Integrator Windup and How to Avoid It
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Abstract. This paper describes the phenomenon of
integrator windup and various ways of avoiding it. It first
covers a number of ad hoc schemes. A general procedure
to avoid windup which admits a unification of the ideas
is given and the results are illustrated on a number of
examples.

1. Introduction

Most control systems are designed based on linear theory.
This is simple and works very well for regulation around
a set point because the process behavior can then be de-
scribed very well by linear models. To control a system
over a wide range it is, however, necessary to consider
nonlinear effects. Actuator saturation, which is present
in all systems, is particularly important. The effects of
saturation are clearly noticeable when the controller is an
unstable system. This is always the case for a controller
with integral action. Since the feedback loop is broken
when the actuator saturates the unstable modes of the
regulator may then drift to undesirable values. The conse-
quences are that it may take a long time for the system to
reach equilibrium after an upset. The phenomenon which
was first noticed in conventional PID control is therefore
called integrator windup. It is well known to practitioners
of automatic control but has not received much attention
from theoreticians and it is usually neglected in standard
courses on control. This paper reviews the windup phe-
nomenon and different ways to avoid if.

2. Ad hoc methods

Let us first illustrate the phenomenon of windup. Fig-
ure 1 shows PI control of an integrator with a satu-
rating actuator. The initial set-point change is so large
that the actuator saturates at the high limit. The inte-
gral term increases initially because the error is positive
and it reaches its largest value at time ¢ = 10 when the
error goes through zero. The output remains saturated
at this point because of the large value of the integral
term. It does not leave the saturation limit until the er-
ror has been negative for sufficiently long time to let the
integral part come down to a small level. The net effect
is a large overshoot and a damped oscillation where the
control signal flips from one extreme to the other like in
relay oscillation. The output finally comes so close to the
set point that the actuator does not saturate. The system
then behaves linearly and settles.

Incremental Algorithms

In the early phases of feedback control integral action
was integrated with the actuator by having a motor drive
the valve directly. In this case windup is handled auto-
matically because integration stops when the valve stops.
When controllers were implemented by analog techniques
and later with computers some manufacturers used a con-
figuration that was a direct translation of the old me-
chanical design. This led to the so called incremental
algorithm. In this algorithm the rate of change of the
control signal is first computed and then fed to an inte-
grator. In some cases this integrator is a motor directly
connected to the actuator. In other cases the integrator
is implemented digitally. With this approach it is easy to
handle mode changes and windup. Windup is avoided by
stopping the integration whenever the output saturates.
If the actuator output is not measured a model which
computes the saturated output can be used. The rate of
change of the control signal is also easy to Lmit.

Back-calculation and Tracking

The phenomenon of windup was noticed when the di-
rect connection between the integrator and the actuator
was broken. Several tricks were invented to avoid windup.
They were described under labels like preloading, batch
unit, etc. Although the problem was well understood
there were often limits imposed due to the analog imple-
mentations. The ideas were often kept as trade secrets
and not much spoken about.

The problem of windup was rediscovered when con-
trollers were implemented digitally and several methods
to avoid windup were presented in the literature. Back-
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Figure 1. Illustration of integrator windup (dashed
line) and control with anti-windup (solid line).
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calculation, proposed by Fertik and Ross (1967), works
as follows: When the output saturates the integral is re-
computed so that its new value gives an ocutput at tlie
saturation limit. It was found advantageous not to reset
the integrator in one sampling period but dynamically
with a time constant T. Figure 2 shows a block diagram
of a PID coniroller with such a back-calculation. The dif-
ference e; between the output of the regulator v and the
actuator output u is fed to the input of the integrator
through a gain 1/Ty. The signal e; is zero when there
is no saturation. It will thus not have any effect on the
normal operation when the actuator does not saturate.
When the actuator saturates the feedback signal prevents
the integrator from winding up.

The rate at which the regulator output is reset is
governed by the time constant T}, which determines how
quickly the integral is reset. Fertik considered a discrete
system. In his scheme he used a dead-beat reset. This
approach has no exact continuous time equivalent but
it can be approximated by making T: very small. It
frequently happens that the actuator output cannot be
measured. The anti-windup scheme just described can
be applied by estimating the actuator output using 2
mathematical model of the saturation.

Figure 1 also shows the superior performance of
the simple anti-windup scheme. The integral term has a
negative value during the initial phase when the actuator
is saturated. This behavior is drastically different from
that of the conventional PI controller where the integral
has a positive value during the initial transient. Some
care mus} be taken when choosing time constant T}. This
is discussed further in Section 4.

A controller with back-calculation can be interpreted
as having two modes, the normal control mode when it
operates like an ordinary controller and a tracking mode
when the integrator is tracked so that it matches given
inputs and outputs. This is discussed further in Astrém
(1987). Since a controller with tracking can operate in
two modes, we may expect that it is necessary to have a
logical signal for mode switching. This is not necessary
because tracking is automatically inhibited when the
tracking signal is equal to the regulator output. This can
be used with great advantage when building up complex
systems with selectors and cascade control, see Astrém
(1987) and Wittenmark (1989).
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Figure 2. Regulator with anti-windup based on back-
calculation.
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Conditional Integration

Conditional integration is an alternative to back calcu-
lation or tracking. The idea behind this method is to
apply integral action only when certain conditions are
fulfilled. The conditions are typically that the control er-
ror is small and that the actuator does not saturate. This
method has been used for a long time. A recent reference
is Gallun et al (1985). One possibility to implement con-
ditional integration is to update the integral only when
the predicted process output is in the proportional band.
When such a cendition is imposed it may also be neces-
sary to introduce a hysteresis or some similar condition
to avoid chattering. .

The proportional band is an interval such that the
actuator does not saturate if the instantaneous value of
the process output or iis predicted value is in the interval.
For PID control the control signal is given by

d
uw= k(by,—-y)+I—kT¢—d% (1)

Solving for the predicted process output y, = ¥ + Td%
we find that the proportional band is (y;,ys) where

I u'md.z
u= byr + A
2)
I —tUnin (
Y = by, + A

and Umin, Umez are the values of the control signal such
that the actuator saturates.

The notion of proportional band also helps to un-
derstand several other schemes for anti-windup. Figure 3
shows the proportional band for the system with tracking
for different values of the tracking time constant T} and
a system with conditional integration. The figure shows
that in this particular case there is very little difference in
performance between conditional integration and track-
ing. Also notice that the effect of tracking is to move the
proportional band closer to the process output. There
may be a disadvantage in having it too close because the
system may become sensitive to occasional measurement
errors.




Multivariable systems

The problem of saturated multivariable systems is trea-
ted in Kapasouris et al (1988), where a stabilizing con-
troller is derived. Here direction preservation of the con-
trol signal is accomplished by introducing a time varying
gain, which is chosen so that saturaticn is avoided.

Summary

We have thus given two ad hoc methods for avoiding
windup, tracking or back-calculation and conditional in-
tegration. These schemes can also be combined. In Howes
(1986) it is suggested to explicitly manipulate the propor-
tional band for batch control. This is done by introducing
so called cutback points. The high cutback is above the
set point and the low cutback is below. The integrator is
clamped when the predicted process output is outside the
cutback interval. Integration is performed with a speci-
fied tracking time constant when the process output is
between the cutback points. The cutback points are con-
sidered as controller parameters which are adjusted to in-
fluence the response to large set point changes. A similar
method is proposed in Dreinhoefer (1988), where condi-
tional integration is combined with back-calculation. In
Shinskey (1967) the integrator is given a prescribed value
i = 1y during saturation. The value of 7, is tuned to give
satisfactory overshoot at start-up. This approach is also
called preloading. Controllers with tracking are also dis-
cussed in Glattfelder and Schaufelberger (1983, 1988).

3. General Methods

Some general techniques to avoid integrator windup in
a controller will now be given. They are based on ideas
from state space theory.

An observer approach

In state space formulation a feedback controller is viewed
as a combination of an observer and a state feedback.
The dynamics in the controller is given only by the ob-
server, see Figure 4. With such a controller it is easy
to understand what goes wrong when the actuator sat-
urates and to devise anti-windup schemes. The follow-
ing method was originally given in Astrom (1983). It is
also described in Astrdm and Wittenmark (1984). Let the
controller output be v and the process input be u. When
the actuator saturates v is different from v». Since the
controller is not aware of the saturation in the actuator
it computes the state as if the process input is v. With

u
Actuator [—=

Process

i Observer

Figure 4. A process with a controller consisting of a
state feedback and an observer.
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this interpretation it is easy to find a remedy simply by
feeding u back to the observer instead of v. If the actua-
tor output is not measured the actuator can be modeled
mathematically. The controller can be described by
‘2—1; = A + Bu+ K(y— C&g)

u = sat (U + L(zm — £))

©)

where the function sat is defined as

Ulow © < Uow
sat(u) = { u Upow < U < Upigh (4)
Upigh U > Upigh
for a scalar and
sat ug
sat uq
sat(u) = (5)
sat u,

for a vector. The values uj,, and usign are chosen to
correspond to the actuator limitations.
Notice that the dynamics of the controller is given

by
det(sI—-A+BL+ KC)=0 (6)

when the actuator does not saturate and by

det(sI— A+ KC)=0 (N
when the actuator saturates. The dynamics of the con-
troller during saturation is thus given by the observer
dynamics.

The idea based on the observer interpretation can
be applied to MIMO as well as SISO systems. For mul-
tivariable systems there are several ways to saturate the
control signal. For systems having strong coupling it may
be useful to saturate the signal so that the direction of
the control signal is preserved.

Notice that the controller (3) has high frequency roll-
off. The technique can be extended to controllers where
the high frequency gain of the controller is constant. Such
a controller can be described by
%:— =Fe+ Gryr — Gyy

u=Hz+ D,y, — Dy

(8)

To obtain anti-windup the control algorithm is rewritten
so that the control signal appears explicitly, and a feed-
back from the difference between desired control signal v
and the saturated control signal v = sat(v) is introduced.
The following controller is then obtained.

d
—”;=Fa;+G,y,—G,,y+M(u—v)=(F-MH)z

d
+(GT—MD,)y,—(Gy —MD,)y+ Mu
v=Hz:+D,.y,.—Dyy

u = sat(v)

(9)

where F' — M H, which corresponds to the observer dy-
namics, has stable eigenvalues.




Conditioning

A technique called conditioning was proposed by Hanus.
Tt is described in Hanus et al (1987). The idea is to
compute the reference signal that would just saturate the
output. For a controller given in state space form (Eqn
(8)) conditioning is equivalent to a special case of the
observer approach, with M = G,.D;? in Eqn (9). Hence

dz

5= (F-G.D;'H)z — (Gy — G.D;'D,)y
+G.D'u

u = sat(Hz + D.yr — Dyy)

(10)

The reference signal y, does not influence the state during
saturation. A necessary condition is that the controller
has a direct term from the reference signal y;, i.e. D, #
0. The eigenvalues of F — G,D;1H are equal to the
transmission zeros of the controller.

Analysis

A system with a saturating actuator can always be re-
duced to a standard configuration with a linear system
having a nonlinear feedback. Approximate analysis of
such systems can be done using describing function the-
ory (Atherton, 1975). Sufficient conditions for stability
can also be obtained from the circle criterion (Descer
and Vidyasagar, 1975). Global stability is too strict a re-
quirement if the plant is unstable, because an unstable
plant can never be stabilized globally when the control
signal is bounded.
Consider a system described by

diti = Az + Bu (1)
y=Cz
with the controller
uw=L(zm—£)
B - 45+ But K(y-03) "
The transfer function of the process is
Gp,=C(sI-A)'B (13)

and the controller has the transfer function

G.=L(sI- A— BL- KC)'K (14)
Assume that the system has one control variable and one
measured and consider the consequences of a saturation
of the actuator. The closed loop system is then in the
standard configuration with a linear block having the
transfer function

G(s) = Gy(s)Ge(s) (15)
and a nonlinearity u = sat(y) in the feedback loop. Since
the describing function of a saturation is the line segment
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(—o0,—1), describing function analysis indicates a limit
cycle if the Nyquist curve of G,G. intersects this line
segment. Furthermore it follows from the circle criterion
that the closed loop system is stable provided that

ReGp(iw)Ge(iw) +1 > 0 (16)

Controller with Anti-Windup

Now consider the consequences of using a coniroller with
anti-windup. It follows from (11) and (12) that

di _
5 =(4-KO)z

(1"
where # = z — #. The estimation error Z thus goes to
zero exponentially if A — KC is stable. When & — 0, it
follows from (17) that the closed loop system is described
by ’

de

= Az + Bsat L(@m — ¢) (18)
This is a linear system with transfer function
Gu(s) = L(sI — A)™'B (19)

with a saturation in the feedback. Describing function
theory then indicates a limit cycle if the Nyquist curve
of G, (s) intersects the segment (—o0, —1) and it follows
from hyperstability theory that the closed loop is stable
provided that

ReGyu(iw)+1>0

We formulate the result as

(20)

THEOREM 1

A controller with windup given by (12) gives a stable
closed loop system when controlling the process (11) with
saturation provided that

ReL(sI— A)7'B+1>0 (21)

for s = iw. O

When the control system design is performed it is
thus straight forward to investigate if the controller has
windup. Notice that the condition (21) does not depend
on the observer. Also notice that if L is computed from
linear quadratic theory it follows that

114+ Gyu(iw)| >1 (22)

4. Example

Properties of different methods for avoiding windup will
now be demonstrated on an example. The process con-
sists of two identical cascaded tanks, used for basic exper-
iments with automatic control, see Astrém and Ostberg
(1986). The control signal is pump speed, which deter-
mines the influent flow rate to the upper tank, and the
process output is the level of the lower tank. The level
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Figure 5. The standard experiment, with delayed

disturbances, gives large overshoots due to integrator
windup.

control is conducted by a PID controller. The curves
given in the paper are results of simulations. The cor-
responding behavior has however been observed in the
laboratory.

A linearized state space model for the double tank

dz —a 0 B
5= [ o _a]:c+ [0] u= A,z + Bpu

y= [0 1)2:0,,::

is

(23)

where z; and z, are upper and lower tank levels respec-
tively, u is control input and y is measurement, all di-
mensionless. Parameters o = 0.015 (s~!) and 8 = 0.05
(s7!). The process input u is restricted to the interval
[0,1]. The stationary gain is 8/a ~ 3.33.

The process is controlled by a continuous PID con-
troller with a filtered derivative and a proportional part
that only acts on a fraction b of the reference signal y,
(Astrém and Higglund (1988)). The controller parame-
ters are K =5,T; =40s,T; =15s, N =5 and b = 0.3,
which gives an overshoot of 10 % and a natural frequency
= 0.05 rad/s for the three dominating closed loop poles.

Experiments

A standard experiment is used to test the anti-windup
methods. The process and controller starts at stationarity
with all signals zero. The experiment is as follows:

1. Start-up: at time ¢ = 0 the reference y, = 1.

2. Impulse disturbance: at time ¢ = 250 state z; is
changed to 1.5. This corresponds to quickly pouring
a cup of water into the lower tank.

3. Load disturbance: at time ¢ = 500 a load on the
upper tank is introduced.

The three parts of the experiment have been designed
to saturate the control signal in one or both directions.
Figure 5 shows the consequences of windup when the
control signal is restricted to the interval [0,1] without
use of anti-windup.
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Figure 8. Tracking (solid), the observer approach
(dashed) and conditional integration (dotted), with well
chosen parameters, are tested on the standard experi-

ment.
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Figure 7. Illustration of the effects of different ob-

server bandwidths w for anti-windup based on the ob-
server approach. The bandwidths are w = 0.05 rad/s
(solid), w = 0.10 rad/s (dashed) and w = 0.15 (dotted).

Anti-windup methods

In this Section some of the described anti-windup meth-
ods are compared, namely

e Conditional integration, with integration suspended
during saturation.

e Tracking, with Ty = T; = 40 s.

e The observer approach (Eqn (9)), with natural fre-
quency wo = 0.05 rad/s and relative damping { = 1.

These methods, see Figure 6, give similar results. Con-
ditional integration gives the same overshoot as tracking
with small 7;. The methods are almost identical for load
and impulse disturbances.

In Figure 7 the observer approach is compared for
three choices of w, with ¢ = 1. w = 0.05 rad/s is approx-
imately the natural frequency for the three dominating
closed loop poles. The two faster observers (w = 0.10
rad/s and w = 0.15 rad/s) give less overshoot but the re-
sponse from the impulse disturbance is very poor. Track-
ing with Ty < T; gives similar results.




A number of simulations have been done. Some
observations are that the impulse disturbance is the most
critical ome, that tuning the anti-windup for a good
set point response may give a very bad respomse for
an impulse disturbance, and that if the response of an
impulse disturbance is good then the cther responses are
good.

For tracking, T; = T or slightly less (0.8T;), gives
good response from the impulse disturbance. Similarly,
the natural frequency of the observer should be slightly
larger than the natural frequency of the closed loop.
Higher natural frequency or shorter T} deteriorates the
response of the impulse disturbance. The results from the
simulations agree well with the experimental results.

5. Conclusions

A number of techniques for avoiding integrator windup
have been investigated. Conditicnal integration is easy to
apply to most controllers. The key difficulty is to find ap-
propriate conditions for switching off the integration and
to avoid chattering. Tracking is another good method
for avoiding windup. This method requires one paraime-
ter, the tracking time constant, to be chosen but there
is no risk of chattering. Tracking is convenient to use
for systems with selectors and cascade control. Selection
of the parameters in the anti-windup schemes are impor-
tant.The tuning is different for disturbances and set point
changes. The observer approach is a good general tech-
nique. It unifies many approaches and can be extended to
many controllers of different types. An advantage of the
observer approach is that with a complete linear design
no additional parameters have to be chosen. The method
also applies directly to multivariable systems.

T4 should also be pointed out that control design
can be formulated as an optimization problem. LQG
is a popular approach which leads to an unconstrained
quadratic optimization problem. A natural extension is
to include actuator saturation. This leads to a quadratic
programming problem. There are very good numerical
algorithms available for solving such problems. This
is incorporated in quadratic dynamic matrix control
(QDMC), see Garcia and Morshedi (1986), which gives
a nice solution to the problem of windup at the cost of
increased computations.
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