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Abstract

This work aims to investigate the high-dimensional optimal space of simple and multiple
dividing wall columns, clarify the impact of included variables and identify when this
type of intensified column is more advantageous than conventional distillation sequences.
Although this knowledge is highly relevant to the understanding of these complex
devices, this topic has not been sufficiently explored in the literature. In order to fill
this gap this work presents theoretical calculations performed based on automated flow
sheet simulations in Aspen Plus with an external optimizer. An additional objective
of this contribution is to apply the findings on a flexible designed simplified multiple
dividing wall column pilot plant which should be build at Ulm University. Last, the
operational flexibility of the liquid and vapor splits close to the found optimum, which
allows conclusions to be drawn about its robustness, is studied in detail.
A new kind of multi-objective optimization procedure is introduced which includes,
additionally to the total stage number N and energy demand Q̇, also the product
purities as objectives. Consequently, an a posteriori analysis of the objective space
is realizable which enables the human decision maker to analyze the data for several
cases without the need of a new calculation run. An in depth study on the impact of
the included variables on the optimal output indicates that the ratio of product flows
divided by the feed flow of the corresponding component can significantly affect the
minimum energy demand of the column. Consequently, the product flows should not be
assumed constant but rather be included as optimization variables. On the other hand,
it is proven that the number of theoretical stages in the column sections can simply be
determined with the shortcut Fenske equation. Based on the obtained optimization
data a simple empirical method is presented to estimate Pareto-optimal compromises
between energy demand and total stage number of dividing wall or simple distillation
columns and sequences of those. This approach can also be included into a calculation to
evaluate which distillation option is better suited over the whole NQ̇ optimal range. As
a general rule it is found that column sequences require a lower minimum stage number
while dividing wall columns show a lower minimum energy demand. Consequently in
certain regions of the optimal space dividing wall columns are better suitable and in
another column sequences. The new introduced Decision Number helps to evaluate
which option is more beneficial over the whole feasible operating range. The results
show that the dividing wall column is superior over the direct split sequence for systems
requiring significantly more stages for the low boiling components, while the benefit
decreases for increasing stage requirements for the high boiling components. A reversed
effect is found in comparison to the indirect split sequence. However, there is no case
in which the column sequences are overall superior over the dividing wall column.
Additionally, no impact of the fraction of the middle boiling component in the feed
stream on the energy saving potential of dividing wall columns is observed. This refutes
a widespread statement in the literature. For the multiple dividing wall column pilot
plant at Ulm University it is found that high energy savings between 25 and 45 % can
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be expected for a broad set of systems. Thus, this work makes an essential contribution
to answering the question under which circumstances dividing wall columns can be
used profitably.
Additionally, the robustness of a dividing wall column operation close to the corre-
sponding energetic optimum in the context of multiple steady states of the internal
vapor and liquid splits is evaluated. The results show that the location of suitable
vapor and liquid split ranges is not only determined by the system itself, but also by
the total stage number and their allocation in the column sections. To understand
this behavior an extended version of the minimum vapor (V̇min) diagram is developed
witch also includes the dimension ni = Ni

Nmin,i
and thus the distance to the minimum

stage number of the column and column sections. This extended diagram can also
be applied to estimate suited vapor and liquid split ranges in multiple dividing wall
columns with finite and non-optimal stages. These estimations can be used to initialize
flow-sheet simulations. Additionally, the flexibility of several systems separated in the
pilot plant at Ulm University is evaluated. It is found that the vapor splits in such a
column should be adjustable to values different to 0.5 in order to maintain demanded
product specifications. Thus, it requires an internal tool to roughly adjust the vapor
splits, like for example a pinhole sheet. Otherwise it cannot be guaranteed that the
column can split a broad set of mixtures. However, if the vapor split is set to a value
suited for the system, also feed stream disturbances can be handled without problems
and deviation of the vapor split can be compensated by the liquid splits.
All in all it can be concluded that simple and multiple dividing wall columns are
a superior technique to reduce the energy demand of distillation processes, also as
multi-purpose apparatus. However, a deep process understanding is required in order
to design such columns in a robust way. The required knowledge is provided in this
work.
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ṅ Molar flow
Ni Number of theoretical stages in section/region i

ni Ratio of th. stage number divided by minimum one
p Pressure
PC Critical Pressure (Aspen Plus internal variable name)
q Liquid fraction/thermal state of feed stream
Q̇ Reboiler duty
RL Liquid split ratio
RV Vapor split ratio
RR Reflux ratio
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1 Introduction

The reduction of CO2 emissions is an important issue in order to slow down global
warming. One sector with a high saving potential due to its significant energy
consumption is the chemical industry. Especially commonly used separation and
purification steps are highly energy-intensive. The most frequently applied separation
step is distillation, for which in 2001 approximately 2.5 % of the totally consumed
energy were used [2–4], another reference reports 10 % in 2016 [5]. Accordingly, the
search for distillation options being more efficient is an important research topic.
In this context a very promising approach are so called intensified columns. Their
objective is to combine several unit operations into one column shell in order to increase
the process efficiency [6]. A well-known representative of this group in the field of
distillation are dividing wall columns [7–12]. For ternary product splits literature reports
a reduction in energy consumption of approximately 30 % compared to conventional
distillation sequences like the direct split sequence [13–17]. However, due to an increased
complexity they are still a niche application in chemical industry. The principle was
patented in 1946 [18] and first applied in chemical industry in 1985 [19]. Since then the
number of columns constantly increases. In 2011 around 125 columns were reported
and for 2015 approximately 350 were predicted [10]. Accordingly, nowadays it can be
expected that at least 500 - 1000 columns are in use.
The advancement of simple dividing wall columns are multiple dividing wall columns
offering energy savings up to 55 % for quaternary product splits [20,21]. However, these
columns are much more complex in comparison to conventional sequences. This is
probably the main reason why, to the best of the authors knowledge, no real plant of
this kind has been build yet. The working group in Ulm is taking up this challenge and
is building the first multiple dividing wall column pilot plant worldwide in 2021 [22].
The author of the latter cited paper, working in the same group as the author does, is
responsible for the design of the plant, while the author of this work aims to optimize
this and other dividing wall columns and evaluate their saving potential on a theoretical
basis. The saving potential is to be evaluated in comparison to conventional column
sequences, which has not yet been studied in detail in the multi-objective space. For a
fair comparison of the configurations, optimizations have to be performed. At this point
it should clearly be distinguished between optimization in a mathematical context and
a simple enhancement of an existing process which is often also referred to colloquially
as optimization. This work focuses on optimization on a mathematical basis which
requires sophisticated algorithms to find a solution. However, as already mentioned
simple and multiple dividing wall columns are comparably complex, which makes the
mathematical optimization computationally extensive.
The complexity of the optimization problem does not only result from the high number
of optimization variables but also from its multi-objective nature. In other words, there
is not only one, but a large number of so-called Pareto-optimal solutions, for each of
which it is true that one objective cannot be enhanced further without compromising
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another [23]. However, only one optimal solution is required for the design of a column.
The methods available to chose only one optimal point out of the Pareto-optimal set can
be classified as a priori and a posteriori [24]. A priori approaches perform assumptions
prior to the optimization with the goal to simplify its calculation and usually reduce the
optimal solutions to (in most cases) only one. A commonly applied a priori method
combines actual objective functions as energy demand and number of theoretical stages
to one economic function as for example the total annualized costs (TAC) [25]. This
transforms the multi-objective problem to a simple single-objective one. Nevertheless, it
is obvious that potential other candidates for the operating point are neglected in advance.
Additionally, often empirically developed factors are included in the calculation [25, 26]
resulting in problem-specific results. This leads to a leak of knowledge about the
connection between the real objectives and the corresponding variables even though
it is indispensable for an extensive process comprehension. Accordingly, a posteriori

methods offer a suitable alternative to prevent the stated loss of knowledge. In this
approach a large part of the solution space is calculated and the decision maker can
choose the best suited option after the optimization itself [27]. Even though this method
requires more calculation time, the advantage of a multi-use solution predominates.
Accordingly, several scientific publications focus on a bi-objective optimization of
columns [28–32]. The objectives are then for example the total number of theoretical
stages, the energy input or one of the product purities. Nevertheless, to the best of
the authors knowledge no higher dimensional optimizations of distillation columns
considering all candidates simultaneously as objectives have been performed yet. Also,
a deep understanding about variable correlations and their impact on the optimum
is missing, because often only the objectives are visualized and not the corresponding
optimal variables.
Based on the stated facts the first pillar of this work are multi-objective optimizations.
On the one hand, an a posteriori optimization and evaluation approach is developed
and presented for two kinds of dividing wall columns. In order to visualize the
high-dimensional solution space and also the corresponding optimal variables, unique
visualization techniques are applied. For a reliable result interpretation, the solution
space including all variable correlations has to be fully understood. This goal is reached
by performing simpler bi-objective optimizations, which aim to calculate an easier
understandable subspace of the full solution set. Then, also the impact of different
optimization problem definitions and simplifications can be studied in depth. On the
other hand, it should be clarified for which cases dividing wall columns are a suited
alternative to conventional column sequences. Based on literature data the dividing
wall column is always more beneficial, however it should be investigated whether this
fact is actually true in the multi-objective space. For this purpose also easy heuristics
are needed to allow a simple estimation of the results without extensive optimizations.
Each of the optima can only be reached in combination with the optimal variables.
However, in some cases variables have some flexibility and can be changed within
a certain range without worsening the objective function. In other words, several
inputs can result in the same optimal output. In the context of distillation, this input
multiplicity is also denoted as multiple steady states [33,34]. As a rule of thumb one
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can assume that the probability of such a behavior increases with the degree of process
intensification. Thus, this phenomenon also occurs in dividing wall columns, where the
flexible variables are mainly the vapor and liquid splits at the dividing wall [35–37].
Especially for the operation of a dividing wall column close to one of its energetic
optima this behavior is of interest. Usually the vapor split below the dividing wall is not
actively regulated during operation [38]. This is often classified as disadvantage using
the argumentation that a deviation of the vapor split might lead to losses in product
purities [39]. However, multiple steady states occur and thus the vapor split can actually
be operated in a certain range. Then, the prerequisite for maintaining the product
purities is that the liquid split is adjusted correspondingly. This behavior results in
a flexibility in operation for the liquid and vapor splits which simplifies the operation
of a column close to the design specific energetic optimum. However, in literature no
extensive studies are available dealing with this flexibility range depending on the design
of the column, accordingly several questions are still unanswered and targeted in this
work. This includes for example, if the flexibility changes depending on the total stage
number and also the stage allocation in the column sections. Also, almost no studies
are available dealing extensively with the flexibility of multiple dividing wall columns.
At first glance, it may seem that optimization and multiple steady states are two
different topics. However, they should rather be seen as two sides of the same coin.
First, from a computational point of view the optimization problem is easier to solve,
when several inputs result in the same optimal output. Second, theoretical energy
savings are not worth much, if they cannot be reached in a stable manner during the
operation of a real plant. Similar to the calculation, also the operation is easier, if
multiple steady states occur. Even though some authors mention this connection [28],
it is not emphasized enough according to its importance.
This observation leads to the second pillar of this work. The occurrence and extent
of multiple steady states in simple and multiple dividing wall columns are studied in
detail. Of special interest is the effect of input parameters on suited ranges of the liquid
and vapor splits in such columns. An additional focus is to emphasize the connection
between an optimal column design and the corresponding split flexibility.
Based on the stated pillars, the work is organized as follows. First, theoretical
fundamentals are presented including dividing wall columns, their optimization and the
occurrence of multiple steady states. Since part of the results are multi-dimensional,
also suited visualization tools are discussed resulting in the use of self-organizing patch
plots. After the presentation of the applied methods follows the results section, which is
separated into two parts. One focuses on optimization and one on the flexibility ranges
of the vapor and liquid splits at the dividing walls. In other words, the second part is
relevant in order to evaluate the robustness of optima.
In the optimization section, first a large part of the solution space of a simple and multiple
dividing wall column is calculated based on a multi-objective optimizations including
five objective functions. With the presented method, an a posteriori exploration of the
high-dimensional space is enabled. Afterwards, bi-objective optimizations are performed
to calculate subspaces of the full solution range with the purpose to understand variable
interactions. Additionally, the energy saving potential of dividing wall columns in
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comparison to conventional column sequences is studied in detail. A heuristic rule is
developed as decision support to evaluate the most beneficial column version considering
a bi-objective space without the need of an optimization run. For its calculation only
feed properties have to be known.
The following flexibility part focuses on the investigation of design parameters affecting
the location of suited vapor and liquid split ranges to operate a column close to the
corresponding energetic optimum. This includes among others ranges for different
total stage numbers and allocations, feed mixtures and compositions. In this context
the connection to the optimum emphasized several times. Additionally, an enhanced
approach to estimate the vapor and liquid split ranges for columns with finite stage
numbers is suggested. Last, the work is closed with a summary of the key findings.



2 Theoretical background and
state-of-the-art

This chapter summarizes the theoretical background and state-of-the-art that are
relevant to understand the results of this work. For this, Section 2.1 summarizes
fundamentals about multi-component distillation and dividing wall columns. This
also includes available shortcut methods to approximate the extreme compromises
of the optimization, the minimum energy operation and minimum stage number.
Afterwards, the state-of-the-art concerning the flexibility of the liquid and vapor splits
(Section 2.2) and optimization (Section 2.3) are presented. Last, Section 2.4 focuses on
high-dimensional data visualization techniques.

2.1 Distillation and shortcut design methods

Distillation is a process to separate liquid mixtures into pure components based on partial
evaporation and condensation of the mixture. The process can either be performed
batch-wise or in a continuous way, which is usually implemented in distillation columns.
The process is not limited to the separation of binary mixtures, also multi-component
mixtures can be split [40]. In this work the separation of ternary and quaternary
mixtures in continuously operated columns is investigated on a theoretical basis.
The following Section 2.1.1 first summarizes distillation options to split multi-component
mixtures focusing on dividing wall columns. Also, a pilot plant of a multiple dividing
wall column planned to be built at Ulm University is introduced briefly in Section 2.1.2.
Afterwards, shortcut design methods which are applied in this work are summarized in
Section 2.1.3.

2.1.1 Separation of multi-component mixtures

Ternary or higher mixtures are conventionally separated in a sequence of simple distilla-
tion columns which are materially coupled. Two commonly used options for ternary
splits are the direct and indirect split sequence (DSS and ISS, respectively) [7, 8, 41].
In a DSS, as shown in Figure 2.1a, the distillate product Ḋ of the first column is the
pure light boiler (denoted as component A), while the bottom stream Ḃ is a mixture of
the middle and heavy boiling components (component B and C, respectively), which
is further purified in the second column. Reverse, in the indirect split the bottom
stream of the first column is the pure heavy boiler and the distillate stream being a
mixture of components A and B is processed in the second column. For the separation
of higher mixtures with more than three components one column can be added for each
component. Which sequence is the most energy saving one for the split of the feed
stream mainly depends on its composition, but also the relative volatilities αij of the
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(a) Direct split sequence (b) Petlyuk sequence

Figure 2.1: Options for ternary product splits in conventional columns.

components [7].
Another alternative for ternary mixtures is to combine not only two but three conven-
tional columns, this sequence is called sloppy sequence [11]. The first column, which
is often called prefractionator, performs a split between components A and C while B
distributes between both product streams. The distillate product of the first column
proceeds to a second one in which A and B are split, the bottom product proceeds
to a third column splitting components B and C. Since this options desires relatively
high investment costs for three instead of two columns it is rarely used. However, both
columns performing the AB and BC split can be combined into one shell. If also the
reboiler and evaporator of the first column are saved and replaced by a thermal coupling
in addition to the material one, the result is the so called Petlyuk sequence shown in
Figure 2.1b [42]. This principle can also be extended for mixtures higher than ternary,
for each additional component one more thermally coupled column is required. In any
case, the thermal and material coupling avoids a remixing of the intermediate boiling
component(s) with the feed stream. As a consequence, energy savings of around 30 %
can be expected [43]. It is often stated that this type of column has the lowest energy
requirement of all known distillation variants over the entire feed composition range.
However, the savings are relatively low with high proportions of light or heavy boilers.
Thus, the savings increase with the proportion of middle boilers [7]. Nevertheless, these
statements are partly based on the assumption of infinite stages.
The energy savings of Petlyuk sequences come at the cost of more complexity, and also
only one operating pressure can be applied. The increased complexity arises from the
fact that the theoretical stage number has to be specified for two additional column
sections compared to a conventional column sequence. A column section is a segment
of a column between incoming and outgoing streams that contains separating internals
(indicated by boxes filled with an x and a numbering in Figure 2.1). A column region



2.1 Distillation and shortcut design methods 7

consists of two sections which are located above and below a feed stream (rectifying
and stripping sections) and is responsible to separate two components. The Petlyuk
sequence has a column region to perform the separation between the components A
and C (prefractionator, sections C21 and C22 in Figure 2.1) which is not present in the
direct or indirect split sequence. Correspondingly, the number of stages for these two
column sections has to be defined additionally. Further, the vapor and liquid split ratio
between the two columns, RV and RL respectively have to be defined [10, 44]. Note
that the liquid and vapor splits can either be defined as the flow on the right side of
the dividing wall according to Figure 2.2 (index r) related to the total one (RV,r and
RL,r) or the flow on the left side (index l) (RV,l and RL,l). Depending on the point of
view either one or the other notation is more useful.
However, even though the energy consumption and thus the operational costs are reduced
with a Petlyuk sequence, still two columns are needed. This can be avoided by integration
of the Petlyuk sequence into only one column shell with an internal separating wall
resulting in the dividing wall column (DWC). A DWC is thermodynamically equivalent
to the Petlyuk sequence [11]. The separation of multi-component feeds into pure
products in only one column shell results in additional savings of the investment costs
and plant footprint [45]. The necessary number of dividing walls depends on the number
of components in the feed mixture. For a ternary feed stream only one dividing wall is
required as shown in Figure 2.2a. A feed mixture consisting of four components can

(a) Simple dividing wall
column (2-3 configuration)

(b) Multiple dividing wall
column (2-3-4 or Sargent
configuration)

(c) Simplified multiple
dividing wall column
(2-2-4 configuration)

Figure 2.2: Ternary and quaternary versions of dividing wall columns. Gray angles
indicate liquid and vapor splits, note also the section numbering.

also be split in a simple dividing wall column, which is then called Kaibel column or 2-4
configuration [46,47]. However, applying more dividing walls results in higher energy
savings [20, 48]. In the multiple dividing wall column (mDWC), which is shown in
Figure 2.2b, three dividing walls are used. This column version is sometimes denoted as
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2-3-4 configuration [21,47] or Sargent DWC [49,50]. The application of three dividing
walls leads to a reduction of energy consumption of around 20 % to 55 % [20, 21, 50, 51].
This advantage is again offset by an increased number of degrees of freedom [52].
Correspondingly, several simplified versions of this column are suggested in literature.
One method to simplify the mDWC is to assume liquid-only transfers to reduce the
number of vapor splits [53, 54]. An additional approach is to reduce the number of
dividing walls to two instead of three. This can either be done by merging the two
walls at the product side or by totally neglecting one of them. This work focuses on the
simplified multiple dividing wall column (smDWC) version shown in Figure 2.2c which
neglects the dividing wall in the lower part of the product sections. Another name for
the column version is 2-2-4 configuration [21, 47]. It is expected to be suitable for a
large quantity of material systems [22]. Thus, this column configuration is chosen to be
built at Ulm University [22]. More information about the pilot plant specifications is
given in the following Section 2.1.2. Reducing the number of dividing walls by one can
actually be done without causing an increase in energy consumption [21,48]. Whether
the column from Figure 2.2c can be operated at the same minimum energy demand as
the one with three dividing walls mainly depends on the mixture. This is discussed in
more detail in Section 2.1.3.1.
A recurring topic in this work is the theoretical stage allocation or distribution inside
dividing wall columns. This expression is intended to describe the number of theoretical
stages available in each section in relation to the other sections. In other words, if the
stage number in all six sections of a dividing wall column is identical, the theoretical stage
allocation is denoted as uniform. If the stages are different in all sections, it is denoted
as non-uniform. A uniform stage allocation is for example used for multi-purpose plants
in order to be able to split a large set of different mixture. However, usually columns
are designed for a certain mixture and correspondingly the optimal stage allocation for
this mixture might be rather non-uniform.
Another notable aspect is that the total stage number of dividing wall columns can be
counted in two ways. The main difference lies in whether stages operated in parallel,
thus on the left and right side of a dividing wall, are counted as one or separately.
Counting these stages as only one is often done in industry, as the resulting number
of stages allows conclusions about the column height (as performed in [50]). However,
from a scientific point of view, these stages, which are operated in parallel, perform
different separation tasks and thus should not be merged. Counting them separately
also allows different stage numbers on both sides of dividing walls. This is the reason
why the second approach is used in this work.

2.1.2 Pilot Plant: Simplified multiple dividing wall column

A simplified multiple dividing wall column pilot plant based on the smDWC version
shown in Figure 2.2c is planned to be built at Ulm University in 2021. Thus, this kind of
column is investigated in more detail in this work. Preißinger et al. summarized all steps
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of the column design in a publication [22] and the most important facts are presented
here briefly. A scheme of the plant can be found in the Appendix in Figure A.1.
In particular, the main objectives of column is to be suitable for a wide range of different
mixtures. Thus, it is chosen to apply the same number of theoretical stages in all
column sections despite C32, where twice as many stages are used due to fluid dynamic
reasons. For the determination of the required total number of theoretical stages, a
set of seven suitable systems is defined fulfilling certain specifications like zeotropic
behavior, low price and low toxicity. For all systems an equimolar feed flow with
0.1 kmol · h−1 at liquid boiling state q = 1 is assumed. Several of the presented systems
are also investigated in this work which can be found in Section 3.5. For the actual
column design the system being most difficult to split is chosen, which is system 4.1
(Section 3.5). Then, a manual hierarchically oriented optimization minimizing the
energy demand and total stage number required to reach at least 98 mol % pure product
is performed. Finally, the total theoretical stage number is chosen at the strongest
curvature of the calculated Pareto-front. At this point, the total stage number inside
the column is 220, thus in each section 20 stages are used and 40 in section C32.
Based on these theoretical considerations the translation to the actual design of the
pilot plant is done. For this, local conditions at the university are to be respected.
These limit the total height of the column to 9.7 m. This height also includes liquid
distributers, the evaporator and reboiler, thus the resulting height for the column
sections itself is lower. Additionally, it is decided to build the two sections on the
left and right side of a dividing wall as separate segments. Thus, the column shell is
split into two with an Y-shaped connector. Consequently, the heat transfer across the
dividing wall is neglected. These Y-shaped connecting parts above and below the two
dividing walls also require a certain height. Consequently, the actual packing height
of each section and half of the packing height for section C32 is 1060 mm. In order
to reach the specified number of theoretical stages in this actually available section
height, a structured wire mesh packing with a height equivalent to one theoretical plate
(HETP ) value of 0.053 m is needed. Thus, the Sulzer DX is chosen. It has HETP

values between 0.04 and 0.07 m, where the exact HETP value depends on the gas load
(F -factor) inside the column [55]. However, if another kind of packing is chosen in
future, a different number of theoretical stages in the column sections could result.
Accordingly, for the optimization of the pilot plant in this work, the total number of
theoretical stages is chosen as objective while the distribution of the theoretical stages
on the column sections is assumed to be set.
Another notable feature of the pilot plant are perforated metal plates below the dividing
walls. The wholes inside the plates can either be opened or closed, like this the pressure
drop on both sides of the dividing walls can be manipulated prior to the operation.
Consequently, the vapor splits are roughly adjustable to values different to 0.5.



10 2 Theoretical background and state-of-the-art

2.1.3 Shortcut design methods

For the design of dividing wall columns several shortcut techniques are applicable. Most
of them are based on the distribution coefficient of the components between the vapor
and liquid phase Ki which is shown in Equation 2.1 [56].

Ki = yi

xi

(2.1)

yi is the molar fraction of component i in the vapor phase and xi the molar fraction
in the liquid phase. Commonly the relative volatility αi is given instead of Ki, its
definition is shown in Equation 2.2.

αij = Ki

Kj

(2.2)

Two extreme cases limit the operation range of distillation columns. One is the
minimum energy operation at an infinite stage number (can practically approximated
at N = 4 · Nmin [20]) which is discussed in Section 2.1.3.1. The second one is the
operation at the minimum number of theoretical stages and accordingly at high energy
consumption, which is explained in more detail in Section 2.1.3.2.

2.1.3.1 First extreme case: Minimum energy operation and corresponding
estimation of vapor and liquid splits

For the estimation of the minimum energy demand V̇min diagrams can be used. Their
calculation is based on the Underwood equations [57,58] and were presented by Halvorsen
and Skogestad [59–61]. Underlying assumptions are constant molar flows, constant
relative volatilities and an infinite stage number. For the calculation of V̇min diagrams
only feed stream properties have to be known, which are the molar fraction of all
components zi, their relative volatilities αi and its thermal state q. Figure 2.3 shows
how a V̇min diagram looks like for a ternary system. However, the application is not
limited to three components and can thus also be applied for quaternary or higher
mixtures [61]. The calculation procedure can be found in the supporting material [62].
The feed stream Ḟ is assumed to enter a standard two-product distillation column.

The V̇min diagram shows the vapor demand at the top of the column related to the feed
flow V̇T

Ḟ
over the corresponding distillate to feed ratio Ḋ

Ḟ
for different product splits,

which are shown at the bottom of Figure 2.3. A product split is defined as the complete
separation (sharp split) of a light boiling component from a heavy boiling component,
in this case AB, AC or BC where the first component is obtained in the distillate and
the second one in the bottom product. If all data points are connected, the result
are straight lines which intersect at maxima and minima. The number of maxima
is the number of components minus one and between the maxima minima appear.
Each maximum denotes the vapor demand for the product split of two close-boiling
components, at the minima there are always one or more components with a boiling
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Figure 2.3: Explanation of V̇min diagram for a ternary system.

point in between the components that are split. The intermediate boiling component(s)
then distribute between the two product streams. If less vapor than required is used,
both components that should be split start to distribute between the product flows and
the split is no more called sharp. Using more vapor than needed is basically a waste of
energy, since it does not enhance the performance of the column. Note that the fact,
which of the peaks is the highest one depends on the system properties. In the shown
example the BC peak is the highest one, however there are also systems for which the
AB peak is higher.
There are two infeasible regions inside the V̇min diagram which are indicated by gray
regions inside Figure 2.3. The first infeasible region is the one below (1 − q), as at least
the vapor fraction of the feed stream will always leave the column at the top. The
second region results from the fact, that the distillate flow has to be at least equal or
higher than the vapor flow at the top of the column.
The V̇min diagram can directly be applied to a simple or multiple dividing wall
column [61]. In this case the highest peak determines the total energy demand of
the column. Additionally, several aspects have to be considered which is first explained
for the easier case of a ternary system in a simple dividing wall column. Afterwards,
the knowledge is extended on quaternary systems in a (simplified) multiple dividing
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wall column. For column sequences, the diagram has to be adapted which is briefly
discussed at the end of this section.

Ternary split in simple dividing wall column

As already mentioned the total vapor demand of a dividing wall column is set by the
highest peak in the V̇min diagram. The prerequisite for the applicability of the diagram
is that all column regions performing a certain product separation work at the predicted
flows. This means for a simple dividing wall column with a ternary feed that the
sections C21 and C22 perform the AC split, the sections C11 and C12 the AB split and
C13 and C14 the BC split as shown in Figure 2.4 on the left and in Equation 2.3. Note
that the Petlyuk column is shown in the figure instead of the dividing wall column for
clarity.

NAC = NC21 + NC22

NAB = NC11 + NC12

NBC = NC13 + NC14

(2.3)

Being able to determine the vapor demand in the prefractionator and main column means
that also the required vapor and liquid splits at the dividing walls can be calculated
based on the V̇min diagram. In Figure 2.4 the corresponding points at which the vapor
demand and related distillate streams must be read from the V̇min diagram to determine
suited liquid and vapor splits in a simple DWC are marked with horizontal black
lines (V̇ Original

min ). The vapor split based on the original V̇min diagram can accordingly

Figure 2.4: Optimality region in V̇min diagram for the ternary case.
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be calculated from the vapor demand of the AC split V̇ AC
min and the maximum one

V̇ max
min = max(V̇ BC

min, V̇ AB
min) as shown in Equation 2.4.

ROriginal
V,r = V̇ max

min − V̇ AC
min

V̇ max
min

(2.4)

For the calculation of the liquid split also the distillate flows have to be considered as
shown in Equation 2.5.

ROriginal
L,r = (V̇ max

min − ḊAB) − (V̇ AC
min − ḊAC)

V̇ max
min − ḊAB

(2.5)

The resulting split fractions are a useful tool to initialize flow-sheet simulations [63].
However, performing a simple mass balance for a dividing wall column results in the
conclusion that that the product splits AB and BC and thus all maxima have to be
operated at the same vapor amount, assuming that all vapor leaving the evaporator
will also be present at the top of the column (for constant molar flows, liquid feed and
liquid side draw). In the V̇min diagram this means that all maxima are shifted to the
same height. This is shown in Figure 2.4 on the right side with gray lines (V̇ DW C

min ). In
the original diagram of the system itself (black lines) the BC peak is the highest one
and if the product split is performed in a dividing wall column, the AB peak is shifted
to the same vapor demand (gray lines). Consequently, also the intermediate minimum
AC is increased to V̇ AC′

min . The region between the original position considering only
the system and the new position occurring in a dividing wall column is denoted as
optimality or flat region. The AC split can be operated anywhere in this region without
causing an increase in total energy demand of the column. Accordingly, also the liquid
and vapor split can be operated in a certain range, which can be calculated by inserting
V̇ AC′

min and ḊAC′ in the equations 2.4 and 2.5, which represent the first limit of the splits.
The resulting second limit of the split ranges is shown in Equation 2.6 and 2.7.

RDW C
V,r = V̇ max

min − V̇ AC′
min

V̇ max
min

(2.6)

RDW C
L,r = (V̇ max

min − ḊAB) − (V̇ AC′
min − ḊAC′)

V̇ max
min − ḊAB

(2.7)

All feasible intermediate solutions for the liquid and vapor splits between the first and
second limit, in other words between the value of the original diagram and the one
inside a DWC, can be plotted. This results in a straight line with a positive slope [36].

Quaternary split in multiple dividing wall columns

For quaternary product splits in a column like the one from Figure 2.2b three additional
column regions are required to perform the AD, BD and CD splits as shown in
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Equation 2.8. The three regions for the AC, AB and BC split are analogue to the
simple DWC from the previously shown Equation 2.3.

NAD = NC31 + NC32

NBD = NC23 + NC24

NCD = NC15 + NC16

(2.8)

Due to one additional component, the V̇min diagram has three maxima instead of two
as observed for the ternary systems. This is shown for one system as an example in
Figure 2.5 on the right, indicated by the black lines (V̇ Original

min , corresponding to the
column from Figure 2.2b). Again, the highest peak determines the total energy demand
of the column. Additionally, all required vapor and liquid splits can be read similar as
described in the previous paragraph and be used as initial guess for simulations [63].
However, in this work only the simplified version of the multiple dividing wall column
from Figure 2.2c is investigated, thus the V̇mindiagram of this column version is explained
in more detail here.
The considered simplified mDWC has two instead of three dividing walls. Accordingly,
the column has two sections less for all product splits. In order to still obtain pure
products, the AD split is skipped and the BD split is performed in the prefractionator
(sections C31 and C32) instead as shown in Equation 2.9 and Figure 2.5 on the left.

N smDW C
BD = NC31 + NC32 (2.9)

Performing the BD instead of the preferred AD split results in a changed distillate flow
of the prefractionator compared to the energetically optimal operation. This causes a
shift of the following AC and AB split in the V̇min diagram as indicated in Figure 2.5
by the dashed black lines (V̇ Original+smDW C

min ). However, if the increased AB peak stays
below the highest one determining the overall energy demand, the column can still
be operated without energy penalty compared to the three dividing wall version in
Figure 2.2b. In the case that the peak is increased above the initially highest one,
the system is assumed to be not suited for this simplified column version since the
minimum energy operation is not feasible. Alternatively, a column with the second
dividing wall in the lower part of the main column can be used. For this column option,
the prefractionator performs the AC split and consequently the BD and CD splits are
increased. However, since this kind of column is not the focus of this work it is not
explained in more detail here.
Also analogue to the simple DWC all maxima have to be located at the same height
for the real operation due to mass balance reasons. This is indicated in Figure 2.5 on
the right by the gray lines (V̇ smDW C

min ). Accordingly, again an optimality region results
causing flexibility of the vapor and liquid splits [61]. It is indicated by gray shaded areas
in Figure 2.5. The behavior of this optimality region is expected to be more complex
than for the simple dividing wall column since two peaks are increased instead of just
one. Best to the authors knowledge, no extensive studies are available in literature
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Figure 2.5: V̇min diagram for quaternary systems: Suitability of systems for
smDWC and optimality region. Inspired by [61].

about the optimality regions of smDWCs and their calculation with V̇min diagrams.
Thus this topic is discussed in more detail in the results Section 5.1.2.
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Conventional column sequences

For column sequences as the direct split sequence the V̇min diagram can also be used.
However, for each column a new diagram has to be calculated. The reason for this are
reboilers or condensers used between the columns, which change the available amount
of vapor between two product splits. The properties of the product stream of the first
column fed to the second one are used for the calculation of the new diagram.

2.1.3.2 Second extreme case: Minimum number of theoretical stages

The second extreme case for the operation of distillation columns is the operation at the
minimum stage number. To determine this number for a simple two-product distillation
column the Fenske equation from Equation 2.10 can be applied [64]. The index HK

defines the high boiling key component and LK the low boiling key component, where
the key components are the ones that are separated inside the column.

Nmin =
log

[
xḊ

LK

xḊ
HK

· xḂ
HK

xḂ
LK

]
log αLK/HK

(2.10)

The Fenske equation considers only a binary mixture. Whether it is applicable on
dividing wall columns or not is frequently discussed in literature. Several authors
suggest to split the dividing wall column into regions performing binary product splits
according to Equation 2.3 and 2.8, which are then considered as two-product distillation
columns [13,26,65]. For each of these columns the minimum stage number is estimated
with Equation 2.10. The sum of the minimum stage number for all regions performing
one product split inside the dividing wall column is then its total minimum stage number.
The main argument against this procedure is that the flows entering and leaving the
prefractionating column do not have the same compositions [66]. However, best of
the authors knowledge no reliable optimization based study is performed to prove or
disprove these contradictory hypotheses. Thus, this question should be answered in
this work by comparing optimization results with the ones provided from the Fenske
equation in Section 4.3.2.
For dimensioning a dividing wall column it is especially important to know, whether
the AB or BC split needs a higher number of theoretical stages. A simple procedure
to answer this question without solving Fenske’s equation is to determine the Ease of
Separation Index (ESI) of the system [67]. The ESI of a ternary system results from
Equation 2.11.

ESIABC = KA · KC

K2
B

= αAB

αBC

(2.11)

If the ESI is one, the AB split requires approximately the same number of theoretical
stages as the BC split. If it is below one, the AB split is harder and requires more
stages and the other way around. Accordingly, for an ESI above one, the BC split
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needs more stages than AB. Note that the V̇min diagram in Figure 2.3 is for a system
with an ESI around one. Also it should be kept in mind that the ESI is only useful
for almost sharp product splits.

2.1.3.3 Compromises between minimum energy and minimum stage operation

Usually, distillation columns are not operated at one of the extreme cases presented
in the two previous paragraphs. An established method to determine a compromise
operating point is the one of Gilliland [68]. He suggests a standardization of the number
of stages and the reflux ratio according to Equation 2.12 leading to the dimensionless
parameters Y and X. In the corresponding publication it is shown that Pareto-optimal
designs of some distillation columns always lie on the same line when plotting X over
Y .

Y = N − Nmin

N + 1

X = RR − RR,min

RR + 1

(2.12)

Gilliland’s publication was only graphically based. Later, Molokanov extended the
method by an equation [1]. The correlation between the two standardized parameters
from Equation 2.12 is described with the empirical Equation 2.13.

Y = 1 − exp

[( 1 + 54.4 · X

11 + 117.2 · X

)(
X − 1√

X

)]
(2.13)

Additionally, the Kirkbride equation can be applied in order to estimate the optimum
feed stage of the column [69]. NR are the number of stages in the rectifying and NS in
the stripping section.

NR

NS

=
(xḞ

HK

xḞ
LK

)
·
(

xḂ
LK

xḊ
HK

)2

· Ḃ

Ḋ

0.206

(2.14)

2.2 Flexibility of liquid and vapor splits

As already stated, the V̇min diagram predicts an operating range for the liquid and
vapor splits in dividing wall columns called optimality region. The behavior is also
observable from rigorous simulations, which no more rely on strong assumptions like the
ones of the V̇min diagram [28,33]. In the context of optimization this is an important
observation, since several variable inputs can result in the same optimal output.
In literature that observation is also called multi or multiple steady states [33,34,70].
Note that in this work a flexibility region is determined which includes several multiple
steady states. Multiple steady states denote one set of variable ranges corresponding
to only one column design with exact product specifications which is often operated
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at the Pareto-optimum of the energy input. The flexibility region is a broadened area
around this specifically defined column design. This arises from the fact, that inequality
constraints are applied on product purities. Thus, several sets of multiple steady states
are observable at the same time. Each of these sets broadens further, if a certain
increase of energy input is considered in comparison to the Pareto-optimal one. These
additional easing of restrictions on the column design result in the occurrence of many
multiple steady state at the same time. This behavior is denoted as flexibility of the
vapor and liquid splits or flexibility region in this work.
Several publications are available focusing on the split flexibility in simple dividing
wall columns. One of the first publications stating this behavior is from 1986 [33] and
focuses on the occurrence of multiple steady state solutions of interlinked columns.
The behavior is explained visually by several intersections of the isopurity lines of the
products and a mathematical approach is presented to predict the existence of multiple
solutions. This method is also applied by several other authors in the context of dividing
wall columns [34,35,37]. Halvorsen et al. published an extensive study about the suited
splits at the dividing wall resulting in an energetically optimal operation [36]. It is
shown that several combinations of RV and RL located on a straight line enable a
minimum energy operation at infinite stage numbers. If the splits are operated besides
this optimal range, the total energy demand increases. Depending on the direction
of the deviation of the vapor and liquid splits, either a very steep or a rather smooth
increase in energy demand can be observed. Similar observations are stated in several
other reports [39,71,72]. Additionally, Halvorsen et al. [36] show that the shape and
location of the split flexibility region is strongly affected by the thermal state of the
feed. For higher values of q, the range of suited splits is shifted and broadened in the
direction of lower liquid and higher vapor splits. For deviations in the feed stream
compositions the flat region also shifts. Similar observations are made for a calculation
with finite stage numbers, however the stage numbers in the column sections is not
given [36]. Ge et al. study the flexibility of a simple dividing wall columns designed for
a certain feed stream composition in the event of feed disturbances [73]. They conclude,
that the dividing wall column can tolerate feed stream disturbances to a certain extend
and that columns designed for a higher content of the light boiling component tend to
be more flexible.
For multiple dividing wall columns only few studies are published. Ge et al. [74] present
the effect of feed composition disturbances on suited vapor split ranges for two versions
of multiple dividing wall columns with two partition walls. For this purpose, first a
manual optimization approach is applied. Afterwards, suited split ranges to reach
96 mol % pure products 2 % above the optimal energy input is investigated. It is found
that suited split ranges are shifted, analogue to the simple dividing wall column. The
authors conclude, that liquid splits should be adjusted during the operation of such
columns in order to obtain the specified product purities. However, the liquid splits
required in combination with the presented vapor splits are not shown and thus their
flexibility is excluded from the evaluation [74].
Most presented publications (despite [73]) assume an optimal stage allocation in the
column sections and then investigate the split flexibility. To the best of the authors
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knowledge, no investigation was performed evaluating the impact of a non-optimal stage
allocation inside the column and also of the total stage number. Additionally, a clear
compilation summarizing the impact of all column parameters on the flexibility must
still be provided to emphasize the significance of this issue. On the other side, also
detailed studies about multiple dividing wall column split flexibility are still missing.
The stated gaps are closed in this work in Section 5.

2.3 Optimization of distillation processes

Generally, an optimization problem consists of three parts. First, the objective
function(s) F , which should be minimized or maximized. If only one objective function
is considered, the problem is called single-objective, if there are several it is called
multi-objective. Second, the optimization variables which define the design space and are
either discrete y or continuous x. Third but optionally, equality or inequality constraints,
h (total number m) or g (total number p), can be applied to limit variables [75].
Equation 2.15 shows the general definition of an optimization problem [24,76,77]. Note
that bold variables indicate a vector.

Minimize
x,y

F (x, y) = [F1(x, y), . . . , Fn(x, y)]

subject to gk(x, y) ≤ 0, k = 1, . . . , p

hl(x, y) = 0, l = 1, . . . , m

(2.15)

This work focuses on multi-objective optimization problems. A solution of the multi-
objective optimization problem is a point for which no other point exists that is better
in every objective. Such a point is called Pareto-optimal solution. This means that
in order to improve a Pareto-optimal solution in one objective, another objective is
degraded. The set of all Pareto-optimal solutions are called Pareto-front [24,78–81].
In the following, two aspects about optimization are summarized in more detail. The
first aspect is the computational point of view, which is about how the optimization
problem itself is solved (see Section 2.3.1). The second aspect is the engineering aspect,
which is about how optimization problem are usually defined for distillation processes
(see Section 2.3.2).

2.3.1 Computational point of view

The core of optimization is the computational framework which is used to solve it.
Generally, either process simulation and optimization are integrated into one stand-alone
model [82, 83] or two separate programs are coupled. The use of separated programs is
often applied because commercially available tools can be coupled rather simple. In this
context, Aspen Plus [14, 16,28, 84], Aspen HYSYS [85,86] or CHEMCAD [31] are used
but basically every simulation tool is suited. From here on, the optimization can be
performed manually by an iterative approach [8, 74,87], semi-automated using design
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of experiments methods [14,84,88] or by a fully automated algorithm [16,28,31]. For
the latter one, input and output data have to be exchanged between the flow-sheet
simulator and an external optimization algorithm.
The algorithms applied to solve the problem can be differentiated into stochastic
and deterministic ones [23]. Stochastic algorithms randomly generate parameter sets,
evaluate outputs and proceed with the most promising combinations in the next iteration
step, accordingly they are also called genetic or evolutionary. These kind of algorithms
are very commonly used for the optimization of dividing wall columns [16,32,85,89,90].
However, if a sequential modular flow-sheet simulator as Aspen Plus is used, the erratic
parameter changes can result in convergence problems, especially when it comes to
multiple dividing wall columns. Deterministic algorithms use gradients to determine a
local approximation of the problem. Based on this approximation, the next iteration is
proposed. Common examples for this approach are sequential quadratic programming
(SQP) and interior-point methods [91–94]. With this approach there is no guarantee
that a global optimum is found [23] and accordingly several starting points should be
tested. Also often the derivatives are not accessible, especially if an external flow-sheet
simulator is used. Additionally, a strategy how to handle non-convergent runs is required.
Thus, a relatively high number of calculation runs are needed in order to determine
the derivatives by finite differences. However, less drastic changes in the variables
cause less convergence problems in externally operated commercial flow-sheet simulators
compared to stochastic approaches. Nevertheless, this kind of optimization is rarely
used in the context of distillation, as for example in [31], or applied as a hybrid version
in combination with a stochastic approach [83].
An additional aspect that should be mentioned is how constraints are handled during
optimization. Of course the procedure is depending on the type of constraints and the
algorithm itself, but generally either penalty functions, repair functions or decoder can
be used [95]. For deterministic algorithms constraints are rather included in the local
approximation of the problem.
Most presented options focus on solving single-objective optimization problems. To solve
multi-objective problems, usually sequences of single-objective problems are calculated.
Several techniques are available how the sequence of single-objective problems is defined.
A common approach is the ϵ-constraint method, in which only one of the objectives
is minimized while the others are considered as constraints [96]. Another approach is
called weighting scalarization, for which all objectives are multiplied with weighting
factors w and summed up to one combined objective function f . The weights are chosen
differently for each single-objective problem that is solved. Again, several approaches
can be used to choose the weights. Frequently techniques are applied determining
results with equidistant space on the Pareto-front [97,98]. However, this requires solving
a relatively high number of single-objective optimization problems. One approach to
reduce the calculation time is to apply a neural networks [89]. However, still a high
number of optimization runs has to be performed in advance to train the network.
Afterwards, the network can be used to predict possibly optimal designs with reduced
calculation time. A different approach is to calculate only a minimum number of
optimal points that still represent the Pareto-set with a certain accuracy. This goal can
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be reached by an adaptive scalarization method called sandwiching [23,99,100]. The
approach is only applicable for convex Pareto-fronts [81]. Since this kind of algorithm
is used in this work it is discussed in more detail in the following.
Figure 2.6 shows the general steps performed to approximate the Pareto-front with

the sandwiching algorithm using the example of a bi-objective problem. However, this
procedure can also be applied to higher dimensions. As already stated, a sequence of
single-objective optimization problems is solved. In a first step the extreme compromises
between the objective functions are determined. For this purpose, the weighting factors of
all objectives but one are set to zero. The objective function which has a weighting factor
different from zero is afterwards minimized. This procedure is repeated until the extreme
points of all objectives are found. Based on the extreme compromises the so called Nadir
Point is constructed, which represents the worst value for each objective [23]. This point
is required to determine the approximation quality of the solutions. For this purpose,
between all yet calculated Pareto-optimal points an inner and outer approximation is
determined as shown in Figure 2.6 at the bottom on the right. The inner approximation
is a straight line between the two points and the outer approximation results from
the tangents of them. The resulting facet has a shape like a sandwich which is the
namesake of the method. The current approximation quality is set by the maximal
distance between the inner and outer approximation. If the quality is not sufficient
according to the specification of the user, another single-objective run is performed. The
applied weighting factors are determined by the slope of the connecting line between
the two evaluated Pareto-optimal points of the facet as indicated in Figure 2.6 at the
bottom left. Minimizing the resulting single-objective problem with the corresponding
weighting factors is basically a shift of the inner approximation/connecting line until
a minimum is found. By calculating an additional point on the Pareto-front like this,
one facet is split into two and correspondingly the approximation quality is increased.
This procedure is repeated between all other available facets. Like this, additional
Pareto-points are calculated exactly there, where the approximation quality is worst.
This is usually at another location as it would be chosen during equidistant weighting.
Accordingly, only a minimal number of Pareto-optimal points has to be calculated in
order to reach a certain approximation quality to describe the convex multi-objective
problem [23].
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Figure 2.6: Principle of sandwiching algorithm to approximate convex
multi-objective optimization problems explained for a bi-objective
problem.
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2.3.2 Engineering point of view

The optimization of distillation columns simulated with the theoretical stage model
includes discrete (stage numbers) and continuous variables (energy input etc.). Ad-
ditionally, it has a non-linear nature due to the thermodynamic models included.
Mathematically this is denoted as mixed-integer non-linear programming problem,
often simplified to MINLP. If the number of stages is not included in the optimization,
it simplifies to a non-linear programming problem, NLP. Accordingly, with which
algorithm the problem is solved mainly depends on its initial definition. Additionally,
the problem definition in terms of chosen objective functions affects the outcome of
the optimization. Accordingly, common approaches used for distillation columns are
summarized in this section.
In engineering most frequently single-objective optimizations are performed to compare
distillation options. For this purpose, often a combined cost function [45,67,101], which
is also denoted as Total Annual Costs (TAC) [16,26,71,85,86,88,90,102,103] is defined
and minimized. A well-known method for the derivation of the cost function is presented
by Luyben [25], however, many other versions are also applied. Due to the non-uniform
evaluation method of cost functions a detailed comparison of the presented results is
difficult. Nevertheless, most of the just quoted authors find cost savings in the range
of 20 % to 44 % for the dividing wall column compared to the conventional direct split
sequence.
From an economic point of view, the derivation of a combined cost function is a useful
tool to compare different options. From the perspective of research, the combination of
real objectives with empirically determined factors to fit everything into one equation
is an unnecessary restriction of the solution space which is performed without sufficient
information. Actually, the optimization of most separation processes including the
dividing wall column are of multi-objective nature. Since objectives can be contradicting,
there is not just one optimum but a high number of Pareto-optimal compromises.
Accordingly, the result of a single-objective problem like a cost function represents only
one small part of the whole possible space.
Correspondingly, several publications perform bi-objective optimizations of distillation
columns. For this purpose, some authors again include cost functions into the
optimization, while for example a product purity [29, 83], ecological factors [30] or
control properties [104] are maximized or minimized. On the other hand, there are also
some authors that perform bi-objective optimizations of actual design variables of the
column, like the the reboiler duty Q̇ and product flows or purities [31] or the reboiler
duty and number of theoretical stages ΣNCi [28,32,89,105]. In both cases the result
is a convex curve on which all Pareto-optimal solutions are located. In this work the
Pareto-front describing compromises between the stage number and energy input is
denoted as NQ̇ curve. Note that for simplicity reasons the term N is used instead of
ΣNCi.
The main advantage of such a bi-objective optimization is the possibility of an a

posteriori evaluation. In other words, the results can be evaluated several times
considering different cases and be used for comparison of different distillation options.
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An example: if the focus is more on reducing energy demand, the end of the Pareto-front
at high stage numbers is compared. If on the other hand strong height limitations
are to be considered, N has to be small and thus the other end of the front should be
evaluated. One author found for example, that the Pareto-fronts of different distillation
options might intersect [104]. Therefore, it makes sense to allow the final decision maker
to weight the considered objectives differently after the calculation has been completed.
However, in order to perform bi-objective optimization, constraints usually have to be
used. Correspondingly, the applicability of the results is still limited, even though this
limitation is less severe compared to the single-objective optimization of a cost function.
In case of the optimization of N and Q̇, the constraints usually concern the purities
or recoveries of the products or in other words the sharpness of the separation [106].
Accordingly, the results cannot be transferred to a column with different product
requirements. Consequently, a new calculation has to be run. Additionally, the impact
of the simplified optimization problem definition on the results is usually not questioned.
Thus, this topic is investigated in Section 4.2.
A more universal a posteriori approach enabling for multiple-use optimization results
is considering more than just two objectives. For example, while minimizing the energy
demand and total stage number, also the the product purities could be maximized.
The resulting optimization problem is accordingly multi-objective [107]. Even though
such a kind of optimization can offer a significant knowledge gain about when to use
which kind of distillation setup, to the best of the authors knowledge only one similar
publication has been published in which three objectives are considered [108]. In the
latter cited paper, a ternary feed stream with three different compositions should either
be separated in a dividing wall column, side draw column, a direct or indirect split
sequence. The objectives are to minimize total costs while a product purity and a
product flow are maximized. In some cases again the Pareto-fronts intersect, so it
cannot be said generally, that one option is always more suitable. However, again a
cost function is used and the results are only presented normalized which makes a
comparison to other publications difficult. Apart from this, to the best of the authors
knowledge no further scientific contributions have been published yet in this context.
Correspondingly, multi-objective optimizations of dividing wall columns are evaluated
in detail for two examples in Section 4.1 of this work. The comparison of suitable
distillation options based on Pareto-optimal column designs is presented in Section 4.4.
In any case, the result of a multi-objective optimization is, independent on the problem
definition, high-dimensional, especially if the optimization variables should also be
presented. Accordingly, data visualization is an important issue which is summarized
in the following Section 2.4.

2.4 High-dimensional data visualization

In order to present the design of a dividing wall column including all degrees of freedom,
especially in the context of optimization and multiple steady states, high-dimensional
data visualization techniques are needed. In literature lots of methods are presented
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addressing this topic, an extensive review can be found in [109, 110]. The following
section focuses only on fundamentals.
The main challenge visualizing a high-dimensional data set lies in its conversion to
lower dimensions that can be plotted. Direct data mapping summarizes methods in
which sub projections of the higher dimensions are plotted directly. This method
includes the use of parallel coordinates [111], enhanced versions of those [112, 113]
or scatter plot matrices [114]. All have the disadvantage that they get unclear or
space consuming for higher dimensions. Accordingly, for very complex data sets
further data processing is a good alternative. The two most important kinds of
data transformation are clustering and dimension reduction. Both of them can be
implemented as unsupervised machine learning algorithms [115,116]. Clustering of data
means that scattered data points or patterns are classified according to similarity into
groups called cluster [117]. This method is well suited to get a general overview over
the data classes. However, it does not solve the visualization problem itself. For this a
dimension reduction is needed which again can be differentiated into sub categories. A
commonly used linear reduction technique is the principal component analysis [118].
Non-linear approaches are isomap [119] and t-distributed stochastic neighbor embedding
(t-SNE) [120]. A combination of clustering and dimension reduction is the self-organizing
map (SOM) [121]. Since a variation of these, the self-organizing patch plots (SOPPs),
are used in this work those two is explained in more detail in the following Section 2.4.1,
followed by an introduction how to read them in section 2.4.2.

2.4.1 Self-organizing maps and self-organizing patch plots

A SOM is an artificial neural network that is trained unsupervised resulting in a
discretized and typically two-dimensional representation of the training data. Thus,
the training set is basically the data which should be reduced in dimension and/or
visualized. During the training, the network is organized in a way to reproduce the
topology of the input data. For this purpose first the SOM has to be initialized which
means that weighting factors have to be created for each neuron in the network. Usually,
this is done randomly. Then, in a training step a representative part of the training set
called stimulus is handed over to the network, where the best matching unit (BMU)
is searched. Based on the BMU the neurons are migrated and the weighting factors
are updated. The training ends after a defined number of iteration steps. However,
the overall creation of a SOM is complex and extensive. A detailed explanation would
exceed the scope of this work and thus the author refers to special literature about
this topic [121–124]. When the training is finished, the low dimensional SOM which
represents the topology of the input data can be plotted.
SOMs are an established technique for dimension reduction which is useful especially
for a visualization of high-dimensional data [122]. Nevertheless, not the data set itself
is shown but a network which was trained with it. Even though the map represents the
topology of the input data, not the exact numbers are shown and part of the solutions
could be distorted. As the objective of this work is to plot exact optimization or
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screening results, this is a crucial disadvantage. Accordingly, Stöbener et al. combined
the self-organizing maps with Voronoi diagrams to so-called self-organizing patch plots
that can exactly represent high-dimensional data [125].
For the transformation of a SOM to a SOPP, only the position of the BMUs correspond-
ing to the training data points in the SOM is used. Each of these data points is taken
as a seed point for the Voronoi diagram. In Voronoi diagrams the plane diagram area is
divided into irregular shaped regions. This division is performed around scattered seed
points (data points), in a way that each patch represents one seed point. All points
inside the patch are closer to the corresponding seed point than to any other. The term
close can have different mathematical meanings, in most cases the minimum Euclidean
distance is meant [126]. Afterwards, the Voronoi patches are colored according to the
absolute value of the seed point. How the resulting diagrams look like and how they
are read is explained in the following Section 2.4.2.

2.4.2 How to read self-organizing patch plots

In SOPPs there is always one diagram per quantity. If in the context of distillation for
example an NQ̇ curve is calculated for fixed product specifications while varying the feed
stage height, there are three quantities and accordingly three subplots. These diagrams
relate to each other and always have to be read in combination. In all diagrams the
same patch pattern is found and each patch represents one high-dimensional data set.
Note that the shape of the patches, their black borders and the axes of the diagrams
do not directly have a meaning. For the understanding only the location of the patches
in the plot area in combination with the other diagrams and the color of the patch are
important. With the help of the legend next to the diagram, the color of the patch can
be translated into the value of the corresponding data point. The related values of the
other quantities is read in the same patch in the other subplots.
Considering this background one can have a closer look on Figure 2.7, where the
two-dimensional NQ̇ curve from Figure 2.7a is transferred into a SOPP in Figure 2.7b.
For simplicity reasons the optimization variables which lead to the optimal results are
not shown. However, it is easy to include them in terms of an additional subplot. First
of all, since considered the data set is two-dimensional there are two subplots, one for
ΣNCi and one for Q̇. All data points that are plotted in the diagram in Figure 2.7a can
also be found in Figure 2.7b, indicated by small crosses. Around each cross, a Voronoi
patch is formed. As nine data points are plotted, there are also nine patches in each
SOPP. The nine patches inside one diagram are irregularly shaped and the resulting
irregular pattern is identical in all corresponding subplots. The data point at a high
total stage number ΣNCi and low reboiler duty Q̇ can be found in the upper left corner
of the SOPPs. In the subplot of ΣNCi the corresponding patch is colored in dark red
while the patch in the subplot of Q̇ is dark blue. The proceeding to lower stage number
in Figure 2.7a equals the path from the upper left corner to the lower left, lower right
and upper right corner in the SOPPs in Figure 2.7b. Note that this path can also be
totally different for another data set. Taking a look at the SOPPs as a whole, it is
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(a) Conventional 2D-plot
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(b) Self-organizing patch plot (SOPP)

Figure 2.7: Representation of same data points in a conventional two dimensional
plot and in a SOPP.

obvious that the stage number is high in another edge of the diagram than the reboiler
duty. Accordingly, it can easily be read that the two objectives are contradicting.
All in all, the same knowledge as from the conventional axis based visualization can be
read. For this simple two-dimensional case there is no real benefit of the visualization
in SOPPs. Considering that for example the optimization of a dividing wall column
results in a 13-dimensional space these correlated diagrams are well suited to determine
tendencies.



3 Methodology

All presented results are obtained from theoretical calculations. For this purpose Aspen
Plus® (V10 and 11) is used and for automation reasons coupled to Microsoft® (MS)
Excel® (2013) by ActiveX. For simplicity reasons the registered trade mark symbol is
neglected in the rest of this work. All calculations are performed on standard computers
(CPU: Intel® Core™ i5-6500 CPU @ 3.2 GHz, RAM: 16 GB or CPU: AMD Ryzen 5
PRO 2400G 3.6 GHz, RAM: 16 GB).
Section 3.1 summarizes the settings used for the interface between the two programs
and the chosen settings in Aspen Plus. The interface is either used for an optimization
(see Section 3.2) or a screening to determine the split flexibility (see Section 3.3). In
case of high-dimensional results, self-organizing patch plots (SOPPs) are computed in
MATLAB® (R2018a and R2020a) for visualization (Section 3.4). To obtain a easier
comparison between the results, standardization methods are applied for some variables
which are summarized in Section 3.4. Last, the mixtures which are used for the
calculations in this word are presented in Section 3.5.

3.1 Setup of automated flow-sheet simulation

As already mentioned Aspen Plus is used for the flow-sheet simulations. In this context,
three aspects have to be considered. First the thermodynamic modeling, second the
implementation of columns and third the setup of the data exchange through the
interface.
For the first aspect about the thermodynamic modeling supporting information can
be found in the appendix in Section A.2.1. However, it should be mentioned that
Non-Random-Two-Liquid (NRTL) is used for the thermodynamic modeling. The
applicability of the parameters from the data base to the chosen systems is validated
with literature data.
Considering the second aspect, several options are available to implement the dividing
wall column in Aspen Plus. The models in question are shown in the appendix in
Figure A.2. All of them are equilibrium stage models including the MultiFrac model
Petlyuk (note that the italic font is used to indicate that the Aspen Plus model is meant
an not the column sequence itself) and several sequences of RadFrac models. All options
are thermodynamically equivalent to the dividing wall column. In any case the stages
inside the columns are counted from the top to the bottom. In order to determine the
best suited model for the optimization and screening runs, two aspects are relevant,
first the calculation time and second the prone to errors. These two objectives are
evaluated for all suited column models. For this purpose a sequence of 200 randomized
calculation runs is performed automated with the interface between Aspen and Excel.
Thus to fully understand the method, the third aspect, the data exchange through the
interface, is briefly summarized prior to the presentation of the chosen column model.
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For the third aspect, the automated simulation setup, input and output data are
managed in MS Excel. The corresponding Aspen Plus simulation hat so be in a .bkp
format. In MS Excel a Visual Basic for Applications (VBA) code exploiting ActiveX is
used to access specific paths leading to the desired process variables. These paths have
to be implemented differently for each column model. Overall with the procedure an
automated data exchange between Aspen Plus and Excel can be obtained.
With the above mentioned interface the best suited column implementation option is
determined using the example of a simple dividing wall column. As already mentioned
200 randomly generated simulations are automatically run one after another for each
of the column options (Figure A.2 in the appendix). For each of the implementation
options a different VBA code needs to be programmed. In any case, varied input
parameters are the stages in all six column sections, the reboiler duty and the liquid and
vapor splits. Due to variable standardization it was guaranteed that only theoretically
feasible variables are used. The results of all models are compared and have identical
outputs which validates the fact that all models are thermodynamically equivalent.
The number of non-convergent runs (also denoted as error in the following) and the
necessary calculation time of all tested models can be seen in Figure 3.1a and Figure 3.1b,
respectively. Two of the randomly generated runs resulted in errors for all models and
are thus assumed to be infeasible. Accordingly, in the figures only the results of 198 runs
are compared. It can be seen that the lowest number of errors is reached by the three
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Figure 3.1: Comparison of different flow-sheet implementations of a dividing wall
column in Aspen Plus: Results for 198 randomized simulations (EH =
error handler).

column model. Nevertheless, the calculation time increases continuously with increasing
column numbers and thus the three column model needs approximately double the
calculation time as the Petlyuk model. Accordingly, it is decided to implement an
additional error handler (EH) in the VBA code of Petlyuk model interface. The code of
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this error handler can be found in the supporting material [62]. It is briefly described
in the following paragraph.
The error handler works as follows. In case of a non-convergent run, in a first step
the total number of iterations to evaluate the simulation is manually increased to 600.
As Aspen Plus has an internal limit of 200 iteration steps, a workaround is needed to
be programmed in VBA. For this purpose, one variable, for example an internal flow
between column sections, is multiplied with a factor of 1.001 and the new, only slightly
changed parameter set is sent to Aspen. Then, a simulation can be run witch applies
again 200 iteration steps. Afterwards, the variable is divided by 1.001 and thus set back
to the original value. Then, again the inputs are sent to Aspen Plus and a simulation
is run. Consequently, the number of iteration steps in increased to 600 instead of just
200. If this is not sufficient to reach convergence, the Aspen Plus internal solver of the
Petlyuk Block is changed (path in Aspen Plus: Blocks - (Block name) - Convergence -
Methods - Overall, either Standard, Sum rates or Newton).
The Petlyuk model in combination with the described error handler in VBA is then
also used to simulate the simulation sequence with 198 random variable sets. The
corresponding results are also shown in Figure 3.1. The Petlyuk model with error
handler solves all 198 simulations successfully without error while maintaining the
comparably low calculation time of the model without EH. Accordingly, the Petlyuk
model in combination with the error handler is used as model for all simulations in this
work. Similar observations are made for the implementation of a multiple dividing wall
column. Accordingly, these results are not shown here.
The final code used for the data exchange through the interface for the simple and
multiple dividing wall column can be found in the supporting material [62]. A graphical
visualization for the simple dividing wall column can be found in the appendix in
Figure A.3. It is visible that several variables have to be transformed, which avoids that
infeasible inputs are sent to Aspen Plus. This concerns the stage allocation and the
liquid and vapor split at the dividing wall. As the standardization procedure might be
relevant for some of the results, it is explained in more detail in the following paragraph
for a simple dividing wall column.
The required input for the Petlyuk model is the total stage number of the main column
(C11-C14 from Figure 2.2a) and of the prefractionator (C21-C22 from Figure 2.2a).
These columns are then thermally coupled by inserting the stage numbers at which
streams enter and leave one of the two columns. Also the flow of the coupling streams
has to be inserted as absolute quantity. Consequently, during the optimization it could
on the one hand happen that the coupling stages are entered in a wrong order or
on the other hand that the absolute flow of a coupling stream is larger than the one
available. Both problems cause non-convergent runs and are avoided by the parameter
transformation done in the VBA code. Thus, instead of specifying the stage numbers
as required for Aspen Plus, they are specified for each section individually. Then,
in the VBA code they are translated to the Aspen Plus notation and sent as inputs.
Additionally, the Petlyuk model requests temperature estimations on the top and bottom
stage of each column. These are calculated from the boiling points of the components
assuming a linear temperature profile inside the column. Last, the vapor and liquid split
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are inserted in Excel as relative values defined as the flow on the right/product side of
the dividing wall divided by the total flow that is split. In Aspen Plus the absolute
coupling flow is needed as input. This is then calculated by multiplying the split ratios
with an estimated total flow that is split. The total flow that is split is approximated
based on the reboiler duty, the enthalpy of the bottom stream for almost pure products
and mass balances assuming constant molar flows. The enthalpy used for each system is
listed in the supporting material [62]. The use of relative vapor and liquid split fraction
is needed in order to guarantee that the absolute flows inserted in the simulation do not
exceed the available amount of vapor or liquid. However, these vapor and liquid splits
are only estimated values based on the given assumptions. The actual vapor and liquid
splits are calculated after the simulation has converged successfully based on the used
absolute coupling flows and the resulting column profiles. All values of liquid and vapor
split ratios shown in this work are the actual split ratios and not the estimated ones.
Summarizing, the stage number in all sections and the estimated relative split ratios are
the variables that are actually inserted in the Excel sheet. The VBA code transforms
the variables to the Aspen Plus notation and inserts them in the flow-sheet simulator.
A similar transformation is done when data is read from Aspen and written into the
Excel sheet.

3.2 Multi-objective optimization

Prior to the optimization itself, an initial converging simulation in Aspen Plus is
required. Especially the definition of the vapor and liquid splits at the dividing wall(s)
is challenging to reach convergence. For this purpose, V̇min diagrams are applied [63].
In order to enable a fast calculation of V̇min diagrams for different column types and
systems, a MATLAB code is implemented, which can be found in the supporting
material [62].
However, especially for the multiple dividing wall column pilot plant, in some cases the
method does not result in sufficiently high purities. The reason for this deviation is
explained in Section 5.2.1. In the case of low purities, the optimization is much more
time consuming and may not even find a solution. Accordingly, if too low purities
result, the vapor and liquid splits are further adapted manually to end up closer to
the desired specifications. Since a manual adjustment of the splits is inaccurate and
time consuming, an extended approach to estimate initial splits with V̇min diagrams is
presented in Section 5.2.3.
The optimization problem itself is defined in the MS Excel file coupled to Aspen Plus,
which is described in section 3.1. A multi-objective optimization problem is then
solved as a sequence of single-objective problems applying the sandwiching algorithm.
The solver used to solve single-objective problems is depending on the presence of
integer variables. With integer variables, the MISQP solver is used [127], otherwise
the NLPQLP solver [128]. The solvers consider constraints as penalty terms and are
gradient-based, thus less convergence problems occur in the Aspen Plus simulations.
The set up and programming of the optimization routine itself was not part of this
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work as this was performed by the Fraunhofer ITWM. For more details about the
implementation, the reader is referred to literature [23,31].
As already discussed in Section 2.3.1 the sandwiching algorithm is only suited for convex
Pareto-fronts and the gradient-based solvers show a tendency to get stuck in local
optima before finding the global one. Correspondingly, often several multi-objective
runs are performed using different initial simulation runs in Aspen Plus. The results of
all runs are then merged and dominated solutions are sorted out. Thus, in some cases
the distance between the Pareto-optimal data points might be irregularly resulting in
deviations in the approximation quality.

3.3 Screening

A screening is performed to determine all liquid and vapor splits in dividing wall
columns leading to certain product specifications for different column designs. The
following procedure is the foundation of all calculations presented in Section 5. For the
calculation also the interface described in section 3.1 is used. A VBA code is applied
to automatically perform a series of simulation runs. The code is slightly differing
depending on the column type, thus in the following first the code for the simple dividing
wall column is presented followed by one for the smDWC.

Simple dividing wall column

For the simple dividing wall column, the code basically performs the following steps.
Note that the full version of the code can be found in the supporting material [62].

’ Set min and max values of R_V,r,est and R_L,r,est and Q
Q = Q_min
Do While Q <= Qmax

R_V = R_V,min
Do While R_V <= R_V,max

R_L = R_L,min
Do While R_L <= R_L,max

Send R_V and R_L and Q to Aspen Plus
Run Aspen Plus Simulation
Read and save corresponding purity outputs
R_L = R_L + stepsize(R_L)

Loop
R_V = R_V + stepsize(R_V)

Loop
Q = Q + stepsize(Q)

Loop

A grid of specified combinations of the liquid and vapor split and the reboiler duty is
screened. For this purpose the minimum and maximum values of the screened variables
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and the number of steps are specified by the user.The objective when choosing these
variables is to map split ranges resulting in the specified purities with a sufficient
accuracy while still requiring an acceptable calculation time. All resulting combinations
are then run automatically one after another. The resulting product purities are saved
in the Excel sheet. After finishing all runs, the results are filtered according to the
desired product purities.
Usually two of this kind of runs is performed. The first run screens most of the feasible
range (given by the standardization of the splits) and the second run should enhance the
resolution of the results in a smaller range, if desired. Accordingly, in the first run the
minimum value of the liquid split is set to 0.2 and for the vapor split to 0.15. The liquid
split is set to a higher value since low values can cause convergence problems in Aspen
Plus due to the liquid side draw of the column. The maximum value is usually set to
0.9 for both splits. The range of the reboiler duty is chosen according to optimization
results. The number of steps is always set to be 12, accordingly 1728 data points are
calculated. From the parameter ranges and the number of steps the step size of the
three screened variables is calculated. The split ranges used for the second run are
based on the results of the first run. Accordingly, they are only screened in the range
where the desired product purities can be reached. Afterwards, another macro is run
which determines the resulting ranges of the splits for a two-dimensional plot.

Simplified multiple dividing wall column

For the simplified multiple dividing wall column four splits have to be varied which
results in a more complex grid of the screening and thus higher calculation time (days
up to weeks). Accordingly, the energy input could no more be included as screening
variable. Despite this fact the automated screening is performed similar to the one of
the simple dividing wall column. An abstracted version of the code is shown in the
following, the full code can be found in the supporting material [62].

’ Set min and max values of R_V,C1C3,r,est and R_V,C1C2,r,est and R_L,
↪→ C1C2,r,est and R_L,C2C3,r,est

R_V1 = R_V1,min
Do While R_V1 <= R_V1,max

R_V2 = R_V2,min
Do While R_V2 <= R_V2,max

R_L1 = R_L1,min
Do While R_L1 <= R_L1,max

R_L2 = R_L2,min
Do While R_L2 <= R_L2,max

Send R_V and R_L and Q to Aspen Plus
Run Aspen Plus Simulation
Read and save corresponding purity outputs
R_L2 = R_L2 + stepsize(R_L2)

Loop
R_L1 = R_L1 + stepsize(R_L1)
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Loop
R_V2 = R_V2 + stepsize(R_V2)

Loop
R_V1 = R_V1 + stepsize(R_V1)

Loop

Due to the higher number of screening variables, the number of steps is reduced to
eight instead of 12 for the simple dividing wall column. Correspondingly, around 4096
simulations are run for one screening set. The ranges of the splits are chosen similar
to the procedure of the simple dividing wall column stated above. Again usually two
runs are performed to enable a sufficient resolution of the results. After finishing the
screenings the results are again filtered according to the specified product purities. This
data is either visualized directly in SOPPs (see Section 3.4) or further processed by
another VBA code to enable a conventional two-dimensional visualization.

3.4 Data visualization and standardization

This section summarizes several methods applied for visualization, standardization and
evaluation of the results.

Visualization of high-dimensional results

Self-organizing patch plots are used for the visualization of high-dimensional data. The
diagrams are calculated in MATLAB®. First, the code by Azzopardi [129] is applied
to calculate self-organizing maps. Afterwards, the maps are combined with Voronoi
patches resulting in the final SOPPs, this implementation was developed by Stöbener et

al. [125]. The corresponding code can be found in the supporting material [62].
The MATLAB code is then extended with an user interface in AppDesigner which
is shown in Figure 3.2. The user interface should simplify the exploration of the
visualized solution space and enable the a posteriori selection of an operating point.
In the interface the decision maker can select a result filtration. The first step is the
specification of the upper and lower borders of one or several of the objectives. Then,
in the SOPPs all data points which do not fulfill the restrictions are colored black.
Also, an option can be activated enabling to click on one of the patches and get the
underlying data set as output.
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Figure 3.2: Interface for the creation and filtering of the SOPPs. As additional
tool, one can click on one patch and get the underlying data as output.

Standardization of theoretical stages

For the visualization of optimization results in SOPPs, several stage specifications in
the column sections of the dividing wall column have to be standardized. These are
shown in Figure 3.3 for a simple dividing wall column. Also, the product flows are

Figure 3.3: Standardized parameters used for dividing wall columns.

divided by the flows of the corresponding components in the feed stream. Accordingly,
for example the distillate flow is divided by the flow of component A in the feed stream.
Thus, a value of one means, that both flows are equal, above one the distillate flow
is higher and vice versa. Note, that the standardized parameters are not exactly the
optimization variables. During the optimization, the stages in all sections are varied
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and not their standardized values, similar applies for the product flows. However, the
numbers itself are not as important as their relation to each other. Accordingly, the
standardized relations are visualized and not the absolute numbers.
For the vapor and liquid split ranges another stage standardization is relevant. The
relative stage number n describes the ratio of the theoretical stages to the minimum
one as shown in Equation 3.1. The parameter can be understood as distance from the
minimum stage number, which is reached at n = 1.

ni = Ni

Nmin,i

(3.1)

i can either represent a column sections (for example i = C12) or a column region
performing one split (for example i = AB, see Section 2.1.3.1 for more details). The
factor can also be applied for a whole column or column sequence (i = column). Note
that in this case the minimum stage number of the column setup j is denoted and
calculated according to Equation 3.2.

ncolumn = Nj

N j
min

N j
min = ΣNmin,i

N j = ΣNi

(3.2)

A less commonly used standardization is the ratio mi which describes the stages in one
column section in relation to the total one (Equation 3.3). It can be understood as
parameter describing the stage allocation inside the column sections.

mi = NCi

ΣNCi

(3.3)

Energy saving quantification

In order to quantify the energy saving of one setup compared to another at the same stage
number the energy saving Ej

i is introduced which is defined according to Equation 3.4.

Ej
i =

Q̇i
opt − Q̇j

opt

Q̇i
opt

(3.4)

3.5 Systems used for case studies

Four ternary and six quaternary systems are chosen for the case studies in this work.
In any case, the feed stream is assumed as saturated liquid (thermal state q = 1) and
the composition is in most cases equimolar. This composition is chosen in order to be
as neutral as possible towards the evaluated distillation variants. However, as stated
Section 2.1.1 the dividing wall column is assumed to require the lowest energy demand
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in any case. In Section 2.1.1 it is also mentioned that the energy saving can differ, if the
ratio of one component in the feed stream is higher, thus feed variations are performed
in sections 4.4.2.3 and 5.4. The corresponding compositions of the feed stream are then
given in the related paragraphs. All test systems are summarized in Table 3.1. The

Table 3.1: Systems used for case studies.

Name Component A Component B Component C Component D

3.1 Benzene Toluene p-Xylene −
3.2 Hexane Heptane Octane −
3.3 Methanol Ethanol n-Butanol −
3.4 n-Butane 2-Methylbutane n-Pentane −
4.1 Ethanol n-Propanol Isobutanol n-Butanol
4.2 Methylacetate n-Propanol Isobutanol n-Butanol
4.3 Butanal n-Propanol Isobutanol n-Butanol
4.4 Methylacetate Butanal n-Propanol n-Butanol
4.5 Methylacetate Butanal n-Propanol Isobutanol
4.6 Benzene Toluene p-Xylene Cumene

feed stream properties including the flow, composition and the K-values of all systems
is summarized in Table 3.2. As already mentioned, the thermodynamic modeling of all

Table 3.2: Properties of feed streams for equimolar cases and q = 1.

System
Ḟ[

kmol · h−1
] zi

[−]
KA

[−]
KB

[−]
KC

[−]
KD

[−]
ESIABC

[−]
ESIBCD

[−]

3.1 3 0.33 1.91 0.73 0.33 − 1.08 −
3.2 3 0.33 1.79 0.87 0.34 − 0.82 −
3.3 3 0.33 1.79 0.99 0.21 − 0.39 −
3.4 3 0.33 1.84 0.65 0.5 − 2.15 −
4.1 0.1 0.25 1.96 0.94 0.65 0.45 1.44 1.01
4.2 0.1 0.25 2.87 0.56 0.35 0.22 3.28 1.00
4.3 0.1 0.25 1.93 0.90 0.67 0.50 1.59 1.00
4.4 0.1 0.25 2.34 1.00 0.45 0.20 1.05 0.99
4.5 0.1 0.25 2.27 0.99 0.42 0.32 0.96 1.81
4.6 0.1 0.25 2.30 0.98 0.42 0.29 1.02 1.57

systems is based on NRTL, details about the corresponding parameters can be found in
the appendix in Section A.2.1.
The main reason for the choice of the ternary systems are their V̇min diagrams which can
be found in Figure 3.4. For system 3.1 and 3.4 the CD peak is significantly higher than
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AB. The difference between these two is the minimum stage requirement. For system 3.1
almost the same stage number is required to split AB and BC, this is indicated by an
ESI close to one. For system 3.4 the BC split requires more stages, which is reflected
by the high ESI of the system. The V̇min peaks of system 3.2 are almost the same and
for system 3.3 the AB peak is the highest one.
Most quaternary systems are chosen based on the recommendation of suited systems
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Figure 3.4: V̇min diagrams of the ternary case study systems.

for the multiple dividing wall column pilot plant presented by Preißinger et al. [22].
Accordingly, also the feed flow is chosen as suggested in the latter cited paper to be
Ḟ = 100 mol · h−1. Additionally, system 4.6 is chosen as extended version of system 3.1
with a fourth component. The V̇min diagrams of the quaternary systems are presented
in Figure 3.5. Based on the fact that systems 4.1 to 4.3 only differ in the light boiling
component, their V̇min diagrams are relatively similar. System 4.4 shows the lowest
energy demand of all quaternary systems. System 4.5 and 4.6 have a very similar
behavior with a BC peak lower than AB, which is also reflected by the ESIs of these
systems.
Note that in the following result sections most calculations for ternary systems assume
product purities of 95 mol %, while for most quaternary system calculations 98 mol %
are used. This discrepancy can be explained with external conditions. 95 mol % were
chosen in an early project phase of the author of this work. For quaternary systems,
purity requirements were set later by Preißinger [22], who was responsible for the design
of the pilot plant (Section 2.1.2), to 98 mol %.
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Figure 3.5: V̇min diagrams of the quaternary case study systems. Dashed lines in
indicate the adaptation of the diagram for the simplified version of the
multiple dividing wall column.



4 Results part I: Multi-objective
optimization

In this chapter multi-objective optimizations of different column configurations are
performed as described in Section 3.2. The goal is to obtain a full understanding of the
optimal space and the related variable sets. In any case two of the objective functions
are the reboiler duty Q̇ and the sum of the theoretical stages in all sections ΣNCi, which
is for simplicity reasons sometimes only denoted as N . First, a large part of the optimal
solution space is calculated by including the product purities as objectives in Section 4.1.
Note that the term large is used and not whole for two reasons. First, the part of the
solution space with very low product purities is neglected because it is assumed not
to be relevant. Second, in order to still maintain convergence in Aspen Plus, some of
the variables like the vapor and liquid splits could not be varied in the whole feasible
range but only in a large part of it. Correspondingly, probably only a large part of the
solution space is calculated and not the whole one. Afterwards the bi-objective subspace
resulting in compromises between N and Q̇, the so called NQ̇ curves, are investigated
further. The main objective of the corresponding Section 4.2 is to evaluate the impact
of the initial optimization problem definition on the results. Then, an approximation
method for NQ̇ curves as shortcut approach is developed and presented in Section 4.3.
Last, this approximation method is used in combination with full optimizations to
evaluate the energy saving potential of different kinds of dividing wall columns compared
to column sequences in Section 4.4.
Please note that each optimization is assigned a number, under which the corresponding
initial simulations, the definition of the optimization problem and its solution can be
found in the supporting material [62]. A brief summary can be found in the appendix
in Section A.4. The run number corresponding to a data set is always given in brackets
in the legend or caption of each diagram. It is always build according to the principle
"Opt531", where the first number defined the number of objectives, the second number
the number of components and the following numbers are identification numbers.

4.1 Large part of solution space

The optimization problem of distillation columns is complex and its solution is
significantly affected by its initial definition. Usually several assumptions are made
prior to the optimization to reduce the solution space in advance. However, this
basically excludes a part of the results which is not known. Thus the objective of this
section is to present an approach to calculate most of the solution space which enables
an a posteriori investigation of the results after the optimization. Accordingly, the
optimization results can be analyzed several times from different points of view without
the need of an additional calculation run. The foundation of this approach is to consider
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more than just two objectives, thus include the product purities, energy demand and
total number of theoretical stages.
In the following Section 4.1.1 the optimization procedure is performed for a ternary
system split in a simple dividing wall column. For this system five objective functions
result, thus this problem is called penta-objective. Afterwards, the split of a quaternary
system in the pilot plant of a simplified multiple dividing wall column (see Section 2.1.2)
is optimized in Section 4.1.2. Since this column already has a defined number of
theoretical stages in the sections, the number of theoretical stages is no more an
objective function. Consequently, with one more component in the feed stream this is
also a penta-objective problem.
Obviously the visualization of this five-dimensional objective space is an issue, which
is solved with self-organizing patch plots (see Section 2.4.1). This technique has the
additional advantage, that not only the objectives but also the optimization variables
can be presented in one diagram with several subplots. Accordingly, the visualization
of all degrees of freedom of the column is enabled, which is often omitted.

4.1.1 Dividing wall column

For system 3.1 the penta-objective optimization is performed [107]. As objectives the
total stage number, the reboiler duty and the purities of component A in the distillate,
B in the side draw and C in the bottom product are specified. The optimization
variables are the vapor and liquid splits, the product flows of distillate and side product,
the number of stages in all column sections and the reboiler duty. Note that the
reboiler duty and the stage numbers have to be defined as objectives and variables.
This problem arises from the variable definition in Aspen Plus. The two parameters
are required as input for the simulation and thus have to be varied and optimized
simultaneously. Figure 4.1 presents the resulting optimal space in SOPPs. Note that
the legend definition is presented in Figure 3.3 in Section 3.4. The first row of plots
represents the objectives and the following two rows the corresponding optimal variables.
First of all, it can be seen that the objectives show high values in different regions of the
subplots, which again underlines their contradicting nature. Especially N and Q̇ are
clearly contradicting. The impact of the optimization variables on these two objectives
is investigated in more detail in Section 4.2 and thus the focus here is on the resulting
product purities. Even though the product purities are high in different regions of the
subplots, there are overlapping regions in which all of them can be obtained in high
purity. For simplification of the data analysis the patches are filtered according to the
product purities. Either component A, B or C are specified to be above 95 mol %. The
filtered patch plots can be found in the Figures 4.2, 4.3 and 4.4, respectively.

The liquid and vapor splits resulting in the optima are roughly in the range predicted
by the V̇min method. If a lower vapor split is used, the corresponding liquid split is
also lower and vice versa. It should be noted that not only one combination of the
liquid and vapor split results in one optimum patch. Consequently a set of vapor and
liquid splits results in a flexibility of the optimization variables which result in the same
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Figure 4.1: Results of penta-objective optimization of system 3.1 in dividing wall
column in SOPPs (Opt531).

optimum output. This topic has been introduced in the theory sections 2.1.3.1 and 2.2.
Additionally, it is discussed in more detail in the second result part in Section 5.
A clear impact of product flows on the product purities is observable. This is illustrated
by an example. In the upper left region of the subplots component A has a low purity,
accordingly in the corresponding single-objective runs the weighting factor for the
purity of component A was significantly lower than for B and C. As a consequence,
the distillate stream related to the feed stream of component A is increased above one
(orange color in subplot eight) and the side product stream is reduced. Accordingly,
the distillate flow is contaminated with component B and the purity of A is reduced.
On the other hand, this guarantees that no component A is in the side product and
thus B is obtained in a higher purity. This principle applies for all product flows.
However, while the distillate and bottom flows are most likely only contaminated with
one component, the side product stream can contain impurities of two. Thus, it can be
observed that for many Pareto-optimal points the side product flow related to the feed
stream of component B is reduced below one. This applies to all data points where
component A, B and C are obtained in approximately the same purity and where these
purities are below one. As a consequence the distillate of bottom flow of the column are
increased. If the distillate or bottom stream is higher depends on the system (observed
in Section 4.4.2).
Also the optimum stage allocation for different cases can be read. At higher total stage
numbers, the allocation stays at the initially used uniform distribution (last row of
subplots, patches in lower left corner). At lower total stage numbers the allocation
of the stages in the column sections gets more important and thus deviations from
the initial setup are observable. For component A at higher purities (Figure 4.2) blue
patches dominate in the plots of feed and side stream height ratio and vertical dividing
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Figure 4.2: Results of penta-objective optimization of system 3.1 in dividing wall
column (Opt531): Purity A above 95 mol %.

wall position. Accordingly, more stages are provided for the AB split performed in the
upper column region. An opposite effect is observable for component C (Figure 4.4).
Generally, for components A and C in high purity the dividing wall height ratio shows a
less distinguished trend, but interestingly for both the dividing wall appear to be rather
short. This can be explained with the fact, that the AB and BC splits are performed in
two sections, from which one has less vapor than the other due to the vapor split at
the dividing wall. For the BC split, section C14 is operated at the full vapor amount
and C13 at a reduced one, for AB C13 is the reduced and C11 the full one. Thus, if
the dividing wall is shortened, the total stage number for the AB and BC split can be
maintained, the region with less vapor are minimized and simultaneously the product
purities maximized. Meanwhile, it still has to be guaranteed that the sections C21 and
C22 have sufficient stages and vapor to prevent component A to reach the bottom of
the column. However, the AC split always requires less energy and stages than the AB
and BC splits. For component B having a high purity in the side product stream no
clear trend for the feed and product stream stage height ratios and vertical dividing
wall position is observable. However, it gets clear that a longer dividing wall (higher
value of vertical dividing wall height ratio) is beneficial. Generally a notable fact is
that the feed and product stage height ratio are always close 0.5 and thus are less
sensitive to product stream specifications than the dividing wall height ratio and its
vertical position. Summarizing, it can be concluded that all optimization variables have
a notable impact on the resulting product purities.
To illustrate the superiority of SOPPs compared to a conventional visualization
techniques, the results from Figure 4.1 are also presented in a conventional radar
chart in Figure 4.5. The chart is quite convoluted and difficult to interpret. Even
though the line orientation indicates that the number of stages and reboiler duty are



44 4 Results part I: Multi-objective optimization

Figure 4.3: Results of penta-objective optimization of system 3.1 in dividing wall
column (Opt531): Purity B above 95 mol %.

contradicting functions, the interaction of the optimization variables is almost impossible
to understand. Thus, the visualization in SOPPs are better suited for the interpretation
of the results.
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Figure 4.4: Results of penta-objective optimization of system 3.1 in dividing wall
column (Opt531): Purity C above 95 mol %.

Figure 4.5: Results of penta-objective optimization of system 3.1 in dividing wall
column in radar chart (Opt531).
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4.1.2 Pilot plant of simplified multiple dividing wall column

For the simplified multiple dividing wall column pilot plant the stage allocation is
already given (see Section 2.1.2). Accordingly, the multi-objective optimization problem
no more includes the integer variables for the theoretical stages in all column sections.
The resulting problem is also penta-objective and considers two vapor splits, two liquid
splits and the product flows as optimization variables. The results of the penta-objective
optimization are shown in Figure 4.6.

It is observable that the vapor and liquid splits to column C2 can be chosen in a

Figure 4.6: Results of multi-objective optimization of system 4.1 in simplified
multiple dividing wall column for 220 stages in total (Opt541).

relatively broad range while the splits to column C3 are more limited. However, again
several combinations of these splits can result in the same energy demand which is
discussed in more detail in Section 5. Additionally, similar as for the ternary system in
a simple dividing wall column in Section 4.1 the product purities are partly adapted
by the chosen product flows. For purer side products the side flows are reduced. It
is observable that the side product flow 2 is reduced stronger than side draw 1 (more
patches in darker blue). Probably this behavior is a compensation of missing stages in
certain column sections. By implication a stronger flow reduction also means, that the
purity of component C limits the process. This statement can be verified by reading
the minimum energy required to obtain the four products in certain purities. Since
the column should reach product purities of at least 98 mol %, the following discussion
focuses on the data fulfilling this specification. The evaluation is performed with the
data filtration tool presented in Section 3.2. However, the filtered SOPPs are not shown
here but the most important conclusions from the diagrams are summarized.
The components A, B and D can be obtained at purities above 98 mol % at Q̇ = 2.3 kW,
which equals the lower border of the variable during optimization. Note that an even
lower value of the reboiler duty could have caused instability of the simulation and
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thus no repetition was performed with a reduced lower border. However, the minimum
energy demand for component C to reach that purity is higher at around 2.7 kW, which
equals the overall energy demand for all components at that purity. From this it can
already be concluded that component C actually limits the energy demand of the
column.
A clearer distinction for the limitation order of the other components can be made
considering the purities to be at least 99.8 mol %. The energy demand for each
component is as follows: Q̇min(xḊ

A ≥ 0.998) < 2.3 kW, Q̇min(xṠ1
B ≥ 0.998) < 3.4 kW,

Q̇min(xṠ2
C ≥ 0.998) = 5 kW, Q̇min(xḂ

D ≥ 0.998) = 3.0 kW. Note that the energy demand
for component A and B might be slightly lower since the purities were in both cases
above 99.9 mol %.
All in all, it can be concluded that component C is limiting the process, followed by
component B and D. Even though an adjustment of the product flows reduces the
limitation, it cannot be totally avoided. Probably this behavior is supported by the
chosen allocation of the theoretical stages. The results from the following Section 4.2.2
show, the BD split requires significantly more theoretical stages than the AB split. If
these stages are not provided, the limitation of the CD split gets more pronounced as it
is observed here.
At this point, a transition can be made to the following chapters. There, only bi-
objective optimizations minimizing N and Q̇ while using constraints on the product
purities are performed. In most cases, the same constraints are used on all product
purities simultaneously. This assumption equals optimal points from the penta-objective
optimizations, for which similar weighting factors (see Figure 2.6) are used for all product
purities. Thus, if the same systems from this chapter are considered, the corresponding
result of the constrained bi-objective optimizations can also be found in the SOPPs from
Figure 4.1 or 4.6. As an example, in Figure 4.6 of system 4.1 one patch represents all
products to be at least 98 mol %. A similar optimal point can be found in the following
Section 4.2.2.2 in Figure 4.10. In both cases the corresponding optimal energy demand
is at around 2.7 kW.

4.1.3 Transferability of the results to other mixtures

In the previous sections 4.1.1 and 4.1.2 a new multi-objective optimization approach for
distillation columns has been introduced. However, the procedure was only presented
using the example of two test systems. Thus, the question arises whether the results
are universally valid or not. Generally, the objective of this chapter is to highlight
the advantages of the approach to include more than just objectives. Like this, only
one optimization run has to be performed for one mixture and the results can be
evaluated several times depending on the needs of the user. For example, if the product
requirements of an industrial plant change, the corresponding new minimum energy
requirement can easily be read from the diagram without performing new calculation
runs.
Nevertheless, general trends are assumed to be valid in any case which includes the
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partly adjustment of product purities by changing the corresponding product flows. On
the other hand, properties like the exact value for the energy demand corresponding to
the total stage number is of course depending on the mixture itself. This part of the
whole solution space presented is investigated in more detail in the following Section 4.2
for a larger set of systems.

4.2 Impact of optimization problem definition and
simplification

Despite the definition of the objective functions also the optimization variables and
constraints have to be chosen to optimize a dividing wall column. Often they are just set
prior to the optimization and it is not questioned how the result could have been affected
by their initial choice. However, based on the results from Section 4.1 it can be expected
that their selection can affect the outcome of the optimization. Accordingly, the focus
of this section is to perform optimizations with varying definitions of the optimization
problem including the variables and constraints. The investigations are first performed
for a simple dividing wall column in Section 4.2.1 in order to get a understanding of
the parameter relations. Afterwards, the knowledge is used to simplify the complex
optimization problem of a simplified multiple dividing wall column (Section 4.2.2).

4.2.1 Dividing wall column

System 3.1 is chosen for the investigation in a simple dividing wall column. In any case,
the number of theoretical stages and the reboiler duty are minimized as objectives. For
the optimizations, different variable simplifications and/or constraints are investigated.
First, three optimizations are performed in which constraints are set on the purity of
one of the components (A, B or C ≥ 95 mol %), respectively, while the product flows
are set to Ḋ

ḞA
= Ṡ

ḞB
= 1 (Opt 231, 232 and 233). These results are compared to one

run in which the same purity constraint is used for all three products simultaneously
while the product flows are either still set to Ḋ

ḞA
= Ṡ

ḞB
= 1 (Opt234) or considered

as optimization variables and thus varied (Opt 235). For an exact definition of the
optimization problems, please refer to the appendix (Table A.8 in Section A.4) and
supporting material [62].
Figure 4.7 shows the resulting NQ̇ optima, the corresponding optimal variables can be
found in the supporting material [62]. The location of the NQ̇ optima shows obviously,
that the intermediate boiling component B is limiting the process in both dimensions
(Opt232). Component A is much easier to obtain in the specified purity in terms
of energy demand and total stage number (Opt231), while component C shows an
interesting behavior (Opt233). Its minimum stage number is almost identical to the one
of component A, while its minimum energy demand matches the one of component B.
Another fact that should be noted is observed from the optimization of component A
at high stage numbers and lower purities. The energy demand to reach the specified
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Figure 4.7: NQ̇ optima for system 3.1 in a dividing wall column: Impact of
product purity constraints and product flow setting. * Product flows
set to Ḋ

ḞA
= Ṡ

ḞB
= 1, ** Product flows included as optimization

variables.

purity is quite low and thus not much vapor is provided. Correspondingly, also low
liquid flows are available inside the column. However, the side draw of the column is
taken in liquid state. Thus, it has to be guaranteed, that a sufficient liquid flow is sent
to the side draw stage of the column. In the case of a very low energy demand for the
product split it can happen, that the reflux flow at the top of the column is already too
low to enable a liquid side draw. This restricts the vapor flow inside the column to a
minimum feasible value. Accordingly, for product splits with a very low energy demand
the dividing wall column is not suited since it has to be operated above its minimum
energy demand to enable a liquid side product. This is for example observable for
component A of system 3.1 at purities below approximately 95 mol %. An alternative
to avoid this problem would be the use of a vapor side draw.
The application of constraints on all three product purities while maintaining the same
product flows results in an NQ̇ curve lying totally on the one of component B (Opt 234).
Accordingly, for set product flows the use of only one purity constraint on component B
is sufficient for the calculation of optimal setups. However, the other two components
are in most cases obtained in higher purities (not shown here, consider supporting
material [62]). This can be explained with the fact that simply more energy or stages
are provided than necessary and thus the purity increases as shown exemplary for
component B in Figure 4.8a. In order to reach exactly the same purities in all product
flows, the flows have to be included as optimization variables. Using restrictions on all
three product purities while varying also the product flows (Opt235) results in a lower
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Figure 4.8: NQ̇ optima for component B of system 3.1 in a dividing wall column:
Shifts for different product flows and purity constraints.

minimum stage number than needed for component B only at non-optimally set product
flows. This is caused by a decreased flow of the side product flow while the flow of the
distillate and bottom are increased. The behavior is also shown in Figure 4.8b for the
optimization with a constraint on component B only. Also, the curves of components
A and C are shifted to the right and thus to a higher minimum stage number. This
can be explained relatively easy. For a constrained purity of component A of course
the sections C11 and C12 have a high number of theoretical stages while the numbers
for section C13 and C14 are relatively low (see supporting material in [62]). Thus, the
resulting purity of component C is quite low at around 70 mol % to 80 mol %. However,
since component C is now also required in a higher purity, the stages in sections C13
and C14 have to be increased corresponding to the number needed component C. Vice
versa applies for the NQ̇ curve of component C being constrained.
Another interesting fact can be observed considering the optimal stages in the pre-
fractionator for the different runs (not shown here, consider supporting material [62]).
For component A being constrained, the optimum feed stage in the prefractionator is
allocated in the upper region while for component C it is preferred to be in a lower
region. Also the total stage number in the prefractionator is lower for component A
than for component C. The average of the optimum stage allocations of component A
and C almost equals the results of the optimization using a constraint on the purity of
component B. The optimum feed stage is in the middle of the prefractionator.
Summarizing, the adjustment of the stage allocation in the column sections and the
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product flows shifts the NQ̇ curves of the three components to one at which all
components can be obtained in the same purity. However, the adjustment of the
product flows is only useful, if no high purities are needed. For high-purity products the
product flows have to equal the flow of the corresponding component in the feed stream.
Another fact that has to be noted is that the energy input for component A is also
increased to an unnecessary high value. This, as also predicted by the V̇min diagram,
causes a flexibility of the vapor and liquid split during the operation of a dividing wall
column which will be discussed in more detail in chapter 5.
If different purities than 95 mol % are required, the same effects occur. However, the
NQ̇ curves are shifted as shown in Figure 4.8a for component B at set product flow.
Similar diagrams are obtained for components A and C. As expected, the Pareto-optimal
curves shift to higher minimum stage numbers for higher purities. Nevertheless, the
change in minimum energy demand at high stages number is relatively low. Thus,
the curve is shifted more to the right than to the top when the purity constraints are
increased.

Transferability of results

Again these calculations are only performed for one mixture. However, the transferability
on other mixtures can be derived based on theoretical knowledge. Of course, absolute
values of stage number and energy demand are different for different mixtures. However,
the directions in which the NQ̇ optima shift are expected to be still applicable. The
results from Figure 4.7 are partly transferable. In any case it applies that the NQ̇ optima
of the side product is limiting the process (Opt232). Also, lower energy demands can
be reached, if the product flows are considered as optimization variables (Opt235).
The relative location of the NQ̇ optima of component A (Opt231) and component C
(Opt233) can differ according to the V̇min diagram and ESI of the system. For the
considered system the BC peak is the highest one, thus for component C more energy
input is required than for A. If a system with a different V̇min diagram is considered,
the right end on the NQ̇ optima would correspondingly be shifted. The trends from
Figure 4.8 are assumed to be universally valid.

4.2.2 Simplified multiple dividing wall column

The full optimization problem to calculate the NQ̇ optima of the simplified multiple
dividing wall column consists of 18 variables, which results in a significant calculation
time of several days. However, one run in which all variables are considered in order
to minimize N and Q̇ is performed and used as reference for all other runs (Opt245).
Then, several simplified runs are performed to reduce the calculation time and obtain
new insights into correlations. For this purpose, some of the variables are set and thus
the total number of variables is reduced. In order to evaluate the effect of the chosen
set variables and their values, the NQ̇ optima of system 4.1 are calculated for several
versions of the optimization variable set. For all runs, inequailty constraints are applied
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on all four products to reach at least 98 mol % pure products. Section 4.2.2.1 focuses
on the effect of given flow specifications and Section 4.2.2.2 on the impact of set stage
allocations in the column sections.

4.2.2.1 Assumption of set internal or external flows

In Section 4.2.1 is was already observed that the NQ̇ curves shift in dependence on
the product flows. Accordingly, in this section it is investigated how significantly the
optima shift for different product flows in a simplified multiple dividing wall column.
Fixed product flows would reduce the number of optimization variables by three to 15.
Additionally, the impact of the vapor splits set to 0.5 is tested. The value is chosen since
the vapor splits are usually not controlled during the operation of a column and are
rather resulting from the pressure drop on both sides of the dividing wall. Accordingly,
for a centered dividing wall, a split ratio around 0.5 can be expected. Thus, the number
optimization variables is reduced by two to 16. For the optimization runs again ΣNCi

and Q̇ are minimized while varying the stages in all sections and the liquid splits. For
set product flows additionally the vapor splits are varied and for the optimization at
set vapor splits the product stream are varied. For clarification of the optimization
setup please consider the appendix (Table A.10 in Section A.4) and the supporting
material [62].
Figure 4.9 summarizes the optima resulting for setting the product flows or the vapor
splits. First, the values of the product flows are set to the corresponding flow of the
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Ḋ
ḞA
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Figure 4.9: NQ̇ optima for system 4.1 (98 mol % pure products) considering set
flow simplifications.

components in the feed stream, thus they fulfill Ḋ
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ḞB

= Ṡ2
ḞC

= 1 (Opt241). The
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resulting NQ̇ optima are a deterioration compared to the case in which all variables are
included. However, in Section 4.2 it was already stated that, in a simple dividing wall
column, the reduction of the side flow can be advantageous for purities lower than one.
Accordingly, the side product flows are reduced considering that the product quality of
98 mol % should still be reachable in the distillate and bottom stream. The resulting
maximum possible distillate and bottom flows are Ḋ

ḞA
= Ḃ

ḞD
= 1.02 while the side

product flows can be reduced down to Ṡ1
ḞB

= Ṡ2
ḞC

= 0.98 (Opt243). One flow combination
in between is also tested at Ḋ

ḞA
= Ḃ

ḞD
= 1.008 and Ṡ1

ḞB
= Ṡ2

ḞC
= 0.992 (Opt242).

It can be seen that the first reduction of the side product flows divided by the
corresponding feed flows to 0.992 is beneficial and shifts the NQ̇ curve to the left.
However, a further reduction results in a significant shift to the right to a position
worse than the initial one for same product flows. It can be concluded that the product
purities are very sensitive to the product flows. Due to the high sensitivity to the
product flows, these should be included as optimization variables.
Another interesting result is found for set vapor splits at 0.5 (Opt244). The energy
demand at high stage number is slightly increased while at lower total stage numbers
the behavior is almost similar as for the best found options. However, the allocation of
the theoretical stages in the column sections is quite different for the two cases. This
gives the impression that the non-optimal vapor split was compensated for by a different
stage allocation. The connection of vapor and liquid splits and stage allocation will be
discussed in more detail in Section 5.2.

Transferability of results

The results for system 4.1 can be assumed to be valid for different mixtures, too. Of
course the absolute values for the optimal product flows might differ, but the tendency
that side draw flows should be reduced to a certain extent still applies (Opt242 vs
Opt241). The exact value of the optimal product flow is determined by the theoretical
stage setup, the mixture properties and product specifications. There might be systems,
for which no increase of energy demand occurs for set vapor splits at 0.5 (which was
observed for Opt244). More details about this can be found in Section 5.5.

4.2.2.2 Assumption of set stage allocation

Figure 4.10 compares different options for setting the ratio of the theoretical stages in
all Sections in relation to the total stage number (mi). Thus not the stages in all ten
Sections have to be optimized but only the sum of them and the stages in each section
are calculated with their corresponding ratio mi. With the product flows being varied
the total number of variables is reduced by nine to nine. The investigation is performed
for system 4.1. Again, for clarification of the optimization setup please consider the
appendix (Table A.10 in Section A.4) and the supporting material [62].
First, the stages are set as suggested for the pilot plant of the column (see Section 2.1.2)
(Opt246). Accordingly, the stages in all Sections are the same despite section C32, where
they are double the amount of the others. Second, the doubled stage number in section



54 4 Results part I: Multi-objective optimization

C32 is neglected resulting in the same number of stages in all sections (Opt247). Third,
the Fenske equation is used to estimate the minimum stage number in all column regions.
Note that the derivation of the method is presented later in this work in Section 4.3.2
and 4.3.3. Here two cases are tested, one in which the Kirkbride equation is applied
to determine the optimum feed stage (in terms of dividing wall position) combined
with stream estimations from the V̇min diagram (Opt248) and one in which the stages
of the coupling stages is assumed to be at the middle of each region performing one
product split (Opt249). The ratios mi used for each case are shown in the appendix in
Table A.12. Additionally, for the optimization problem definition consider Table A.10
in Section A.4 and the supporting material [62]. All resulting NQ̇ optima are compared
to the results from a run optimizing all degrees of freedom of the column.
All options reach the same minimum energy demand of approximately 2.4 kW at high
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Figure 4.10: NQ̇ optima for system 4.1 (98 mol % pure products) considering set
stage simplifications. For Opt248 and 249 note that ΣNCi is defined
as optimization variable and mi are set.

stage numbers. However, the differences become more significant proceeding to lower
stage numbers. Results closest to the overall optimum (Opt245) are reached estimating
the total stage numbers with the Fenske equation and assuming the coupling stages
at the middle of each region (Opt249), followed by the combination with Kirkbride
(Opt248). Probably the flow specifications predicted by the V̇min diagram in combination
with the Kirkbride equation do not fit the actual composition profiles inside the column.
This observation can be explained with the findings from Section 5.2.1. Generally, the
accuracy of the V̇min diagram to estimate the compositions of the coupling streams
significantly decreases for lower total stage numbers. Accordingly, assuming the coupling
streams to be located at the middle of the corresponding column regions is better suited
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over the whole stage number range than inserting the results of the partly inaccurate
V̇min diagram in the Kirkbride equation. An increased minimum total stage number
predicted by the Fenske equation compared to the optimum one is caused by an
underestimation of the theoretical stages needed for the BC split in sections C13 and
C14. In accordance with that the factor (mC13 + mC14), defining the stages in the
corresponding column region, is lower than the optimum ones. The necessary minimum
stage number for the BC split resulting from the full optimization is 29. With the
factors of the Fenske setups this stage number is reached at 29 · (mC13 + mC14)−1 = 120
stages in total. This observation fits the calculated limits of 124 and 117 stages for the
Fenske setups.
Setting the stages in all sections equal (Opt247) results in a further increase of the
minimum stage number, this is also valid for the use of doubled stages in section C32
(Opt246). Again the increase of total minimum stage number is caused by the limiting
product split BC. Its minimum stage number is reached first and the stages in the
other sections cannot be reduced further since their ratios mi are fixed prior to the
optimization.
Interestingly, the product flows are adjusted in a different way for each stage allocation
(not shown here, see results in supporting material [62]). The side product flow of
the limiting component C is reduced much stronger than the one of component B.
Accordingly, the product flows can partly compensate a non-optimal stage allocation.
Summarizing, the reachable minimum total stage number is relatively sensitive to the
allocation of the stages in the column sections. A misallocation, as for example by
choosing same stages in all sections, can increase the total minimum stage number
noticeable (in this case by approximately 30 %). However, an approximation with the
Fenske equation is a suited tool to chose the stage allocation in an almost optimal way
and like that reduce the optimization variables from 18 to 9. If the column should be
designed in a flexible way for different systems, knowledge about the applicability the
simplified column version (Figure 2.2c) based on the V̇min method can be applied. In
order to operate this column without energy penalty compared to the version with
three dividing wall columns, the AB peak should not increase above the highest one.
Correspondingly, for most systems suited for this kind of column the AB and AC
split require less stages than the BC or CD split. Accordingly, the AB and AC split
regions are well suited to reduce the total stage number of a simplified multiple dividing
wall column from Figure 2.2c, all other sections should have a higher similar number.
Like this, the increase of the minimum stage number is reduced while maintaining the
flexibility of the column for different feed components. Additionally, the product flows
should be included as optimization variables, since the energy demand is very sensitive
to them. Also, they can be used to compensate slight misallocations of the theoretical
stages.

Transferability of results

The trends found in this section totally apply for systems with ESIs similar to system 4.1.
For all other systems, the data sets from Figure 4.10 should be differentiated into
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"optimally" (Opt245) and "non-optimally" (all others) allocated theoretical stages in
the column sections. Then, it can be concluded that a non-optimal stage number in
the sections can significantly increase the energy requirements, especially close to the
minimum stage number. In this case, it can happen that one column region is already
operated at the minimum stage number, while the stages in the other column regions
could still be reduced further. However, as the allocation of the stages is set prior to
the optimization, the consequence is an increased overall minimum stage number of the
column.

4.3 Approximation of Pareto-optimal solutions in
distillation columns

In this section a new heuristic method to approximate NQ̇ curves of dividing wall
columns is presented. First, in Section 4.3.1 the general approach is explained. Second,
the applicability of the Fenske equation to estimate the minimum stage number for a
dividing wall column is tested in Section 4.3.2.

4.3.1 General approach

An approximation of the NQ̇ curves is a useful tool to avoid a complete optimization run.
The method by Gilliland and its extended version by Molokanov is compared to a set of
results from the optimizations in the previous sections. The presented data points are
randomly chosen from the previously presented optimization results and include various
binary, ternary and quaternary mixtures which are split in simple columns, column
sequences or dividing wall columns (Opt2x3, Opt2310, Opt235, Opt2314, Opt246).
The results are shown in Figure 4.11a in comparison to the approximation with the
Gilliland/Molokanov method (Equation 2.13 in Section 2.1.3.3) [130]. The optimization
results are not well described by the equation. Additionally, the overall scattering
range of the data points is relatively large and thus another standardization method
might resolve this issue. Accordingly, a new method is developed to describe the
Pareto-optimal solutions. For the new approach several options to standardize the
optimization results are tested. The best agreement in the resulting plots is found
for the standardization according to Equation 4.1, resulting in the relative total stage
number Nrel and the relative reboiler duty Qrel.

Nrel = ΣNCi

0.97 · ΣNmin,Ci

Qrel = Q̇

Q̇min

(4.1)
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(a) Gilliland/Molokanov method
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Figure 4.11: Comparison of standardized optimization data from this work with
approximation methods. [130]

In Figure 4.11b the optimization results are plotted with the new standardization. All
data points lie approximately on the same curve. The curve can be described with an
equation of the type from Equation 4.2.

Qrel = a

N2
rel − b2 + c (4.2)

The parameters a, b and c have to be defined. b is the asymptote in x-direction and c

in y-direction. For the approximation in Figure 4.11b both should actually be defined
slightly below one, since the minimum reboiler duty and the minimum number of
theoretical stages are actually reachable. However, for simplicity reasons these are set
to be one. Like this, the minimum stage number cannot be approximated satisfactory
due to its integer character. To avoid this problem, the relative stage number is defined
by dividing the stage number by the minimum stage number times 0.97 instead of just
the minimum stage number (as shown in Equation 4.1). The last parameter a is fitted
to the data sets in Figure 4.11b to be 0.27. The final equation for the approximation is
shown in Equation 4.3.

Qrel = 0.27
N2

rel − 1 + 1 (4.3)

Accordingly, for specified values of Nrel, the corresponding Pareto-optimal reboiler duty
Q̇opt can be calculated according to Equation 4.4.

Q̇opt = 0.27 · Q̇min(
ΣNCi

0.97 · ΣNmin,Ci

)2

− 1
+ Q̇min (4.4)
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In order to apply Equation 4.4, shortcut methods are needed to estimate the minimum
stage number and minimum energy demand. The applicability of the Fenske equation
for this task is investigated in more detail in the following Section 4.3.2. The minimum
energy demand can be determined with the V̇min diagram. For detailed calculation
information consider the supplementary material of this work [62].

4.3.2 Applicability of Fenske equation on dividing wall columns

In order to perform the approximation of NQ̇ optima in a simple way, a shortcut
method is required to estimate the minimum stage number of a dividing wall column.
To validate whether the Fenske equation is applicable to dividing wall columns or not,
two main questions are answered in this section. First, if on the one hand additional
components and second, if the thermal coupling of the column sections influences the
minimum number of stages. After answering the two questions, the Fenske equation is
applied to the sections of a dividing wall column. Afterwards, all results are summarized
and compared to the results of a rigorous optimization. For the evaluation binary,
ternary or quaternary mixtures, each with equimolar compositions, are formed from
system 4.6.

Optimization: Minimum stage number for multi-component mixtures

To answer the first question a simple rectification column with one feed stream and two
outlet streams is NQ̇ optimized (explained in Section 3.2). The feed stream is either
binary, ternary or quaternary and either component A and B, A and C or B and C are
split (an identical behavior for the other splits can be assumed). The nomenclature for
the splits is according to the feed stream and the separated components as explained in
Figure 4.12a using the AB splits. In any case, the recovery of the distillate product key
component is defined to be 95 mol %. The detailed optimization setup can be found in
the appendix (Table A.7) and supporting material [62], the resulting NQ̇ optima can
be seen in Figure 4.12b.
In all cases, it can be observed that the minimum reboiler duty for the splits increases

with the number of components in the feed stream. This behavior is also predicted
by the V̇min diagram. Also, it can be observed that the minimum stage number does
not change with additional components in the feed stream. The calculated minimum
stage numbers can be found in Table 4.1. Thus to answer the first question it can be
concluded that the Fenske equation, which is originally only applicable for binary feed
streams, could also be applied for feeds consisting of more components since those do
not affect the minimum stage number of the column.

Optimization: Minimum stage number in each section of a dividing wall column

To answer the second question, whether the thermal coupling of the column sections
could render Fenske’s results invalid, an NQ̇ optimization for 95 mol % pure products
of the ternary feed of system 3.1 is carried out in a dividing wall column. The resulting
NQ̇ curve is shown in Figure 4.13a in Section 4.4.2. As a result of the optimization
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(a) Nomen-
clature

(b) Resulting NQ̇ optima (Opt2x1 - Opt2x3)

Figure 4.12: Bi-objective optimization results for different feed mixtures (light
boiler related to heavy boiler in bottom stream ≤ 5 mol % for the
main distillate product). Note that in the DWC the AB split is
performed in sections C11 + C12, AC in C21 + C22 and BC in C13
+ C14 (as shown in Equation 2.3 in Section 3.4). [131]

a minimum stage number of 25 is calculated, similar as the sum of the splits in one
column from Figure 4.12b. The internal distribution of the stages in the column sections
resulting from the optimization is also listed in Table 4.1.

Conclusion: Comparison of optimization results and the Fenske equation

For the final conclusion, whether the Fenske equation predicts the same distribution of
the stages, it is used for the calculation of the minimum stages in each section of the
dividing wall column. The relative volatilities of the system 3.1 are shown in Table 3.1
in Section 3.5 and are assumed to be constant. The Fenske equation is then applied
according to the method described in Section 4.3.3. In Table 4.1 the results of the
Fenske equation and the previous paragraphs are summarized.
The calculated data from the Fenske equation matches the ones calculated by the

optimization very well. Partly the optimization results are slightly higher than the ones
determined by the Fenske equation. However, since the Fenske equations neglects real
effects of the system in the column this does not mean that the optimization results are
not reliable. On the contradictory, a single-objective optimization setting the number
of stages according to Fenske did not lead to a permissible operating point at which the
required product purities were achieved and thus the constraints were violated. All in
all, the general trend of the stage distribution inside the column is well reproduced.
Similar calculations are performed for system 3.3. The Fenske equation predicts
Nmin,AC,F enske = 5, Nmin,AB,F enske = 12 and Nmin,BC,F enske = 5. From the optimization
of the system in a dividing wall column the resulting minimum stages are Nmin,AC,Opt = 5,
Nmin,AB,Opt = 13 and Nmin,BC,Opt = 6 (Opt2316). Again, the results from the Fenske
equation are slightly lower for the reasons as stated above, but the trend is predicted
correctly.
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Table 4.1: Minimum stage numbers in each section of the dividing wall column
splitting benzene/toluene/p-xylene (Ḟ = 3 kmol · h−1, q = 1) in
95 mol % pure products: Comparison of Fenske results with
optimization results of splits in a simple column and in dividing wall
column. For nomenclature, see Figure 2.2a in Section 2.1 and
Equation 2.3 in Section 3.4.

Column
Region

Column
Section

Optimization:
ternary splits

in simple column

Optimization:
DWC

Fenske equation
according to
Section 4.3.3

Nmin,AB
Nmin,C11 5 4 3
Nmin,C12 4 5 5

Nmin,BC
Nmin,C13 6 5 5
Nmin,C14 4 5 3

Nmin,AC
Nmin,C21 3 3 3
Nmin,C22 3 3 3

ΣNCi 25 25 22

In summary, the Fenske equation can and will be used in this work for the estimation
of the minimum stage number in each section of a dividing wall column. However, it
should be kept in mind that the result of this method is only a first estimated guess and
in no case invalidates the results of an optimization. Especially if the binary subsystems
show strong fluctuations in the relative volatilities, the equation will obviously not give
reliable results. Nevertheless, the order of magnitude of the minimum number of stages
can be well predicted.

4.3.3 Method to apply Fenske equation on complex distillation
configurations

In this work the Fenske equation is applied to estimate the minimum stage number of
dividing wall columns (for validation see Section 4.3.2 [131]), and column sequences.
Both procedures are explained in more detail in the following paragraphs.

Dividing wall columns

To apply the Fenske equation on dividing wall columns the following assumptions have
to be done. First, the minimum number of theoretical stages is only set by the two key
components that are split and is not affected by the presence of additional components.
Second, the composition of the vapor and liquid coupling flows between two columns
is same, if they enter and leave at the same stages. Third, the recoveries of the key
components split in the prefractionator are higher than the ones in the main column.
For the product splits in the main column of a dividing wall column purity specifications
xmain

i are usually given that can directly be inserted into the Fenske equation. Note
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that the side draw flows are gained in two column regions and both product flows are
mixed to obtain the final product flow. Thus, the impurities from both sections sum up.
As a consequence, when the Fenske equation is applied the impurities in the side draw
products have to be assumed with half of the final ones in the product for each region.
An example is used to illustrate the procedure: The side draw product of a simple
dividing wall column should be obtained in 98 mol % purity. The final side product is a
mixture of the bottom product from the AB split and the top product of the BC split.
Accordingly, for the bottom product B of the AB split a purity of 99 mol % is assumed,
similar for the top product of the BC split.
Nevertheless, for prefractionating columns the molar fraction of the products xj

i have
to be guessed (for example the AC split). As a rule of thumb Equation 4.5 is applied
for product purities above or equal 95 mol %. For product purities lower 95 mol %
Equation 4.6 is applied. Note that xmain

i is the final purity of component i in the
corresponding product stream of the dividing wall column.

xḊ
HK = 10−73.1·xmain

LK +67.5

xḂ
LK = 10−73.1·xmain

HK +67.5

xḂ
HK = 1 − xḂ

LK

xḊ
LK = 1 − xḊ

HK

(4.5)

As an example, lets consider a simple dividing wall column with all product purities at
xmain

i = 95 mol %. In order to estimate the minimum stage number of the AC split, the
purities of the key component A and C have to be estimated with Equation 4.5. This
results in xḊ

HK = xḂ
LK = 0.011 and xḂ

HK = xḊ
LK = 0.989. These values are inserted into

the Fenske equation (Equation 2.10 in Section 2.1.3.2). With αLK/HK = 5.76 this leads
to six stages when rounded up.

xḊ
HK = 1 − xḊ

LK

xḂ
LK = 1 − xḂ

HK

xḂ
HK = xmain

HK + 1 − xmain
HK

2

xḊ
LK = xmain

LK + 1 − xmain
LK

2

(4.6)

In order to estimate the minimum stage number of a simple dividing wall column the
Fenske equation has to be applied three times and for the smDWC five times. To
calculate the total minimum stage number, the minimum stage numbers for all product
splits are summed up.
For the applicability of the Kirkbride equation (Equation 2.14 in Section 2.1.3.2),
the compositions of the flows that are fed to another section are estimated with
V̇min diagrams.
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Column sequences

In order to estimate the minimum stage number of column sequences it is also assumed
that the minimum stage number is only determined by the two split key components.
Again the final product purities are given but mixed flows between the columns have to
be estimated. The rule of thumb used for the application of the Fenske equation on
each column before the last one in a column sequence is shown Equation 4.7.

xḊ
HK = 10−22.6·xmain

LK +18.4

xḂ
LK = 10−22.6·xmain

HK +18.4

xḂ
HK = 1 − xḂ

LK

xḊ
LK = 1 − xḊ

HK

(4.7)

4.4 Energy saving potential of dividing wall columns

The overall energy saving potential of dividing wall columns is an interplay of the
mixture, the number of theoretical stages and product purity requirements. The
objective of this section is to clarify which parameters affect the saving potential and to
which extend. For this purpose, bi-objective optimizations are performed to calculate
NQ̇ optima. For the evaluation of the energy saving potential, the results of dividing
wall columns are compared to the ones of conventional split sequences. Which sequence
is the one with the lowest energy demand is estimated with V̇min diagrams, for most
cases the direct or for the quaternary systems direct-direct split sequence requires the
lowest energy input of all sequences. The quantification of the energy saving potential
is challenging, which is explained in the following for a simple dividing wall column.
Nevertheless, it also applies for multiple dividing wall column.
For all four ternary systems introduced in section 3.5 NQ̇ optimizations are performed
specifying product purities above 95 mol %. The results are shown in Figure 4.13.
Considering the optimal variables of the dividing wall column (see supporting material
in [62]), similar observations as described in Section 4.2 apply. Again, the side product
stream is reduced while the distillate or bottom streams are increased. Whether the
distillate or bottom stream is higher depends on the investigated system. For system 3.1
and 3.2, having a higher BC than AB peak in the V̇min diagram, the distillate stream is
larger. For system 3.3, having a higher AB than BC peak, the bottom stream is the
highest one.
However, the more important aspect is that the direct split sequence always has a lower

minimum stage number while the dividing wall column has a lower minimum energy
demand at high stage numbers, which matches observations from literature as discussed
in Section 2.3. A lower total stage number of column sequences can be explained with
the fact, that no stages are needed for the AC split while the dividing wall column
requires stages for this split in the prefractionator. The lower minimum energy demand
of the dividing wall column comes from the fact that, due to the spatially separated
execution of the AC split, there is no remixing of the intermediate boiling component B.
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Accordingly, energy losses occurring for the direct split sequence are prevented by using
additional stages. Since one extreme point of the Pareto-optimal curve is lower for
the dividing wall column and one for the direct split sequence, there has to be an
intersection of the curves. For all four systems this intersection is located at relatively
low total stage numbers. Accordingly, for most columns at higher stage numbers the
dividing wall column is the more energy efficient option. Nevertheless, if a column
design is close to the intersection of the Pareto-optimal curves, not the whole energy
saving potential of dividing wall columns of around 30 %, which is often reported in
literature, can be exploited.
For the quantification of the overall energy saving potential of a dividing wall column
compared to conventional split sequences considering the location of the intersection
of the NQ̇ optima no tool is available. Accordingly, the Decision Number DN is
introduced to fill this gap. It is presented in the following Section 4.4.1. Based on
the Decision Number and standardized variables, the energy saving of dividing wall
columns is quantified in Section 4.4.2. Note that the presented results are partly based
on actual optimizations and partly on approximations, the corresponding method is
presented in Section 4.3. The input data for all approximations can be found in the
appendix in Table A.14. Afterwards, the full energy saving potential of a simplified
multiple dividing wall column based on optimizations is presented in Section 4.4.3. Last,
the energy savings of the smDWC pilot plant is studied for six different quaternary
mixtures based on optimizations in Section 4.4.4. Note that in all cases the liquid
fraction of the feed is set to q = 1.
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Figure 4.13: NQ̇ optima of the four ternary systems in a dividing wall column
and direct split sequence to reach 95 mol % pure products obtained
by optimization.



4.4 Energy saving potential of dividing wall columns 65

4.4.1 Quantification by Decision Number DN and relative
intersection variables

The task of the Decision Number DN is to map which of two process options i and j is
superior in terms of energy demand considering the entire set of the Pareto-optimal
solutions if the curves intersect. In the context of distillation, it determines the relative
location of the point, at which the lowest energy demand is shifted from one process
option to another. Its calculation is based on the area between the two convex Pareto-
fronts of the two distillation options before and after their intersection as indicated
in Figure 4.14. In the area A1 Option j dominates option i and vice versa for area
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Figure 4.14: Explanation of integrals used for the calculation of the Decision
Number.

A2. The upper limit of the integration is set to be at 4 · N i
min, since this total stage

number approximates an infinite stage number. The lower limit is set to 5 · Q̇j
min, since

most optimizations showed approximately this reboiler duty at the minimum stage
number. However, it should be kept in mind that the setting of these ranges can affect
the resulting areas. Accordingly, the Decision Number rather evaluates trends than
absolute values.
The calculation of the Decision Number is shown in Equation 4.8. By its definition
the number is in the range between -1 and 1. For positive values option i is more
beneficial and for negative values option j. If DN is around zero, both options are
equally suitable, thus half area is dominated by option i and half by j. In this work
usually the dividing wall column is option i and a conventional column sequence is
option j. Correspondingly, a DN of zero means, that the minimum energy savings of
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the dividing wall column equal the savings of the minimum stage number of the column
sequence.

DN = A2 − A1

A1 + A2
(4.8)

The areas between the curves can be calculated analytically, if the approximation
method for the NQ̇ curves from Equation 4.3 in Section 4.3 is applied. For the detailed
calculation see Section A.5.1 in the appendix. However, this calculation procedure is
quite elaborate and has to be adapted for actual optimization results, since no functional
correlation is available. Accordingly, a simplified method to determine the Decision
Number has been developed. First the stage ratio intersection Nis and energy demand
intersection Q̇is are introduced for the coordinated of the stage number and reboiler
duty, at which the curves intersect (Index is = intersection). This intersection can
either be read from optimization data or calculated from the approximation equations
of the NQ̇ optima of the two options. For the calculation based on the approximation
equation (Equation 4.3) Q̇DSS = Q̇DW C is assumed. Consequently, Equation 4.9 has to
be solved to find the number of stages at which the curves intersect Nis.

0.27 · Q̇DSS
min(

Nis

0.97 · NDSS
min

)2

− 1
+ Q̇DSS

min = 0.27 · Q̇DW C
min(

Nis

0.97 · NDW C
min

)2

− 1
+ Q̇DW C

min (4.9)

The corresponding reboiler duty at the intersection Q̇is is then calculated by inserting
Nis in Equation 4.3. Afterwards the relative stage number and reboiler duty can be
calculated for each column option with Equation 4.10.

Nrel,is = Nis

0.97 · ΣNmin,Ci

Q̇rel,is = Q̇is

Q̇min

(4.10)

It is found that the simplified Equation 4.11 to calculate the Decision Number results
in an almost identical results as the calculation based on the integration between the
two curves followed by applying Equation 4.8. For a comparison of the two methods
see Figure 4.17 in Section 4.4.2.1.

DN ≈
ln
∣∣∣∣∣∣ Q̇

DSS
rel,is − Q̇DW C

rel,is

NDSS
rel,is − NDW C

rel,is

∣∣∣∣∣∣
− 0.35

2.7 (4.11)

With this simplified equation the Decision Number can be calculated only on the
basis of the feed stream composition, its liquid fraction, the relative volatilities of
the components and the product purity specifications. With this knowledge, first the
V̇min diagram (for the equations see supporting material on [62]) and the minimum
stage number of the column (Section 4.3.3 by Fenske) can be calculated. This data is
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then combined with the approximation of NQ̇ optima from Section 4.3. Consequently
the equations 4.9 and 4.10 have to be applied to calculate the intersection of the optima
of two distillation options. These parameters are then inserted into Equation 4.11 and
the Decision number can be estimated.
Note that also on the basis of the standardized values tendencies can be read. The
dividing wall column is advantageous for cases at low ratios of Nis/NDW C

min and high
ratios of Q̇is/Q̇DW C

min . In that case, the minimum stage number of the dividing wall
column and direct split sequence are close to each other and thus the intersection
of the curves is close to the minimum stage number of the dividing wall column.
Correspondingly, the range of the theoretical stages in which the direct split sequence
is the only possible option is relatively small. Note in this context that the operating
point of a column is usually chosen close to the strongest curvature of the NQ̇ curve at
around N = 1.2 · Nmin.
The lower border of the stage ratio is one. In this case the minimum stage number of the
dividing wall column is only slightly above the one of the direct split sequence. If both
require the same minimum stage number or the one of the dividing wall column is lower,
there is no intersection of the curves anymore. Accordingly, the dividing wall column
would be the most beneficial solution in the whole solution space and not only in part of
it. Consequently also the Decision Number is one. The difference between Nis/NDW C

min

and Nis/NDSS
min basically indicates the difference between the minimum stage number of

the two options. The ratio Q̇is/Q̇i
min is partly related to the ones at Nis/N i

min, if one of
them is lower the other one is higher. At high energy demand ratios the intersection of
the curves is located closer to the minimum stage number and thus energy savings can
be expected for the dividing wall column in a large range of the solution space. The
lower border of the ratio Q̇is/Q̇DW C

min is around 1.3, since in most cases the minimum
energy demand of the dividing wall column is approximately 30 % below the one of the
direct split sequence.

4.4.2 Simple dividing wall column

The energy saving potential of a dividing wall column is investigated in this section
based on the Decision Number and standardized intersection variables. First the impact
of the product purity specification is discussed in Section 4.4.2.1. In this context, also
the correspondence between the full (Equation 4.8) and simplified model (Equation 4.11)
of the Decision Number is investigated. Afterwards, the impact of the mixture on the
energy saving potential is investigated in more detail in Section 4.4.2.2. Note here that
the actual optimization results have already been shown in Figure 4.13. Afterwards,
the effect of the feed stream composition is presented in Section 4.4.2.3.

4.4.2.1 Impact of product purity specifications

The impact of the product purity specification is investigated for system 3.1, which is
optimized for minimum purities of 90 mol %, 95 mol % and 98 mol % in the dividing wall
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column (Opt2318, Opt235, Opt2320) and direct split sequence (Opt2317, Opt 2310,
Opt2319). Additionally, an approximation according to Section 4.3.1 is performed to
increase the significance of the results at 90 mol %, 95 mol %, 96.5 mol %, 98 mol % and
99.9 mol %. Figure 4.15 shows the NQ̇ optima for all cases based on the approximation
approach.
The NQ̇ optima shift to higher stage numbers and energy demands with increasing
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Figure 4.15: Resulting NQ̇ optima of system 3.1 in dividing wall column and
direct split sequence for different product purities based on new
approximation approach (for method see Section 4.3). Data sets
Approx12 - Approx16.

purity requirenents. However, the impact on the stage number is much more pronounced
than the one of the energy demand. Thus, the relative location of the intersection of the
curve from the dividing wall column compared to the direct split sequence could also
shift. In order to simplify this investigation, Figure 4.16 presents the resulting impact of
the product specifications on the intersection location. According to the approximation
the stage intersection ratio of the dividing wall column is almost independent of the
product purity specifications at around 1.2. For the direct split sequence this ratio
is only constant at lower product purities below 95 mol %, above it increases with
increasing product specifications. This behavior can be explained with the development
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Figure 4.16: Location of the intersections of the NQ̇ optima of system 3.1 with
different product purities from optimization (Opt) and
approximation (Approx, for method see Section 4.3). Data sets
Approx12 - Approx16, note that the dotted line is only a visual aid.

of the minimum stage number of the columns depending on the product specifications
from Figure 4.8a in Section 4.2.1. For the dividing wall column it was found that the
minimum stage number increases stronger than the necessary reboiler duty for higher
product purities. Probably, the increase in minimum stage numbers is less pronounced
for the direct split sequence resulting in the NQ̇ optima to drift apart at lower stage
numbers. As a consequence, the stage intersection factor of the direct split sequence
increases strong while the one of the dividing wall column is relatively stable. This also
matches the results in Figure 4.16b, which show that the product specifications have
low impact on the energy demand intersection. Only a slight decrease is observable for
increasing product purities, however the difference between direct split and dividing
wall column is almost constant. Again the optimization results show a similar trend.
Based on these results the Decision Number is calculated and plotted in Figure 4.17
depending on the purity specifications of the products. Three approaches are compared.
First, the actual results from the optimization in combination with the simplified
equation of the Decision Number (Equation 4.11), second the approximation of the
NQ̇ optima and a full integration to calculate the Decision Number (Equation 4.8) and
third an approximation in combination with the simplified equation to calculate the
Decision Number (Equation 4.11).
First of all, it is observable that the full and simplified model of the Decision Numbers

are in good agreement, accordingly in all following calculations only the simplified model
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Figure 4.17: Decision Number of dividing wall column in comparison to direct
split sequence for system 3.1 (ESI = 1.08) at different product
purities and equimolar feed (Approx12 - Approx16).

from Equation 4.11 is used. The results from approximation and optimization show a
similar trend, at low product purities of 90 mol % the Decision Number is positive and
thus the dividing wall column is more advantageous than the direct split sequence. For
increasing product purities it is slightly increasing but decreases again for purities above
95 mol %. This behavior is caused by the significant increase in the stage intersection
ratio of the direct split sequence in Figure 4.16a. Thus, for high product purities of
system 3.1 the options dividing wall column and direct split sequence are almost equally
suited with a slight advantage of the direct split sequence. This is in contrast to the
widespread opinion in the literature that dividing wall columns are always the better
column choice. However, it should also be kept in mind that the total stage number
of dividing wall columns could also be counted in a way neglecting parallel sections
(discussed in Section 2.1.1). Then, the minimum total stage number of the dividing
wall column would be reduced and the Decision Number increased.
Summarizing, the product purity specifications only have a pronounced impact on the
stage intersection factor of the direct split sequence. The stage ratio related to the
minimum stage number of the dividing wall column is almost constant at 1.15 in the
investigated product purity range and the energy demand ratio is almost unaffected.
As a consequence, for high purity products the distillation options dividing wall column
and direct split sequence are equally suited.

4.4.2.2 Impact of feed mixture

In this section, the impact of the components in the feed mixture on the saving potential
is analyzed. For this purpose, the dividing wall column is compared to the direct
and indirect split sequence for various mixtures. First, the results for the direct split
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sequence are shown, followed by the ones for the indirect split.
In Figure 4.13 bi-objective optimization results for four systems in a dividing wall column
in comparison to the direct split sequence were already shown but not analyzed in detail.
Thus, these are studied in this section. For this purpose, the results are standardized
according to Equation 4.10, similar as presented in the previous Section 4.4.2.1. The
resulting relative locations of the Pareto-front intersections over the ESIs of the systems
are shown in Figure 4.18. Additionally, the approximation method is applied in order
to determine more data points without the need of additional optimization runs. Note
that these results are valid for an equimolar feed stream composition with a liquid
fraction of q = 1 and 95 mol % pure products.
The data from the approximation method (gray filled markers) predicts a clear trend.
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Figure 4.18: Location of the intersections of the NQ̇ optima of dividing wall
column in comparison to direct split sequence of all ternary systems
with 95 mol % pure products based on optimization (Opt) and
approximation method (Approx, for method see Section 4.3). Note
that the dotted line is only a visual aid. Corresponding data sets
Approx1 - Approx6.

The stage ratio of the intersection for systems with ESIs below 0.4 is close to one
(Figure 4.18a), correspondingly the energy demand intersection is high (Figure 4.18b).
For lower ESIs there is no intersection of the curves anymore. If the ESI is increased,
the ratios of the stage intersections increase while the energy demand intersection
decreases. Considering the difference between the values of the direct split compared to
the dividing wall column, it is observable that the differences also change. For increasing
stage numbers the difference between direct split sequence and dividing wall column
increases with the ESI while the opposite trend is observable for the energy demand
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ratios. The results from the optimization runs (white filled markers) validate these
observations. Only for the system at an ESI of 0.38 (system 3.3) stronger deviations
can be seen. Probably this behavior can be explained with the real behavior of the
system.
It should also be kept in mind that usually a column is designed at stage numbers
around N = 1.2 · Nmin. Accordingly, one column option is more beneficial than another
if the stage intersection factor of a column option is below 1.2. As the stage intersection
factor of the dividing wall column is below 1.2 for ESIs lower than 1.8, it can be
guaranteed that its energy consumption for a standard design is below the one of a
direct split sequence with the same total stage number. For higher ESIs it is possible
that the intersection is very close to this design point and thus the energy savings can
be expected to be below 30 %. On the other hand, if a direct split sequence is designed
at N = 1.2 · NDSS

min its corresponding energy consumption is only lower than the one
of a dividing wall column with the same total stage number for systems with an ESI

below one.
In order to evaluate which setup is best suited considering the two-dimensional solution
range, the Decision Numbers are calculated for the optimization and approximation
results (method according to Equation 4.11) from Figure 4.18. Also, similar calculation
are performed for several systems obtained at a higher purity of 98 mol %. The results
are shown in Figure 4.19.

The observations for the data set of 95 mol % matches the ones derived from the
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Figure 4.19: Decision Number of dividing wall column in comparison to direct
split sequence for different systems (indicated by the labels) and
product purities (similar for all product flows) (Approx1 - Approx6
for 95 mol %, Approx7 - Approx11 for 98 mol %).

intersection values in Figure 4.18. For low ESIs the dividing wall column is the more
beneficial option. If the ESI is increased, the location of the intersection shifts to the
disadvantage of the dividing wall column. However, up to ESIs of around 1.8, the
dividing wall column is overall still better suited than the direct split sequence. This
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border shifts to lower ESIs if higher product purities are necessary. The approximation
shows, that the direct split sequence gets more beneficial for 98 mol % pure products
and ESIs above 1.1. The impact of the product purity specification on the NQ̇ optima
intersection has already been discussed in more detail in Section 4.4.2.1.
A similar calculation procedure is applied in order to compare the dividing wall column
with the indirect split sequence. The resulting Decision Numbers for different mixtures
split into 95 mol % and 98 mol % pure products in both distillation options is shown in
Figure 4.20. In comparison to the indirect split sequence, the dividing wall column gets
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Figure 4.20: Decision Number of dividing wall column in comparison to indirect
split sequence for different systems and product purities (similar for
all product flows) (Approx1 - Approx6 for 95 mol %, Approx7 -
Approx11 for 98 mol %).

more beneficial for systems with higher ESIs. At ESIs above 1.8, the Pareto-fronts do
not even intersect anymore. This development is reversed in comparison to the direct
split sequence from Figure 4.19. However, the observation that the DN decreases for
increasing product purities still applies.
Summarizing, the dividing wall column is more beneficial compared to the direct split
sequence in a broad range, especially for low ESIs. At very low ESI values, it may
even happen that there is no longer an intersection of the NQ̇ curves and thus the
dividing wall column is more suitable in the entire operating range. For very high
ESIs the direct split sequence is advantageous, the exact ESI of the transition mainly
depends on the product purity specification. An opposite effect is found in comparison
to the indirect split sequence. Then, the dividing wall column gains suitability for
systems with higher ESIs.

4.4.2.3 Impact of feed stream composition

Last, the impact of the feed stream composition on the Decision Number of the dividing
wall column in comparison to the direct and indirect split sequence is investigated. As it
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additionally depends on the system, whether one or another column sequence is better
suited, a comparison between the direct and indirect sequence is performed as a first
step. For the study the systems 3.1 and 3.3 are chosen at 95 mol % product purities.
The feed stream composition is varied according to Approx17-28 and Approx29-40
from Table A.14 in the appendix (Section A.5). The investigation is performed in a
composition ranges down to 10 % of each component. Below, the mixtures are close to
be binary and thus a dividing wall column is not recommended.
First, the results for system 3.1 are shown. This system has a higher BC than AB
peak in the V̇min diagram (see Section 3.5). In order to evaluate, whether the direct
or indirect split sequence is the better option for a column sequence in the whole feed
composition range, Figure 4.21 shows the Decision Number of these options depending
on the initial molar fractions of the components (indicated by black dots) in a ternary
diagram. In the case DN equals one, the direct split sequence totally dominates the
indirect sequence. Thus, the Pareto-fronts do not intersect. The opposite applies for a
DN of -1.
In a large feed composition range the DN is one, thus the direct split totally dominates

Figure 4.21: Decision Number of systems 3.1 in a direct vs. indirect split sequence
for product purities of 95 mol % and different feed stream
compositions from approximation (for method see Section 4.3). Data
sets Approx3 and Approx17 - Approx28.

the indirect split sequence. However, for large fractions of component C, the Pareto-
fronts intersect and thus the DN is below one. For component C with 80 mol %
in the feed stream, the indirect split sequence totally dominates. Nevertheless, for
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the comparison with the dividing wall column, the direct split sequence is chosen.
Figure 4.22 shows the Decision Number of system 3.1 in the dividing wall column in
comparison to the direct split sequence.
In a relative broad range the Decision Number is at around 0.3, thus the Pareto-fronts

Figure 4.22: Decision Number of systems 3.1 in a dividing wall column vs. direct
split sequence for product purities of 95 mol % and different feed
stream compositions from approximation (for method see
Section 4.3). Data sets Approx3 and Approx17 - Approx28.

intersect but the range in which the dividing wall column is more advantageous is larger
than the one of the direct split sequence. A slight decrease is observable for high molar
fractions of component A. In contrast to that the Decision Number increases slightly for
low amounts of B in an equimolar mixture of A and C or low fractions of C in equimolar
mixtures of A and B. However, it can be concluded that there is no significant effect of
the feed stream composition on the Decision Number of the dividing wall column in
comparison to the direct split sequence for system 3.1.
Similar calculations are repeated with system 3.3. For the mixture the AB split requires
more energy than BC according to the V̇min diagram (see Section 3.5). Again, as a first
step the direct and indirect split sequence are compared for the whole feed composition
range. Again the DN is defined in a way, that positive values denote the advantage of
the direct and negative of the indirect split sequence.
For this system negative DNs dominate. Especially for low fractions of component A

the indirect split clearly is better suited than the direct one. With increasing amount of
component A in the feed stream, the direct split gains suitability up to the point where
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Figure 4.23: Decision Number of systems 3.3 of direct vs. indirect split sequence
for product purities of 95 mol % and different feed stream
compositions from approximation (for method see Section 4.3). Data
sets Approx1 and Approx29 - Approx40.

both options are equally appropriate. Even though the indirect split sequence does not
dominate as strong as the direct one for system 3.1, it is chosen for a comparison to the
dividing wall column. Figure 4.24 shows the DN of the DWC in comparison to the ISS
for system 3.3.
Similar as in Figure 4.22 the DN is relatively constant at 0.3 with a slight decrease

for high fractions of component A. Correspondingly, only a very low increase of the
suitability of the dividing wall column for increasing molar fraction of component B is
found. This observation is not in line with the statement that dividing wall columns are
increasingly more suitable with a higher fraction of middle boiling component in the feed
stream. However, this statement is often based on the assumption of an infinite stage
number [7]. In this work, the stage number was considered as additional dimension for
the quantification of the energy saving potential. Correspondingly, it can be concluded
that not all observations from an operation at an infinite stage number also apply for
the minimum stage operation.
Summarizing, dividing wall columns are the more beneficial process option in a broad
operating range of feed compositions. However, even though the Decision Number is
positive in most cases it should be kept in mind that the Pareto-optimal NQ̇ curves of
the column sequences and dividing wall column intersect resulting in the DNs below
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Figure 4.24: Decision Number of systems 3.3 in a dividing wall column vs.
indirect split sequence for product purities of 95 mol % and different
feed stream compositions from approximation (for method see
Section 4.3). Data sets Approx1 and Approx29 - Approx40.

one. Thus, for strong limitations of the number of theoretical stages conventional
column sequences are in most cases the better option.
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4.4.3 Simplified multiple dividing wall column

Also for the quaternary system 4.1, a conventional column sequence should be compared
to the simplified multiple dividing wall column. For a conventional column sequence
there are four options since three columns are used one after another. The suited
combinations are direct-direct, direct-indirect, indirect-direct or indirect-indirect. All
have the a similar minimum stage number according to Fenske but the minimum
energy demand is different, which can be estimated with the help of V̇min diagram.
The calculation results in the sequence direct-direct to require least energy. Thus this
sequence is used for an NQ̇ optimization for at least 98 mol % pure products. The
results are compared to the ones for the simplified multiple dividing wall column in
Figure 4.25. Note that the results for the smDWC are the same as in Figure 4.9.
The differences between the two extreme points minimum stage number and minimum
energy demand are significantly larger compared to the conventional three product
dividing wall column and the direct split. The intersection factor is reduced to
1.08 · NmDW C

min of the multiple dividing wall column or 1.51 · NDSS
min of the column

sequence. The Decision Number is at 0.3 and thus the multiple dividing wall column
is overall better suited than the split sequence. This validates the high potential of
multiple dividing wall columns to reduce energy consumption over a broad operating
range.
In this context note that the multiple dividing wall column with three dividing walls
most likely has a higher total minimum stage number than the smDWC while the same
minimum energy demand is needed. A higher minimum stage number results from the
fact that additional stages have to be provided for the AD split. A similar minimum
energy demand is predicted by the V̇min diagram. Consequently, it can be expected
that for this kind of column the intersection is located at higher total stage numbers.
Consequently, the Decision Number would be lower.
For higher product purity constraints, the intersection can be assumed to be shifted to

higher total stage numbers. Additionally, the observation from Section 4.4.2, that the
intersection factor of the curves stays same, can also be assumed to be valid. Note that
the full optimization like the one of the mDWC in Figure 4.25 are very time intensive
(two to three weeks) and thus those are only performed for one system.
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Figure 4.25: NQ̇ optima for the quaternary system 4.1 in a simplified multiple
dividing wall column and direct split sequence to reach 98 mol % pure
products.

4.4.4 Pilot plant of simplified multiple dividing wall column

In this section the energy saving potential of the multiple dividing wall column pilot
plant at Ulm University (see Section 2.1.2) is investigated for all quaternary systems
presented in Section 3.5. From Figure 4.10 in Section 4.2.2.2 it gets clear that the
overall energetic minimum might not reachable for all systems due to a non-optimal
uniform stage allocation in the column sections. Accordingly, also the energy saving
potential stated in the previous section cannot be totally exploited. The suitability
of the stage allocation in the pilot plant for all systems is summarized in Table 4.2.
First, the total minimum stage number for all systems to reach 98 mol % pure product
is shown, for system 4.1 also for higher purities. Additionally, the ratio n, describing
the relation of the actual stage number divided by the minimum one is shown for the
whole column and all product splits. Note that the minimum stage number is estimated
with the Fenkse equation as described in Section 4.3.3.

For all systems at 98 mol % the total stage number of 220 set in the pilot plant is
relatively high (ncolumn,i ≥ 1.6) and thus energy savings can still be expected. However,
it also gets clear that the stage allocation is not equally suited for all systems, which
is illustrated by the standard deviation σ of all ni. The lowest standard deviation is
observable for systems 4.1 and 4.4, closely followed by 4.3. Higher deviations are found
for the systems 4.6, 4.5 and 4.2, where the last one shows the highest value. This is an
important fact which should be kept in mind for the following evaluations. It should
also be noted that while higher purity requirements result in a higher minimum number
of stages, the optimum stage allocation and thus also the standard deviation of the
pilot plant remains almost the same.
Again bi-objective optimizations are performed to determine the NQ̇ optima of all
systems in the pilot plant. Even though a uniform stage allocation is set, the chosen
packings inside the column could be replaced resulting in another total stage number.



80 4 Results part I: Multi-objective optimization

Table 4.2: Minimum stage number for quaternary systems calculated with Fenske
equation (all products at 98 mol %), ni of product splits in pilot plant
and their standard deviation σ.

System Product purities
[mol %] Nmin ncolumn nBD nAC nAB nBC nCD σ (ni)

4.1 98 99 2.2 2.5 2.4 3.3 1.7 1.8 0.7
4.1 99 115 1.9 2.1 2.0 2.9 1.5 1.6 0.5
4.1 99.8 141 1.6 1.9 1.8 2.2 1.1 1.2 0.5
4.2 98 77 2.9 2.9 4.0 6.7 1.9 2.1 1.9
4.3 98 122 1.8 1.9 2.2 3.3 1.3 1.4 0.8
4.4 98 58 3.8 5.0 3.3 3.6 3.3 3.6 0.7
4.5 98 82 2.7 3.5 3.3 3.6 3.6 1.3 1.0
4.6 98 71 3.1 3.8 3.3 4.0 3.6 1.8 0.9

Accordingly, the total stage number is considered as optimization variable even though
the allocation is set. Additional optimization variables are the estimated vapor and
liquid splits, product flows and reboiler duty. All results for systems 4.1 to 4.6 are
summarized in Table 4.3. Additionally, energy saving Ej

i (Equation 3.4 in Section 3.4)
of the pilot plant compared to a direct-direct split sequence at 220 optimally allocated
stages is also shown in the table. Note that the energy savings are partly based on linear
interpolation. This is caused by the optimization routine, which calculates only the
minimum required number of Pareto-optimal compromises between the objectives, here
N and Q̇ (see Section 3.2). Thus, in some cases no energy demand is available for 220
stages of the pilot plant. In this case, the corresponding energy demand is determined
by an linear interpolation between the two compromises closest to this stage number.
Note also that the data for system 4.1 has already been presented in Figure 4.10 (data
set "NCi all same and NC32 double") and Figure 4.25 (data set "Direct-direct sequence").

All tested mixtures can be separated in the pilot plant according to the specified
product purities. It should be noted that the overall Decision Number of the pilot plant
for system 4.1 is reduced to -0.04 compared to 0.3 for an optimized stage allocation
(Section 4.4.3), accordingly considering the whole feasible operating range, the direct-
direct split sequence and the multiple dividing wall column pilot plant are equally suited.
This behavior is caused by the non-optimal allocation of the theoretical stages in the
column sections.
For system 4.1 the impact of the product purity specifications can be seen. For
increasing product purity specifications the location of the NQ̇ optima intersection
is shifted towards higher total stage numbers, additionally it is observable that the
Decision Number decreases, similar as in Figure 4.17 for the simple dividing wall
column. Correspondingly, the energy savings of the pilot plant in comparison to a
conventional split sequence decreases for increasing product purities. For high purities
around 99.8 mol %, no more savings can be expected since the intersection is located at
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Table 4.3: Bi-objective optimization results of several systems in the multiple
dividing wall column pilot plant (PP). *Based on linear interpolation.

System
Product
purities
[mol %]

NQ̇ intersection Properties of PP Run
number
Opt. . .

Nis

[−]
Q̇is

[kW]
DN
[−]

Q̇P P
opt

[kW]
EP P

DSS

[%]

4.1 98.0 141 5.35 -0.04 2.68 45.6 2410 & 246
4.1 99.0 180 5.22 -0.34 3.13* 35.8* 2411 & 2412
4.1 99.8 265 5.59 -0.35 5.79* -103.8* 2413 & 2414
4.2 98.0 160 4.3 3 -0.37 2.56 37.6* 2415 & 2416
4.3 98.0 144 5.14 -0.12 2.74 40.0* 2417 & 2418
4.4 98.0 87 2.67 -0.12 1.32* 42.8* 2419 & 2420
4.5 98.0 144 3.07 -0.56 2.30 22.4* 2421 & 2422
4.6 98.0 136 3.19 -0.41 2.10* 28* 2423 & 2424

a stage number higher than 220.
All other systems are only optimized at 98 mol % pure products. Even though all
Decision Numbers are negative, thus considering the whole solution range the direct
split sequence is more beneficial, the pilot plant still saves significant amounts of energy.
This can be explained with the fact, that the total stage number of the pilot plant is
significantly higher than the stage number, at which the Pareto-optimal solutions of
the pilot plant and the column sequence intersect. However, for all systems different
total energy savings are found, which can mainly be explained with the thermodynamic
properties of the mixtures. Figure 4.26 presents the total energy saving from Table 4.3
in dependence on the ESI differences (Equation 2.11 in Section 2.1.3.2) of the systems.
This plot is chosen since the difference in the two ESIs of quaternary systems gives
information about their optimal stage allocation inside the column. The corresponding
stage relations are also indicated in the diagram. The systems at negative difference
of the ESI in the upper part of the column minus the one in the lower part require
similar stage numbers for the AB and BC splits and significantly less for CD. These
show relatively low savings due to the fact, that the equal stage allocation provides
"too much" stages in the upper part of the column for the AB and BC split, which has
already been presented in Table 4.2. Correspondingly, the column has much more stages
than required and the saving compared to a totally optimized direct split sequence is
reduced. Systems with an ESI difference in the range 0 to 0.5 show higher savings
above 40 %. If the stage requirements for AB is below the one of BC and CD, which are
almost equal, the ESI difference is positive. Consequently, for differences above 0.5 the
saving decreases again but less pronounced than for negative differences. This arises
from the fact that only two sections instead of four have too many theoretical stages.
However, it should be noted that for all tested systems one of the ESIs is close to
one, thus two of the three sharp product splits require almost the same stage numbers.
Nevertheless, there could also be systems, for which this does not apply and thus the
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Figure 4.26: Development of energy saving of the pilot plant compared to the
direct-direct split sequence depending on ESIs of systems for
98 mol % pure products. A similar development is observable plotting
the Decision Number instead of the energy savings.

trend could be different from the one in Figure 4.26. Additionally, the simplified version
of the multiple dividing wall column which is used for the pilot plant is not suited for
all quaternary systems and thus some are neglected in the analysis. These are systems
requiring Nmin,AB > Nmin,BC ≤ Nmin,CD (ESIABC < 1 and ESIBCD ≤ 1).
Summarizing, due to the high total stage number the pilot plant offers high energy
savings for a broad range of systems and purities. Highest savings can be expected
if the second ESI is around one and the first ESI in the range of 1 to 1.5. Then,
the uniform stage allocation is almost optimal for the system. If the stage allocation
deviates strongly from the optimum one, the saving potential is reduced.



5 Results part II: Operational flexibility
close to the optimum

As already discussed in section 2.2, several combinations of the liquid and vapor split
can be expected to result in exactly the same product quality for one energy input and
thus the same optimally operated column. This can also be read from V̇min diagrams
(Section 2.1.3.1). Assuming that the requirement of a column is to reach a minimum
and no exact product purity, depending on the systems a relatively large range of
the vapor and liquid split could be used in operation. This behavior is in this work
denoted as flexibility. If a column is operated outside this flexibility range, the product
specifications are not reachable anymore. However, to the best of the authors knowledge
no study was published investigating this flexibility close to the energetic optimum of
the column in the context of the chosen column design in depth. Note that the term
"close to" the optimum is used instead of "at". This can be explained with the fact
that distillation columns are usually not operated at the energetic minimum but with
slightly higher energy input. Correspondingly, "close to" the energetic optimum can be
described with a factor above one being multiplied with the optimal value. This factor
is always given for the following calculations.
The objective of this section is to evaluate the effect of several column variables on the
shape and size of the flexibility region of the liquid and vapor split. These investigations
are partly performed for a simple and partly for the multiple dividing wall column pilot
plant (see Section 2.1.2). However, all results also apply for other versions of dividing
wall columns.
All calculations in this chapter are based on the method from Section 3.3. The following
sections are organized as follows. First, the impact of the distance from the energetic
minimum is investigated in Section 5.1. Afterwards, the impact of the total stage
number and a non-optimal stage allocation in the column sections is studied in depth
in Section 5.2. Here, additionally a new shortcut approach is introduced to enable the
estimation of suitable vapor and liquid splits for dividing wall columns with finite stage
numbers (Section 5.2.3). Then, the effect ofthe specified product flows (Section 5.3)
and feed composition disturbances on suited split ranges is studied in Section 5.4. Last,
the flexibility of different systems in the multiple dividing wall column pilot plant at
Ulm University is presented in Section 5.5.
A list of all performed screenings can be found in the supporting material [62], the
corresponding loop number can be found next to each diagram. Note that the notation
is according to the principle "Scr31", Scr stands for screening, the first number for the
number of components and the following ones are loop numbers.
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5.1 Impact of distance to energetic minimum

In this section the impact of the distance to the energetic minimum is evaluated.
Section 5.1.1 focuses on simple dividing wall columns. Afterwards, in Section 5.1.2 a
similar but much more detailed analysis is performed for a smDWC. The second section
is described more extensively, since most of the contend has not yet been published in
detail elsewhere.

5.1.1 Simple dividing wall column

Suited vapor and liquid split ranges of system 3.1 to reach 95 mol % pure products in a
simple dividing wall column are investigated at 40 stages in total (n = 1.8 · Nmin) and
an optimal stage allocation in the column sections (from Figure 4.13c). The resulting
split ranges for different distances to the corresponding energetic minimum are shown
in Figure 5.1. The corresponding energetic optimum (Q̇ = 1.0 · Q̇opt) can already be
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Figure 5.1: Split flexibility of system 3.3 in optimally designed dividing wall
column (95 mol % pure products, ΣNCi = 40) (Scr31).

reached with several combinations of the liquid and vapor split which are located on
a straight line with positive slope. This behavior can be understood imagining the
prefractionator of the dividing wall column as normal distillation column with a reboiler
and condenser. If in that case a certain amount of vapor is produced, the resulting
reflux stream is set for the product specifications. This theoretically needed reflux
stream also has to be provided in the dividing wall column, which is adjusted by the
liquid split to the prefractionator. Thus, there is one optimum liquid split for every
vapor split and the relation is linear with a positive slope. If more vapor (energy) than
necessary is provided, the linear dependency widens into a field, in which several liquid
splits are suited for one vapor split. This behavior is also stated in literature for an
infinite stage number [36].
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5.1.2 Multiple dividing wall column pilot plant

A similar investigation is performed for the simplified multiple dividing wall column
pilot plant at Ulm University (for a description of the pilot plant see Section 2.1.2).
First of all it should be noted that the pilot plant is designed to be flexible for different
mixtures. Thus the stage number in all column sections is equal (despite section C32).
Accordingly, the stage allocation in the column sections is non-optimal for some systems,
and the following Section 5.2 should also be considered.
There is little literature on the flexibility of multiple dividing wall columns. Accordingly,
in this paragraph first the flexibility in such a column is explained on the basis of
V̇min diagrams. The vapor and liquid split ranges resulting from the V̇min diagram
are valid for columns fulfilling the considered assumptions, namely an infinite stage
number, constant relative volatilities and molar flows, sharp product splits and an
operation at the corresponding minimum energy demand. Afterwards, the knowledge is
applied to analyze screening results of rigorous flow-sheet simulations neglecting these
assumptions.
As already stated, the first step to understand the flexibility in a multiple dividing wall
columns is understanding the V̇min diagram. In contrast to the simple dividing wall
column for ternary feeds, the diagram for quaternary feeds shows not just one peak
that can be shifted to the value of the highest one but two. Accordingly, the behavior
is more complex than for three component systems. In Figure 5.2 the possible peak
shifts of system 4.1 are shown [130].

The first option in Figure 5.2a is the original V̇min diagram as already presented
in Figure 3.5, which limits the split ranges in one dimension. Starting from here,
several options are available changing the vapor and liquid splits without increasing
one peak above the highest one of CD and thus also the total vapor demand of the
split. Either only the AB peak can be increased (Figure 5.2b) or only the BC peak
(Figure 5.2c). Last, both peaks can be shifted to the minimum vapor demand of the
CD split (Figure 5.2d). Note that obviously during operation of such a column AB, BC
and CD are always at the same height. However, the sharp splits with intermediate
boiling components, thus AC and BD, can be operated at all intermediate solutions
from option 1 to 4 resulting in a relatively broad operating window. This is indicated
by the dark areas in Figure 5.2d. It can be concluded, that the vapor and liquid split
ranges for the column C2, in which the AC separation is performed, are relatively broad
since the optimality region is an area and not only a line. Especially the vapor split
can be operated in a relatively wide range which is advantageous for a stable operation.
The optimality region for column C3 performing the BD split is significantly smaller
and only located on a line.
The pilot plant is also suited for systems having the BC peak in the middle of the
V̇min diagram as the highest one. In that case the AC split also has an optimality region
lying on a line and no more in an area. Accordingly, for these systems the flexibility
can be expected to be lower than for systems with the CD peak as highest one.
However, it should still be kept in mind that these observations based on the V̇min di-
agrams only approximate the real behavior of a system sufficiently, if the relative
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volatilities of the components inside the column are almost constant and the stage
number approximates an infinite one. Thus, for strongly non-ideal behavior, performing
a rigorous screening with a flow-sheet simulator is unavoidable. For the quaternary
systems investigated in this work stronger non-ideal behavior is observable in the
presence of butanal and methyl acetate. The behavior of system 4.1 is relatively ideal,
accordingly to validate the knowledge from the V̇min diagram it is chosen for a screening
run.
The minimum energy of the system in the pilot plant is around 2.7 kW (see Section 4.1.2).
Three screening runs are performed at Q̇ = 2.8 kW = 1.04 · Q̇opt, Q̇ = 3 kW = 1.12 · Q̇opt

and Q̇ = 3.2 kW = 1.19 · Q̇opt. Figure 5.3 shows the full screening results of the second
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run in SOPPs. Note that for C3 an adapted liquid split is shown, which results from
Equation 5.1.

RL,C2C3ad,l = RL,C2C3,l · RL,C1C2,l (5.1)

The adapted liquid split shows how much vapor is fed from the main column C1 to the
prefractionating column C3. From the plots it gets clear that the purity of component C

Figure 5.3: Full screening results for system 4.1 in the pilot plant at
Q̇ = 3 kW = 1.09 · Q̇opt for 98 mol % pure products (Scr42).

is limiting the flexibility, followed by component B. However, still there is a relatively
large area in which all components can be obtained in high purities above 98 mol %.
Similar trends are observable for the two other runs.
In order to get a better overview on suited split combinations, Figure 5.4 shows a
two-dimensional projection of the results obtaining at least 98 mol % purity of all
products for the three considered cases of different reboiler duties. This kind of
projection which consists of two plots will also be used in the following sections. The
first diagram (Figure 5.4a) shows the connection between the vapor and liquid splits
to the prefractionating columns C2 and C3. Note again that the adapted liquid split
is shown for column C3 (Equation 5.1). If the original liquid split RL,C2C3,l is shown
instead, there is no such clear dependency. This again illustrates, that all four liquid
and vapor splits inside the smDWC are correlated with each other. Thus, also the
"vapor over liquid split"-fields for the columns C2 and C3 (from Figure 5.4a) are related
to each other. For this reason, a second diagram is needed (Figure 5.4b) that shows
another projection of the four-dimensional space. There, the corresponding required
combination of the two vapor splits RV,l,C1C2 and RV,l,C1C3 is shown. Again, these two
diagrams have to be read in combination and are not independent of each other. They
just show different projections of the same solution space.

It can be seen that column C2 is more flexible in terms of liquid and vapor splits
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Figure 5.4: Suited vapor and liquid split ranges for system 4.1 in the pilot plant at
Q̇ = 3 kW = 1.1 · Q̇opt and at least 98 mol % pure products (Scr41 -
Scr43).

than column C3. This matches the theoretical observations from the V̇min diagram
of the system. Similar as for the simple dividing wall column the operation ranges of
the split increase with increasing energy input and thus distance from the energetic
optimum. Note that slight non-overlapping regions of the fields are probably resulting
from the step size during the screenings. An interesting fact is in which direction the
fields grow when the energy input is increased since this does not happen uniformly
in all dimensions. The vapor split between the columns C1 and C2 only increases in
the direction of lower split ratios to the left side of the dividing wall, while the vapor
split between C1 and C3 increases in both directions. Similar observations are valid for
the liquid splits. The adapted liquid split C2C3ad (Equation 5.1) is only extended to
higher split ratios, while C1C2 increases uniformly. Based on this knowledge it can be
concluded where the most stable operating point of such a column is located, which is
indicated by the intersections of the black dotted lines in the diagram.

5.2 Impact of total stage number and allocation

In the following section, the correlation between the total stage number and the
stage allocation in the column sections and the flexibility of a dividing wall column is
investigated. This behavior has not been discussed in literature yet. For this purpose,
first a relation is derived based on theoretical knowledge of V̇min diagrams and optimal
column designs in Section 5.2.1. Afterwards, the statements are validated with a
rigorous flow-sheet simulation in Section 5.2.2. Last, based on the findings a new
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shortcut approach to determine the vapor and liquid split flexibility for dividing wall
columns with finite stage numbers is presented in Section 5.2.3.

5.2.1 Correlation on an theoretical basis

In order to derive a relation between the vapor and liquid split flexibility and the
theoretical stage number in the column sections, the idea of V̇min diagrams can
be combined with knowledge about Pareto-optimal NQ̇ compromises of distillation
columns [131]. As already discussed in Section 2.1.3.1 the original V̇min diagram, which
can be used to determine the vapor and liquid split flexibility, is only valid at an infinite
stage number inside the column and is applicable for dividing wall columns. Thus,
the diagram is basically one extreme compromise of the NQ̇ curve of such a column.
Correspondingly, the V̇min diagram could be expanded to a third dimension which
represents the relative stage number ni of each column region performing a certain
product split. The result is a three dimensional version of the V̇min diagram. Based on
this diagram and the actual stage number in a column with finite stages, a projection
back to the axis of the original V̇min diagram can be performed. For this, the available
stage numbers in the column regions performing a product split are divided by the
corresponding minimum stage number resulting in the available ni. The corresponding
vapor demand for this split can then be determined and plotted similar to the original
V̇min diagram. In this stage-adapted V̇min diagram adjusted vapor and liquid splits can
be determined for finite stage numbers. In order to clarify the procedure, it is calculated
in the following using an example system.
For the following calculations system 3.1 is used as feed to a simple distillation column.
In the column three kinds of product splits can be performed which are either the AB,
AC or BC split. For all three splits, the total number of theoretical stages N and the
vapor demand V̇ /Ḟ are minimized by varying the feed stage location. As a constraint
the recovery of the key distillate component is set to be above 99.9 mol %. The results
are then plotted in a three dimensional version of the V̇min diagram in Figure 5.5 on
the left side. As already discussed above, the diagram also considers the dimension
ni which is the ratio of the stage number to the minimum one of each column region.
Note that the Pareto-front (V̇ /Ḟ over ni) of each product separation is continuous, but
for clarity reasons only some cases of ni the corresponding relation of V̇ /Ḟ over Ḋ/Ḟ

is shown. For the calculation of ni the minimum stage number is estimated with the
Fenske equation according to Section 4.3.3, resulting in 15 stages for AC, 16 for AB
and 18 for BC. The original V̇min diagram can be found at one end of the resulting
Pareto-optimal curve at ni = 4, which approximates an infinite stage number.
The general shape of the original V̇min diagram, which is indicated by gray square
markers at ni = 4 in the left diagram from Figure 5.5, stays the same if the stage
number is reduced optimally towards Nmin,i, thus for nAB = nAC = nBC = ncolumn.
The only difference is that the total vapor demand increases with ni for all splits. From
the diagram the development of the liquid and vapor split flexibility to lower stage
numbers can be calculated for an optimally stage allocation in the column regions
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Figure 5.5: Three dimensional version of the V̇min diagram and projection of three
cases to the conventional two-dimensional plot. Note that the cases
are indicated in the legend which is valid for both diagrams. [131]

(nAB = nAC = nBC = ncolumn). The results are shown in Figure 5.6. As already stated
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Figure 5.6: Development of split flexibility towards lower total stage numbers
according to extended V̇min diagram for nAB = nAC = nBC = ncolumn.

in Section 2.1.3.1 a linear dependence of the liquid and vapor split is found with a
positive slope. Proceeding to lower stage numbers and thus lower ni results in the
liquid split to decrease significantly while the vapor split has to be reduced only slightly.
Thus, the optimal range of the liquid split is strongly dependent on the total stage
number, even when an optimal stage allocation is used. Additionally, the slope of the
lines changes where the slope is lower for higher ncolumn. Note that the development of
the slope can be the opposite, if the AB peak is higher instead of the BC peak in the
V̇mindiagram. At this point it can already be concluded that the optimal range of liquid
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and vapor splits of a column with optimally allocated stages depends on the total stage
number of the column, or more precisely on the relative distance to the minimum total
stage number.
An even more interesting aspect is, how the original V̇min diagram changes for non-
optimally allocated stages in the column regions responsible for certain product splits
(nAB ̸= nAC ≠ nBC), because this also gives information about corresponding changes in
the vapor and liquid split flexibility. In order to emphasize this, two cases are indicated
in Figure 5.5 in the left diagram. The corresponding projection of these points to a
conventional visualization in a 2D-plot analogue to the V̇min diagram (stage-adapted
V̇min diagrams) can be found in the diagram on the right side. Note that the same line
types and symbols are used in both diagrams.
The first case (gray circles) assumes that nBC has the highest value, followed by nAC

and nAB. Accordingly, the number of theoretical stages for the AB split are closer to
the minimum one than for BC. As a result, the vapor demand of AB increases to a
higher value than the one of BC. If the stages are allocated in such a non-optimal way,
an operation close to the minimum vapor demand of the totally used stage number is
not possible, because the stages are basically located at the wrong location. However,
considering the vapor and liquid split flexibility this is no big issue since again there is
a significant difference in height between the AB and BC peak. Even though they lie in
a different range than before, there is a relatively large flexibility of the splits. However,
this operation is not the most energy efficient one for the total stage number.
The second case (black rhombus) represents a worst case scenario in a certain way,
even though it is very unlikely that this will occur in a real plant for fluid dynamic
reasons. BC still has the highest ni, but now AC has a smaller ni than AB. This results
in all three splits having almost the same energy demand. This is problematic from
several points of view. First, neglecting AC, it can be seen that the vapor demand of
AB and BC is equal. This means that the splits would have to be run strictly at the
optimum, there would be no multiple steady states and thus no flexibility in operation.
Correspondingly, the flexibility has to be gained by additional energy input. Second,
the AC split being the highest one would mean that the vapor split has to be at a
fraction of zero since all produced vapor is needed in the prefractionator. Accordingly,
such an operation is not realizable close to the stage related energetic optimum. An
excess of vapor would be needed just to enable a stable operation also on the right side
of the dividing wall.
Summarizing, the total number and distribution of theoretical stages within the different
sections of a dividing wall column has an impact on the range of the optimality region.
Especially if the total stage number comes close to the minimum one, slight deviations
of ni can cause strong changes in the vapor demand in each section and thus also on
the flexibility of the liquid and vapor splits. Additionally, it is found that the optimal
range of the liquid split is strongly dependent on the total stage number, it decreases
with decreasing stage numbers while the suited interval width stays almost same. In
order to validate this theoretically developed ideas, they are validated with rigorous
flow-sheet simulation in the following section.
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5.2.2 Validation with rigorous flow-sheet simulation

To validate the statements from the previous section a suited system has to be chosen.
For system 3.1 and 3.3 a relatively high flexibility of the liquid and vapor split can be
assumed from the V̇min diagrams (see Section 3.5 and Figure 3.4) at an infinite stage
number. Nevertheless, real columns have to be operated at a lower total stage number
and thus the question is, whether the originally high flexibility can be maintained
in any case. Mainly the impact of a stage allocation different to the optimum one
should be evaluated. The optimized stage allocation for system 3.1 is almost uniformly
distributed on column sections, while system 3.3 requires rather different stage numbers
in the sections (see supporting material in [62]). As the objective of this section is to
investigate the flexibility of a system in a non-optimally designed column, system 3.3 is
chosen to be split in a dividing wall column with similar stages in all column sections,
which could occur for a separation in a multi-purpose plant. Accordingly, it applies that
nAB ̸= nAC ̸= nBC and the impact of a non-optimal stage allocation on the flexibility
range can be evaluated.
The flexibility of the vapor and liquid splits are determined as described in Section 3.3,
the product purities are afterwards set to be at least 95 mol %. Two cases for the
stage allocation are compared. First, the optimum one resulting in the data points in
Figure 4.13c (optimal stage allocation). Second, the stages in all column sections are the
same (uniform stage allocation), which can be denoted as non-optimal for the system.
In both cases, the product streams are fixed to the optimum ones at Ḋ

ḞA
= 1.01 and

Ṡ
ḞB

= 0.94. The lowest energy demand for the screened stage numbers and allocations
at which the product purities are reached are plotted in Figure 5.7 [131].

As expected for the optimum stage allocation almost the same result is found as
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Figure 5.7: Minimum energy demand found during screening (determined by the
step width) to reach 95 mol % pure products compared to optimization
results from Figure 4.13c.

during the optimization, the results of the screening are only slightly higher due to
the step width during screening. For the non-optimal uniform stage allocation the
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energy demand increases. The reboiler duties from this diagram will in the following be
denoted as Q̇opt for a certain stage allocation. For the evaluation of the screenings, first
the vapor and liquid split ranges at Q̇ = 1.2 · Q̇opt resulting in at least 95 mol % are
plotted in Figure 5.8. Figure 5.8a shows the results for the optimum stage allocation
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Figure 5.8: Correlation between liquid and vapor split for system 3.3 (at least
95 mol % pure products) at Q̇ = 1.2 · Q̇opt.

inside the column. At 120 stages in total several suited combinations of the vapor
and liquid split are found resulting in a field of flexibility. The dependency can be
described with a positive slope. Proceeding to lower optimally allocated stage numbers
results in an enlargement of the field which is slightly tilted resulting in a lower slope.
Accordingly, the corresponding liquid split for one vapor split decreases compared to
higher stage numbers. However, generally it is possible to maintain the flexibility of the
liquid and vapor split at lower total stage numbers, assuming that the stage allocation is
optimal. These screening results match the theoretical considerations from the previous
Section 5.2.1, where it is observed that the liquid split will decrease with increasing
stage number. Also, the slope change of the fields fits the expectations for systems
with a higher AB peak. Only the development of the vapor split deviates. However,
only small changes are expected which could probably not be described with the used
step size of the screening. Also no simulations could be run at sufficient high liquid
splits due to convergence problems of the flow sheet simulations. Since most of these
observations can also be found in literature (see Section 2.2) the interesting question is,
how this behavior changes, if the theoretical stages are not located optimally inside the
column.
To answer this question, one can have a closer look on Figure 5.8b, which shows
the vapor and liquid split ranges at a uniform and thus non-optimal stage allocation.
Decreasing the stages from 120 to 60 results in a slight increase of the vapor split range,
similar as for the optimal stage allocation. However, if the stages are reduced further
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to 42, the flexibility range is shrunk significantly. For a better understanding of this
behavior the data set at 40 stages and optimal allocation from the previous section in
Figure 5.1 can be compared with the one at 42 stages and uniform allocation at different
energy inputs, which is shown in Figure 5.9. First of all, the energetic minimum can
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Figure 5.9: Correlation between liquid and vapor split for system 3.3 (at least
95 mol % pure products at uniform (non-optimal) stage allocation and
ΣNCi = 42). Note in comparison Figure 5.1 in Section 5.1 for optimal
stage allocation. Q̇opt is defined as the optimum energy demand for
the set stage allocations (Scr36).

no more be reached with a broad range of liquid and vapor splits but only in a very
narrow region. Even though increasing the energy input also broadens the operating
window, still the range is much smaller than for the optimal stage allocation. In order
to reach a comparable flexibility range of the splits as for an optimal allocation at
Q̇ = 1.2 · Q̇opt, the reboiler duty has to be increased to 1.7 times of the minimum energy
demand. This factor does not yet include the additional increase in energy demand
found in Figure 5.7. All in all, the column with a non-optimal stage allocation but the
same operating flexibility of the splits needs 229 % of the energy input that is required
for the optimal allocation.
Summarizing, the flexibility of the liquid and vapor split can be maintained at lower
stage numbers but are shifted, if the stages are allocated optimal in the column sections.
However, the optimal range of the flow splits is shifted with a more pronounced effect
on the liquid than on the vapor split. An non-optimal stage allocation can result in
significant restrictions of the operating ranges with increasing effect for decreasing stage
number. This restriction can only be compensated by a considerable increase in energy
demand. Even though these observations are based on calculations in a simple dividing
wall column they are assumed to be also valid for multiple dividing wall columns.
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5.2.3 Shortcut approach to estimate flexibility ranges for finite
stage numbers

In the previous sections it got clear that optimal vapor and liquid split ranges are shifting
for lower total stage numbers. Correspondingly, the suitability of V̇min diagrams to
estimate internal streams to initialize flow-sheet simulations is reduced for non-optimal
stage allocations and lower total stage numbers. The extent of the reduced suitability
is shown with an example considering system 4.1 in a simplified multiple dividing wall
column with 13 stages in all sections and 26 in section C32. The overall minimum stage
number of the column to obtain all products in 98 mol % is 99, thus the assumed column
has a stage factor of ncolumn = 1.44, which represents a usual column design. A flow
sheet simulation of such a column is initialized with the vapor and liquid split ranges
suggested by the original V̇min diagram, which is shown in Figure 5.2 in Section 5.1.
The resulting product purities for the four options are presented in Table 5.1. For all
options the purities of the side draw products C and D are between 55−66mol %. These
low purities indicate that the V̇min predicted liquid and vapor splits are not well suited
as initial guesses for simulations. Consequently, an adapted method to estimate split
ranges of column with finite stage numbers which can also be non-optimally allocated
is presented in this section [130]. Note that the same example system and column is
used in the following to explain the procedure.
The new method is based on the extended V̇min diagram from Section 5.2.1. However,
the diagram in the latter cited section is originally developed in combination with
an optimization. In order to calculate the diagram without the need of a flow-sheet
simulator and optimizer, the original V̇min calculation can be combined with the
NQ̇ approximation method presented in Section 4.3. For the calculation, the following
steps have to be followed. First of all, the original V̇min diagram has to be calculated (see
supporting material for the procedure [62]). Afterwards, for all splits i Equation 5.2 is
applied, which is based on the approximation method from Equation 4.3 in Section 4.3.1.
For this purpose also the minimum stage number of all splits has to be calculated
according to Section 4.3.3. The minimum vapor demand of a product split, its minimum
stage number and the available one in the corresponding column section are then
inserted into Equation 5.2.

V̇i

Ḟ
= V̇min,i

Ḟ
·

 0.27(
Ni

0.97·Nmin,i

)2
− 1

+ 1

 (5.2)

As a result, the vapor demand in all column sections can be approximated with the
knowledge of the relative volatilities of the feed stream, its composition and liquid
fraction. The resulting stage-adapted V̇min diagram of the column for the previously
presented example is shown in Figure 5.10a. Due to the fact, that the BC and CD Peak
are operated closer to their minimum stage number than the AB split, these peaks are
increased much more pronounced. This also causes the BC peak to become the highest
one for the operation in the considered column setup.
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Based on this adapted V̇min diagram of the system inside the column with set finite
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Figure 5.10: New approach to determine optimality regions of system 4.1 at a
finite stage number of 143 and a similar allocation as in the pilot
plant. [130]

stage numbers, the vapor and liquid split flexibility ranges can be determined optically.
The principle is similar to the one in Figure 5.2. However, since the BC peak is now
the highest one AB and CD can be increased. The AC and BC splits in between the
maxima have to be estimated. It is found that the best results are obtained when both
minima are shifted in a way that the slope on on the left and right of it stay similar
to the one in the original V̇min diagram. The suitable extreme cases of shifted peaks
are shown in Figure 5.10b, 5.10c and 5.10d. Again all intermediate solutions are also
possible. However, the option in Figure 5.10b cannot be realized inside a column. A
higher BD than AC peak means, that column section C22 would have to be operated
at a negative amount of vapor. Consequently, BD can only be increased further if AC
is also increased.
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Based on these stage-adapted V̇min diagrams, the vapor and liquid split ranges can be
read similarly as described in Section 2.1.3.1. Figure 5.11 shows the resulting ranges
for the column derived by the new method in comparison to the original V̇min ranges
and the ones obtained from flow-sheet screenings as described in Section 3.3. For the
screening Q̇ = 1.1 ·Q̇opt, optimal product flows and 97 mol % pure products are assumed.
From the diagram it gets clear why the simulation initialized with the split ranges
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Figure 5.11: Flexibility range of system 4.1 in Pilot Plant with 13 stages in all
sections and 26 in C32 (97 mol % at Q̇ = 5.1 kW) in comparison to
approximation with original and adapted V̇min method. For better
clearance suited areas of each case are not filled. [130]

of the original V̇min diagram result in such low purities. The liquid and vapor splits
predicted for column C3 are no more located in the suited range resulting from the
screening. Nevertheless, the split ranges for column C2 are located inside the suited
range but are significantly smaller. The new prediction method covers a large range
of the actually feasible operating range. However, it should be noted that certain
regions are even overestimated. This mainly concerns C2 and C3 at higher liquid and
vapor split ratios. Nevertheless, the extreme values resulting from the stage-adapted
V̇min diagram are used to initialize a flow-sheet simulation of a smDWC. The resulting
product purities are also shown in Table 5.1. From the first two cases all products are
obtained at purities above 96.9 mol %, for the last case the purities are slightly lower.
This case is the one which overestimates the actual split range for column C3 most.
Nevertheless, the purities are significantly higher than for the ranges predicted by the
original V̇min diagram.
Summarizing, this new method avoids the drawbacks of V̇min diagrams to estimate split
ranges for multiple dividing wall columns with finite stage numbers. High product
purities are reached when applying the method to estimate suited liquid and vapor split
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Table 5.1: Product purities [mol %] resulting from original and adapted
V̇min method in a smDWC with 13 stages in all sections and 26 in C32,
Q̇ = Q̇opt = 4.63 kW and optimal product flows.

Comp. i
Original V̇min method [63] Adapted V̇min method

Figure
5.2a

Figure
5.2b

Figure
5.2c

Figure
5.2d

Figure
5.10a

Figure
5.10c

Figure
5.10d

A 98.3 97 98 98.1 98.4 98.0 98.1
B 66.2 66.2 61.6 63.3 96.6 97.8 94.7
C 59.9 61.5 55.9 57.7 95.7 97.1 93.9
D 92.4 92.6 92.7 93 97.5 97.3 97.3

ranges. For the method no additional feed properties have to be known, thus it can be
declared as a shortcut approach.
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5.3 Impact of product flows

Figure 5.12 shows the impact of the product flows on the split ranges in the multiple
dividing wall column pilot plant (see Section 2.1.2) for a similar distance from the
energetic optimum of the corresponding column setup. In the investigated range product

(a) Ranges for columns

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Vapor split RV,l

Li
qu

id
sp

lit
R

L
,l

Column C2
Column C3 (adapted)

(b) Relation C2/C3

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Vapor split C1C2 RV,l,C1C2

Va
po

r
sp

lit
C

1C
3

R
V

,l
,C

1C
3

Ḋ
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ḞB

= 0.990 & Ṡ2
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Figure 5.12: Flexibility range of system 4.1 in pilot plant for different product
flows at Q̇ = 1.12 · Q̇Opt,i.

flows have no significant effect on suited split ranges. Only the lower border of the
liquid split to C2 is slightly increased. Nevertheless, it should be noted that the energy
demand depends on the set product flows (see Figure 4.9). Accordingly, if the energy
input is kept constant while varying the product flows, the split ranges can change
according to the distance from the corresponding energetic minimum (see Section 5.1).
Also there are lower and upper ranges of the product flows in which still the product
purity requirements can be fulfilled.

5.4 Impact of feed stream composition

In this section the impact of feed composition disturbances on the split flexibility is
investigated. For this purpose, system 4.3 is chosen to be split in the pilot plant (see
Section 2.1.2). This mixture is chosen as it showed problems during dynamic simulations.
After feed stream disturbances the product specifications were not reached anymore.
Note that these dynamic simulations are carried out in the research group of the author
but were not part of this work.
To better understand the problem a screening is performed. Six feed disturbances are
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considered that are shown in Table 5.2, for each the molar fraction of one component
is reduced by 0.05 and increased correspondingly for another close boiling component.
The cases are similar to the ones presented by Preißinger et al. [132]. Note that one
difference to the latter cited paper is that not the total mass flow but the total molar
flow is kept constant. The K-values of the feed stream and the resulting minimum
energy demand according to the V̇min diagram are also shown in Table 5.2. Note that
Case0 is the base case at an equimolar composition.
Overall the energy demand of the different feed compositions is in a range of ±4 % of

Table 5.2: Feed composition cases for system 4.3, feed flow rate Ḟ = 100 mol · h−1

and q = 1.

Name zA zB zC zD KA KB KC KD V̇min

[mol %] [mol %] [mol %] [mol %] [−] [−] [−] [−]
[
mol · h−1

]
Case0 0.25 0.25 0.25 0.25 1.93 0.9 0.67 0.5 236.42
Case1 0.3 0.2 0.25 0.25 1.88 0.81 0.63 0.47 238.08
Case2 0.2 0.3 0.25 0.25 1.98 0.99 0.71 0.52 233.43
Case3 0.25 0.3 0.2 0.25 1.89 0.91 0.65 0.49 227.2
Case4 0.25 0.2 0.3 0.25 1.98 0.88 0.68 0.5 246.2
Case5 0.25 0.25 0.3 0.2 1.91 0.9 0.67 0.49 241.28
Case6 0.25 0.25 0.2 0.3 1.96 0.91 0.67 0.5 230.08

the base case scenario (calculated with the V̇min diagram). The highest energy demand
is observable for Case4 and the lowest for Case3. During dynamic simulations it is
observed that the control loop of the reboiler is not affected by feed stream disturbances
and thus the energy input for all cases is constant. It is set according to the energy
demand of the base case at Q̇ = 3.226 kW = 1.18 · Q̇opt,Case0, considering the energy
demand of the other splits the distance from the optimum is approximately in the range
of 1.14 − 1.22 · Q̇opt.
For all cases screenings are performed according to Section 3.3 assuming the product
flows to equal the feed flow of the corresponding main product. Figure 5.13 shows
the resulting split ranges to reach 98 mol % pure products. The regions of suited split
combinations shift for different feed stream compositions. On the one hand this results
from distances of the cases from their corresponding energetic optimum. Accordingly
Case4 is more limited in terms of flexibility than Case3. On the other hand, the energy
demand of the AC and BD splits performed in the prefractionating columns C2 and
C3 are affected by the feed stream composition. Consequently, also suited split ranges
are shifted for feed stream disturbances. However, there are regions in which suited
splits for all feed cases overlap, which is indicated by a filled gray area in Figure 5.13.
For the column C2 this range is relatively large while for column C3 the area is rather
narrow. Nevertheless, both cover a broad range of the vapor splits and the narrow
character of the field of C3 occurs from the very limited range of suited liquid splits.
However, it should be kept in mind that the adapted liquid split of C3 is shown, which
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Figure 5.13: Flexibility range of system 4.3 in pilot plant for several feed stream
compositions at Q̇ = 1.18 · Q̇opt,Case0. For better clearance suited
areas of each case are not filled.

is a multiplication of the liquid split from C1 to C2 and C2 to C3. Accordingly, the
range is probably larger as it appears in the diagram. Suited stable operating values of
the splits, indicated by the intersection of the black dotted lines in Figure 5.13, can be
determined in accordance with the development of the fields for different distances from
the energetic optimum (Figure 5.4 in Section 5.1). Additionally, sufficient distance from
the border of the fields should be considered in order to guarantee a stable operation.
From the results it can be concluded that controlled vapor splits are not necessarily
required in order to operate a multiple dividing wall column pilot plant, also if feed
disturbances occur. Interestingly, not even the liquid split has to be controlled if it
can be guaranteed that is set to the value corresponding to the present vapor splits.
However, most likely fluctuation occur during the operation that could disturb the
vapor split. Thus, the liquid split should be adapted correspondingly. In order to reach
a stable operation, the overlapping regions of the splits for the considered feed stream
compositions can be determined. Nevertheless, it should be kept in mind that the
corresponding product flows also have to be regulated in a suited range (see Section 5.3),
otherwise the product specifications cannot be met.
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5.5 Flexibility of different systems in pilot plant

The flexibility of all quaternary systems from Section 3.5 in the pilot plant (see
Section 2.1.2) are analyzed in this section. In this context, several overlapping effects
can occur. First, obviously the systems have different V̇min diagrams (Section 3.5),
which results in different initial flexibility ranges at infinite stage numbers. Second,
the stage allocation in the column is non-optimal for all systems (see Table 4.2 in
Section 4.4.4) resulting in a distortion of the V̇min diagram and correspondingly also
suited split ranges (Figure 5.8b in Section 5.2.2). Third, the ratio n describing the
distance to the minimum stage number is different for all systems (see Table 4.2 in
Section 4.4.4), which mainly affects the suited liquid split ranges (see Figure 5.6 in
Section 5.2.1 and Figure 5.8a in Section 5.2.2).
Figure 5.14 shows the ranges for systems 4.1 to 4.4 at Q̇ = 1.1 − 1.2 · Q̇opt. Systems 4.1,
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Figure 5.14: Flexibility range of system 4.1 to 4.4 (equimolar feed) in pilot plant
at Q̇ = 1.1 − 1.2 · Q̇opt. For better clearance suited areas of each case
are not filled.

4.2 and 4.3 have quite similar V̇min diagrams and also similar energy demands due to
the fact that the components C and D are identical. All diagrams suggest a moderate
split flexibility. However, while the stage allocation is well suited for systems 4.1 and
4.3, for system 4.2 significantly too many stages are provided for the AB and AC split.
In Section 4.4.4 it was observed that this causes a reduced energy saving potential of
this system in the pilot plant compared to column sequences. However, for the split
ranges this has a rather beneficial effect. The highest BC peak is slightly increased
causing a higher flexibility of the splits. Consequently, all three systems have almost
the same flexibility ranges of the liquid and vapor splits. In contrast to this, system 4.4



5.5 Flexibility of different systems in pilot plant 103

requires less energy input and theoretical stages, correspondingly the stage number in
the column can almost be approximated as infinite. Also the stage allocation is well
suited for the system. However, the V̇min diagram suggests a low flexibility since the
shifted AB peak is almost at the same height as the CD split, only for the BC split
some flexibility can be expected. Due to the fact that the stage allocation is rather
optimal, this limited flexibility can be assumed to be maintained in the pilot plant,
which fits the split ranges shown in Figure 5.14. However, it should be noted that all
four systems can hardly reach product purities at 98 mol % if the vapor split to column
C3 is 0.5, which can be expected to be approximately the vapor split that sets in the
column. The vapor split should be higher at around 0.6 to reach a stable operation. For
systems 4.4 also the vapor split to column C2 is an issue and should be lower at around
0.25. Accordingly, to enable a flexible character of the pilot plant it is recommended to
have the opportunity to roughly adjust the vapor split inside the column, for example
by an aperture to roughly adjust the pressure drop in certain column sections. Like
that, it can be guaranteed that all four systems can be split to the desired purity inside
the pilot plant.
Figure 5.15 shows suited vapor and liquid split ranges for systems 4.5 and 4.6. Both
V̇min diagrams in Figure 3.5 suggested a significant flexibility due to a very high CD peak
compared to AB and BC. Also the ratio ncolumn is similar for both systems at around
three and the stage allocation is rather inappropriate. This arises from the fact that the
stage number nCD is significantly lower than n for all other splits. Correspondingly, the
adapted V̇min diagram for the column shows an even higher flexibility than originally
predicted.
The theoretical considerations about the flexibility of systems 4.5 and 4.6 match the

results shown in Figure 5.15. Both have a very broad operating range of the splits.
Different than the systems 4.1 to 4.4, they are also operable at both vapor splits around
0.5. Accordingly, for these two systems no additional adjustment of the vapor splits
is needed for a stable operation close to the corresponding energetic optimum of the
column.
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(a) Ranges for columns

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Vapor split RV,l

Li
qu

id
sp

lit
R

L
,l

Column C2
Column C3 (adapted)

(b) Relation C2/C3

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Vapor split C1C2 RV,l,C1C2

Va
po

r
sp

lit
C

1C
3

R
V

,l
,C

1C
3

System 4.5 (Scr415) System 4.6 (Scr416)

Figure 5.15: Flexibility range of system 4.5 and 4.6 (equimolar feed) in pilot plant
at Q̇ = 1.1 − 1.2 · Q̇opt. For better clearance suited areas of each case
are not filled.
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The objective of this work is to create a deep insight into the high-dimensional optimal
space of simple and multiple dividing wall columns, highlight the relation of the results
to the defined optimization problem and focusing on the importance of vapor and liquid
split flexibility in this context. Overall, complex mathematical methods are applied in
order to gain a deep understanding of optimally designed dividing wall columns. This
knowledge could afterwards be translated back to develop shortcut methods predicting
the found relations in a simple way. For this purpose, the work is separated into two
main parts: optimization and operational flexibility.
In the optimization part, first a new kind of multi-objective optimization is introduced
for dividing wall columns. In addition to the total stage number and energy demand
of the column, it also includes the product purities as objectives. Consequently, a
large part of the optimal space can be calculated. In order to visualize the results,
self-organizing patch plots are applied. Both approaches in combination are a powerful
tool for an a posteriori investigation of the high-dimensional objective space. Only
one calculation run is required, then the results can be evaluated several times with
regard to various points of view. This approach is applicable for all kinds of distillation
columns.
The following section focuses on investigating the impact of the optimization problem
definition of the results. For this purpose, simplified optimizations considering only
two objectives are performed. For a simple dividing wall columns it is found that each
component has different NQ̇ optima for set product flows. However, these optimal curves
are shifted for different product purity constraints and product flows. Consequently, for
the product flows set to the one of each component in the feed stream, the intermediate
boiling component limits the process while the low- and high boiling components are
obtained in a higher purity then required. Thus it is recommended to include the the
product flows as optimization variables. Then, the side draw flow is reduced and all
products can be obtained in the same purity. Nevertheless, this is only relevant, if the
product purities are below one, otherwise an adjustment of the product flows is not
useful. Generally, it is found that the outcome of the optimization is strongly affected
by the a priori defined input.
For a simplified multiple dividing wall column calculations are then performed for
all products to have the same purity of 98 mol %. Due to the high complexity,
a simplification of the optimization problem is reasonable and suited variables for
simplification are searched. For this purpose several optimizations with reduced variable
sets are performed. It is found, that not only the product purities but also the
overall energy demand is very sensitive to the product flows. Accordingly, in the
operation of such a column, their control structure is crucial to reach the desired
product specifications, especially for lower total stage numbers. Also the choice of
the theoretical stage allocation influences the energy demand. However, here the
Fenske equation can be applied to reduce the optimization problem significantly by
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nine variables without increasing the energy demand of the column notably.
Based on all results a new approach to approximate NQ̇ optima of distillation columns
or sequences is developed. For its calculation only feed stream properties are required
which are the composition, liquid fraction and relative volatilities of all components. The
Fenske equation is applied to estimate the minimum stage number and the V̇min diagram
is used to determine the minimum energy demand. For a new standardization of the
stage number and energy demand it is shown that all Pareto-optimal solutions are
located on an almost identical curve. This approach maps the results much better
than the standardization method of Gilliland and Molakanov, which especially shows
weaknesses for column sequences. Thus a new simple equation is provided for the
calculation of Pareto-optimal solutions.
The next section focuses on the energy saving potential of dividing wall columns.
Compared to conventional column sequences, the dividing wall column has a higher
minimum stage number. On the other hand, the minimum energy demand of dividing
wall columns is lower and thus the Pareto-optimal NQ̇ curves have an intersection.
For a quantification which distillation option is better suited considering the whole
operating window a new dimensionless number called Decision Number is introduced.
It is defined in the range of -1 to 1, where a positive value means that the dividing wall
column is more beneficial and vice versa for column sequences. The Decision Number
can either be calculated based on optimization results or estimated with the previously
presented NQ̇ optima approximation. Several variables are then examined for their
influence on which distillation variant is the more superior one. For the tested mixtures
it is found that the dividing wall column is more advantageous in comparison to the
direct split sequences for systems with a low Ease of Separation Index. If the index
increases the advantage of the dividing wall column decreases. An opposite trend is
observed comparing the dividing wall column with an indirect split sequence. The
transition from one option to another is affected by the specified product purities.
For low to moderate purities the effect is rather small while at high purity products
column sequences gain more virtues. The feed stream composition does not affect the
Decision Number and thus the relative location of the intersection of Pareto-optimal
compromises. However, it should be kept in mind that this will of course affect the
energy and stage requirements.
Afterwards, the saving potential of multiple dividing wall columns is investigated
focusing on the flexible designed pilot plant planned at Ulm University. Six suited
systems are optimized and the results are compared the ones of conventional column
sequences. It is found that the pilot plant offers significant amounts of energy savings
for 98 mol % pure products in any case, being in the range of 25 − 45%. However, for
higher product purities the savings are reduced. Also it is observed that the energy
savings are lower for systems requiring significantly different stage allocations in the
column sections.
Overall, in the first part of this work a detailed study about the optimal space of
distillation columns is presented. These studies have resulted in a comprehensive
understanding of the relations that lead to optimal column designs. Based on this
knowledge, new empirical shortcut methods could be introduced. These enable the



107

estimation of optimal column designs without the need of an optimizer. Additionally, it
can be evaluated whether a column sequence or an intensified dividing wall column is
the better suited option for a given separation task without an optimization.
In the second part of this work the operational flexibility close to the energetic optimum
is investigated in depth. Its importance arises from the fact that one optimal operation
point cannot only be reached by one combination of the liquid and vapor split but by
a set of them which leads to the flexibility in operation already mentioned. In other
words, the robustness of the optimum is investigated. This relation is also important the
other way around. It is found that the flexibility can severely be limited if non-optimal
stages are chosen in some column sections, consequently operating such a column can
become challenging. This observation can be explained with an extended version of
the V̇min diagram developed in this work which also considers the ratio of the stages
for one split related to the minimum one ni. Also the distance to the minimum stage
number affects the location of suited liquid and vapor split ranges. Especially suited
liquid split ranges are strongly affected by the total stage number. Correspondingly,
the suitability of the V̇min diagrams to initialize flow-sheet simulations is reduced at
lower stage numbers. Thus, based on the stage-adapted version of the V̇min diagram in
combination with the approximation approach for NQ̇ optima a method is developed
to estimate the vapor and liquid split ranges in dividing wall columns with finite stage
numbers. An example simulation proves that the new approach guarantees high-purity
products, which are not reached with the values predicted by the original V̇min method.
Further, the presented screenings can also be used to enhance the dynamic behavior
of the pilot plant in Ulm University. For this purpose, the impact of feed stream
disturbances on the vapor and liquid split ranges are evaluated. Even though the ranges
are shifted there are overlapping regions for all feed cases. In this overlapping region
the column should be operated to reliably reach the desired product specifications.
Additionally, the split flexibility of several systems suited for the pilot plant is evaluated.
The resulting split ranges can be explained with the knowledge gained in the preceding
sections.
Summarizing, also the second part of this work makes a significant contribution to
making the behavior of dividing wall columns more comprehensible. Flexibility ranges
of the liquid and vapor splits can be calculated and then be used to enable a more
stable operation. This could be a first step towards establishing also multiple dividing
wall columns in the chemical industry.
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A Supporting information

A.1 Supplements to theoretical background

Figure A.1 shows a scheme of the multiple dividing wall column pilot plant planned at
Ulm University by Preißinger et al. [22].

Figure A.1: Scheme of the multiple dividing wall column pilot plant planned at
Ulm University.
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A.2 Supplements to Aspen Plus simulations

This section first focuses on the thermodynamic modeling of the Aspen Plus simulations
in Section A.2.1. Afterwards, implementation options of the dividing wall column that
are tested are shown in Section A.2.2.

A.2.1 Thermodynamic modeling

The activity coefficients of all components in mixtures (Aspen Plus internal name
GAMMA) are calculated with the non-random two liquid model (NRTL), as shown in
equation A.1.

ln (GAMMAi) =
∑

j xjτjiGji∑
k xkGki

+
∑

j

xjGij∑
k xkGkj

(
τij −

∑
m xmτmjGmj∑

k xkGkj

) (A.1)

Gij = exp(−αijτij)

τij = aij + bij

T
+ eij ln T + fijT

αij = cij + dij (T − 273.15 K)
τii = 0
Gii = 1

The parameters used for the calculation of the ternary and quaternary systems are
listed in Table A.1 and A.2, respectively.

Table A.1: NRTL parameters for ternary systems, dij = eij = fij = 0. Sources: *
APV110VLE-IG (data base), ** NISTV110 NIST-IG (data base), ***
Estimated with UNIFAC.

Sys-
tem i j aij aji bij bji cij Source Valid.

with

3.1
A B -2.885 2.191 1123.950 -863.731 0.3 * [133]
A C 0 0 122.685 -136.481 0.3 * [134]
B C 0 0 -91.146 75.898 0.3 * [135,136]

3.2
A B 0 0 48.073 -56.201 0.3 * [137]
A C -0.345 -1.029 270.441 149.524 0.3 * [138]
B C -0.471 -0.484 421.264 -28.486 0.3 * [139]

Continued on next page
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Table A.1: NRTL parameters for ternary systems, dij = eij = fij = 0. Sources: *
APV110VLE-IG (data base), ** NISTV110 NIST-IG (data base), ***
Estimated with UNIFAC.

Continued from previous page

Sys-
tem i j aij aji bij bji cij Source Valid.

with

3.3
A B 4.712 -2.313 -1162.295 483.844 0.3 * [140]
A C 2.22 -1.517 -337.712 242.624 0.3 * [141]
B C 0 0 -85.219 128.502 0.3 * [142]

3.4
A B 0 0 -116.614 126.490 0.3 *** N/A
A C 0 0 -264.293 413.763 0.3 * [143]
B C 0 0 128.824 -114.771 0.3 *** [144]

Table A.2: NRTL parameters for quaternary systems, dij = eij = fij = 0. Sources:
* APV110VLE-IG (data base), ** NISTV110 NIST-IG (data base), ***
Estimated with UNIFAC, **** Regression.

Sys-
tem i j aij aji bij bji cij Source Valid.

with

4.1

A B 8.2606 -9.721 -2846.6829 3409.6863 0.3 * [145]
A C -0.347 -0.833 167.914 252.533 0.3 * [146]
B C -0.991 0.725 110.275 69.232 0.3 * [147]
A D 0 0 -85.219 128.502 0.3 * [142]
B D 0 0 112.946 -88.318 0.3 * [148]
C D -5.775 5.649 1959.376 -1817.563 0.3 * [149]

4.2

A B -5.498 3.615 2150.979 -1222.160 0.3 * [150]
A C -4.101 1.992 1482.18 -510.19 0.5 ** [151]
B C -0.991 0.725 110.275 69.232 0.3 * [147]
A D 7.451 -6.891 -2197.741 2244.387 0.3 * [151]
B D 0 0 112.946 -88.318 0.3 * [148]
C D -5.775 5.649 1959.376 -1817.563 0.3 * [149]

Continued on next page
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Table A.2: NRTL parameters for quaternary systems, dij = eij = fij = 0. Sources:
* APV110VLE-IG (data base), ** NISTV110 NIST-IG (data base), ***
Estimated with UNIFAC, **** Regression.

Continued from previous page

Sys-
tem i j aij aji bij bji cij Source Valid.

with

4.3

A B 0 0 291.165 -315.794 0.3 **** [152]
A C 0 0 750.5039 -425.543 0.3 **** [153]
B C -0.991 0.725 110.275 69.232 0.3 * [147]
A D 0 0 147.134 -50.032 0.3 * [153]
B D 0 0 112.946 -88.318 0.3 * [148]
C D -5.7751 5.649 1959.376 -1817.563 0.3 * [149]

4.4

A B 0 0 243.553 -186.215 0.3 * [154]
A C -5.498 3.615 2150.979 -1222.156 0.3 * [150]
B C -0.120 -0.0429 0 0 0.1 ** [152]
A D 7.451 -6.891 -2197.741 2244.387 0.3 * [151]
B D 0 0 147.134 -50.032 0.3 * [153]
C D 0 0 112.946 -88.318 0.3 * [148]

4.5

A B 0 0 243.553 -186.2151 0.3 * [154]
A C -5.498 3.6145 2150.979 -1222.16 0.3 * [150]
B C -0.120 -0.043 0 0 0.1 ** [152]
A D -4.101 1.992 1482.18 -510.191 0.5 ** [151]
B D 0 0 -75.966 332.460 0.3 * [153]
C D -0.991 0.725 110.275 69.232 0.3 * [147]

4.6

A B -2.885 2.191 1123.950 -863.731 0.3 * [133]
A C 0 0 122.685 -136.481 0.3 * [134]
B C 0 0 -91.146 75.898 0.3 * [135,136]
A D 0 0 54.480 -44.669 0.3 * [155]
B D 0 0 -171.642 196.143 0.3 *** N/A
C D 0 0 -130.024 102.357 0.3 * [156]
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The vapor pressure p∗,l
i is calculated with the extended Antoine equation (Aspen Plus

internal name PLXANT) which is shown in equation A.2. The corresponding parameters
are shown in Table A.3.

ln p∗,l
i = A1,i + A2,i

T + A3,i

+ A4,iT + A5,i ln T + A6,iT
A7,i (A.2)

The critical temperature (TC) and pressure (PC) are required to calculate the liquid

Table A.3: Parameters for Antoine equation ([p] = bar, [T ] = K).

Comp. i A1,i A2,i A3,i A4,i A5,i A6,i A7,i
TLB

[K]
TUB

[K]

2-Methylbutane 59.8 -4976 0 0 -7.7 0 2 113.3 460.4
Benzene 71.6 -6486.2 0 0 -9.2 0 2 278.7 562.1
Butanal 40.1 -5301.4 0 0 -4.3 0 6 176.8 537.2
Cumene 91.3 -8674.6 0 0 -11.9 0 2 177.1 631
Ethanol 61.8 -7122.3 0 0 -7.1 0 2 159.1 514
Isobutanol 110.3 -10504 0 0 -13.9 0 6 165.2 547.8
Methanol 71.2 -6904.5 0 0 -8.9 0 2 175.5 512.5
Methylacetat 49.8 -5618.6 0 0 -5.6 0 6 175.2 506.6
n-Butane 54.8 -4363.2 0 0 -7 0 2 134.9 425.1
n-Butanol 94.8 -9866.4 0 0 -11.7 0 6 183.9 563.1
n-Pentane 67.2 -5420.3 0 0 -8.8 0 2 143.4 469.7
p-Xylene 77.2 -7741.2 0 0 -9.9 0 2 286.4 616.2
Propanol 73.2 -8307.2 0 0 -8.6 0 6 147 536.8
Toluene 65.4 -6729.8 0 0 -8.2 0 2 178.2 591.8

molar volume according to the Rackett model. In the case of supercritical fluids, also
the critical volume (VC) is required. The critical parameters of all used components
are summarized in Table A.4.
The enthalpy of vaporization (Aspen Plus internal name DHVLDP) is calculated with

DIPPR equation 106 (shown in equation A.3).

DHVLDP = B1,i (1 − Tr,i)B2,i+B3,iTr,i+B4,iT
2
r,i+B5,iT

3
r,i (A.3)

Tr,i = T

TCi
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Table A.4: Critical parameter and heat of formation of an ideal gas of all
components.

Comp. i
TC
[K]

PC
[bar]

VC[
m3·kmol−1

] DHFORM[
kJ · mol−1

]
2-Methylbutane 460.4 33.8 0.31 -14.1
Benzene 562.1 49 0.26 129.6
Butanal 537.2 44.1 0.26 -114.8
Cumene 631 32.1 0.43 137.9
Ethanol 514 61.4 0.17 -167.9
Isobutanol 547.8 43 0.27 -154.9
Methanol 512.5 80.8 0.12 -162.3
Methylacetat 506.6 47.5 0.23 -324.2
n-Butane 425.1 38 0.26 -16.7
n-Butanol 563.1 44.1 0.27 -150.7
n-Pentane 469.7 33.7 0.31 -8.8
p-Xylene 616.2 35.1 0.38 121.4
Propanol 536.8 51.7 0.22 -159.9
Toluene 591.8 41.1 0.32 122.2

The corresponding DIPPR parameters of all components are shown in Table A.5. For
the calculation of the enthalpy of a vapor (HVMX) and liquid mixtures (HLMX),
equation A.4 and A.5 are used, respectively. The liquid enthalpy is calculated with
another method for supercritical fluids, however here it is assumed that no supercritical
fluids are present and thus it is not shown here.

HVMX =
n∑

i=1

[
xv

i ·
(

DHFORM +
∫ T

298.15 K
CPIG dT

)]
(A.4)

HLMX =
n∑

i=1

[
xv

i ·
(

DHFORM +
∫ T

298.15 K
CPIG dT

)]

−
n∑

i=1

[
xl

i · DHVLDP
]

− R · T 2 ·
n∑

i=1

[
xl

j · ∂ ln(GAMMA)
∂T

] (A.5)
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Table A.5: Parameters for calculation of heat of vaporization DHVLDP
([DHVLDP] = kJ · mol−1).

Comp. i B1,i B2,i B3,i B4,i B5,i
TLB

[K]
TUB

[K]

2-Methylbutane 42.3 0.95 -0.98 0.46 0 113.3 460.4
Benzene 50 0.65 -0.28 0.03 0 278.7 562.1
Butanal 41.7 0.23 0.02 0.09 0 176.8 537.2
Cumene 75.3 1.37 -1.5 0.6 0 177.1 631
Ethanol 65.8 1.19 -1.77 1 0 159.1 514
Isobutanol 90 0.81 -0.11 -0.18 0 165.2 547.8
Methanol 32.6 -1.04 1.87 -0.61 0 175.5 512.5
Methylacetat 43.3 0.19 0.34 -0.17 0 175.2 506.6
n-Butane 36.2 0.83 -0.82 0.4 0 134.9 425.1
n-Butanol 71.3 0.05 0.9 -0.51 0 183.9 563.1
n-Pentane 45.1 0.96 -0.92 0.39 0 143.4 469.7
p-Xylene 66.5 1.17 -1.28 0.54 0 286.4 616.2
Propanol 69 0.65 -0.54 0.33 0 147 536.8
Toluene 54.6 0.77 -0.62 0.26 0 178.2 591.8

x is the molar fraction of a component, the superscription v indicates the vapor phase
and l the liquid phase, i and j are the two components. DHFORM is the ideal gas heat
of formation at 298.15 K which is summarized in Table A.4, CPIG is the heat capacity
of an ideal gas, which is calculated according to DIPPR equation 107 (see equation A.6).

CPIG = C1,i + C2,i

(
C3,i/T

sinh (C3,i/T )

)2

+ C4,i

(
C5,i/T

cosh (C5,i/T )

)2

(A.6)

The input parameters are summarized in Table A.6.
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Table A.6: Parameters for CPIG equation ([CPIG] = J · (mol · K)−1).

Comp. i C1,i C2,i C3,i C4,i C5,i
TLB

[K]
TUB

[K]

2-Methylbutane 74.6 326.5 1545 192.3 666.7 200 1500
Benzene 55.2 173.4 764.3 72.5 2445.7 298.2 1500
Butanal 89.2 156.8 901.9 109.8 2566 298.2 1500
Cumene 108.1 379.3 1750.5 300.3 794.8 200 1500
Ethanol 49.2 145.8 1662.8 93.9 744.7 273.2 1500
Isobutanol 87.9 241.6 1718 165.4 798.7 298.2 1200
Methanol 39.3 87.9 1916.5 53.7 896.7 273.2 1500
Methylacetat 55.5 178.2 1260 85.3 562 298 1500
n-Butane 80.2 162.4 841.5 105.8 2476.1 298.2 1500
n-Butanol 74.5 259.1 1607.3 173.2 712.4 298.2 1500
n-Pentane 88.1 301.1 1650.2 189.2 747.6 200 1500
p-Xylene 75.1 339.7 1492.8 224.7 675.1 200 1500
Propanol 61.9 202.1 1629.3 129.6 727.4 298.2 1500
Toluene 58.1 286.3 1440.6 189.8 650.4 200 1500

A.2.2 Flow sheet implementation options for dividing wall columns

Figure A.2 shows the implementation options of a dividing wall column in Aspen
Plus which are evaluated according to their calculation time and number of errors in
Section 3.1.
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Figure A.2: Tested implementation options of the dividing wall column.
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A.3 Supplements to Interface Aspen Plus - MS Excel

Figure A.3 shows schematically how the interface works. The corresponding code can
be found in the supporting material [62].

Figure A.3: Data exchange between Aspen Plus and Excel programmed in
VBA. [107]
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Table A.7: Overview over optimization problem definitions in simple distillation
columns.

Opt Sys-
tem

Objectives Variables Constraints

ΣNCi Q̇ mCi
Ḋ
Ḟ

Equation Condition

2x1 Variation of 4.1 min min var 1 xḊ
A ≥ 0.95

2x2 Variation of 4.1 min min var var − ḂA

ḞA
− ≥ 0.05

− ḊB

ḞB
− ≥ 0.05

2x3 Variation of 4.1 min min var 2 − ḊB

ḞB
− ≥ 0.05

A.4 Supplements to Optimizations

In this section supporting information for performed optimizations is provided. Note
that more extensive information for all optimizations is provided in the supporting
material [62].
The following Tables briefly summarize the most important information of all opti-
mizations performed. In Table A.7 the optimization runs of in a simple two-product
distillation column are shown, followed by the results for ternary systems in a simple
dividing wall column (Table A.8) or direct split sequence (Table A.9). The optimization
setups for quaternary systems can be found in Table A.10 for the simplified multiple
dividing wall column in combination with Table A.12 and Table A.11 for the quaternary
direct split sequence.
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Table A.8: Overview over optimization problem definitions for ternary cases in
simple dividing wall column. If a value is given for a variable, it was
set to this during the optimization and if "var" is filled, it was varied as
optimization variable.

Opt Sys-
tem

Objectives Variables Constraints

ΣNCi Q̇
xḊ

A , xṠ
B,

xḂ
C

mCi
Ḋ
ḞA

Ṡ
ḞB

RV RL xḊ
A xṠ1

B xṠ2
C

531 3.1 min min max var var var var var no no no
231 3.1 min min no var 1 1 var var ≥ 0.95 no no
232 3.1 min min no var 1 1 var var no ≥ 0.95 no
233 3.1 min min no var 1 1 var var no no ≥ 0.95
234 3.1 min min no var 1 1 var var ≥ 0.95 ≥ 0.95 ≥ 0.95
235 3.1 min min no var var var var var ≥ 0.95 ≥ 0.95 ≥ 0.95
236 3.1 min min no var 1 1 var var no ≥ 0.98 no
237 3.1 min min no var 1 1 var var no ≥ 0.99 no
238 3.1 min min no var 1 0.95 var var no ≥ 0.95 no
239 3.1 min min no var 1 1.05 var var no ≥ 0.95 no
2312 3.2 min min no var var var var var ≥ 0.95 ≥ 0.95 ≥ 0.95
2314 3.3 min min no var var var var var ≥ 0.95 ≥ 0.95 ≥ 0.95
2316 3.4 min min no var var var var var ≥ 0.95 ≥ 0.95 ≥ 0.95

Table A.9: Overview over optimization problem definitions of ternary direct split
sequences.

Opt Sys-
tem

Objectives Variables Constraints

ΣNCi ΣQ̇ mCi
ḊC1

Ḟ
ḊC2

Ḟ

xḊC1
A = xḊC2

B

= xḂC2
C

2310 3.1 min min var var var ≥ 0.95
2311 3.2 min min var var var ≥ 0.95
2313 3.3 min min var var var ≥ 0.95
2314 3.4 min min var var var ≥ 0.95
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Table A.10: Overview over optimization problem definitions for quaternary cases.
* stage allocation of pilot plant (Section 2.1.2 or Table A.12), ** see
Table A.12, *** estimated vapor split.

Opt Sys-
tem

Objectives Variables Constraints

ΣNCi Q̇
xḊ

A , xṠ1
B ,

xṠ2
C , xḂ

D

mCi
Ḋ
ḞA

Ṡ1
ḞB

Ṡ2
ḞC

RV,i RL,i
xḊ

A = xṠ1
B

= xṠ2
C = xṠ2

D

541 4.1 no min max set* var var var var var no
241 4.1 min min no var 1 1 1 var var ≥ 0.98
242 4.1 min min no var 1.008 0.992 0.992 var var ≥ 0.98
243 4.1 min min no var 1.02 0.98 0.98 var var ≥ 0.98
244 4.1 min min no var var var var 0.5*** var ≥ 0.98
245 4.1 min min no var var var var var var ≥ 0.98
246 4.1 min min no set* var var var var var ≥ 0.98
247 4.1 min min no set** var var var var var ≥ 0.98
248 4.1 min min no set** var var var var var ≥ 0.98
249 4.1 min min no set** var var var var var ≥ 0.98
2412 4.1 min min no set* var var var var var ≥ 0.99
2414 4.1 min min no set* var var var var var ≥ 0.998
2416 4.2 min min no set* var var var var var ≥ 0.98
2418 4.3 min min no set* var var var var var ≥ 0.98
2420 4.4 min min no set* var var var var var ≥ 0.98
2422 4.5 min min no set* var var var var var ≥ 0.98
2424 4.6 min min no set* var var var var var ≥ 0.98

Table A.11: Overview over optimization problem definitions of quaternary direct
split sequences.

Opt Sys-
tem

Objectives Variables Constraints

ΣNCi ΣQ̇ mCi
ḊC1

Ḟ
ḊC2

Ḟ
ḊC3

Ḟ

xḊC1
A = xḊC2

B

= xḊC3
C = xḂC3

D

2410 4.1 min min var var var var ≥ 0.98
2411 4.1 min min var var var var ≥ 0.99
2413 4.1 min min var var var var ≥ 0.998
2415 4.2 min min var var var var ≥ 0.98
2417 4.3 min min var var var var ≥ 0.98
2419 4.4 min min var var var var ≥ 0.98
2421 4.5 min min var var var var ≥ 0.98
2423 4.6 min min var var var var ≥ 0.98



134 A Supporting information

Table A.12: Stage allocations used in Section 4.2.2 (Figure 4.10) and for the pilot
plant (Section 2.1.2).* stage allocation of pilot plant, applied for
Opt541, 246, 2412, 2414, 2416, 2418, 2420, 2422, 2424 and screenings.
Given as reference: ** mi at Nmin resulting from optimization.

Opt mC11 mC12 mC13 mC14 mC15 mC16 mC21 mC22 mC31 mC32

PP* 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.18
245** 0.109 0.040 0.109 0.178 0.158 0.099 0.119 0.020 0.089 0.079
247 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
248 0.051 0.071 0.131 0.111 0.141 0.081 0.071 0.101 0.121 0.121
249 0.061 0.061 0.121 0.121 0.111 0.111 0.091 0.081 0.121 0.121

A.5 Supplements to Approximations

In this section supporting information for the approximation approach to calcu-
late NQ̇ optima is presented. Section A.5.1 presents the integration of the approximation
equation for the calculation of the Decision Number. Afterwards, Section A.5.2
summarizes the inputs used for approximations in this work.

A.5.1 Integration for Decision Number

This section summarizes the integration procedure to calculate the Decision Number
that is based on the approximation of NQ̇ curves presented in Section 4.3.1. To calculate
the area between the two curves, the integral of the lower curve has to be subtracted
from the one of the upper curve (either i or j). Since the overall equation is quite
extensive, the calculation of the integrals A1 and A2 is split according to equation A.7.

A1 = Ai
1a + Ai

1b − Aj
1

A2 = Ai
2 + Aj

2
(A.7)

Note that the asymptote of option i is located in the integration range of A1, thus the
integral is split again in two parts. The first part is calculated according to equation A.8.

Ai
1a =

∫
5 · Q̇j

min dN (A.8)
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Table A.13: Integrals calculated for the Decision Number.

Area Lower bound Upper bound Method

Ai
1a N j

(
Q̇ = 5 · Q̇j

min

)
N i

(
Q̇ = 5 · Q̇j

min

)
A.8

Ai
1b N i

(
Q̇ = 5 · Q̇j

min

)
Nis A.9

Aj
1 N j

(
Q̇ = 5 · Q̇j

min

)
Nis A.9

Ai
2 = Aj

2 Nis 4 · N i
min A.9

All other integrals are solved according to equation A.9. The integral below an
approximated NQ̇ curve of the system k is calculated based on equation 4.3 in Section 4.3.

Ak
l =

∫
Q̇k

min

1 + 0.27(
N

0.97·Nk
min

)2
− 1

 dN

= 0.135 · Q̇k
min · 0.97 · Nmin · ln

(
1 − N

0.97 · Nk
min

)

− 0.135 · Q̇k
min · 0.97 · Nmin · ln

(
1 + N

0.97 · Nk
min

)
+ Q̇k

min · N + const

(A.9)

Note that the complex logarithm is required. However, the imaginary parts cancel out
when subtracting the upper and lower border of the integration range. Accordingly, as
simplification the absolute values can be used inside the logarithm brackets.
The integration ranges of all required integrals is shown in Table A.13.

A.5.2 Inputs used for approximations

The following Table A.14 summarizes the input data used for the approximations of
NQ̇ optima.

Table A.14: Inputs for used for approximation of NQ̇ curves.

App-
rox

zA zB zC
αAC αBC

Pur. Nmin
V̇min

Ḟ[
mol
mol

] [
mol
mol

] [
mol
mol

]
[mol %] DWC DSS ISS DWC DSS ISS

1 0.33 0.33 0.34 8.36 4.63 95.00 22 21 17 1.12 1.62 1.95
2 0.33 0.33 0.34 5.20 2.52 95.00 24 21 20 1.07 1.69 2.01
3 0.33 0.33 0.34 5.77 2.31 95.00 22 19 19 1.12 1.61 1.88

Continued on next page
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Table A.14: Inputs for used for approximation of NQ̇ curves.

Continued from previous page

App-
rox

zA zB zC
αAC αBC

Pur. Nmin
V̇min

Ḟ[
mol
mol

] [
mol
mol

] [
mol
mol

]
[mol %] DWC DSS ISS DWC DSS ISS

4 0.33 0.33 0.34 4.00 1.70 95.00 28 24 26 1.54 2.08 2.35
5 0.33 0.33 0.34 4.00 1.50 95.00 31 26 32 1.88 2.36 2.60
6 0.33 0.33 0.34 3.71 1.31 95.00 39 32 43 2.61 3.23 3.29
7 0.33 0.33 0.34 2.50 2.00 98.00 73 69 42 3.06 4.04 4.43
8 0.33 0.33 0.34 3.00 2.00 98.00 52 43 30 1.73 2.71 3.05
9 0.33 0.33 0.34 4.00 2.00 98.00 40 31 24 1.34 2.03 2.33
10 0.33 0.33 0.34 4.00 1.80 98.00 40 30 26 1.48 2.08 2.35
11 0.33 0.33 0.34 4.00 1.50 98.00 44 33 32 1.94 2.43 2.67
12 0.33 0.33 0.34 5.79 2.31 90.00 17 14 N/A 1.06 1.49 N/A
13 0.33 0.33 0.34 5.79 2.31 95.00 22 19 N/A 1.12 1.58 N/A
14 0.33 0.33 0.34 5.79 2.31 96.50 26 21 N/A 1.13 1.60 N/A
15 0.33 0.33 0.34 5.79 2.31 98.00 32 24 N/A 1.15 1.63 N/A
16 0.33 0.33 0.34 5.79 2.31 99.90 36 26 N/A 1.16 1.64 N/A
17 0.20 0.40 0.40 5.43 2.25 95.00 23 20 20 1.17 1.65 1.78
18 0.40 0.20 0.40 5.81 2.30 95.00 22 19 20 0.98 1.38 1.75
19 0.40 0.40 0.20 6.06 2.38 95.00 21 18 19 1.21 1.69 2.11
20 0.20 0.60 0.20 5.55 2.36 95.00 22 19 19 1.34 1.91 2.11
21 0.10 0.80 0.10 5.50 2.36 95.00 22 19 19 1.50 2.14 2.24
22 0.45 0.10 0.45 5.63 2.31 95.00 22 20 19 0.85 1.32 1.68
23 0.60 0.20 0.20 6.23 2.50 95.00 21 18 18 1.09 1.54 2.18
24 0.80 0.10 0.10 6.65 2.63 95.00 20 18 17 1.32 1.53 2.44
25 0.20 0.20 0.60 5.00 2.17 95.00 23 20 21 0.98 1.42 1.48
26 0.10 0.10 0.80 4.60 2.06 95.00 25 22 22 0.94 1.33 1.20
27 0.10 0.45 0.45 4.97 2.21 95.00 24 21 21 1.23 1.74 1.75
28 0.45 0.45 0.10 6.18 2.51 95.00 21 19 18 1.27 1.80 2.30
29 0.20 0.40 0.40 7.96 4.77 95.00 23 24 19 1.08 1.66 1.84
30 0.40 0.20 0.40 8.54 5.00 95.00 23 23 19 1.21 1.54 1.95
31 0.40 0.40 0.20 8.60 4.90 95.00 22 22 18 1.40 1.93 2.35
32 0.20 0.60 0.20 8.09 4.73 95.00 23 23 18 1.28 2.05 2.26

Continued on next page
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Table A.14: Inputs for used for approximation of NQ̇ curves.

Continued from previous page

App-
rox

zA zB zC
αAC αBC

Pur. Nmin
V̇min

Ḟ[
mol
mol

] [
mol
mol

] [
mol
mol

]
[mol %] DWC DSS ISS DWC DSS ISS

33 0.10 0.80 0.10 7.85 4.65 95.00 23 24 19 1.35 2.35 2.45
34 0.45 0.10 0.45 8.62 5.10 95.00 23 24 19 1.20 1.42 1.88
35 0.60 0.20 0.20 8.89 5.08 95.00 22 22 18 1.59 1.88 2.53
36 0.80 0.10 0.10 8.76 5.16 95.00 23 23 17 1.99 2.13 3.02
37 0.20 0.20 0.60 7.73 4.80 95.00 24 26 20 0.86 1.25 1.41
38 0.10 0.10 0.80 6.96 4.63 95.00 27 29 22 0.55 0.88 0.89
39 0.10 0.45 0.45 7.58 4.66 95.00 24 25 20 0.99 1.65 1.70
40 0.45 0.45 0.10 8.70 4.90 95.00 24 22 18 1.54 2.10 2.59

A.6 Supplements to Screenings

For more information considering the screenings please consider the supporting material
[62].



B Supervised thesis

B.1 Main project

1.) B. H.: Methodenentwicklung zur Parameterauswahl aus Ergebnissen einer mehrkri-
teriellen Optimierung ternärer Destillationen. Forschungsarbeit, Universität Ulm,
Ulm, 08.04.2020

B.2 Industrial side project

1.) L. K.: Experimentelle Untersuchung eines industriellen Prozesses zur Herstellung
von Fleischersatzprodukten. Bachelorarbeit, Universität Ulm, Ulm, 18.11.2019

2.) L. S.: Entwicklung einer neuen Methode zur industriellen Herstellung von
Fleischersatzprodukten. Bachelorarbeit, Universität Ulm, Ulm, 04.09.2020



C Publications

During the period of the dissertation, the following publications were made.

C.1 Scientific papers

1.) Lena-Marie Ränger, Ulrich Preißinger and Thomas Grützner:
Robust Initialization of Rigorous Process Simulations of Multiple Dividing Wall
Columns via Vmin Diagrams. ChemEngineering, 2(2), 2018 (10.3390/chemengi-
neering2020025) 1

2.) Lena-Marie Ränger, Ulrich Preißinger and Thomas Grützner:
Multiple Dividing-Wall Columns - Current Status and Future Prospects. Chemie
Ingenieur Technik, 91(4), 2019 (10.1002/cite.201800080) 1

3.) Ulrich Preißinger, Lena-Marie Ränger and Thomas Grützner:
Design Considerations of a Simplified Multiple Dividing Wall Column Pilot Plant.
ChemEngineering, 3(2), 2019 (10.3390/chemengineering3020034) 1

4.) Lena-Marie Ränger, Martin von Kurnatowski, Michael Bortz and
Thomas Grützner: Multi-Objective Optimization of Dividing Wall Columns
and Visualization of the High-Dimensional Results. Computers & Chemical
Engineering, 142, 2020 (10.1016/j.compchemeng.2020.107059) 1

5.) Imke Preibisch, Lena-Marie Ränger, Pavel Gurikov and Irina
Smirnova: In Situ Measurement Methods for the CO2-Induced Gelation of
Biopolymer Systems. Gels (Basel, Switzerland), 6(3), 2020 (10.3390/gels6030028) 2

6.) Lena-Marie Ränger, Lea Trescher, Martin von Kurnatowski, Michael
Bortz and Thomas Grützner: Vapor and liquid split flexibility in dividing
wall columns in relation to the theoretical stage allocation. Chemical Engineering
and Processing: Process Intensification, 163, 2021 (10.1016/j.cep.2021.108365) 1

7.) Lena-Marie Ränger and Thomas Grützner: Shortcut Method for Ini-
tialization of Dividing Wall Columns and Estimating Pareto-Optimal NQ-curves.
Chemical Engineering and Technology, 44(10), 2021 (10.1002/ceat.202100256) 1

8.) Tobias Seidel, Lena-Marie Ränger, Thomas Grützner and Michael
Bortz: Simultaneous simulation and optimization of multiple dividing wall
columns. Computers & Chemical Engineering, 107607, 2021
(10.1016/j.compchemeng.2021.107607) 1

1 Main project
2 Based on Master Thesis at TUHH



140 C Publications

C.2 Presentations

1.) Thomas Grützner, Ulrich Preißinger and Lena-Marie Ränger:Multiple
Trennwandkolonnen Quo Vadis: Stand der Technik und Ausblick auf die Aktivitäten
an der Uni Ulm: Presentation at Jahrestreffen der ProcessNet-Fachgruppen
Fluidverfahrenstechnik, Membrantechnik und Mischvorgänge, 27. - 28. Februrary
2018 1

2.) Ulrich Preißinger, Lena-Marie Ränger and Thomas Grützner:
Multiple Dividing Wall Columns - Quo Vadis? State of the art and outlook
on the activities at Ulm University: Presentation at 23rd International Congress
of Chemical and Process Engineering, 25. - 29. August 2018 1

3.) Lena-Marie Ränger, Martin von Kurnatowski, Michael Bortz and
Thomas Grützner: Mehrkriterielle Optimierung von ternären Destillationen:
Presentation at Jahrestreffen der ProcessNet-Fachgruppen Fluidverfahrenstechnik
und Membrantechnik, 27. - 29. March 2019 1

4.) Lena-Marie Ränger, Martin von Kurnatowski, Michael Bortz and
Thomas Grützner: Multi-Objective Optimization of Dividing Wall Columns:
Presentation at 23rd Polish Conference of Chemical and Process Engineering, 02.
- 05. June 2019 1

5.) Ulrich Preißinger, Lena-Marie Ränger and Thomas Grützner:
Considerations on the Design of a Pilot-Plant-Scale Simplified Multiple Dividing
Wall Column: Presentation at 23rd Polish Conference of Chemical and Process
Engineering, 02. - 05. June 2019 1

6.) Lena-Marie Ränger, Martin von Kurnatowski, Michael Bortz and
Thomas Grützner: Mehrkriterielle Optimierung von Trennwandkolonnen:
Darstellung in self organizing patch plots: Presentation at Jahrestreffen der
ProcessNet-Fachgemeinschaften "Prozess-, Apparate- und Anlagentechnik" unter-
stützt durch Sustainable Production, Energy and Resources", 04. - 05. November
2019 1

7.) Lena-Marie Ränger, Martin von Kurnatowski, Michael Bortz and
Thomas Grützner: Multi-objective optimization of dividing wall columns:
Presentation at 2020 Virtual Spring Meeting and 16th GCPS, 17. - 21. August
2020 1

8.) Lena-Marie Ränger, Martin von Kurnatowski, Michael Bortz and
Thomas Grützner: Flexibler Betrieb von Trennwandkolonnen am energetis-
chen Optimum: Auf die Verteilung der Stufen kommt es an: Presentation at
Jahrestreffen der ProcessNet-Fachgruppen Fluidverfahrenstechnik und Wärme-
und Stoffübertragung, 24. - 26. Februrary 2021 1



C.3 Poster 141

9.) Tobias Seidel, Lena-Marie Ränger, Michael Bortz and Thomas
Grützner: Robuste Simulation und Optimierung von multiplen Trennwandkolon-
nen: Presentation at Jahrestreffen der ProcessNet-Fachgruppen Fluidverfahren-
stechnik und Wärme- und Stoffübertragung, 24. - 26. Februrary 2021 1

10.) Lena-Marie Ränger, Martin von Kurnatowski, Michael Bortz and
Thomas Grützner: Operational flexibility of simple and multiple dividing
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European Congress of Chemical Engineering and 6th European Congress of
Applied Biotechnology, 20. - 23. September 2021 1
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and Thomas Grützner: Mehrkriterielle Optimierung ternärer Destillationen:
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Fluidverfahrenstechnik, Adsorption und Extraktion, 26. - 28. Februrary 2020 3
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1.) Wolfgang Schneider, Alexander Graber, Andreas Heyl, Radovan
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preparing an edible product from non-animal proteins: Filed Patent 4
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