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A nonlinear differential equation of the Riccati type is derived for the covariance 
matrix of the optimal filtering error. The solution of this "variance equation" com-
pletely specifies the optimal filter for either finite or infinite smoothing intervals and 
stationary or nonstationary statistics. 

The variance equation is closely related to the Hamiltonian (canonical) differential 
equations of the calculus of variations. Analytic solutions are available in some cases. 
The significance of the variance equation is illustrated by examples which duplicate, 
simplify, or extend earlier results in this field. 

The Duality Principle relating stochastic estimation and deterministic control 
problems plays an important role in the proof of theoretical results. In several examples, 
the estimation problem and its dual are discussed side-by-side. 

Properties of the variance equation are of great interest in the theory of adaptive 
systems. Some aspects of this are considered briefly. 

1 Introduction 
A T PRESENT, a nonspecialist might well regard the 

Wiener-Kolmogorov theory of filtering and prediction [1, 2]3 as 
"classical' —in short, a field where the techniques are well 
established and only minor improvements and generalizations 
can be expected. 

That this is not really so can be seen convincingly from recent 
results of Shinbrot [3], Stceg [4], Pugachev [5, 6], and Parzen [7]. 
Using a variety of time-domain methods, these investigators have 
solved some long-stauding problems in nonstationary filtering and 
prediction theory. We present here a unified account of our own 
independent researches during the past two years (which overlap 
with much of the work [3-71 just mentioned), as well as numerous 
new results. We, too, use time-domain methods, and obtain 
major improvements and generalizations of the conventional 
Wiener theory. In particular, our methods apply without 
modification to multivariate problems. 

The following is the historical background of this paper. 
In an extension of the standard Wiener filtering problem, Follin 

[8] obtained relationships between time-varying gains and error 
variances for a given circuit configuration. Later, Hanson [9] 
proved that Follin's circuit configuration was actually optimal 
for the assumed statistics; moreover, he showed that the differen-
tial equations for the error variance (first obtained by Follin) 
follow rigorously from the Wiener-Hopf equation. These results 
were then generalized by Bucy [10], who found explicit rela-
tionships between the optimal weighting functions and the error 
variances; he also gave a rigorous derivation of the variance 
equations and those of the optimal filter for a wide class of non-
stationary signal and noise statistics. 

Independently of the work just mentioned, Kalman [11] gave 
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a new approach to the standard filtering and prediction problem. 
The novelty consisted in combining two well-known ideas: 

(i) the "state-transition" method of describing dynamical sys-
tems [12-14], and 

(ii) linear filtering regarded as orthogonal projection in Hilbert 
space [15, pp. 150-155]. 

As an important by-product, this approach yielded the Duality 
Principle [11, 16] which provides a link between (stochastic) 
filtering theory and (deterministic) control theory. Because of 
the duality, results on the optimal design of linear control systems 
[13, 16, 17] are directly applicable to the Wiener problem. Dual-
ity plays an important role in this paper also. 

When the authors became aware of each other's work, it was 
soon realized that the principal conclusion of both investigations 
was identical, in spite of the difference in methods: 

Rather than to attack the Wiener-Hopf integral equation directly, 
it is better to convert it into a nonlinear differential equation, whose 
solution yields the covariance matrix of the minimum filtering error, 
which in turn contains all necessary information for the design of the 
optimal filter. 

2 Summary of Results: Description 
The problem considered in this paper is stated precisely in 

Section 4. There are two main assumptions: 
(Ai) A sufficiently accurate model of the message process is 

given by a linear (possibly time-varying) dynamical system 
excited by white noise. 

(A2) Every observed signal contains an additive white noise 
component. 

Assumption (Aj) is unnecessary when the random processes in 
question are sampled (discrete-time parameter); see [11]. Even 
in the continuous-time case, (A2) is no real restriction since it can 
be removed in various ways as will be shpwn in a future paper. 
Assumption (Ai), however, is quite basic; it is analogous to but 
somewhat less restrictive than the assumption of rational spectra 
in the conventional theory. 

Within these assumptions, we seek the best linear estimate of 
the message based on past data lying in either a finite or infinite 
time-interval. 

The fundamental relations of our new approach consist of five 
equations: 
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(I) The differential equation governing the optimal filter, 
which is excited by the observed signals and generates the best 
linear estimate of the message. 

(II) The differential equations governing the error of the best 
linear estimate. 

(III) The time-varying gains of the optimal filter expressed in 
terms of the error variances. 

(IV) The nonlinear differential equation governing the co-
variance matrix of the errors of the best linear estimate, called the 
variance equation. 

(V) The formula for prediction. 
The solution of the variance equation for a given finite time-

interval is equivalent to the solution of the estimation or pre-
diction problem with respect to the same time-interval. The 
steady-state solution of the variance equation corresponds to 
finding the best estimate based on all the data in the past. 

As a special case, one gets the solution of the classical (station-
ary) Wiener problem by finding the unique equilibrium point of 
the variance equation. This requires solving a set of algebraic 
equations and constitutes a new method of designing Wiener 
filters. The superior effectiveness of this procedure over present 
methods is shown in the examples. 

Some of the preceding ideas are implicit already in [10, 11]; 
they appear here in a fully developed form. Other more ad-
vanced problems have been investigated only very recently and 
provide incentives for much further research. We discuss the 
following further results: 

(1) The variance equations are of the Riccati type which occur 
in the calculus of variations and are closely related to the canonical 
differential equations of Hamilton. This relationship gives rise 
to a well-known analytic formula for the solution of the Riccati 
equation [17, 18]. The Hamiltonian equations have also been 
used recently [19] in the study of optimal control systems. The 
two types of problems are actually duals of one another as men-
tioned in the Introduction. The duality is illustrated by several 
examples. 

(2) A sufficient condition for the existence of steady-state solu-
tions of the variance equation (i.e., the fact that the error variance 
does not increase indefinitely) is that the information matrix in 
the sense of R. A. Fisher [20] be nonsingular. This condition is 
considerably weaker than the usual assumption that the message 
process have finite variance. 

(3) A sufficient condition for the optimal filter to be stable is 
the dual of the preceding condition. 

The preceding results are established with the aid of the "state-
transition" method of analysis of dynamical systems. This con-
sists essentially of the systematic use of vector-matrix notation 
which results in simple and clear statements of the main results 
independently of the complexity of specific problems. This is 
the reason why multivariable filtering problems can be treated by 
our methods without any additional theoretical complications. 

The outline of contents is as follows: 
In Section 3 we review the description of dynamical systems 

from the state point of view. Sections 4-5 contain precise state-
ments of the filtering problem and of the dual control problem. 
The examples in Section 6 illustrate the filtering problem and its 
dual in conventional block-diagram terminology. Section 7 con-
tains a precise statement of all mathematical results. A reader 
interested mainly in applications may pass from Section 7 directly 
to the worked-out examples in Section 11. The rigorous deriva-
tion of the fundamental equations is given in Section 8. Section 9 
outlines proofs, based on the Duality Principle, of the existence 
and stability of solutions of the variance equation. The theory 
of analytic solutions of the variance equation is discussed in 
Section 10. In Section 12 we examine briefly the relation of our 
results to adaptive filtering problems. A critical evaluation of 

the current status of the statistical filtering problem is presented 
in Section 13. 

3 Preliminaries 
In the main, we shall follow the notation conventions (though 

not the specific nomenclature) of [11], [16], and [21]. Thus T, t, to 
refer to the time, a, j8, . . ., xi, x2, . . ., <j>i> <h> • • •> a>/> • • • are 

(real) scalars; a, b, . . ., x, y, . . ., <j>, t(r, . . . are vectors, A , B, 
. . ., . . . are matrices. The prime denotes the transposed 
matrix; thus x'y is the scalar (inner) product and xy' denotes 
a matrix with elements XJJ,- (outer product). ||x|| = (x'x)'^' is 
the euclidean norm and ||X||2A (where A is a nonnegative definite 
matrix) is the quadratic form with respect to A . The eigenvalues 
of a matrix A are written as X,(A). The expected value (en-
semble average) is denoted byS (usually not followed by brackets). 
The covariance matrix of two vector-valued random variables 
x(t), Y(T) is denoted by 

8x«)y ' (r) - SxU)Sy'(r) or cov[x(0, v(r)] 

depending on what form is more convenient. 
Real-valued linear functions of a vector x will be denoted by 

x*; the value of x* at x is denoted by 
n 

[x*, x] = x*'x* 
1 = 1 

where the xt are the co-ordinates of x. As is well known, x* may 
be regarded abstractly as an element of the dual vector space of the 
x's; for this reason, x* is called a coveclor and its co-ordinates are 
the x*{. In algebraic manipulations we regard x* formally as a 
row vector (remembering, of course, that x* ^ x'). Thus the 
inner product is x*y*' and we define ||x*|| by (x*x*')' / /'. Also 

S[x*, x]2 = S(x*x)2 = £x*xx'x*' 

= x*(Sxx')x*' = ||x*||W 

To establish the terminology, we now review the essentials of 
the so-called state-transition method of analysis of dynamical 
systems. For more details see, for instance, [21]. 

A linear dynamical system governed by an ordinary differential 
equation can always be described in such a way that the defin-
ing equations are in the standard form: 

dx/dt = F (Ox + G(0u(0 (1) 

where x is an n-vector, called the state; the co-ordinates x{ of x 
are called state variables; u(0 is an m-vector, called the control 
function; F(f) and G(0 are nXt i and n X m matrices, respectively, 
whose elements are continuous functions of the time t. 

The description (1) is incomplete without specifying the out-
put y(0 of the system; this may be taken as a p-vector whose 
components are linear combinations of the state variables: 

y(0 = H(0x(0 (2) 
where H(0 is a p X ft matrix continuous in t. 

The matrices F, G, H can be usually determined by inspection 
if the system equations are given in block diagram form. See 
the examples in Section 5. It should be remembered that any of 
these matrices may be nonsingular. F represents the dynamics, G 
the constraints on affecting the state of the system by inputs, and 
H the constraints on observing the state of the system from out-
puts. For single-input/single-output systems, G and H consist 
of a single column and single row, respectively. 

If F, G, H are constants, (3) is a constant system. If u(<) = 0 
or, equivalently, G = 0, (3) is said to be free. 

It is well known [21-23] that the general solution of (1) may 
be written in the form 
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X(0 = 4>(t, U)x(to) + ft' <f(<, r)G(r)u(r)dr (3) 

where we call <I>(t, <o) the transition matrix of (1). The transition 
matrix is a nonsingular matrix satisfying the differential equation 

d®/dt = F(t)<I> (4) 

(any such matrix is a fundamental matrix [23, Chapter 3]), made 
unique by the additional requirement that, for all to, 

*&(to, k) = I = unit matrix (5) 

The following properties are immediate by the existence and 
uniqueness of solutions of (1): 

k) = 4>(«o, <i) for all to, t, (6) 

k) = 4>(/2, <i)«»(<i> k) for all to, U, h (7) 

If F = const, then the transition matrix can be represented by 
the well-known formula 

CO 

4>(t, k) = exp F(t - t0) = IF(< - fc)]'/*' ( 8 ) 
i = 0 

which is quite convenient for numerical computations. In this 
special case, one can also express analytically in terms of the 
eigenvalues of F, using either linear algebra [22] or standard 
transfer-function techniques [14]. 

In some eases, it is convenient to replace the right-hand side of 
(3) by a notation that focuses attention on how the state of the 
system "moves" in the state space as a function of time. Thus 
we write the left-hand side of (3) as 

x(0 = «!>(<; x, to; u) (9) 

Read: The state of the system (1) at time t, evolving from the 
initial state x = x(to) at time k under the action of a fixed forcing 
function u(t). For simplicity, we refer to <j> as the motion of the 
dynamical system 

4 Statement of Problem 
We shall be concerned with the continuous-time analog of 

Problem I of reference [11], which should be consulted for the 
physical motivation of the assumptions stated below. 

(Ai) The message is a random process x(t) generated by the 
model 

dx/dt = F(t)x + G(t)u(t) (10) 

The observed signal is 

z(t) = y (t) + v( t ) = H « ) x ( t ) + v(t) ( i i ; 

The functions u(t), v(t) in (10-11) are independent random proc-
esses (white noise) with identically zero means and covariance 
matrices 

c o v [U(0, U(T)] = Q ( I ) - 8 ( 1 - T) 

cov [v(0, v(r)] = R(t)-5(t - T) for all t, r (12) 

cov [u(t), v(r)] = 0 

where 8 is the Dirac delta function, and Q(t), R(t) are symmetric, 
nonnegative definite matrices continuously differentiable in t. 

We introduce already here a restrictive assumption, which is 
needed for the ensuing theoretical developments: 

(A2) The matrix R(t) is positive definite for all I. Physically, 
this means that no component of the signal can be measured 
exactly. 

To determine the random process x(t) uniquely, it is necessary 

to add a further assumption. This may be done in two different 
ways: 

(A3) The dynamical system (10) has reached "steady-state" 
under the action of u(I), in other words, x(l) is the random func-
tion defined by 

x(l) = J' ^ 4>(t, r)G(r)u(r)dr (13) 

This formula is valid if the system (10) is uniformly asymp-
totically stable (for precise definition, valid also in the noncon-
stant case, see [21]). If, in addition, it is true that F, G, Q are 
constant, then x(i) is a stationary random process—this is one of 
the chief assumptions of the original Wiener theory. 

However, the requirement of asymptotic stability is incon-
venient in some cases. For instance, it is not satisfied in Example 
5, which is a useful model in some missile guidance problems. 
Moreover, the representation of random functions as generated 
by a linear dynamical system is already an appreciable restriction 
and one should try to avoid making any further assumptions. 
Hence we prefer to use: 

(A3') The measurement of i(t) starts at some fixed instant to 
of time (which may be — <°), at which time cov[x(to), x(io)] is 
known. 

Assumption (A3) is obviously a special case of (A / ) . Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 

The main object of the paper is to study the 
OPTIMAL ESTIMATION PROBLEM. Given known values 

of Z(T) in the time-interval k ^ r t, find an estimate x(ti|t) of 
x(ti) of the form 

*(<i|0 = A ( t „ r)z(r)dr (14) 

(where A is an n X p matrix whose elements are continuously 
differentiable in both arguments) with the properly that the expected 
squared error in estimating any linear function of the message is 
minimized: 

S[x*, x(ti) - x(t,|t)]2 = minimum for all x* (15) 

Remarks, (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 

6||x(fe) - x(t,|tf 

(b) In view of (Ai), it is clear that Sx(ti) = Sx(ti[t) = 0. 
Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
estimate of the value of any costate x* at x(t\). 

(c) If Su(t) is unknown, we have a more difficult problem which 
will be considered in a future paper. 

(d) It may be recalled (see, e.g., [11]) that if u and v are 
gaussian, then so are also x and 1, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
other loss functions. 

(e) The representation of white noise in the form (12) is not 
rigorous, because of the use of delta "functions." But since the 
delta function occurs only in integrals, the difficulty is easily re-
moved as we shall show in a future paper addressed to mathema-
ticians. All other mathematical developments given in the paper 
are rigorous. 

The solution of the estimation problem under assumptions 
(Ai), (A2), (A3 ') is stated in Section 7 and proved in Section 8. 

5 The Dual Problem 
It will be useful to consider now the dual of the optimal estima-

tion problem which turns out to be the optimal regulator problem 
in the theory of control. 
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(16) 

First we define a dynamical system which is the dual (or ad-
joint) of (1). Let 

I* = - t 

F*(<*) = F'(0 

G *«*) = H'(<) 

H*(<*) = G ' « ) 

Let *b*(t*, h>*) be the transition matrix of the dual dynamical 
system of (1): 

dx*/dt* = F *(t*)x* + G*(l*)u*(l*) (17) 

Model of 
Message Process 

It is easy to verify the fundamental relation 

4>*(i*, to*) = <fr'(io, 0 

i 

(18) 

With these notation conventions, we can now state the 
OPTIMAL REGULATOR PROBLEM. Consider the linear 

dynamical system (17). Find a "control law" 

u*(l*) = k*(x*C*), to*) (19) 
with the property that, for this choice of u*(<*), the "performance 
index" 

F(x*; t*, ?0*; u*) = II <> *(to*-, X, t*; u*)||sPo 

+ J T 111 § I*; "*)llsO(r*) + lk(r*) | |»R(T*)}dr* (20) 

assumes its greatest lower bound. 
This is a natural generalization of the well-known problem of 

the optimization of a regulator with integrated-squared-error 
type of performance index. 

The mathematical theory of the optimal regulator problem has 
been explored in considerable detail [17]. These results can be 
applied directly to the optimal estimation problem because of the 

DUALITY THEOREM. The solutions of the optimal eslimch 
tion problem and of the optimal regulator problem are equivalent 
under the duality relations (16). 

The nature of these solutions will be discussed in the sequel. 
Here we pause only to observe a trivial point: By (14), the solu-
tions of the estimation problem are necessarily linear; hence the 
same must be true (if the duality theorem is correct) of the solu-
tions of the optimal regulator problem; in other words, the op-
timal control law k* must be a linear function of x*. 

The first proof of the duality theorem appeared in [11], and 
consisted of comparing the end results of the solutions of the two 
problems. Assuming only that the solutions of both problems 
result in linear dynamical systems, the proof becomes much 
simpler and less mysterious; this argument was carried out in 
detail in [16]. 

Remark ( /) . If we generalize the optimal regulator problem to 
the extent of replacing the first integrand in (20) by 

|jy*(r*) - y/(r* ) | | 2 Q ( T * ) 

where y,,*((*) ^ 0 is the desired output (in other words, if the 
regulator problem is replaced by a servomechanism or follow-up 
problem), then we have the dual of the estimation problem with 
Su(<) ^ 0. 

6 Examples: Problem Statement 
To illustrate the matrix formalism and the general problems 

stated in Sections 4-5, we present here some specific problems in 
the standard block-diagram terminology. The solution of these 
problems is given in Section 11. 

Example 1. Let the model of the message process be a first-
order, linear, constant dynamical system. It is not assumed 
that the model is stable; but if so, this is the simplest problem in 
the Wiener theory which was discussed first by Wiener himself 
[1, pp. 91-92], 

Fig. 1 Example 1: Block diagram of message process and optimal filter 

The model of the message process is shown in Fig. 1(a). The 
various matrices involved are all defined by 1 X 1 and are 

F(0 = LA.], G (0 = [1], H « ) = [1], 

Q « ) = M , R « ) = M -

The model is identical with its dual. Then the dual problem 
concerns the plant 

dx*Jdt* = f»x\ + «*,(«*), y\(t) = x\(t) 

and the performance index is 

f t ' ° * {g.i[z*i(r*)]1 + mlu*.(T*)]»)dr* (21) 

The discrete-time version of the estimation problem was treated 
in [11, Example 1], The dual problem was treated by Rozonoer 
[19]. 

Example 2. The message is generated as in Example 1, but 
now it is assumed that two separate signals (mixed with dif-
ferent noise) can be observed. Hence R is now a 2 X 2 matrix 
and we assume that 

The block diagram of the model is shown in Fig. 2(a). 

Fig. 2 Example 2: Block diagram of message process and optimal filter 

Example 3. The message is generated by putting white noise 
through the transfer function 1 /s(s + 1 ) . The block diagram of 
the model is shown in Fig. 3(a). The system matrices are: 

In the dual model, the order of the blocks 1/s and l / ( s + 1) 
is interchanged. See Fig. 4. The performance index remains the 
same as (21). The dual problem was investigated by Kipiniak 
[24], 
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r l 

" 2 1 
MODEL OF 

1 A 
r — l * o J 

r l 

MODEL OF 

1 A 
r — l * o J 

MESSAGE PROCESS 

1 
HTT 

(A) 

| (B) 

Fig. 3 Example 3: Block diagram of message process and optimal filter 
(xi and Xi should be interchanged with X2 and X2.) 

COOTROLLER 

Fig. 4 Example 3: Block diagram of dual problem 

MODEL OF MESSAGE 

1 
s '21 
1 
s '21 H s H I P h 

(B) 

Fig. 5 Example 4: Block diagram of message process and optimal filter 

J 

Example 4• The message is generated by putting white noise 
through the transfer function s/(s2 — /12/21). The block diagram 
of the model is shown in Fig. 5(a). The system matrices are: 

-C. '0] « - [ ; ] « . . . 0] 

The transfer function of the dual model is also s/(s2 — /12/ai). 
However, in drawing the block diagram, the locations of the first 
and second state variables are interchanged, see Fig. 6. Evi-
dently f*i2 = /21 and /*2i = fn• The performance index is again 
given by (21). 

The message model for the next two examples is the same and 
is defined by: 

- G i l 

/ • v . 
Q M l I H s H l P i 1 

1 
Fig. 6 Example 4: Block diagram of dual problem 

The differences between the two examples lie in the nature of the 
"starting" assumptions and in the observed signals. 

Example 6. Following Shinbrot [3], we consider the following 
situation. A particle leaves the origin at time to = 0 with a fixed 
but unknown velocity of zero mean and known variance. The 
position of the particle is continually observed in the presence of 
additive white noise. We are to find the best estimator of posi-
tion and velocity. 

The verbal description of the problem implies that pu(O) = 
Pia(O) = 0, pa (0) > 0 and qn = 0. Moreover, G = 0, H = 
[10]. See Fig. 7(a). 

The dual of this problem is somewhat unusual; it calls for 
minimizing the performance index 

P22(0)W>*2(0; x*, <*; II*)]«+J]°ri.[u*i(T*)l«r* (i* < 0) 

In words: We are given a transfer function 1/s2; the input u*i 
over the time-interval [t*, 0] should be selected in such a way as 
to minimize the sum of (i) the square of the velocity and (ii) the 
control energy. In the discrete-time case, this problem was 
treated in [11, Example 2]. 

Example 6. We assume here that the transfer function 1/s2 is 
excited by white noise and that both the position xi and velocity 
Xi can be observed in the presence of noise. Therefore (see Fig. 
8a) 

" yL 

— MODEL OF MESSAGE PROCESS 

I 

(A) (B) 
Fig. 7 Example 5: Block diagram of message process and optimal filter 
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MODEL OF MESSAGE PROCESS 

Fig. 9 General block diagram of optimal filter 

This problem was studied by Hanson [9] and Bucy [25, 26]. 
The dual problem is very similar to Examples 3 and 4. 

7 Summary of Results: Mathematics 
Here we present the main results of the paper in precise mathe-

matical terms. At the present stage of our understanding of the 
problem, the rigorous proof of these facts is quite complicated, 
requiring advanced and unconventional methods; they are to be 
found in Sections 8-10. After reading this section, one may pass 
without loss of continuity to Section 11 which contains the solu-
tions of the examples. 

(1) Canonical form of the optimal filter. The optimal estimate 
x(i|0 is generated by a linear dynamical system of the form 

dx(t\t)/dt = F(i)*(«|0 + K(0 i« |<) 

z(l|<) = z(0 - H («8« |0 

The initial state x(«<,|fo,) of (I) is zero. 

For optimal extrapolation, we add the relation 

x«,!<) = ®(fc, 0 * « | 0 ( k ^ t ) (V) 

No similarly simple formula is known at present for interpolation 
(k < <)• 

The block diagram of (I) and (V) is shown in Fig. 9. The 
variables appearing in this diagram are vectors and the "boxes" 
represent matrices operating on vectors. Otherwise (except for 
the noncommutativity of matrix multiplication) such generalized 
block diagrams are subject to the same rules as ordinary block 

diagrams. The fat lines indicating direction of signal flow serve 
as a reminder that we are dealing with multiple rather than 
single signals. 

The optimal filter (I) is a feedback system. It is obtained by 
taking a copy of the model of the message process (omitting the 
constraint at the input), forming the error signal z(<|i) and feed-
ing the error forward with a gain K(<). Thus the specification of 
the optimal filter is equivalent to the computation of the optimal 
time-varying gains «(()• This result is general and does not de-
pend on constancy of the model. 

(2) Canonical form for the dynamical system governing the 
optimal error. Let 

i(t\l) = x(i) - x(t|0 (22) 

Except for the way in which the excitations enter the optimal 
error, x((|0 is governed by the same dynamical Bystem as x(t\t): 

dx(t\l)/di = F(<)x(«|0 + G(i)u(i) - K(0[v«) 
+ H«)x«l<)] (II) 

See Fig. 10. 
(3) Optimal gain. Let us introduce the abbreviation: 

P(0 = cov[x«|<), x(«|i)l (23) 

Then it can be shown that 

K(i) = P(<)H '(i)R-»(0 (III) 

(4) Variance equation. The only remaining unknown is P(i). 
It can be shown that P(i) must be a solution of the matrix dif-
ferential equation 

dP/dt = F(«)P + PF'(<) - PH'(«)R-1(«)H(0P 
+ G « Q ( 0 G ' ( 0 (IV) 
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This is the variance equation; it is a system of n(n + l ) /2 4 non-
linear differential equations of the first order, and is of the Riccati 
type well known in the calculus of variations [17, 18]. 

(5) Existence of solutions of the variance equation. Given any 
fixed initial time to and a nonnegative definite matrix Po, (IV) has 
a unique solution 

P(t) = n ( t ; P0, U>) (24) 

defined for all |t — to| sufficiently small, which takes on the value 
P(to) = Po at t = <o- This follows at once from the fact that (IV) 
satisfies a Lipschitz condition [21]. 

Since (IV) is nonlinear, we cannot of course conclude without 
further investigation that a solution P(t) exists for all t [21]. By 
taking into account the problem from which (IV) was derived, 
however, it can be shown that P(t) in (24) is defined for all t ^ to. 

These results can be summarized by the following theorem, 
which is the analogue of Theorem 3 of [11] and is proved in 
Section 8: 

THEOREM 1. Under Assumptions (A,), (A2), (A,'), the 
solution of the optimal estimation problem with to> — °> is given by 
relations (I-V). The solution P(t) of (IV) is uniquely determined 
for all t Zz to by the specification of 

Po = cov[x(to), x(to)]; 

knowledge of P(t) in turn determines the optimal gain K(<)- The 
initial state of the optimal filter is 0. 

(6) Variance of the estimate of a coslate. From (23) we have 
immediately the following formula for (15): 

Six*, x « | t ) l ! = ||x*||V(i) (25) 

(7) Analytic solution of the variance equation. Because of the 
close relationship between the Riccati equation and the calculus 
of variations, a closed-form solution of sorts is available for (IV). 
The easiest way of obtaining it is as follows [17]: 

Introduce the quadratic HamiUonian function 

3C(x, w, I) = - ( ' A ) ! ! G ' « ) X | | 2 Q W 

- w'F'(0x + ( ' / O l l H t O w l l V w (26) 

and consider the associated canonical differential equations 

dx/dt = aae/dw5 = - F ' ( 0 x + H ' (0R- ' ( 0H(0w ] 
\ (27) 

dw/dt dUC/dx = G(i)Q(t)G'(«)x + F(t)w J 
We denote the transition matrix of (27) by 

4 This is the number of distinct elements of the symmetric matrix 
P(0. 

• The notation &3C/3w means the gradient of the scalar 3C with 
respect to the vector w. 

In Section 10 we shall prove 
THEOREM 2. The solution of (IV) for arbitrary nonnegative 

definite, symmetric Po and all t ^ to can be represented by the formula 

n ( t ; Po, to) = [ 0 m « , to) + ©« (« , MPo] ' [ @ n « , to) 
+ ©.*(<, <o)Po] - 1 (29) 

Unless all matrices occurring in (27) are constant, this result 
simply replaces one difficult problem by another of similar dif-
ficulty, since only in the rarest cases can @(t, U) be expressed in 
analytic form. Something has been accomplished, however, since 
we have shown that the solution of nonconstant estimation problems 
involves precisely the same analytic difficulties as the solution of linear 
differential equations with variable coefficients. 

(8) Existence of steady-state solution. If the time-interval over 
which data are available is infinite, in other words, if to = — 
Theorem 1 is not applicable without some further restriction. 

For instance, if H(i) = 0, the variance of x is the same as the 
variance of x; if the model (10-11) is unstable, then x(t) defined 
by (13) does not exist and the estimation problem is meaningless. 

The following theorem, proved in Section 9, gives two sufficient 
conditions for the steady-state estimation problem to be meaning-
ful. The first is the one assumed at the very beginning in the 
conventional Wiener theory. The second condition, which we in-
troduce here for the first time, is much weaker and more "natural" 
than the first; moreover, it is almost a necessary condition as well. 

THEOREM 3. Denote the solutions of (IV) as in (24). Then 
the limit 

lim I I ( i ; 0, to) = P(t) (30) 
U—>— ™ 

exists for all t and is a solution of (IV) if either 
(At) the model (10-11) is uniformly asymptotically stable; or 
( A / ) the model (10-11) is "completely observable" [17], that is, 

for all t there is some to(t) < t such that the matrix 

M(to, t) = f ' • ' ( r , <)H'(r)H(r)«&(r, t)dr (31) 

is positive definite. (See [21] for the definition of uniform asymptotic 
stability.) 

Remarks, (g) P(f) is the covariance matrix of the optimal error 
corresponding to the very special situation in which (i) an arbi-
trarily long record of past measurements is available, and (ii) the 
initial state x(<o) was known exactly. When all matrices in 
(10-12) are constant, then so is also P—this is just the classical 
Wiener problem. In the constant case, P is an equilibrium 
state of (IV) (i.e., for this choice of P, the right-hand side of (IV) 
is zero). In general, P(I) should be regarded as a moving equi-
librium point of (IV), see Theorem 4 below. 

(h) The matrix M(<c, t) is well known in mathematical statistics. 
It is the information matrix in the sense of R. A. Fisher [20] 
corresponding to the special estimation problem when (i) u(t) = 0 
and (ii) v(t) = gaussian with unit covariance matrix. In this 
case, the variance of any unbiased estimator p,(t) of [x,* x(t)] 
satisfies the well-known Cramer-Rao inequality [20] 

Fig. 10 General block diagram of optimal estimation error 
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S[JB(0 - 6 /401 ' S ||X*||2M-.((C,« (32) 

Every costate x* has a minimum-variance unbiased estimator for 
which the equality sign holds in (32) if and only if M is "positive 
definite. This motivates the use of condition (At') in Theorem 3 
and the term "completely observable." 

(i) It can be shown [17] that in the constant case complete 
observability is equivalent to the easily verified condition: 

rank[H', F 'H' , . . ., (F ' ) " _ 1H'] = n (33) 

where the square brackets denote a matrix with n rows and np 
columns. 

(9) Stability of the optimal fdter. It should be realized now that 
the optimality of the filter (I) does not at the same time guarantee 
its stability. The reader can easily check this by constructing an 
example (for instance, one in which (10-11) consists of two non-
interacting systems). To establish weak sufficient conditions 
for stability entails some rather delicate mathematical technicali-
ties which we shall bypass and state only the best final result cur-
rently available. 

First, some additional definitions. 
We say that the model (10-11) is uniformly completely ob-

servable if there exist fixed constants, and a such that 

ai||x*||2 S ||x*||sM(*-<r,i) ^ «2|1x*H2 for all x* and t. 

Similarly, we say that a model is completely controllable [uni-
formly completely controllable] if the dual model is completely ob-
servable [uniformly completely observable]. For a discussion of 
these motions, the reader may refer to [17]. It should be noted 
that the property of "uniformity" is always true for constant 
systems. 

We can now state the central theorem of the paper: 
THEOREM 4. Assume that the model of the message process is 

( A / ' ) uniformly completely observable; 
(As) uniformly completely controllable; 
(A,) a, g ||Q«)|| S «4, ^ ||R(0|| ̂  «» for all t; 
(A,) ||F(0|| S 

Then the following is true: 

(i) The optimal filter is uniformly asymptotically stable; 
(ii) Every solution Tl(t; Po, to) of the variance equation (IV) 

starting at a symmetric nonnegative matrix Po converges to P(<) 
(defined in Theorem 8) as t-+ <*>. 

Remarks. (j) A filter which is not uniformly asymptotically 
stable may have an unbounded response to a bounded input [21]; 
the practical usefulness of such a filter is rather limited. 

(k) Property (ii) in Theorem 4 is of central importance since it 
shows that the variance equation is a "stable" computational 
method that may be expected to be rather insensitive to roundoff 
errors. 

(I) The speed of convergence of Po(0 to P(<) can be estimated 
quite effectively using the second method of Lyapunov; see [17]. 

(10) Solution of the classical Wiener problem. Theorems 3 and 4 
have the following immediate corollary: 

THEOREM 5. Assume the hypotheses of Theorems 3 and 4 
are satisfied and that F, G, H, Q, R, are constants. 

Then, if to = — <=, the solution of the estimation problem is ob-
tained by setting the right-hand side of (IV) equal to zero and solving 
the resulting set of quadratic algebraic equations. That solution 
which is nonnegative definite is equal to P. 

To prove this, we observe that, by the assumption of con-
stancy, P(t) is a constant. By Theorem 4, all solutions of (IV) 
starting at nonnegative matrices converge, to P. Hence, if a 
matrix P is found for which the right-hand side of (IV) vanishes 
and if this matrix is nonnegative definite, it must be identical 

with P. Note, however, that the procedure may fail if the con-
ditions of Theorems 3 and 4 are not satisfied. See Example 4. 

(11) Solution of the Dual Problem. For details, consult [17]. 
The only facts needed here are the following: The optimal con-
trol law is given by 

u*(<*) = -K*(t*)x(t*) (34) 

where K*(<*) satisfies the duality relation 

K *(/*) = K'(<) (35) 

and is to be determined by duality from formula (III). The 
value of the performance index (20) may be written in the form 

min F ( x * ; I*, to*, u * ) = | |X* | | 2 I I * ( ( * ; x*,<*c) 

where I I * ( i * ; x*, to*) is the solution of the dual of the variance 
equation (IV). 

It should be carefully noted that the hypotheses of Theorem 4 
are invariant under duality. Hence essentially the same theory 
covers both the estimation and the regular problem, as stated in 
Section 5. 

The vector-matrix block diagram for the optimal regulator is 
shown in Fig. 11. 

PLAHT 

Fig. 11 General block diagram of optimal regulator 

(12) Compulation of the covariance matrix for the message process. 
To apply Theorem 1, it is necessary to determine cov [x(4), x(fc)]. 
This may be specified as part of the problem statement as in 
Example 5. On the other hand, one might assume that the mes-
sage model has reached steady state (see (A3)), in which case from 
(13) and (12) we have that 

S ( 0 = c o v [ x ( 0 , *(<)] = f ' _ a T ) G ( T ) Q ( T ) G ' ( T ) ^ V , r)dr 

provided the model (10) is asymptotically stable. Differentiating 
this expression with respect to t we obtain the following dif-
ferential equation for S(t) 

dS/dt = F«)S + SF'(<) + G(<)Q(0G'(0 (36) 

This formula is analogous to the well-known lemma of Lyapunov 
[21] in evaluating the integrated square of a solution of a linear 
differential equation. In case of a constant system, (36) reduces 
to a system of linear algebraic equations. 

8 Derivation of the Fundamental Equations 
We first deduce the matrix form of the familiar Wiener-Hopf 

integral equation. Differentiating it with respect to time and 
then using (10-11), we obtain in a very simple way the funda-
mental equations of our theory. 

Much cumbersome manipulation of integrals can be avoided by 
recognizing, as has been pointed out by Pugachev [27], that the 
Wiener-Hopf equation is a special case of a simple geometric 
principle: orthogonal projection. 

Consider an abstract space 9C such that an inner product (X, F) 
is defined between any two elements X, Y of 9C. The norm is 
defined by ||Ar|| = ( X , X)'/\ Let at be a subspace of 9C. We 

1 0 2 / m a r c h 1 9 6 1 Transactions of the AS M E 

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 01/30/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



seek a vector Uo in 11 which minimizes ||X — U\\ with respect 
to any U in 11. If such a minimizing vector exists, it may be 
characterized in the following way: 

ORTHOGONAL PROJECTION LEMMA. - l/|| ^ 
\\X - Uo\\for all U in 11 (i) if and (ii) only if 

(X - Ui, U) = 0 for all U in 11 (37) 

(iii) Moreover, if there is another vector Uo' satisfying (37), then 
Hi/, - l/o'H = 0 . 
Proof, (i), (iii) Consider the identity 

\\X - l/||2 = \\X - l/i)||2 + 2 ( Z - Uo, Uo — U) + ||l/ - t/o||2 

Since It is a linear space, it contains U — Uo", hence if Condition 
(37) holds, the middle term vanishes and therefore ||X — £/|| £ 
||X — Uo\\. Property (iii) is obvious, 

(ii) Suppose there is a vector U\ such that (X — Uo, U\) = a 
0. Then 

||X - Uo - Pl/i||2 = ||X - UoII2 + 2 a p + j8«||CT,||* 

For a suitable choice of P, the sum of the last two terms will be 
negative, contradicting the optimality of Uo. Q.E.D. 

Using this lemma, it is easy to show: 
WIENER-HOPF EQUATION. A necessary and sufficient 

condition for [x*, x(2i|2)] (where x(2i|2) is defined by (14)) to be a 
minimum variance estimator of [x*, x(2i)] for all x*, is that the 
matrix function A(2I, r ) satisfy the relation 

cov(x(2,), z(tr)] - F A'JH T) cov[i(r), I(A)]dT = 0 (38) 
J t o 

or equiva'ently, 

cov [x(«,|(), i (a)] = 0 (39) 

for all to g a < t. 

COROLLARY. cov[x(2,|2), x(r,|0] = 0 (40) 

Proof. Let x* be a fixed costate and denote by 9C the space of 
all scalar random variables [x*, x(2i)] of zero mean and finite 
variance. The inner product is defined as (X, Y) = 8[x*, 
x(fi)] • [x*, y(2i)]. The subspace 11 is the set of all scalar random 
variables of the type 

U = [x* u«0] = [x* , f ' B«,, r )z(r )dr] 

(where B(2i, r ) is an n X p matrix continuously differentiable in 
both arguments). We write Uo for the estimate [x*, x(2i|2)] • 

We now apply the orthogonal projection lemma and find that 
condition (37) takes the form 

(X - Uo, U) = S [x* x(i,|0][x*. u(fa)] 

= x*cov[x(«1|0, u(2i)]x*' 

Interchanging integration and the expected value operation 
(permissible in view of the continuity assumptions made under 
(Ai), see [28]), we get 

(X - Uo, U) = x* j j *^ cov[it(2i|<), z(<r)]B'(h, a)dtr| x*' 

This expression must vanish for all x*. Sufficiency of (39) is 
obvious. To prove the necessity, we take B(<i, a) = cov[x(<i|0> 
2(a)]. Then BB' is nonnegative definite. By continuity, the 
integral will be positive for some x* unless BB' and therefore also 
B(ti, a) vanishes identically for all to g a < t. The Corollary 
follows trivially by multiplying (39) on the right by A'(2i, a) and 
integrating with respect to a. Q.E.D. 

Remark, (m) Equation (39) does not hold when a = t. In 
fact, cov [x«|0, i (2)1 = ( ' / « ) K (0 R (0-

For the moment we assume for simplicity that 2i = 2. Differen-
tiating (38) with respect to 2, and interchanging d/d2 and 8, we 
get for all to £ a < 2, 

d 
— cov[x(2), z(a)] = F(2) cov[x(2), 2(a)] 
Ot 

+ G(2) cov[u(2), z(a)] (41) 

and 

& C — I A(2, r ) cov[2(r), i(a)]dr 

= Yt f A ( t ' T ) c o v l y ( r ) ' y ( < r ) , r f T + | A (<> < j ; R ( o ' ) 
J to 

rl & = I — A(2, r ) cov|z(r), i(a:idr 
•/ to 

+ A(2, 2) cov [y(2), y(a)] (42) 

The last term in (41) vanishes because of the independence of 
u(2) of v(a) and x(a) when a < 2. Further, 

cov[y(2), y(a)] = H(2)cov[x(2), 2(a)] - cov[y(2), v(a)] (43) 

As before, the last term again vanishes. Combining (41-43), we 
get, bearing in mind also (38), 

J ' [ f ( 2 ) A ( 2 , T) - A (2 , r ) 

- A ( t , 2)H(2)A(2, T ) ] cov [ 2 ( r ) , 2(a)]DT = 0 (44) 

for all to ^ a < 2. This condition is certainly satisfied if the opti-
mal operator A(2, r ) is a solution of the differential equation 

F(2)A(2, r ) — A ( 2 , T) - A ( 2 , ' ) H ( 2 ) A ( 2 , t ) = 0 ( 4 5 ) 
ot 

for all values of the parameter r lying in the interval S r g (. 
If R(T) is positive definite in this interval, then condition (45) is 

necessary. In fact, let B(2, r ) denote the bracketed term in (44). 
If A(2, r ) satisfies the Wiener-Hopf equation (38), then x(2|2) 
given by (14) is an optimal estimate; and the same holds also for 

x(<|2) + B(2, r)2(r)dr 

since by (45) A(2, r ) + B(2, r ) also satisfies the Wiener-Hopf equa-
tion. But by the lemma, the norm of the difference of two opti-
mal estimates is zero. Hence 

x* j J ] ' J ' B (2, r)cov[2(r), 2(r')]B'(2, r ' )drdr'| x*' = 0 (46) 

for all x*. By the assumptions of Section 4, y(r) and v(r) are 
uncorrelated and therefore 

cov[2(r), 2(r')l = R(r)5(r - r ' ) + cov[y(r), y(r ' )] 

Substituting this into the integral (46), the contribution of the 
second term on the right is nonnegative while the contribution of 
the first term is positive unless (45) holds (because of the positive 
definiteness of R(r)), which concludes the proof. 

Differentiating (14), with respect to 2 we find 
rt a 

dx(t\t)/dt = — A(2, r)2(r)dr + A(2, l)i'l) 
Jt0 

Using the abbreviation A(2,2) = K(0 as well as (45) and (14), 
we obtain at once the differential equation of the optimal filter: 

dx(t\t)/dt = F(2)X(2|2) + K(2)U(2) - H(2)x((|2)] ( I ) 
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Combining (10) and (I), we obtain the differential equation for 
the error of the optimal estimate: 

dx{t\t)/dt = [F(0 - K(0H(i)]x(t|t) + G(0u(0 - K(j)v(0 (H) 

To obtain an explicit expression for K(t), we observe first that 
(39) implies that following identity in the interval to a < t: 

cov [x(0, y(<r)] - A ( I , r ) cov [y(r), y(<r)]dr = A(i , <r)R(<r) 
(39') 

Since both sides of (39') are continuous functions of ff, it is clear 
that equality holds also for cr — t. Therefore 

K(<)R«) = A(«, i)R(i) = cov[x«|<), y(01 

= cov [x((|i)f x(<)]H'(<) 

By (40), we have then 

= cov [x(t|<), *(i|«)]H'(0 = P(0H'(<) 
Since R(0 is assumed to be positive definite, it is invertible and 

therefore 

K(<) = P(f)H'(0R _ 1(0 (HI) 

We can now derive the variance equation. Let W(I, r ) be the 
common transition matrix of (I) and (II). Then 

P(0 - W(t, to)P(tc)W(t, t0) 

= S f ' W(t, r)[G(r)u(r) - K(r)v(r)]dr 

X £ [u'(<r)G'(eO - v ' ( f f )K ' («r ) ]V« , a)da 

Using the fact that u(£) and w(t) are uncorrelated white noise, the 
integral simplifies to 

= fi *F(t, r ) [ G ( R ) Q ( r ) G ' ( r ) + K ( T ) R ( T ) K ' ( T ) ] * F ' « , r)dr 

Differentiating with respect to t and using (III), we obtain after 
easy calculations the variance equation 

dP/dt = F(0P + PF'(0 - PH'(()R~1(<)H(0P 
+ G « ) Q ( 0 G ' « ) (IV) 

Alternately, we could write 

dP/dt = d cov [x, x]/dt = cov [dx/dt, x] + cov [x, di/dt] 

and evaluate the right-hand side by means of (II). A typical 
covariance matrix to be computed is 

cov [*(<|i), u(i)l 

= cov [ J ^ W(t, r)[G(r)u(r) - K(r)v(r)]rfr, « ( « ) ] 

= ( 'A)G(OQ(O 

the factor ' /2 following from properties of the 5-function. 
To complete the derivations, we note that, if U > (, then by 

(3) 

x(ti) = «>(<„ <)*(<) + j l r)u(r)dr 

Since u(r) for t < T S ti is independent of x(r) in the interval 
to ^ T ^ t, it follows by (38) that the optimal estimator for the 
right-hand side above is 0. Hence 

*(fe|i) = «»(<i, <)x(<|<) (ti ^ l) (V) 
The same conclusion does not follow if fe < t because of lack of 
independence between x(r) and U(T). 

The only point remaining in the proof of Theorem 1 is to de-
termine the initial conditions for (IV). From (38) it is clear that 

x(tw|lo) = 0 

Hence 
Po = P(/«) = cov[x(fc|«o), x«o|fo)] 

= cov[x(to), x(fc)) 

In case of the conventional Wiener theory (see (A3)), the last term 
is evaluated by means of (36). 

This completes the proof of Theorem 1. 

9 Outline of Proofs 
Using the duality relations (16), all proofs can be reduced to 

those given for the regulator problem in [17]. 
(1) The fact that solutions of the variance equation exist for 

all t ^ <o is proved in [17, Theorem (6.4)], using the fact that the 
variance of x(<) must be finite in any finite interval [to, (]. 

(2) Theorem 3 is proved by showing that there exists a particu-
lar estimate of finite but not necessarily minimum variance. 
Under (A4 '), this is proved in [17; Theorem (6.6)]. A trivial 
modification of this proof goes through also with assumption 
(Ai). 

(3) Theorem 4 is proved in [17; Theorems (6.8), (6.10), (7.2)]. 
The stability of the optimal filter is proved by noting that the 
estimation error plays the role of a Lyapunov function. The 
stability of the variance equation is proved by exhibiting a 
Lyapunov function for P. This Lyapunov function in the 
simplest case is discussed briefly at the end of Example 1. While 
this theorem is true also in the nonconstant case, at present one 
must impose the somewhat restrictive conditions (Ae — A7). 

10 Analytic Solution of the Variance Equation 
Let X(i), W(i) be the (unique) matrix solution pair for (27) 

which satisfy the initial conditions 

X ( ( 0 ) = I, = Po ( 4 7 ) 

Then we have the following identity 

W(0 = P(i)X(«), t g to (48) 

which is easily verified by substituting (48) with (IV) into (27). 
On the other hand, in view of (47-48), we see immediately from 
the first set of equations (27) that X(f) is the transition matrix 
of the differential equation 

dx/dt = — F'(<)x + H'(0R-'(<)H(<)P(0x 

which is the adjoint of the differential equation (IV) of the 
optimal filter. Since the inverse of a transition matrix always 
exists, we can write 

P(0 = W(0X-»(0, t f e to (49) 

This formula may not be valid for t < to, for then P(<) may not 
exist! 

Only trivial steps remain to complete the proof of Theorem 2. 

11 Examples: Solution 
Example 1. If qn > 0 and rn > 0, it is easily verified that the 

conditions of Theorems 3-4 are satisfied. After trivial sub-
stitutions in (III-IV) we obtain the expression for the optimal 
gain 

hi(t) = pu(l)/ru (50) 

and the variance equation 

dpn/dt = 2 / N P I I - P U V U + 9II ( 5 1 ) 

1 0 4 / m a r c h 1 9 6 1 Transactions of the AS M E 

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 01/30/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



By setting the right-hand side of (51) equal to zero, by virtue of 
the corollary of Theorem 4 we obtain the solution of the station-
ary problem (i.e., to = — see (A3)): 

Pn = [ / . i + V / n 2 + i n / r n j r , , ( 52 ) 

Since pn and rn are nonnegative, it is clear that only the positive 
sign is permissible in front of the square root. 

Substituting into (50), we get the following expressions for the 
optimal gain 

Ml = / l l + V / , . 2 + qd/rn (53) 

and for the infinitesimal transition matrix (i.e., reciprocal time 
constant) 

Ju = /n - k„ = -Vfn1 + qn/rn (54) 

of the optimal filter. We see, in accordance with Theorem 4, that 
the optimal filter is always stable, irrespective of the stability of 
the message model. Fig. 1(b) shows the configuration of the 
optimal filter. 

It is easily checked that the formulas (52-54) agree with the re-
sults of the conventional Wiener theory [29]. 

Let us now compute the solution of the problem for a finite 
smoothing interval (to > — <»). The Hamiltonian equations 
(27) in this case are: 

dx,/dt = —/11--C1 + ( l / r i i )u>i 1 

dwi/dt = qnXi + /11101 

Let T be the matrix of coefficients of these equations. 
To compute the transition matrix &(t, to) corresponding to T, 

we note first that the eigenvalues of T are ± / n . Using this fact 
and constancy, it follows that 

0(1, to) = exp T(I - to) = Ci exp (t - « / i 1 
+ C2 exp [ - ( < - <»)/„] 

where the constant matrices Ci and C2 are uniquely determined by 
the requirements 

0(<o, to) = Ci + C2 = I = unit matrix 

d&(t, to)/dt\,.lo = T0(<, io)|t_,0 = JnC, - /„C2 

After a good deal of algebra, we obtain 

©(fo + r , to) = 

cosh J11T — sinh ]nT 
/ n 

-y- sinh jnT 
/11 

which agrees with (52). 
To understand better the factors affecting convergence to the 

steady-state, let 

< W 0 = pu(t) - pu 

The differential equation for Sp 11 18 

dSpn/dt = ZfnSpn - (8Pn)2/rn (56) 

We now introduce a Lyapunov function [21] for (56) 

7 ( 5 p n ) = (5 pn/PixY 

The derivative of V along motions of (51) is given by 

dKSpn) dSpu 
V(Bpn) = • = -2[Pll/rn + qn/Pn}V(Spn) (57) 

This shows clearly that the "equivalent reciprocal time constant" 
for the variance equation depends on two quantities: (i) the 
message-to-noise ratio pu/rn at the input of the optimal filter, 
(ii) the ratio of excitation to estimation error qn/pn. 

Since the message model in this example is identical with its 
dual, it is clear that the preceding results apply without any modi-
fication to the dual problem. In particular, the filter shown in 
Fig. 1(b) is the same as the optimal regulator for a plant with 
transfer function 1 /(s — /11). The Hamiltonian equations (27) 
for the dual problem were derived by Rozonoer [19] from Pon-
tryagin's maximum principle. 

Let us conclude this example by making some observations 
about the nonconstant case. First, the expression for the 
derivative of the Lyapunov function given by (57) remains true 
without any modification. Second, assume Pn(<o) has been evalu-
ated somehow. Given this number, pn(t) can be evaluated for 
t S <0 by means of the variance equation (51); the existence of a 
Lyapunov function and in particular (57) shows that this compu-
tation is stable, i.e., not adversely affected by roundoff errors. 
Third, knowing pn(t), equation (57) provides a clear picture of 
the transient behavior of the optimal filter, even though it might 
be impossible to solve (51) in closed form. 

Example 8. The variance equation is 

dpn/dt = 2 / i ipn - p n 8 ( l / r „ + 1/m) + qa 

—5- 8inh/nT 
rn/11 

cosh /11T + -y^- sinh 
/11 

Knowledge of ©(<, to) can be used to derive explicit solutions 
to a variety of nonstationary filtering problems. 

We consider only one such problem, which was treated by Shin-
brot [3, Example 2]. He assumes that/u < 0 and that the mes-
sage process has reached steady-state. From (36) we see that 

Sxi !(0 = -911/2/11 for all t 

We assume that the observations of the signal start at I = 0. 
Since the estimates must be unbiased, it is clear that £i(0) = 0. 
Therefore 

Pn(0 ) = £2 i 2 (0 ) = Sxi 2 (0) = —9u /2 /n 

substituting this into (55), we get Shinbrot's formula: 

(/11 - /n)e7ll< - ( /u + fu)e~'M 

Jnr 
(55) 

If 911 > 0, rn > 0, and r22 > 0, the conditions of Theorems 3-4 
are satisfied. Therefore the minimum error variance in the 
steady-state is 

pn = 
/1. + V / . . s + qu/rn + <Jn/r2j 

Pn(<) 
f ( / u ~ f">-

= 9 U L - ( / „ - J I I ) 

)»-•*" 1 Fn)V-?"'J 

1 / r n + 1 / r „ 

and the optimal steady-state gains are 

fcu = Pn/ru, i = 1, 2 

The same problem has been considered also by Westcott [30, 
Example]. A glance at his calculations shows that ours is the 
simpler and more natural approach. 

Example 8. The variance equation is 
. )2e7"' + ( / .1 + /ii)2« 

Since Jn < 0, we see that as t -*• Pi,(t) converges to 

pn = — <7u/(/u + J11) = (/u - 7n)rn 

dpn/dt = - p u s / n 1 + q 11 

dpn/dt = pn — P11 — PuPnAn 

dpn/dt = 2(pu - pn) - pn'Mi 

(58) 
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If gii > 0, r„ > 0, the conditions of Theorems 3-4 are satisfied. 
Setting the right-hand side of (58) equal to zero, we get the solu-
tion of the stationary problem: 

hi = V (Qn/rn 

fei 1 + V l + 2 Vqii/rn 

See Fig. 3(6). 
The infinitesimal transition matrix of the optimal filter in the 

steady-state is: 

- "\/Qu/ru 

zero. The matrix of coefficients of the Hamiltonian equations 
(27) is: 

0 0 l / r „ 0 

- 1 0 0 0 

0 0 0 1 
0 0 0 0 

T = 

F = 
- V l + 2 Vqn/rn. 

The natural frequency of the filter is (guAu)'^4 and the damping 
ratio is OA) [2 + ( r n / g u ) ' ' ' ' ] E v e n for such a very simple 
problem, the parameters of the optimal filter are not at all obvious 
by inspection. 

The solution of the dual problem in the steady-state (see Fig. 4) 
is obtained by utilizing the duality relations 

and the corresponding transition matrix is (here (4) is a finite 
series!) 

' 1 0 r/rn r2/2rn " 
- r 1 -r2/2ru -T 3 /6 r„ 
0 0 1 r 
0 0 1 1 

O(<o + T, to) = 

Using (29), we find (to = 0): 
r„P2 a(0) 

P«) = 
rv. + M0)<3/3 

k* ii = h i = kn 

The same result was obtained by Kipiniak [24], using the Euler 
equations of the calculus of variations. 

Example 4- The variance equation is 

dpu/dt = 2/12P12 - pn!/ni + ?u 

dpn/dt = fnpii + fitpn — pupu/r,, 

dpn/dt = 2/21P1! — pi2s/ru 

(59) 

If fi% it 0, fi 1 ^ 0, and rn > 0, the conditions of Theorems 3-4 
are satisfied. There are then two sets of possibilities for the right-
hand side of (59) to vanish for nonnegative P22: 

This formula, obtained here with little labor, is identical with the 
results of Shinbort [3, Example 1], 

The optimal filter is shown in Fig. 7(6). The time-varying 
gains tend to 0 as t -*• co; in other words, the filter pays less and 
less attention to the incoming signals and relies more and more on 
the previous estimates of xt and Xi. 

Since the conditions of Theorem 4 are not satisfied, one might 
suspect that the optimal filter is not uniformly (and hence ex-
ponentially [21]) asymptotically stable. To check this conjec-
ture, we calculate the transition matrix of the optimal filter. We 
find, for i, r ^ 0, 

xp(t = J_ - P{i< T - 01(1)7 + a(T)l + T)rtl 
( , T ) a(t) L - 0 « , T ) a(r) + 0(t,T) J 

( A ) P12 = y / tguru 

P12 = 0 

pit = -(/21//12) V/gnrii 

( B ) pu = V(gn + 4/12/2^11 )i"u 

P12 = 2/2irn 

P22 = (/21//12) Y/(gn + 4/i2/2iru)rii 

where The expression for pu shows that Case (A) applies when /12/21 is 
negative (the model is stable but not asymptotically stable) 
and Case (B) applies when/12/21 is positive (the model is unstable). 

The optimal filter is shown in Fig. 5(6). The optimal gains are 
given by 

ku = p i i / rn , £21 = P12A11 

If /12 ^ 0 but /21 = 0, the model is completely observable but 
not completely controllable. Hence the steady-state variances 
exist but the optimal filter is not necessarily asymptotically stable 
since Theorem 4 is not applicable. As a matter of fact, the 
optimal filter in this case is partially "open loop" and it is not 
asymptotically stable. 

If /12 = 0, then not even Theorem 3 is applicable. In this 
case, if /21 ^ 0, equations (59) have no equilibrium state; if /2i 
= 0, then equations (59) have an infinity of positive definite 
equilibrium states given by: 

Pu = V g u A u , pn = 0, p22 > 0 

Thus if /12 = 0, the conclusions of Theorems 3-4 are false. 
Example 5. The variance equation is 

dpn/dt = 2p,2 - piiVni 

dpn/dl = p22 - pnpu/r,, 

dp22/dt = -pn2/rn 

We assume that r,i > 0 ; this assures that Theorem 3 is applica-
ble. We then find that the steady-state error variances are all 

a(t) = t'/3 + r„/p22(0) 

13(1, t) = (t2 - r2)/2 

Since ^ii(t r) does not converge to zero with t — r -*• <*>, it is 
clear that the optimal filter is not even stable, let alone asymp-
totically stable. 

From the transition matrix of the optimal filter, we can obtain 
at once its impulse response with respect to the input zi(t) and 
output £i(t)\ 

IT 
TU(T, T)K„(T) + TN(T, T)A-2,(T) = — — : t3/3 + rii/p22(0) 

This agrees with Shinbrot's result [3]. 

Example 6. The variance equation is: 

dp,,/dt = 2p,2 - hu2pu2/ru - lirfpn^/rn 

dpn/dt = P22 - hn'pnpn/r,, - h^pnPii/r2i > (60) 
dp22/dt = —hi,2p,22/r„ — hiz2pn2/r22 + gu J 

If h„ ^ 0, gu > 0, rn > 0, r22 > 0, then the conditions of 
Theorems 3-4 are satisfied. Setting the right-hand side of (60) 
equal to zero leads to a very complicated algebraic problem. We 
introduce first the abbreviations: 

a = |An| y / g u / r i i 

02 _ fl222q„/r22 
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It follows that 

hukn = 

7&22&12 

hi 
rn Pu = 

•\/2a. + P2 

01 a + P1 

hn* 
Pl2 = 

a1 

rn Pl2 = a + P* 

hi2 
Pa = 

pi 
rn 

Pa = a + P2 

hS 
rsz Pl2 = 

V 2 a + p 
P a + P1 

1t is easy to verify that the right-hand side of (60) vanishes for 
this set of PH'B; by Theorem 5, this cannot happen for any other 
set. Hence the solution of the stationary Wiener problem is com-
plete. It is interesting to note that the conventional procedure 
would require here the spectral factorization of a two-by-two 
matrix which is very much more difficult algebraically than by 
the present method. 

The infinitesimal transition matrix of the optimal filter is given 
by 

•\/2a + ft2 a 

Foot = 
a + P1 

~P 

a + P1 

, Via + P* 
a + P2 a + P* 

The natural frequency of the optimal filter is 

w = |X(Fopt)| = V a 

and the damping ratio is 

r = | R e X ( M / « . 

The quantities a and P can be regarded as signal-to-noise ratios. 
Since all parameters of the optimal filter depend only on these 
ratios, there is a possibility of building an adaptive filter once 
means of experimentally measuring a and P are available. An in-
vestigation of this sort was carried out by Bucy [31] in the simpli-
fied case when hn = P = 0. 

12 Problems Related to Adaptive Systems 
The generality of our results should be of considerable useful-

ness in the theory of adaptive systems, which is as yet in a primi-
tive stage of development. 

An adaptive system is one which changes its parameters in ac-
cordance with measured changes in its environment. In the 
estimation problem, the changing environment is reflected in the 
time-dependence of F, G, H, Q, R. Our theory shows that such 
changes affect only the values of the parameters but not the 
structure of the optimal filter. This is what one would expect 
intuitively and we now have also a rigorous proof. Under ideal 
circumstances, the changes in the environment could be detected 
instantaneously and exactly. The adaptive filter would then 
behave as required by the fundamental equations (I-1V). In 
other words, our theory establishes a basis of comparison between 
actual and ideal adaptive behavior. It is clear therefore that 
a fundamental problem in the theory of adaptive systems is the 
further study of properties of the variance equation (IV). 

13 Conclusions 
One should clearly distinguish between two aspects of the esti-

mation problem: 

(1) The theoretical aspect. Here interest centers on: 
(1) The general form of the solution (see Fig. 1). 
(ii) Conditions which guarantee a priori the existence, physical 

realizability, and stability of the optimal filter. 
(iii) Characterization of the general results in terms of some 

simple quantities, such as signal-to-noise ratio, information rate, 
bandwidth, etc. 

An important consequence of the time-domain approach is that 
these considerations can be completely divorced from the as-
sumption of stationarity which has dominated much of the think-
ing in the past. 

(2) The computational aspect. The classical (more accurately, 
old-fashioned) view is that a mathematical problem is solved if 
the solution is expressed by a formula. It is not a trivial matter, 
however, to substitute numbers in a formula. The current litera-
ture on the Wiener problem is full of semirigorously derived 
formulas which turn out to be unusable for practical computa-
tion when the order of the system becomes even moderately large. 
The variance equation of our approach provides a practically 
useful and theoretically "clean" technique of numerical computa-
tion. Because of the guaranteed convergence of these equations, 
the computational problem can be considered solved, except for 
purely numerical difficulties. 

Some open problems, which we intend to treat in the near 
future, are: 

(i) Extension of the theory to include nonwhite noise. As 
mentioned in Section 2, this problem is already solved in the dis-
crete-time case [11], and the only remaining difficulty is to get a 
convenient canonical form in the continuous-time case. 

(ii) General study of the variance equations using Lyapunov 
functions. 

(iii) Relations with the calculus of variations and information 
theory. 
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