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A performance index for feedback control systems
based on the Fourier transform of the control deviation,

Jens G, Balchenx)

Summary,

This paper discusses some commonly used performance indices for optimum adjust-
ment of linear control systems.

A new index is developed which is simple to apply in conjunction with a graphical
frequency response analysis. A method for introduction of additional constraints assuring
pProper system stability and damping is demonstrated.

When designing a feedback control system one is often faced with the
problem: What is the best choice of the system parameters? A number of
authors have discussed this problem, and for special cases there exists a
variety theoretical methods and practical rules of thumb, The development
of computing machines and simulators has made it possible to investigate a
large number of different types of systems with the application of different
optimum criteria and the results of such investigations have been published.

[1] [2] [3] [+] [s]

Whether or not a comprehensive study of the optimum adjustment of a feedback
control system is justified, is highly questionable, First of all it must be made
clear what is meant by the optimum conditions and what this term embraces.
A system can be adjusted according to a certain criterion for one particular kind
of disturbance, while the same system will not show optimum performance when
a different disturbance is applied. In general the system can only be adjusted to
optimum performance for one type or one class of disturbance, and it has,
therefore,become common practice to choose among a few standard types of
disturbances. Although the actual disturbance known to occur in a system, is
quite different, one often sees the step function disturbance used when optimum
conditions are determined. The system obtained in such a manner will
certainly not give optimum performance when the disturbance has a stochastic
nature. The optimum adjustment will then have to be referred to the system
behaviour in mean,

Further the price to be paid for an optimum design will often have to be
taken into consideration, When doing so the final solution might be a compromise
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which to some extent makes a lengthy computation unjustified.

At last it should be pointed out that an optimum system should be
realizable in a practical sense and not only exist on paper. It is therefore
important to take into account non-linear effects and power limitations. An
optimization based on the assumption of linearity will often be invalid in the
practical case because one or more elements in the system reach saturation
levels when the actual disturbance is applied, or a large static friction might
cause permanent deviations or stable oscillations,

In spite of these reservations, however, it will be appreciated that the
understanding gained by performing an analysis of the optimum adjustment of a
control system under idealized conditions will become an aid in judging the per-
formance of a nonideal system, Because the problems are so different, one
must resort to idealized assumptions in order to get methods, which have some

degree of generality.

2. Comments on common performance indices.

In the following a few comments will be given concerning the most
frequently used performance indices which can be bases for an optimum adjust-
ment of a feedback control system subject to a transient disturbance, Figure 1
shows the system to be studied. The two transferfunctions H, (s) and H_(s) can
respectively represent the controller and the process in the “actual system,

Fig. 1: Blockdiagram of elementary feedback control system.

The terms used are:

r(t), R(s) = reference, setpoint,
d (t), D(s) = disturbance,

c(t), C(s) = controlled quantity,
e(t), E(s) = deviation.

Most performance indices described in the literature are based on a study
of the shape of the function e (t) in the range 0 < t < oo, The performance
indices are usually chosen so that they take into account the magnitude of the de-
viation and the time during which the deviation exists, The system which gives
the least value of the performance index is defined as the optimum, Usually
performance indices are expressed as an integral over infinite time limits of
some functions of the deviation e (t). Most commonly referred to are the

following indices:

Q
Il=£e(t) dt

Qo
12=J |e(t)]at

® 2
13—£e (t)dt

ap
1,= [ tle(t)at
o

15=fte2(t)dt

The figures 2 to 6 show how these integrals can be expressed as areas.

|

il 4

Fig. 6
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2,5

Fig.2,3,4,5, 6: Nlustration of different indices in terms of areas.



Three of these integrals can readily be solved when the Laplace transform
L{e(t)) = E(s) of the deviation is known, The expressions are:

I=J90 e(t)dt = lim (s ET(sz) = Ef(o) 2.6
10 s+ 0
Y +joo
I3=I) ez(t)dt= ]éi-n:o{%j j E(s-w) E(w)dw}:
v -Jjoo
v +joo
=2+ij J E(-w) E(w)dw 2.7
y-joo
Y +joo 4E(w)
¥ w
Is'—'J tez(t)dt = lim {ZL‘"J j E(s-w) (- Tw )dw}:
s—0 y-joo
Y +joo ) 2.8
1 dng
=35 J E(-W)( e ) dw
Y-joo

The other integrals I and I, can not be expressed di.rectly from knowledﬁe of
E(s). The integrals “of equation 2.7 and 2. 8 can easily be -computed as tk:-:1 sum
of the residues of the integrand when the poles of the functlon. E(-w) arel own,
According to the definition the optimum is achieved when tl.le integral va ui is

a minimum, and as the integral is a function of s.everal adjustable parameters
Pys Ppoeceeeees Ppo the minimizing procedure will become:

a_, -ai=o,..... 2.9
9, %p,

and so on for all the parameters.
An analytical determination of the optimum values of the parameters

i i the simplest types of

11 usually be a very timeconsuming task, 01'11y for
:;stems cayn such calculations be performed with a reasonable effort, and there-
fore the practical solution, in most cases, will have to be found by means of a

graphical minimization as shown in fig. 7.

Fig. 7: Graphical minimization procedure.

The values of the parameters at the minimum point (M) will have to be
determined by graphical interpolation,

The indices described above will certainly indicate different system
characteristics and the choice of index will therefore largely be dependent on
the gignificance of the magnitude and the duration of the deviation, Some
comments on the most typical features of the five indices described might be
appropriate.

Index Il= JPD e(t)dt
o

The main feature of this index is that it is extremely simple to
calculate, According to fig. 2, however, it will only be valid as a practical
performance index provided that the deviation e(t) does not have positive and
negative oscillations. This index, therefore, is only useful in connection with
constraints which take care of a suitable damping. Thereby the computation is
no longer simple. Furthermore, this index as well as the others,is only valid
when e() = 0,

Index Iz = T le(t)l.dt
)
This is often termed a logical index because it weighs the deviation
according to its absolute value, thereby assuring a positive damping of the time
function. However, a reasonable damping will not always be obtained when

minimizing the index I,. A very simple system containing only one adjustable
pParameter will demonsztrate this fact.

Sl

Fig. 8: Blockdiagram of elementary system with adjustable gain only,

Fig. 8 shows a blockdiagram of the system in which the adjustable parameter

is the gain factor K. If the disturbance is assumed to be a step in the reference
(r(t)) , the deviation (e(t)) will become an exponentially damped oscillation as
shown in fig. 9 for a small and a large value of K,

K smoll

K lorge

Fig. 9: Deviation response of system in fig, 8, 7



This response is characterizied by the location of the poles of the closed loop
transferfunction. For actual values of K the poles will be located on a
straight line parallel to the imaginary axis as shown in fig. 10.

]

I*\Im

K large

K medium

/ Re

Fig. 10: Location of poles of system in fig. 8,

The result of this is that the absolute damping of the deviation is constant and
does not decrease when K ig increasing. The integral value I, thus
approaches a limit equal to 5+A when K is increasing, Thezfactor A is
the area under the exponential envelope of the time function.

I

Fig. 11: Value of index 1, for the system in fig. 8.

Fig, 11 shows the shape of the integral value as a function of K. Thus the
index I will indicate the optirnum system for K = o. The obvious reason
for this result is that the index I, does not contain any factor which takes care
of the system stability, In this case, as well, it will be necessary to include
in the optimum criterion an additional constraint which assures a sufficiant
relative damping or stability margin.

C 2
Index L= OJ' e“(t)dt
The majority of authors discussing optimum adjustment of control
systems have based their investigations on this index mainly because the
integral value can be expressed analytically, A characterizing feature of this
index is that it weighs large deviations heavier than small., The consequence
of this is that a system adjusted according to this index will show slowly
disappearing small oscillations while the first large deviation will be greatly
reduced compared to what the index I, would have given, Some authors state
that it is logical to weigh large deviaéons more heavily than small, This,
however, should certainly be dependent on the type of system discussed. The

index I3 thus has the same disadvantage as the index IZ; it does not assure

8

stability for all types of systems., Thus additional constraints are necessary
resulting in considerable difficulties.’
oo
Index I,= J tle (t)]at
o
The consequence of including the time factor, t, in this index is that
long lasting deviations will be suppressed due to their heavy weight, Neverthe-
less this index is not quite effective in assuring system stability, Application
of the index I, to the system in fig, 8, will show the same discrepancy as the
previous indices because the factor t e ® ' 0 when t » o0 where a - absolute
damping factor. The main disadvantage of the index, however, is that
computers or simulating equipment are necessary to determine the optimum
setting.
)
Index IS= J t. ez(t)dt
o

This index has almost the same properties as the preceding index
although it lends itself to analytical computation. Such computations will, how-
ever, be quite timeconsuming as stated above,

The conclusion to be drawn from these rather superficial comments is
that none of the simple performance indices give an adequate indication of
system performance and therefore are not sufficient as bases for an optimum
adjustment,

3. A performance index based on the Fourier transform of the deviation,

A number of authors have made simplifications and approximations to
the indices described above so they could be applied to practical problems,
Nevertheless, the computational work required still makes the methods quite
impractical. It seems feasible to develope a simplified performance index
which takes advantage of the very practical frequency response technique,
The i&c,iex, which will be developed has much in common with the index

IZ= J |e(t)|dt. but it can be determined from the knowledge of the frequency

response characteristics of the closed loop system. It is therefore applicable
in case such characteristics are just known from experimental data,

()
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The two top sketches in fig. 12 illustrates how |e(t)| can be thought of as the

product e(t). I:(:)I . In case the time function is oscillatory, the function

Lq%},l will become a square wave of some kind with the magnitude ¥ 1, This
s&&t re wave will have zero crossings at the same points as the original time
function e(t), but as the desired optimum time function always will be well
damped, only a minor error would be introduced in the integral value by
substituting the correct square wave by some square wave with equidistant zero
crossings. Then by substituting the fundamental component (sinewave) for this
artificial squarewave a second approximation to the original function is obtained,
The frequency, « , and the phase angle, a , of the sine wave which gives the
best approximation is not known a priori, but can be determined by requiring
that the integral

ol

I6 ( »,a )=J e(t)sin(wt+ a )dt 3.1

be a maximum for the particular function e(t) chosen. The first problem,
therefore, is to determine thé parameters, @ and @ , which make

I, (wa ) = max. Two simple cases will illustrate this. First assume

((t) = 0 forall t = 0, Then itis easily seen that I, (w,a ) = max when

e
w =0 anda =1, i.e
w 5 ‘o

[0 o]
I, (wa )=J e(t). 1 dt=J |e(t) | at .
o O

If the deviation has the form

eft)=e at‘ sin (gt + )
it follows that
Qo
I6( w,a )=J e-at. sin ( At + ¥ ) . sin(wt +a)dt=max 3,2
<3
when @ = B and a =y, since this condition gives an integrand which is

positive for all t = 0,
The integral (3.1) can easily be developed when the Laplace transform of the

deviation is known,

- 1 jut  _jo “jwt  -jo =
16( w,a ) e (t) % {e . e -e . e dt
®

- 713{ - J e(t)ed " at - e-”'-f et)e It dt} 3.3

because +.
L (e “Y=Es 7 ju) 3.4

and

o0
of g(t). dt= G(0)

it follows that
(o =35 [ ¢ . Eljo) -e2. E(a)] 3.5
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This can be written

I, (wa)=- |E(jw)| . sin(p-a) 3.6
where P is the phase angel of the vector |E(j w)l .
Equation 3, 6 has its positive maximum when sin(¢ - ¢ ) = -1 i,e.
o =T +9 and at the value of w which makes |E(jw )| = max, The problem
is, therefore, reduced to determining the maximum value of |E(jw )|

for different values of the adjustable parameters, The optimum adjustment of
this system will thus be determined by the expression:

[s o]

I6=J e(t). sin( @t + a)dt=|E(jow)| max = ™in 3.7

By comparing three of the performance indices developed up to this point,
some interesting relations are discovered:

o

_ 1 . 2
I= ?f |EGw )| “dw

Ie=1BGo)| ..

Furthermore it is seen that when e{t) = 0 for all t = 0:

I1=E(‘,w)jw=

Il=16=12 3.8

and when e(t) assumes both positive and negative values:

I1 < I6 = I2 3.9
These properties are demonstrated in fig, 13 for a system with only
adjustable parameter, K, and decreasing absolute damping with increasing
K . By just minimizing the index, I, the system will become slightly more
oscillatory than by minimizing I,,, but’ less oscillatory than by minimizing I_,
Physically the index, I , might “be interpreted as the maximum energy of
the deviation associateé with any single frequency.

«()>0| e(t) 20

Fig.13: Comparison of the values of Il' Iz and l6.
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4, Practical application of the performance index 16'

The main advantage of applying the performance index, 16' to optimum
adjustment of control systems is that the method makes use of frequency
response characteristics which usually are drawn anyway. In addition it bears
a very close analogy to the resonance peak criterion commonly applied when
designing servomechanisms.

A straight foreward procedure for determination of the index values for
different settings of the system parameters can be outlined:

1. Amplitude- and phase characteristics versus frequency for the open loop
transfer function H (jw ). Hz(j » ) (fig. 1) are drawn for different values
of the adjustable parameters.

2. This data are transferred to an amplitude - phase diagram equipped with
constant magnitude loci for the quantity |N(jw )|=| (jw )| . These loci
are identical to the loci of a Nichols diagram when reversed.

3. The maximum value of the product |D(jw ). IHZ Gw)l. IN (juw)lis
determined for different values of the parameters, These are the index

values.
4, These index values are used when drawing curves of the type shown in fig. 1.

In general it is not necessary to draw the complete set of frequency
response curves because only the maximum value of |E (jw )| is required.
A great help in determining the maximum product is achieved when the curves
in the amplitude - phase diagram are drawn in terms of the quantity
ID(jw)|. |H2(j w)| instead of the frequency, @ , as usually is done. This
procedure is “demonstrated in fig. 16 by the following example,

Example 1.

A simple control loop containing a P. 1. -controller and a process with
three equal time constants is chosen to demonstrate the method., The system
under consideration is shown in the block diagram in fig. 14.

Dy(s) Dyls) Dals) Dyle)
R(s) . ~Els AeTis o A0 1 o« A 1 o AL 1 . A c(s)
Ky Tis Tes Tes les

Fig. 14: Blockdiagram of system of example 1.

Disturbances can enter the system at four different points, but only the
disturbance D, is considered in this example. The optimum adjustment of the
controller parameters, K and T, is sought when the disturbance is a unit
step function D (s) = 1 P Amplftude— and phase diagrams versus frequency
for different vallues of the integral time, T,, are shown in fig. 15.

These curves are redrawn in the amplitude"—phase-diagram in fig, 16 and the

magnitude of the quantity lD(j w )I . ll i‘jwr in db is marked along the

curves
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Fig. 15: Amplitude and phase characteristics Fig. 16: Amplitude-phase loci of system in fig. 14,
of open loop system in fig, 14.

The curves in fig, 16 are drawn for K,= 0 (db)., Other values of K_ can be
considered by moving the N-loci in the vertical direction. These loci may be
drawn separately on transparent paper. The resulting values of |E (juw )|

as a function of Kp are plotted in fig. 17 for four different values of T,, AT
an aid in plotting these curves, straight line asymtotes describing

_ T, .
I1 = E(0)= -Kll; are drawn in fig. 17. The minimum point of the four V-shaped

curves are connected together with a fifth V-shaped curve whose minimum
point determines the optimum setting of the system,

13
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Fig. 17: Graphical minimization of index 16 for system in fig, 14.

The result is Ti-4 3 sec and Kp = 12db,

For the sake of comparison fig. 18 shows the equivalent V-shaped
curves for the performance index IZ= d]‘m je(t)] dt.

3
3
3
2
SN2
| Tje2
N
N
10 AN
\\
! \\\\‘ \\
| SN\ \\ /I‘
N X ¥
"] Opt. Tin 3,3 sec
| Kpell5 db
10 ] 10 20
Kp (db)

Fig. 18: Graphical minimization of index 1z for system in fig. 14,

These curves have been obtained by means of an analog computer. The two
indices give very closely the same result. The deviation as a function of time
for this setting of the controller is shown in fig. 19. It will be seen at once

that the system has a rather low degree of damping, As previously stated this is
because the performance index does not take care of the relative stability,
Obviously an additional constraint should be included to make the method useful,
How this is done will be demonstrated in the next section,
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T s 280c

Kpe 3 db

\ T + 35 sec

r Kp = 14,5 db
N
| O\ 4

J e
(o] 10 20 30 40

—i
t sec
Fig. 19: Deviation response of system in fig. 14 for two different settings of the controler,

Example 2,

A control system for a waterturbine working on a long pipeline is
chosen as the next example because the influence of the pipeline gives a
rather interesting system. The transferfunction describing the relation
between the controller output and the torque developed in the turbine is assumed
to be of the form —llﬁ%— which gives a reasonable approximation to the
actual system. $7% A step change in power demand is considered as
disturbance, and the problem is to determine the parameters of the controller
which is of the ideal P, I. - type. A block diagram of this system is shown i»

- = A=
fig. 20, O 055 \s

Fig. 20: Blockdiagram of turbine control system of example 2. bt 0\‘

Following the same procedure as outlined in the preceding example, curves
representing the index value as a function of the parameters are determined,
Fig., 21 shows the result indicating an optimum setting at T, = 5 sec and

IfP = -3,5db, Corresponding time functions for the turbine speed are shown
it fig, 22,

15



o
©
x
4
.E ™
30
fli=25 . pd
Y
\‘ \‘/
\ ~ ‘\ g
S (Y N Tis10 ] /
LTi=5 M /
\ /
\ 4
N
20 \ < /1
~ND 1/
NG /4

10

=10 -5 o)

———
Kp db

Fig. 21: Graphical minimization of index 16 for system in fig, 20.
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Fig. 22: Deviation response of system in fig, 20 for different settings of the controler.
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5, Introduction of constraints to assure proper damping.

The necessity of introducing additional constraints have been pointed
out above. As the shape of the deviation as a function of time is highly
dependent on the type and location of the disturbance, it is generally of no use
to present constraints on the basis of a damping factor. Of more general
validity would be a specification of a stability margin in terms of the quantity

INGw)| = I'fE{ (jw)|. This type of constraint is also much easier to apply.
How much stability margin to be specified will certainly be dependent on the
type of system, the damping required, and the variability of the process
parammeters. As far as damping is concerned, a value of IN(jw)| = 6 - 8db
will usually be appropriate. In fig, 17 curves are drawn which detefmine the
optimum adjustment of the system of example 1 when the two conditions

1E (jw )| = min and |N(jow }| = 8db are satisfied simultaneously, The
max max

optimum setting of the system according to this criterion will be Ti % 2 and
K = 5db, The corresponding time function is drawn in fig. 19.

Several other methods are possible for introducing constraints, Some
authors have suggested to take into account not only the deviation but also its
derivative in the performance index, This can be done by using the following
index:

17=Jm (le(t)] +ole(t)]| )at 5.1

where o is a factor dependent on the system bandwidth. Instead of the
absolute value function, a square function could be used. The main disadvant-
age of this formulation is that it is difficult a priori to express a reasonable
value of the factor ¢ . This drawback is eliminated by the following for-

mulation:
18=f |e (t)] dt .6]@|é (t)] at 5.2

Expressed in terms of the Fourier transform approximation described
previously, the last performance index would then get the form:

Ig= |E(Gw)| pay - o EGe)| .0 5.3
Or when expressed in logarithmic scale
Iy(db) = E ()| (@) + |jw. E(Gw)l . (db) 5.4

The last term of this index is easily determined following the procedure
described in sec. 4. By minimizing I, a compromise is actually obtained
between the optimum setting for the ‘disturbance function itself and the
optimurmn setting for the derivative of the disturbance function. Applying this
procedure to the system of example 1 would give an optimum setting of

Ti = 3 sec and Kp== 8 db.

Conclusion,
The performance index described makes it possible by graphical means
to determine the optimum adjustment of linear control systems subject to

transient disturbances of prescribed form, The system may be described by
frequency response characteristics found experimentally and additional

17



constraints assuring proper damping in all cases can easily be introduced, R_ef_c_ril_xse_s. ’

The performance index gives, by means of well known techniques, a

quantitative measure of the influence of adjustable system parameters, How- [l ] Chien, K, L,,, Hrones, J. A,, Reswick, J.B,:
ever, if the shape of the disturbance is not specified, or if the system is not Trans., A.S. M. E, 74 (1952) 175,

linear, this method and other equivalent methods are not applicable. [2] Hazebroek, P,, van der Waerden, B. L. :

Trans. A.S. M.E, 72 (1950) 317,

[3] Graham,D., Lathrop,R.C.:
Trans, A, LLE,E, 72 part II (1953) 273.
Trans, A, ILE,E, 73 part II (1954) 10 and 153.

J [4] Herschel,R.: Regelungstechnik 4(1956) 190,
" 4(1956) 229,

[5] sartorius,H.: Regelungstechnik 2 (1954) 165.
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