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Process Models

2.1 Introduction

Mathematical models are commonly used to describe the behavior of processes.
Models give a unified way to treat systems of widely different types, and they
make it possible to introduce a number of useful concepts. The models are
also essential for simulation and control design. In this chapter we will review
some of the models that are commonly used for PID control. The models try
to capture some aspects of the process that are relevant for control. Many
different types of models are used.

The steady-state behavior of a process can be captured by a function that
tells the steady-state value of the process variable for given values of the ma-
nipulated variable. Such models are discussed in Section 2.2.

To control a system it is necessary to describe process dynamics. For the
purpose of control it is often sufficient to describe small deviations from an
equilibrium. In this case the behavior can be modeled as a linear dynamical
system. This is a very rich field with many useful concepts and tools, which
form the core of control theory. Different ways to describe process dynamics
are discussed in Section 2.3. The ideas of transient response and frequency
response are introduced as well as the important concepts of step response,
impulse responses, and transfer functions.

Special techniques for modeling process dynamics have traditionally been
used in PID control. The idea is to characterize process dynamics by a few
features. This is discussed in Section 2.4, where features such as average res-
idence time, apparent time delay, apparent time constant, normalized delay,
ultimate gain, ultimate frequency, and gain ratio are introduced.

In Section 2.5 we introduce some particular models that are widely used for
PID control. These models are introduced in terms of their transfer functions.
The important concepts of normalization are also introduced in that section,
as well as nonlinearities. The examples introduced in Section 2.5 will be used
extensively in the book.

Disturbances are an important aspect of a control problem. In Section 2.6
we describe some models that are used to describe disturbances. Section 2.7
describes simple methods for obtaining the models, and Section 2.8 describes
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2.2 Static Models

Output y

Input u

Figure 2.1 Static process characteristic, which shows process output y as a function of
process input u under steady-state conditions.

some techniques used to simplify a complicated model. The chapter is summa-
rized in Section 2.9, and references are given in Section 2.10.

2.2 Static Models

It is natural to start by describing the stationary behavior of the process. This
can be done by a curve that shows the steady-state value of the process variable
y (the output) for different values of the manipulated variable u (the input);
see Figure 2.1. This curve is called a static model or a static process character-
istic. All process investigations should start with a determination of the static
process model. It can be used to determine the range of control signals required
to change the process output over the desired range, to size actuators, and to
select sensor resolution. The slope of the curve in Figure 2.1 tells how much
the process variable changes for small changes in the manipulated variable.
This slope is called the static gain of the process. Large variations in the gain
indicate that the control problem may be difficult.

The static model can be obtained experimentally in several ways. A natural
way is to keep the input at a constant value and measure the steady-state
output. This gives one point on the process characteristics. The experiment is
repeated to cover the full range of inputs.

An alternative procedure is to make a closed-loop experiment where the
output of the system is kept constant by feedback and the steady-state value
of the input is measured.

The experiments required to determine the static process model often give
a good intuitive feel for how easy it is to control the process, and if there are
many disturbances. Data for steady-state models can also be obtained from
on-line measurements.

Sometimes process operations do not permit the experiments to be done as
described above. Small perturbations are normally permitted, but it may not
be possible to move the process over the full operating range. In such a case the
experiment must be done over a long period of time. It is possible to provide
a control system with facilities to automatically determine the static process
model during operation; see Chapter 10.
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Figure 2.2 Open-loop step responses.

2.3 Dynamic Models

A static process model like the one discussed in the previous section tells the
steady-state relation between the input and the output signal. A dynamic model
should give the relation between the input and the output signal during tran-
sients. It is naturally much more difficult to capture dynamic behavior. This
is, however, essential when dealing with control problems.

Qualitative Characterization of Process Dynamics

Before attempting to model a system it is often useful to give a crude character-
ization of its dynamical behavior. To describe the dynamical behavior we will
simply show the response of the system to a step change in the manipulated
variable. This is called the step response of the system or the process reaction
curve.

One distinction is between stable and unstable systems. The step response
of a stable system goes to a constant value. An unstable system will not reach
a steady state after a step change. Systems with integrating action are a typ-
ical example of an unstable system. In early process control literature, stable
systems were called self-regulating systems.

Many properties of a system can be obtained directly from the step response.
Figure 2.2 shows step responses that are typically encountered in process con-
trol.

In Figure 2.2a, the process output is monotonically changed to a new sta-
tionary value. This is the most common type of step response encountered in
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2.3 Dynamic Models

process control. In Figure 2.2b, the process output oscillates around its final
stationary value. This type of process is uncommon in process control. One case
where it occurs is in concentration control of recirculation fluids. In mechani-
cal designs, however, oscillating processes are common where elastic materials
are used, e.g., weak axles in servos, spring constructions, etc. The systems in
Figures 2.2a and 2.2b are stable, whereas the system shown in Figures 2.2c
and 2.2d are unstable. The system in Figure 2.2c is an integrating process. Ex-
amples of integrating processes are level control, pressure control in a closed
vessel, concentration control in batches, and temperature control in well iso-
lated chambers. The common factor in all these processes is that some kind of
storage occurs in them. In level, pressure, and concentration control, storage
of mass occurs, while in the case of temperature control there is a storage of
energy. The system in Figure 2.2e has a long time delay. The time delay occurs
when there are transportation delays in the process. The system in Figure 2.2f
is a non-minimum phase system. Notice that the output initially moves in the
wrong direction. The water level in boilers often reacts like this after a step
change in feed water flow.

Linear Time-Invariant Systems

There is a restricted class of models, called linear time-invariant systems, that
can often be used. Such models describe the behavior of systems for small
deviations from an equilibrium. Time-invariant means that the behavior of
the system does not change with time. Linearity means that the superposition
principle holds. This means that if the input u1 gives the output y1 and the
input u2 gives the output y2 it then follows that the input au1 + bu2 gives the
output ay1 + by2.

A nice property of linear time-invariant systems is that their response to
an arbitrary input can be completely characterized in terms of the response
to a simple signal. Many different signals can be used to characterize a sys-
tem. Broadly speaking, we can differentiate between transient and frequency
responses.

In a control system we typically focus on only two signals, the control signal
and the measured variable. Process dynamics deals with the relation between
those signals. This means that it includes dynamics in actuators, process, and
sensors. The dynamics are often dominated by process dynamics. In some cases
it is, however, the sensors and actuators that give the major contribution to
the dynamics. For example, it is very common that there are long filter-time
constants in temperature sensors. There may also be measurement noise and
other imperfections. There may also be significant dynamics in the actuators.
To do a good job of control, it is necessary to be aware of the physical origin
of the process dynamics to judge if a good response in the measured variable
actually corresponds to a good response in the physical process variable. Even
if the attention is focused on the measured variable it is useful to always keep
in mind that the process variable is the signal that really matters.

Physical Modeling—Differential Equations

A traditional way to obtain a process model is to use basic physical laws such
as mass, momentum and energy balances. Such descriptions typically lead to
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Figure 2.3 Schematic diagram of a system consisting of two tanks.

a mathematical model in terms of a differential equation. We illustrate this
with two examples.

EXAMPLE 2.1—STIRRED TANK

Consider an ideal stirred tank reactor. Let the reactor volume be V and the
volume flow rate through the reactor be q. The manipulated variable is the
concentration u of the inflow, and the process variable y is the concentration
in the reactor. A mass balance for the reactor gives

V
dy

dt
= q(u − y).

The parameter T = V/q, which has dimension time, is the average residence
time of particles that enter the reactor. It is also called the time constant of
the system.

The system in Example 2.1 is of first order because only one variable is required
to account for the storage in the tank. This is possible because the tank is
well stirred so the concentration is constant throughout the tank. In more
complicated cases many variables are required to account for the storage of
mass, energy, and momentum. This is illustrated in the next example.

EXAMPLE 2.2—COUPLED TANKS

Consider the system shown in Figure 2.3, which is composed of two well-stirred
tanks. Assume that each tank has volume V , that the inflow and the outflow are
q, and that the reflux flow is qc. Furthermore, let the input be the concentration
of the inflow u = cin, and let the output be the concentration of the outflow,
y = cout. When the tanks are well stirred the mass balance can be characterized
by the concentrations in the tanks. The mass balances for the tanks become

V
dc1

dt
= −(q + qc)c1 + qcc2 + qu

V
dc2

dt
= (q + qc)c1 − (q + qc)c2

y = c2.

The model in the example consists of two differential equations of first order.
There are two differential equations because the system is completely described
by mass balances and the storage of mass can be captured by two variables.
Similar descriptions are obtained for more complicated systems, but the num-
ber of equations increases with the complexity of the system. The differential
equation may also be nonlinear if there are nonlinear transport phenomena.
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2.3 Dynamic Models

The model in Example 2.2 consists of a system of first-order differential
equations. If we are only interested in the relations between the input u and
the output y a linear model can also be described by a differential equation of
higher order, i.e.,

dn y

dtn
+ a1

dn−1 y

dtn−1 + . . . + an y = b1
dn−1u

dtn−1 + . . . + bnu. (2.1)

The number n is equal to the number of variables required to account for the
storage. This is one of the standard models used in automatic control.

The differential equation (2.1) is characterized by two polynomials

a(s) = sn + a1sn−1 + ⋅ ⋅ ⋅ + an

b(s) = b1sn−1 + ⋅ ⋅ ⋅ + bn,
(2.2)

where the polynomial a(s) is called the characteristic polynomial. The zeros
of the polynomial a(s) are called the poles of the system, and the zeros of the
polynomial b(s) are called the zeros of the system.

The differential equation (2.1) has a solution of the form

y(t) =
∑

kCk(t)eα kt +
∫ t

0
g(t − τ )u(τ )dτ , (2.3)

where α k are the poles of the system and Ck(t) are polynomials (constants if
the poles are distinct). The first term of the above equation depends on the
initial conditions and the second on the input. The function g has the same
form as the first term of the right-hand side of (2.3). The poles thus give useful
qualitative insight into the properties of the system.

In more complicated situations it may be more difficult to account for the
storage of mass momentum and energy. We illustrate with a simple example.

EXAMPLE 2.3—TIME DELAY

Consider a system where mass is transported on a conveyor belt. Let the input
u(t) be the mass flow rate onto the belt, and let the output y(t) be the mass
flow out of the belt. The input-output relation for the system is then

y(t) = u(t − L), (2.4)
where L is the time it takes for a particle to pass the belt. To account for the
storage of mass on the belt it is necessary to specify the mass distribution on
the belt. The output is thus simply the delayed input. This system is therefore
called a time delay or a transport delay. A time delay is also called a dead time.
The model (2.4) also describes the concentration in a pipe with no mixing.

Other physical systems such as heat conduction and diffusion give rise to mod-
els in terms of partial differential equations; examples of such models are given
in Section 2.5.

An attractive feature of physical models is that the parameters of the equa-
tion can be related to physical quantities such as volumes, flows, and material
constants. Complicated models can also be constructed by dividing a system
into subsystems, deriving simple models for each subsystem and combining the
simple models.
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Figure 2.4 The lower curve shows an input signal in the form of a step, and the upper
curve shows the response of the system to the step.

State Models

The notion of state is an important concept in system dynamics. The state is
a collection of variables that summarize the past behavior of the system and
admits a prediction of the future under the assumption that future inputs are
known. For the system in Example 2.2, which consists of two tanks, the state
is simply the concentrations c1 and c2 in the tanks. In general, the state is the
variables required to describe storage of mass, momentum, and energy of a
system. Sometimes it is necessary to use infinitely many variables to describe
storage in a system. For the system in Example 2.3 the state at time t is the
past inputs over an interval of length L, i.e., {u(τ ), t − L ≤ τ < t}.

Transient Responses

An alternative to describing models by differential equations is to focus directly
on the input-output behavior. Dynamics can in principle be described by a large
table of input signals and corresponding output signals. This approach, which
is called transient response, is perhaps the most intuitive way to characterize
process dynamics. A very nice property of linear time-invariant systems is that
the table can be described by one pair of signals. The particular input signal
is often chosen so that it is easy to generate experimentally. Typical examples
are steps, pulses, and impulses. Recall that typical step responses were shown
in Figure 2.2.

Because of the superposition principle the amplitude of the signals can be
normalized. For simplicity it is common practice to normalize by dividing the
output with the magnitude of the input step. It is also common practice to
translate the curve so that the step starts at time t = 0. It is then sufficient to
show the output only. This practice will be followed in this book. For example,
in Figure 2.4 the output should be divided by 0.8 and translated one unit to
the left. In early process control literature the step response was also called
the reaction curve.
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The output generated by an arbitrary input can be computed from the step
response. Let h(t) be the response to a unit step. The output y(t) to an arbitrary
input signal u(t) is then given by

y(t) =
∫ t

0
u(τ ) dh(t − τ )

dt
dτ =

∫ t

0
u(τ )g(t − τ )dτ , (2.5)

where we have introduced g(t) as the derivative of the step response h(t). The
function g(t) is called the impulse response of the system because it can be
interpreted as the response of the system to a very short impulse with unit
area.

The Transfer Function

The formula (2.5) can be simplified significantly by introducing Laplace trans-
forms. The Laplace transform F(s) of a time function f (t) is defined as

F(s) =
∫ ∞

0
e−st f (t)dt. (2.6)

Assuming that the system is initially at rest, i.e., y(t) = 0 and u(t) = 0 for
t ≤ 0, and using Laplace transforms, Equation 2.5 can be written as

Y(s) = G(s)U(s), (2.7)

where U(s), Y(s), and G(s) are the Laplace transforms of u(t), y(t), and g(t),
respectively. The function G(s) is called the transfer function of the system. The
transfer function G(s) is also the Laplace transform of the impulse response
g(t).

The formula given by (2.7) has a strong intuitive interpretation. The Laplace
transform of the output is simply the Laplace transform of the input multiplied
by the transfer function of the system. This is one of the main reasons for using
Laplace transforms when analyzing linear systems. Analysis of linear systems
is reduced to pure algebra. A nice feature is that processes, controllers, and
signals are described in the same way.

Equation 2.7 can also be used to define the transfer function as the ratio of
the Laplace transforms of the input and the output of a system. As illustrations
we will give the transfer function for some systems.

EXAMPLE 2.4—STIRRED TANK

The stirred tank in Example 2.1 has the transfer function

G(s) = 1
sV/q + 1

= 1
sT + 1

, (2.8)

where the quantity T = V/q, which has dimension time, is called the time
constant of the system.
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EXAMPLE 2.5—TIME DELAY

Consider the system describing a transport delay in Example 2.3. Assuming
that u(t) = 0 for −L ≤ t ≤ 0 we find

Y(s) =
∫ ∞

0
e−st y(t)dt =

∫ ∞

0
e−stu(t − L)dt = e−sLU(s).

The transfer function of a transport delay is thus

G(s) = e−sL. (2.9)

Equation 2.7 implies that it is easy to obtain the transfer function of intercon-
nected system. This is illustrated by the following example.

EXAMPLE 2.6—FIRST-ORDER SYSTEM WITH TIME DELAY (FOTD)
Consider a system that is a stirred tank that is fed by a pipe with no mixing.
Multiplying the transfer function of the tank in Example 2.4 with the transfer
function of a time delay in Example 2.5 we find that the system has the transfer
function

G(s) = 1
1 + sT

e−sL. (2.10)
This model is very common in process control. It is called a first-order system
with a time delay or a FOTD system for short.

Another nice property of Laplace transforms is that the transform of a deriva-
tive is given by the formula∫ ∞

0
e−st f ′(t)dt = s

∫ ∞

0
e−st f (t)dt − f (0) = sF(s) − f (0).

If the initial value of the time function is zero it follows that differentiation of
a time function corresponds to multiplication of the Laplace transform with s.
Similarly, it can be shown that integration of a signal corresponds to dividing
the Laplace transform with s. This gives a very simple rule for manipulating
differential equations where initial values are zero. Simply replace functions
with their corresponding Laplace transforms and derivatives by s. The relation
between signals is then obtained by simple algebra.

EXAMPLE 2.7—GENERAL DIFFERENTIAL EQUATION

Consider the system described by the differential equation (2.1). Assuming
that the system is initially at rest and taking Laplace transforms of (2.1) we
get

(sn + a1sn−1 + . . . + an)Y(s) = (b1sn−1 + b2sn−2 + . . . + bn)U(s),

where Y(s) is the Laplace transform of the output, and U(s) the Laplace trans-
form of the input. The transfer function of the system is the ratio of the Laplace
transforms of output and input, i.e.,

G(s) = Y(s)
U(s) = b1sn−1 + b2sn−2 + . . . + bn

sn + a1sn−1 + . . . + an

. (2.11)
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Figure 2.5 Illustration of frequency response. The input signal u is a sinusoid, and the
output signal y becomes sinusoidal after a transient. The dashed line shows the steady-
state response to the sinusoidal input.

EXAMPLE 2.8—PID CONTROLLER

The PID controller given by Equation 1.5 is a dynamical system with the trans-
fer function

C(s) = U(s)
E(s) = K

(
1 + 1

sTi

+ sTd

)
. (2.12)

The last two examples illustrate that transfer functions can be obtained from
differential equations by inspection. The rule is simply to replace derivatives
by s, integrals by 1/s, and time functions by their transforms. The transfer
functions are then obtained as the ratio between signals.

Frequency Response

Another way to characterize the dynamics of a linear time-invariant system is
to investigate the response to sinusoidal input signals, an idea that goes back
to the French mathematician Fourier. Frequency response is less intuitive than
transient response, but it gives other insights.

Consider a stable linear system. If the input signal to the system is a si-
nusoid, then the output signal will also be a sinusoid after a transient (see
Figure 2.5). The output will have the same frequency as the input signal. Only
the phase and the amplitude are different. If the input signal is u(t) = u0 sinω t

the steady-state output is

y(t) = a(ω )u0 sin
(
ω t + ϕ(ω )).

The steady-state relations between the output and a sinusoidal input with fre-
quency ω can be described by two numbers: the amplitude ratio and the phase.
The amplitude ratio is the output amplitude divided by the input amplitude,
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Figure 2.6 The Nyquist curve of a system is the locus of the complex number G(iω ) as
ω goes from 0 to ∞.

and the phase is the phase shift of the output in relation to the input. The func-
tions a(ω ) and ϕ(ω ) give amplitude ratio and phase for all frequencies. The
functions a(ω ) and ϕ(ω ) are related to the transfer function in the following
way.

G(iω ) = a(ω )eiϕ(ω ). (2.13)
The values of the transfer function for imaginary arguments thus describe
the steady-state transmission of sinusoidal signals, and G(iω ) is called the
frequency response function of the system.

The Nyquist Plot

There are very useful graphical illustrations of the frequency response. The
complex number G(iω ) can be represented by a vector with length a(ω ) that
forms angle ϕ(ω ) with the real axis (see Figure 2.6). When the frequency goes
from 0 to ∞, the vector describes a curve in the plane, which is called the
frequency curve or the Nyquist curve.

The Nyquist curve gives a complete description of the system. It can be de-
termined experimentally by sending sinusoids of different frequencies through
the system. This may, however, be time consuming. It can also be determined
from other signals.

The Bode Plot

The Bode plot is another graphical representation of the transfer function. The
Bode plot of a transfer function consists of two curves, the gain curve and the
phase curve; see Figure 2.7. The amplitude or gain curve shows the amplitude
ratio a(ω ) = �G(iω )� as a function of the frequency ω . The phase curve shows
the phase ϕ(ω ) = arg G(iω ) as a function of the frequency ω . The frequency is
given in logarithmic scales on both curves, either in rad/s or Hz. The gain is
also given in logarithmic scales. The angle is given in linear scales. The Bode
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Figure 2.7 Bode plot of an ideal PID controller (solid lines) and a controller with a filter
(dashed). The upper curve shows the gain curve �G(iω )�, and the lower diagram shows
the phase curve arg G(iω ). The controller has high gain for low frequencies, and the phase
is −90○. The ideal controller also has high gain at high frequencies and the phase is 90○.
The controller with a filter has constant gain for high frequencies.

plot gives a good overview of the properties of a system over a wide frequency
range. Because of the scales the gain curve also has linear asymptotes.

2.4 Feature-Based Models

Sometimes it is desirable to have a crude characterization of a process based
on only a few features. The features should be chosen so that they are mean-
ingful with good physical interpretation. They should also be easy to determine
experimentally. This way of describing dynamics has a long tradition in pro-
cess control. It is useful to start with a crude classification of step responses
as illustrated in Figure 2.2.

Process Gain

For stable processes the steady-state behavior can be described by one param-
eter, the process gain Kp. For processes with integration a constant input gives
in steady state an output that changes with a constant rate. This behavior can
be captured by the rate constant Kv.

Average Residence Time

It is also useful to find a few parameters to characterize process dynamics. The
time behavior of stable system with positive impulse response can be charac-
terized with the parameter

Tar =
∫ ∞

0 tg(t)dt∫ ∞
0 g(t)dt

, (2.14)
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Figure 2.8 Illustrates the area method for determining the average residence time.

which is called the average residence time. The average residence time is a
rough measure of how long it takes for the input to have a significant influence
on the output. Notice that the function g(t)/ ∫ g(t)dt can be interpreted as a
probability density if g(t) ≥ 0.

The average residence time can be calculated from the step response in the
following way

Tar =

∞∫
0

(h(∞) − h(t))dt

Kp

= A0

Kp

, (2.15)

where h(t) is the step response and Kp = G(0) is the static process gain. Notice
that Kp = h(∞) and that A0 is the shaded area in Figure 2.8.

Average Residence Time and Transfer Functions

The average residence time can be computed very conveniently from the trans-
fer function. Since the transfer function is the Laplace transform of the impulse
response we have

G(s) =
∫ ∞

0
e−stg(t)dt.

Differentiation of this expression with respect to s gives

G′(s) = −
∫ ∞

0
e−sttg(t)dt.

Setting s = 0 in these expressions it then follows from the definition of the
average residence time (2.14) that

Tar = − G′(0)
G(0) . (2.16)

This formula will now be illustrated by a few examples.
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EXAMPLE 2.9—AVERAGE RESIDENCE TIME FOR STIRRED TANK

The transfer function for the stirred tank in Example 2.4 is

G(s) = 1
1 + sT

.

We have

G′(s) = − T

(1 + sT)2 ,

and it follows from (2.16) that the average residence time is

Tar = T = V

q
.

The average residence time is thus the ratio of the volume and the flow through
the tank.

EXAMPLE 2.10—AVERAGE RESIDENCE TIME FOR TIME DELAY

The transfer function for the time delay in Example 2.5 is

G(s) = e−sL.

We have
G′(s) = −Le−sL,

and it follows from (2.16) that the average residence time is

Tar = L.

The average residence time is thus equal to the time delay.

EXAMPLE 2.11—AVERAGE RESIDENCE TIME FOR CASCADED SYSTEMS

A system that is the cascade combination of two stable linear systems with
transfer functions G1(s) and G2(s) has the transfer function

G(s) = G1(s)G2(s).

Differentiation gives

G′(s) = G′
1(s)G2(s) + G1(s)G′

2(s).

It follows from (2.16) that the average residence time is

Tar = − G′
1(0)G2(0) + G1(0)G′

2(0)
G1(0)G2(0) = − G′

1(0)
G1(0) − G′

2(0)
G2(0) .

The average residence time is the sum of the residence times of each system.

It follows from this example that the average residence time for the FOTD
model in Example 2.6 is Tar = L + T .

A system with the transfer function

G(s) = Kp(1 + sT1)(1 + sT2)
(1 + sT3)(1 + sT4)(1 + sT5) e−sL.

has the average residence time Tar = T3 + T4 + T5 + L − T1 − T2.

25



Chapter 2. Process Models

Models with Two Parameters

A very simple way to characterize the dynamics of a stable process is to use the
gain Kp and the average residence time Tar. This gives the following models

G(s) = Kp

1 + sTar

G(s) = Kp e−sTar ,

(2.17)

where dynamics is either represented by a lag or a time delay.

Apparent Time Delay and Apparent Time Constant

Systems with essentially monotone step responses are very common in process
control. Such systems can be modeled as first-order systems with time delay
with the transfer function

G(s) = Kp

1 + sT
e−sL. (2.18)

To emphasize that the parameters L and T are approximate they are referred
to as the apparent time delay and the apparent time constant, or the apparent

lag, respectively. The average residence time is Tar = L + T . The parameter

τ = L

Tar

= L

L + T
, (2.19)

which has the property 0 ≤ τ ≤ 1, is called the normalized time delay or
the normalized dead time. This parameter can be used to characterize the
difficulty of controlling a process. It is sometimes also called the controllability

ratio. Roughly speaking, processes with small τ are easy to control, and the
difficulty in controlling the system increases as τ increases. Systems with τ = 1
correspond to processes with pure time delay, which are difficult to control well.

Ultimate Gain and Ultimate Period

So far we have used features that are based on the transient response. It is
also possible to use features of the frequency response. Models can be charac-
terized in terms of their phase lags and the frequency, where the systems have
a given phase lag. For this purpose, we introduce ωϕ to denote the frequency
where the phase lag is ϕ degrees, and we introduce Kϕ = �G(iωϕ )� to denote
the process gain at ωϕ . The frequencies ω 90 and ω 180 and the corresponding
process gains K90 and K180 are of particular interest for PID control. These fre-
quencies correspond to the intersections of the Nyquist curve with the negative
imaginary and real axes; see Figure 2.9. They also have nice physical inter-
pretations. Consider a process with pure proportional control. If the controller
gain is increased the process will start to oscillate, and it will reach the stabil-
ity limit when the controller gain is Ku = 1/K180. The oscillation will have the
frequency ω 180. This frequency is called the ultimate frequency. The parameter
Ku is called the ultimate gain or the critical gain. The parameters K90 and ω 90

have similar interpretations for a process with pure integral control.
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Figure 2.9 Nyquist curve with the points ω 0, ω 90 and ω 180. The gain ratio κ is the ratio
of the distances a and b.

The Gain Ratio

The gain ratio is an additional parameter that gives useful information about
the system. This parameter is defined as

κ = K180

Kp

= �G(iω 180)�
G(0) . (2.20)

It is an indicator of how difficult it is to control the process. Processes with
a small κ are easy to control. The difficulty increases with increasing κ . The
parameter is also the ratio between the distances a and b in the Nyquist plot;
see Figure 2.9.

Parameter κ is also related to the normalized time delay τ . For the FOTD
model given by Equation 2.18 the parameters τ and κ are related in the fol-
lowing way:

τ = π − arctan
√

1/κ 2 − 1

π − arctan
√

1/κ 2 − 1 +
√

1/κ 2 − 1
. (2.21)

This relation is close to linear as is shown in Figure 2.10. This relation holds
approximately for many other systems. As a crude approximation we can thus
equate κ and τ . For small values a better approximation is given by κ = 1.6τ .
For the FOTD model it is also possible to find the parameters L and T from κ
and ω 180 using the following equations

T = 1
ω 180

√
κ −2 − 1

L = 1
ω 180

(π − arctanκ −2 − 1)

K = �G(iω 180)�
κ

.

(2.22)
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Figure 2.10 The normalized time delay τ as a function of gain ratio κ for the system
(2.18). The dashed line shows the straight line approximation κ = τ .

2.5 Typical Process Models

Much of the dynamic behavior encountered in control is relatively simple. Pro-
cesses are designed in such a way that they should be easy to control. If PID
control is used it is thus natural that simple process models are used. In this
section we will discuss some of the models that are commonly used in con-
nection with PID control. Most of these models are characterized by a few
parameters only.

The FOTD Model

A process model that is commonly used in process control has the transfer
function (2.18). It is simple and it describes the dynamics of many industrial
processes approximately. A comparison with Examples 2.3 and 2.4 shows that
it can represent the dynamics of a stirred tank with a pipe without mixing.
The model is characterized by three parameters: the (static) gain Kp, the time
constant T , and the time delay L. The time constant T is also called the lag.
The step response of the model (2.18) is

h(t) = Kp

(
1 − e−(t−L)/T

)
.

Since the average residence time is Tar = L + T , the value of the step response
at this time becomes

h(Tar) = Kp

(
1 − e−1) 	 0.63Kp.

The average residence time can thus be determined as the time when the step
response has reached 63 percent of its steady-state value.

Two parameters of the model (2.18) correspond to scaling of the axes and
can be reduced by normalization. They can be chosen as the gain and the
average residence time. This means that if the output is scaled by the gain Kp =
G(0) and time by the average residence time Tar the response is completely
characterized by one parameter, the normalized dead time τ . The system is a
pure time delay for τ = 1 and a first-order system or a pure lag for τ = 0.
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Figure 2.11 Normalized step responses of the FOTD model (2.18) for different values
of the normalized time delay. The normalized time delay is τ = 0 (dotted), 0.25, 0.5, 0.75
and 0.99 (dashed).

Figure 2.11 shows the normalized step responses for different values of τ .
Notice that all curves intersect at one point t = Tar because of the normaliza-
tion.

Noninteracting Tanks or Multiple Lags

The transfer function (2.8) represents the dynamics of a simple tank. The
upper part of Figure 2.12 shows a system that is a cascade combination of n

tanks. This system has the transfer function

Gn(s) = Kp

(1 + sT)n
. (2.23)

where n is the number of tanks. Since a first-order system is also called a lag
the system is also called a multiple lag system. Notice that this formula holds
only if the outflow of each tank only depends on its level. This means that
there is no interaction between the tanks.

The average residence time is

Tar = − G′(0)
G(0) = nT .

The model (2.23) has the impulse response

g(t) = Kp

(n − 1)!
tn−1

Tn
e−t/T , (2.24)

which has its maximum

max g(t) = Kp(n − 1)n−2

T(n − 2)! e−n+1,

for t = (n − 1)T . The unit step response is

h(t) = Kp

(
1 −

(
1 + t

T
+ t2

2T2 + . . . + tn−1

(n − 1)!Tn−1

))
e−t/T . (2.25)
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Figure 2.12 Cascaded tanks and corresponding block diagram representations. The up-
per tanks are noninteracting, and the lower are interacting.

The step response is characterized by three parameters, Kp, n, and T . The
number of parameters can be reduced by normalization. Parameters Kp and T

only influence the scaling of the axes. The shape of the step response is thus
uniquely given by the parameter n. Normalized step responses for different
values of n are shown in Figure 2.13. The step responses are close but not
equal at t = Tar. As n goes to infinity we have

lim
n→∞ Gn(s) = Kpe−t/Tar .
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Figure 2.13 Normalized step responses for the processes Gn(s) = 1/(1 + sT)n for n = 1
(dotted), 2, 4, 8, 16, and 32 (dashed).
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Table 2.1 Apparent time constant Te, apparent time delay Le, average residence time
Tar , and normalized time delay τ for the process (2.23).

n 2 3 4 5 6 7 8 16 32

Te 1.86 2.44 2.91 3.32 3.68 4.01 4.31 6.23 8.90

Le 0.28 0.81 1.43 2.10 2.81 3.55 4.31 10.78 24.67

Tar 2.14 3.25 4.34 5.42 6.49 7.56 8.62 17.02 33.57

τ 0.13 0.25 0.33 0.39 0.43 0.47 0.50 0.63 0.73

For large n the system thus approaches a pure time delay. Figure 2.13 shows,
however, that very large values of n are required to get a good approximation
of the step response of a time delay.

The transfer function Gn(s) can be approximated by an FOTD system. The
apparent time constants and time delays for the approximation are given in
Table 2.1.

Multiple Interacting Tanks—Distributed Lags

The dynamics of cascaded tanks are very different if the tanks are interacting.
In the system shown in the lower part of Figure 2.12 the outflow of a tank
depends on the levels of the neighboring tanks. Let xk be the level of tank k.
The control variable u is the inflow to the first tank, and let the output be the
outflow of tank n. Assume that the tanks have unit cross-section, and assume
that the flow from tank k to tank k + 1 is xk − xk−1. The mass balances for the
tanks are

dx1

dt
= −x1 + x2 + u

...

dxk

dt
= xk−1 − 2xk + xk+1

...

dxn

dt
= xn−1 − 2xn.

(2.26)

This is a state model with n states. The state variables represent the levels in
the different tanks. The system is also called a distributed lag. With a unit step
input the equilibrium values of the states are xk = n− k+1. The characteristic
polynomials of systems having different order are

d1 = s + 1

d2 = s2 + 3s + 1

dn = (s + 2)dn−1 − dn−2.
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Figure 2.14 Normalized step responses for interacting tanks, (2.26), for n = 1 (dotted),
2, 4, and 8 (dashed).

The transfer functions for a few values of n are given by

G1(s) = 1
s + 1

G2(s) = 1
s2 + 3s + 1

G4(s) = 1
s4 + 7s3 + 15s2 + 10s + 1

G8(s) = 1
s8 + 15s7 + 91s6 + 286s5 + 495s4 + 462s3 + 210s2 + 36s + 1

.

The average residence time is the ratio of the total steady-state volume to the
flow, hence

Tar = n(n + 1)
2

.

This is also the coefficient of the s-term in the denominator of the transfer
function. As the number of tanks increases we have asymptotically for large n

Gn(s) 	 1
cosh

√
2Tars

.

These transfer functions are very different from the transfer function (2.23) of
noninteracting tanks.

Figure 2.14 shows normalized step responses for interacting tanks. Notice
that the responses are very similar for larger values of n. A comparison with
Figure 2.13 shows that there is a significant difference between interacting
and noninteracting tanks.

Another Version of Interacting Tanks

The model (2.26) is not the only way to interconnect tanks. Another configu-
ration is shown in Figure 2.15. For simplicity we have shown a system with
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Figure 2.15 Schematic diagram of three cascaded tanks with recirculation.

three tanks. The system consists of identical stirred tanks with a forward flow
q and a recirculation flow qc. Let V be the tank volume, u the concentration of
the inflow, ck the concentration in the kth tank, and y = cn the concentration
in the outflow. The mass balances for a system with n tanks are

V
dc1

dt
= −(q + qc)c1 + qcc2 + qu

...

V
dck

dt
= (q + qc)ck−1 − (q + 2qc)ck + qcck+1

...

V
dcn

dt
= (q + qc)cn−1 − (q + qc)cn

y = cn.

This is also a state model where the states are the concentrations in the dif-
ferent tanks. The transfer functions for a few values of n are

G1(s) = q

V s + q

G2(s) = q(q + qc)
V s2 + 2V (q + qc)s + q(q + qc)

G3(s) = 2qc(q + qc)2

(V s + q + qc)(V 2s2 + (2q + 3qc)s + 2qc(q + qc))

= 2qc(q + qc)2

V 3s3 + (3q + 4qc)V 2s2 + (q + qc)(q + 3qc)V s + 2qc(q + qc)2 .

The static gain is Kp = 1 and the average residence time is

Tar = nV

q
.

The recirculation flow has a major impact on the dynamics. For qc = 0 there
is no interaction, and the system is equivalent to the model given by (2.23).
As qc/q → ∞ the model is equivalent to the model given by (2.26). The model
with recirculation thus makes it possible to interpolate between the models
with noninteracting and distributed lags.

Figure 2.16 shows the step response of a system of n:th order for different
values of the recirculation flow.
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Figure 2.16 Normalized step responses for eight tanks with recirculation. The recircu-
lation ratio is qc/q = 0 (dotted), 1, 2, 5 and 10 (dashed).

Oscillatory Systems

The model (2.18) cannot describe systems with oscillatory responses. A simple
model for such systems is given by the transfer function

G(s) = Kp

1 + 2ζ sT + (sT)2 . (2.27)

This model has three parameters: static gain Kp, time constant T , and relative
damping ζ . The parameter 1/T is also called undamped natural frequency. The
step responses can be normalized by the gain and the time constant. Its shape
is then determined by one parameter only. The step responses are shown in
Figure 2.17. For ζ < 1 the step response has its maximum

M = Kpe

−
πζ√
1 − ζ 2

,

which occurs at

tmax = 2π T√
1 − ζ 2

.

The position of the maximum increases with increasing ζ , and it becomes
infinite for ζ = 1 when the overshoot disappears. The transfer function is then

G(s) = Kp

(1 + sT)2 ,

and the step response is

h(t) = Kp

(
1 − e−t/T − t

T
e−t/T

)
.

The Bode plots of the systems are shown in Figure 2.18.
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Figure 2.17 Normalized step responses of oscillatory systems (2.27) with ζ = 0 (dotted),
0.1, 0.2, 0.5, 0.7, and 1.0 (dashed).
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Figure 2.18 Bode plots of oscillatory systems (2.27) with ζ = 0.05 (dotted), 0.1, 0.2, 0.5,
0.7, and 1.0 (dashed).

Processes with Integration

Integrating processes will not reach steady state during open-loop conditions.
In practice, the same is true for processes with very long time constants.
Asymptotically, the output will change at constant rate after a step change
in the control signal. In the early process control literature these systems were
said to be without self-regulation because the process variable did not reach a
steady state after a disturbance. Many methods for PID tuning also treat such
systems separately. Models for such systems are obtained simply by dividing
the transfer function of a process with self-regulation by s.

A combination of an integrator and a time delay is a common model. The
transfer function is

G(s) = Kv

s
e−sL. (2.28)

This model is characterized by two parameters, a gain and a time delay. The
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Figure 2.19 Normalized step responses for the FOTDI model (2.30) for τ = 0 (dotted),
0.25, 0.5, 0.75, and 0.99 (dashed).

integrating gain is denoted by a special symbol Kv, which tells how fast the
output increases in steady state after a unit input step change. The parameter
Kv has dimension frequency.

A combination of a lag and an integrator is a model that is commonly used
to describe simple drive systems. This model has the transfer function

G(s) = Kv

s(1 + sT) . (2.29)

The transfer function Kv/(1 + sT) represents the transfer function from the
voltage of the drive system to the rate of rotation, and the integrator represents
the relation between angular rate and angle.

A slightly more complicated model is obtained by adding integration to the
standard model (2.18).

G(s) = Kv

s(1 + sT) e−sL. (2.30)

We call this the FOTD model with integration or FOTDI for short. This process
can be normalized in the same way as the model (2.18) by introducing the
normalized time delay given by (2.19). The normalized step responses of the
FOTDI model are shown in Figure 2.19.

Systems with Inverse Responses

The systems discussed so far do not have any zeros. Systems that are repre-
sented as a parallel connection of several systems can have transfer functions
of the type

G(s) = 1 + sT

s2 + 1.4s + 1
. (2.31)

This system has a zero at s = −1/T , which may have a significant influence
on the response of the system. Figure 2.20 shows the step response of this
system for T = −2, −1, 0, 1, and 2. Notice that the overshoot of the step
response increases with increasing positive values of T . Also notice that the
output signal initially moves in the wrong direction when T is negative. Such
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Figure 2.20 Step responses for the model (2.31) for T = −2 (dotted), −1, 0, 1 and 2
(dashed).

systems are said to have inverse responses. Systems with inverse responses
are difficult to control. Examples of such systems are level dynamics in steam
generators, dynamics of hydroelectric power stations, dynamics of backing cars,
etc.

Heat Conduction

Temperature control is a very common application of PID control. Some models
that are directly based on physics will now be discussed. Consider an infinitely
long rod with thermal diffusivity λ . Assume that there is no radial heat transfer
and that the input is the temperature at the left end of the rod. The transfer
function to a point at the distance a from the left end point is

G(s) = e−√
sT , (2.32)

where T = a2/λ . The impulse response of the system is given by

h(t) =
√

T

2
√

π t3/2
e− T

4t . (2.33)

This impulse response has the property that all its derivatives are zero for
t = 0, which means that the initial response of the system is very slow. The
impulse response has a maximum at t = T/6. For large values of t the impulse
response decays very slowly as t−1.5. The step response of the system is

y(t) = 1 − erf

√
T

4t
= 1 − 2√

π

∫ √
T/4t

−∞
e−x2

dx. (2.34)

The step and impulse responses are shown in Figure 2.21. Notice that the tem-
perature starts to rise very slowly initially. After a rapid rise it also approaches
the steady state very slowly.

We will now instead consider the situation when the right-hand side is
isolated. The transfer function then becomes

G(s) = 1

cosh
√

sT
. (2.35)
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Figure 2.21 Step response (solid) and impulse response (dashed) for a system with
the transfer function e−√

sT . The upper curves show the step responses and the impulse
response. The lower curve shows the step response in a different time scale.
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Figure 2.22 Step responses for the transfer function 1/ cosh
√

sT (solid), e−√
sT (dashed)

and 2e−√
sT (dotted).

This is a system with infinitely many lags with time constants 4T/π 2, T/9π 2,
4T/25π 2, 4T/49π 2,. . . . This transfer function is also called a distributed lag.

The step response of this transfer function is shown in Figure 2.22. Notice
that the response approaches the steady-state value faster than the system
(2.32). The step response of the systems are thus quite different. The isolation
of the right end of the rod makes it much easier to transfer heat into the
system. A simple calculation shows that the average residence time for the
system is

Tar = −G′(0) = T

2
. (2.36)

The system (2.32) with the transfer function e−√
sT has infinite residence

time which reflects the fact that the impulse response decays very slowly;
compare with Figure 2.21.
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Figure 2.23 Bode plots for the transfer functions 1/ cosh
√

sT (solid lines), e−√
sT

(dashed). For comparison we also show the gain curve for the transfer function 2e−√
s

(dotted).

We will now investigate the frequency responses of the systems (2.32) and
(2.35). It can be shown that both transfer functions have a phase lag of 180○

at the same frequency.

ω 180 = 2π 2

T
. (2.37)

The magnitudes of the transfer functions at ω 180 are given by

�e−√
iω 180T � = e−π 	 0.04321

1
� cosh

√
iω 180T � = 2e−π

1 + e−2π
	 0.08627.

At the frequency where the phase lag is 180○ the gain of the system (2.35) is
thus very close to twice as high as the gain for the system (2.32). The Bode
plots of the system are shown in Figure 2.23. Notice that for frequencies above
2 rad/s there are very small differences between the transfer functions 2e−√

s

and 1/ cosh
√

sT even if the step responses differ significantly. This observation
is very important for the design of control systems. Figure 2.22 also shows that
the step responses for the transfer functions 2e−√

s and 1/ cosh
√

sT are very
close.

A Heat Exchanger

The transfer function from input temperature to output temperature of an
ideal heat exchanger is

G(s) = 1
sT

(1 − e−sT ). (2.38)

The step and impulse responses of this system are shown in Figure 2.24. Notice
that the step response settles to the final value at time t = T and that the
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Figure 2.24 Normalized step (solid) and impulse (dashed) responses for the transfer
function (2.38) of an ideal heat exchanger.

impulse response is zero after that time. This reflects the fact that once liquid
has passed through the heat exchanger its temperature is no longer influenced.
The average residence time of the system is

Tar = T

2
.

The frequency response of the system is

G(iω ) = 1
iω T

(
1 − e−iω T

)
.

The transfer function is zero for ω T = 2nπ . This is clearly seen in the Nyquist
curve of the transfer function in Figure 2.25. An interesting property of this
transfer function is that

arg G(iω ) = −ω T

2
, for ω T < 2π .

A Continuous Stirred Tank Reactor

Consider a continuous-time stirred tank reactor where the reaction A → B
takes place. The reaction is exothermic, and reaction heat is removed by a
coolant. The system is modeled by mass and energy balances. The mass balance
is

dc

dt
= q

V
(cf − c) − k(T)c, (2.39)

where c [kmol/m3] is the concentration of species A , cf the concentration of
A in the feed, q [m3/s] the volume flow rate, V [m3] the reactor volume, and
k(T) [s−1] the reaction rate which is a function of temperature

k(T) = k0e−E/RT . (2.40)
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Figure 2.25 Nyquist plot of the transfer function G(s) (2.38) of an ideal heat exchanger.

Table 2.2 Parameters of the exothermic continuous-time stirred tank reactor.

q 0.002 m3/s Tf , Tc 300 K

V 0.1 m3 E/R 8750 K

ρ 1000 kg/m3 cf 2 kmol/m3

Cp 4 kJ/kgK U A 50 W/K

k0 3�108 s−1 ∆H −5 � 105 kJ/kmol

The first term on the right-hand side represents the mass flow rate and the
second term represents the rate of removal of A through the reaction.

The energy balance can be written as

dT

dt
= q

V
(Tf − T) + k(T)−∆H

ρCp

c + U A

ρV Cp

(Tc − T), (2.41)

where ∆H [kJ/kmol] is the reaction heat, ρ [kg/m3] the density of the species
A , Cp [kJ/kgK ] specific heat, U [J/min/K/m2] the heat transfer coefficient,
A [m2] the area, Tc [K ] the cooleant temperature, and Tf [K ] the feed temper-
ature. The first term on the right-hand side represents the energy flow rate of
the system, the second term represents the power generated by the reaction,
and the last term represents the energy removal rate through cooling. Typical
parameters are given in Table 2.2.

We will first analyse the steady-state solutions. In steady state it follows
from (2.40) that

c = 1
1 + V k(T)/q

cf .

The power generated by the reaction is

Pg = k(T)
1 + V k(T)/q

(−∆H)c, (2.42)
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Figure 2.26 Steady-state heat generation rate (solid) and heat removal rate (dashed)
as function of temperature. The equilibria are marked with ○.

and the rate of removal of energy is

Pr = qρCp

V
(T − Tf ) + U A(T − Tc). (2.43)

Equating Pg and Pr gives an equation in one variable to determine the reaction
temperature T . A graphical solution gives insight as illustrated in Figure 2.26,
which shows Pg and Pr as functions of temperature. There are three equilibria
where the curves intersect at T = 300.5, 375.1, and 438.6. The equilibrium at
T = 375.1 is unstable because the rate of heat generation is larger than the
rate heat removal if temperature is increased. The other equilibria are stable.
Approximating the dynamics in the neighborhood of the unstable equilibrium
gives the following linear model of the system

dx1

dt
= −0.0422x1 + 0.0013x2

dx2

dt
= 2.7746x1 − 0.0064x2 + 0.15u,

(2.44)

where x1 = c − c0, x2 = T − T0, and u = Tc − Tc0 and c0, T0, and Tc0 are the
equilibrium values. The transfer function is

P(s) = − 0.15s + 0.0063
s2 + 0.048631s − 0.003359

= −0.15
s + 0.04220

(s + 0.08717)(s − 0.03854)

The system has the pole s = 0.03854 in the right half plane.

Nonlinear Black Models

The static model discussed in Section 2.2 could be nonlinear. The dynamic
models discussed so far have, however, been linear. Since nonlinearities are
common in practice it is highly desirable to have nonlinear models. Valves,
actuators, and sensors may be nonlinear; the process dynamics itself can also be

42



2.5 Typical Process Models
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Figure 2.27 A Hammerstein model a), and a Wiener model b).

nonlinear. General models for nonlinear dynamics are complicated, and there
are no good methods for designing PID controllers for such systems.

Fortunately, there are special classes of models that are well suited for PID
control. A system may be represented as a combination of a static nonlinearity
and a linear dynamical system. Such models are quite simple, and they are
nicely adapted to PID control, but there are nonlinear systems that cannot be
modeled well using this approach.

The nonlinearity can be before the linear part as shown in Figure 2.27a.
This model is called a Hammerstein model. It is a good model for a system
with a nonlinear actuator, for example, a nonlinear valve.

The nonlinearity can also be placed after the linear dynamical system. This
gives a Wiener model, which is illustrated in the block diagram in Figure 2.27b.
The Wiener model is a good representation for a system with a nonlinear sensor,
for example, a pH electrode.

If the process is nonlinear the dynamics are varying with the operating
conditions. Ideally, the controller should be tuned with respect to these varia-
tions. A conservative approach is to tune the controller for the worst case and
accept degraded performance at other operating conditions. Another approach
is to find a measurable variable that is well correlated with the process non-
linearity. Such a variable is called a scheduling variable. The controller is then
tuned for a few values of the scheduling variable. Controller parameters for
intermediate values may be obtained by interpolation. This approach to gen-
erating a nonlinear controller is called gain scheduling. It will be discussed in
more detail in Section 9.3.

It is easy to compensate for the nonlinearity for a system that is described
by a Wiener or a Hammerstein model by using a nonlinear controller composed
of a PID controller and a static nonlinearity. The linear PID controller is de-
signed as if the system was linear. When the process has a nonlinearity at the
input we simply pass the control signal through the inverse of the nonlinear-
ity. If the nonlinearity is at the output, as for the Wiener model, we simply
pass the sensor signal through an inverse of the nonlinearity before feeding
the measured signal to the controller. Many PID controllers have a facility to
introduce a nonlinearity characterized as a piecewise linear function.
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2.6 Models for Disturbances

So far, we have only discussed models of process dynamics. Disturbances are
another important aspect of the control problem. In fact, without disturbances
and process uncertainty there would be no need for feedback. There is a special
branch of control, stochastic control theory, that deals explicitly with distur-
bances. This has had little impact on the tuning and design of PID controllers.
For PID control, disturbances have mostly been considered indirectly, e.g., by
introducing integral action. As our ambitions increase and we strive for control
systems with improved performances it will be useful to consider disturbances
explicitly. In this section, therefore, we will present some models that can be
used for this purpose. Models for disturbances are useful for simulation, diag-
nostics, and performance evaluation.

The Nature of Disturbances

We distinguish between three types of disturbances, namely, set-point changes,
load disturbances, and measurement noise. In process control, most control
loops have set points that are constant over long periods of time with occa-
sional changes. An appropriate model is therefore a piecewise constant signal.
Set-point changes are typically known beforehand. Good response to set-point
changes is the major issue in drive systems.

Load disturbances are disturbances that enter the control loop somewhere
in the process and drive the system away from its desired operating point.
Load disturbances typically have low frequency. Efficient reduction of load dis-
turbances is a key issue in process control systems.

Measurement noise represents disturbances that distort the information
about the process variables obtained from the sensors. Measurement noise is
often a high-frequency disturbance. It is often attempted to filter the mea-
sured signals to reduce the measurement noise. Filtering does, however, add
dynamics to the system.

The Character of Disturbances

One way to get a first estimate of the disturbances is to log the measured
variable. The measured signal has contributions both from load disturbances
and measurement noise. If there are large variations it is often useful to in-
vestigate the sensor to reduce some of the measurement noise. Filtering may
also be useful. Filtering should be done in such a way that it does not impair
control.

The process variations may have very different character. Some examples
are given in Figure 2.28. The disturbances can be classified as pulses (a), steps
(b), ramps (c), and periodic (d). It is useful to compute statistics such as mean
values, variances, and maximum deviation. It is also useful to plot a histogram
of the amplitude distribution of the disturbances.

Simple Models

It is useful to have simple models for disturbances for simulation and evalu-
ation of control strategies. Models that are typically used are shown in Fig-
ure 2.28. The impulse is a mathematical idealization of a pulse whose duration
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Figure 2.28 Different types of disturbances: a) impulses, b) steps, c) ramps, and d)
sinusoids.
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Figure 2.29 Examples of stochastic disturbances.

is short in comparison with the time scale. The signals are essentially deter-
ministic. The only uncertain elements in the impulse, step, and ramp are the
times when they start and the signal amplitude. The uncertain elements of the
sinusoid are frequency, amplitude, and phase.

Random Fluctuations

Disturbances may also be more irregular as is shown in Figure 2.29. There are
well developed concepts and techniques for dealing with random fluctuations
that are described as stochastic processes. There are both time domain and
frequency domain characterizations. In the frequency domain the random dis-
turbances are characterized by the spectral density function φ(ω ). The variance
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Figure 2.30 Prediction error σ pe as a function of prediction time Tp.

of the signal is given by

σ 2 =
∞∫

−∞
φ(ω )dω .

The spectral density tells how the variation of the signal is distributed on
different frequencies. The value

2φ(ω )∆ω

is the average energy in a narrow band of width ∆ω centered around ω . A
signal where φ(ω ) is constant is called white noise. Such a signal has its energy
equally distributed on all frequencies.

There are efficient techniques to compute the spectral density of a given
function. If the spectral density is known it is possible to evaluate how the
variations in the process variable are influenced by different control strategies.

Prediction of Disturbances

When controlling important quality variables in a process it is often of interest
to assess the improvements that can be achieved and to determine if a partic-
ular control strategy gives a performance that is close to the achievable limits.
This can be done as follows. The process variable y(t) is logged during normal
operation with or without control. By analyzing the fluctuations it is possible to
determine how accurately the process variable can be predicted Tp time units
into the future based on present and past values of y. Let ŷ(t + Tp�t) be the
best prediction of y(t + Tp) based on y(τ ) for all τ < t. By plotting the variance
of the prediction error y(t + Tp) − ŷ(t + Tp�t) as a function of the prediction
time we obtain the curve shown in Figure 2.30. For large prediction times the
prediction error is equal to the variance of the process variable, approximately
σ pe = 12 in the figure. The best control error that can be achieved is the pre-
diction error at a prediction time Tp corresponding to the time delay of the
process and the sampling time of the controller. This can be achieved with a
so called minimum variance controller. See Section 8.6. The figure indicates
that variances less that 5 can be obtained if Tp is less than 3.4. Further reduc-
tions are possible for smaller Tp, but variances less than 1 cannot be achieved
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even if Tp is very short. By comparing this with the actual variance we get an
assessment of the achievable performance. This is discussed in more detail in
Chapter 10. There is efficient software for computing the prediction error and
its variance from process data.

2.7 How to Obtain the Models

In previous sections we have briefly mentioned how the models can be ob-
tained. In this section we will give a more detailed discussion of methods for
determining the models. There are two broad types of methods that can be
used. One is physical modeling, and the other is modeling from data.

Physical modeling uses first principles to derive the equations that describe
the system. The physical laws express conservation of mass, momentum, and
energy. They are combined with constitutive equations that describe mate-
rial properties. When deriving physical models a system is typically split into
subsystems. Equations are derived for each subsystem, and the results are
combined to obtain a model for the complete system. Simple examples were
given in Section 2.3. Physical modeling is often very time consuming. There
are often difficult decisions on suitable approximations. The models obtained
can, however, be very useful since they have a sound physical basis. They also
give considerable insight into the dependence of the model on the physical pa-
rameters. A simple way to start is to model dynamics as first-order systems
where the time constants are the ratio of storage and flow.

Modeling from data is an experimental procedure. Data is generated by per-
turbing the input signal (the manipulated variable) and recording the system
output. The experiment can also be performed under closed-loop conditions, for
example, by perturbing the set point of a controller or the controller output.
It is then attempted to find a model that fits the data well. There are several
important issues to consider; selection of input signals, selection of a suitable
model structure, parameter adjustments, and model validation. Ideally, the
experimental conditions should be chosen to be as similar as possible to the
intended use of the model. The parameter adjustment can be made manually
for crude models or by using optimization techniques.

Static Models

Static models are easy to obtain by observing the relation between the input
and the output in steady state. For stable, well-damped processes the relation
can be obtained by setting the input to a constant value and observing the
steady-state output. The procedure is then repeated for different values of
the input until the full range is covered. For systems with integration it is
convenient to use a controller to keep the output at a constant value. The set
point of the controller is then changed so that the full signal range is covered.
Effects of disturbances can be reduced by taking averages.

The Bump Test

The bump test is a simple procedure that is commonly used in process control.
It is based on an experimental determination of the step response. To perform
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Figure 2.31 Step responses for a large batch of stable systems. The responses have been
normalized to give the same average residence time.

the experiment the system is first brought to steady state. The manipulated
variable is changed rapidly to a new constant value and the output is recorded.
The measured data is scaled to correspond to a unit step. The change in the
manipulated variable should be large in order to get a good signal-to-noise
ratio but it should not be so large that the process behavior is not linear. The
allowable magnitude is also limited by process operation. It is also useful to
record the fluctuations in the measurement signal when the control signal is
constant. This gives data about the process noise. It is good practice to repeat
the experiment for different amplitudes of the input signal and at different
operating conditions. This gives an indication of the signal ranges when the
model is linear. It also indicates if the process changes with the operating
conditions.

By inspection of the step response it is possible to make a crude classifica-
tion of the dynamics of the system into the categories shown in Figure 2.2. A
model with a few parameters is then fitted to the data.

The Average Residence Time

The average residence time is a simple way to characterize the response time of
systems with essentially monotone step responses. Figure 2.31 step responses
for a large batch of systems that are normalized to give the same average res-
idence time. (The transfer functions for the systems are given in Section 7.1.)
The figure shows that all step responses are close for t = Tar. For all processes
in the test batch we have 0.99 < T63/Tar < 1.08. The average residence time
can thus be estimated as the time T63 where the step response has reached 63
percent of its final value.

The FOTD model

The parameters of the FOTD model given by Equation 2.18 can be determined
from a bump test as illustrated in Figure 2.32. The static gain Kp is simply
determined from the steady-state values of the signals before and after the step
change. The apparent time delay L is given by the point where the steepest
tangent intersects the steady-state level before the step change. The average
residence time Tar = T + L is determined as the time T63 where the step
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Figure 2.32 Unit step response of a process and a procedure used to determine the
process parameters Kp, L, T , and Kv of an FOTD model. The point of largest slope is
denoted by ○.

response has reached 63 percent of its final steady-state value. This gives the
correct results for the FOTD-model (see Figure 2.11) and approximate results
for many other models (see Figures 2.13, 2.14, 2.16, and 2.31). The velocity
gain Kv is the slope of the steepest tangent.

Similar methods can be used when the input signal is a pulse instead of
a step. Pulses may be used when it is not permitted to use a step. This is
common in medical and biological applications and is less common in process
control. Ramp response analysis is common when analyzing servo drives and
hydraulic systems.

The Integral and Time Delay Approximation

The model parameters of the model (2.28), which has the transfer function

G(s) = Kv

s
e−sL = a

sL
e−sL, (2.45)

can also be determined from a bump test as indicated in Figure 2.32. The veloc-
ity constant Kv is the steepest slope of the step response, and the intersections
of this tangent with the vertical and horizontal axes give a and L, respectively.
The model given by Equation 2.45 is the basis for the Ziegler-Nichols tuning
procedure discussed in Chapter 6.

The Doublet-Pulse Method

A variation of the bump test is to excite the process by a doubled pulse as is
illustrated in Figure 2.33. The pulse amplitude a is chosen so that the response
is well above the noise level, and the pulse width Tp is chosen a little longer
than the time delay of the process. The maximum ymax and the minimum ymin

and the times tmax and tmin when they occur are determined. Simple calcu-
lations show that for an FOTD system with the transfer function (2.10) we
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Figure 2.33 Determination of the parameters of an FOTD model by exciting the process
by a doublet pulse.

have
ymax = aKp

(
1 − e−Tp/T

)
ymin = −aKp

(
1 − e−Tp/T

)2

tmax = L + Tp

tmin = L + 2Tp.

It follows from these equations that

ymin

ymax
= −1 + e−Tp/T

y2
max

ymin
= −aKp,

and we get the following simple equations for the parameters of the model

K = − y2
max

aymin

T = Tp

log(1 + ymax/ymin)
L = tmax − Tp

L = tmin − 2Tp.

(2.46)

The fact that the time delay L can be estimated in two ways can be used to
asses if a process can be modeled by an FOTD model.

The selection of the pulse time Tp can be determined automatically, for
example, as the time when the output has changed a specified amount. The
method can be applied to SOTD models, but the formulas are more complicated.

The main advantages of using a doublet pulse is that the process output
returns to its original value after the perturbation, and the time required to

50



2.7 How to Obtain the Models

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

t/(T1 + T2)

y

Figure 2.34 Normalized step responses for the system (2.48) for T2/T1 = 0.1, . . . , 1.

determine the dynamics is short because it is not necessary to wait for steady
state as for the bump test. The disadvantages of the method are that it is diffi-
cult to determine times when the extrema occurs accurately, and the estimate
of the gain is poor because the excitation of the pulse is mainly in the high-
frequency regime. Another disadvantage is that the method cannot be applied
to oscillatory systems.

The SOTD Model

The model

G(s) = Kp

(1 + sT1)(1 + sT2) e−sL1 , (2.47)

which is a natural generalization of the FOTD model (2.18), is called the
second-order model with time delay or SOTD model. Without loss of gener-
ality it can be assumed that T2 ≤ T1. The step response of the system (2.47)
is

y(t) =




Kp

(
1 − T1

T1 − T2
e−(t−L1)/T1 − T2

T2 − T1
e−(t−L1)/T2

)
if T1 �= T2

Kp

(
1 − e−(t−L1)/T1 − t

T1
e−(t−L1)/T1

)
if T1 = T2.

(2.48)
The normalized step responses for different ratios T2/T1 are shown in Fig-
ure 2.34. The responses have been normalized so that all systems have the
same average residence time. All step responses are quite close, and they are
almost identical for t/(T1 + T2) 	 1.3. Since the separation of the curves is so
small it is difficult to determine the parameters T1 and T2 robustly from the
step response, particularly if there is a small amount of noise. Other inputs
that excite the system better are necessary to determine the parameters re-
liably. The figure shows that it would be easier to determine the parameters
based on an impulse response, which could be obtained by differentiating the
step response.
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Figure 2.35 Graphical determination of mathematical models for systems with an os-
cillatory step response.

An Oscillatory System

The model (2.18) cannot model systems with oscillatory responses. A simple
model for such systems is given by the transfer function (2.27), which has three
parameters: the static gain Kp, the undamped natural frequency 1/T , and the
relative damping ζ . These parameters can be determined approximately from
the step response as indicated in Figure 2.35. Parameters T and ζ are related
to time period Tp and decay ratio d as follows.

d = e−2ζ π /
√

1−ζ 2
Tp = 2π T√

1 − ζ 2
(2.49)

or

ζ = 1√
1 + (2π / log d)2

T =
√

1 − ζ 2

2π
Tp. (2.50)

The accuracy of the model is limited by the limited excitation obtained with a
step or a pulse. Measurement errors and difficulty in obtaining steady state are
other factors that limit the accuracy. Some improvements can be made by using
optimization for fitting the parameters. Typically, it is difficult to determine
more than three parameters from a step response unless the experimental
conditions are exceptional.

Frequency Response

In frequency response analysis a sinusoidal signal is instead introduced, and
the steady-state response is analyzed. An advantage with frequency response
analysis is that very accurate measurements can be made by using correlation
techniques. The long experimental times is a drawback.

It is also possible to introduce an arbitrary signal as a perturbation. The
frequency response can be obtained as the ratio of the Fourier transforms of
the output and the input signals. It is also possible to fit the parameters of a
model with given structure to the data.

A nice feature of using signals other than steps is that it is possible to make
a trade-off between signal amplitude and duration.
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Figure 2.36 Block diagram of a process with relay feedback.
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Figure 2.37 Relay output u (dashed) and process output y (solid) for a system under
relay feedback.

Relay Feedback

There is a very special technique that is particularly suited to determine ω 180

and K180. This has been used very effectively for tuning PID controllers. The
idea is the observation that it is possible to create an oscillation with the
ultimate frequency automatically by using relay feedback.

To make the experiment the system is connected in a feedback loop with a
relay function as shown in Figure 2.36. For many systems there will then be an
oscillation (as shown in Figure 2.37) where the control signal is a square wave
and the process output is close to a sinusoid. Notice that the process input and
output have opposite phase.

To explain how the system works, assume that the relay output is expanded
in a Fourier series and that the process attenuates higher harmonics effectively.
It is then sufficient to consider the first harmonic component of the input only.
The input and the output then have opposite phase, which means that the
frequency of the oscillation is equal to ω 180. If d is the relay amplitude, the
first harmonic of the square wave input has amplitude 4d/π . Let a be the
amplitude of the process output. The process gain at ω 180 is then given by

K180 = π a

4d
. (2.51)

Notice that the relay experiment is easily automated. Since the amplitude of
the oscillation is proportional to the relay output, it is easy to control it by
adjusting the relay output. Also notice in Figure 2.37 that a stable oscillation
is established very quickly. The amplitude and the period can be determined
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after about 20 s only, in spite of the fact that the system is started so far from
the equilibrium that it takes about 8 s to reach the correct level. The average
residence time of the system is 12 s, which means that it would take about
40 s for a step response to reach steady state.

The SOTD Model—Combined Step and Frequency Response

It was mentioned previously that the parameters of the SOTD model cannot
be determined reliably from step response data. Good estimates can, however,
be obtained by combining step and frequency response data. The idea is that
the step response gives Kp and T63 and the frequency response method gives
the ultimate frequency ω u = ω 180 and the ultimate gain Ku = 1/K180. This
gives the equations

K 2
p K 2

u = (1 + ω 2
uT2

1 )(1 + ω 2
uT2

2 )
π = arctanω uT1 + arctanω uT2 + ω u L1.

(2.52)

Combined with the data Kp and T63 the parameters are then given by Equa-
tions 2.48 and 2.52 which gives four equations for the four unknown.

0 =




0.37 − T1

T1 − T2
e−(T63−L1)/T1 − T2

T2 − T1
e−(T63−L1)/T2 if T1 �= T2,

1 − e−(T63−L1)/T1 − T63

T1
e−(T63−L1)/T1 − 0.63 if T1 = T2

0 = (1 + ω 2
uT2

1 )(1 + ω 2
uT2

2 ) − K 2
p K 2

u

0 = arctanω uT1 + arctanω uT2 + ω u L1 − π .

(2.53)

These equations can be solved iteratively, but this is complicated since we have
to take care of the special cases when the parameters T1 and T2 are equal or
zero.

An alternative method is to iterate the ratio a = T2/T1 until the equations
match. Parameter Kp is determined as the static gain of the step response.
The equation (2.52) for the ultimate gain then becomes

(1 + ω 2
uT2

1 )(1 + a2ω 2
uT2

1 ) = K 2
p K 2

u .

This equation has the solution

T1 = 1

aω u

√
2

√√
4a2 K 2

p K 2
u + (1 − a2)2 − 1 − a2.

The parameters T2 and L1 are then given by

T2 = aT1

L1 = π − arctanω uT1 − arctanω uT2

ω u

.

The step response given by (2.48) can then be computed as a function of a, and
the parameter a can be iterated to match the value of T63.
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Figure 2.38 Computer screen from a tool for process modeling. From [Wallén, 2000]

Modeling Tools

There are several modeling tools that are very useful. They make it possible
to enter process data in the form of sequences of input-output data from bump
tests or other process experiments. Models of different structure can be se-
lected, and their parameters can be fitted to the data using some optimization
procedure. The tools also permit selection of parts of data sequences used in
the analysis.

Figure 2.38 shows the computer screen for a particular system. A model
structure can be chosen from a menu. When data has been entered a prelimi-
nary model can be fitted by manually dragging the handles shown in the figure.
The handles represent the start of the step, the initial level, the final level, and
the time when the response has reached 63 percent of its final value. The model
parameters are displayed. Optimization can then be used to improve the fit.

The particular tool illustrated in the figure also allows use of a nonlinear
model as illustrated in Figure 2.39. In this case a static model is first fitted
to input-output data obtained from a static experiment. A dynamic model is
then fitted as indicated in Figure 2.39. Both Wiener and Hammerstein models
are tried to see which gives the best fit. The particular example is from a
tank system where the outflow is a nonlinear function of level. In this case the
Wiener model gives the best fit because the nonlinearity appears at the system
output. Notice in Figure 2.39 that the input steps are of equal size, but the
magnitude of the output response changes significantly. This data cannot be
well matched by a linear model.

The interactive tools give a very good feel for the relations between the pa-
rameters and the response and the sensitivity of the parameters. It is also very
effective to combine simple manual fits with numeric optimization. Most tools
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Figure 2.39 Illustrates computer-based nonlinear modeling. From [Wallén, 2000]

permit fitting a simple bump test, but there are also tools that permit general
input signals. They also make it possible to determine noise characteristics
and the prediction curve shown in Figure 2.30.

2.8 Model Reduction

Many methods for tuning PID controllers are based on simple models of process
dynamics. To use such methods it is necessary to have methods for simplifying
a complicated model. A typical case is when a model is obtained by combin-
ing models for subsystems. To find suitable approximations it is necessary to
specify the purpose of the model. For tuning PID controllers this can be done
by specifying the frequency range of interest. This can be done simply by spec-
ifying the highest frequency ω ∗ where the model is valid. For PI control the
frequency ω ∗ is about ω 145, the frequency where the phase lag of the process is
145○. The reason for this is that a PI controller always has a phase lag. For a
PID controller, which can provide phase lead, the frequency ω ∗ can be chosen
as ω 180.

Model reduction starts with a model represented by the transfer function
G(s). The transfer function is first factored as

G(s) = Gl(s) 1
1 + sTs

Gh(s). (2.54)

The low frequency factor Gl(s) has all its poles and zeros and time delays at
frequencies around ω ∗ or at lower frequencies. The high-frequency factor Gh(s)
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has dynamics at frequencies higher than ω ∗. The time constant Ts represents
an intermediate pole. The factorization can always be done in such a way that
the high frequency factor Gh(s) has the property Gh(0) = 1.

For design of PID controllers the model (2.54) will be simplified to

G(s) = Kp

1 + sT
e−sL

G(s) = Kp

(1 + sT1)(1 + sT2) e−sL.

(2.55)

The reason for these choices is that there are methods for designing PID con-
trollers for models of this type. These models are particularly suitable for typ-
ical process control problems where the dynamics have essentially monotone
step responses.

The Low-Frequency Factor

The low-frequency factor will normally only contain one or two modes. If the
system has multiple poles they can be approximated by the transfer function

Gl(s) = Kp

1 + sTe

e−sLe .

where Te and Le are obtained from Table 2.1. In this way we obtain a low-
frequency factor of first or second order, which is required for PID control. If
the model is more complex it is necessary to reduce ω ∗ or to use a more complex
controller.

Approximation of Fast Modes

There are several ways to approximate the fast modes. A simple way is to
characterize the high-frequency part by its average residence time Tarh. This
is illustrated by the following example.

EXAMPLE 2.12—APPROXIMATION OF FAST MODES

Consider a system where the high-frequency factor is

Gh(s) = (1 + sT1)(1 + sT2)
(1 + sT3)(1 + sT4)(1 + sT5) e−sL.

This system has the average residence time

Tarh = T3 + T4 + T5 + L − T1 − T2.

Compare this with Section 2.4, which shows how average residence times are
computed. When using digital control half the sampling period should also be
added to Tarh.
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Skogestad’s Half Rule

Having simplified the low- and high-frequency factors we have obtained a low-
frequency factor of the form given by (2.55) or (2.58) and a characterization
of the high-frequency factor by its average residence time Tarh. Skogestad has
suggested that the intermediate time constant Ts in (2.54) is approximated by
adding Ts/2 to the time delay of the model and Ts/2 to its time constant. The
reduced model then becomes

G(s) = Kp

1 + s(T + Ts/2) e−s(L+Tarh+Ts/2)

G(s) = Kp

(1 + sT1)(1 + s(T2 + Tarh/2)) e−s(L+Tarh/2).
(2.56)

The model error is characterized by Tarh + Ts/2, which means that it must be
required that ω ∗(Tarh +Ts/2) is sufficiently small. A reasonable value is that it
is less than 0.1 or 0.2, which means that the neglected dynamics has a phase
lag of 6 to 12 degrees.

Approximating Slow Modes by Integrators

Modes that are much slower than ω ∗ can be approximated by integrators. For
example, if ω ∗T or ω ∗T1 are larger than 5 to 10, the model (2.56) can be
approximated by

G(s) = Kp

1 + s(T + Tarh/2) e−s(L+Tarh/2) 	 Kp

s(T + Tarh/2) e−s(L+Tarh/2)

G(s) = Kp

(1 + sT1)(1 + s(T2 + Tarh/2)) e−s(L+Tarh/2)

	 Kp

sT1(1 + s(T2 + Tarh/2)) e−s(L+Tarh/2.

(2.57)

Another Model Representation

For some design techniques it is desirable to have models of the form

G(s) = b

s + a

G(s) = b1s + b2

s2 + a1s + a2
,

(2.58)

which do not have any time delays. These forms can also be used for oscillatory
systems. The models given by (2.55) can be converted to the form (2.58) by
using the approximation

e−sT 	 1 − sT/2
1 + sT/2

. (2.59)

Time delays and zeros in the right half plane are the features of a system that
ultimately limits the achievable performance. These properties are preserved
by the above approximation.
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Examples

Model reduction will now be illustrated with a few examples.

EXAMPLE 2.13—MODEL REDUCTION

Consider a system described by the transfer function

G(s) = Kp

(1 + s)(1 + 0.1s)(1 + 0.01s)(1 + 0.001s) . (2.60)

We have ω 90 = 3 and ω 180 = 31.6, which gives the ranges of ω ∗. Let us first
consider model reduction for a design with ω ∗ = 3. The low-frequency factor is

Gl(s) = Kp

1 + s
,

the mid-frequency factor is Ts = 0.1, and the average residence time of the
high-frequency part is Tarh = 0.011. Skogestad’s half rule gives the model

G̃(s) = Kp

1 + 1.05s
e−0.061s.

Requiring that ω ∗(Tarh + Ts/2) < 0.2 we find that the model can be used for
designs with ω ∗ < 3.3.

For ω ∗ = 31.6 the low-frequency factor becomes

Gl(s) = Kp

(1 + s)(1 + 0.1s) ,

the mid-frequency time constant is Ts = 0.01, and the average residence time
of the high-frequency part is then Tarh = 0.001. The half rule gives the model

G̃(s) = Kp

(1 + s)(1 + 0.105s) e−0.006s.

Requiring that ω ∗(Tarh + Ts/2) < 0.2 we find that the model can be used for
designs with ω ∗ < 33.

The approximations are illustrated in Figure 2.40.

A Warning

The fact that the step responses of two systems are similar does not imply
that the systems are similar under feedback control. This is illustrated by the
following example.

EXAMPLE 2.14—SIMILAR OPEN LOOP – DIFFERENT CLOSED LOOP

Systems with the transfer functions

G1(s) = 100
s + 1

, G2(s) = 100
(s + 1)(1 + 0.025s)2

59



Chapter 2. Process Models

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

−200

−150

−100

−50

0

�G
(iω

)�
ar

g
G

(iω
)

ω

Figure 2.40 Bode plots of the original system (solid line) and the approximations for
frequencies ω ∗ < 3.3 (dashed) and ω ∗ < 33 (dash-dotted).

have very similar open-loop responses as illustrated in Figure 2.41. The dif-
ferences between the step responses are barely noticeable in the figure. The
closed-loop systems obtained with unit feedback have the transfer functions

G1cl = 100
s + 101

, G2cl = 100
(1 + 0.01192s)(1 − 0.001519s + 0.0005193s2) .

The closed-loop systems are very different since the system P2cl is unstable.

It is also possible to have the opposite situation, namely, systems whose closed-
loop behavior are very similar even if their open-loop behavior are very differ-
ent.

EXAMPLE 2.15—DIFFERENT OPEN LOOP – SIMILAR CLOSED LOOP

The systems with the transfer functions

P1(s) = 100
s + 1

, P2(s) = 100
s − 1

have very different open-loop properties because one system is unstable and
the other is stable. The closed-loop systems obtained with unit feedback are,
however,

P1cl(s) = 100
s + 101

P2cl(s) = 100
s + 99

,

which are very close.

The paradoxes in the examples can be resolved by considering the frequency
ranges that are relevant for closed-loop control. In Example 2.14 the closed-loop
system bandwidth of relevance is about 100 rad/s. This corresponds to time
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Figure 2.41 Step responses for systems with the transfer functions G1(s) = 100/(s + 1)
(dashed) and G2(s) = 100/((s + 1)(1 + 0.025s)2) (solid).

constants of about 0.01 s. A closer examination shows that the step responses
in Figure 2.41 are indeed quite different at that time scale even if the general
appearance of the step responses are very similar. In Example 2.15 the closed-
loop bandwidth is also about 100 rad/s, which corresponds to a time scale of
0.01 s. At that time scale the open-loop systems are very similar even if one
model is stable and the other unstable. It is a good rule to be aware of the
relevant frequency ranges and to analyze the Bode plots. This is one of the
main reasons for using frequency response.

2.9 Summary

Modeling is an important aspect of controller tuning. The models we need
should describe how the process reacts to control signals. They should also
describe the properties of the disturbances that enter the system. Most work
on tuning of PID controllers has focused on the process dynamics, which is also
reflected in the presentation in this chapter.

A number of methods for determining the dynamics of a process have been
presented in this chapter. Some are very simple: they are based on a direct
measurement of the step response and simple graphical constructions. Others
are based on the frequency response. It has been shown that very useful infor-
mation can be generated from relay feedback experiments. Such experiments
are particularly useful because the process is brought into self-oscillation at the
ultimate frequency, which is of considerable interest for design of controllers.

The simple methods are useful in field work when a controller has to be
tuned and few tools are available. The methods are also useful to provide
understanding as well as being references when more complicated methods
are assessed. We have also presented more complicated methods that require
significant computations.

Models of different complexity have been presented. Many models were
characterized by a few parameters. Such models are useful for many purposes
and are discussed in Chapter 6. When using such models it should be kept in
mind that they are approximations.
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When deriving the models we also introduced two dimension-free quanti-
ties, the normalized time delay τ and the gain ratio κ . These parameters make
it possible to make a crude assessment of the difficulty of controlling the pro-
cess. Processes with small values of κ and τ are easy to control. The difficulty
increases as the values approach 1. Tuning rules based on τ and κ are provided
in Chapter 7.

To summarize: When deriving a simple model to be used for PID controller
tuning, it is important to ensure that the model describes the process well for
the typical input signals obtained during the process operations. The amplitude
and frequency distribution of the signal is of importance. Model accuracy may
be poor if the process is nonlinear or time varying. Control quality can be
improved by gain scheduling or adaptive control. It is also important to know
what kind of disturbances are acting on the system and which limitation they
impose.

2.10 Notes and References

Early efforts in modeling using differential equations were made independently
by [Maxwell, 1868] and [Vyshnegradskii, 1876] in connection with analysis of
engines with centrifugal governors. The idea of modeling a process by its reac-
tion curve (step response) emerged in the 1930s. The reaction curve was ap-
proximated by an FOTD model (2.18) in [Callender et al., 1936]. The reaction
curve was also used in [Ziegler and Nichols, 1942]. Frequency response argu-
ments were used in [Ivanoff, 1934] who investigated a temperature-control loop
using the model given by (2.32). Frequency response was also used by [Ziegler
and Nichols, 1942]. An early reference to the notion of block diagram is found
in [Mason and Philbrick, 1940].

Process modeling is a key element in understanding and solving a con-
trol problem. Good presentations of modeling are found in standard textbooks
on control, such as [Eckman, 1945; Buckley, 1964; Cannon, 1967; Smith, 1972;
Luyben, 1990; Shearer and Kulakowski, 1990]. The books [Oquinnaike and Ray,
1994; Marlin, 2000; Bequette, 2003; Rawlings and Ekerdt, 2002; Seborg et al.,
2004] are of particular interest for process control. These books have much ma-
terial on many different modeling techniques. Similar presentations are given
in [Gille et al., 1959; Harriott, 1964; Oppelt, 1964; Takahashi et al., 1972; Desh-
pande and Ash, 1981; Shinskey, 1996; Stephanopoulos, 1984; Hägglund, 1991].
The books [Tucker and Wills, 1960] and [Lloyd and Anderson, 1971] are writ-
ten by practitioners in control companies. There are also books that special-
ize in modeling for control system design; see [Wellstead, 1979; Nicholson,
1980; Nicholson, 1981; Close and Frederick, 1993].

By the mid-1950s frequency response was very well established as mani-
fested by a symposium organized as part of the annual meeting of the American
Society of Mechanical Engineering in 1953. The proceedings of the symposium
were published in the book [Oldenburg, 1956]. A nice overview of step and fre-
quency response methods is given in the paper [Rake, 1980]. Additional details
are given in [Strejc, 1959; Anderssen and White, 1971; Anderssen and White,
1970]. The doublet method is discussed in [Shinskey, 1994], and the method of
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moments is described in [Gibilaro and Lees, 1969].
The relay method is introduced in [Åström and Hägglund, 1984b], and it

is elaborated in [Hägglund and Åström, 1991; Schei, 1992; Hang and Åström,
2002]. The describing function method is well documented in [Atherton, 1975]
and [Gelb and Velde, 1968]. A method to estimate what is today called an ARX
model was developed in [Åström and Bohlin, 1965] and applied to modeling
and control of paper machines in [Åström, 1967]. There are many books on
parameter estimation: [Ljung and Söderström, 1983; Ljung, 1998; Söderström
and Stoica, 1989; Bohlin, 1991; Johansson, 1993]. Many useful practical aspects
on system identification are given in [Isermann, 1980].

Modeling has been greatly enhanced by simulation. The first simulation
of a control system with PID control was made at the University of Manch-
ester using a copy of the differential analyzer developed by Vannevar Bush;
see [Callender et al., 1936]. The differential analyser was also used in [Ziegler
and Nichols, 1942] to develop tuning rules. Pneumatic simulators built from
components of pneumatic controllers were used early by equipment manufac-
turers. The first electronic analog computer developed by Philbrick had a major
impact, and the use of simulation increased drastically. The rapid development
of digital computing has made it possible for every engineer to have simulation
tools on his lap; see [Åström et al., 1998]. Many of the simulation programs
used today mimic the diagrams used to program early analog computers in
the 1950s. There are major efforts underway to combine experiences of process
modeling with advances in computing science to develop a new generation of
languages and tools for process modeling; see [Elmqvist et al., 1998] and [Tiller,
2001].

There are many methods for model reduction. Early work was reported
in [Ziegler and Nichols, 1943]. A nice survey is found in [Glover, 1990]. One
method that is geared to PID control is presented in [Fröhr and Orttenburger,
1982]. The half-rule was developed in [Skogestad, 2003] as a simple method
that works well for the purpose of tuning PID controllers.
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