
13

Implementation

13.1 Introduction

PID controllers were originally implemented using analog techniques. Early
systems used pneumatic relays, bellows, and needle-valve constrictions. Elec-
tric motors with relays and feedback circuits and operational amplifiers were
used later. Many of the features like anti-windup and derivation of process
output instead of control error were incorporated as “tricks” in these imple-
mentations.

It is now common practice to implement PID controllers using microproces-
sors, and some of the old tricks have been rediscovered. Several digital PID
controllers in use today have features that are inherited from old techniques
when the controllers were implemented using pneumatic devices. This is a
typical example of the fact that ideas sometimes change at a much slower
rate than hardware. Several additional issues must be considered in connec-
tion with digital implementations. The most important ones have to do with
sampling, discretization, and quantization.

This chapter presents some implementation issues related to PID control.
Section 13.2 gives a short overview of the early analog pneumatic and elec-
tronic implementations. Section 13.3 treats computer implementation aspects
such as sampling, prefiltering, and discretization of the PID algorithm. Velocity
algorithms, or incremental algorithms, are needed in applications where the
integration is performed outside the controller. The most common application
is electrical motors. These algorithms, which are shown to be useful even when
the integration is performed inside the controller, are presented in Section 13.4.
Operational aspects, such as bumpless transfers at mode switches and param-
eter changes, are presented in Section 13.5. A controller may have different
outputs depending on which actuating device is used. Controller outputs are
discussed in Section 13.6. The chapter ends with a summary and references.

407

Chapter 13. Implementation

psp

py

pu

psysp

y

P A

K

Figure 13.1 Schematic diagram of a pneumatic P controller based on the force balance
principle.

13.2 Analog Implementations

The early implementations of PID controllers were all analog. This section
presents the pneumatic controller implementation and the analog electronic
implementation.

The Pneumatic Controller

This section presents the basic function of pneumatic controllers. To make this
clear, lots of details have been removed from the presentation and the drawings.
We refer to the references for details.

The Pneumatic P Controller A schematic diagram of a pneumatic P con-
troller based on force balance is shown in Figure 13.1. The system consists of
a beam that can rotate around a pivot point. The beam is provided with three
bellows, a spring, a position sensor, and a pneumatic amplifier. The bellows
can exert forces on the beam proportional to the pressure in the bellows. The
position sensor is a flapper valve, which gives a pressure signal that is ap-
proximately inversely proportional to the distance between the nozzle and the
beam. The pneumatic amplifier A can amplify pneumatic signals.

To understand the operation of the system it is assumed that the forces of all
bellows are proportional to the air pressure in the bellows. The two left bellows
receive pressures psp and py proportional to the set point and the measured
variable, respectively. The pressure amplifier A receives supply pressure ps and
provides output pressure pu, which is the controller output. The right bellow
labeled P is the feedback bellow or the proportional bellow. In the P controller
the pressure in this bellow, pp, is equal to the output pressure pu.

A torque balance gives the following relation between the pressures:

pu − bias = K (psp − py). (13.1)

The bias term is the force given by the spring. The gain K is determined by
the position of the balance point, and can therefore be chosen by adjusting this
point. Equation 13.1 is obviously the equation for a P controller.

408

13.2 Analog Implementations

psp

py

pu

psysp

y

P A

K

Td

Vd

Figure 13.2 Schematic diagram of a pneumatic PD controller based on the force balance
principle.

Suppose, for example, that the set-point pressure psp increases. The beam
will then rotate in positive direction, leading to a decrease in the outflow from
the nozzle valve. This will cause an increase of the output pressure pu.

The Pneumatic PD Controller A pneumatic PD controller is shown in
Figure 13.2. In this controller, a valve and a volume Vd is introduced between
the amplifier A and the feedback bellow P. Because of this valve, it is no longer
true that pp = pu, but the following dynamic relation between the two pressures
holds:

Pp(s) = 1
1 + sTd

Pu(s). (13.2)

The value of the time constant Td can be adjusted by the valve position.
Since a counteraction caused by the feedback bellow P is delayed compared

with the P controller, a change in py or psp will initially result in a larger
reaction in the output pressure pu.

A torque balance gives the following relations between the pressures:

pp − bias = K (psp − py).

From (13.2) this gives the following output pressure;

Pu(s) = bias+ K (1 + sTd)(Psp − Py),

which is the equation of a PD controller with derivative time Td.

The Pneumatic PID Controller A pneumatic PID controller is shown in
Figure 13.3. In this controller, the spring is replaced by a bellow labeled I. This
bellow is connected to the pressure pp through a volume Vi and a valve labeled
Ti. The pressure in the bellow I is

Pi(s) = 1
1 + sTi

Pp(s), (13.3)

409

Chapter 13. Implementation

psp

py

pu

psysp

y

P

I

A

K

Td

Vd

TiVi

Figure 13.3 Schematic diagram of a pneumatic PID controller based on the force balance
principle.

where the time constant Ti may be adjusted by the valve labeled Ti.
A torque balance gives the following relations between the pressures:

pp − pi = K (psp − py).

From (13.2) and (13.3) this gives the following output pressure:

Pu(s) = K (1 + sTi)(1 + sTd)
sTi

(Psp(s) − Py(s)). (13.4)

This equation shows that the system is a PID controller on interacting form
(see Section 3.2) with gain K , integral time Ti, and derivative time Td.

The idea of using feedback in the controller was a major invention. Both
the flapper valve and the pneumatic amplifier are strongly nonlinear. The ar-
rangement with the feedback loop implies that the input-output relation of the
controller does not change much even if the component changes, provided that
the gain is sufficiently large. This idea, which is called force feedback, gave
drastic improvements in the performance of the controllers. A typical example
of the impact of feedback.

The Analog Electronic Controller

A PID controller may be implemented by analog electronic components in many
ways. This section presents some basic implementations based on operational
amplifiers. Lots of details have been left out for the sake of simplicity. As for
the pneumatic controllers, we refer to the references for details.

The Electronic PI Controller An electronic PI controller is shown in Fig-
ure 13.4.

An approximate relation between the input voltage e and the output voltage
u is obtained by

u = −Z1

Z0
e,

410

13.2 Analog Implementations

R0 R1 C1

e

u

Figure 13.4 Schematic diagram of an electronic PI controller based on feedback around
an operational amplifier.

R0 R1

C0

e

u

Figure 13.5 Schematic diagram of an electronic PD controller based on feedback around
an operational amplifier.

where Z0 is the impedance between the negative input of the amplifier and
the input voltage e, and Z1 is the impedance between the zero input of the
amplifier and the output voltage u. These impedances are

Z0 = R0

Z1 = R1 + 1
C1p

,

where p is the differential operator. This gives the following relation between
the input voltage e and the output voltage u:

u = −Z1

Z0
e = −R1

R0

(
1 + 1
R1C1p

)
e.

This is a PI controller with parameters

K = R1

R0
Ti = R1C1.

A P controller is obtained by removing the capacitor.

The Electronic PD Controller An electronic PD controller is shown in
Figure 13.5.

The impedances between the negative input of the amplifier and the input
and output voltages, respectively, become

Z0 = R0

1 + R0C0p

Z1 = R1.

411

Chapter 13. Implementation

R0 R1

C0

C1

e

u

Figure 13.6 Schematic diagram of an electronic PID controller based on feedback around
an operational amplifier.

This gives the following relation between the input voltage e and the output
voltage u:

u = −Z1

Z0
e = −R1

R0
(1 + R0C0p) e.

This is a PD controller with parameters

K = R1

R0
Td = R0C0.

A P controller is obtained by removing the capacitor.

The Electronic PID Controller An electronic PID controller may be ob-
tained by combining the two previous schemes. This is shown in Figure 13.6.

The impedances between the negative input of the amplifier and the input
and output voltages, respectively, become

Z0 = R0

1 + R0C0p

Z1 = R1 + 1
C1p

.

This gives the following relation between the input voltage e and the output
voltage u:

u = −Z1

Z0
e = −R1

R0

(1 + R0C0p)(1 + R1C1p)
R1C1p

e.

This is a PID controller on interacting form with parameters

K = R1

R0
Ti = R1C1 Td = R0C0.

13.3 Computer Implementations

Most controllers are implemented nowadays in computers. There are some
topics that have to be considered due to the fact that the signals are sampled
at discrete time instances. These topics are treated in this section.

412

13.3 Computer Implementations

Sampling

When the controller is implemented in a computer, the analog inputs are read,
and the outputs are set with a certain sampling period. This is a drawback
compared to the analog implementations, since the sampling introduces dead
time in the control loop.

When a digital computer is used to implement a control law, the ideal se-
quence of operation is the following.

1. Wait for clock interrupt

2. Read analog input

3. Compute control signal

4. Set analog output

5. Update controller variables

6. Go to 1

With this implementation, the delay is minimized. If the analog input is read
with a sampling period h, the average delay of the measurement signal is
h/2. The computation time is often short compared to the sampling period.
This means that the total delay is about h/2. However, most controllers and
instrument systems do not organize the calculation in this way. Therefore, the
delays introduced because of the sampling are often several sampling periods.

Aliasing

The sampling mechanism introduces some unexpected phenomena, which must
be taken into account in a good digital implementation of a PID controller. To
explain these, consider the signals

s(t) = cos(nω st± ω t)
and

sa(t) = cos(ω t),

where ω s = 2π /h [rad/s] is the sampling frequency. Well-known formulas for
the cosine function imply that the values of the signals at the sampling instants
[kh, k = 0, 1, 2, ...] have the property

s(kh) = cos(nkhω s ± ω kh) = cos(ω kh) = sa(ω kh).

The signals s and sa thus have the same values at the sampling instants. This
means that there is no way to separate the signals if only their values at the
sampling instants are known. Signal sa is, therefore, called an alias of signal
s. This is illustrated in Figure 13.7. A consequence of the aliasing effect is that
a high-frequency disturbance after sampling may appear as a low-frequency
signal. In Figure 13.7 the sampling period is 1 s, and the sinusoidal disturbance
has a period of 6/5 s. After sampling, the disturbance appears as a sinusoid
with the frequency

fa = 1 − 5
6

= 1/6 Hz.

This low-frequency signal with time period 6 s is seen in the figure.

413

Chapter 13. Implementation

0

0

1

1 2 3 4 5

−1

sa

s

Figure 13.7 Illustration of the aliasing effect. The diagram shows signal s and its alias
sa.

Prefiltering

The aliasing effect can create significant difficulties if proper precautions are
not taken. High frequencies, which in analog controllers normally are effec-
tively eliminated by low-pass filtering, may, because of aliasing, appear as low-
frequency signals in the bandwidth of the sampled control system. To avoid
these difficulties, an analog prefilter (which effectively eliminates all signal
components with frequencies above half the sampling frequency) should be
introduced. Such a filter is called an antialiasing filter. A second-order Butter-
worth filter is a common antialiasing filter. Higher-order filters are also used
in critical applications. An implementation of such a filter using operational
amplifiers is shown in Figure 13.8. The selection of the filter bandwidth is
illustrated by the following example.

EXAMPLE 13.1—SELECTION OF PREFILTER BANDWIDTH

Assume it is desired that the prefilter attenuate signals by a factor of 16 at
half the sampling frequency. If the filter bandwidth is ω b and the sampling
frequency is ω s, we get

(ω s/2ω b)2 = 16.

Hence,

ω b = 1
8

ω s.

Notice that the dynamics of the prefilter will be combined with the process
dynamics.

Discretization

To implement a continuous-time control law, such as a PID controller in a
digital computer, it is necessary to approximate the derivatives and the integral
that appear in the control law. A few different ways to do this are presented
below.

414

13.3 Computer Implementations

Figure 13.8 Circuit diagram of a second-order Butterworth filter.

Proportional Action The proportional term is

P = K (bysp − y).

This term is implemented simply by replacing the continuous variables with
their sampled versions. Hence,

P(tk) = K (bysp(tk) − y(tk)) , (13.5)

where {tk} denotes the sampling instants, i.e., the times when the computer
reads the analog input.

Integral Action The integral term is given by

I(t) = K
Ti

t∫
0

e(s)ds.

It follows that
dI

dt
= K
Ti

e. (13.6)

There are several ways of approximating this equation. Approximating the
derivative by a forward difference gives

I(tk+1) − I(tk)
h

= K
Ti

e(tk).

This leads to the following recursive equation for the integral term

I(tk+1) = I(tk) + Kh
Ti

e(tk). (13.7)

If the derivative in Equation 13.6 is approximated instead by a backward
difference, the following is obtained:

I(tk) − I(tk − 1)
h

= K
Ti

e(tk).

415

Chapter 13. Implementation

This leads to the following recursive equation for the integral term:

I(tk+1) = I(tk) + Kh
Ti

e(tk+1). (13.8)

Another simple approximation method is due to Tustin. This approximation
is

I(tk+1) = I(tk) + Kh
Ti

e(tk+1) + e(tk)
2

. (13.9)

Yet another method is called ramp equivalence. This method gives exact
outputs at the sampling instants if the input signal is continuous and piecewise
linear between the sampling instants. The ramp equivalence method gives the
same approximation of the integral term as the Tustin approximation, i.e.,
Equation 13.9.

Notice that all approximations have the same form, i.e.,

I(tk+1) = I(tk) + bi1e(tk+1) + bi2e(tk), (13.10)

but with different values of parameters bi1 and bi2.

Derivative Action The derivative term with the classical first-order filter
is given by Equation 3.14, i.e.,

Td

N

dD

dt
+ D = −KTd

dy

dt
. (13.11)

This equation can be approximated in the same way as the integral term.
Approximating the derivative by a forward difference gives

Td

N

D(tk+1) − D(tk)
h

+ D(tk) = −KTd

y(tk+1) − y(tk)
h

.

This can be rewritten as

D(tk+1) =
(

1 − Nh
Td

)
D(tk) − KN (y(tk+1) − y(tk)) . (13.12)

If the derivative in Equation 13.11 is approximated by a backward differ-
ence, the following equation is obtained:

Td

N

D(tk) − D(tk−1)
h

+ D(tk) = −KTd

y(tk) − y(tk−1)
h

.

This can be rewritten as

D(tk) = Td

Td + Nh D(tk−1) − KTdN

Td + Nh (y(tk) − y(tk−1)) . (13.13)

Using the Tustin approximation to approximate the derivative term gives

D(tk) = 2Td − Nh
2Td + Nh D(tk−1) − 2KTdN

2Td + Nh (y(tk) − y(tk−1)) . (13.14)

416

13.3 Computer Implementations

−2

−2

−2

−1

−1

0

0
0

1

1

2

2

2

40

−6

FD
RE

BD
T

FD

BD

RE

T

Figure 13.9 Phase curves for PD controllers obtained by different discretizations of the
derivative term sTd/(1 + sTd/N) with Td = 1, N = 10 and a sampling period 0.02. The
discretizations are forward differences (FD), backward differences (BD), Tustin’s approxi-
mation (T), and ramp equivalence (RE). The lower diagram shows the differences between
the approximations and the true phase curve.

Finally, the ramp equivalence approximation is

D(tk) = e−Nh/TdD(tk−1) − KTd(1 − e−Nh/Td)
h

(y(tk) − y(tk−1)) . (13.15)

All approximations have the same form,

D(tk) = adD(tk−1) − bd (y(tk) − y(tk−1)) , (13.16)

but with different values of parameters ad and bd.
The approximations of the derivative term are stable only when �ad� < 1.

When using the forward difference approximation stability requires that Td >
Nh/2. The approximation becomes unstable for small values of Td. The other
approximations are stable for all values of Td. Notice, however, that Tustin’s
approximation and the forward difference approximation give negative values
of ad if Td is small. This is undesirable because the approximation will then
exhibit ringing. The backward difference approximation give good results for
all values of Td, including Td = 0.

For reasonable fast sampling there are only small differences between the
approximations as long as they are stable. There are, however, practical differ-
ences. In a general-purpose controller it is desirable that derivative action can
be switched off. A natural way to do this is to set Td = 0. This can easily be ac-
complished when the derivative is approximated by a backward difference. All
other methods will either give instability or overflow for Td = 0. The backward
difference is therefore a reasonable choice for approximating the derivative.

Figure 13.9 shows the phase curves for the different discrete time approxi-
mations. Tustin’s approximation and the ramp equivalence approximation give
the best agreement with the continuous time case, the backward approxima-
tion gives less phase advance, and the forward approximation gives more phase

417

Chapter 13. Implementation

advance. The forward approximation is seldom used because of the problems
with instability for small values of derivative time Td. Tustin’s algorithm is
used quite frequently because of its simplicity and its close agreement with
the continuous time transfer function. The backward difference is used when
an algorithm that is well behaved for small Td is needed.

All approximations of the PID controller can be represented as

R(q)u(kh) = T(q)ysp(kh) − S(q)y(kh), (13.17)
where q is the forward shift operator, and the polynomials R, S, and T are of
second order. The polynomials R, S, and T have the forms

R(q) = (q− 1)(q− ad)
S(q) = s0q2 + s1q+ s2
T(q) = t0q2 + t1q+ t2,

(13.18)

which means that Equation 13.17 can be written as

u(kh) = t0 ysp(kh) + t1 ysp(kh− h) + t2 ysp(kh− 2h)
− s0 y(kh) − s1 y(kh− h) − s2 y(kj − 2h)
+ (1 + ad)u(kh − h) − adu(kh− h).

The coefficients in the S and T polynomials are

s0 = K + bi1 + bd

s1 = −K (1 + ad) − bi1ad + bi2 − 2bd

s2 = Kad − bi2ad + bd

t0 = Kb+ bi1

t1 = −Kb(1 + ad) − bi1ad + bi2

t2 = Kbad − bi2ad.

(13.19)

The coefficients in the polynomials for different approximation methods are
given in Table 13.1.

Controller with Second Order Filter

A nice implementation of a PID controller is to combine a second order filtering
of the measured signal with an ideal PID controller; see Section 3.3. We will
now discuss how such controllers can be implemented. Let y be the measured
signal and yf the filtered signal. We have

Yf (s) = G f (s)Y(s) = 1
1 + sTf + (sTf)2/2

Y(s). (13.20)

Introducing the state variables x1 = yf and x2 = Tf dyf /dt the filter can be
represented as

Tf

dx1

dt
= x2

Tf

dx2

dt
= 2(−x1 − x2 + y).

(13.21)

418

13.3 Computer Implementations

Table 13.1 Coefficients in different approximations of the continuous time PID con-
troller.

Forward Backward Tustin Ramp equivalence

bi1 0
Kh

Ti

Kh

2Ti

Kh

2Ti

bi2
Kh

Ti

0
Kh

2Ti

Kh

2Ti

ad 1 − Nh
Td

Td

Td + Nh
2Td − Nh
2Td + Nh e−Nh/Td

bd KN
KTdN

Td + Nh
2KTdN

2Td + Nh
KTd(1 − e−Nh/Td)

h

The filtered derivative dyf /dt = x2/Tf can be extracted from the filter and the
controller is then given by

u = k(bysp − yf) + ki

∫ t

0
(ysp(τ) − yf (τ))dτ + kd

dyf

dt
. (13.22)

If the PID controller (13.22) is implemented digitally, both x1 = yf and x2 =
Tf dyf /dt have to be converted to digital form. This implementation is suit-
able for special-purpose systems. For general-purpose systems the filter can be
implemented digitally. Assume that the sampling has period h and let the sam-
pling instants be tk. Approximating the derivative in (13.21) with a backward
difference we find

x1(t) = x1(t− h) + hTf

T2
f + 2hTf + 2h2

x2(t− h)

+ 2h2

T2
f + 2hTf + 2h2

(y(t) − x1(t− h))

x2(t) = T2
f

T2
f + 2hTf + 2h2

x2(t− h) + 2hTf

T2
f + 2hTf + 2h2

(y(t) − x1(t− h)).

To obtain an algorithm which permits the parameter Tf to be zero we introduce
the state variables

y1 = x1

y2 = h

Tf

x2.

419

Chapter 13. Implementation

ΣsK

du

dt

e
K

Ti

s2KTd

1+ sTd / N
 ed

 ep u1
s

External
integrator

Figure 13.10 Block diagram of a PID algorithm in velocity form.

The equation for the controller can then be written as

y1(t) = y1(t− h) + p1 y2(t− h) + p2
(
y(t) − y1(t− h)) = y1(t− h) + y2(t)

y2(t) = p1 y2(t− h) + p2
(
y(t) − y1(t− h))

v(t) = K (bysp − y1) − p4 y2(t) + I(t− h)
= K (bysp − y1) − p2(K + p4)y(t)

+ (
p2(K + p4) − K)

y1(t− h) + (
K − p1(k+ p4))y2(t− h) + I(t− h)

u(t) = sat(v)
I(t) = I(t− h) + p3(ysp(t) − y1(t)) + p5(u(t) − v(t)).

(13.23)
where the integral term has been approximated by a forward difference and
protection for windup has been introduced. The parameters of the controller
are given by

p1 = T2
f

T2
f + 2hTf + 2h2

p2 = 2h2

T2
f + 2hTf + 2h2

p3 = Kh
Ti

p4 = KTd

h
p5 = h

Tt

(13.24)

13.4 Velocity Algorithms

The algorithms described so far are called positional algorithms because the
output of the algorithms is the control variable. In certain cases the control
system is arranged in such a way that the control signal is driven directly by
an integrator, e.g., a motor. It is then natural to arrange the algorithm in such
a way that it gives the velocity of the control variable. The control variable is
then obtained by integrating its velocity. An algorithm of this type is called a
velocity algorithm. A block diagram of a velocity algorithm for a PID controller
is shown in Figure 13.10.

420

13.4 Velocity Algorithms

Velocity algorithms were commonly used in many early controllers that
were built around motors. In several cases, the structure was retained by the
manufacturers when technology was changed in order to maintain functional
compatibility with older equipment. Another reason is that many practical is-
sues, like wind-up protection and bumpless parameter changes, are easy to im-
plement using the velocity algorithm. This is discussed further in Sections 3.5
and 13.5. In digital implementations velocity algorithms are also called incre-
mental algorithms.

Incremental Algorithm

The incremental form of the PID algorithm is obtained by computing the time
differences of the controller output and adding the increments

∆u(tk) = u(tk) − u(tk−1) = ∆P(tk) + ∆ I(tk) + ∆D(tk).

In some cases integration is performed externally. This is natural when a step-
per motor is used. The output of the controller should then represent the in-
crements of the control signal, and the motor implements the integrator. The
increments of the proportional part, the integral part, and the derivative part
are easily calculated from Equations 13.5, 13.10, and 13.16:

∆P(tk) = P(tk) − P(tk−1) = K (bysp(tk) − y(tk) − bysp(tk−1) + y(tk−1))
∆ I(tk) = I(tk) − I(tk−1) = bi1 e(tk) + bi2 e(tk−1)

∆D(tk) = D(tk) − D(tk−1) = ad∆D(tk−1) − bd (y(tk) − 2y(tk−1) + y(tk−2)) .

One advantage with the incremental algorithm is that most of the computa-
tions are done using increments only. Short word-length calculations can often
be used. It is only in the final stage where the increments are added that
precision is needed.

Velocity Algorithms for Controllers without Integral Action

A velocity algorithm cannot be used directly for a controller without integral
action because such a controller cannot keep the stationary value. This can be
understood from the block diagram in Figure 13.11A, which shows a propor-
tional controller in velocity form. Stationarity can be obtained for any value of
the control error e, since the output from the derivation block is zero for any
constant input. The problem can be avoided with the modification shown in
Figure 13.11B. Here, stationarity is only obtained when u = K e+ ub, where
ub is the bias term.

If a sampled PID controller is used, a simple version of the method illus-
trated in figure 13.11B is obtained by implementing the P controller as

∆u(t) = u(t) − u(t− h) = K e(t) + ub − u(t− h),

where h is the sampling period.

421

Chapter 13. Implementation

(A)
e u

K s

1
s

(B)
e u

Σ

1
s

K s

a

 ub

+ −

+

Σ

Figure 13.11 Illustrates the difficulty with a proportional controller in velocity form (A)
and a way to avoid it (B).

Feedforward Control

Feedforward control was discussed in Chapter 5. In feedforward control, the
control signal is composed of two terms,

u = u f b + u f f .

Here u f b is the feedback component and u f f is the feedforward component,
either from a measurable disturbance or from the set point.

To avoid integrator windup, it is important that the antiwindup mechanism
acts on the final control signal u, and not only on the feedback component u f b.

Unfortunately, many of the block-oriented instrument systems available to-
day have the antiwindup mechanisms inside the feedback controller blocks,
without any possibility to add feedforward signals to these blocks. Hence, the
feedforward signals must be added after the controller blocks. This may lead
to windup. Because of this, several tricks, like feeding the feedforward sig-
nal through high-pass filters, are used to reduce the windup problem. These
strategies do, however, lead to a less effective feedforward.

Incremental algorithms are efficient for feedforward implementation. By
first adding the increments of the feedback and feedforward components,

∆u = ∆u f b + ∆u f f

and then forming the control signal as

u(t) = u(t− h) + ∆u(t),

windup is avoided. This requires that the feedback control blocks have inputs
for feedforward signals.

422

13.5 Operational Aspects

Inc PID

A

MCU
+

–

M

1
s

u

y sp

y

Figure 13.12 Bumpless transfer in a controller with incremental output. MCU stands
for manual control unit.

13.5 Operational Aspects

Practically all controllers can be run in two modes: manual or automatic. In
manual mode the controller output is manipulated directly by the operator,
typically by pushing buttons that increase or decrease the controller output. A
controller may also operate in combination with other controllers, such as in
a cascade or ratio connection, or with nonlinear elements, such as multipliers
and selectors. This gives rise to more operational modes. The controllers also
have parameters that can be adjusted in operation. When there are changes
of modes and parameters, it is essential to avoid switching transients. The
way the mode switchings and the parameter changes are made depends on the
structure chosen for the controller.

Bumpless Transfer Between Manual and Automatic

Since the controller is a dynamic system, it is necessary to make sure that
the state of the system is correct when switching the controller between man-
ual and automatic mode. When the system is in manual mode, the control
algorithm produces a control signal that may be different from the manually
generated control signal. It is necessary to make sure that the two outputs
coincide at the time of switching. This is called bumpless transfer.

Bumpless transfer is easy to obtain for a controller in incremental form.
This is shown in Figure 13.12. The integrator is provided with a switch so that
the signals are either chosen from the manual or the automatic increments.
Since the switching only influences the increments there will not be any large
transients.

A similar mechanism can be used in the series, or interacting, implemen-
tation of a PID controller shown in Figure 3.3, see Figure 13.13. In this case
there will be a switching transient if the output of the PD part is not zero at
the switching instant.

For controllers with parallel implementation, the integrator of the PID con-
troller can be used to add up the changes in manual mode. The controller shown
in Figure 13.14 is such a system. This system gives a smooth transition be-
tween manual and automatic mode provided that the switch is made when the
output of the PD block is zero. If this is not the case, there will be a switching
transient.

It is also possible to use a separate integrator to add the incremental

423

Chapter 13. Implementation

 PD

M
A

MCU

u

+

–

Σ

1
1+ sTi

y sp

 y

Figure 13.13 Bumpless transfer in a PID controller with a special series implementa-
tion.

u
Σ Σ

Σ

A
M

A

M

PD

+

1
s

 ∆I

−

+

−

Figure 13.14 A PID controller where one integrator is used both to obtain integral action
in automatic mode and to sum the incremental commands in manual mode.

changes from the manual control device. To avoid switching transients in such
a system, it is necessary to make sure that the integrator in the PID controller
is reset to a proper value when the controller is in manual mode. Similarly,
the integrator associated with manual control must be reset to a proper value
when the controller is in automatic mode. This can be realized with the circuit
shown in Figure 13.15. With this system the switch between manual and auto-
matic is smooth even if the control error or its derivative is different from zero
at the switching instant. When the controller operates in manual mode, as is
shown in Figure 13.15, the feedback from the output v of the PID controller
tracks the output u. With efficient tracking the signal v will thus be close to
u at all times. There is a similar tracking mechanism that ensures that the
integrator in the manual control circuit tracks the controller output.

Bumpless Parameter Changes

A controller is a dynamical system. A change of the parameters of a dynamical
system will naturally result in changes of its output. Changes in the output can
be avoided, in some cases, by a simultaneous change of the state of the system.
The changes in the output will also depend on the chosen realization. With a
PID controller it is natural to require that there be no drastic changes in the

424

13.5 Operational Aspects

u

PD

e

– +

A

M

Σ Σ

Σ

K

Ti

1
s

Σ

–
+

Σ

+
−

1
Tm

1

Tt

1
s

1
Tt

 ysp

 y

Figure 13.15 PID controller with parallel implementation that switches smoothly be-
tween manual and automatic control.

output if the parameters are changed when the error is zero. This will hold for
all incremental algorithms because the output of an incremental algorithm is
zero when the input is zero, irrespective of the parameter values. For a position
algorithm it depends, however, on the implementation.

Assume that the state is chosen as

xI =
t∫
e(τ)dτ

when implementing the algorithm. The integral term is then

I = K
Ti

xI .

Any change of K or Ti will then result in a change of I. To avoid bumps when
the parameters are changed, it is essential that the state be chosen as

xI =
t∫
K (τ)
Ti(τ) e(τ)dτ

when implementing the integral term.
With sensible precautions, it is easy to ensure bumpless parameter changes

if parameters are changed when the error is zero. There is, however, one case
where special precautions have to be taken, namely, if set-point weighting is
used. To have bumpless parameter changes in such a case it is necessary that
the quantity P + I be invariant to parameter changes. This means that when
parameters are changed, the state I should be changed as follows:

Inew = Iold + Kold(bold ysp − y) − Knew(bnew ysp − y). (13.25)

425

Chapter 13. Implementation

Σ

Σ
Track

Manual

TR

M
M

1
s

1
Tt

1
Tm

Figure 13.16 Manual control module.

TR
M

M

TR
M

M

TR

MV
SP

PID

M

A

Manual
input

Manual
set point

External
set point
Measured
value

Figure 13.17 A reasonable complete PID controller with antiwindup, automatic-manual
mode, and manual and external set point.

To build automation systems it is useful to have suitable modules. Figure
13.16 shows the block diagram for a manual control module. It has two inputs:
a tracking input and an input for the manual control commands. The system
has two parameters: the time constant Tm for the manual control input and
the reset time constant Tt. In digital implementations it is convenient to add a
feature so that the command signal accelerates as long as one of the increase-
decrease buttons is pushed. Using the module for PID control and the manual
control module in Figure 13.16, it is straightforward to construct a complete
controller. Figure 13.17 shows a PID controller with internal or external set
points via increase-decrease buttons and manual automatic mode. Notice that
the system only has two switches.

426

13.6 Controller Outputs

Computer Code

As an illustration we will give computer codes for two PID controllers. A PID
controller with first order filtering of the derivative term where the derivative
term is approximated by backward differences is described by Equations 13.5,
13.7,13.9, and 13.13. Anti-windup is provided using the scheme described in
Section 3.5. A skeleton code for the controller is given in Figure 13.18. The
main loop has two states, the integral term I, and x which is used to im-
plement derivative action. The parameters p1, . . . , p6 are precomputed to save
computing time in the main loop. These parameters have to be computed only
when parameters are changed. The integral term is also reset as described by
(13.25) to avoid transients when parameters are changed. The main loop in
the control algorithm requires eight additions and six multiplications. Notice
that the calculations are structured so that there are only three additions and
two multiplications between reading the analog inputs are setting the digital
output. The states are updated after setting the digital output.

A PID controller with second order filtering of the process variable is de-
scribed by Equation 13.23, where the filter is implemented using backward
differences and the integral term is approximated using forward differences.
Anti-windup is obtained by the scheme shown in Figure 3.13. The algorithm
has three states y1, y2, and I, which represent the states of the measurement
filter and the integral term. The main loop in the control algorithm requires
ten additions and seven multiplications. Using a second order filter only re-
quires a marginal increase of computing time. The time between reading the
analog inputs and setting the digital output can be reduced by changing the
coordinates of the representation of the filter.

13.6 Controller Outputs

Analog Outputs

The inputs and outputs of a controller are normally analog signals, typically
0–20 mA or 4–20 mA. The main reason for using 4 mA instead of 0 mA as the
lower limit is that many transmitters are designed for two-wire connection.
This means that the same wire is used for both driving the sensor and trans-
mitting the information from the sensor. It would not be possible to drive the
sensor with a current of 0 mA. The main reason for using current instead of
voltage is to avoid the influence of voltage drops along the wire due to resis-
tance in the (perhaps long) wire. In pneumatic controllers, the standard range
is 3–15 psi.

Thyristors and Triacs

In temperature controllers it is common practice to integrate the power am-
plifier with the controller. The power amplifier could be a thyristor or a triac.
With a thyristor, an AC voltage is switched to the load at a given angle of
the AC voltage. Since the relation between angle and power is nonlinear, it
is crucial to use a transformation to maintain a linear relationship. A triac is

427

Chapter 13. Implementation

"Compute controller coefficients

p1=K*b "set-point gain

p2=K+K*Td/(Tf+h) "PD gain

p3=Tf/(Tf+h) "filter constant

p4=K*Td*h/((Tf+h)*(Tf+h)) "derivative gain

p5=K*h/Ti "integral gain

p6=h/Tt "anti-windup gain

"Bumpless parameter changes

I=I+Kold*(bold*ysp-y)-Knew*(bnew*ysp-y)

"Control algorithm

adin(ysp) "read set point

adin(y) "read process variable

v=p1*ysp-p2*y+x+I "compute nominal output

u=sat(v,ulow,uhigh) "saturate output

daout(u) "set analog output

x=p3*x+p4*y "update derivative

I=I+p5*(ysp-y)+p6*(u-v) "update integral

Figure 13.18 Skeleton code for implementing a PID controller with first order filtering
of the derivative term.

"Compute controller coefficients

den=Tf*Tf+2*h*Tf+2*h*h "denominator

p1=Tf*Tf/den "filter constant

p2=2*h*h/den "filter constant

p3=K*h/Ti "integral gain

p4=K*Td/h "derivative gain

p5=h/Tt "anti-windup gain

"Bumpless parameter changes

I=I+Kold*(bold*ysp-y1)-Knew*(bnew*ysp-y1)

"Control algorithm

r=adin(ysp) "read set point

y=adin(y) "read process variable

x2=p1*y2+p2*(y-y1) "update filter state x2

y1=y1+y2 "update filter state x1

v=K*(b*ysp-y1)-p4*y2+I "compute nominal output

u=sat(v,ulow,uhigh) "saturate output

daout(u) "set analog output

I=I+p3*(ysp-y1)+p5*(u-v) "update integral

Figure 13.19 Skeleton code for implementing a PID controller with second order filtering
of the measured signal.

428

13.6 Controller Outputs

100%

0%

100%

0%

Tcycle

u

e

Time

Time

Figure 13.20 Illustration of controller output based on pulse width modulation.

also a device that implements switching of an AC signal, but only at the zero
crossing. Such a device is similar to a pulse output.

Pulse Width Modulation

In some cases, such as with the triac, there is an extreme quantization in the
sense that the actuator only accepts two values, on or off. In such a case, a
cycle time Tcycle is specified, and the controller gives a pulse with width

Tpulse(t) = u(t) − umin

umax − umin
Tcycle. (13.26)

A similar, but slightly different, situation occurs when the actuator has three
levels: max, min, and zero. A typical example is a motor-driven valve where
the motor can stand still, go forward, or go backward.

Figure 13.20 illustrates the pulse width modulation. The figure shows the
output from a P controller with pulse width modulation for different values of
the control error.

Three-Position Pulse Output

If a valve is driven by a constant-speed electrical motor, the valve can be in
three states: “increase,” “stop,” and “decrease.” Control of valves with electrical
actuators is performed with a controller output that can be in three states.
Three-position pulse output is performed using two digital outputs from the
controller. When the first output is conducting, the valve position will increase.
When the second output is conducting, the valve position will decrease. If none
of the outputs are conducting, the valve position is constant. The two outputs
must never be conducting at the same time.

There is normally both a dead zone and a dead time in the controller to
ensure that the change of direction of the motor is not too frequent and not too

429

Chapter 13. Implementation

PID

1

–1

Controller Actuator

v∆u 1
sTrun

Figure 13.21 A PID controller with three-position pulse output combined with an elec-
trical actuator.

fast. It means that the controller output is constant as long as the magnitude
of the control error is within the dead zone and that the output is stopped for
a few seconds before it is allowed to change direction.

A servo-motor is characterized by its running time Trun, which is the time
it takes for the motor to go from one end position to the other. Since the servo-
motor has a constant speed, it introduces an integrator in the control loop,
where the integration time is determined by Trun. A block diagram describing
a PID controller with three-position pulse output combined with an electrical
actuator is shown in Figure 13.21. Suppose that we have a steady-state situa-
tion, where the output from the PID controller u is equal to the position v of
the servo-motor. Suppose further that we suddenly want to increase the con-
troller output by an amount ∆u. As long as the increase-output is conducting,
the output v from the servo-motor will increase according to

∆v = 1
Trun

t∫
0

1 dt = t

Trun
.

To have ∆v equal to ∆u, the integration must be stopped after time

t = ∆uTrun.

In a digital controller, this means that the digital output corresponding to an
increasing valve position is to be conducting for n sampling periods, where n
is given by

n = ∆uTrun

h
,

where h is the sampling period of the controller.
To be able to perform a correct three-position pulse output, two buffers

(Buff_increase and Buff_decrease) must be used to hold the number of pulses
that should be sent out. A computer code for three-position pulse output is given
in Figure 13.22. For the sake of simplicity, details such as dead zone and dead
time are omitted in the code.

According to Figure 13.21, the controller output is ∆u instead of u in the
case of three-position pulse output. The integral part of the control algorithm
is outside the controller, in the actuator. This solution causes no problems if
the control algorithm really contains an integral part. P and PD control can
not be obtained without information of the valve position, see Figure 13.11.

430

13.7 Summary

if delta_u > 0 then

if valve_is_increasing then

Buff_increase = Buff_increase + n;

else

Buff_decrease = Buff_decrease - n;

if Buff_decrease < 0 then

Buff_increase = - Buff_decrease;

Buff_decrease = 0;

valve_is_decreasing = false;

valve_is_increasing = true;

end;

end;

else if delta_u < 0 then

if valve_is_increasing then

Buff_decrease = Buff_decrease + n;

else

Buff_increase = Buff_increase - n;

if Buff_increase < 0 then

Buff_decrease = - Buff_increase;

Buff_increase = 0;

valve_is_increasing = false;

valve_is_decreasing = true;

end;

end;

end;

if Buff_increase > 0 then

Increaseoutput = 1;

Decreaseoutput = 0;

Buff_increase = Buff_increase - 1;

else if Buff_decrease > 0 then

Increaseoutput = 0;

Decreaseoutput = 1;

Buff_decrease = Buff_decrease - 1;

end;

Figure 13.22 Skeleton code for three-position pulse output.

13.7 Summary

In this chapter we have described implementation of PID controllers. We have
followed the historical development starting with pneumatic and electronic im-
plementation of analog controllers. Computer implementation are presented in
detail including skeleton code. The reason for doing this is that many features
of modern implementation have inherited several features of the old analog
computers; the preference for the series form is one example.

It is interesting to consider the development of the controllers. During

431

Chapter 13. Implementation

each phase of the development the technology has matured and improved,
but knowledge has often been lost in the technology shifts. For example, it
took quite a while before the importance of measurement filtering and anti-
windup were appreciated in the computer implementations. One reason for it
is that many details were not well documented and thus easily forgotten when
technology changed. Another was that some good features were obtained auto-
matically because of particular features of the technology. The important issues
of operational aspects and human-machine interfaces have also discussed in
this chapter.

13.8 Notes and References

The book [Holzbock, 1958] presents many early implementations of PID con-
trollers using pneumatic, hydraulic, and electric technologies. Implementation
of pneumatic controllers are discussed in [Lloyd and Anderson, 1971; Pavlik
and Machei, 1960]. Electronic implementations are discussed by [Anderson,
1972]. It in interesting that all books mentioned above are written by equip-
ment vendors. The paper by [Goff, 1966b] describes early efforts in digital
implementation of PID controllers. Digital implementations are treated in de-
tail in [Clarke, 1984; Hanselmann, 1987; Åström and Wittenmark, 1997]. The
paper [Turnbull, 1988] gives a broad description of the development of Eu-
rotherm’s temperature controller spanning a period of more than two decades
and technologies from electronic to digital. The book [Dote, 1972] describes
implementation of controllers for motion control. Code for implementation on
signal processors that admits very fast sampling is found in [Åström and Ste-
ingrímsson, 1991].

432

	Front Matter
	Table of Contents
	13. Implementation
	13.1 Introduction
	13.2 Analog Implementations
	13.2.1 The Pneumatic Controller
	13.2.1.1 The Pneumatic P Controller
	13.2.1.2 The Pneumatic PD Controller
	13.2.1.3 The Pneumatic PID Controller

	13.2.2 The Analog Electronic Controller
	13.2.2.1 The Electronic PI Controller
	13.2.2.2 The Electronic PD Controller
	13.2.2.3 The Electronic PID Controller

	13.3 Computer Implementations
	13.3.1 Sampling
	13.3.2 Aliasing
	13.3.3 Prefiltering
	13.3.4 Discretization
	13.3.4.1 Proportional Action
	13.3.4.2 Integral Action
	13.3.4.3 Derivative Action

	13.3.5 Controller with Second Order Filter

	13.4 Velocity Algorithms
	13.4.1 Incremental Algorithm
	13.4.2 Velocity Algorithms for Controllers without Integral Action
	13.4.3 Feedforward Control

	13.5 Operational Aspects
	13.5.1 Bumpless Transfer between Manual and Automatic
	13.5.2 Bumpless Parameter Changes
	13.5.3 Computer Code

	13.6 Controller Outputs
	13.6.1 Analog Outputs
	13.6.2 Thyristors and Triacs
	13.6.3 Pulse Width Modulation
	13.6.4 Three-Position Pulse Output

	13.7 Summary
	13.8 Notes and References

	Bibliography
	Index

