can be improved by adding predictive ca-
pability. Derivative action is one possibility, but there are many other alterna-
tives. The Smith predictor and model predictive control are useful for systems
with time delays when good models are available. Drastic improvements in the
response to set-point changes can be obtained when good models are available.
The predictive PI controller is a simple version of the Smith predictor. It has the
advantage over a PID controller that the achievable phase advance is larger.
A paradox is that the predictive controller only gives modest improvements
compared to PI controllers for processes with delay-dominated dynamics but
the performance improvements can be significant for lag-dominated processes.
Model predictive controllers are more general than Smith predictors, and they
can also deal with systems having many inputs and many outputs. Constraints
can also be taken into account.

Since predictive controllers are based on mathematical models it is impor-
tant that the models are accurate. It is particularly important to have a good
estimate of the time delay. A fairly complete robustness analysis was given

291



Chapter 8. Predictive Control

for the Smith predictor. Similar results are available for other predictive con-
trollers. The key result is that sensitivity to modeling errors is closely related
to the parameter ω bL, where ω b is the closed-loop bandwidth or L/Tcl where
Tcl is the desired closed-loop response time when time delay L is neglected.
Robustness required that both parameters are not too small. A reasonable rule
of thumb is that the parameters should be larger than 0.5.

8.8 Notes and References

A controller for systems having time delay was proposed by [Smith, 1957];
it is also treated in the book [Smith, 1958]. An explanation of the mecha-
nism that generates the large phase advance is given in [Åström, 1977]. Many
modifications of the Smith predictor have been presented; see [Åström et al.,
1994; Matausek and Micic, 1996; Matausek and Micic, 1999; Kaya and Ather-
ton, 1999; Kristiansson and Lennartson, 1999]. The controller in [Haalman,
1965], the PPI controller in [Hägglund, 1996], and the PIDτ controller in
[Shinskey, 2002] are all special cases of the Smith predictor. The papers [Ross,
1977; Meyer et al., 1976; Ingimundarson and Hägglund, 2002] compare Smith
predictors with PID controllers.

Minimum variance control was developed in the early phase of computer
control of paper machines as an attempt to find a control strategy that mini-
mizes fluctuations in quality variables. A key result is that the smallest vari-
ance that can be achieved is the variance of the error in predicting the output
over the time delay of the process. Minimum variance control was first pub-
lished by [Åström, 1967] and a perspective on its use is given in [Åström, 2001].
Minimum variance control requires a model of disturbances and process dy-
namics. A method to obtain this information directly from process experiments
was developed in [Åström and Bohlin, 1965] and applied to modeling and con-
trol of paper machines [Åström, 1970]. The self-tuning controller [Åström and
Wittenmark, 1973] can be viewed as automation of system identification and
minimum variance control.

The controller presented in [Dahlin, 1968] and [Higham, 1968] can be viewed
as a discrete-time version of the Smith predictor. Both the Smith Predictor and
the Dahlin-Higham controller, which are early versions of model predictive
control [Shinskey, 1991b], were first developed for process control applications.
There are many versions of model predictive control; see [Richalet et al., 1976],
[Cutler and Ramaker, 1980] and [Garcia and Morshedi, 1986]. There are several
recent books on model predictive control [Allgower and Zheng, 2000; Kouvar-
itakis and Cannon, 2001; Maciejowski, 2002]. The survey papers [Rawlings,
2000; Qin and Badgwell, 2003] contain many references. The papers [Kulhavy
et al., 2001], [Downs, 2001] and [Young et al., 2001] and the book [Blevins
et al., 2003] give an industrial perspective. Although model predictive control
was originally intended for multi-variable systems it has also been suggested
to use it as a replacement for PID control; see [Lu, 2004].
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