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PID Design

6.1 Introduction

This chapter describes methods for finding parameters of a PID controller,
which is a special case of the problem of control system design that was dis-
cussed in Chapter 4. Design of PID controllers differs from the general design
problem because the controller complexity is restricted. The general design
methods give a controller with a complexity that matches the process model.
To obtain a controller with restricted complexity we can either simplify the
process models so that the design gives a PID controller, or we can design a
controller for a complex model and approximate it with a PID controller. An-
other reason why special design methods for PID controllers emerged is the
desire to have simple design methods that can be used by persons with poor
knowledge of control. The situation has changed substantially with the advent
of tuning tools and automatic tuners, which have made it possible to improve
the process knowledge and permitted the use of more extensive calculations.
This has brought design of PID controllers closer to the mainstream of control
systems design.

In this chapter it has been attempted to strike a balance by providing both
a historical perspective and to present powerful methods. Section 6.2 describes
the methods developed by Ziegler and Nichols, which have had a major impact
on the practice of PID control even if they do not result in good tuning. Some
extensions of the Ziegler-Nichols methods are also discussed.

It is often necessary to complement the design methods with manual fine-
tuning to obtain the desired goals of the closed-loop dynamics. These manual
tuning rules are discussed in Section 6.3.

Section 6.4 presents the pole placement method, which is one of the main
stream methods in control system design. To apply this method it is necessary
to approximate process dynamics by a first order model for PI control and a
second order model for PID control. Instead of attempting to position all closed-
loop poles, it can be attempted to assign only a few dominating poles. Such
methods are discussed in Section 6.4. The most common dominant pole place-
ment design method is the lambda tuning method, presented in Section 6.5.

In Section 6.6, algebraic tuning methods are presented. In these methods,
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Figure 6.1 Characterization of a step response in the Ziegler-Nichols step response
method.

the controller parameters are obtained from the specifications by a direct al-
gebraic calculation. In these techniques it is also necessary to approximate
process dynamics by low order models.

Many techniques for control system design are based on optimization. This
gives a very flexible way of balancing conflicting design criteria. It is also
possible to apply directly to controllers having restricted complexity. A number
of uses of optimization for PID control are discussed in Section 6.7.

Loop shaping is another well-known technique for control system design.
In Section 6.8 it is shown how this can be used for PID control. This gives a
very flexible design method, which allows a nice trade-off between performance
and robustness. An analysis of the method also gives useful insight into the
difficulties with derivative action.

Conclusions and references are given in Sections 6.9 and 6.10.

6.2 Ziegler-Nichols and Related Methods

Two classical methods for determining the parameters of PID controllers were
presented by Ziegler and Nichols in 1942. These methods are still widely used,
either in their original form or in some modification. They often form the ba-
sis for tuning procedures used by controller manufacturers and the process
industry. The methods are based on determination of some features of pro-
cess dynamics. The controller parameters are then expressed in terms of the
features by simple formulas. It is surprising that the methods are so widely
referenced because they give moderately good tuning only in restricted situa-
tions. Plausible explanations may be the simplicity of the methods and the fact
that they can be used for simple student exercises in basic control courses.

The Step Response Method

The first design method presented by Ziegler and Nichols is based on process
information in the form of the open-loop step response. This method can be
viewed as a traditional method based on modeling and control where a very
simple process model is used. The step response is characterized by only two
parameters a and L, as shown in Figure 6.1. Compare also with Figure 2.32.
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Chapter 6. PID Design

Table 6.1 Controller parameters for the Ziegler-Nichols step response method.

Controller aK Ti/L Td/L Tp/L

P 1 4

PI 0.9 3 5.7

PID 1.2 2 L/2 3.4
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Figure 6.2 Set-point and load disturbance response of a process with transfer function
1/(s + 1)3 controlled by a PID controller tuned with the Ziegler-Nichols step response
method. The diagrams show set point ysp, process output y, and control signal u.

The point where the slope of the step response has its maximum is first
determined, and the tangent at this point is drawn. The intersections between
the tangent and the coordinate axes give the parameters a and L. In Chapter
2, a model of the process to be controlled was derived from these parameters.
This corresponds to modeling a process by an integrator and a time delay.
Ziegler and Nichols have given PID parameters directly as functions of a and
L. These are given in Table 6.1. An estimate of the period Tp of the closed-loop
system is also given in the table.

EXAMPLE 6.1—ZIEGLER-NICHOLS STEP RESPONSE METHOD

Ziegler-Nichols’ method will be applied to a process with the transfer function

P(s) = 1
(s + 1)3 . (6.1)

Measurements on the step response give the parameters a = 0.218 and L =
0.806. The controller parameters can now be determined from Table 6.1. The
parameters of a PID controller are K = 5.50, Ti = 1.61, and Td = 0.403. The
response of the closed-loop systems to a step change in set point followed by a
step change in the load is shown in Figure 6.2. The behavior of the controller is
as can be expected. The decay ratio for the step response is close to one quarter.
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Table 6.2 Controller parameters for the Ziegler-Nichols frequency response method.

Controller K/Ku Ti/Tu Td/Tu Tp/Tu

P 0.5 1.0

PI 0.4 0.8 1.4

PID 0.6 0.5 0.125 0.85

It is smaller for the load disturbance. The overshoot in the set-point response
is too large. This can be improved by the set-point weighting b. Compare with
Section 3.4.

The Frequency Response Method

This method is also based on a simple characterization of the process dynamics.
The design is based on knowledge of the point on the Nyquist curve of the
process transfer function P(s) where the Nyquist curve intersects the negative
real axis. In Section 2.4 this point was characterized by K180 and ω 180. For
historical reasons the point has been referred to as the ultimate point and
characterized by the parameters Ku = 1/K180 and Tu = 2π /ω 180, which are
called the ultimate gain and the ultimate period. These parameters can be
determined in the following way. Connect a controller to the process, and set
the parameters so that control action is proportional, i.e., Ti = ∞ and Td = 0.
Increase the gain slowly until the process starts to oscillate. The gain when
this occurs is Ku, and the period of the oscillation is Tu. We have Ku = 1/K180

and Tu = 2π /ω u. The parameters can also be determined approximately by
relay feedback as is discussed in Section 2.7.

Ziegler-Nichols have given simple formulas for the parameters of the con-
troller in terms of the ultimate gain and the ultimate period shown in Table
6.2. An estimate of the period Tp of the dominant dynamics of the closed-loop
system is also given in the table.

The frequency response methods can also be viewed as an empirical tuning
procedure where the controller parameters are obtained by direct experiments
on the process combined with some simple rules. For a proportional controller
the rule is simply to increase the gain until the process oscillates and then to
reduce the gain by 50 percent.

We illustrate the design procedure with an example.

EXAMPLE 6.2—THE ZIEGLER-NICHOLS FREQUENCY RESPONSE METHOD

Consider the same process as in Example 6.1. The process given by (6.1) has
the ultimate gain Ku = 8 and the ultimate period Tu = 2π /√

3 = 3.63. Table
6.2 gives the parameters K = 4.8, Ti = 1.81, and Td = 0.44 for a PID controller.
The closed-loop set-point and load disturbance responses when the controller
is applied to the process given by (6.1) are shown in Figure 6.3.

The parameters and the performance of the controllers obtained with the
frequency response method are close to those obtained by the step response
method. The responses are slightly better damped.
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Figure 6.3 Set-point and load disturbance response of a process with the transfer func-
tion 1/(s + 1)3 controlled by a PID controller that is tuned with the Ziegler-Nichols fre-
quency response method. The diagrams show set point ysp, process output y, and control
signal u.

The Ziegler-Nichols tuning rules were originally designed to give systems with
good responses to load disturbances. They were obtained by extensive simula-
tions of many different systems with manual assessment of the results. The
design criterion was quarter amplitude decay ratio, which is often too large,
as is seen in the examples. For this reason the Ziegler-Nichols method often
requires modification or re-tuning. Since the primary design objective was to
reduce load disturbances, it is often necessary to choose set-point weighting
carefully in order to obtain a satisfactory set-point response.

An Interpretation of the Frequency Response Method

The frequency response method can be interpreted as a method where one
point of the Nyquist curve is positioned. With PI or PID control, it is possible
to move a given point on the Nyquist curve of the process transfer function
to an arbitrary position in the complex plane, as indicated in Figure 6.4. By
changing the gain, a point on the Nyquist curve is moved radially from the
origin. The point can be moved in the orthogonal direction by changing integral
or derivative gain. Notice that with positive controller parameters the point
can be moved to a quarter plane with PI or PD control and to a half plane
with PID control. From this point of view the Ziegler-Nichols method can be
interpreted as a primitive loop-shaping method where one point of the loop
transfer function is moved to a desired point.

The frequency response method starts with determination of the point
(−1/Ku, 0) where the Nyquist curve of the open-loop transfer function inter-
sects the negative real axis.

Let us now investigate how the ultimate point is changed by the controller.
For a PI controller with Ziegler-Nichols tuning we have K = 0.4Ku and ω uTi =
(2π /Tu)0.8Tu = 5.02. Therefore, the transfer function of the PI controller at
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Figure 6.4 Illustrates that a point on the Nyquist curve of the process transfer function
may be moved to another position by PID control. The point marked with a circle may be
moved in the directions P(iω ), −iP(iω ), and iP(iω ) by changing the proportional, integral,
and derivative gain, respectively.

the ultimate frequency is

C(iω u) = K

(
1 + 1

iω uTi

)
= 0.4Ku(1 − i/5.02) = Ku(0.4 − 0.08i).

The ultimate point is thus moved to −0.4 + 0.08i. This means that a lag of
11.2○ is introduced at the ultimate frequency.

For a PID controller we have K = 0.6Ku, ω uTi = π , and ω uTd = π /4. The
frequency response of the controller at frequency ω u is

C(iω u) = K

(
1 + i

(
ω uTd − 1

ω uTi

))
	 0.6Ku(1 + 0.467i).

This controller gives a phase advance of 25○ at the ultimate frequency. The
loop transfer function is

G(iω u) = P(iω u)C(iω u) = −0.6(1 + 0.467i) = −0.6 − 0.28i.

The Ziegler-Nichols frequency response method for a PID controller thus moves
the ultimate point (−1/Ku, 0) to the point −0.6 − 0.28i. The distance from this
point to the critical point is 0.5. This means that the method gives a sensitivity
that is always greater than 2.

It has been suggested by Pessen to move the ultimate point to −0.2 − 0.36i

or −0.2 − 0.21i. Suda used approximations to obtain Mt = 1.3 by moving the
critical point to −0.628 − 0.483i.

Design of PI Controller with a Given Phase Margin

Using the idea that the PI controller can be interpreted as moving a point on
the loop transfer function it is easy to develop a design method that gives a
closed-loop system with a given phase margin. Let the process transfer function
be

P(iω ) = α (ω ) + iβ (ω ) = ρ(ω )eiψ (ω ).
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Figure 6.5 Nyquist plot for the loop transfer function Gl for PI control of the process
P(s) = e−√

s. The controller was designed to give the phase margin of 60○.

With PI control the loop transfer function becomes

Gl(iω ) =
(

k − i
ki

ω

)(
α (ω ) + iβ (ω )) = α (ω )k + β (ω )ki

ω
+ i

(
β (ω )k − α (ω )ki

ω

)
.

Let ω gc be the gain crossover frequency; requiring that the system has a phase
margin ϕm it follows that

Gl(iω gc) = − cos(ϕm) − i sin(ϕm),

which implies that

α (ω gc)k + β (ω gc)ki

ω gc

= − cos(ϕm)

β (ω gc)k − α (ω gc)ki

ω gc

= − sin(ϕm).

Solving this equation for k and ki gives

k = −α (ω gc) cosϕm + β (ω gc) sinϕm

α 2(ω gc) + β 2(ω gc) = − 1
ρ(ω gc) cos (ϕm −ψ (ω gc))

ki = ω gc

α (ω gc) sinϕm − β (ω gc) cosϕm

α 2(ω gc) + β 2(ω gc) = ω gc

ρ(ω gc) sin (ϕm −ψ (ω gc)).

(6.2)

It is thus straightforward to compute the controller gains when the gain crossover
frequency is given. Reasonable values of the gain crossover frequency are in
the range ω 90 ≤ ω gc ≤ ω 180−ϕ m

. The method can be improved by sweeping over
ω gc to maximize integral gain. Applying the method to design a PI controller
for the process P(s) = e−√

s with a phase margin of 60○ gives ω gc = 5.527
K = 4.79 and Ti = 0.392 and Ms = 1.53. The Nyquist plot of the loop transfer
function is shown in Figure 6.5.
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Relations Between the Ziegler-Nichols Tuning Methods

The step response method and the frequency response method do not give the
same values of the controller parameters. Comparing Examples 6.1 and 6.2 we
find that the controller gains are 5.5 and 4.8 and that the integral times are
1.61 and 1.81. The step response method will in general give larger gains and
smaller integral times. This is further illustrated in the following example.

EXAMPLE 6.3—PROCESS WITH INTEGRATION AND DELAY

Consider a process with the transfer function

P(s) = Kv

s
e−sL,

which is the model originally used by Ziegler and Nichols to derive their tuning
rules for the step response method. For this process we have a = KvL. The
ultimate frequency is ω u = π /2L, which gives the ultimate period Tu = 4L,
and the ultimate gain is Ku = π /2Kv L.

For PI control the step response method gives the following parameters:

K = 0.9
KvL

, Ti = 3L.

This can be compared with the parameters

K = 0.63
KvL

, Ti = 3.2L

obtained for the frequency response method. Notice that the integral times are
within 10 percent, but that the step response method gives a gain that is about
40 percent higher.

The PID parameters obtained from the step response method are

K = 1.2
bL

, Ti = 2L and Td = L

2
,

and those given by the frequency response methods are

K = 0.94
bL

, Ti = 2L and Td = L

2
.

Both methods give the same values of integral and derivative times, but the
step response method gives a gain that is about 25 percent higher than the
frequency response method.

EXAMPLE 6.4—PROCESS WITH PURE DELAY

Consider a process with the transfer

P(s) = Kpe−sL.
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Figure 6.6 Responses to a load disturbance for a process with pure delay (L = 1) with
PI controllers tuned by Ziegler-Nichols frequency response method (dashed) and a proper
method (solid).

In this case we find that a = ∞! The step response method thus gives zero
controller gain for PI and PID control.

The ultimate period is Tu = 2L, and the ultimate gain is Ku = 1/Kp.
Using the frequency response method it follows from Table 6.2 that K Kp = 0.4
and Ti = 1.6L for PI control. The PI controller gives a very poor result as is
illustrated in Figure 6.6. The integral action is too small, which implies that it
takes a very long time for the error to approach zero. For comparison we also
show the response with a PI controller having K Kp = 0.25 and Ti = 0.35. This
controller has a much better response to load disturbances.

For PID control the frequency response method gives K Kp = 0.6, Ti = L

and Td = 0.25, which results in an unstable closed-loop system.

These examples show that there can be considerable differences between the
controller parameters obtained by the step response and the frequency response
methods.

The Chien, Hrones, and Reswick Method

There have been many suggestions for modifications of the Ziegler-Nichols
methods. There are methods that use the same information about the process
as the Ziegler-Nichols methods, but the coefficients in Tables 6.1 and 6.2 are
modified. Many methods of this type are used by controller manufacturers.
There are also other methods that use more process data. Many methods are
based on the idea that the process is approximated with the FOTD model

P(s) = Kp

1 + sT
e−sL.

As an illustration we will describe a method developed by Chien, Hrones, and
Reswick (CHR). Their method gives closed-loop systems with slightly better
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Table 6.3 Controller parameters obtained from the Chien, Hrones and Reswick load
disturbance response method.

No overshoot 20% overshoot

Controller aK Ti/L Td/L aK Ti/L Td/L

P 0.3 0.7

PI 0.6 4.0 0.7 2.3

PID 0.95 2.4 0.42 1.2 2.0 0.42

Table 6.4 Controller parameters obtained from the Chien, Hrones and Reswick set-point
response method.

No overshoot 20% overshoot

Controller aK Ti/L Td/L aK Ti/L Td/L

P 0.3 0.7

PI 0.35 1.2 0.6 1.0

PID 0.6 1.0 0.5 0.95 1.4 0.47

robustness than the Ziegler-Nichols method. The design criteria used were
“quickest response without overshoot” or “quickest response with 20 percent
overshoot.” They proposed different tuning rules for load disturbances and set-
point response.

To tune the controller according to the CHR method, the parameters a

and L of the process model are first determined in the same way as for the
Ziegler-Nichols step response method. The controller parameters are then given
as functions of these two parameters. The tuning rule for load disturbance
response are given in Table 6.3. The tuning rules in Table 6.3 have in general
lower gains than the corresponding Ziegler-Nichols rule in Table 6.1.

Chien, Hrones, and Reswick found that tuning for set-point response was
different than tuning for load disturbances. At that time the advantages of
set-point weighting and systems with two degrees of freedom were not known.
An additional parameter, time constant T , was required, and the controller
gains were in general lower; see Table 6.4.

The Cohen-Coon Method

The Cohen-Coon method is also based on the FOTD process model

P(s) = Kp

1 + sT
e−sL.

The main design criterion is rejection of load disturbances. It attempts to po-
sition dominant poles that give a quarter amplitude decay ratio. For P and PD
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Table 6.5 Controller parameters from the Cohen-Coon method.

Controller aK Ti/L Td/L

P 1 + 0.35τ

1 − τ

PI 0.9
(

1 + 0.092τ

1 − τ

)
3.3 − 3.0τ

1 + 1.2τ

PD 1.24
(

1 + 0.13τ

1 − τ

)
0.27 − 0.36τ

1 − 0.87τ

PID 1.35
(

1 + 0.18τ

1 − τ

)
2.5 − 2.0τ

1 − 0.39τ

0.37 − 0.37τ

1 − 0.81τ

controllers the poles are adjusted to give maximum controller gain, subject to
the constraint on the decay ratio. This minimizes the steady-state error due
to load disturbances. For PI and PID control the integral gain ki = K/Ti is
maximized. This corresponds to minimization of IE, the integral error due to a
unit step load disturbance. For PID controllers three closed-loop poles are as-
signed; two poles are complex, and the third real pole is positioned at the same
distance from the origin as the other poles. The pole pattern is adjusted to give
quarter amplitude decay ratio, and the distance of the poles to the origin are
adjusted to minimize IE.

Since the process is characterized by three parameters (Kp, L, and T), it
is possible to give tuning formulas where controller parameters are expressed
in terms of these parameters. Such formulas were derived by Cohen and Coon
based on analytical and numerical computations. The formulas are given in
Table 6.5. The parameters a = KpL/T and τ = L/(L + T) are used in the
table to facilitate comparisons with Ziegler-Nichols tuning. A comparison with
Table 6.1 shows that the controller parameters are close to those obtained
by the Ziegler-Nichols step response method for small τ . Also notice that the
integral time decreases for increasing τ , which is desirable as was found in
Section 6.2. A peculiarity is that the gains go to infinity when τ goes to 1,
which is not correct. The method does also suffer from the decay ratio being too
large, which means that the closed-loop systems obtained have poor damping
and high sensitivity.

Commentary

The Ziegler-Nichols tuning rules are simple and intuitive. They require little
process knowledge, and they can be applied with modest effort. The process
is characterized by two parameters that can be determined by simple experi-
ments. The frequency response method has the advantage that parameters Ku

and Tu are easier to determine accurately than the parameters a and L, which
are used by the step response method.

The methods are still widely used even if they give closed-loop systems that
are not robust. The rules are often combined with manual tuning, which will
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be discussed in Section 6.3. The main drawbacks with the methods are that too
little process information is used and the design criterion quarter amplitude
damping gives closed-loop systems with poor robustness. It is not clear why
this design criterion was used. The load disturbance responses look quite rea-
sonable, but without analysis or sensitivity studies it is not obvious that the
closed-loop systems are not robust. The simulations shown in Figure 6.2 and
Figure 6.3 indicate that the methods give reasonable control. Repeated sim-
ulations with perturbations in controller parameters reveal very clearly that
the closed-loop system is not robust. Systems like the ones shown in Examples
6.3 and 6.4 also illustrate that it is not sufficient to characterize the process
by two parameters only.

A very large number of variations of the Ziegler-Nichols methods have been
proposed. Here we have chosen to discuss two methods. The modifications of the
Chien-Hrones-Reswick method give systems with somewhat better robustness,
but it still uses too little process information. The Cohen-Coon method uses
three parameters to characterize the process, but it still uses quarter amplitude
damping as a design criterion.

In Chapter 7 we will develop new methods that address the major short-
comings of the Ziegler-Nichols methods while retaining their simplicity.

6.3 Rule-Based Empirical Tuning

Since the Ziegler-Nichols methods only give “ball-park” values, it is necessary
to complement the methods by manual tuning to obtain reasonable closed-loop
properties. Manual tuning is typically performed by experiments on the process
in closed loop. A perturbation is introduced either as a set-point change or as
a change in the control variable. The closed-loop response is observed, and the
controller parameters are adjusted. The adjustments are based on simple rules,
which give guidelines for changing the parameters. The rules were developed
by extensive experimentation. The following is a simple set of rules:

• Increasing proportional gain decreases stability

• Error decays more rapidly if integration time is decreased

• Decreasing integration time decreases stability

• Increasing derivative time improves stability

Lately, the tuning rules have also been formalized in various types of formal
rule-based systems such as expert systems or fuzzy logic.

Tuning maps are one way to express the tuning rules. The purpose of these
maps is to provide intuition about how changes in controller parameters influ-
ence the behavior of the closed-loop system. The tuning maps are simply arrays
of transient or frequency responses corresponding to systematic variations in
controller parameters. An example of a tuning map is given in Figure 6.7.

The figure illustrates how the load disturbance response is influenced by
changes in gain and integral time. The process model

P(s) = 1
(s + 1)8
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K = 1.5 Ti = 10 K = 1.5 Ti = 5 K = 1.5 Ti = 3

K = 1.0 Ti = 10 K = 1.0 Ti = 5 K = 1.0 Ti = 3

K = 0.5 Ti = 10 K = 0.5 Ti = 5 K = 0.5 Ti = 3

Figure 6.7 Tuning map for PID control of a process with the transfer function P(s) =
(s + 1)−8. The figure shows the responses to a unit step disturbance at the process input.
Parameter Td has the value 1.9.

has been used in the example. The Ziegler-Nichols frequency response method
gives the controller parameters K = 1.13, Ti = 7.58, and Td = 1.9. The figure
shows clearly the benefits of having a smaller value of Ti. Judging from the
figure, the values K = 1 and Ti = 5.0 appear reasonable. The figure also shows
that the choice of Ti is fairly critical. Also notice that controllers with Ti < 7.6
cannot be implemented on series form (compare with Section 3.4).

A different type of tuning map is shown in Figure 6.8, which shows the
Nyquist curves of the loop transfer function. The figure shows that several of
the Nyquist curves bend over too much to the right at low frequencies; see
the figures in the left positions with Ti = 10. This means that the controller
introduces too much phase lead. This is reduced by reducing parameter Ti.

A comparative study of curves like Figure 6.7 and Figure 6.8 is a good way
to develop intuition for the relations between the time and frequency responses.
An even better way is to use the interactive software that is now emerging.

Counter-Intuitive Behavior

Common rules for manual tuning says that the system becomes less oscillatory
if the gain is reduced, if the integral time is increased, and if the derivative
time is increased. Compare with Figure 6.4. These rules hold for the system
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Figure 6.8 Tuning map for PID control of a process with the transfer function P(s) =
(s + 1)−8. The figure shows the Nyquist plots of the loop transfer functions. Parameter Td

has the value 1.9.

shown in Figure 6.7 and Figure 6.8. There are, however, situations where these
rules do not hold. The following is a simple common example.

EXAMPLE 6.5—PI CONTROL OF AN INTEGRATOR

Consider a process with the transfer function

P(s) = 1
s

,

and a PI controller with the transfer function

C(s) = K (1 + 1
sTi

).

The loop transfer function is

Gl(s) = P(s)C(s) = K
1 + sTi

s2Ti

;
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Figure 6.9 Nyquist curves for the loop transfer functions for an integrator with PI
control. Integration time Ti is constant, and the gain has the values K = 0.2 (dotted), 1
(dashed), and 5 (solid). Notice the counterintuitive behavior that phase margin increases
with increasing controller gain.

and the characteristic equation is

s2 + K s + K

Ti

= 0.

Identifying this with a standard second-order system s2 + 2ζ ω 0 + ω 2
0 we find

that

ζ =
√

K

2Ti

.

It follows from this equation that the damping increases when the controller
gain is increased contrary to the intuition developed for the simple systems.
This is also illustrated by the Nyquist curves in Figure 6.9. Notice that the
Nyquist curve moves away from the critical point −1 as the gain increases.
The reason for this is that the Nyquist curve is very close to the negative
imaginary axis for large ω . Notice that a small time delay or a small lag will
destroy this property.

Situations like this make it difficult to form efficient rules that cover a wide
range of conditions.

An Inequality for the Integration Time

It is useful to have a simple way to judge if the integral action of a controller is
too weak, as in the three left and the lower middle examples in Figure 6.7 and
Figure 6.8. Such a criterion can be based on a calculation of the asymptotic
behavior of the loop transfer function for low frequencies. For a process with
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6.3 Rule-Based Empirical Tuning

transfer function P and a PI controller with transfer function C we have

G(s) = P(s)C(s) 	 (P(0) + sP′(0)) K

(
1 + 1

sTi

)

= K P(0)
sTi

+ K P(0) + K P′(0)
Ti

+ K P′(0)s.

Thus, for low frequencies the asymptote of the Nyquist curve is parallel to the
imaginary axis with the real part equal to

K P(0) + K P′(0)
Ti

= K Kp

(
1 − Tar

Ti

)
,

where Kp = G(0) is the static process gain, and Tar is the average residence
time. It is reasonable to require that the real part of the asymptote be less
than −0.5. This gives

Ti < Tar

2K Kp

1 + 2K Kp

< Tar . (6.3)

For the system in Figure 6.7 and Figure 6.8, we get the requirement Ti < 6.0
for the systems in the upper row, Ti < 5.3 for the systems in the middle row,
and Ti < 4.0 for the systems in the lower row. This means that condition
(6.3) excludes the three left and the lower middle examples in Figure 6.7 and
Figure 6.8.

The inequality for the integration time given by (6.3) can be used to give
insight into the limitations of the Ziegler-Nichols rules for systems with large
time delays. Consider a process with the transfer function

P(s) = Kp

e−sL

1 + sT
.

For this system we have Tar = L + T . Consider a PI controller tuned by the
Ziegler-Nichols step response method. It follows from Table 6.1 that K Kp =
0.9T/L and Ti = 3L. Equation 6.3 then gives

3L < (L + T) 1.8T

L + 1.8T
,

which implies that L < 0.38T . This means that the Ziegler-Nichols step re-
sponse method for PI control will not give good control unless the time delay
is sufficiently small. Compare with Example 6.4.

Commentary

Manual tuning was used before any systematic tuning methods were available.
It became a necessary complement to the Ziegler-Nichols method. It is essen-
tial for all practitioners of control to gain experience in judging the properties
of closed-loop systems and to change controller parameters to modify the be-
havior. The assessment can be based on simple bump tests where set points or
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controller output is perturbed or by more elaborate frequency response mea-
surements of the transfer function. It is necessary to be aware of the counter-
intuitive behavior of processes with integral action illustrated in Example 6.5.
The rule-based systems have been formalized when automatic tuners based on
expert systems and fuzzy logic were developed. In Section 6.7 we will present
systematic methods for improving the tuning based on optimization.

6.4 Pole Placement

Many properties of a closed-loop system are expressed by its poles. The idea
with pole placement is to design a controller that gives a closed-loop system
with desired closed-loop poles. The method requires a complete model of the
process. Subject to some technical conditions it is possible to find a controller
that gives the desired closed-loop poles, provided that the controller is suffi-
ciently complex. To use the method for PID control it is necessary to restrict
the complexity of the model by various approximation methods. The selected
poles must then be chosen with care in order to ensure that the approximated
model is valid for frequencies that correspond to the chosen poles.

A refinement of the procedure is to consider also the zeros of the transfer
functions. This is particularly relevant for the set-point response. The zeros
of the transfer function originating from the controller can be influenced by
set-point weighting.

EXAMPLE 6.6—PI CONTROL OF A FIRST-ORDER SYSTEM

Suppose that the process can be described by the following first-order model

P(s) = Kp

1 + sT
,

which has only two parameters, process gain Kp and time constant T . Let the
process be controlled by a standard PI controller with set-point weighting,

C(s) = K
(
1 + 1

sTi

)
Cf f (s) = K

(
b + 1

sTi

)
.

The closed-loop system is of second order. The loop transfer function is

G(s) = P(s)C(s) = KpK (1 + sTi)
sTi(1 + sT) = KpK (s + 1/Ti)

T(s + 1/T) ,

and the characteristic polynomial

s2 + 1 + KpK

T
s + KpK

TTi

. (6.4)

The closed-loop system has two poles that can be given arbitrary values by a
suitable choice of gain K and integral time Ti of the controller. Now suppose
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that the desired closed-loop poles are characterized by their relative damping
ζ and their frequency ω 0. The desired characteristic polynomial then becomes

s2 + 2ζ ω 0s + ω 2
0. (6.5)

Identifying coefficients of equal powers of s in (6.4) and (6.5) we get

K = 2ζ ω 0T − 1
Kp

Ti = 2ζ ω 0T − 1
ω 2

0T

ki = K

Ti

= ω 2
0T

Kp

.

(6.6)

It is convenient to use the parameters ω 0 and ζ as design parameters; ω 0

determines the response speed and ζ determines the shape of the response.
With controller parameters given by (6.6) the closed-loop system is charac-

terized by the Gang of six, see Equation (4.2).

PC

1 + PC
= (2ζ ω 0 − 1/T)s + ω 2

0

s2 + 2ζ ω 0s + ω 2
0

C

1 + PC
= K (s + 1/Ti)(s + 1/T)

s2 + 2ζ ω 0s + ω 2
0

P

1 + PC
= Kps/T

s2 + 2ζ ω 0s + ω 2
0

1
1 + PC

= s(s + 1/T)
s2 + 2ζ ω 0s + ω 2

0

PCf f

1 + PC
= b(2ζ ω 0 − 1/T)s + ω 2

0

s2 + 2ζ ω 0s + ω 2
0

Cf f

1 + PC
= K (bs + 1/Ti)(s + 1/T)

s2 + 2ζ ω 0s + ω 2
0

.

(6.7)

The largest value of the transfer function from a load disturbance at the process
input to the process output is

max
ω

�Gxd(iω )� = max
ω

∣∣∣ P(iω )
1 + P(iω )C(iω )

∣∣∣ = Kp

ω 0T min (1, ζ ) .

To have good rejection of load disturbances it is thus desirable to choose ω 0

as large as possible. The largest value of ω 0 is limited by the magnitude of
the control signals and the validity of the process model. The transfer function
from measurement noise to the control signal has the magnitude K for high
frequencies. If Kmax is the largest permissible value of the controller gain it
follows from (6.6) that

ω 0T < 1 + KpKmax

2ζ
.

Let Te be the sum of neglected time constants or time delays and using the
rule of thumb that the phase error should be less than ±15○ we find that ω 0

must be chosen so that ω 0Te < 0.25. Compare with Section 2.8.
The frequency ω 0 chosen should not be too small. An indication of this is

given by Equation 6.6, which shows that the proportional gain is negative if
2ζ ω 0T < 1. Further evidence is given in Figure 6.10, which shows Bode plots
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Figure 6.10 Gain curves of the sensitivity functions for ζ = 0.7 and ω 0T = 0.1, 0.2, 0.5,
and 1. The dotted curve corresponds to ω 0 L = 0.1 and the dash-dotted curve to ω 0 L = 1.

of the gain curves of the sensitivity functions for different values of ω 0T . The
figure shows that the sensitivities are large when ω 0T is small. The maximum
of the sensitivity function is approximately Ms = 1/(2ζ ω 0T). A reasonable
choice of the parameter ω 0 is thus

1
2ζ

≤ ω 0T < min
(0.25

Te

,
1 + KpKmax

2ζ

)
. (6.8)

The lower limit corresponds to pure integral control; see (6.6).
It follows from (6.7) that the transfer function from set point to process

output has a zero at s = −1/(bTi). To avoid excessive overshoot in the set-
point response, parameter b should be chosen so that the zero is to the left
of the dominant closed-loop poles. A reasonable value is b = 1/(ω 0Ti), which
places the zero at s = −ω 0. This gives

b = 1
2ζ − 1/(ω 0T) .

It is particularly important to use a small value of b when ω 0T is small and
for unstable systems where T is negative. A response to set-point changes that
does not have an overshoot is obtained by choosing b = 0 and ζ ≥ 1.

The reason why the sensitivities are large for small values of ω 0T is that
the characteristic polynomial (6.5) is a poor choice for designs where the closed-
loop system is slower than the open-loop system. In such cases it is better to
make a design that cancels the process pole and gives a closed-loop system
with a time constant T0. Such a controller has the parameters

K = T

KpT0

Ti = T ,

(6.9)

and it gives a closed-loop system with Ms = Mt = 1. The controller is not
suitable when ω 0T0 > 1 because it follows from (6.7) that the transfer function
from load disturbances to process output is

P

1 + PC
= sKpT0

(1 + sT)(1 + sT0) .
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The attenuation of load disturbances is thus poor for large values of T0/T .

EXAMPLE 6.7—PI CONTROL OF PROCESS WITH TWO REAL POLES

Assume that the process is characterized by the second-order model

P(s) = Kp

(1 + sT1)(1 + sT2) ,

and that a PI controller is used. The loop transfer function becomes

G(s) = P(s)C(s) = KpK (1 + sTi)
sTi(1 + sT1)(1 + sT2) = KpK (s + 1/Ti)

T1T2(s + 1/T1)(s + 1/T2) ,

and the characteristic polynomial becomes

s3 +
(

1
T1

+ 1
T2

)
s2 + 1 + KpK

T1T2
s + KpK

T1T2Ti

. (6.10)

The zeros of this third-order polynomial cannot be assigned arbitrary values
since the controller only has two parameters. In particular, we find that the
coefficient of s2 is given by the time constants of the process. However, if we also
consider the frequency ω 0 as a parameter it is possible to match the polynomial
(6.10) to

(s + αω 0)(s2 + 2ζ ω 0s + ω 3
0).

Matching coefficients of equal powers of s we get

ω 0 = T1 + T2

(α + 2ζ )T1T2

K = (1 + 2αζ )ω 2
0T1T2 − 1

Kp

Ti = KpK

αω 3
0T1T2

ki = αω 3
0T1T2

Kp

.

It is thus possible to obtain a design that gives a prescribed configuration of
the poles with PI control, i.e., specified α and ζ . The parameter ω 0 is a scale
factor that is determined by the process dynamics.

EXAMPLE 6.8—PID CONTROL OF PROCESS WITH TWO REAL POLES

Suppose that the process is characterized by the second-order model

P(s) = Kp

(1 + sT1)(1 + sT2) .
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This model has three parameters. By using a PID controller, which also has
three parameters, it is possible to arbitrarily place the three poles of the closed-
loop system. The transfer function of the PID controller can be written as

C(s) = K (1 + sTi + s2TiTd)
sTi

.

The characteristic polynomial of the closed-loop system is

s3 + s2
(

1
Ti

+ 1
T2

+ KpK Td

T1T2

)
+ s

(
1

T1T2
+ KpK

T1T2

)
+ KpK

T1T2Ti

. (6.11)

A suitable closed-loop characteristic polynomial for a third-order system is

(s + αω 0)(s2 + 2ζ ω 0s + ω 2
0), (6.12)

which contains two dominant poles with relative damping ζ and frequency ω 0,
and a real pole located in −αω 0. Identifying the coefficients of equal powers of
s in Equations 6.11 and 6.12 gives

1
Ti

+ 1
T2

+ KpK Td

T1T2
= ω 0(α + 2ζ )

1
T1T2

+ KpK

T1T2
= ω 2

0(1 + 2ζ ω 0)
KpK

T1T2Ti

= αω 3
0.

Solving these equations gives the following controller parameters:

K = T1T2ω 2
0(1 + 2αζ ) − 1

Kp

Ti = T1T2ω 2
0(1 + 2αζ ) − 1
T1T2αω 3

0

Td = T1T2ω 0(α + 2ζ ) − T1 − T2

T1T2ω 2
0(1 + 2αζ ) − 1

ki = αω 3
0T1T2

Kp

.

Provided that c = 0, the transfer function from set point to process output has
one zero at s = −1/(bTi). To avoid excessive overshoot in the set-point response,
parameter b can be chosen so that this zero cancels the pole at s = −αω 0. This
gives

b = 1
αω 0Ti

= ω 2
0T1T2

ω 2
0T1T2(1 + 2αζ ) − 1

.

Also, notice that pure PI control is obtained for

ω 0 = ω c = T1 + T2

(α + 2ζ )T1T2
.
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The choice of ω 0 may be critical. The derivative time is negative for ω 0 < ω c.
Thus, frequency ω c gives a lower bound to the bandwidth. The gain increases
rapidly with ω 0. The upper bound to the bandwidth is given by the validity of
the model.

The General Case

Since there is a relation between the complexity of the model and the complex-
ity of the controller it is natural to ask what is the most general model that
will give PI and PID controllers. A PI controller has two parameters which
are sufficient to characterize a second-order equation; this permits a process
model of first order. The system in Example 6.6 is thus the most general system
where pole placement will give a PI controller.

Since a PID controller has three parameters, it is possible to determine all
parameters of a third-order equation. With PID control it is thus possible to
use pole placement for a second-order system. The most general second-order
system is not the one in Example 6.8, but the one in the next example.

If only a pattern of the pole is specified a PI controller suffices for a second-
order system and a PID controller for a third-order system.

EXAMPLE 6.9—GENERAL SECOND-ORDER SYSTEM

Suppose that the process is characterized by the second-order model

P(s) = b1s + b2

s2 + a1s + a2
. (6.13)

This model has four parameters. It has two poles that may be real or complex,
and it has one zero. This model captures many processes, oscillatory systems,
and systems with right half-plane zeros. The right half-plane zero can also
be used as an approximation of a time delay. We assume that the process is
controlled by a PID controller parameterized as

C(s) = k + ki

s
+ kds

Cf f (s) = bk + ki

s
+ ckds.

The closed-loop system is of third order, and the characteristic polynomial is

s(s2 + a1s + a2) + (b1s + b2)(kds2 + ks + ki).

A suitable closed-loop characteristic equation of a third-order system is

(s + αω 0)(s2 + 2ζ ω 0s + ω 2
0).

Equating coefficients of equal power in s in these equations gives the following
equations:

a1 + b2kd + b1k = (αω 0 + 2ζ ω 0)(1 + b1kd)
a2 + b2k + b1ki = (1 + 2αζ )ω 2

0(1 + b1kd)
b2ki = αω 3

0(1 + b1kd).
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This is a set of linear equations in the controller parameters. The solution is
straightforward but tedious and is given by

k = a2b2
2 − a2b1b2(α + 2ζ )ω 0 − (b2 − a1b1)(b2(1 + 2αζ )ω 2

0 + α b1ω 3
0)

b3
2 − b1b2

2(α + 2ζ )ω 0 + b2
1b2(1 + 2αζ )ω 2

0 − α b3
1ω 3

0

ki = (−a1b1b2 + a2b2
1 + b2

2)αω 3
0

b3
2 − b1b2

2(α + 2ζ )ω 0 + b2
1b2(1 + 2αζ )ω 2

0 − α b3
1ω 3

0

kd = −a1b2
2 + a2b1b2 + b2

2(α + 2ζ )ω 0 − b1b2ω 2
0(1 + 2αζ ) + b2

1αω 3
0

b3
2 − b1b2

2(α + 2ζ )ω 0 + b2
1b2(1 + 2αζ )ω 2

0 − α b3
1ω 3

0

.

(6.14)

These formulas are quite useful because many processes can be approximately
described by the transfer function given by (6.13).

The transfer function from set point to process output is

Gyysp
(s) = (b1s + b2)(ckds2 + bks + ki)

(s + αω 0)(s2 + 2ζ ω 0s + ω 2
0) .

The parameters b and c have a strong influence on the response of this transfer
function.

The formulas given in Example 6.9 are particularly useful in cases when we
are “stretching” the PID controller to extreme situations. The standard tuning
rules will typically not work in these cases. Typical examples are systems with
zeros in the right half-plane and systems with poorly damped oscillatory modes.
To illustrate this we will consider an example.

EXAMPLE 6.10—OSCILLATORY SYSTEM WITH RHP ZERO

Consider a system with the transfer function

P(s) = 1 − s

s2 + 1
.

This system has one right half-plane zero and two undamped complex poles.
The process is difficult to control. To provide damping for the undamped poles at
s = ±i it is necessary to have a reasonable control gain at ω = 1. This is difficult
because the right-half plane zero at s = 1 implies that the gain crossover
frequencies should be less than 0.5 in order to have a reasonably robust closed-
loop system. None of the standard methods for tuning PID controllers work
well for this system. To apply the pole placement method we specify that the
closed-loop system has the characteristic polynomial

s3 + 2s2 + 2s + 1.

The formulas in Example 6.9 give a controller with the parameters k = 0, ki =
1/3, and kd = 2/3. This can also be verified with a simple calculation. Notice
that the proportional gain is zero and that the controller has two complex zeros
at ±i

√
2. Such a controller can only be implemented with a PID controller

having the non-interacting form. Compare with Section 3.2.
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Using Approximate Models

Since pole placement will only give PID controllers if the process model is of
second order or less it is necessary to develop approximate models in order to
use pole placement. Different approximation methods were discussed in Section
2.8. In this section we will illustrate the method with a few examples.

Consider a process described by the transfer function

P(s) = 1
(1 + s)(1 + 0.2s)(1 + 0.05s)(1 + 0.01s) . (6.15)

This process has four lags with time constants 1, 0.2, 0.05, and 0.01. The
approximations can be done in several different ways.

EXAMPLE 6.11—APPROXIMATION WITH A FIRST-ORDER SYSTEM

If the control requirements are not too severe, we can attempt to approximate
the transfer function by

P(s) = 1
1 + 1.26s

,

where the time constant is the average residence time of the system. As dis-
cussed in Section 2.8, this approximation is good at low frequencies. The sum of
the neglected time constants is Te = 0.26. The phase error is less than 15○ for
frequencies below 1 rad/s. Designing a PI controller with the pole placement
method with ζ = 0.5, the following controller parameters are obtained,

K = 1.26ω 0 − 1

Ti = 1.26ω 0 − 1
1.26ω 2

0

b = 1.26ω 0

1.26ω 0 − 1
.

where b is chosen so that the zero becomes s = −ω 0. If the process model
would be correct, the phase margin with ζ = 0.5 would be 50○. Because of the
approximations made, the phase margin will be less. It will decrease with ω 0.
For ω 0 = 1 the phase margin is ϕm = 42○. The closed-loop poles for the system
are −100, −20, −4.99, −0.46 ± 1.02i. The closed-loop poles obtained when the
controller is applied to the simplified model are −0.5 ± 0.87i. Because of the
approximation the dominant poles differ from the design values. The difference
increases with increasing ω 0. The system becomes unstable for ω 0 = 3.8255.

Figure 6.11 shows the sensitivity functions for the approximate and the
exact system. The maximum sensitivities are Mt = 1.35 and Ms = 1.66, re-
spectively. This indicates that the closed-loop poles must be chosen with care
when using pole placement.

The next example shows what happens when the system is approximated with
a second-order model.
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Figure 6.11 Sensitivity functions for the approximate system (dashed) and the true
system in Example 6.11.

EXAMPLE 6.12—APPROXIMATION WITH A SECOND-ORDER MODEL

Consider the system given by (6.15). Approximate the transfer function by

P(s) = 1
(1 + s)(1 + 0.26s) .

It is obtained by keeping the longest time constant and approximating the
three shorter time constants with their sum. The sum of the neglected time
constants is Te = 0.06. The phase error is less than 15○ for frequencies below
4.4 rad/s. By making an approximation of the process model that is valid for
higher frequencies than in the previous example, we can thus design a faster
controller. If ζ = 0.5 and α = 1 are chosen in (6.16), the design calculations
in Example 6.12 give the following PID parameters:

K = 0.52ω 2
0 − 1

Ti = 0.52ω 2
0 − 1

0.26ω 3
0

Td = 0.52ω 0 − 1.26
0.52ω 2

0 − 1

b = 0.26ω 2
0

0.52ω 2
0 − 1

.

(6.16)

In this case, pure PI control is obtained for ω 0 = 2.4. The derivative gain
becomes negative for lower bandwidths. The approximation neglects the time
constant 0.05. If the neglected dynamics are required to give a phase error of,
at most, 0.3 rad (17 deg) at the bandwidth, ω 0 < 6 rad/s can be obtained. In
Figure 6.12, the behavior of the control is demonstrated for ω 0 = 4, 5, and 6.

The specification of the desired closed-loop bandwidth is crucial, since the
controller gain increases rapidly with the specified bandwidth. It is also crucial
to know the frequency range where the model is valid. Alternatively, an upper
bound to the controller gain can be used to limit the bandwidth. Notice the
effect of changing the design frequency ω 0. The system with ω 0 = 6 responds
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Figure 6.12 Set-point and load disturbance responses of the process with two poles
controlled by a PID controller tuned according to Example 6.12. The responses for ω 0 =
4, 5, and 6 are shown. The upper diagram shows set point ysp = 1 and process output y,
and the lower diagram shows control signal u.

faster and has a smaller error when subjected to load disturbances. The design
will not work well when ω 0 is increased above 8.

Dominant Pole Design

In pole placement design it is attempted to assign all closed-loop poles. One
drawback with the method is that it is difficult to specify many closed-loop
poles. In Section 4.5 it was mentioned that the behavior of a system can often
be characterized with a few dominant poles. It can therefore be attempted to
place a few dominant poles. We will illustrate this with a few examples.

EXAMPLE 6.13—AN INTEGRATING CONTROLLER

Consider a process with the transfer function P(s) and an integrating controller

C(s) = ki

s
.

The closed-loop poles are given by

1 + ki

P(s)
s

= 0.

Since the controller has one adjustable parameter, it is possible to assign one
pole. To obtain a pole at s = −a the controller parameter should be chosen as

ki = a

P(−a) . (6.17)

To obtain a good attenuation of load disturbances we will choose the closed-loop
pole so that the integral gain ki is as large as possible. For example, if

P(s) = 1
(s + 1)2 ,
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we get
ki = a(−a + 1)2 = a3 − 2a2 + a,

which has its maximum 4/27 for a = 1/3.

EXAMPLE 6.14—PI CONTROL

A PI controller has two parameters. Consequently, it is necessary to assign two
poles. Consider a process with transfer function P(s), and let the controller be
parameterized as

C(s) = k + ki

s
.

The closed-loop characteristic equation is

1 +
(

k + ki

s

)
P(s) = 0.

Require that this equation has roots at

p1,2 = ω 0

(
−ζ 0 ± i

√
1 − ζ 2

0

)
= ω 0ei(π ±γ ) = ω 0(− cosγ ± i sinγ ),

where γ = arccosζ 0. The condition that the closed-loop system has a pole p1 is
thus

1 +
(

k + ki

p1

)
P(p1) = 0. (6.18)

This is a linear equation in complex variables with two unknown variables. To
solve it we introduce a(ω 0) and φ(ω 0), defined as

P
(

ω 0ei(π −γ )
)

= a(ω 0)eiφ(ω 0).

Notice that P
(
ω 0ei(π −γ )) represents the values of the transfer function on the

ray ei(π −γ ). When γ = π /2, then P
(
ω 0ei(π −γ )) = P(iω 0), which is the normal

frequency response.
Equation 6.18 can be written as

1 +
(

k + ki

ω 0ei(π −γ )

)
a(ω 0)eiφ(ω 0) = 0.

This equation, which is linear in k and ki, has the solution

k = −sin(φ(ω 0) + γ )
a(ω 0) sinγ

ki = −ω 0 sinφ(ω 0)
a(ω 0) sinγ

.

(6.19)

Notice that φ(ω 0) is zero for ω 0 = 0 and typically negative as ω 0 increases. This
implies that the proportional gain is negative and the integral gain positive
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but small for small ω 0. When ω 0 increases both k and ki will increase initially.
For larger values of ω 0 both parameters will decrease. Requiring that both
parameters are positive, we find that ω 0 must be selected so that

γ < −φ(ω 0) < π .

The integral time of the controller is

Ti = k

ki

= sin(φ(ω 0) + γ )
ω 0 sinφ(ω 0) .

Notice that Ti is independent of a(ω 0).

EXAMPLE 6.15—A PURE DEAD-TIME PROCESS

Consider a process with the transfer function

P(s) = e−sL.

Using pure integral control, it follows from Equation 6.17 that ki = ae−aL. The
gain has its largest value ki = e−1/L for a = 1/L. The loop transfer function
for the system is then

Gl(s) = P(s)C(s) = 1
esL

e−sL.

The sensitivity of the system is Ms = 1.39, which is a reasonable value.
With PI control it follows from Equation 6.19 that

k = sin(ω 0 L sinγ − γ )
sinγ

e−ω 0 L cosγ

ki = ω 0
sin(ω 0 L sinγ )

sinγ
e−ω 0 L cosγ .

To minimize I E, we determine the value of ω 0 that maximizes ki. The results
are given in Table 6.6. This table also gives the Ms values and the I AE. The
IAE has minimum at ζ 	 0.6. Notice that there are significant variations in the
gain but that the values of integration time are fairly constant for all values
of the design parameter ζ . The value of IAE should be small to give good
rejection of load disturbances, and Ms should be small to give good robustness.
The table illustrates the trade-offs between these goals. To obtain a reasonable
robustness of Ms < 2, the relative damping should be greater than 0.5.

Notice that for ζ = 1 we get k = e−2 and ki = 4e−2/L. This can be compared
with ki = e−1 L for pure I control. With PI control the integral gain can thus be
increased by a factor of 1.5 compared with an I controller. For a well-damped
system (ζ = 0.707) the gain is about 0.2 and the integral time is Ti = 0.28L.
This can be compared with the values 0.45 and 2L obtained with the Ziegler-
Nichols frequency response method. The dominant pole design thus gives a
controller with much stronger integral action than the Ziegler-Nichols method.
In Example 6.4 we found that this was highly desirable.
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Table 6.6 Controller parameters for dominant pole design of a PI controller for a pure
time delay process.

ζ k ki L Ti/L ω 0 L Ms I AE/L

0.1 0.388 1.50 0.258 1.97 6.34 4.03

0.2 0.343 1.27 0.270 1.93 3.60 2.42

0.5 0.244 0.847 0.288 1.86 1.99 1.56

0.707 0.195 0.688 0.284 1.88 1.69 1.54

1.0 0.135 0.541 0.250 2.00 1.49 1.85

In summary, we find that a process with a pure delay dynamics can be
controlled quite well with a PI controller.

Dominant pole design is a special case of pole placement where it is only at-
tempted to place a few dominant poles. For pure P, I, or D controllers one pole
can be placed. For PI and PD controllers there are two dominant poles, which
can conveniently be parameterized with the relative damping ζ . The method
becomes more complicated for PID control. After the design it is necessary to
check that the closed-loop poles obtained are actually dominating. It is also
necessary to evaluate the robustness of the closed-loop system.

Commentary

Pole placement is a standard method for control system design. The specifi-
cations are given in terms of all poles of the closed-loop system or possibly
only the pole pattern. Good judgment is required to choose the poles properly.
When using pole placement the complexity of the controller is determined by
the complexity of the process model. To obtain a PID controller it is required
that the model is of low order or that the model is approximated by a low-order
model. Time delay are often approximated when using pole placement. There
is no natural way to introduce a robustness constraint in pole placement. The
resulting closed-loop system must be analyzed to ensure that it is sufficiently
robust.

6.5 Lambda Tuning

Lambda tuning is a special case of pole placement that is commonly used in
the process industry. The process is modeled by the FOTD model

P(s) = Kp

1 + sT
e−sL.

Different approximations of time delay L result in both PI and PID controllers.
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PI Control

If a PI controller with the transfer function

C(s) = K
1 + sTi

sTi

is used with integral time Ti chosen equal to the time constant T of the process,
the loop transfer function becomes

Gl(s) = P(s)C(s) = KpK

sT
e−sL 	 KpK (1 − sL)

sT
,

where the exponential function has been approximated using a Taylor series
expansion. The characteristic equation of the closed-loop system is

s(T − KpK L) + KpK = 0.

Requiring that the closed-loop pole is s = −1/Tcl, where Tcl is the desired
closed-loop time constant, we find

KpK = T

L + Tcl

,

which gives the following simple tuning rule

K = 1
Kp

T

L + Tcl

Ti = T .

(6.20)

The closed loop response time Tcl is the design parameter. In the original work
by Dahlin [Dahlin, 1968] it was denoted as Tcl = λ , which explains the name
lambda tuning.

The choice of Tcl is critical. A common rule of thumb is to choose Tcl = 3T

for a robust controller and Tcl = T for aggressive tuning when the process
parameters are well determined. Both choices lead to controllers with zero
gain and zero integral time for pure time delay systems. For delay-dominated
processes it is therefore sometimes recommended to choose Ti as the largest of
the values T and 3L.

A drawback with lambda tuning is that the process pole is canceled. This
is not serious if for delay dominated processes. The integral gain is

ki = K

Ti

= 1
Kp(L + Tcl) .

When Tcl is proportional to T integral gain is thus small for large T . The
response to load disturbances is thus very poor for lag-dominated processes.

For lag-dominated processes it is therefore useful to make a design that
does not cancel the process pole. When the FOTD process is controlled with a
PI controller the loop transfer function is

Gl(s) = P(s)C(s) = KpK (1 + sTi)e−sL

sTi(1 + sT) 	 KpK (1 + sTi)(1 − sL)
sTi(1 + sT) ,
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where the exponential function has been approximated by a Taylor series ex-
pansion. The characteristic equation is of second order:

s2
( TiT

KpK
− Ti L

)
+ s

(
Ti + Ti

KpK
− L

)
+ 1 = 0.

Comparing this with the desired characteristic equation,

s2T2
cl + 2ζ Tcls + 1 = 0,

gives the controller parameters

K = L + 2ζ Tcl

T2
cl + T2

cl/(KpK ) + 2ζ Tcl L + L2

Ti = KpK (L + 2ζ Tcl)
1 + KpK

.

(6.21)

These tuning rules can also be applied to integrating process provided that Tcl

is chosen properly. For lag-dominated processes it is reasonable to choose Tcl

proportional to L.

PID Control

For the derivation of the PID design, the interacting form of the PID controller
(3.8) is used:

C′(s) = K ′ (1 + sT ′
i )(1 + sT ′

d)
sT ′

i

.

The time delay is approximated using (2.59), which gives the process transfer
function

P(s) = Kp

1 + sT
e−sL 	 Kp(1 − sL/2)

(1 + sT)(1 + sL/2) .

The integral time is chosen to T ′
i = T and the derivative time to T ′

d = L/2.
The zeros of the controller will then cancel the poles of the process, and the
loop transfer function becomes

Gl(s) = P(s)C′(s) 	 KpK ′(1 − sL/2)
sT

.

The characteristic equation is

s(T − KpK ′ L/2) + KpK ′ = 0.

Requiring that the closed-loop pole is s = −1/Tcl we find

KpK ′ = T

L/2 + Tcl

,
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which gives the following simple tuning rules:

K ′ = 1
Kp

T

L/2 + Tcl

T ′
i = T

T ′
d = L

2
.

Using (3.9), the corresponding parameters for the noninteracting PID con-
troller becomes

K = 1
Kp

L/2 + T

L/2 + Tcl

Ti = T + L/2

Td = T L

L + 2T
.

(6.22)

Notice that there is no derivative action for pure delay processes (T = 0).

Commentary

Lambda tuning is a special case of pole placement. It is a simple method that
can give good results in certain circumstances provided that the design param-
eter is chosen properly. The basic method cancels a process pole which will lead
to poor response to load disturbances for lag-dominated processes. Various ad
hoc fixes can be made, but this requires insight.

6.6 Algebraic Design

There are several algebraic tuning methods where the controller transfer func-
tion is obtained from the specifications by a direct algebraic calculation. The
methods are closely related to pole placement.

Standard Forms

A fundamental question is to determine transfer functions that give suitable
responses to set-point changes. This can be done by starting with a transfer
function of a given form and determining the parameters so that some error
criterion such as IAE, ISE, or ITAE is minimized.

Typical examples are

G1 = ω 2
0

s2 + 2ζ ω 0 + ω 2
0

G2 = αω 3
0

(s2 + 2ζ ω 0s + ω 2
0)(s + αω 0)

G3 = ω 0(s + βω 0)
β (s2 + 2ζ ω 0s + ω 2

0)

G4 = αω 2
0(s + βω 0)

β (s2 + 2ζ ω 0s + ω 2
0)(s + αω 0) .

(6.23)
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The parameter ω 0 is a scale factor that determines the response speed. Pa-
rameters α , β , and ζ determine the shape of the transfer functions. Relative
damping ζ is typically in the range of 0.5 to 1. The parameters α and β have a
significant influence if they are less than one. Decreasing α makes the response
slower and reduces the overshoot. Decreasing β makes the response faster and
increases the overshoot. There have been many efforts to find parameters that
optimize various criteria. Consider a system where the process has transfer
function P(s) and the controller transfer functions are

C(s) = K
(

1 + 1
sTi

+ sTd

)
Cf f (s) = K

(
b + 1

sTi

+ scTd

)
.

The closed-loop transfer function from set point to process output is then

Gyysp
= PCf f

1 + PC
.

The controller parameters K , Ti, and Td are first chosen to match the de-
nominator of the specified transfer function, and the set-point weights b and
c are then chosen to match the numerator of the specified transfer function.
Since the simple controllers only have a few parameters it is necessary that
the chosen transfer functions be sufficiently simple.

For systems with error feedback where C(s) = Cf f (s) it is possible to give
an explicit expression for the controller transfer function:

C = 1
P

⋅
Gyysp

1 − Gyysp

. (6.24)

To make sure that the controller obtained is a PID controller it is necessary to
make approximations or cancellations as was discussed in Section 2.8.

It follows from (6.24) that all process poles and zeros are canceled by the
controller unless Gyysp

has corresponding poles and zeros. This means that
error feedback cannot be applied when the process has poorly damped poles
and zeros. The method will also give a poor load disturbance response when
slow process poles are canceled.

There are many different versions of algebraic design methods. Let it suffice
to present a few cases.

Haalman’s Method

For systems with a time delay L, Haalman has suggested choosing the loop
transfer function

Gl(s) = P(s)C(s) = 2
3Ls

e−sL.

The value 2/3 was found by minimizing the mean square error for a step change
in the set point. This choice gives a sensitivity Ms = 1.9, which is a reasonable
value. Notice that it is only the dead time of the process that influences the
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loop transfer function. All other process poles and zeros are canceled, which
may lead to difficulties.

Applying Haalman’s method to a process with the transfer function

P(s) = Kp

1 + sT
e−sL

gives the controller

C(s) = 2(1 + sT)
3KpLs

= 2T

3KpL

(
1 + 1

sT

)
,

which is a PI controller with K = 2T/3KpL and Ti = T . These parameters
can be compared with the values K = 0.9T/L and Ti = 3L obtained by the
Ziegler-Nichols step response method.

Comparing Haalman’s method with lambda tuning we find that the integral
times are the same and that the gains are the same if we choose Tcl = L/2.
Since lambda tuning is based on approximations of the time delay it appears
more reasonable to use Haalman’s method when the time delay L is large.

Applying Haalman’s method to a process with the transfer function

P(s) = Kp

(1 + sT1)(1 + sT2) e−sL

gives a PID controller with parameters K = 2(T1 +T2)/3KpL, Ti = T1 +T2, and
Td = T1T2/(T1+T2). For more complex processes it is necessary to approximate
the processes to obtain a transfer function of the desired form as was discussed
in Section 2.8.

Figure 6.13 shows a simulation of Haalman’s method for a system with
normalized dead time τ = 0.5. The figure shows that the responses are good.

Dangers of Cancellation of Slow Process Poles

A key feature of Haalman’s method is that process poles and zeros are canceled
by poles and zeros in the controller. When poles and zeros are canceled, there
will be uncontrollable modes in the closed-loop system. This may lead to poor
performance if the modes are excited. The problem is particularly severe if the
canceled modes are slow or unstable. We use an example to illustrate what
may happen.

EXAMPLE 6.16—LOSS OF CONTROLLABILITY DUE TO CANCELLATION

Consider a closed-loop system where a process with the transfer function

P(s) = 1
1 + sT

e−sL

is controlled with a PI controller whose parameters are chosen so that the
process pole is canceled. The transfer function of the controller is then

C(s) = K

(
1 + 1

sT

)
= K

1 + sT

sT
.
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Figure 6.13 Simulation of a closed-loop system obtained by Haalman’s method. The
plant transfer function is P(s) = e−s/(s + 1). The diagrams show set point ysp, process
output y, and control signal u.

The process can be represented by the equation

dy(t)
dt

= 1
T

(u(t − L) − y(t)), (6.25)

and the controller can be described by

du(t)
dt

= −K

(
dy(t)

dt
+ y(t)

T

)
. (6.26)

Consider the behavior of the closed-loop system when the initial conditions are
chosen as y(0) = 1 and u(t) = 0 for −L < t < 0. Without feedback the output
is given by

yol(t) = e−t/T .

To compute the output for the closed-loop system we first eliminate y(t) be-
tween (6.25) and (6.26). This gives

du(t)
dt

= − K

T
u(t − L).

It thus follows that u(t) = 0, and (6.25) then implies that

ycl(t) = e−t/T = yol(t).

The trajectories of the closed-loop system and the open-loop system thus are
the same. The control signal is zero, which means that the controller does not
attempt to reduce the control error.

The example clearly indicates that there are drawbacks with cancellation of
process poles. Another illustration of the phenomenon is given in Figure 6.14,
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Figure 6.14 Simulation of a closed-loop system obtained by Haalman’s method. The
process transfer function is P(s) = e−s/(10s + 1), and the controller parameters are K =
6.67 and Ti = 10. The upper diagram shows set point ysp = 1 and process output y,
and the lower diagram shows control signal u. The figure also shows the responses to a
re-tuned controller with K = 6.67, Ti = 3, and b = 0.5.

which is a simulation of a closed-loop system where the controller is designed
by Haalman’s method. This simulation is identical to the simulation in Fig-
ure 6.13, but the process time constant is now 10 instead of 1 for the simulation
in Figure 6.14.

In this case we find that the set-point response is excellent but that the
response to load disturbances is very poor. The reason for this is that the
controller cancels the pole s = −0.1 by having a controller zero at s = −0.1.
Notice that the process output after a load disturbance decays with the time
constant T = 10 but that the control signal is practically constant due to the
cancellation. The attenuation of load disturbances is improved considerably by
reducing the integral time of the controller as shown in Figure 6.14.

We have thus shown that cancellation of process poles may give systems
with poor rejection of load disturbances. Notice that this does not show up in
simulations unless the process is excited. For example, it will not be noticed in
a simulation of a step change in the set point. We may also ask why there is
such a big difference in the simulations in Figures 6.13 and 6.14. The reason is
that the canceled pole in Figure 6.14 is slow in comparison with the closed-loop
poles, but it is of the same magnitude as the closed-loop poles in Figure 6.13.

We can thus conclude that pole cancellation can be done for systems that
are dead-time dominated but not for systems that are lag dominated.

Internal Model Control (IMC)

The internal model principle is a general method for design of control systems
that can be applied to PID control. A block diagram of such a system is shown
in Figure 6.15. In the diagram it is assumed that all disturbances acting on
the process are reduced to an equivalent disturbance d at the process output.
In the figure P̂ denotes a model of the process, P̂† is an approximate inverse
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Figure 6.15 Block diagram of a closed-loop system with a controller based on the inter-
nal model principle.

of P̂, and Gf is a low-pass filter. The name internal model controller derives
from the fact that the controller contains a model of the process internally.
This model is connected in parallel with the process.

If the model matches the process, i.e., P̂ = P, the signal e is equal to the
disturbance d for all control signals u. If Gf = 1 and P̂† is an exact inverse
of the process, then the disturbance d will be canceled perfectly. The filter Gf

is introduced to obtain a system that is less sensitive to modeling errors. A
common choice is Gf (s) = 1/(1 + sTf ), where Tf is a design parameter.

The controller obtained by the internal model principle can be represented
as an ordinary series controller with the transfer function

C = Gf P̂†

1 − Gf P̂† P̂
. (6.27)

From this expression it follows that controllers of this type cancel process poles
and zeros.

The internal model principle will typically give controllers of high order.
By making special assumptions it is, however, possible to obtain PI or PID
controllers from the principle. To see this consider a process with the transfer
function

P(s) = Kp

1 + sT
e−sL. (6.28)

An approximate inverse is given by

P̂†(s) = 1 + sT

Kp

.

Notice that it is not attempted to find an inverse of the time delay. Choosing
the filter

Gf (s) = 1
1 + sTf

,
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and approximating the time delay by

e−sL 	 1 − sL,

Equation 6.27 now gives

C(s) = 1 + sT

Kps(L + Tf ) ,

which is a PI controller. Notice that this controller is identical to the one ob-
tained by lambda tuning if Tf = Tcl; see Equation 6.20.

If the time delay is approximated instead by a first-order Padé approxima-
tion,

e−sL 	 1 − sL/2
1 + sL/2

,

Equation 6.27 gives instead the PID controller

C(s) = (1 + sL/2)(1 + sT)
Kps(L + Tf + sTf L/2) 	 (1 + sL/2)(1 + sT)

Kps(L + Tf ) .

For processes described by Equation 6.28, we thus find that the internal model
principle will give PI or PID controllers. Approximations like the ones discussed
in Section 2.8 can be used in the usual manner to obtain PI and PID controllers
for more complex processes.

An interesting feature of the internal model controller is that robustness
is considered explicitly in the design. Robustness can be adjusted by selecting
the filter Gf properly. A trade-off between performance and robustness can be
made by using the filter constant as a design parameter. The IMC can be de-
signed to give excellent response to set-point changes. Since the design method
inherently implies that poles and zeros of the plant are canceled, the response
to load disturbances may be poor if the canceled poles are slow in compari-
son with the dominant poles. Compare with the responses in Figure 6.14. The
IMC controller can also be viewed as an extension of the Smith predictor; see
Chapter 8.

Skogestad’s Internal Model Controller (SIMC)

Skogestad has developed a version of internal model control tuning method for
PID control that avoids some of the drawbacks mentioned above. The method
starts with a FOTD model for PI control or a SOTD model for PID control. It
is required that the closed-loop system should have the transfer function

Gyysp = 1
1 + sTcl

e−sL

For an FOTD system it then follows from Equation 6.24 that the controller
transfer function is

C(s) = 1 + sT

Kp(1 + sTcl − e−sL) 	 1 + sT

sKp(Tcl + L)
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where the exponential function is approximated using a Taylor series expan-
sion. In contrast with the recommendation for IMC the closed-loop time con-
stant is proportional to the time delay L. The choice Tcl = L is recommended.
The integral term is also modified for lag-dominated processes. The tuning rule
for PI control is

K = T

2KpL

Ti = min(T , 8L)
(6.29)

The same parameters are used for a PID controller in series form, and the
derivative time is chosen as the shortest time constant.

Commentary

The analytical design methods are very closely related to pole placement. The
main difference is that the complete transfer function is specified instead of
just the closed-loop poles. A nice feature is that the calculations required are
very simple. A drawback is that process poles are canceled. This is particularly
serious for lag-dominated systems.

6.7 Optimization Methods

Optimization is a powerful tool for design of controllers. The method is con-
ceptually simple. A controller structure with a few parameters is specified.
Specifications are expressed as inequalities of functions of the parameters. The
specification that is most important is chosen as the function to optimize. The
method is well suited for PID controllers where the controller structure and the
parameterization are given. There are several pitfalls when using optimization.
Care must be exercised when formulating criteria and constraints; otherwise,
a criterion will indeed be optimal, but the controller may still be unsuitable be-
cause of a neglected constraint. Another difficulty is that the loss function may
have many local minima. A third is that the computations required may easily
be excessive. Numerical problems may also arise. Nevertheless, optimization
is a good tool that has successfully been used to design PID controllers. In this
section we discuss some of these methods.

A Warning

Optimization algorithms are very powerful. They will solve whatever crite-
rion is formulated. It is therefore very important to formulate the problems
correctly and to introduce all relevant constraints. For PID control it is par-
ticularly important to introduce robustness constraints. This has frequently
been disregarded in much work the on use of optimization for PID control. The
following example illustrates what can happen.

EXAMPLE 6.17—A PI CONTROLLER OPTIMIZED FOR IAE
Consider a process with the transfer function

P(s) = 1
s + 1

e−sL.
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Table 6.7 Controller parameters obtained from minimization of integrated absolute er-
ror, I AE. Khf is the high-frequency gain of the controller.

L I AE Ms Khf aK Ti/L

0.0 0 ∞
0.2 0.14 3.3 4.7 0.94 2.9

0.5 0.60 3.0 2.0 1.0 2.2

1.0 1.5 2.4 1.0 1.0 1.4

2.0 3.2 2.1 0.60 1.2 1.0

5.0 7.7 2.0 0.42 2.1 0.6

10.0 15 1.9 0.37 3.7 0.53

Table 6.7 gives controller parameters that minimize IAE for load disturbances.
Some of the other criteria are also given in the table. The table shows that the
integrated absolute error increases with L, as can be expected. The table shows
that the maximum sensitivity is large for practically all systems, particularly
those with small L. The table also shows that the high-frequency gain of the
controller is high for small values of L. For example, if we require Ms < 1.8,
which is a fairly modest robustness requirement, none of the systems is ac-
ceptable.

The example illustrates the necessity of considering all aspects of a problem
when formulating the problem. Unfortunately, this was not observed in much
of the early work on controller tuning.

Tuning Formulas Based on Optimization

Many studies have been devoted to development of tuning rules based on op-
timization. Very often a process described by

P = Kp

1 + sT
e−sL

has been considered. The loss functions obtained for unit step changes in set
point and process input have been computed and formulas of the type

p = a

(
L

T

)b

,

where p is a controller parameter and a and b are constants, have been fitted
to the numerical values obtained. In many cases, the criterion is IAE for load
disturbances, which often gives systems with low damping and poor sensitivity.
The formulas given often only hold for a small range of normalized dead times,
e.g., 0.2 < τ < 0.6. It should also be observed that criteria based on set-point
changes can often be misleading because it is often not observed that the set-
point changes are drastically influenced by different set-point weightings.
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Modulus and Symmetrical Optimum

Modulus Optimum (BO) and Symmetrical Optimum (SO) are two methods for
selecting and tuning controllers that also can be viewed as analytical designs
where the desired transfer functions given by Equations 6.23 are obtained by
optimization. The acronyms BO and SO are derived from the German words
Betrags Optimum and Symmetrische Optimum. The methods were developed
for motor drives where the response to set-point changes is particularly impor-
tant. The basic idea is to find a controller that makes the frequency response
from set point to plant output as close to one as possible for low frequencies. If
G(s) is the transfer function from the set point to the output, the controller is
determined in such a way that G(0) = 1 and that dn�G(iω )�/dω n = 0 at ω = 0
for as many n as possible. An interesting property is that the design method
takes account of unmodeled dynamics explicitly. We illustrate the idea with a
few examples.

EXAMPLE 6.18—SECOND-ORDER SYSTEM

Consider the transfer function

G(s) = a2

s2 + a1s + a2
,

which has been chosen so that G(0) = 1. Let us first consider how the param-
eters should be chosen in order to get a maximally flat frequency response. We
have

�G(iω )�2 = a2
2

a2
1ω 2 + (a2 − ω 2)2

= a2
2

a2
2 + ω 2(a2

1 − 2a2) + ω 4
.

By choosing a1 = √
2a2 we find

�G(iω )�2 = a2
2

a2
2 + ω 4

.

The first three derivatives of �G(iω )� will vanish at the origin. The transfer
function then has the form

G(s) = ω 2
0

s2 + ω 0s
√

2 + ω 2
0

.

The step response of a system with this transfer function has an overshoot
o = 4%. The settling time to 2% of the steady-state value is Ts = 6/ω 0.

If the transfer function G in the example is obtained by error feedback of a
system with the loop transfer function GBO, the loop transfer function is

GBO(s) = G(s)
1 − G(s) = ω 2

0

s(s + √
2ω 0) , (6.30)

which is the desired loop transfer function for the method called modulus op-
timum.

The calculation in Example 6.18 can be performed for higher-order systems
with more effort. We illustrate by another example.
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EXAMPLE 6.19—THIRD-ORDER SYSTEM WITH NO ZEROS

Consider the transfer function

G(s) = a3

s3 + a1s2 + a2s + a3
.

After some calculations we get

�G(iω )� = a3√
a2

3 + (a2
2 − 2a1a3)ω 2 + (a2

1 − 2a2)ω 4 + ω 6
.

Five derivatives of �G(iω )� will vanish at ω = 0, if the parameters are such
that a2

1 = 2a2 and a2
2 = 2a1a3. The transfer function then becomes

G(s) = ω 3
0

s3 + 2ω 0s2 + 2ω 2
0s + ω 3

0

= ω 3
0

(s + ω 0)(s2 + ω 0s + ω 2
0) . (6.31)

The step response of a system with this transfer function has an overshoot
o = 8.1%. The settling time to 2% of the steady state value is 9.4/ω 0. A system
with this closed-loop transfer function can be obtained with a system having
error feedback and the loop transfer function

Gl(s) = P(s)C(s) = ω 3
0

s(s2 + 2ω 0s + 2ω 2
0) .

The closed-loop transfer function (6.31) can also be obtained from other
loop transfer functions if the controller has set-point weighting. For example,
if a process with the transfer function

P(s) = ω 2
0

s(s + 2ω 0)

is controlled by a PI controller having parameters K = 2, Ti = 2/ω 0, and b = 0,
the loop transfer function becomes

GSO = ω 2
0(2s + ω 0)

s2(s + 2ω 0) . (6.32)

The symmetric optimum aims at obtaining the loop transfer function given by
Equation 6.32. Notice that the Bode plot of this transfer function is symmetrical
around the frequency ω = ω 0. This is the motivation for the name symmetrical
optimum.

If a PI controller with b = 1 is used, the transfer function from set point to
process output becomes

G(s) = GSO(s)
1 + GSO(s) = (2s + ω 0)ω 2

0

(s + ω 0)(s2 + ω 0s + ω 2
0) .
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This transfer function is not maximally flat because of the zero in the numer-
ator. This zero will also give a set-point response with a large overshoot, about
43 percent.

The methods BO and SO can be called loop-shaping methods since both meth-
ods try to obtain a specific loop transfer function. The design methods can be
described as follows. It is first established which of the transfer functions, GBO

or GSO, is most appropriate. The transfer function of the controller C(s) is
then chosen so that the loop transfer Gl(s) = P(s)C(s) meet specifications. We
illustrate the methods with the following examples.

EXAMPLE 6.20—BO CONTROL

Consider a process with the transfer function

P(s) = Kp

s(1 + sT) . (6.33)

With a proportional controller the loop transfer function becomes

G(s) = K Kp

s(1 + sT) .

To make this transfer function equal to GBO given by Equation 6.30 it must be
required that

ω 0 =
√

2
2T

.

The controller gain should be chosen as

K = ω 0
√

2
2Kp

= 1
2KpT

.

EXAMPLE 6.21—SO CONTROL

Consider a process with the same transfer function as in the previous example
(Equation 6.33). With a PI controller having the transfer function

C(s) = K (1 + sTi)
sTi

,

we obtain the loop transfer function

Gl(s) = P(s)C(s) = KpK (1 + sTi)
s2Ti(1 + sT) .

This is identical to GSO if we choose

K = 1
2KpT

Ti = 4T .

To obtain the transfer function given by Equation 6.31 the set-point weight b

should be zero.
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A Design Procedure A systematic design procedure can be based on the
methods BO and SO. The design method consists of two steps. In the first step
the process transfer function is simplified to one of the following forms:

P1(s) = Kp

1 + sT

P2(s) = Kp

(1 + sT1)(1 + sT2) , T1 > T2

P3(s) = Kp

(1 + sT1)(1 + sT2)(1 + sT3) , T1 > T2 > T3

P4(s) = Kp

s(1 + sT)
P5(s) = Kp

s(1 + sT1)(1 + sT2) , T1 > T2.

Process poles may be canceled by controller zeros to obtain the desired loop
transfer function. A slow pole may be approximated by an integrator; fast
poles may be lumped together as discussed in Section 2.8. The rule of thumb
given in the original papers on the method is that time constants T such that
ω 0T < 0.25 can be regarded as integrators.

The controller is derived in the same way as in Examples 6.20 and 6.21 by
choosing parameters so that the loop transfer function matches either GBO or
GSO. By doing this we obtain the results summarized in Table 6.8. Notice, for
example, that Examples 6.20 and 6.21 correspond to the entries Process G4 in
the table. It is natural to view the smallest time constant as an approximation
of neglected dynamics in the process. It is interesting to observe that it is this
time constant that determines the bandwidth of the closed-loop system.

The set-point response for the BO method is excellent. Notice that it is
necessary to use a controller with a two-degree-of-freedom structure or a pre-
filter to avoid a high overshoot for the SO method. Notice also that process
poles are canceled in the cases marked C1 or C2 in Table 6.8. The response
to load disturbances will be poor if the canceled pole is slow compared to the
closed-loop dynamics, which is characterized by ω 0 in Table 6.8.

These design principles can be extended to processes other than those listed
in the table.

EXAMPLE 6.22—APPLICATION OF BO AND SO
Consider a process with the transfer function

P(s) = 1
(1 + s)(1 + 0.2s)(1 + 0.05s)(1 + 0.01s) . (6.34)

Since this transfer function is of fourth order, the design procedure cannot be
applied directly. We show how different controllers are obtained depending on
the approximations made. The performance of the closed-loop system depends
on the approximation. We use parameter ω 0 as a crude measure of performance.

If a controller with low performance is acceptable, the process (6.34) can
be approximated with

P(s) = 1
1 + 1.26s

. (6.35)
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P C M Remark K Kp Ti Td ω 0 b c

P1 I BO 0.5 T
0.7
T

P2 P BO A1
T1

2T2

0.7
T2

1

P2 PI BO C1
T1

2T2
T1

0.7
T2

1

P2 PI SO A1
T1

2T2
4T2

0.5
T2

0

P3 PD BO A1, C2
T1

2T3
T2

0.7
T3

1 1

P3 PID BO C1, C2
T1 + T2

2T3
T1 + T2

T1T2

T1 + T2

0.7
T3

1 1

P3 PID SO A1, C2
T1(T2 + 4T3)

8T2
3

T2 + 4T3
4T2T3

T2 + 4T3

0.5
T3

T2

T2 + 4T3
0

P4 P BO
1

2T

0.7
T

1

P4 PI SO
1

2T
4T

0.5
T

0

P5 PD BO C1
1

2T2
T1

0.7
T2

1 1

P5 PD SO A1
T1

8T2
2

4T2
0.5
T2

1 0

P5 PID SO C1
T1 + 4T2

8T2
2

T1 + 4T2
4T1T2

T1 + 4T2

0.5
T2

T1

T1 + 4T2
0
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Table 6.9 Results obtained with different controllers designed by the BO and SO meth-
ods in Example 6.22. The frequency ω m defines the upper limit when the phase error is
less than 10%.

Controller K Ti Td ki b c ω 0 ω m IAE

1 0.4 0.55 1.12 2.7

2 1.92 1 0.52 1 2.7 5.15 0.52

3 10 1.2 0.17 8.3 1 1 11.7 26.6 0.12

4 15.3 0.44 0.11 35 0.45 0 8.3 26.6 0.029

The approximation has a phase error less than 10○ for ω ≤ 1.12. It follows
from Table 6.8 that the system (6.35) can be controlled with an integrating
controller with

ki = K

Ti

= 0.5
1.26

= 0.4.

This gives a closed-loop system with ω 0 = 0.55.
A closed-loop system with better performance is obtained if the transfer

function (6.34) is approximated with

P(s) = 1
(1 + s)(1 + 0.26s) . (6.36)

The slowest time constant is thus kept, and the remaining time constants are
approximated by lumping them together. The approximation has a phase error
less than 10○ for ω ≤ 5.15. A PI controller can be designed using the BO
method. The parameters K = 1.92 and Ti = 1 are obtained from Table 6.8. The
closed-loop system has ω 0 = 2.7.

If the transfer function is approximated as

P(s) = 1
(1 + s)(1 + 0.2s)(1 + 0.06s) , (6.37)

the approximation has a phase error less than 10○ for ω ≤ 26.6. The BO method
can be used also in this case. Table 6.8 gives the controller parameters K = 10,
Ti = 1.2, and Td = 0.17. The controller structure is defined by the parameters
b = 1 and c = 1. This controller gives a closed-loop system with ω 0 = 11.7.

The method SO can also be applied to the system (6.37). Table 6.8 gives
the controller parameters K = 15.3, Ti = 0.44, Td = 0.11, and b = 0.45. For
these parameters we get ω 0 = 8.3.

Controllers with different properties can be obtained by approximating the
transfer function in different ways. A summary of the properties of the closed-
loop systems obtained is given in Table 6.9, where IAE refers to the load dis-
turbance response. Notice that Controller 2 cancels a process pole with time
constant 1 s and that Controller 3 cancels process poles with time constants 1 s
and 0.25 s. This explains why the IAE drops drastically for Controller 4, which
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Figure 6.16 Simulation of the closed-loop system obtained with different controllers
designed by the BO and SO methods given in Table 6.9. The upper diagram shows set
point ysp and process output y, and the lower diagram shows control signal u.

does not cancel any process poles. Controller 4 actually has a lower bandwidth
ω 0 than Controller 3.

A simulation of the different controllers is shown in Figure 6.16. The simula-
tion and the data shown in Table 6.9 clearly illustrate the benefits of improved
modeling and more complicated controllers.

Design for Disturbance Rejection

The design methods discussed so far have been based on a characterization of
process dynamics. The properties of the disturbances have only influenced the
design indirectly. A load disturbance in the form of a step was used, and in
some cases a loss function based on the error due to a load disturbance was
minimized. Measurement noise was also incorporated by limiting the high-
frequency gain of the controller.

In this section, we briefly discuss design methods that directly attempt to
make a trade-off between attenuation of load disturbances and amplification
of measurement noise due to feedback.

Consider the system shown in Figure 6.17. Notice that the measurement
signal is filtered before it is fed to the controller. Let D and N be the Laplace
transforms of the load disturbance and the measurement noise, respectively.
The process output and the control signal are then given by

X = P

1 + G
D − G

1 + G
N

U = − G
1 + G

D − CGf

1 + G
N ,

(6.38)

where G = PCGf is the loop transfer function. Different assumptions about
the disturbances and different design criteria can now be given. We illustrate
by an example.

204



6.7 Optimization Methods

Controller Process

Filter

C P

−G f

Σ Σ
u

n

x y

d

Figure 6.17 Block diagram of a closed-loop system.

EXAMPLE 6.23—DESIGN FOR DISTURBANCE REJECTION

Assume that the transfer functions in Figure 6.17 are given by

P = 1
s

, Gf = 1, C = k + ki

s
.

Furthermore, assume that n is stationary noise with spectral density φn and
that d is obtained by sending stationary noise with the spectrum φd through
an integrator. This is one way to model the situation that the load disturbance
is drifting and the measurement noise has high frequency.

With the given assumptions, Equation 6.38 then becomes

X = s

s2 + ks + ki

1
s

D1 − sk + ki

s2 + ks + ki

N

U = − sk + ki

s2 + ks + ki

1
s

D1 − s2k + kis

s2 + ks + ki

N ,

where we have assumed

D(s) = 1
s

D1(s).

If n and d1 are white noises, it follows that the variance of x is given by

J = Ex2 = 1
2kki

φd + 1
2

(
k + ki

k

)
φn.

This equation clearly indicates the compromise in designing the controller.
The first term of the right-hand side is the contribution to the variance due
to the load disturbance. The second term represents the contribution due to
the measurement noise. Notice that the attenuation of the load disturbances
increases with increasing k and ki, but that large values of k and ki also
increase the contribution of measurement noise.

We can attempt to find values of k and ki that minimize J. A straightforward
calculation gives

k =
√

2
(

φd

φn

)1/4

ki =
√

φd

φn

.
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This means that the controller parameters are uniquely given by the ratio of
the intensities of the process noise and the measurement noise. Also notice
that with these parameters the closed-loop characteristic polynomial becomes

s2 + ω 0s
√

2 + ω 2
0,

with ω 0 = √
φv/φ e. The optimal system thus has a relative damping ζ = 0.707

and a bandwidth that is given by the ratio of the intensities of load disturbance
and measurement noise.

Commentary

Optimization techniques are very powerful. When using them it is essential to
include all relevant aspects of the problem in the formulation; otherwise, the
so-called optimal controller may have very bad properties. In this section we
have covered a few optimization methods that have been used for PID control.

The methods BO and SO are widely used for drive systems. The optimiza-
tion is to find a transfer function from set point to process output that is
maximally flat. The methods are primarily intended for systems without dead
time. Small dead times can be dealt with by approximation.

An interesting feature of the procedure is the use of approximations; fast
poles and slow time constants are neglected, and slow dynamics are approxi-
mated by integrators. Model uncertainty also appears explicitly in the design
because the achievable bandwidth is determined by slowest neglected time
constants.

The methods can be interpreted as pole placement where the desired closed-
loop characteristic polynomial is

ABO(s) = s2 + ω 0s
√

2 + ω 2
0

for the modulus optimum and

ASO(s) = (s + ω 0)(s2 + ω 0s + ω 2
0)

for the symmetrical optimum. There are possibilities for combining the ap-
proaches. A drawback with all design methods of this type is that process
poles may be canceled. This may lead to poor attenuation of load disturbances
if the canceled poles are excited by disturbances and if they are slow compared
to the dominant closed-loop poles.

6.8 Robust Loop Shaping

The design methods discussed so far all have the property that the robust-
ness to process variations has to be checked after a design. One of the major
advances in control theory in the end of the last century was the emergence
of design methods with guaranteed robustness (the so called H ∞ theory). In
this section we will present a method for design of PID controllers in the same
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spirit. In Section 4.6 it was shown that robustness conditions can be expressed
in terms of circular discs that are forbidden regions for the Nyquist curve of the
loop transfer function. For PID control these conditions give a set of admissible
values of the controller parameters, called the robustness region. Attenuation
of low-frequency load disturbances is inversely proportional to integral gain
ki. Measurement noise injection is captured by controller gain k for P and PI
control or derivative gain kd for PD and PID control. The design method is
to maximize integral gain ki subject to constraints on robustness and noise
injection. Good set-point response is then obtained by set-point weighting or
feedforward as discussed in Section 5.3. This design method brings design of
PID controllers into the mainstream of control system design.

The Robustness Region

In Section 4.6 it was shown that robustness to process variations can be ex-
pressed by the maximum sensitivity Ms, the maximum complementary sen-
sitivity Mt, or with the joint sensitivity M . All these conditions say that the
Nyquist curve of the loop transfer function should avoid circles enclosing the
critical point. For PID control of a process with given transfer function the
robustness constraint translates into constraints on the controller parameters,
called the robustness region. To determine the robustness region we consider
a process with the transfer function P(s) and an ideal PID controller with the
transfer function C(s). The loop transfer function is Gl(s), and the square of
the distance from a point on the Nyquist curve of the loop transfer function to
the point −c is

f (k, ki, kd,ω ) = �c + Gl(iω )�2 = �c + (
k + i(kdω − ki/ω ))P(iω )�2;

and the robustness constraint becomes

f (k, ki, kd,ω ) ≥ r2. (6.39)

Introduce
P(iω ) = α (ω ) + iβ (ω ) = ρ(ω )eiϕ(ω ), (6.40)

where

α (ω ) = ρ(ω ) cosϕ(ω ),

β (ω ) = ρ(ω ) sinϕ(ω ).

The following straightforward but tedious calculation shows that the function
f can be written as

f (k, ki, kd,ω ) =
∣∣∣c + (

k + i(kdω − ki/ω ))(α (ω ) + iβ (ω ))∣∣∣2

= ∣∣c + α k + β (kdω − ki/ω ) + i
(
β k + α (kdω − ki/ω ))∣∣2

= c2 + ρ2k2 + 2cα k + ρ2(kdω − ki/ω )2 − 2β c(kdω − ki/ω )

= ρ2
(

k + α c

ρ2

)2
+ ρ2

ω 2

(
ki + ω β c

ρ2 − kdω 2
)2

≥ r2,
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Figure 6.18 Robustness region for a process with the transfer function P(s) = 1/(s+1)4

and the robustness criterion Ms ≤ 1.4.

where the argument ω in the functions α and β have been dropped to simplify
the writing. Inserting the arguments the robustness condition can be written
as ( ρ(ω )

r

)2(
k + α (ω )c

ρ(ω )2

)2
+

( ρ(ω )
ω r

)2(
ki + ω β (ω )c

ρ(ω )2 − ω 2kd

)2
≤ 1. (6.41)

To have a stable closed-loop system there is also an encirclement condition
required by Nyquist’s stability theorem. The robustness constraint thus implies
that the controller parameters must belong to a region called the robustness

region; see Figure 6.18. Design of PID controllers can thus be formulated as
the following semi-infinite programming problem: maximize ki subject to the
robustness constraint (6.41) and constraints on k and kd.

Figure 6.18 gives good insight into the design problem. The PI controller,
which maximizes integral gain, can be found from the intersection of the ro-
bustness region with the plane kd = 0. The best PI controller has k = 0.4 and
ki = 0.2. Five times larger values of the integral gain can be obtained by using
derivative action.

The optimization problem is not straightforward since the constraint (6.41)
must be satisfied for all ω , and the set of parameters that satisfy the con-
straint is not necessarily convex. Before solving the optimization problem we
will therefore investigate the constraint set.

A Geometric Interpretation

The robustness constraint (6.41) has a nice interpretation. For fixed ω and
kd it represents the exterior of an ellipse in the k-ki plane; see Figure 6.19.
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Figure 6.19 Graphical illustration of the sensitivity constraint (6.41).

The ellipse has its center in k = α c/ρ2 and ki = ω β c/ρ2, and its axes are
parallel to the coordinate axes. The horizontal half axis has length r/ρ, and
the vertical half axis has length ω r/ρ. The center of the ellipse lies on the
stability boundary.

When ω ranges from 0 to ∞ the ellipses have an envelope

f (k, ki, kd,ω ) = r2,

� f

�ω
(k, ki, kd,ω ) = 0,

(6.42)

which defines one boundary of the sensitivity constraint. Assuming that the
process has positive gain the other boundary is given by the k − kd plane.
Since the function f is quadratic in ki the envelope has two branches; only one
branch corresponds to stable closed-loop systems.

Having understood the nature of the constraints it is conceptually easy
to solve the optimization problem by finding the largest value of ki on the
envelope. There may be local minima and the envelope may have edges. This
is illustrated in Figure 6.20, which shows the envelopes and the locus of the
lowest vertex of the ellipse in two cases. The figure on the left has a smooth
envelope, and the locus of the lowest vertex coincides with the envelope at
the maximum. The figure on the right has an envelope with an edge at the
maximum value of ki. Since it is quite time-consuming to generate the envelope,
it is desirable to find algorithms that can give a more effective solution. It is
also of interest to characterize the cases where there is only one local minimum.

Smooth Envelope

We will first consider the case where the envelope is smooth and does not have
corners near the maximum. The largest value of ki for fixed kd then occurs at
a tangency with the lower vertex of the ellipse; see Figure 6.19. The locus of
the lower vertical vertex is given by

k(ω ) = −α c

ρ2 = − c

ρ(ω ) cosϕ(ω ),

ki(ω ) = −ω β c

ρ2 − ω r

ρ
+ ω 2kd = − ω

ρ(ω )(r + c sinϕ(ω )) + ω 2kd.

(6.43)
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Figure 6.20 Geometrical illustration of the ellipses generated by the sensitivity con-
straint (6.39) and the envelope generated by it. The curves on the left are generated
for a system with the transfer function P(s) = (s + 1)−4 with the constraint Ms = 1.4.
The curves on the right are generated for a system with the transfer function P(s) =
1/(s + 1)(s2 + 0.2s + 9) with the constraint Ms = 1.4.

It is shown as a dashed line in the Figure 6.20. The largest value of ki can thus
be found by maximizing ki on the locus of the lowest vertex. Differentiating
the expression for ki in (6.43) gives

dki

dω
= − d

dω

(ω (r + c sinϕ)
ρ

)
+ 2ω kd

= (r + c sinϕ)
(ω ρ′

ρ2 − 1
ρ

)
− ωϕ ′c cosϕ

ρ
+ 2ω kd = 0.

To simplify the writing we have dropped the argument ω of the functions α ,
β , and ϕ . Dividing the above equation with ω and multiplying it with ρ, the
condition for extremum becomes

hPI D(ω ) = (r + c sinϕ)
( ρ′

ρ
− 1

ω

)
− cϕ ′ cosϕ + 2ρkd = 0. (6.44)

To find the optimum we thus have to find the solution ω ∗
PI D of this equation;

the controller parameters are then obtained from Equation 6.43.
Equation 6.44 is satisfied for a minimum, a maximum, or saddle point. To

ensure that there is a maximum it must be required that

d2 f

dω 2 (ω ∗) > 0. (6.45)

To guarantee that the constraint (6.41) is satisfied globally we have to evaluate
it for all ω . This can be done by the Nyquist plot of the loop transfer function.

Equation 6.44 can be solved iteratively by bisection or with the Newton-
Raphson method, both methods converge very fast, but they require appropri-
ate initial conditions. Notice, however, that in general, there may be several
solutions that can be found by starting the iteration from different initial con-
ditions.
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For special classes of systems it is possible to give good initial conditions.
Consider systems where the transfer function P(s) has positive low-frequency
gain and

d arg P(iω )
dω

< 0,

d log10 �P(iω )�
d log10 ω

< 1.

(6.46)

These conditions imply that the quantity ρ′/ρ−1/ω is negative. For PI control,
when kd = 0, it follows from (6.44) and (6.46) that hPI(ω 90) > 0 and that
hPI(ω 180−arcsin r/c) < 0. Equation 6.44 then has a root in the interval

ω 90 < ω ∗
PI ≤ ω 180−arcsin (r/c). (6.47)

The monotonicity condition (6.46) thus only has to be valid in the interval
(6.47). If condition (6.46) holds it follows from Equation 6.43 and 6.47 that
both k and ki are positive. Many processes satisfy this condition.

PD Control

For PD control it is natural to maximize proportional gain subject to the ro-
bustness constraint. Working out the details for the case of smooth envelopes
we find that the problem can be solved as follows: Find a value of ω such that

hPD(ω ) = (r + c cosϕ) ρ′

ρ
+ cϕ ′ sinϕ = 0. (6.48)

Then compute the controller gains from the equations

k(ω ) = −α c

ρ2 − r

ρ
= − r + c cosϕ

ρ
,

kd(ω ) = β c

ω ρ2 = c sinϕ

ω ρ
.

(6.49)

If ρ′/ρ is negative (6.48) always has a solution ω ∗
PD in the interval

ω 180 < ω ∗
PD < ω 270−arcsin (r/c) = ω 180+arccos (r/c). (6.50)

The formula and the code for design of PD controllers can also be used simply
by making the observation that designing a PD controller for the system P(s)
is the same as designing a PI controller for the system sP(s).

A Design Algorithm

We obtained the following algorithm for solving the design problem in the case
of smooth envelopes.
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ALGORITHM 6.1—CONTROLLER DESIGN FOR SMOOTH ENVELOPE

1. Design a PD controller by solving (6.48) by bisection starting with the
interval (ω 180,ω 180+arccos (r/c)). The solution gives the frequency ω ∗

PD .

2. Design a PI controller by solving (6.44) with kd = 0 by bisection starting
with the interval (ω 90,ω 180−arcsin (r/c)). The solution gives the frequency
ω ∗

PI .

3. Design a PID controller for fixed kd by solving (6.44) by bisection starting
with the interval (ω ∗

PI ,ω ∗
PD). Increase kd to the largest value for which

the robustness constraint is satisfied.

4. Verify that there is a smooth envelope by computing (6.45) or by the
Nyquist plot of the loop transfer function.

If the envelope is not smooth the solution obtained by iteration corresponds to
a local maximum of the distance from the critical point to the Nyquist curve.
The Nyquist curve then enters the constraint region for points around the
maximum.

Envelope with Corners

The largest value of ki may also occur at a point where the envelope has an
edge. This is illustrated in Figure 6.21. The vertices B and C of the ellipse in
Figure 6.19 are given by

k(ω ) = −α c

ρ2 ± r

ρ
= −α (ω )c cosφ(ω )

ρ(ω ) ± r

ρ(ω ) ,

ki(ω ) = −ω β c

ρ2 + ω 2kd = −ω c sinφ(ω )
ρ(ω ) + ω 2kd,

(6.51)

where the left vertex corresponds to a minus sign and the right vertex to a
plus sign. The loci of these vertices are shown in thin dotted lines, and the loci
of the center of the ellipses are shown in thin dashed lines. The envelope is
shown as a thick solid line, and the locus of the lowest vertex of the ellipse
by thick dashed lines. Notice that the maximum occurs at the intersection of
ellipses corresponding to two different frequencies, ω 1 and ω 2; see Figure 6.21.
The envelope condition (6.42) is then satisfied for both frequencies. This gives
the condition

f (k, ki, kd,ω 1) = R2,

� f

�ω
(k, ki, kd,ω 1) = 0,

f (k, ki, kd,ω 2) = R2,

� f

�ω
(k, ki, kd,ω 2) = 0.

(6.52)

In the Nyquist plot this corresponds to the case when the loop transfer function
is tangent to the M circle at two points.

It is thus possible to characterize the point where ki has its largest value by
algebraic equations. This means that the design problem is reduced to solving
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Figure 6.21 Geometrical illustration of the sensitivity constraint (6.39) and the envelope
generated by it. The envelope is shown by the thick solid line; the locus of the lower
vertex by the thick dashed line. One half ellipse is shown as a thin solid line. The locus
of the center of the ellipses is shown as a thin dashed line, and the loci of the vertical
vertices by dotted lines. The curves are generated for a system with the transfer function
P(s) = 1/(s + 1)(s2 + 0.2s + 9) with the constraint Ms = 2.0.

algebraic equations, (6.52), and that elaborate search procedures are avoided.
The equation can be solved using the Newton-Raphson method.

Good initial values essential for the Newton-Raphson iteration can be ob-
tained by approximating the envelope by the loci of the right horizontal locus
and the locus of the lowest vertex of the ellipse; see Figure 6.21. We illustrate
the case of envelopes with corners with an example.

EXAMPLE 6.24—AN OSCILLATORY SYSTEM

Consider the process with the transfer function

P(s) = 9
(s + 1)(s2 + as + 9) .

This is an interesting process from two points of view. First, the system has
two oscillatory poles with relative damping ζ = a/6. When parameter a is
decreased it becomes more and more difficult to control the process. Second,
depending on the value of parameter a the envelope may have a continuous
derivative, a ≥ 1.0653, or a corner, a < 1.0653.

For the case when the envelope has a corner, a PI controller was designed for
Ms = 2.0. In Figure 6.22 the Nyquist curves and the time responses are shown
for the cases a = 0.2, 0.5, and 1.0. The controller behaves reasonably well in
spite of the poorly damped poles. In Table 6.10 the controller parameters and
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Figure 6.22 Nyquist curves of the loop transfer function and time responses for Exam-
ple 6.24 with a = 0.2 (dotted), 0.5, and 1.0 (dashed), when designing for Ms = 2.0.

Table 6.10 Interesting parameters when designing a controller for Ms = 2.0 and differ-
ent values of a in Example 6.24.

a K ki ω 1 ω 2

0.0 −0.29 0.68 0.97 2.75

0.1 −0.25 0.82 1.08 2.71

0.2 −0.20 0.93 1.16 2.67

0.5 −0.09 1.17 1.37 2.55

1.0 0.09 1.38 1.65 2.30

2.0 0.48 1.54 2.79 2.79

the frequencies at which the loop transfer function is tangent to the Ms-circle
are shown. Notice in Table 6.10 how the proportional gain is negative for small
values of a. This is the only way to increase the damping of the oscillatory poles
with a PI controller.

Finally, we illustrate how our design method will provide a reasonable PI
controller for the extreme case a = 0. With the design parameter Ms = 1.4 we
obtain the controller parameters K = −0.183, ki = 0.251, and b = 0. The time
responses are shown in Figure 6.23. We observe that the set-point response is
quite reasonable, even if there is a trace of poorly damped modes. The load
disturbance will, however, excite the oscillatory modes. The fact that the PI
controller is unable to provide damping of these modes is clearly noticeable in
the figure.

The Derivative Cliff

Smooth envelopes are frequently encountered for PI control of systems with
essentially monotone frequency responses, and for PID control with moderate
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Figure 6.23 Time response of the closed-loop system of Example 6.24 obtained for a = 0,
when designing the PI controller for Ms = 1.4.

values of kd. However, optimization of ki over the robustness region often gives
controllers with undesirable properties. This can be understood from the plot
of the robustness region in Figure 6.18, which shows that the largest value
of ki occurs at an edge. Such a solution is undesirable because small changes
in controller parameters give drastic changes in ki. This is also illustrated
in Figure 6.24, which shows intersections of the robustness surface for fixed
values of kd. The figure shows that for PI control (kd = 0) the envelope is
smooth at the maximum ki = 0.2 which occurs for k = 0.4. Integral gain ki

can be increased substantially by introducing derivative action. With higher
values of kd the maximum of ki does, however, occur at an edge. Integral gain
has its maximum ki = 0.9 for k = 0.925 and kd = 2.86. The performance
is very sensitive to variations in the controller parameters at the maximum.
Figure 6.24 shows that a marginal increase of proportional gain makes the
system unstable. The controller that maximizes ki also has other drawbacks,
which are illustrated by the following example.

EXAMPLE 6.25—THE DERIVATIVE CLIFF

Consider a process with the transfer function

P(s) = 1
(s + 1)4 .

Maximizing integral gain ki subject to the robustness constraint Ms ≤ 1.4, gives
the controller parameters k = 0.925, ki = 0.9, and kd = 2.86. The Nyquist plot
of the loop transfer function is shown in Figure 6.25. Notice that the Nyquist
curve has a loop. This will always occur when the maximum occurs where
the envelope has an edge. The controller obtained has excessive phase lead,
which is obtained by having a PID controller with complex zeros, Ti < 4Td. In
the particular case we have Ti = 0.33Td. Time plots showing the response of
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Figure 6.24 Cuts of the robustness region for constant derivative gain kd. The curves
are computed for PID control of the process P(s) = 1/(s + 1)4. Notice the sharp corners of
the region for large kd (the derivative cliff).
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Figure 6.25 Nyquist curve of the loop transfer function for PID control of the process
P(s) = 1/(s + 1)4, with a controller having parameters k = 0.925, ki = 0.9, and kd = 2.86.
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Figure 6.26 Time responses for PID control of the process P(s) = 1/(s + 1)4, with
controller having parameters k = 0.925, ki = 0.9, and kd = 2.86 (solid lines) and k = 1.1,
ki = 0.36, and kd = 0.9 (dashed lines).

the system to step changes in set point and load disturbances are shown in
Figure 6.26. The responses are oscillatory.

For comparison we have shown Nyquist plots and time plots for a PID
controller where Ti = 4Td. The controller parameters are k = 1.1, ki = 0.36,
and kd = 0.9. The responses of this controller are better, even if the peak in
the response to load disturbances is larger.

Avoiding the Derivative Cliff

There are several ways to modify the design problem to avoid the difficulties
associated with the derivative cliff. One way is to introduce conditions that do
not allow the Nyquist curve to have loops. Another alternative is to require
that Ti > α Td. It has also been attempted to fix derivative gain to the value
obtained by a PD controller. This does not eliminate the loops on the Nyquist
curve in all cases. Maximization of ki can also be replaced by maximizing the
absolute integral error due to load disturbances.

The MIGO Method

After many attempts it has been found that a simple solution is to restrict
derivative gain so that the maximum occurs at a point where � ki/� k = 0. This
avoids having a maximum at a ridge. The algorithm is straightforward.

ALGORITHM 6.2—MIGO DESIGN OF PID CONTROLLER

1. Fix derivative gain kd. Find controller parameters by solving (6.44); then
compute controller gains from (6.43).

2. Compute the value of M for a range of frequencies around ω ∗, and test
the robustness constraint M ≥ Mcrit.
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3. Increase kd until the largest value that satisfies the robustness constraint
is obtained.

A good initial value of integral gain is the value obtained for a PD controller.
This particular design method is called MIGO (M constrained Integral Gain
Optimization).

An Algorithm for a Controller in Series Form

It frequently happens that the MIGO design method gives controller param-
eters such that Ti < 4Td. In Section 3.2 it was shown that such controllers
cannot be implemented in series form. It is therefore of interest to have con-
trollers where the parameters are constrained to Ti ≥ 4Td. When the ratio
n = Ti/Td ≥ 4, the controller can be written as

C(s) = k

(
1 + 1

sTi

+ sTd

)
= k′ (T ′

i s + 1)(T ′
ds + 1)

T ′
i s

, (6.53)

where

k = k′ T
′
i + T ′

d

T ′
i

Ti = T ′
i + T ′

d

Td = T ′
i T ′

d

T ′
i + T ′

d

.

(6.54)

Introducing n′ = T ′
i /T ′

d, it also follows that

n = (1 + n′)2

n′ . (6.55)

Notice that n′ = 1 corresponds to n = 4.
It follows from Equation 6.54 that Ti = nTd gives the following relation

between the controller parameters

ki = k2

nkd

.

A simple algorithm for maximizing the integral gain of a PID controller
with Ti = nTd subject to a robustness constraint will now be developed. We
first make the observation that PID control of the process P(s) gives the loop
transfer function

Gl(s) = P(s)C(s) = k′ (1 + sT ′
i )(1 + sT ′

d)
sT ′

i

P(s) = k′ (1 + sT ′
i )

sT ′
i

(
(1 + sT ′

d)P(s)
)

.

This is identical to the loop transfer function for PI control of the process

P′(s) = (1 + sT ′
d)P(s).

Since there are efficient algorithms for PI control we obtain the following iter-
ative algorithm.
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Table 6.11 Controller parameters obtained by loop-shaping design with Ms = 1.4 for a
process with the transfer function P(s) = (s + 1)−4.

Controller K ki kd b Ti Td I AE

PD 1.333 0 1.333 1 0 1 ∞
PI 0.433 0.192 0 0.14 2.25 0 5.20

PID MIGO 1.305 0.758 1.705 0* 1.72 1.31 2.25

PID Ti = 4Td 1.132 0.356 0.900 0.9 3.18 0.80 2.51

ALGORITHM 6.3—DESIGN OF PID CONTROLLER WITH Ti = 4Td

1. Start by designing a PI controller for the process P(s). This gives a con-
troller with the integral time Ti = k/ki. Set T ′

1 = Ti/2 and j = 1.

2. Design a PI controller for the process P′(s) = (1 + sT ′
1)P(s). Let the

integral time of the controller be T ′
i . Set T ′

j+1 = (T ′
j + T ′

i )/2 and repeat
until T ′

j converges to T ′. Let the controller gain be k′.

3. The controller parameters are k = 2k′, Ti = 2T ′ and Td = T ′/2.

Examples

The design method will be illustrated by two examples.

EXAMPLE 6.26—FOUR EQUAL LAGS

Consider a system with the transfer function

P(s) = 1
(s + 1)4 .

Table 6.11 summarizes properties of PD, PI, and PID controllers designed for
Ms = 1.4. The PD controller was designed by maximizing proportional gain;
the PI and PID controllers by maximizing integral gain. A PID controller with
the additional constraint Ti = 4Td was also designed. Responses to set-point
changes and load disturbances for are shown in Figure 6.27.

The PID controllers have better performance than the PI controller. Inte-
gral gain is 2 to 3 times larger and IAE a factor of 2 smaller. The controller
PID MIGO has Ti = 1.3Td. The table shows that performance is decreased
when controller parameters are constrained to Ti = 4Td. Notice that many
commercial PID controllers have the constraint Ti ≥ 4Td built in, because they
are based on the series form; see (3.10).

The parameter b is calculated as described in Section 5.3. The calculation
for the PID MIGO controller shows that the overshoot cannot be reduced suf-
ficiently by using zero set-point weight, which is indicated by the entry 0* in
the table. In this case it is recommended to use a proper feedforward design
for a system with two degrees of freedom. Such a design can improve set-point
response significantly.
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Figure 6.27 Responses for the system P(s) = (s+1)−4 with the controllers in Table 6.11
to unit step changes in set point (left) and load disturbances (right). The dotted lines show
responses with the PD controller, dashed with the PI controller, dash-dotted with the PID
controller with parameters constrained to Ti = 4Td, and solid lines with the PID controller
designed using the MIGO method.

EXAMPLE 6.27—FOUR WIDELY DISTRIBUTED LAGS

Consider a system with the transfer function

P(s) = 1
(s + 1)(0.1s + 1)(0.01s + 1)(0.001s + 1) .

Table 6.12 summarizes properties of PD, PI and PID controllers. All controllers
were designed with the constraint that the maximum sensitivity is not larger
than Ms = 1.4. The PD controller was designed by maximizing proportional
gain, and the PI and PID controllers by maximizing integral gain. A PID with
the additional constraint Ti = 4Td was also designed. Responses to set-point
changes and load disturbances for the different controllers are shown in Fig-
ure 6.28.

Table 6.12 and Figure 6.28 show that derivative action improves perfor-
mance drastically. The proportional gains of the controllers with derivative

Table 6.12 Controller parameters obtained by loop-shaping design with Ms = 1.4 for a
process with the transfer function P(s) = 1/(s + 1)(0.1s + 1)(0.01s + 1)(0.001s + 1).

Controller K ki kd b Ti Td I AE

PD 91.7 0 4.4 1 0 0.048 ∞
PI 4.21 8.53 0 1 0.494 0 0.1044

PID MIGO 85.5 1488 3.87 0 0.057 0.045 0.00143

PID Ti = 4Td 86.7 518 3.63 0.6 0.168 0.042 0.00143
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Figure 6.28 Responses for the system P(s) = 1/(s + 1))(0.1s + 1)(0.01s + 1)(0.001s + 1)
with the controllers in Table 6.12. The dotted lines show responses with the PD controller,
dashed with the PI controller, dash-dotted with the PID controller with parameters con-
strained to Ti = 4Td, and solid lines with the PID controller designed using the MIGO
method. The load-disturbance response for the PI controller is out of scale.

action are around 90, while the PI controller has the gain 4.2. It follows from
(4.40) that the largest peak of the load-disturbance response is around 0.01 for
controllers with derivative action and about 20 times larger for PI control. The
peak is so large that the load disturbance response for PI control is way out-
side the graph. The response time is also drastically increased when derivative
action is used. The integral gains of controllers with derivative action are also
much larger than for PI control.

It is interesting to compare Examples 6.26 and 6.27. For the system with four
equal lags in Example 6.26 the integral gain can be increased by a factor of 3 by
introducing derivative action, while it can be increased by a factor of 200 for the
system with distributed lags in Example 6.27. The main differences between
the system is that the system in Example 6.27 is lag dominated; it has a
normalized time delay τ = 0.07. The system in Example 6.26 has τ = 0.33. The
normalized time delay is a good indicator for the benefits of derivative action.
In Chapter 7 it will be shown that the large performance improvement with
derivative action is possible for processes with small normalized time delays
(lag dominated processes).

6.9 Summary

A number of techniques for designing PID controllers have been presented in
this chapter, starting with methods of the Ziegler-Nichols type, where process
dynamics were characterized by a few features that could be obtained from
simple experiments. These methods have been very influential and have been
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used extensively by vendors. In spite of their popularity there are two draw-
backs with the Ziegler-Nichols method, the fundamental assumption of quarter
amplitude damping, which results in systems with very bad robustness, and
the limited process knowledge used. Methods which avoids both difficulties will
be developed in Chapter 7.

Standard methods for control system design can also be adapted to design of
PID controllers. When using analytical techniques there is a correspondence be-
tween model and controller complexity, and it is necessary to approximate pro-
cess dynamics by first- and second-order systems. Model reduction techniques
are therefore necessary to apply pole placement to PID control. In particularly
it is necessary to approximate the time delay. The unmodeled dynamics limit
the performance that can be achieved, and the closed-loop poles that can be
chosen.

Another way to use pole placement is to fix a pole configuration and to
determine both the controller parameters and the magnitude of the poles. In
this way it is possible to use second-order models to design PI controllers and
third-order models to design PID controllers. Another way to apply pole place-
ment to PID control is to place the dominant poles only. The advantage of this
approach is that it can be applied to models of arbitrary order. A particular pole
placement technique called lambda tuning, which has been used extensively
in the process industry, is given particular attention.

A number of so-called algebraic design methods have also been discussed.
In these methods the closed-loop transfer function is given and the controller
parameters are obtained by algebraic calculations. The controller parameters
can also be determined by optimization methods, where it is attempted to
optimize criteria that specify performance subject to various constraints. There
are many methods reflecting the richness of the control problem. Two methods,
BO and SO, which are commonly used in motion control, have been given
particular attention.

A novel design method developed by the authors and their coworkers is also
presented. In this method it is attempted to optimize disturbance attenuation
subject to constraints on robustness. The method gives a simple way to balance
attenuation of load disturbances with the injection of measurement noise that
is inevitable when feedback is used. Combining this method with set-point
weighting, or more elaborate feedforward, gives a nice way to also achieve good
response to set-point changes. The method can be viewed as an adaptation of
robust design to PID control.

6.10 Notes and References

There is a very large literature on tuning of PID controllers. Good general
sources are the books [Smith, 1972; Deshpande and Ash, 1981; Shinskey, 1988;
McMillan, 1983; Corripio, 1990; Suda et al., 1992; Oquinnaike and Ray, 1994;
Marlin, 2000; Wang and Cluett, 2000; Wang et al., 2000; Quevedo and Escobet,
2000; Cominos and Munro, 2002; Seborg et al., 2004; O’Dwyer, 2003; Choi and
Chung, 2004; Michael and Moradi, 2005]. The books clearly show the need for a
variety of techniques, simple tuning rules, as well as more elaborate procedures
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that are based on process modeling, formulation of specifications, and control
design. Even if simple heuristic rules are used, it is important to realize that
they are not a substitute for insight and understanding. Successful controller
tuning cannot be done without knowledge about process modeling and control
theory. It is also necessary to be aware that there are many different types of
control problems and consequently many different design methods. To only use
one method is as dangerous as to only believe in empirical tuning rules. Control
problems can be specified in many different ways. A good review of different
ways to specify requirements on a control system is given in [Truxal, 1955;
Maciejowski, 1989; Boyd and Barratt, 1991]. To formulate specifications it is
necessary to be aware of the factors that fundamentally limit the performance
of a control system.

The seminal papers [Ziegler and Nichols, 1942; Ziegler and Nichols, 1943]
are the first attempts to develop systematic methods for tuning PID controllers.
An interesting perspective on these paper is given in an interview with Ziegler;
see [Blickley, 1990]. The CHR-method, described in [Chien et al., 1952], is a
modification of the Ziegler-Nichols method. This is one of the first papers where
it is mentioned that different tuning methods are required for set-point re-
sponse and for load disturbance response. Good response to load disturbances
is often the relevant criterion in process control applications. Notice that the
responses can be tuned independently by having a controller that admits a
two-degree-of-freedom structure. The usefulness of a design parameter is also
mentioned in the CHR-paper. In spite of its shortcomings, the Ziegler-Nichols
method has been the foundation for many tuning methods; see [Tan and We-
ber, 1985; Mantz and Tacconi, 1989; Hang et al., 1991]. Tuning charts were
presented in [Wills, 1962b; Wills, 1962a; Fox, 1979].

The loop-shaping methods were inspired by classical control design methods
based on frequency response; see [Truxal, 1955]. Applications to PID control are
found in [Pessen, 1954; Habel, 1980; Chen, 1989; Yuwana and Seborg, 1982].

The idea of algebraic design was presented in [Truxal, 1955] and [Newton
et al., 1957] as a systematic method of design to given specifications; a more
recent presentation is found in [Boyd and Barratt, 1991]. Algebraic design was
applied to process control in [Smith, 1957; Atherton, 1999; Hansen, 2000]. The
original papers on the λ-tuning method are [Dahlin, 1968] and [Higham, 1968].
The method is sometimes called the Dahlin method; see [Deshpande and Ash,
1981]. The method is very popular in the pulp and paper industry where it
has been used to develop standardized tuning procedures; see [Sell, 1995] and
[Anonymous, 1997]. Lambda tuning is closely related to the Smith predictor
and the internal model controller; see [Smith, 1957; Chien, 1988; Chien and
Fruehauf, 1990; Rivera et al., 1986]. The tuning techniques developed in [Smith
and Murrill, 1966; Pemberton, 1972a; Pemberton, 1972b; Smith et al., 1975;
Hwang and Chang, 1987] are other examples of the analytical approach to
design. In [Rivera et al., 1986] it was shown that internal model control reduces
to PI and PID control when proper approximations of the time delay are done.
A novel algebraic design method, described in [Hansen, 2000; Hansen, 2003] is
used in a PID controller developed by Foxboro. An interesting feature is that
the desired response is given as a high-order system.

The analytical tuning method gives controllers that cancel poles and zeros
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in the transfer function of the process. This leads to lack of observability or con-
trollability. There are severe drawbacks in this as has been pointed out many
times, e.g., in [Chien and Fruehauf, 1990; Shinskey, 1991b; Morari and Lee,
1991]. The response to load disturbances will be very sluggish for processes
with lag dominated dynamics. A modification that does not cancel the process
pole is given in [Chien and Fruehauf, 1990]. Skogestad’s internal model con-
troller is presented in [Skogestad, 2003]. This controller avoids the cancellation
by an ad hoc modification of integral time for lag dominated dynamics.

Many methods for control design are based on optimization techniques.
This approach has the advantage that it captures many different aspects of
the design problem. There is also powerful software that can be used. A gen-
eral discussion of the use of optimization for control design is found in [Boyd
and Barratt, 1991]. The papers [Rovira et al., 1969; Lopez et al., 1969] give
controllers that are optimized with respect to the criteria ISE, IAE, and ITAE.
Other applications to PID control are given in [Hazebroek and van der Waer-
den, 1950; Wolfe, 1951; Oldenburg and Sartorius, 1954; van der Grinten, 1963;
Lopez et al., 1967; Marsili-Libelli, 1981; Yuwana and Seborg, 1982; Patward-
han et al., 1987; Wong and Seborg, 1988; Polonoyi, 1989; Zhuang and Atherton,
1991]. The methods BO and SO were introduced in [Kessler, 1958a; Kessler,
1958b]. A discussion of these methods with many examples is found in [Fröhr,
1967; Fröhr and Orttenburger, 1982].

Pole placement is a straightforward algebraic design method much used in
control engineering; see [Truxal, 1955]. It has the advantage that the closed-
loop poles are specified directly. Many other design methods can also be in-
terpreted as pole placement. The papers [Elgerd and Stephens, 1959; Graham
and Lathrop, 1953] show how many properties of the closed-loop system can
be deduced from the closed-loop poles. This gives good guidance for choosing
the suitable closed-loop poles. An early example of pole placement is [Cohen
and Coon, 1953; Coon, 1956a; Coon, 1956b]. It may be difficult to choose de-
sired closed-loop poles for high-order systems. This is avoided by specifying
only a few poles, as in the dominant pole design method described in [Persson,
1992; Persson and Åström, 1992; Persson and Åström, 1993].

The development of robust control was a major advance of control theory
which made it possible to explicitly account for robustness in control design;
see [Doyle et al., 1992; Horowitz, 1993; Green and Limebeer, 1995], [Skogestad
and Postlethwaite, 1996; Zhou et al., 1996; Vinnicombe, 2000]. These ideas
were applied to PID control in the papers [Panagopoulos et al., 1997; Åström
et al., 1998; Panagopoulos and Åström, 2000; Panagopoulos, 2000; Kristensson,
2003]. The method discussed in Section 6.8 are based on these papers.

There are comparatively few papers on PID controllers that consider the
random nature of disturbances. The papers [van der Grinten, 1963; Goff, 1966a;
Fertik, 1975] are exceptions.

There are many papers on comparisons of control algorithms and tuning
methods. The paper [McMillan, 1986] gives much sound advice; other useful
papers are [Miller et al., 1967; Gerry, 1987; Gerry, 1999].
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