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Summary

The thesis is dedicated to propose optimization strategies tailored for complex and/or
large-scale process systems, such as those found in oil and gas production operations.
These systems consist of various sub-processes characterized by varying timescales and
numerous constraints. Among the strategies explored, real-time optimization (RTO) stands
out prominently, wherein optimization results are translated into setpoints for the control
layer. Despite its potential benefits, numerical-based RTO sees limited practical applica-
tion, mainly due to the cost of developing and updating process models, as well as partly
too infrequent updates. Moreover, the maintenance of advanced tools poses challenges,
often requiring specialized skills that are not widely available. Consequently, the industry
has yet to fully exploit the potential of RTO. This thesis advocates for a pragmatic ap-
proach, leveraging common, well-known and established tools such as PID controllers
and selectors, supplemented by small-scale numerical solvers for particular cases. This
strategy aims to enhance the feasibility of implementation in practical settings. Experi-
mental validation is also undertaken to substantiate the efficacy of the proposed strategies.

In the first part of this thesis, the focus is on active constraint switching within small-
scale systems, which is addressed comprehensively in Chapter 2. A proposed solution
lies in the development of a primal-dual framework to handle automatic active constraint
switching with fixed control structure. However, challenges emerge when dealing with
tight constraints and the dependency on accurate estimation of gradients, both pivotal for
ensuring safety and environmental compliance. Chapter 3 suggests strategies to overcome
these challenges, advocating for the integration of override constraint controllers and aux-
iliary constraints within the primal-dual framework.

In the second part, Chapter 4 presents a dual-based distributed feedback-optimizing
system, augmented with and without solution predictors, designed to decompose large-
scale (interactive) systems into more manageable and smaller subsystems. This approach
not only facilitates the decomposition process but also enables the achievement of system-
wide optimal performance through the introduction of a coordinator for these subsystems.
The efficacy of this approach is demonstrated in Chapter 5, where experimental results
from a lab-scale gas-lift rig validate its effectiveness. Similar to primal-dual, dual-based
distributed feedback optimization relies on accurate real-time gradient estimations, yet
distinguishes itself by offering enhanced insights into the effect of non-performing local
gradient estimations. Consequently, Chapter 6 proposes a systematic pairing procedure for
an override controller, aimed at minimizing economic losses. Moreover, to address con-
straints such as limited input rates and the need for joint control over a critical constraint,
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iv Summary

Chapter 7 outlines several systematic procedures for multi input override control. Trans-
itioning to primal-based distributed feedback-optimizing systems in the latter part of this
part, Chapter 8 introduces an alternative approach adept at handling a total input constraint,
and also theoretically possible for an output constraint. Finally, the experimental valid-
ation of these approaches, including primal-based and dual-based distributed feedback-
optimizing systems with and without overrides, culminates in the discussion presented in
Chapter 9.

The last part of the thesis addresses practical issues. For instance, while both primal-
and dual-based distributed feedback-optimizing systems typically necessitate a central co-
ordinator, implementing such frameworks in a marginal offshore field poses significant
practical challenges. To tackle this issue, Chapter 10 proposes a decentralized alternat-
ive, introducing a graph-based primal-based distributed feedback-optimizing system that
offers increased adaptability and efficiency. Furthermore, Chapter 11 explores extensions
to gas-lift systems aimed at enhancing realism. Due to the lack of sensor reliability, the
utilization of self-optimizing control is suggested.

The thesis notably highlights the imperative for implementing customized strategies
to tackle the various challenges within oil and gas production systems. It emphasizes
the importance of tailored approaches aimed at resolving distinct subproblems inherent to
these complex systems. This various approaches underscores the necessity for targeted
solutions designed to address various issues encountered within large-scale production
operations.
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Chapter 1

Introduction

1.1 Optimization - Brief Theory and Oil & Gas Practice
1.1.1 Production Optimization

In production system operation, decisions span organizational levels and timescales,
aiming to optimize performance by determining optimal decisions to maximize (for con-
cave) or minimize (for convex) a well-defined scalar objective function consisting of product
value and production costs (refer to Figure 1.1). Gathering pertinent information, such as
physical properties and measurements, is crucial, and accounting for potential disturbances
that can significantly impact performance is essential for effective optimization.
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Figure 1.1: Relation between objective function and decision

1.1.2 Real-time Optimization
Real-time optimization (RTO) employs mathematical techniques to automate decision-

making in determining optimal solutions, leveraging continuous analysis of real-time pro-
duction data. The approach, extensively defined in [1], enables the identification of optimal
decisions. As outlined in [2], an RTO system consists of four components, illustrated in
Figure 1.2 where the grey box denotes the production system, and the white boxes sym-
bolize the methods designed to constitute the RTO system, as follows:
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2 Introduction

• Data acquisition and validation: Data collected from the production system are
validated through data reconciliation and pre-processing, accounting for physical
definitions. In this thesis, we assume that this block will conduct a perfect data
pre-processing to minimize noise or data error until an acceptable composition.

• Parameter and State Estimation, and Model Update: Using the validated data, para-
meters and/or states are updated through local estimators. These updates are incor-
porated into the model.

• Steady-state optimization: Given the complexity and scale of the problem, achieving
an optimal solution under steady-state conditions is currently the primary focus.

• Optimizer Command Conditioning: A post-optimality analysis validates the pro-
posed optimal solution, addressing potential numerical solver issues as a root cause
necessitating this assessment.

Production System

Data Acquisition

and

Data Validation

Parameter and State

Estimation, and

Model Update

Steady-state

Optimization

(usually model-based)

Optimizer

Command

Conditioning

Figure 1.2: The components in a typical RTO system.

Figure 1.2 represents just one way to view an RTO; alternatively, it can be seen as an
integrated system for optimization and parameter estimation [3]. A prominent approach
adopting this perspective is Modifier Adaptation, first introduced in [4]. This approach
addresses both parametric and structural plant-model mismatch by iteratively adjusting
cost and constraint functions [5]. Furthermore, extensive research on this approach has
continued over the past two decades, as evidenced by studies such as [6, 7] among others.

RTO involves diverse methods varying in complexity and flexibility, operating across
different time scales (refer to Figure 1.3). The grey box denotes the production system,
and the white boxes symbolize potential methods for development and implementation.
These timescales categorize RTO into the following distinct groups:

• Embedded Optimization (also known as feedback-optimizing control): This optimiz-
ation framework employs a control structure to handle disturbances and attain (near-
)optimal production performance on fast timescales. The self-optimizing control
ensures an immediate response to disturbances by adjusting the process to the (near-
)optimal region and maintaining a self-optimizing variable at a constant setpoint
[8]. Assuming no measurement noise, the "ideal" self-optimizing variable corres-
ponds to gradients [9], representing the cost function gradient for unconstrained or
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the Lagrange function gradient for the constrained case. This framework utilizes
model-based gradient estimation.

• Model-based Optimization: This popular optimization framework utilizes models
for determining optimal decisions in medium timescales. Accurate decisions require
model updates, yet a significant challenge is the steady-state wait time. In address-
ing this, [10, 11] proposed periodic parameter estimation for achieving optimality
during transient periods.

• Model-free Optimization: This framework provides a cost-effective solution, espe-
cially for challenging or resource-intensive model development. Using input and
measurement sets, it achieves (near-)optimal performance by estimating and con-
trolling gradients to zero, satisfying the optimality condition without explicit reli-
ance on a model [12]. However, gradient estimation can be time-consuming, making
it more suitable for execution in slower timescales.

• Large-scale Optimization: This framework addresses large problems by decom-
posing them into manageable sub-problems/subsystems, coordinating subsystems
in (very-) slow timescales, facilitating (minimal-) information exchange, and en-
hancing decision-making. For a comprehensive explanation of decomposing large
problems into smaller subproblems, refer to [13].

Production System
y

Selection Matrix (H)Embedded OptimizationFast time scale

Parameter and State

Estimation, and

Model Update

Model-based

Optimization
Medium time scale

Steady-state

Gradient

Estimation

Model-free

Optimization
Slow time scale

Coordination

and

Estimation

Large-scale

Optimization
Very Slow time scale

Figure 1.3: The structure of RTO based on its time-scale.

The slower timescale of large-scale optimization compared to model-free optimiza-
tion can prompt investigation. This holds true in scenarios where large-scale optimization
supports parameters in model-free optimization. Without model-free optimization, large-
scale optimization can directly position above model-based optimization. The component
arrangement should align with optimization problem specifics, ensuring efficiency.

With the advancements of data mining, processing, and analytics, there is a growing ra-
tionale for integrating machine learning to enhance RTO performance in parameter estim-
ation, model development, and optimization algorithms. However, it is vital to emphasize
that machine learning tools typically necessitate substantial and meaningful datasets for
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optimal outcomes. Both the quantity and quality of available data are pivotal in determin-
ing the potential benefits of integrating machine learning into a system. Notably, machine
learning may not be the most fitting approach for slow systems, such as process systems,
raising intriguing avenues for further discourse and exploration.

1.1.3 Oil & Gas Production & Processing Optimization
Numerous researchers have extensively reviewed oil and gas production optimization,

as demonstrated in studies like [1, 14]. However, pragmatic and commercial considera-
tions often prompt simplification of the optimization problem by neglecting the influences
of surface and other subsurface, risking suboptimal performance. Figure 1.4 illustrates
limitations imposed by various commercial software utilized by different organization,
hindering attainment of system-wide optimal performance. For example, organizations
utilizing OLGA for multiphase flow simulation tend to assume simplified onshore process
facilities parameters as constant values due to practicality and model accessibility.

Figure 1.4: Variability in software adoption across organizations in oil and gas industry. Common
commercial software, i.e., HYSYS, UNISIM, OLGA, VIP, used in each process system is written in
parentheses.

Typically, a comprehensive production system comprises the reservoir system, well
system, and processing system, each having its distinct models. The reservoir system,
characterized by relatively slow dynamics in contrast to the well and processing systems,
exerts a less impact on short-term optimizations. The well model undergoes regular up-
dates to determine critical parameters like gas-oil ratio, water cut, and production rates,
typically through well-testing procedures. Despite extensive research on automated well
testing, manual testing remains the predominant practice.

The processing facilities model is presented as constraints on oil, gas, and water pro-
cessing within a simplified production optimization framework. In practice, the capacity of
each component cannot be investigated in isolation, necessitating an integrated optimiza-
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tion approach encompassing both the well and processing facility systems. This integrated
system is conceptualized as a serial-coupled production system. Additionally, a large-scale
well network system can be viewed as a parallel coupled system.

In pursuit of the thesis objective, the author contends that realizing "true" (system-
wide) optimization in oil and gas systems demands integration of crucial elements within
a coordinated RTO system for large-scale systems. This holistic approach ensures optimal
performance across the entire production and processing system.

1.1.4 RTO Components in Oil & Gas Practice
Data Acquisition and Validation: To effectively operate production systems, deploying

suitable instrumentation for sensing and measurements is essential. The required instru-
mentation varies based on factors like system age, plant location, and company standards.
Modern production systems commonly utilize advanced instrumentation to fulfill opera-
tional requirements, playing a vital role in data acquisition and control functions such as
stabilizing the system through level and pressure control, avoiding surges, sustaining load
balance among interconnected processing units, and slug control.

Parameter and State Estimation, and Model Update: The measurements obtained from
production systems serve not only in control functions but also facilitate optimization
through parameter, state, gradient, and coordination estimation. These estimations play
a crucial role in updating the system’s model when needed. Nevertheless, limitations may
arise, especially with an inadequate set of available measurements, posing challenges to
accurate estimations. However, harnessing extensive, long-term datasets has the potential
to improve the accuracy of these estimations.

Planning and Optimization: Operating an oil and gas production system involves three
key types of planning:

• Strategic planning integrates market dynamics, government policies, and company
objectives, aligning production strategies with market demands and long-term goals.

• Reservoir planning entails formulating a cost-effective, long-term strategy for ex-
tracting hydrocarbons, while considering production constraints. It assesses reser-
voir characteristics, production limitations, and optimization factors to identify the
optimal approach for maximizing hydrocarbon recovery.

• Production planning involves creating plans for production, injection, utility/energy
consumption, and environmental compliance with green policies. These plans set
target production rates (oil, gas, water), injection rates, and energy consumption
over a specified period, typically ranging from a week to a month, following the
field operator’s policies.

Determining optimal set points involves solving a complex optimization problem con-
sidering an objective function and constraints. Achieving a global optimal solution of a
complex production system is challenging, but making local optimal decisions based on
the current operating point is a practical approach. In addition, expert judgment from field
personnel familiar with the production system’s behavior is essential. Although various
numerical solvers address optimization problems, numerical issues may pose limitations.
While RTO implementation in the oil and gas sector is not yet widespread, but its potential
benefits are being explored. Therefore, integrating operators and expert in the implement-
ation of RTO is crucial for effective practical implementation.
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Command Conditioning: A highly complex oil and gas production system, involving
uncertainties and measurement noise, requires discussions for the recommended optimal
setpoint in morning meetings to evaluate their suitability amid current conditions. Nu-
merical issues and factors like updated conditions, parameter changes, or assumptions can
significantly affect the recommendation. Thus, acknowledging the dynamic nature of the
production system is crucial for effective command conditioning, emphasizing the import-
ance of considering evolving conditions and uncertainties.

1.2 Research Questions
The implementation of RTO in oil and gas production faces challenges due to the com-

plexity and scale of the process, along with limited measurements, numerous constraints
and uncertain parameters. Accurate parameter estimation becomes difficult, potentially
resulting in suboptimal performance. Despite ongoing efforts to overcome these chal-
lenges, successful real-world applications of RTO in this domain are limited [15]. To
enhance applicability, a practical strategy involves starting with a small scope that ad-
dress specific sub-problems, and is coordinated to achieve system-wide optimal operation.
However, technical challenges such as numerical robustness and computational issues may
even hinder widespread adoption of RTO in industrial processes, leading engineers to rely
on simpler feedback controllers for optimal operation. Given these realities, these factors
collectively raise the main research question that this thesis aims to address as follows:

Main Research Question: What strategies can be employed to optimize the operation
of a complex, large-scale oil production system with diverse sub-processes, varying times-
cales, and potential numerous constraints, utilizing simple tools like PID controllers, se-
lectors, and small-scale solvers (if necessary)?

• The main research question stated above serves as the underlying theme of this thesis
that guide the exploration and analysis conducted throughout all chapters.

To ensure a coherent information flow, this thesis breaks down the main research question
into sub-research questions addressed across three distinct parts.

The first two parts discuss the schemes of distributed feedback-optimizing control
(DFoC) and distributed feedback-optimizing system (DFoS), explored further in this thesis.
In Figure 1.5(a), DFoC optimizes individual sub-processes via decentralized control within
a large-scale system, while a centralized estimator handles parameter and disturbance es-
timation. In this scheme, the term distributed specifically pertains to the control problem
at hand. In Figure 1.5(b), DFoS coordinates interconnected sub-processes for system-
wide optimization, integrating DFoC in each sub-process with local estimation and inter-
subsystem coordination. The term distributed pertains to control and estimation.

1.2.1 Part I: Distributed Feedback-optimizing Control (For Small-
scale System)

In complex hydrocarbon production systems, the presence of constraints, including
both input and output constraints, can be extensive. They play a crucial role in maintaining
safe and efficient system operations. It is important to note that under optimal operating
conditions, the status of these constraints, whether active or inactive, can vary depending
on disturbances values. Consequently, the first sub-question that arises is:

Research Question 1: How can we effectively utilize simple tools such as PID control-
lers, selectors and small-scale solvers (if necessary) to achieve optimal operation while
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ŷ1 ŷN
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Figure 1.5: Graphical illustration showcasing the concepts of DFoC and DFoS

effectively managing numerous constraints?

• This question is addressed in Chapter 2 by suggesting Primal-Dual framework.

In oil and gas production, managing safety and environmental constraints is critical.
The Primal-Dual control structure assumes soft constraints and controls them on a slower
timescale, while enabling automatic active constraint switching. This leads to the second
sub-question:

Research Question 2: What strategy should we apply to minimize critical constraint
violations in primal-dual framework (that sill allowing automatic constraint switching)?

• This question is addressed in Chapter 3 by incorporating override constraint con-
troller and auxiliary constraint.

1.2.2 Part II: Distributed Feedback-optimizing System (For Large-
scale System)

Developing a RTO approach is practical to optimize small-scale systems like a single
unit operation, employing both numerical solver-based and feedback-based methods, as
described in Chapters 2-3. However, when dealing with complex oil and gas production
systems with interconnected unit operations, effective coordination is vital for overall op-
timization. The dFoS is proposed to address this challenge, achieving system-wide optim-
ization, handling sub-process failures, and allowing time scale separation among different
units, enhancing efficiency and mitigating suboptimal performance issues. Typically, dFoS
can be categorized into dual and primal-based schemes that are discussed in Part II.1 and
II.2, respectively.
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Part II.1: Dual-based Distributed Feedback-optimizing System
Considering the need for simple tools, preventing divergence, allowing different time

scale separations among sub-processes, avoiding numerical robustness issues, and min-
imizing information sharing, the third sub-question is stated as follows:

Research Question 3: What strategy can be used to drive the entire system to achieve
system-wide optimal operation, while satisfying the above requirements?

• This question is addressed in Chapter 4 by proposing dual-based dFoS with and
without a solution predictor, and is experimentally validated in Chapter 5.

Similar to the Primal-Dual control structure discussed earlier, the dual-based dFoS
introduced in Chapter 4, operating within a system-wide framework, control constraints
on a slower timescale while facilitating automatic active constraint switching. Addressing
the need of minimizing constraint violations, particularly in critical aspects of oil and gas
production operations, this gives rise to the fourth sub-question:

Research Question 4: How can we improve constraint handling in a dual-based dFoS
by that minimizes constraint violations? Additionally, how can we develop a systematic
approach for pairing a MV with a critical constraint?

• This question is addressed in Chapter 6 by also suggesting expected disturbance-
based systematic pairing for override constraint control, and is experimentally val-
idated in Chapter 9.

In cases involving parallel systems like gas-lift oil production optimization, multiple
MVs can be concurrently utilized to control critical constraints. This leads the fifth sub-
question:

Research Question 5: How can we maximize the potential of multiple MVs (multi-input)
for Override Constraint Control within the dual-based dFoS scheme?

• This question is addressed in Chapter 7, where a comprehensive investigation on
several potential procedures in constructing the selection matrix is conducted.

Part II.2: Primal-based Distributed Feedback-optimizing System
In this part, we investigates the potential of primal-based dFoS. One of the potential

is the ability to satisfy constraint better than the dual-based dFoS. Thus, considering the
requirements of using simple tools, preventing divergence, allowing different time scale
separations among sub-processes, avoiding numerical robustness issues, minimizing in-
formation sharing, facilitating better constraint handling to reduce back-off for critical
constraints, and being practically less problematic for large-scale systems, the sixth sub-
question is formulated as follows:

Research Question 6: What strategy can be used to drive the entire system to achieve
system-wide optimal operation, while satisfying the above requirements?

• This question is addressed in Chapter 8 by proposing primal-based dFoS with com-
pensator, and is experimentally validated in Chapter 9.

1.2.3 Part III: Addressing practical issues
In this part, this thesis addresses several practical issues encountered in real-world

scenarios, which are immediately identified in the corresponding research questions.
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Primal-based dFoS offers a potential advantage; that is able to eliminate the need for
a coordinator. This prevents partial issues among participating companies in a shared
common resource. This leads to the seventh sub-question as follows:

Research Question 7: What strategy can be used to drive the entire system to achieve
system-wide optimal operation without centralized coordinator?

• This question is addressed in Chapter 10 by proposing primal-based dFoS scheme
as graph network.

Research Question 8: How can we drive a recirculated gas-lifted subsea oil production
system with limited measurements to achieve (near-) optimal performance?

• This question is addressed in Chapter 11 by suggesting self-optimizing control.

1.3 Thesis Outline
This PhD study aimed to address the outlined research questions through chapters

based on articles authored by the candidate, excluding the introductory (Chapter 1) and
concluding (Chapter 12) chapters. Refer to Section 1.4 for a full list of the candidate’s
publications. Chapters 2 to 11 address research questions 1 to 8, while Chapter 9 focuses
on experimentally validating the proposed approaches in Chapters 4, 6, and 8.

1.4 List of Publications
In four years, the PhD candidate has authored several peer-reviewed papers published

in esteemed international conference proceedings, and three journal papers. Furthermore,
the candidate has had the opportunity to showcase his research through numerous oral and
poster presentations at various occasions.

1.4.1 Peer-reviewed Conference Papers
1. R. Dirza and S. Skogestad. Handling Interactive Systems in Primal-Dual Feedback-

optimizing Control. In Proceedings of the 3rd joint conference of Foundations of
Computer Aided Process Operations and Chemical Process Control (FOCAPO/CPC),
San Antonio, Texas, 2023 - Chapter 2.

2. R. Dirza, S. Skogestad, and D. Krishnamoorthy. Optimal Resource Allocation us-
ing Distributed Feedback-based Real-time Optimization. (IFAC Symposium on Ad-
vanced Control of Chemical Processes (ADCHEM), Venice, Italy). IFAC-PapersOnline,
54(3), pp. 706-711, 2021 (Keynote Paper) - Chapter 4.

3. R. Dirza, D. Krishnamoorthy, and S. Skogestad. Primal-dual Feedback-optimizing
Control with Direct Constraint Control for Oil Production. (14th Symposium of Pro-
cess Systems Engineering (PSE 2021+), Kyoto, Japan). Computer-Aided Chemical
Engineering, 49, pp 1153-1158, 2022 - Chapter 6.

4. R. Dirza and S. Skogestad. Systematic Pairing Selection for Economic-oriented
Constraint Control. (32nd European Symposium of Computer-Aided Process En-
gineering (ESCAPE 32), Toulose, France). Computer-Aided Chemical Engineering,
51, pp 1249-1254, 2022 - Chapter 6.

5. R. Dirza and S. Skogestad. Online Feedback-based Optimization with Multi-input
Direct Constraint Control. (IFAC Symposium on Dynamics and Control of Process
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Systems (DYCOPS), Busan, Republic of Korea). IFAC-PapersOnline, 55(7), pp.
149-154, 2022 - Chapter 7.

6. R. Dirza, Md. Rizwan, S. Skogestad and D. Krishnamoorthy. Real-time Optimal
Resource Allocation using Online Primal Decomposition. (IFAC Symposium on
Control, Optimization, and Automation in Mining, Mineral and Metal Processing
(MMM), Montreal, Canada). IFAC-PapersOnline, 55(21), pp. 31-36, 2022. -
Chapter 8.

7. V. Aas, R. Dirza, S. Skogestad, and D. Krishnamoorthy. A Comparative Study of
Distributed Feedback-optimizing Control Strategies. (33rd European Symposium of
Computer-Aided Process Engineering (ESCAPE 33), Athens, Greece). Computer-
Aided Chemical Engineering, 2023 - Chapter 9.

8. R. Dirza, S. Skogestad and D. Krishnamoorthy. Real-Time Optimal Resource Alloc-
ation and Constraint Negotiation Applied to A Subsea Oil Production Network. SPE
Annual Technical Conference and Exhibition (ATCE), Dubai, United Arab Emirates,
2021. - Chapter 10.

9. R. Dirza, E. Altamiranda and S. Skogestad. Self-Optimizing Control for Recircu-
lated Gas lifted Subsea Oil Well Production. (IFAC Symposium on Advanced Con-
trol of Chemical Processes (ADCHEM), Toronto, Canada). IFAC-PapersOnline,
2024 (to appear) - Chapter 11.

1.4.2 Journal Papers
1. R. Dirza and S. Skogestad. Primal-Dual Feedback-optimizing Control with Over-

ride for Real-time Optimization. Journal of Process Control. 138, pp 103208, 2024
- Chapter 3.

2. R. Dirza, J.A. Matias, S. Skogestad, and D. Krishnamoorthy. Experimental Valida-
tion of Distributed Feedback-based Real-Time Optimization in a Gas-lifted Oil Well
Rig. Control Engineering Practice. 126, pp 105253, 2022. - Chapter 5.

3. R. Dirza, V. Aas, S. Skogestad, and D. Krishnamoorthy. A Comparative Study
of Distributed Feedback-optimizing Control Schemes: An Experimental Validation.
IEEE Transactions on Control Systems Technology, 2024 (under review) - Chapter
9.

1.4.3 Additional Presentations (invited, or with abstract-only)
1. R. Dirza, S. Skogestad, and D. Krishnamoorthy, Real-Time Optimal Resource Alloc-

ation Using Transient Measurements Based on Cooperative Game. Computer Aided
Process Engineering (CAPE) Forum, Copenhagen, Denmark, Oct 2020.

2. R. Dirza, S. Skogestad, and D. Krishnamoorthy, Optimal Resource Allocation in a
Subsea Oil Production Network Using Distributed Feedback-Based RTO. American
Institute of Chemical Engineers (AIChE) Annual Meeting, Boston, Massachusetts,
USA, Nov 2021.

3. R. Dirza and S. Skogestad, Generalized Primal-dual Feedback-optimizing Control
with Direct Constraint Control. The 23rd Nordic Process Control Workshop, Luleå,
Sweden, Mar 2022.
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4. R. Dirza and S. Skogestad, Dual-based Distributed Feeback-optimizing Control with
Override. INTPART Brazil-Norway Subsea Operation Consortium Workshop, Rio
de Janeiro, Brazil, Nov 2022.

5. R. Dirza, S. Skogestad, and D. Krishnamoorthy, Optimal Resource Allocation in
a Subsea Oil Production Network Using Distributed Feedback-Optimizing Con-
trol Based on Primal Decomposition. American Institute of Chemical Engineers
(AIChE) Annual Meeting, Phoenix, USA, Nov 2022.

6. R. Dirza, J.A. Matias, S. Skogestad, and D. Krishnamoorthy, Experimental Valida-
tion of Distributed Feedback-based Real-Time Optimization in a Gas-lifted Oil Well
Rig. IFAC World Congress, Yokohama, Japan, Jul 2023.

7. R. Dirza, K. Ødegård, E. Altamiranda and S. Skogestad, Self-Optimizing Control
for Recirculated Gas lifted Subsea Oil Well Production. The 24th Nordic Process
Control Workshop, Trondheim, Norway, Aug 2023.
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Chapter 2

From Real Time Optimization to
Primal Dual Framework

To be able to achieve optimal operation while effectively managing numerous constraints
using simple tools such as Proportional–Integral–Derivative (PID) controllers, selectors
and small-scale solver (if necessary), this chapter suggests and describe how Primal-Dual
framework can be an effective solution for feedback-optimizing control. This chapter is the
extended version of the work in [16].

2.1 Optimal Production Operation - State of the Art
As mentioned in the introduction, this thesis investigates the optimal production op-

eration. But what does optimal production operation mean? This section will give an
overview of optimal production operation and current practice in implementing it.

2.1.1 Control Structure of Optimal Production Operation
Each production system aims to optimize economic performance by maximizing product

revenue and minimizing operating costs through process control. The control structure is
often divided into multiple layers with varying time scales of execution, as depicted in
Figure 2.1 (see [8, 17] to name a few). This hierarchy of the control structure consists of
the following layers:

• Scheduling layer determines production timing, quantity, and location, often using
not automated processes on a weekly time scale. It relies on simple linear models
and shares similarities with asset and reservoir management layers in oil and gas
production optimization.

• Site-wide optimization layer defines optimal operation setpoints for all units in the
entire system on a daily time scale. It oversees multiple local optimization layers that
utilize either simple linear or steady-state non-linear models based on complexity.
In oil and gas production optimization, it is similar to a system-wide RTO layer.

• Local optimization layer determines optimal setpoints for an operation unit within a
time scale of hours that utilizes steady-state or dynamic (non-) linear models based
on complexity. In oil and gas production optimization, it resembles the local RTO.

15
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• Supervisory control layer manages process control that ensures setpoint tracking
from the layer above and satisfying operational constraints. It operates on a minute
time scale and can be a Model Predictive Control (MPC) or a set of PID control-
lers, depending on the complexity of the system, such as in oil and gas production
optimization.

• Regulatory control layer stabilizes process operations, typically within seconds, that
utilizes a PID controller as the preferred tool in practical applications.

Scheduling
(weeks)

Site-wide optimization
(days)

Local optimization
(hours)

Supervisory control
(minutes)

Regulatory control
(seconds)

Valves

Process

Optimization
Layers

Control
Layers

Physical
Systems

Figure 2.1: Typical control hierarchy

The layers are inter-connected through controlled variables. For example, the site-
wide optimization layer calculates an optimal resource distribution, rsp, for an operational
unit, considering the overall production operation and current disturbances d. The local
optimization layer, utilizing the given resource r, determines an optimal setpoint csp for
the controlled variable c under the current disturbances d. Subsequently, the supervisory
control layer strives to maintain the measured controlled variable cm at the specified set-
point csp and the given resource r at the designated setpoint rsp, all while adhering to
operational constraints. This process persists until the local optimization layer provides
new optimal setpoints. We typically assume a time scale separation between the layers,
implying that adjustments to the setpoints are immediately effective.

Alternatively, an integrated optimization method is proposed, combining layers into a
mixed integer dynamic optimization (MIDO) problem. This MIDO problem is then dis-
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cretized into a mixed integer nonlinear programming (MINLP) problem using collocation
point techniques. Despite its potential, this approach encounters computational complex-
ity challenges, drawing attention from researchers in the field, as evident in studies such
as [18, 19, 20].

To reduce the complexity, consider isolating the scheduling problem as an independent
task. This is valid as scheduling solutions function on a slower timescale than both the
site-wide and the local optimization layers. Thus, the control hierarchy in Figure 2.1 can
be simplified into three layers: the scheduling, optimization, and control layers.
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(c) Closed loop - MVs adjustment

Objective

Optimizing controller
(milliseconds-seconds)

ysp

Setpoint controller
(milliseconds-seconds)

u

Valves

Process

ym

Control
Layers

Physical
Systems

(d) Closed loop - Setpoints adjustment

Figure 2.2: Possible implementations of optimal operation

The optimization layers, also known to as RTO, are pivotal for optimal real-time per-
formance, comprising the site-wide and local optimization layers. This involves solv-
ing Nonlinear Programming (NLP) problems, aiming to optimize system performance by
considering various objectives and constraints. To reduce computational complexity for
practical implementation, dynamic RTO or economic MPC are excluded, justifying the
formulation of the RTO as a steady-state optimization problem. On the other hand, the
control layer includes the supervisory and regulatory control layers, responsible for track-
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ing optimal setpoints from the optimization layer and ensuring process operation stability.
This chapter aims to explore various structures for the optimization layer, including

the Primal-Dual framework. Figure 2.2 illustrates four potential approaches for optimizing
production operations (Figure 2.2(a), 2.2(c), and 2.2(d) are adopted from [8]). The four
approaches are:

• Open-loop implementation (excluded in this thesis) computes optimal setpoints off-
line, lacking feedback. Thus, disturbances cause deviations from optimal operation.

• Closed-loop implementation computes optimal setpoints online, incorporating feed-
back to adjust them in response to disturbances. Section 2.1.3, 2.1.4, 2.2.1, and 2.2.2
are the modification of this implementation.

• Closed-loop implementation with a control layer adjusts the manipulated variables
used for controlling the controlled variables to the setpoint given by the optimization
layer in response to disturbances. This implementation can be seen in section 2.1.5.

• Closed-loop implementation with optimizing controller adjusts the setpoint of the
manipulated variables given by the optimizing-controller by providing feedback in
response to disturbances. This implementation can be seen in section 2.3.1-2.3.2.

The Process block in Figure 2.2 corresponds to the process as seen by the optimization
layer, potentially incorporating stabilizing controllers, and is not necessarily uncontrolled.
In such instances, the optimization layer determines the setpoints for the controllers.

2.1.2 Plantwide Control Structure Design Procedure
In 2004, a systematic procedure was proposed for constructing an optimal plantwide

control structure in order to attain (near-) optimal performance. For details, refer to [21]. A
crucial element of this procedure emphasizes the important of active constraint control. In
moderately linear systems, optimal performance is generally achieved at the intersection
of multiple active constraints [22]. Varied disturbances lead to different configurations
of active constraints, represented as distinct regions—an idea denoted as active constraint
regions [23].

2.1.3 Traditional Steady-state RTO
The traditional steady-state RTO implementation, as illustrated in Figure 2.3, follows

a two-step approach. Here is a brief summary of the process:

• Step 1: Steady-state parameter update

The initial steps involves detecting steady-state conditions and preprocessing data
to ascertain the plant’s proximity to steady-state for initiating the RTO sequence.
Techniques like statistical and trend analysis are employed to identify steady-state
conditions. Once detected, the subsequent step entails parameter estimation using
regression techniques to adjust model parameters based on current data. This pro-
cess includes data reconciliation and model adaptation, reconciling measurement
data with process models and updating the model accordingly. Rigorous screening
of measurement data is conducted to identify and rectify errors before parameter
estimation. Expert process knowledge is crucial for determining which model para-
meters require updating, as emphasized by [24].

• Step 2: Steady-state optimization
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Figure 2.3: RTO with steady-state model adaptation and steady-state optimization

Utilizing an objective function, process constraints, and an updated model, mathem-
atical optimization methods compute the optimal system setpoints. The objective
function establishes the optimization goal, such as maximizing production and/or
minimizing operating costs. Process constraints, including physical and operational
limits, are considered to ensure setpoints meet system requirements. Techniques
like linear or nonlinear programming are then applied to find the optimal solution.

Remark 2.1: Issues of Traditional Steady-state RTO

Commercial software often relies on statistical or heuristic methods, or a combina-
tion of both, to evaluate data stationarity within a fixed window. However, specifying
tolerances without proper consideration of the data window length may erroneously
accept transient data as steady-state, causing estimation errors and inaccuracies in
the optimization routine. [25] illustrated this issue with real industrial data. Dis-
turbed processes, with prolonged transient periods, pose challenges for model ad-
aptation, especially when settling times are long. In such cases, limited access to
steady-state measurements impedes frequent parameter updates, resulting in subop-
timal operation until parameters can be updated again.

2.1.4 Steady-state RTO with Dynamic Model Adaptation
To address concerns outlined in Remark 2.1, [10, 11] proposed an RTO with steady-

state optimizer and periodic dynamic model adaptation, depicted in Figure 2.4. In dynamic
model adaptation, a dynamic model is used and its parameters are updated based on the
available measurements, while in traditional RTO only a steady-state model is updated.
Here is a brief summary of steady-state RTO with Dynamic Model Adaptation.

• Step 1: Steady-state parameter update
The dynamic model’s uncertain variables are periodically estimated using various
methods, including recursive least squares, nonlinear Kalman filter [26] variants
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Figure 2.4: RTO with dynamic model adaptation and steady-state optimization

(e.g., EKF and UKF), and optimization-based approaches like the moving horizon
estimator (MHE). Figure 2.4 is adapted from [10], suggesting that in specific scen-
arios, differential state estimation may not be necessary. However, in most cases,
the steady-state estimator requires both disturbance (d̂) and differential state (x̂) es-
timation as part of its input.

• Step 2: Steady-state optimization
This step corresponds precisely to Step 2 of the traditional steady-state RTO.

Throughout this thesis, we interchangeably use the terms "Hybrid RTO" and "Steady-state
RTO with Dynamic Model Adaptation".

Remark 2.2: Issues of Steady-state RTO with Dynamic Model Adaptation

This approach lacks transparent constraint control (refer to Definition 2.1) and relies
on a constraint model vulnerable to model mismatch. It contradicts the plantwide
control structure design in Section 2.1.2. The procedure emphasizes prioritizing
control of active constraints before process optimization.

Definition 2.1: Transparent Constraint Control

Transparent constraint control is a technique of constraint control that controls a
measured constrained variable (not through a constraint model) using a simple feed-
back controller such as a PID controller to update manipulated variables.

2.1.5 Traditional Self-optimizing Control
In earlier sections, controlled variables play a crucial role in linking different layers

within a control hierarchy. The process of selecting these variables raises a fundamental
question [27]. Researchers have worked on the design of control structures and the primary
selection of controlled variables [8, 9, 23, 28, 29, 30, 31]. Notably, [8] introduces the
concept of self-optimizing control, depicted in Figure 2.2(c).
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Definition 2.2: Traditional Self-optimizing Control

Traditional self-optimizing control is when we can achieve an acceptable loss with
constant setpoint values for the controlled variables (without the need to reoptimize
when disturbances occur)

Definition 2.3: Self-optmizing Controlled Variables

The controlled variables associated with self-optimizing control is also known as
self-optimizing controlled variables.

As self-optimizing control is looking at minimizing the steady-state loss, we consider
the following steady-state optimization problem.

min
u

J (u,x,d) (2.1a)

s.t. f (u,x,d) = 0, (2.1b)
g (u,x,d) ≤ 0 (2.1c)

where x ∈ Rnx are the state variables, d ∈ Rnd are the disturbance variables, and u ∈
Rnu are the decision/manipulated variables/degree of freedom/inputs. In addition, the
label of nx, nd, and nu are the number of states, disturbances and degree of freedom,
respectively. The dynamic behaviour of the process is described by f , and the operational
constraints on the states, inputs and disturbances are imposed through g.

To calculate self-optimizing controlled variables, traditional approaches often employ
linear combinations of measurements, raising the question of optimal variable selection.
Addressing this query involves identifying active constraint regions, tightly controlling the
active constraints, and according to [8], a self-optimizing controlled variables should have
the following properties;

1. The optimal value of the self-optimizing controlled variables should be insensitive
to disturbances so that the setpoint error is small.

2. Select easily measurable and controllable variables for self-optimization to min-
imize implementation errors. Due to the difficulty in estimating the cost function
gradient w.r.t. manipulated variables, this method excludes the gradient as self-
optimizing controlled variables.

3. The gain from the manipulated variables to the self-optimizing controlled variable
should be large. This corresponds to a flat optimum with respect to the controlled
variable. This implies that the cost is insensitive to value of the controlled variable,
and therefore, large gain enhances the ability to maintain optimal operation. In
addition, the chosen manipulated variables should not be saturated (or far away from
saturation).

4. The self-optimizing controlled variables should not be closely related in the case of
several self-optimizing variables.

A concise summary of this approach can be found in [32, 33]. One interesting method
is self-optimizing control (SOC) using the null space method.
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Theorem 2.1: SOC using the null space method

Let uDOF be the remaining degree of freedom, y ∈ Rny is the output, Gy ∈
Rny×nu is the process gain matrices, Gy

d ∈ Rny×nd is disturbance gain matrices,
and assuming noise free measurements, y = GyuDOF + Gy

dd. If there exist
ny ≥ nDOF + nd independent measurements (independent here means that G̃y =[
Gy Gy

d

]
has full low rank), then there exist nDOF linear variable combinations

c = Hy, c ∈ nDOF, which are invariant to disturbances d. H is selected such that
HF = 0 where

F =
∂y⋆

∂d
(2.2)

Controlling c = Hy to csp = Hy⋆ (for unconstrained case, csp = 0) yields optimal
operation with zero loss, that is the optimal value of c is independent of d [29].

Remark 2.3: Issues of Traditional SOC

The traditional SOC aims to minimize steady-state loss and attain near-optimal
performance in the presence of expected disturbances, without necessitating re-
optimization. Yet, relying solely on linear combinations of measurements does not
guarantee optimal performance in uncertainties. Moreover, this approach assumes a
constant set of active constraints.

2.2 Numerical Solver-based RTO with Transparent Con-
straint Controller

Developing a numerical solver-driven RTO with a transparent constraint controller ad-
dresses issue outlined in Remark 2.2. To overcome this challenge, two potential structures
have been identified: the Reduced Gradient Hybrid RTO and the Dual-based Hybrid RTO,
to be explored in subsequent sections. It is crucial to emphasize that a numerical solver-
based RTO is recommended for optimizing highly complex processes, where pairing nu-
merous PID controllers can be a daunting and sometimes impractical.

2.2.1 Reduced Gradient Hybrid RTO
The traditional SOC approach begins by identifying the regions where active con-

straints are present and ensuring tight control over these constraints as the primary pri-
ority. Once these constraints are controlled, remaining degrees of freedom are used to
solve an equality problem. This involves finding a solution that eliminates the presence of
the Lagrange multipliers [23, 34], where linear combinations of gradients are set to zero,
converting it into an unconstrained steady-state optimization problem solvable that can
be solved using an equation or numerical solver. Gradients are estimated using methods
discussed in [35], with the following assumption:

Assumption 2.1: Sufficient differentiable conditions

Cost or objective function (2.1a) is sufficiently continuous and twice differentiable
such that for any disturbance d, cost or objective function (2.1a) has a (local-) min-
imum at u = u⋆. According to the KKT conditions (unconstrained case), the fol-
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lowing then holds:

∇uJ (u⋆,x,d) = 0 ∇uuJ (u⋆,x,d) ≥ 0

Considering complete KKT conditions (constrained case), Assumption 2.1 can be gen-
eralized as shown in Assumption 2.2

Assumption 2.2: Complete sufficient differentiable conditions

Cost or objective function (2.1a) is sufficiently continuous and differentiable, active
constraint gA (u,x,d) is sufficiently continuous and differentiable such that for any
disturbance d, there exists a (local-) minimum at u = u⋆, and let N ∈ Rnu×(nu−na)

be the nullspace of the active constraint gradients∇ugA (u,x,d). According to the
KKT conditions, the following then holds:

N⊤∇uJ (u⋆,x,d) = 0 N⊤∇uuJ (u⋆,x,d) ≥ 0

which is equivalent to
Let uDOF be the remaining unconstrained degree of freedom, the following then

holds:

∇uDOF
J (uDOF

⋆,x,d) = 0 ∇uDOFuDOF
J (uDOF

⋆,x,d) ≥ 0

which is also equivalent to
Cost or objective function (2.1a) is sufficiently continuous and differentiable,

constraint function (2.1c) is sufficiently continuous and differentiable, and let λ ∈
Rng be the Lagrange multipliers of the constraint (2.1c). According to the KKT
conditions, the following then holds:

∇uL (u⋆,x,d) = 0 ∇uuL (u⋆,x,d) ≥ 0

This approach corresponds to the closed-loop implementation with an online numerical
solver, as depicted in Figure 2.2(b). However, a more comprehensive block diagram for
the Reduced Gradient Hybrid RTO is shown in Figure 2.5.

To describe reduced gradient approach more detail, consider the Lagrange function of
problem (2.1) as follows.

L (u,x,d,λ) = J (u,x,d) + λ⊤g (u,x,d) (2.3)

where λ ∈ Rng is the Lagrange multipliers associated with the inequality constraint (2.1c).
Here, we substitute steady-state equality constraint (2.1b) in the cost function (2.1a).

The Karush-Kuhn-Tucker (KKT) conditions for stationary conditions is when

∇uL (u,x,d,λ) = 0

Depending on the disturbances, different combinations of constraints may be active.
Active constraints mean a set of constraints gA (u,x,d) ⊆ g (u,x,d) that are optimal at
its limit. Let ngA ≤ ng denote the number of active constraints gA (u,x,d). The Karush-
Kuhn-Tucker (KKT) conditions for complementary slackness condition states that, for the
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active inequality constraints gA (u,x,d) = 0, the corresponding Lagrange multipliers are
positive λA > 0 and for the inactive inequality constraint gI (u,x,d) < 0, the corres-
ponding Lagrange multipliers are zero, λI = 0. Therefore, stationary conditions can be
simplified as follows,

∇uJ (u,x,d) = −λ⊤
A∇ugA (u,x,d) (2.4)

[23] eliminates the Lagrange multiplers λA by looking into the nullspace of the active con-
straint gradients ∇ugA (u,x,d), which is basically based on the Frank-Wolfe’s Reduced
Gradient algorithm made by Abadie-Carpenter to handle nonlinear constraint [36]. This
algorithm has been realized in the well-known software CONOPT.

The necessary conditions of optimality can be achieved by solving the following linear
combination of the gradients estimation to constant setpoints of zero,

N⊤∇uJ (u,x,d) = 0 (2.5)

where N ∈ Rnu×(nu−na), and N is defined as the nullspace of∇ugA (u,x,d) if N⊤∇ugA (u,x,d) =
0. We call N⊤∇uJ (u,x,d) the reduced gradient [37]. We assume linear independence
constraint qualification (LICQ) hold to guarantee the existence of Lagrange multipliers.

Problem (2.5) can be solved numerically by formulating the following unconstrained
steady-state optimization problem,

min
u

||N⊤∇uJ (u,x,d) || (2.6)

To be able to solve problem (2.6), the decision variable, that is primal variable u, should
exist. Therefore, the following assumptions must hold.

Assumption 2.3: The decision variables explicitly appear

Cost function of problem (2.1) is sufficiently continuous and the decision variables
explicitly appear in the first derivative of the cost function. For example, at least,
twice differentiable such that the decision variables explicitly appear in the gradient
of cost function ∇uJ (u,x,d).

Assumption 2.4: Unique optimal decision variables

Problem (2.6) is guaranteed to have a unique solution within its searching space.

Theorem 2.2: Reduced Gradient HRTO

Assuming noise free measurements, Assumption 2.1, and Assumption 2.3 is valid. If
there exist nu ≥ na, or equaivalently, nDOF ≥ 0, and let N ∈ Rnu×(nu−na) be the
nullspace of the active constraint gradients∇ugA (u,x,d) such that N⊤∇ugA (u,x,d) =
0, solving an equality problem or a steady-state optimization problem (2.6) yields
optimal operation with zero loss, that satisfy the necessary conditions of optimality.
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Figure 2.5: Reduced gradient hybrid RTO

In order to ensure a smooth (not too aggressive) implemented input, u, we suggest to
use a first-order input filter combined with input rate limiter as follows,

u (k) = u (k − 1) +Ku (∆u (k)) (2.7)

where ∆umin ≤ Ku∆u (k) ≤ ∆umax, ∆u (k) = usp (k) − u (k − 1), where usp is
the solution from the steady-state solver, the diagonal matrix Ku < I is the filter gain.
Note that Kui

= 1/(1 + τfi/∆t), where τfi is the filter time constant, and ∆t is the
sampling time. For the case with relatively mild disturbance, the input rate limiters may
not be necessary. The input filter may be needed to achieve smooth changes of the inputs
to the plant.

Also note that a direct implementation of the inputs (primal variables) into the process
may result in instability (because the estimator might not immediately provide accurate
state/parameter estimation), so in most cases, a lower layer controller, such as a first-order
filter (or a setpoint controller), would need to be added.

If the solver can provide optimal setpoint of certain output (ysp), it is possible to re-
place the input filter with a setpoint controller.

Remark 2.4: Issues of Reduced Gradient HRTO

The nullspace of active constraint gradients, denoted as gA (u,x,d), is determined
by active constraints. However, disturbances can activate different constraints, re-
quiring identification of all possible nullspaces for various combinations. This be-
comes impractical for processes with numerous constraints. Moreover, the steady-
state optimizer may require significant time to provide the solution, which can be
problematic as disturbances typically occurs in faster time scale. Furthermore, the
presence of the optimizer may cause numerical robustness issues, and the need to
ensure decision variable presence in the first derivation can limit applicability.
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2.2.2 Dual-based Hybrid RTO
Briefly, the term of dual refers to the idea of hierarchical decomposition of the optim-

ization problem where the constraint is controlled by dual variables. In many references
we cited and this Chapter, we also use the term of primal-dual.

In Remark 2.3 and 2.4, both traditional SOC and reduced gradient HRTO require con-
structing a plantwide control structure within each active constraint region and determining
switching strategies, collectively known as the region-based approach. These approaches
assume that the a priori identification of active constraint regions, where active constraints
are tightly controlled, focusing solely on the reduced unconstrained optimization problem.
Changes in active constraint regions are typically managed using classical advanced con-
trol tools. This results in an exponential increase in the number of the structures relative
to the number of constraints, specifically 2ng for ng constraints.

To address issues raised in Remark 2.3 and 2.4, inspired by [38], this study sug-
gests transforming the constrained optimization problem into an unconstrained one using
Lagrangian relaxation. Optimal operation is achieved asymptotically by controlling con-
straints through Lagrange multipliers/dual variables, complemented with selectors. The
unconstrained optimization problem, dependent on dual variables, is solved in a cascading
fashion to determine the optimal setpoint or physical manipulated variables/primal vari-
ables—a method commonly termed the primal-dual approach.
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Figure 2.6: Dual hybrid RTO

The main idea involves transparently controlling the constraints in the upper layer
by manipulating dual variables, termed master controllers in a cascade structure and con-
straint controllers based on their function. Each constraint is controlled by a simple single-
loop I-controller, complemented with selectors for inequality constraints, in order to satisfy
the complementary condition. When a constraint is active, the associated dual variable is
positive and therefore the constraint is considered in the unconstrained optimization prob-
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lem. Using the selector, the associated dual variable is zero if the constraint is inactive,
and therefore the unconstrained optimization problem does not consider that constraint in
the formulation. This approach corresponds to the closed-loop implementation with an
online numerical solver, as depicted in Figure 2.2(b). However, a more comprehensive
block diagram is shown in Figure 2.6.

Problem Re-formulation
Using Lagrangian relaxation, constrained steady-state optimization problem (2.1) can

be reformulated as the following unconstrained steady-state optimization problem (see
[38, 39, 40, 41, 42], and Fig. 2.6),

min
u

L (u,d,λ) (2.8)

where L (u,d,λ) is the Lagrange function as defined in Eq. (2.3), u ∈ Rnu is the primal
variables, and λ ∈ Rng is the dual variables associated with the (in-)equality constraints
g. Note that, for the sake of simplicity, we do not explicitly display the internal states x in
the formulation.

Based on problem formulation (2.8), we want to achieve KKT optimality conditions as
described in the Theorem 2.3.

Theorem 2.3: Karush-Khun-Tucker (KKT) Optimality Conditions

Suppose that the objective function J (u,d) and constraint g (u,d) have subderiv-
atives at point u⋆. If u⋆ is a local optimum and the optimization problem satisfies
some regularity or KKT conditions (see below), then there exist constants λ, called
KKT multipliers or Lagrange multipliers or dual variables , such that the following
conditions hold:

∇uL (u,d,λ) = 0 (2.9a)
gi(u,d) ≤ 0, ∀i = 1, . . . , ng (2.9b)

λi ≥ 0, ∀i = 1, . . . , ng (2.9c)
λigi(u,d) = 0, ∀i = 1, . . . , ng (2.9d)

where
∇uL (u,d,λ) = ∇uJ (u,d) +∇⊤

ug (u,d)λ,

g (u,d) =
[
g1 (u,d) . . . gng (u,d)

]⊤
,

λ =
[
λ1 . . . λng

]⊤
,

Eq. (2.9a) is called stationary condition, Eq. (2.9b) is called primal feasibility con-
dition, Eq. (2.9c) is called dual feasibility condition, and Eq. (2.9d) is called com-
plementary slackness condition [43].

Master Controllers
We can see problem (2.8) as a function of the primal variable u, and the (sub-) gradient

of problem (2.8) w.r.t the dual variables can be expressed as follows [13],

∇λL (u,d,λ) = g (u,d) (2.10)
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This indicates that in order to achieve steady-state optimal condition it is necessary to
control constraint gi (u,d)→ 0 by manipulating the associated dual variable λi. These
constraints may be controlled using simple single-loop I-controllers, one for each con-
straint. This is an excellent feature that enables transparent constraint control and easier
to tune and operate. This is valid when a constraint gi is active at optimal steady-state.

The aforementioned idea is also known as subgradient updates in many optimization
literatures [13, 44]. The convergence of subgradient updates is only guaranteed for convex
problems and for sufficiently small update steps, which also trigger the study in Chapter 3.

According to Theorem 2.3 i.e., dual feasibility condition (2.9c), λi ≥ 0 must hold for
inequality constraints in problem (2.1). This requirement is ensured by an I-controller,
complemented with max selectors, one for each I-controller. This structure indicates that
the presence of a master controller as a constraint controller enables automatic active
constraint changing [41]. Thus, this method is flexible in the presence of that changing.

When the constraint switches from the unconstrained to constrained case, the dual
variable needs to increase from zero to a positive value. In order to do that the master
controller needs the constraint gi to be exceeded over some time, t, in order for the in-
tegrator to increase λi. Therefore, we must assume that constraint gi as a soft constraint,
∀i = 1, . . . ng..

Assumption 2.5: Soft constraint

Constraint violations can be accepted during the iteration over the Lagrange multi-
pliers.

Due to the complementary slackness (2.9d), only one single-loop pairing choice exists.

Assumption 2.6: Single-loop pairing

There is only one single-loop pairing choice, i.e., gi ⇐⇒ λi, ∀i = 1, . . . ng.

Assumption 2.7: Perfect (Inner Loop) Control and/or Optimization

In the inner-loop control and/or optimization to obtain optimal u⋆ based on steady-
state unconstrained optimization problem explained in Section 2.2.2, we have perfect
control at each sampling time ∆t.

Assumption 2.8: Lipschitz Continuous Gradient

The objective function J (u,d) has a Lipschitz continuous gradient with a positive
constant L, i.e., ||C−1∇uJ (a)−C−1∇uJ (b) || ≤ L||a− b||

Lemma 2.1: Successive Boundedness of the Dual Variables
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Suppose Assumption 2.7 and 2.8 hold, then the following inequalities hold

||λi (t+ 1)− λi (t) ||2 ≤ L2||u (t+ 1)− u (t) ||2 (2.11)

Proof : Successive Bounded of the Dual Variables

Suppose Assumption 2.7 hold, the the stationary condition at time t+ 1 is given by

∇uJ (u (t+ 1)) +∇⊤
u gi (u (t+ 1))λi (t+ 1) = 0

Assuming linearized constraint gi,

∇⊤
u gi (u (t+ 1)) = −C

λi (t+ 1) = C−1∇uJ (u (t+ 1))

From Assumption 2.8, we have

||λi (t+ 1)− λi (t) || = ||C−1∇uJ (u (t+ 1))−C−1∇uJ (u (t)) ||

||λi (t+ 1)− λi (t) || ≤ L|| (u (t+ 1))− (u (t)) ||
from which (2.11) follows.

Theorem 2.4: Flexibility in Active Constraint Changing

Suppose Assumption 2.1, 2.5, 2.6, 2.7, and 2.8. If there is any change in parameter or
disturbance, d, then by utilizing max selector, it is possible to decrease and increase
the dual variables λi to a new non-negative steady-state value.

Proof : Flexibility in Active Constraint Changing

There are four types of active constraint changing, that are (I) unconstrained to
unconstrained case, (II) unconstrained to constrained, (III) constrained to uncon-
strained, and (IV) constrained to constrained.

(I) Unconstrained to unconstrained case: This switch does not need to update the
value of λi because λi is always zero (0), and the presence of max selector
does not allow negative λi.

(II) Unconstrained to constrained case: This switch needs to update the value of
λi from zero (0) to any positive value. In order to do that, the master con-
troller needs the constraint gi to be exceeded over some time in order for
the integrator to increase the value of λi. Using Lemma 2.1, this implies
limt→∞ ||λi (t+ 1)−λi (t) || = 0, which means that the dual variable λi will
reach any positive steady-state value.

(III) Constrained to unconstrained case: This switch needs to update the value of
λi from any positive value to zero (0), and the presence of max selector does
not allow negative λi.
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(IV) Constrained to constrained case, that has two types of case, that are (a) Loose
to tight constraint case, and (b) Tight to loose constraint case.

(a) Loose to tight constraint case: This switch needs to update the value
of λi to larger positive value. In order to do that, the master controller
needs the constraint gi to be exceeded over some time in order for the
integrator to increase the value of λi.

(b) Tight to loose constraint case: This switch needs to update the value of
λi to smaller positive value.

Using Lemma 2.1, this implies limt→∞ ||λi (t+ 1) − λi (t) || = 0, which
means that the dual variable λi of either case (IV.a) or (IV.b) will reach new
positive steady-state value.

Steady-state (Unconstrained-) Optimization Problem
Section 2.2.2 has shown how the dual variables are updated and obtained. Therefore,

it is possible to see problem (2.8) as a function of dual variables λ, and the dual variables
as parameter in this modified problem formulation. This section shows 2 possible ways to
solve this problem, that are using numerical or equation solver. This is a general strategy.

Steady-state Wolfe Dual Optimization Problem Formulation
Let λ ≥ 0 be the dual variables given by the master controllers, then we can see

problem (2.8) as unconstrained steady-state optimization problem with Lagrange function
as the objective, and the Primal variables (Inputs) as the decision variables. However, the
infimum of primal variable u occurs where the gradient of Lagrange function is equal to
zero. Thus, the problem is as follows,

min
u

L (u,d,λ) (2.12a)

s.t. ∇uL (u,d,λ) = 0 (2.12b)

where the measurement set is sufficient to estimate the disturbance d (Assuming sufficient
measurement set), and the steady-state gradient estimation is possible if Assumption 2.2
hold. This problem is known as Wolfe Dual Problem, that is convenient for computations
[45].

To be able to solve problem (2.8), the decision variable, that is primal variable u,
should exist in problem (2.12). Therefore, the following assumptions must hold.

Assumption 2.9: The decision variables explicitly appear

Cost and/or constraint function of problem (2.1) is sufficiently continuous and the
decision variables explicitly appear in the first derivative of the function(s). For ex-
ample, at least, twice differentiable such that the decision variables explicitly appear
in the gradient of Lagrange function∇uL (u,d,λ).

If the decision variables do not appear, then constraint (2.12b) is not satisfied, and the
solution is infinity (not real number). For example,L (u,d,λ) = 2u.
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Assumption 2.10: Unique optimal decision variables

Problem (2.12) is guaranteed to have a unique solution within its searching space.

Given λ, estimated differential state, x̂, and estimated disturbance, d̂, we solve un-
constrained problem (2.12) in order to obtain the calculated optimal input u⋆. Any type
of numerical solver is acceptable to solve problem (2.12). An input filter is necessary on
the calculated optimal primal variables u⋆ before implementing the primal variables u
in the plant. This filter may avoid too aggressive input implementation. If the solver can
provide optimal setpoint of certain output (ysp), it is possible to replace the input filter
with a setpoint controller.

Steady-state Equation Problem Formulation
According to Theorem 2.3, the steady-state optimality condition is achieved when sta-

tionary conditions (2.9a) is satisfied. For fixed values of dual variables, to satisfy the
stationary conditions (2.9a), we can simply solve the equation set where the gradient of
Lagrange function is equal to zero, ∇uL (u,d,λ) = 0, for a simple case. For a more
complex case, we can formulate an equation problem formulation with the objective func-
tion as a norm of the vector∇uL̂

(
u, d̂,λ

)
. This results in the following (unconstrained-)

optimization problem,

min
u

||∇uL (u,d,λ) || (2.13a)

s.t. ∇uL (u,d,λ) = 0 (2.13b)

where the steady-state gradient and paramter/disturbance estimation is possible if assum-
ing sufficient measurement set, and 2.2 hold. Similar to Wolfe Dual, the decision variables
explicitly appear if Assumption 2.9 holds.

Given λ, estimated differential state, x̂, and estimated disturbance, d̂, we solve uncon-
strained problem (2.13) in order to obtain the calculated optimal input u⋆. Any type of
numerical solver is acceptable to solve problem (2.13). One may incorporate input filter
on the calculated optimal primal variables u⋆ before implementing the primal variables
u in the plant.

Remark 2.5: Issues of Dual HRTO

The steady-state optimizer operates on a slow time scale (minutes to hours), while
rapid disturbances (milli- to seconds) can render its solution obsolete. Furthermore,
Using a numerical solver may pose challenges in numerical robustness, and ensuring
the decision variable’s presence in the first derivation can limit applicability.

2.3 Feedback-optimizing Control
The optimization layer, referred to as the RTO-layer, operates at a slow time scale

(see Figure 2.5-2.6). Due to the potential impact of disturbances at a faster time scale,
incorporating some optimization into the control layer is desirable. This ensures that the
control layer can guide inputs in the economically correct direction during disturbances,
aligning with the concept of feedback-optimizing control [28]. This approach aims to
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translate optimization objectives into control objectives. For a detailed exploration of RTO
as a feedback control problem, [42] provides a comprehensive review.

Assumptions 2.3 and 2.9 highlight a limitation in utilizing steady-state optimizers for
both reduced gradient HRTO and dual HRTO, restricting their applicability. This is evident
in scenarios with linear cost functions, necessitating additional techniques like quadratic
approximation. In the subsequent sections, the utilization of steady-state optimizers in
both approaches is translated into control objectives, transforming them into feedback-
optimizing control schemes. Through feedback, the need for Assumptions 2.3 and 2.9
is eliminated, as an initial decision variable guess is provided and continuously updated
within the closed-loop system.

2.3.1 Reduced Gradient Feedback-optimizing Control
As previously mentioned, the reduced gradient feedback-optimizing control (FoC)

structure has been discussed by [23]. Instead of solving problem (2.6) using steady-state
optimizer, this approach utilizes feedback to solve eq. (2.5) as follows,

c = N⊤∇uJ (u,x,d) (2.14)

In this context, c ∈ Rnu represents the self-optimizing controlled variables that are tar-
geted to achieve a set-point of zero. This approach eliminates the need for a numerical
solver and input filter, as the feedback controller itself can serve as a filter.

This pure feedback-optimizing control structure corresponds to the closed-loop imple-
mentation with setpoint adjustments, as depicted in Figure 2.2(d). A more comprehensive
block diagram of this approach is shown in Figure 2.7, where u can serve as the setpoint
for the lower layer controller, such as a setpoint controller. However, it is essential to note
that the approach comes with certain challenges, highlighted in Remark 2.6.
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Figure 2.7: Reduced Gradient FOC

Gradient estimators: Both reduced gradient HRTO and FOC need a gradient estim-
ator for active constraint steady-state gradients (see Figure 2.5 and Figure 2.7). Reduced
gradient FOC requires a gradient estimator for cost function steady-state gradients (see
Figure 2.7), while reduced gradient HRTO does not (see Figure 2.5).
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Remark 2.6: Issues of Reduced Gradient FOC

Similar to reduced gradient HRTO, this approach requires the identification of all
possible nullspaces corresponding to the various combinations of active constraints.
For processes with a large number of constraints, this task can become impractical.

2.3.2 Primal Dual Feedback-optimizing Control
As previously discussed by [16], the general primal-dual feedback-optimizing control

(FoC) structure can be applied to interactive systems. Instead of using a steady-state op-
timizer to solve problem (2.12) or (2.13), it is possible to solve the equation set (2.9a) using
feedback control to translate the entire optimization problem into pure feedback control
problem:

c = ∇uL (u,d,λ) (2.15)

Here, c ∈ Rnu represents the self-optimizing controlled variables targeted to achieve a
set-point of zero. The controller is also called gradient controller.

Aligned with [12], controlling the Lagrangian function’s gradient (∇uL(u,d,λ)) to
zero is essential to satisfy the stationary condition of the necessary condition of optimality
(NCO). Assuming an optimal solution exists, we treat the Lagrangian function’s gradi-
ent as self-optimizing controlled variables, and PID controllers are employed to drive
∇uL(u,d,λ) to zero.

This approach, like reduced gradient FoC, offers benefits by eliminating numerical
solvers and input filters. It aligns with the closed-loop implementation with setpoint ad-
justments, depicted in Figure 2.2(d). The corresponding block diagram in Figure 2.8 illus-
trates the approach, with u can serve as the setpoint for the lower layer controller.
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Figure 2.8: Primal Dual FoC

Primal-dual FoC, like dual-based HRTO, excels in automatic handling of active con-
straint switching—an ability absent in reduced gradient FoC. Yet, it introduces a distinct
challenge, elaborated in Remark 2.7. Chapter 3 addresses and resolves this challenge.



34 From Real Time Optimization to Primal Dual Framework

Gradient estimators: Primal dual FoC necessitates a gradient estimator for steady-state
gradients of both cost and constraint functions (see Figure 2.8), whereas dual-based HRTO
does not (see Figure 2.6).

Number of required controllers: The number of required controllers in primal-dual FoC
approach is nu + ng.

Remark 2.7: Issues of Primal Dual FoC

Controlling constraints in Primal-Dual FoC can be challenging because the con-
straint being controlled at a relatively slower time scale than the optimizing/gradient
controllers, posing difficulties in tight constraint control.

2.3.3 Regarding Interactive Systems
Both reduced gradient FoC and primal-dual FoC require proper pairing procedure, as

outlined in [46] where the Relative Gain Array (RGA) plays a crucial role. However, in
interactive systems, pairing is challenging, leading to negative RGA elements and potential
instability. Primal-dual FoC has more consistent interaction structure, and is preferred for
handling active constraint switching due to its flexibility. Thus, this section will focus on
explaining the interactive system based on the primal-dual FoC structure.

First, consider a linearized gain matrix G form u to∇uL

∇uL = Gu (2.16)

To be more precise,



∇uL(1)
...
...

∇uL(nu)



=




G1,1 G1,2 . . . G1,nu

G2,1 G2,2 G2,nu

...
. . .

...
Gnu,1 Gnu,2 . . . Gnu,nu







u1

...

...
unu




Based on equation (2.16), three distinct systems can be defined as follows.

Definition 2.4: Interactive Systems

• Decomposed (decoupled) system: In this system, Gi,j = 0 for i ̸= j, meaning
that the non-diagonal elements of matrix G are zero. As a result, there is no
influence of input ui on∇uL(j), and vice versa.

• Weakly interactive systems: This system exhibits Gi,j ≈ 0 for i ̸= j, indicat-
ing that the non-diagonal elements of G are close to zero. Consequently, there
is only insignificant influence of input ui on∇uL(j) or vice versa.

• Highly interactive systems: In this system, Gi,j ̸= 0 for i ̸= j, signifying that
the non-diagonal elements of matrix G are non-zero. As a result, the influence
of input ui may be significant enough to destabilize∇uL(j) or vice versa.

In a decomposed (decoupled) system or weakly interactive systems, single-loop con-
trollers (e.g., I-controllers) can be employed to drive ∇uL(i) to zero, utilizing the pairing
∇uL(i)←→ ui, which is obvious, and single-loop controllers work well [40, 41, 47, 48].
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In highly interactive systems, selecting the pairing for gradient controllers becomes
less straightforward. One approach is using the RGA method, but this might necessitate a
good model and, in some cases, a suitable pairing might not be possible. Note that highly
interactive systems do not always imply instability. The instability might occurs because
unsuitable gradient control pairing. Another option is the dual-based HRTO, as described
in Section 2.2.2.

Remark 2.8: Time-varying parameter

Time-varying parameters can lead to interaction in two ways: indirect, when a
local time-varying parameter influences other subsystems through its local solution
changes (i.e., ∇ui

L = fi(ui, uj(pj), λ)), and direct, when a local time-varying
parameter directly affects other subsystems’ solutions (i.e.,∇ui

L = fi(ui, pj , λ)).

2.4 Numerical Examples
2.4.1 Isothermal CSTR with quadratic cost function

In this section, we examine the optimal operation of an isothermal Continuously Stirred
Tank Reactor (CSTR) involving two exothermic reactions [49, 50]:

A+B → C (2.17a)
2B → D (2.17b)

The objective is to produce the desired product, C, while minimizing the undesired by-
product, D. The CSTR is supplied by two feed streams, u1 = FA and u2 = FB , with
known inlet concentrations CAi

and CBi
respectively.

In the case of perfect temperature control (isothermal) and constant level (V ) control,
the steady-state model of the process is described by the following component mass bal-
ances:

f1 : FACAi − (FA + FB)CA − k1CACBV = 0 (2.18a)

f2 : FBCBi
− (FA + FB)CB − k1CACBV − 2k2C

2
BV = 0 (2.18b)

f3 : −(FA + FB)CC + k1CACBV = 0 (2.18c)

where CA, CB , and CC are the concentration of component A, B, and C, respectively.
Further, k1 and k2 are the kinetic coefficient of reaction 1 and 2, respectively. Finally, V
is the tank volume.

The heat produced by the chemical reaction is given by,

f4 : Q = (−∆H1)k1CACBV + (−∆H2)k2C
2
BV (2.19)

where ∆H1 and ∆H2 denotes the enthalpy of the reactions 1 and 2, respectively. This sec-
tion exclusively considers the steady-state model, excluding system dynamics, in order to
specifically analyze controller dynamics among different approaches. The nominal model
parameters are the same as the one used in [50], and are in Table. 2.1.

The goal is to maximize the amount of product C, represented by the expression
(FA + FB)CC multiplied by the yield factor (FA+FB)CC

FACAi
. Maximum bounds are set for
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the heat produced by the reactions, denoted as Q, and the total flow, defined as F :=
FA + FB . The optimization problem can be formulated as follows:

min
FA, FB

J = − (FA + FB)
2
C2

C

FACAi

(2.20a)

s.t. f1 − f4 : Equations (2.18)-(2.19), (2.20b)

g1 :
Q

Qmax
− 1 ≤ 0, (2.20c)

g2 :
FA + FB

Fmax
− 1 ≤ 0 (2.20d)

The reaction rate k1 varies from 0.3 to 1.5 l
mol hr , leading to changes in the optimal feed

rates, objective function, and active constraints in the optimal solution.

Table 2.1: Nominal model parameters and parameter bounds

Parameters Value Unit

CAi 2 mol
l

CBi 1.5 mol
l

k1 1.5 l
mol hr

k2 0.014 l
mol hr

∆H1 −7× 104 J
mol

∆H2 −1× 105 J
mol

V 500 l
Fmax 22 l

hr

Qmax 1× 106 J
hr

Since we have ng = 2 constraints, there are, at maximum, four potential active con-
straint regions (22 = 4):

1. Fully unconstrained (unlikely)
2. Only g1 active (R-I)
3. Only g2 active (R-II)
4. Both g1 and g2 active (R-III)

To verify potential active constraints, we perform offline numerical optimization for
expected disturbances, confirming that only three different combinations of active con-
straints need consideration. Figure 2.9 depicts the active constraint regions, labeled R-I,
R-II, and R-III, as a function of k1.

Reduced gradient approaches
As depicted in Figure 2.9, there are three sets of active constraints. Consequently,

when implementing reduced gradient approaches, it is necessary to create three distinct
control structures, each corresponding to one of the active constraint regions.

Region I (R-I): In this region, the maximum heat temperature (g1) requires tight con-
trol. Following the pairing rule proposed by [46], we control g1 by manipulating FA

(g1 ↔ FA). See PID-1 in Figure 2.10.
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Figure 2.9: Active constraints at the optimum changes with k1

Utilizing Theorem 2.2, we numerically solve the unconstrained steady-state optimiza-
tion problem by determining the optimal remaining degree of freedom, FB . The problem
is formulated as follows:

min
FB

||N⊤
1 ∇uJ (u,d) || (2.21)

where N1 represents the nullspace of∇ug1 (u,d).
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Figure 2.10: Reduced gradient FOC applied to Isothermal CSTR

Region II (R-II): In this region, tight control of the maximum total flowrate (g2) is
essential. Manipulating FB (g2 ↔ FB) tightly regulates this constraint. See PID-2 in
Figure 2.10. The remaining degree of freedom (FA) is utilized to solve the following
unconstrained steady-state optimization problem:

min
FA

||N⊤
2 ∇uJ (u,d) || (2.22)

Here, N2 represents the nullspace of∇ug2(u,d).
Region III (R-III): In this region, tight control is required for both the maximum heat

temperature (g1) and the maximum total flow rate (g2). As a result, both degrees of
freedom are utilized to ensure tight control over both constraints. Following the pairing
rule proposed by [46], we control g1 by manipulating FA (g1 ↔ FA) and control g2 by
manipulating FB (g2 ↔ FB).

Solving numerical optimization problem using feedback: As discussed in Section 2.3.1,
both problem (2.21) and (2.22) can be solved using feedback, also known as reduced gradi-
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ent FOC, with the following pairings:

c1 : N⊤
1 ∇uJ (u,d)↔ FB (See PID-3 in Figure 2.10) (2.23)

c2 : N⊤
2 ∇uJ (u,d)↔ FA (See PID-4 in Figure 2.10) (2.24)

Region Switching: To switch between the different active constraint regions, we em-
ploy min selector blocks [51], as depicted in Figure 2.10.

Controllers parameters: The PID controllers are tuned using the SIMC tuning rule
[52]. The controllers parameters used in the reduced gradient FOC are listed in Table 2.2.

Table 2.2: Parameters used in the controllers and filters shown in Figure 2.10

Tuning par. PID-1 PID-2 PID-3 PID-4
KI 4.3437 7.3333 2.9936 −0.8014

Primal dual approaches
It is unnecessary to identify active constraint regions in implementing primal dual ap-

proaches. We only need to design constraint controllers as master controllers, and solve
the unconstrained steady-state optimization problem described as follows.

Master controllers: There are two constraint controllers, equipped with max selector
in each, with the following pairings:

g1 ↔ λ̃1 (See PID-1 in Figure 2.11); λ1 = max
(
0, λ̃1

)
; (2.25)

g2 ↔ λ̃2 (See PID-2 in Figure 2.11); λ2 = max
(
0, λ̃2

)
; (2.26)

To ensure ’good’ control, these controllers are 5 times slower than the gradient controllers.
Steady-state unconstrained optimization problem: Utilizing Theorem 2.3, we numeric-

ally solve the unconstrained steady-state optimization problem by determining the optimal
decision variables (primal variables), FA and FB . The problem is formulated as follows:

min
FA, FB

||∇uL (u,d,λ) || (2.27)

whereL (u,d,λ) = J (u,d)+λ1g1+λ2g2, and∇uL (u,d,λ) =
[
∇uL(1) ∇uL(2)

]⊤
.

Solving numerical optimization problem using feedback: In Section 2.3.2, problem (2.27)
is solvable using feedback (primal dual FOC). The linearized gain matrix G for this prob-
lem is:

G =

[
0.2984 −0.1455
−0.1412 0.0722

]

which indicates that the system is interactive. Though the pairing is not obvious, fortu-
nately, RGA analysis recommends the following diagonal pairings:

c1 : ∇uL(1)↔ FA (See PID-3 in Figure 2.11) (2.28)

c2 : ∇uL(2)↔ FB (See PID-4 in Figure 2.11) (2.29)
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Figure 2.11: Primal dual FOC applied to Isothermal CSTR

For cases where off-diagonal pairings are recommended, refer to [16] and see Fig-
ure 2.12 as illustration. This justify the use of equation solver for a highly interactive
system.
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Figure 2.12: Primal dual FOC applied to Isothermal CSTR with off-diagonal case.

Controllers parameters: The PID controllers are tuned with parameters from Table 2.3.

Table 2.3: Parameters used in the controllers and filters shown in Figure 2.11

Tuning par. PID-1 PID-2 PID-3 PID-4
KP −5.4797 −4.7433 − −
KI −0.0415 −0.0359 1.1172 4.6172
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Simulator and estimators
The Isothermal CSTR simulator is developed using the CasADi ver. 3.5.1

toolbox [53] in MATLAB R2019b, and simulated using the rootfinder function.
The resulting NLP problems are solved using IPOPT v3.12.2. Simulations are per-
formed on a 2.11 GHz processor with 16 GB memory. Parameter k̂1 is estimated us-
ing a model-based approach (see Equation 2.19), with the gradient estimated analytically
through the model-based approach using CasADi, a self-contained symbolic framework.

Simulation results
In this simulation, we compare the performance of reduced gradient FOC, primal dual

FOC, and a standard HRTO as a benchmark (Figure 2.13). The results show that ap-
proaches with transparent constraint control can reach the optimal steady-state solution
effectively, making them powerful alternatives for HRTO. However, as expected, primal
dual FOC does not control the constraints as tight as reduced gradient FOC.
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Figure 2.13: Simulation results comparing reduced gradient, primal-dual FOC, and standard HRTO.

Notice that both problem (2.21) and (2.22) satisfy Assumption 2.3 because FB , and
FA, respectively, still exist after the first derivation of the objective function, as shown
below:

[ ∂J
∂FA
∂J
∂FB

]
= −




2CAi
CCFA(FA+FB)

(
CC+(FA+FB)

∂CC
∂FA

)
−CAi

(FA+FB)2C2
C

(CAi
FA)

2

2CAi
CCFA(FA+FB)

(
CC+(FA+FB)

∂CC
∂FA

)

(CAi
FA)

2


 (2.30)

Therefore, the implementation of reduced gradient HRTO is possible as shown in Fig-
ure 2.14. The direction of the input filter depends on the gain direction between the selec-
ted manipulated variable (MV) and the reduced gradient (CV). Here, the gain directions
from FA to c2 and FB to c1 are opposite, resulting in a negative direction for the input
filters labeled as F3 and F4 in Figure 2.14. A complete systematic approach to tune the
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input filters are not so clear as far as the author knowledge. The controllers parameters
used in the reduced gradient HRTO are listed in Table 2.4.
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Figure 2.14: Reduced gradient HRTO applied to Isothermal CSTR

Table 2.4: Parameters used in the controllers and filters shown in Figure 2.14

Tuning par. PID-1 PID-2 F3 F4
KI 4.3437 7.3333 − −
Ku − − −0.0385 −0.0385

While process control prioritizes factors beyond solver computation time, it’s essential
to highlight that reduced gradient HRTO exhibits faster computation times than standard
HRTO (approximately 38% reduction), as indicated in Table 2.5. This is due to the ease
of solving an (unconstrained) optimization problem in contrast to a constrained one. Not-
ably, reduced gradient FOC is excluded from the comparison, as steady-state solvers are
inherently unnecessary for them.

In this simulation, we compare HRTO and reduced gradient HRTO, using two solvers
(in R-I and R-II). Despite concerns about employing two solvers, the average computation
time surpasses standard HRTO. An alternative is presented by the dual HRTO approach,
as exemplified in [16], offering a solution.

Table 2.5: Average Computation Time

Approaches Comp. Time [Sec] Iterations
Reduced gradient HRTO solver (ave.) 0.0250 6.4252

Reduced gradient HRTO solver (2.21) 0.0217 5.6046
Reduced gradient HRTO solver (2.22) 0.0282 7.2457

HRTO solver 0.0406 9.0697

2.4.2 Interactive gas-lift optimization with linear cost function
This section showcases the use of reduced gradient and primal-dual FOC for optim-

izing an interactive gas-lifted oil production network with two wells. As illustrated in
Figure 2.15, these wells jointly produce hydrocarbons to a common riser manifold (see
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Appendix A). The optimization problem is stated as follows:

min
wl,1, wl,2

J = −powo + pl

2∑

i=1

wl,i (2.31a)

s.t. f (x, z,u,d) = 0, (2.31b)
h (x, z,u,d) = 0, (2.31c)
g : wg − w̄g ≤ 0 (2.31d)

In the above formulation, po and pl denote oil price and gas lift treatment cost, respectively.
Moreover, wo =

∑2
i=1 wo,i, wg =

∑2
i=1 wg,i, and wl =

∑2
i=1 wl,i, where wo,i and wg,i

are oil and gas exports from well i. Gas-lift rate, wl,i, serves as manipulated variables,
and w̄g represents maximum gas processing capacity. Variables x, z, u, and d represent
differential states, algebraic states, inputs, and disturbances, respectively, with f(·) and
g(·) denoting differential and algebraic functions.

Flash Separator

Reservoir 1

Reservoir 2

Riser

wg

wo

pm
wl,1

wl,2

Figure 2.15: Interactive Gas Lift Optimization Schematic Drawing.

Changes in gas-lift rates of one well impact others as hydrocarbons mix in the riser,
creating system interactivity. Furthermore, objective function (2.31a) is linear, rendering
reduced gradient HRTO and dual-based HRTO inapplicable without further adjustments.

Reduced gradient FOC
With just a single constraint (2.31d), we can identify two distinct control structures,

each corresponding to one of the active constraint regions: unconstrained and constrained.
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Region I (R-I): In this region, where constraint g is active, one MV is dedicated to
tightly control constraint g, while the other MVs are employed to drive the reduced gradi-
ent towards zero. As proposed by [46], we establish the following pairing:

g↔ wl,2 (See PID-1 in Figure 2.16) (2.32)

c : N⊤∇uJ↔ wl,1 (See PID-2 in Figure 2.16) (2.33)

Region II (R-II): In this region, where constraint g is inactive, all MVs are utilized to
drive the gradient

(
∇uJ ∈ R2

)
to zero. As proposed by [46], the pairing is as follows:

c1 : ∇uJ(1)↔ wl,1 (See PID-3 in Figure 2.16) (2.34)

c2 : ∇uJ(2)↔ wl,2 (See PID-4 in Figure 2.16) (2.35)

where ∇uJ =
[
∇uJ(1) ∇uJ(2)

]⊤
.

Figure 2.16 depicts the reduced gradient FOC structures for this problem. The PID
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Figure 2.16: Reduced gradient FOC applied to Interactive Gas Lift

controllers are tuned using the SIMC tuning rule [52]. The controllers parameters used in
the reduced gradient FOC are listed in Table 2.6.

Table 2.6: Parameters used in the controllers shown in Figure 2.16

Tuning par. PID-1 PID-2 PID-3 PID-4
KP 3.6425 −16.0234 12.7008 12.9354
KI 0.0064 −0.0267 0.0212 0.0216

Primal dual FOC
Figure 2.17 depicts the reduced gradient FOC structures for this problem.
Master controllers: There is a constraint controller, equipped with max selector:

g↔ λ̃ (See PID-1 in Figure 2.17); λ = max
(
0, λ̃
)
; (2.36)

To ensure ’good’ control, this controller is 5 times slower than the gradient controllers.
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Figure 2.17: Primal dual FOC applied to Interactive Gas Lift

Steady-state unconstrained optimization problem: Utilizing Theorem 2.3, the problem
is formulated as follows:

min
wl,1, wl,2

||∇uL (u,d,λ) || (2.37)

where L (u,d,λ) = J (u,d) + λg, and ∇uL (u,d,λ) =
[
∇uL(1) ∇uL(2)

]⊤
.

Solving numerical optimization problem using feedback: In Section 2.3.2, problem (2.37)
is solvable using feedback (primal dual FOC). The linearized gain matrix G is:

G =

[
0.3654 0.0205
0.0205 0.3637

]

which indicates that the system is weakly interactive, where the pairing is obvious, and
RGA analysis recommends diagonal pairings:

c1 : ∇uL(1)↔ wl,1 (See PID-2 in Figure 2.17) (2.38)

c2 : ∇uL(2)↔ wl,2 (See PID-3 in Figure 2.17) (2.39)

The controllers parameters used in the primal dual FOC are listed in Table 2.7.

Table 2.7: Parameters used in the controllers shown in Figure 2.17

Tuning par. PID-1 PID-2 PID-3
KP −0.0240 11.9688 11.1624
KI −0.0001 0.0199 0.0186

Simulator and estimators
The gas lift simulator, developed in MATLAB R2019b using the CasADi ver.

3.5.1 ([53]), employs the IDAS integrator. Each well is assumed to have either a Mul-
tiphase flow meter (MPFM) or virtual flow metering (VFM) with soft sensors for estimat-
ing disturbance d̂, differential states x̂, and algebraic states ẑ as needed [54]. Additionally,
gradient estimation is conducted via a model-based approach [55].
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Figure 2.18: Simulation results comparing the implementation of reduced gradient FOC and primal-
dual FOC in an interactive gas lifted oil production system.

Simulation results
In this simulation, we compare reduced gradient FOC with primal dual FOC (see Fig-

ure 2.18). Results indicate transparent constraint control approaches effectively achieve
optimal steady-state solutions, offering potential alternatives for Hybrid RTO. Process dy-
namics influence constraint violations; although primal dual FOC controls the constraints
on a slow time scale, maximum dynamic violations decrease due to the process dynam-
ics. However, their effects aren’t consistently positive and may lead to adverse outcomes
depending on disturbance trajectories. Notably, primal-dual FOC’s maximum dynamic
constraint violation slightly exceeds reduced gradient FOC’s. Despite its importance,
primal-dual FOC indirectly controls constraints on a slow time scale, resulting in lower
constraint satisfaction compared to reduced gradient FOC.

2.5 Chapter Summary
In this chapter, we discussed several approaches to achieve optimal performance, namely
• S-I: Steady-state RTO with dynamic model adaptation (also known as Hybrid RTO)
• S-II: Traditional Self-optimizing Control
• S-III: Reduced gradient hybrid RTO
• S-IV: Dual-based hybrid RTO
• S-V: Reduced gradient FOC
• S-VI: Primal dual FOC

The parameters we assess and compare are:
• (a): Is steady-state optimal achieved?
• (b): Is constraint controlled transparently (see Definition 2.1)?
• (c): Is flexible for active constraint switching?
• (d): Is constraint controlled directly (on fast time scale)?
• (e): Is applicable for less than twice differentiable Lagrange function?
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• (f): Is numerical solver avoidable (computation time)?
• (g): Is it recommended for complex and large system?
• (h): Is input filter (or additional setpoint controller) avoidable?
• (i): Is parameters and states dynamic estimator avoidable?
• (j): Is gradient estimator avoidable?

The discussion’s essence is summarized in Table 2.8, where traditional self-optimizing
control emerges as the preferred choice among considered success parameters, despite its
significant limitation of near-optimal performance. This leads us to the conclusion that
both reduced gradient FOC and primal dual FOC are highlighted as superior alternatives,
transparently controlling constraints and avoiding the need for twice differentiable Lag-
range functions. However, while reduced gradient FOC lacks adaptability to active con-
straint switching, our attention now turns to improving the practical utility of primal-dual
FOC.

Table 2.8: Summary of Chapter 2

S-I S-II S-III S-IV S-V S-VI
(a) Yes No Yes Yes Yes Yes
(b) No Yes Yes Yes Yes Yes
(c) Yes No No Yes No Yes
(d) No Yes Yes No1 Yes No1

(e) Yes Yes No No Yes Yes
(f) No (High) Yes No (Medium) No (Medium) Yes Yes
(g) Yes No Yes Yes No No2

(h) No Yes No No Yes Yes
(i) No Yes No No No No
(j) Yes Yes No Yes No No

"Yes": the approach has satisfied the success parameter
"No": the approach does not satisfied the success parameter
"No": the approach does not satisfied the success parameter, and will be addressed in this thesis.
1: will be addressed in Chapter 3
2: will be addressed in Chapter 4
"No (High)": the approach does not satisfied the success parameter (f) at all.
"No (Medium)": the approach has partly satisfied the success parameter (f) better than "No (High)".

Future works: Despite its significant advantages, the primal-dual FOC approach poses
intriguing challenges, addressed in subsequent chapters. Chapter 3 addresses the issue of
indirect constraint control (d). Moreover, for highly interactive systems, the implement-
ation is not as easy as weakly interactive ones. To address this issue, we recommend for
primal-dual HRTO. Alternatively, Chapter 4 investigates strategies for applying primal-
dual FOC to complex and/or large systems (g).



Chapter 3

Primal-Dual FOC with Override
for RTO

To be able to employ direct constraint control in order to minimize critical constraint viol-
ations in primal-dual framework (that sill allowing automatic constraint switching), this
chapter suggests integrating override controllers and auxiliary constraints in the frame-
work. This chapter is based on the work in [56]

3.1 Introduction
As stated in Chapter 2, the primal dual FOC shows promising results, addressing the in-

teresting issue of indirectly controlling constraints. This concern resonates with dual-based
hybrid RTO, rendering strategies outlined in this chapter relevant for both approaches.

Before proceeding, it is important to have clear definition of direct and indirect con-
straint control as described in the following:

Definition 3.1: Direct Constraint Control

Direct constraint control is a technique of constraint control that controls a measured
constrained variable (not through a constraint model) by directly updating a primal
manipulated variables using a simple feedback controller such as a PID controller.

Definition 3.2: Indirect Constraint Control

Indirect constraint control is a technique of constraint control that controls a meas-
ured constrained variable (not through a constraint model) by indirectly updating
a primal manipulated variables. Specifically, the measured constrained variable is
controlled by a variable that is one of the parameters constructing another controlled
variable that is controlled by updating a primal manipulated variables. For example,
cascade constraint control.

From these definitions, we conclude that the reduced gradient approach offers direct
constraints control, while the primal-dual approach utilize indirect constraints control. In

47
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Figure 3.1: Incorporating override control for a constraint gj

the primal-dual approach, a measured constrained variable is controlled by updating dual
MVs, which is a parameter for the gradient of Lagrange function. To estimate the gradi-
ent of Lagrange function, we need dual MVs, steady-state cost and constraint gradient.
Subsequently, primal MVs are updated to control this estimated gradient to zero. It is
important to note that in this indirect control scheme, additional parameters can effect
constraint control performance.

First, steady-state gradient estimation (both cost and constraint) relies on accurate
states estimation and favorable matrix condition. To estimate states (and parameter/ dis-
turbance), a well tuned (dynamic-) estimator and enough measurements are vital. Insuf-
ficient conditions in these calculations may lead to failure in constraint control, making
direct constraint control indispensable.

Second, as the master controller lies on the outer loop, time scale separation must be
considered for convergence. Consequently, constraint control operates at a slower time
scale, resulting in slower updates of dual MVs and significant dynamic violations. Under
conditions of large magnitude of constraint violation, having a hard constraint may incur
economic losses due to necessary back-off applications. Direct constraints control offers
tighter constraint control and reduce the back-off parameter.

Based on these technical motivations, we introduce the primal dual FOC with override.

3.2 Proposed Approach
3.2.1 Override Constraint Controllers

To control constraint gj directly (and thus may reduce constraint violation and thus
may minimize the need for back-off), we propose to pair it with a selected primal variable
(input ui) and control it using a (fast-) override controller. This is implemented at the
bottom of the control hierarchy, as illustrated in Figure 3.1. Light blue box represents
a gradient controller that is slower than the light yellow box (representing the override
constraint controller). At any given time, the selector will choose the process input (ui) as
either the output from the override controller (ug

i ) or the output from the gradient controller
or equation solver (ũi).

Choice of override pairings: It is important to find a good pairing between the con-
straint gj and the selected input ui:

ui ↔ gj
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For choosing pairings and tuning purposes, one may consider the linear transfer matrix
Gg(s) from the inputs to the override constraints:

g = Gg(s) u (3.1)

The following pairing rules are useful [46].
1. “Pair close rule”: Select an input ui with a large and direct effect on the constraint

gj [46]. For example, if the element Gg
ij(s) from ui to gj is approximated as a

first-order plus delay transfer function, then prefer a pairing with a large gain, a
small delay, and a small time constant. One obvious way to obtain the relationship
between the constraint gj and the input ui is by performing step response.

2. “Input saturation rule:” Select an input ui that is not likely to saturate, for example,
at a fully open or closed valve.

Note that we only need override control for constraints gj where there are limitations on
the allowed dynamic violations, for example, for hard constraints.

Tuning of override constraint controller: The name “override” is appropriate because
we aim to make short-term corrections to the original steady-state optimization prob-
lem (2.1), with the goal of avoiding undesired dynamic constraint violations (see Fig-
ure 3.1). However, on a longer time scale, the steady-state optimization should take over
and provide the optimal value of the input, ui = ũi , and also decide whether on or not
a constraint is active. This has implications for tuning, i.e., if the slower/outer layer is
not slow enough, the closed-loop system may eventually lead to instability. To prevent
the override controller from interfering with the steady-state optimization, we need a time
scale separation between the fast override controller and its slower gradient controller,
typically in the range 4 (minimum) to 10 (desired) [57].

Choice of override selector: Referring to the selector rule in [51], if constraint gj has
upper bound and the gain to the input ui is negative or if constraint gj has lower bound
and the gain to the input ui is positive (in other words, if the constraint gj is satisfied by a
large input ui), we use max-selector:

ui = max{ũi, u
g
i }

Conversely, if constraint gj has upper bound and the gain to the input ui is positive or if
constraint gj has lower bound and the gain to the input ui is negative (in other words, if
the constraint gj is satisfied by a small input ui), then we use min-selector:

ui = min{ũi, u
g
i }

Maximum number of override constraints: In most cases, each override constraint is
paired with a different input, meaning that the number of override constraints (ng,o) cannot
exceed the number of inputs, i.e., ng,o ≤ nu. However, if two override constraints cannot
be active simultaneously (for example, a variable with both an upper and lower bound), it
may be possible to pair two override constraints with one input.

3.2.2 Auxiliary Constraints
Assigning both the master and override constraint controllers to control the constraint

gj may seem like a viable solution, but it fails to function as desired. The problem is that
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Figure 3.2: Controlling auxiliary constraint gj using master controller

once the override takes over the constraint, the master controller will no longer update λi,
and thus it will not release the constraint even when it no longer should be active.

To avoid this problem, we propose for override constraints to replace, in the master
controller, the original constraint gj with an auxiliary constraint g̃j , which is the differ-
ence between the process input computed by the gradient controller and the process input
computed by the override constraint controller, as expressed in Equation (3.2):

g̃j = ũi − ug
i (3.2)

Figure 3.2 shows the proposed block diagram with override, incorporating the auxiliary
constraint g̃j . Light red box represents a master controller that is slower than the light yel-
low box (representing the override constraint controller). For constraints gj with override
control, the master controller is assigned to control the auxiliary constraint g̃j = ũi − ug

i .
The sign of the gain in the master controller depends on whether it is a "min" or "max"
selector at the bottom of the hierarchy. The complete block diagram, which includes the
gradient controller, is shown in Figure 3.3.

For the master controller, the auxiliary constraint is g̃j < 0 if the constraint gj is
satisfied by a small input ui (and thus we have a min-selector for the override), and−g̃j <
0 if the constraint gj is satisfied by a large input ui (and thus we have a max-selector for
the override). To better understand the use of auxiliary constraints, we consider the two
directions of constraint switching:

• If a constraint gj is originally not active and a disturbance causes gj to be violated,
the override controller will change ug

i until the selector assigns ui = ug
i . At this

point, we get a violation (nonzero value) of the auxiliary constraint, and the master
controller will increase (slowly) the associated dual variable λj (which is zero in
the unconstrained case), until we achieve g̃j = 0, where the override and gradient
controllers agree on the value for the process input.

• If a constraint gj is originally active, and a disturbance causes this to no longer
be optimal, the master controller will decrease λj , which again changes ui = ũi

(because the override controller is no longer active), until we get λj = 0 where the
constraint is no longer controlled.
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Remark 3.1: Introducing Master Controllers

In Chapter 2, the outer layer controller, termed constraint controller in the primal-
dual framework, is responsible for both constraint control and active constraint switch-
ing during transient. In our proposed approach, this controller, now called the master
controller, solely handles active constraint switching during transient, while a separ-
ate override constraint controller focuses on constraint control during transient.
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Figure 3.3: Complete structure of the proposed scheme with gradient controllers and one override
controller with its associated auxiliary constraint g̃j .

3.2.3 Implicit override for input constraints
All physical process inputs have upper and lower constraints (also know as saturation

limits)
ui ≤ umax

i ui ≥ umin
i

or equivalently

gmax
j = ui − umax

i ≤ 0 (3.3a)

gmin
j = umin

i − ui ≤ 0 (3.3b)

These input constraints are always “hard” because they cannot be physically violated.
Thus, physics provide an implicit override, and an override controller is not necessary for
input constraints. However, we still need to use the auxiliary constraint for the master
controller, as shown in Figure 3.4. Note that physics provide an implicit override, so the
grey Min-selector at the bottom is not part of the control system, but represents the physical
input saturation (valve).

g̃max
j = ũi − umax

i ≤ 0 (3.4a)

g̃min
j = umin

i − ũi ≤ 0 (3.4b)
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If the master controller instead were to control the (physical) constraint (umax
i or umin

i ),
then it would not be possible to get out of the constraint when it is no longer optimally
active.
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Figure 3.4: Proposed use of auxiliary constraint for case with maximum input constraint on ui.

3.3 Numerical Examples
This section presents a case study to illustrate the effectiveness of the primal-dual

feedback-optimizing control structure, both with and without override constraint control.
The case study involves a gas-lift oil production system with four oil production wells and
a riser, as depicted in Figure 3.5. The main objective is to maximize the total oil produc-
tion (qo). Local input constraints exist, specifically on the maximum valve openings for
the four gas lift choke valves, along with a coupling constraint on the downstream gas
handling capacity (qg).

The system includes a gas-lift distribution network with four gas lift valves (MVs), a
manifold, and a riser which gives the export gas and produced (export) oil. This system
is a variant of a system that has been studied and used in [41, 58, 59, 60]. The model
description is available in Appendix B, and its parameters are shown in Table 3.1.

3.3.1 Case Description
The system is described by a set of coupled differential-algebraic equations (DAEs).

There are four manipulated variables (primal variables, inputs), which are the openings of
the four gas-lift valves:

u = [u1 . . . u4]
⊤

The system is weakly interactive because a change in one gas lift valve opening impacts
the gas lift and oil and gas flow rates of all wells. The considered disturbances are the gas-
oil ratio in the inflow from the reservoir for wells 2. Furthermore, since the downstream
process may change over the time, we also consider the maximum gas export qmax

g as
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Table 3.1: Parameter used in Matlab model

Annulus
Parameter 1 2 3 4
ps [Bar] 200
ra [m] 0.2032 0.2032 0.2032 0.2032
La [m] 2400 2400 2400 2400
Ta [K] 318 318 318 318

cga [m3/(s.Bar)] 5.52e-5 5.58e-5 5.46e-5 5.73e-5
Lj [m] 1500 1500 1500 1500

cgl [m3/(s.Bar)] 1.52e-5 1.66e-5 3.13e-5 3.53e-5
Well tubings

Parameter 1 2 3 4
rt [m] 0.091 0.091 0.091 0.091
Lt [m] 2400 2400 2400 2400
Tt [K] 323 323 323 323

cfh [m3/(s.Bar)] 8.12e-5 7.86e-5 8.37e-5 8.77e-5
wt [-] 0.1 0.1 0.1 0.1

Q [m3/s] 0.0347 0.0347 0.0347 0.0347
pr [Bar] 219 218 220 216
n [-] 0.8 0.8 0.8 0.8

ρot [kg/m3] 800 800 800 800
ρgt [kg/m3] 20 20 20 20

Riser
Parameter
re [m] 0.6096
Le [m] 250
Te [K] 313

cfe [m3/(s.Bar)] 0.0010
we [m] 0.1
pd [Bar] 15

Common
Parameter
k [m2/s] 9.81

R [J/(K mol)] 8.314
Mg [kg/mol] 0.020

po [$] 503.20
pl [$] 0.25

disturbance.

d =
[
GOR2 qmax

g

]⊤
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Figure 3.5: Flowsheet for gas lift case study.

The main objective is to maximize the total oil production qo. At steady state we have

qo = qo,1 + qo,2 + qo,3 + qo,4

where qo,i is the produced oil from reservoir i. However, at the same time, one should try
to minimize the total gas lift supply,

ql = ql,1 + ql,2 + ql,3 + ql,4

The maximum constraint on the downstream processing of the total export gas, qg provides
a coupling constraint. At steady state, we have

qg = qg,1 + qg,2 + qg,3 + qg,4 + ql

where qg,i is the produced gas from reservoir i.
Any excess gas is flared (burned), which is strongly undesirable for environmental

reasons. Therefore, override control is used for the coupling constraint (denoted g1 below).
In addition to the coupling constraint, each gas-lift choke ui has a physical constraint with
a maximum valve opening of 1. In summary, the steady-state optimization problem can be
expressed as follows:

min
u

J = −poqo + plql (3.5a)

s.t. g1 = qg − qmax
g ≤ 0, (3.5b)

gu
max
i = ui − umax

i ≤ 0, i = 1, . . . , 4 (3.5c)

Here, po is the price of oil, pl is the cost of gas lift supply, qmax
g is the maximum gas

export, and umax
i = 1 is the maximum opening of gas lift valve i.
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3.3.2 Active constraint regions
For this particular problem, we have five constraints, ng = 5 (one coupling constraint

and four max-constraints on the inputs), and therefore a maximum of 2ng = 32 active con-
straint regions is possible. However, only a subset of these regions are encountered in prac-
tice. To illustrate this, consider a scenario where qmax

g varies between 0.0085 and 0.0150
m3/s (equivalent to between 734.40 and 1296.00 m3/day) and GOR2 varies between 0.01
and 0.15 m3/m3, while the other GORi (for i = 1, 3, 4) are constant. For these two dis-
turbances, Figure 3.6 shows the 4 possible active constraint regions for optimal operation.
Given constant GOR1, GOR3, and GOR4, the four possible active constraint regions are
labeled R-I to R-IV: R-I is a region where g1, g2, and g3 are active, R-II is a region where
g1 and g2 are active, R-III is a region where g1 and g3 are active, and R-IV is a region
where only the coupling constraint g1 (max. gas handling capacity) is active.

Figure 3.6: Optimal active constraint regions as a function of the two disturbances, qmax
g , and

GOR2.

Actually, for our purposes the details are not important, because it does not matter
for our proposed method how many regions we may encounter and which constraints
transitions may occur. This is because the primal-dual feedback optimizing scheme can
handle any number of regions and transitions between them. However, to guarantee that
we can optimally implement override control for g1, we must require that nu ≥ ng,o,
where ng,o is the number of override constraints. This condition is not satisfied in our case
since the four maximum gas-lift valve openings are implicitly hard constraints, so we have
nu = 4 and ng,o = 5. Fortunately, this is not a problem for our case study because two of
the input constraints (on inputs 3 and 4) are never active for the assumed disturbances.

In these simulations, we consider the two disturbances, GOR2, and qmax
g and they

are varied over time. At t = 5 hr, GOR2 gradually decreases in 5 minutes from 0.1200
to 0.0360, rebounding to 0.1240 in 5 minutes at t = 21 hr. Meanwhile, qmax

g gradually
decreases in 5 minutes from 933.12 to 743.04 m3/day at t = 1 hr, gradually increases in 5
minutes to 915.84 m3/day at t = 5 hr, further gradually increases in 5 minutes to 1114.56
m3/day at t = 13 hr, and finally drops in 5 minutes to 864.00 m3/day at t = 21 hr.
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Figure 3.7: Proposed primal-dual control scheme for the case study.

3.3.3 Simplified problem description
Since ng = 5 and nu = 4, the primal-dual feedback-optimizing control ideally re-

quires 5 master controllers and 4 gradient controllers. However, in the considered dis-
turbance scenario (Figure 3.6), constraints gu

max
3 and gu

max
4 are never active, implying that

their associated Lagrange multipliers λi are always zero. Hence, the number of required
master controllers can be reduced to three. In the remaining sections of the paper, we
consider the following three constraints:

g =



g1
g2
g3


 =




g1
gu

max
1

gu
max
2


 =



qg − qmax

g

u1 − umax
1

u2 − umax
2


 (3.6)

The associated Lagrange multipliers are denoted λ1, λ2, and λ3, respectively.
The proposed control structure is shown in Figure 3.7. For the case without over-

ride control, g̃1 is replaced by the measured constraint g1. The red lines indicate that all
three Lagrange multipliers are distributed to each of the four gradient controllers. All
controllers are SIMC (Simple Internal Model Control)-tuned PI-controllers [52], with the
closed-loop time constant τc as the tuning parameter. Note that we need a time scale sep-
aration between the fast override controller in the lower layer, the intermediate gradient
controllers in the middle layer and the slower master constraint controllers in the upper
layer. Typically, we need a time scale separation of 5 or more between each layer.

In the simulations, we will consider two cases: one with the override controller on the
coupling constraint g1 and one without.

3.3.4 Gradient controllers
For tuning the gradient controllers, we consider the square steady-state gain matrix G

from the inputs (u) to the gradients (∇uL). Linearizing in region R-IV gives:

G =




0.4092 −0.0069 −0.0139 −0.0159
−0.0068 0.5106 −0.0150 −0.0171
−0.0131 −0.0142 1.8861 −0.0327
−0.0149 −0.0161 −0.0325 2.3963


 (3.7)



3.3. Numerical Examples 57

Table 3.2: Controller and Tuning parameters-1

Description Variable Value
Dual-based without override on the coupling constraint

Master Controller 1 Proportional Gain KP,1 -1.2833e+04
Master Controller 1 Integral Gain KI,1 -57.0362

Master Controller 1 Anti Windup Gain KAW,1 2.2500
Master Controller 2 Proportional Gain KP,2 -0.0168

Master Controller 2 Integral Gain KI,2 -0.0010
Master Controller 2 Proportional Gain (when constraint active) KP,2 -0.3095

Master Controller 2 Integral Gain (when constraint active) KI,2 -0.0193
Master Controller 2 Anti Windup Gain KAW,2 0.1600
Master Controller 3 Proportional Gain KP,3 -0.0114

Master Controller 3 Integral Gain KI,3 -0.0006
Master Controller 3 Proportional Gain (when constraint active) KP,3 -0.3172

Master Controller 3 Integral Gain (when constraint active) KI,3 -0.0176
Master Controller 3 Anti Windup Gain KAW,3 1.8000e-05

Gradient Controller 1 Proportional Gain KP,1 1.0740
Gradient Controller 1 Integral Gain KI,1 0.0268

Gradient Controller 1 Anti Windup Gain KAW,1 0.4000
Gradient Controller 2 Proportional Gain KP,2 0.8823

Gradient Controller 2 Integral Gain KI,2 0.0215
Gradient Controller 2 Anti Windup Gain KAW,2 0.4100
Gradient Controller 3 Proportional Gain KP,3 0.2331

Gradient Controller 3 Integral Gain KI,3 0.0058
Gradient Controller 4 Proportional Gain KP,4 0.1788

Gradient Controller 4 Integral Gain KI,4 0.0046

We notice that there are some interactions between the wells, as expected. However, the
interactions are small, and single-loop (decentralized) gradient controllers will work well.

The four gradient controllers were tuned with a closed-loop time constant (τc) of 1.5
minutes. The resulting controllers tuning are shown in Table 3.2-3.3.

3.3.5 Master constraint controllers
With the four lower-layer gradient controllers tuned and functioning properly, we tune

the three master constraint controllers. Note that the coupling constraint g1 is a common
constraint, whereas g2 = gu

max
1 and g3 = gu

max
2 represent local input constraints.

The three master constraint controllers were tuned with a closed-loop time constant (τc)
of 7.5 minutes, corresponding to a time scale separation of 5 relative to the four gradient
controllers. The resulting controllers tuning are shown in Table 3.2-3.3.
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Table 3.3: Controller and Tuning parameters-2

Description Variable Value
Dual-based with override on the coupling constraint

Master Controller 1 Integral Gain KI,1 -104.1411
Master Controller 1 Anti Windup Gain KAW,1 1.0000e-04
Master Controller 2 Proportional Gain KP,2 -0.0168

Master Controller 2 Integral Gain KI,2 -0.0010
Master Controller 2 Proportional Gain (when constraint active) KP,2 -0.3095

Master Controller 2 Integral Gain (when constraint active) KI,2 -0.0193
Master Controller 2 Anti Windup Gain KAW,2 0.1600
Master Controller 3 Proportional Gain KP,3 -0.0114

Master Controller 3 Integral Gain KI,3 -0.0006
Master Controller 3 Proportional Gain (when constraint active) KP,3 -0.3172

Master Controller 3 Integral Gain (when constraint active) KI,3 -0.0176
Master Controller 3 Anti Windup Gain KAW,3 1.8000e-05

Gradient Controller 1 Proportional Gain KP,1 1.0740
Gradient Controller 1 Integral Gain KI,1 0.0268

Gradient Controller 1 Anti Windup Gain KAW,1 0.4000
Gradient Controller 2 Proportional Gain KP,2 0.8823

Gradient Controller 2 Integral Gain KI,2 0.0215
Gradient Controller 2 Anti Windup Gain KAW,2 0.4100
Gradient Controller 3 Proportional Gain KP,3 0.2331

Gradient Controller 3 Integral Gain KI,3 0.0058
Gradient Controller 3 Anti Windup Gain KAW,3 0.0040
Gradient Controller 4 Proportional Gain KP,4 0.1788

Gradient Controller 4 Integral Gain KI,4 0.0046
Override Controller 3 Proportional Gain KP,3 722.9696

Override Controller 3 Integral Gain KI,3 13.6409
Override Controller 3 Anti Windup Gain KAW,3 0.0053

3.3.6 Override constraint controller
Inputs u3 and u4 never saturate and are therefore candidates for override control for

the coupling constraint g1. For the case study, we chose to use u3. Inputs u1 and u2 may
saturate, but the physical valve provides indirect override for these inputs.

The override controller for g1 was tuned with a closed-loop time constant (τc) of 0.3
minutes, which again gives a time scale separation of 5. The resulting controllers tuning
are shown in Table 3.3.

3.3.7 Gradient estimator
To evaluate the gradient of the Lagrange function with respect to the inputs, it is neces-

sary to estimate the steady-state cost gradient and steady-state constraint gradient. In this
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case study, we follow [55] and linearize at each sample time the nonlinear model to obtain
a linear model from u to the states x,

ẋ = A∆x+B∆u

(in deviation variables). The static model for the cost J(x, u, d) is linearized in a similar
way to obtain

∆J = C∆x+D∆u

We do not need to include the dependency of ẋ and J on the disturbances d, because the
disturbances are assumed constant into the future (∆d = 0), when we follow the “trick”
in [55] of setting ẋ = 0 to eliminate ∆x and obtain ∆J = ∇uJ∆u. The estimate of the
steady-state cost gradient then becomes

∇uJ = −CA−1B+D (3.8)

In this paper, we use an extended Kalman filter (EKF) to estimate the states and dis-
turbances and based on these estimates, we relinearize the system at each sample time to
obtain the matrices A,B,C and D.

The same approach is used to estimate the constraint gradient∇ui
gj (u,d).

These estimates can be achieved using any model-based or model-free gradient es-
timation. If unmeasurable state variables are present in model-based estimation, a novel
piecewise fuzzy affine observer was introduced. See [61] for details. For various gradient
estimation techniques for RTO, refer to [35].

3.3.8 Simulation Results for Tight Constraint Control
We present simulation results for the proposed primal-dual structure in Figure 3.7,

both with and without override control. Figure 3.8(a) shows that we reach the steady-state
optimal operating points both with and without override. Figure 3.8(b) shows that the
override gives much better control of the coupling constraint (g1). Table 3.4 shows this in
more detail. We note that the amount of flared gas is reduced by about a factor 67, and
the maximum violation of the constraint is reduced by about a factor 17. Figure 3.9 shows
the four inputs (valve positions) for the case with override. It shows that the proposed
approach is able to move correctly to all the active constraints.

Table 3.4: Violation of constraint g1 for case study

Without With
override override

Max. constr. violation [m3/day] 176.2760 10.6436
Flared gas (int. violation) [m3] 2.9667 0.0444
Average flared gas [m3/hr] 0.1187 0.0018

3.3.9 Numerical Demonstration for Back-off Reduction
For the present case study, we assume that the small amount of flared gas (0.0444 m3

in 25 hour) obtained with the override is acceptable, so we introduce a back-off on the case
without override to get a similar constraint violation (flaring). We find that the required
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Figure 3.8: Simulation results with override (green) and without override (red). Without override
we get constraint violation with g1 > 0.

back-off on the export gas is b1 = 137.9359 m3/day. In practice, this is implemented by
changing the setpoint for g1 from SP=0 to SP=−b1 = −137.9359.

The resulting economic loss by adding this back-off is shown in Figure 3.10 where
we plot as a function of time the accumulated loss (cost difference), ∆J = Jback−off −
Joverride.

Figure 3.11 shows the value of the Lagrange multiplier λ1 for the coupling constraint
g1 as a function of time, in which the magnitude is correlated with the slope of economic
loss, shown in Figure 3.10.

Recall that the loss imposed by back-off is equal to |λ1b1| [$/s]. In our case, we have
|b1| = 137.9359 m3/day = 0.0016m3/s and from Figure 3.11 (yellow line), we find that λ1

is 125.1683 [$/m3] on average. The average loss is then approximately |λ1b1| = 0.2003
[$/s] and the accumulated loss over 25 hours is then 0.2003 · 25 · 3600 ≈ 18000 $ which
quite agrees well with the final value of about 14000 $ in Figure 3.10. The 4000 gap
discrepancy can be attributed to the substantial length of the unconstrained case during the
time window between t = 13 hr and t = 21 hr.

Furthermore, the ideal average profit is 722, 275$/day, as can be observed in Fig-
ure 3.8(a), which means that implementing override can save approximately 2% compared
to "back-off" strategy.

3.3.10 Numerical Demonstration for Auxiliary input constraints
To emphasize the need to use the auxiliary input constraint (3.4) in the master controller

(green lines in simulations), rather than the actual input constraint (3.3) (purple lines), we
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Figure 3.9: Simulation results with override (green) and without override (red). Inputs ui (gas lift
valve positions).

compare the gradients for the two cases in Figure 3.12. We see that without the auxiliary
constraint (purple line), input u1 and u2 (see Figure 3.13) do not violate their constraints
and therefore, there is no update of the corresponding Lagrange multiplier, and the static
optimality condition is not satisfied.

The corresponding Lagrange multipliers for the two cases are shown in Figure 3.14.
Here, we see more clearly that the inputs become constrained (with λ2 > 0 or λ3 > 0) for
some period with the auxiliary constraint (green lines).

3.4 Discussion
3.4.1 Comparison with Dynamic RTO or ENMPC

One obvious solution to reduce dynamic violations involves employing dynamic op-
timization tools such as dynamic RTO or economic nonlinear model predictive control
(ENMPC). Yet, these tools demand high computational capacity, which is challenging
even with modern computing capabilities. Although extensively used in research papers,
recent research [62, 25] highlights several numerical challenges hindering widespread ad-
option of dynamic optimization. Additionally, safety requirements in many process indus-
tries may require deploying automatic tools on embedded platforms such as programmable
logic controllers (PLC), which is currently unsuitable for solving nonlinear optimization
online [63].
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Figure 3.10: Accumulated economic loss [$] caused by using "back-off" for case without override
(the back-off is chosen to achieve the same constraint violation as with override).
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Figure 3.11: The Lagrange multiplier λ1 with "back-off" (and without override) (yellow line) is
seen to be larger than with override (green line).

In general, compared to the standard numerical solver-based RTO, the proposed ap-
proach offers a lower level of complexity, and the constraints are measured and controlled
in a transparent manner (without relying on a model for the constraints) in the upper layer.
Additionally, when obtaining stationary condition using feedback controllers, the compu-
tation time requirements are much less, as it uses only PID controllers.

3.4.2 Override as Direct Constraint Control
As direct constraint control, the override controller anticipates the effect of inaccurate

additional/intermediate parameters, i.e., steady-state gradient estimation, in the proposed
structure. This feature does not exist in the original primal-dual framework.

3.4.3 Comparison with Method of Multipliers
The method of multipliers (MoM) or augmented Lagrangian [64] involves incorpor-

ating penalty terms in the Lagrangian cost L to enforce constraint satisfaction during the
(numerical) minimization of L.

Consequently, in the implementation of MoM (discretized representation), the master
controller (equipped with a max selector and weight (ρ) on the constraint) is however lim-
ited by the time scale separation concept [65, 46], rendering the penalty terms insignificant
if the constraint is controlled in a slow time scale.

λk+1 = max
[
0,λk + ρg

]
(3.9)
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Figure 3.12: Gradients of Lagrange function with respect to inputs u1 and u2 with override control.
The gradients should optimally go to zero at steady state, which is achieved when we use the auxili-
ary input constraints (3.4) (green lines) but not when we incorrectly use the original input constraints
(3.3) in the master controller (purple lines).
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Figure 3.13: Input constraints with override control. The use of auxiliary input constraints (3.4)
(green lines) allows for ũ to temporary violate the constraint on u so that the corresponding Lagrange
multiplier can get updated. Without the auxiliary constraint, this is not possible (purple lines).

Even with an appropriate (and enforced) value of ρ, for the input constraint case, incorpor-
ating "back-off" remains necessary to minimize constraint violation further. This suggests
that the performance of this strategy may not surpass that of using override and "auxili-
ary" constraints. This outcome is expected because the selector in the proposed strategy
immediately eliminates the term from the "upper layer" in the calculation of the controlled
variables (c(λ) = g (u, y)).

3.5 Chapter Summary
In this chapter, we proposed primal-dual FOC with override and auxiliary constraints to

address the issue of indirect constraint control. This improvement not only enables direct
constraint control but also enable tight constraint control (on fast time scale), and thus
minimize constraint violations. For hard constraints, this approach may reduce constraint
violation magnitudes and minimize back-off parameters. Denoting S-VII as dual-based
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Figure 3.14: Lagrange multipliers with override control with and without auxiliary input constraints.

HRTO with override control and S-VIII as primal-dual FOC with override, we evaluate
and compare parameters outlined in section 2.5. Table 3.5 summarizes the assessment,
where the approaches are:

• S-IV: Dual-based hybrid RTO
• S-VI: Primal dual FOC
• S-VII: Dual-based HRTO with override control
• S-VIII: Primal-dual FOC with override

and the parameters we assess and compare are:
• (a): Is steady-state optimal achieved?
• (b): Is constraint controlled transparently (see Definition 2.1)?
• (c): Is flexible for active constraint switching?
• (d): Is constraint controlled directly (on fast time scale)?
• (e): Is applicable for less than twice differentiable Lagrange function?
• (f): Is numerical solver avoidable (computation time)?
• (g): Is it recommended for complex and large system?
• (h): Is input filter (or additional setpoint controller) avoidable?
• (i): Is parameters and states dynamic estimator avoidable?
• (j): Is gradient estimator avoidable?

Future works: In Chapter 2, primal-dual FOC with and without override are less gen-
eral for highly interactive systems, posing implementation challenges compared to weakly
interactive systems. To address this, we propose employing dual-based hybrid RTO with
override, albeit with limitations concerning Lagrange function type, computation time, and
the procedure for input filter (or additional setpoint controllers). These limitations are ab-
sent in the primal-dual FOC with override approach. Hence, Chapter 4 explores strategies
for applying primal-dual FOC in complex and large systems (g) to resolve these issues.
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Table 3.5: Summary of Chapter 3

S-IV S-VI S-VII S-VIII
(a) Yes Yes Yes Yes
(b) Yes Yes Yes Yes
(c) Yes Yes Yes Yes
(d) No1 No1 Yes Yes
(e) No Yes No Yes
(f) No (Medium) Yes No (Medium) Yes
(g) Yes No2 Yes No2

(h) No Yes No Yes
(i) No No No No
(j) Yes No Yes No

"Yes": the approach has satisfied the success parameter
"Yes": the approach has satisfied the success parameter in this Chapter
"No": the approach does not satisfied the success parameter
"No": the approach does not satisfied the success parameter, and will be addressed in this thesis.
1: is addressed in Chapter 3
2: will be addressed in Chapter 4
"No (High)": the approach does not satisfied the success parameter (f) at all (shown in Chapter 2).
"No (Medium)": the approach has partly satisfied the success parameter (f) better than "No (High)".
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Chapter 4

Dual-based DFoS Framework:
From Interactive to
Non-interactive

This chapter suggests and describes a Dual-based Distributed Feedback Optimization Sys-
tem framework. This framework is an efficient solution that employs simple tools to guide
a decomposed large-scale process system towards optimal operation while minimizing in-
formation sharing. Additionally, this framework handles varying time scale separations
among subprocesses and avoids numerical robustness issues by reducing reliance on op-
timization solvers. This chapter is based on the work in [41]

4.1 Introduction
In the process and manufacturing industry, coordinating several operating units, also

known as a coordinated large-scale process presents a critical challenge. Different opera-
tional group, each responsible for distinct units and local optimization objectives, collab-
orate by sharing resources to achieve mutual benefit. To optimize the operations, real-time
decision-making is essential to meet production targets and emission standards, typically
facilitated by real-time optimization (RTO) utilizing process models and real-time meas-
urements.

However, as industries strive for optimal coordination, they encounter new challenges.
Efficiency drives them to minimize information sharing, necessitating effective resource
allocation with minimal information exchange.

A promising solution to this challenge involves distributed real-time optimization, us-
ing the dual decomposition approach[66]. Here, individual subsystems, representing dif-
ferent entities, perform local optimization. Simultaneously, a master coordinator (equival-
ent to a master controller in primal-dual, see Chapter 2) adjusts shadow prices (Lagrange
multipliers) for shared constraints. This minimizes the requirement for extensive informa-
tion exchange, as only shadow prices and constraints are shared between subsystems and
the master controller.

69
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The master controller adjusts shadow prices based on the concept of supply-demand
dynamics, encouraging increased consumption by subsystems when supply exceeds de-
mand and reducing consumption when demand surpasses supply. This coordination mim-
ics the tâtonnement process, wherein the controller iteratively finding equilibrium prices
based on subsystem responses [38, 67, 64, 66]. To obtain a feasible and optimal solution,
subproblems with local subsystem models and the master controller iterate within an op-
timization’s numerical solver. This illustrates the core principles of this framework and its
role in optimizing processes with limited information sharing.

Generally, distributed optimization comprises two main schemes: primal-based and
dual-based. This chapter primarily focuses on dual-based optimization, addressing two
key research gaps within this framework.

First research gap and suggested solution: The dual-based optimization method,
outlined in [13], assumes an additive separable cost function, but is primarily suited for
non-interactive systems, as per Definition 2.4. However, real-world scenarios often involve
interactive systems. Hence, the first goal is to transform interactive systems into non-
interactive ones.

This chapter suggests strategies for enabling transformation, including identifying loc-
ally predicted solution variables, reformulating problems, establishing coordinators for
achieving consensus of predicted solutions among subsystems, and implementing solution
predictors. These strategies create a non-interactive system, enabling subsystems to estim-
ate disturbances and parameters locally, such as the gradient of the Lagrange function.

Second research gap and suggested solution: Typically, industries often favor simple
feedback controllers over numerical solver due to limited expertise and a corporate culture
prioritizing simplicity. A promising solution lies in feedback-optimizing control, as advoc-
ated by [28], which translates optimization directly into the control layer, eliminating the
need for solving numerical optimization problems.

Feedback optimizing control, extensively studied for single optimization problems, fo-
cuses primarily on what to control for the unconstrained degrees of freedom. Key refer-
ences include [8, 68, 69], and [70]. Other approaches like NCO-tracking, hill-climbing,
extremum seeking, and feedback RTO aim to drive the estimated steady-state cost gradient
to zero [71, 12, 72, 73]. However, limited research exists on feedback optimizing control
in distributed RTO with a master coordinator, which is also a gap addressed in this Chapter.

To eliminates the necessity of solving numerical optimization problems, this chapter
introduces a self-optimizing controlled variable for each subproblem, which is given as a
function of the shadow price. By independently controlling these proposed local controlled
variables, individual units can locally optimize their processes based on the current shadow
price. Through continuous updates of shadow prices by the master controller, optimal
system-wide operation is attained.

In this thesis, we introduce the framework as the dual-based distributed feedback-
optimizing system (dFoS). To distinguish between dFoS and distributed feedback-optimizing
control (dFoC), please refer to Section 1.2 and Figure 1.5(b)

To address the first research gap, we utilize a local self-optimizing controller for a solu-
tion prediction, while the master controller acts as a consensus coordinator, distinguishing
the dual-based dFoS from the primal-dual FoC by enabling subsystem decomposition into
several independent subsystems.
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Figure 4.1: Graphical illustration showcasing the distinction between of Primal-dual FOC and
Dual-based dFoS

The main contribution of this chapter is the introduction of a dual-based dFoS frame-
work for interactive systems. This enables optimal steady-state operation in a distributed
manner with limited information sharing and utilizing simple feedback controllers. This
approach addresses numerical issues, enhances transparency for easier implementation,
maintenance, and tuning by plant personnel, and crucially enables time scale separation
between subproblems and master controllers. The manipulated variables from the sub-
problems can be updated on a faster time scale than the master controllers, allowing for
different tunings, closed-loop time constants, and sampling intervals for individual sub-
problems. This may be a significant advantage in many large-scale industrial processes,
for example, because the process dynamics, measurement delays, etc., may vary for dif-
ferent subprocesses.

To provide clarity, Figure 4.1 serves to illustrate the distinction between dual-based dis-
tributed feedback-optimizing control (discussed in Chapter 2, represented in Figure 4.1(a))
and the dual-based distributed feedback-optimizing system (dFoS) approach (Figure 4.1(b)).
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4.2 Problem Formulation
For clarity, consider a steady-state optimization problem with two (2) distinct subsys-

tems or units. The problem can be defined as follows:

min
u1, u2

J (u1, u2,x1,x2, d1, d2) (4.1a)

s.t. f1 (u1, u2,x1, d1) = 0, (4.1b)
f2 (u1, u2,x2, d2) = 0, (4.1c)
g (u,x,d) ≤ 0 (4.1d)

where xi ∈ Rnxi , di ∈ Rndi , and ui ∈ Rnui are the state, disturbance, and decision
variables (also referred to as manipulated variables, degree of freedom, or inputs) for sub-
system i, respectively. Here, the label of nxi

, ndi
, and nui

signify the respective number
of states, disturbances and decision variables within subsystem i. The dynamic behaviour
of each subsystem is captured by fi, while operational constraints on states, inputs and
disturbances are imposed through the coupling constraints denoted as g.

The cost function is defined as follows:

J (u1, u2,x1,x2, d1, d2) = J1 (u1, u2,x1, d1) + J2 (u1, u2,x2, d2) (4.2)

where Ji : Rnui
+nuj → R is a function that denotes the local objective of subsystem i.

Here, nuj
is the number of decision variables from other subsystems that can influence the

local objective of subsystem i. This composition illustrates that the cost function is not
additively separable, as the local objectives are interdependent. This interdependence is
also evident in the steady-state equality constraints of subsystem 1 (Equation 4.1b), where
these constraints are influenced by input 2, u2.

Further, the linearized coupling constraint, denoted as g, can be expressed as follows:

g = Au− ȳ (4.3)

Here, A =
[
A1 A2

]
, where Ai ∈ Rng×nui , represents a coupling matrix for different

subsystems. Further, ȳ ∈ Rng is the coupling constraints, and ng is the number of such
constraints.

Each subsystem, denoted as i, may also have local constraints, which are expected to
be independently managed by their respective local organizations or units. These local
constraints are not explicitly shown in the problem formulation (4.1).

The goal of this work is to identify optimal solutions for problem (4.1), enabling
system-wide steady-state optimization through the use of simple feedback controllers, all
achieved in a distributed manner with limited information sharing.

Problem Statements
Let u = {u1, u2}. The Lagrangian of problem (4.1), denoted as L(u, λ), is:

L(u, λ) = J1 (u1, u2,x1, d1) + J2 (u1, u2,x2, d2) + λ⊤g (u,x,d) (4.4)

Here, λ ∈ Rng represents the Lagrange multiplier associated with the constraints g.
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Subsequently, the gradient of the Lagrangian of problem (4.1) w.r.t the the input u is
given as:

∇uL(u, λ) =
[
∇u1
L(u, λ)

∇u2L(u, λ)

]
=

[
∇u1

J1 +∇u1
J2

∇u2J1 +∇u2J2

]
+

[
∇⊤

u1
g

∇⊤
u2
g

]
λ (4.5)

where ∇⊤
ui
g = Ai. The terms highlighted in red indicate the challenges of decomposing

an interactive system through dual or Lagrange decomposition method.
Therefore, the first challenge we are going to address in this Chapter is "How to trans-

form an interactive system to a non-interactive one, making it amenable to system de-
composition using dual or Lagrange decomposition methods?". Further, the subsequent
challenge is "Given a decomposed non-interactive systems, how to enable system-wide
optimization through the use of simple feedback controllers?".

4.3 Proposed Approach
4.3.1 Transforming Interactive to Non-Interactive System

In this section, our aim is to transform an interactive system into a non-interactive one
by identifying of locally predicted solution of other subsystem. For example, the most
obvious predicted solution of subsystem 2 within subsystem 1 is by introducing variable
û2 within subsystem 1, and û1 as the predicted solution of subsystem 1 within subsystem
2. This concept allows us to transform and reformulate problem (4.1) as follows:

min
u1, u2, û1, û2

J1 (u1, û2,x1, d1) + J2 (û1, u2,x2, d2) (4.6a)

s.t. g (u,x,d) ≤ 0, (4.6b)
gs,1 : u1 − û1 = 0, (4.6c)
gs,2 : u2 − û2 = 0 (4.6d)

Note that the dynamic behaviours of the subsystems are not explicitly shown in the prob-
lem formulation (4.6).

Consequently, the Lagrangian of the transformed problem (4.6) is given as:

L(u, λ) = J1 (u1, û2,x1, d1) + J2 (û1, u2,x2, d2) +




λ
λs,1

λs,2



⊤ 


g
gs,1
gs,2


 (4.7)

Defining u = {u1, û2, u2, û1}, the gradient of the Lagrangian of problem (4.6) w.r.t
the the input u is given by:

∇uL(u, λ) =




∇u1
L1(u, λ)

∇û2L1(u, λ)
∇u2L2(u, λ)
∇û1
L2(u, λ)


 =




∇u1
J1

∇û2J1

∇u2J2

∇û1
J2


+




∇⊤
u1
gλ

∇⊤
û2
gs,2λs,2

∇⊤
u2
gλ

∇⊤
û1
gs,1λs,1


 (4.8)

This formulation (equation (4.8)) clearly separates problem (4.7) into two subsystems:
subsystem 1 represented by the first and second lines, which include the stationary con-
dition to predict û2, and subsystem 2 represented by the third and fourth lines, which
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include the stationary condition to predict û1. This reformulation enables the use of dual
or Lagrangian decomposition techniques to solve the original problem (4.1).

4.3.2 Master Controllers as Constraint and Consensus Controllers
Starting from an initial guess λ0, as a constraint controller, the master controller takes

on the role by updating the associated shadow price through iterative steps:

g↔ λ̃; λ = max
(
0, λ̃
)
; (4.9)

Note that, according to the KKT conditions, λ ≥ 0 must hold for inequality (coupling)
constraints in problem (4.6). This requirement is ensured by using a max operator.

Concurrently, acting as consensus controllers, and starting from an initial guess λs,10, λs,20,
the master controllers iteratively update the associated shadow prices as follows:

gs,1 ↔ λs,1; (4.10)

gs,2 ↔ λs,2; (4.11)

The master controllers, responsible for achieving consensus between predicted and actual
values, essentially handle equality constraints. Consequently, the associated Lagrange
multipliers are non-zero, specifically λs,1 ̸= 0 and λs,2 ̸= 0.

4.3.3 Dual-based Distributed Feedback-optimizing System
Given a non-interactive version of the steady-state optimization problem (4.1), we aim

to solve this problem using simple feedback controllers in a distributed manner. Spe-
cifically, we seek to find a self-optimizing controlled variable for each subproblem as a
function of shadow prices such that the master controllers can be used to coordinate the
local feedback controllers, thus achieving system-wide optimal operation. In this thesis,
this framework is known as the dual-based distributed Feedback-optimizing System (dFoS),
as depicted in Figure 4.2. In this figure, the grey box represents the physical system, the
white box represents the computation block, and vi denotes real-time measurements in
subsystem i.
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Figure 4.2: Dual-based distributed feedback-optimizing system for optimal resource allocation in a
non-interactive system using simple feedback controllers. Adopted from [41].

From the perspective of Lagrangian decomposition, it becomes evident that, for the sta-
tionary condition of subproblem i (as seen in the first and third lines of Equation (4.8)), we
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require ∇uiLi(ui, λ) = 0. Based on this concept, the self-optimizing controlled variable
of subsystem i can be expressed as a function of the Lagrange multiplier λ:

ci(λ) = ∇ui
Li(ui, λ) (4.12)

This controlled variable needs to be regulated to a constant set-point of cspi = 0 to satisfy
the necessary condition of optimality (NCO).

4.3.4 Feedback-optimizing Control for Solution Predictions
In this work, we also aim to predict solution from other subsystems using simple feed-

back controller in a distributed manner. Similarly, we aim to determine a self-optimizing
controlled variable for each subproblem as a the shadow prices associated with consensus
controllers, as described in the coupling constraints (4.6c)-(4.6d).

Within the framework of Lagrangian decomposition, achieving the stationary condition
for the predictor in subproblem i (as evident in the second and fourth lines of Eq.(4.8)) ne-
cessitates∇ûj

Li(ûj , λs,j) = 0. Based on this idea, the self-optimizing controlled variable
of the predictor in subsystem i can be expressed as:

cij(λs,j) = ∇ûj
Li(ûj , λs,j) (4.13)

which must be controlled to a constant set-point of cspij = 0 to satisfy the necessary condi-
tion of optimality (NCO).

The local estimation of the self-optimizing controlled variable (4.13) is feasible when
no information or measurements are required from other subsystems. For instance, this
applies when both the cost and constraint functions are linear w.r.t. the predicted solution.
To broaden the scope of application, where the predicted solution is not limited by the
degrees of freedom of other subsystems (ûj), please consider the following theory:

Theorem 4.1: Intermediate predicted solution identification method

Let ûj represent the predicted solution for another subsystem, and consider the local
stationary condition of subsystem i, denoted as ∇ûj

Li(ûj , λs, j) = 0. If there
exists an accessible intermediate variable yitm that depends on ûj , and the Jacobian
of yitm w.r.t to the predicted solutions has full rank, we can choose this intermediate
variable, yitm, as the predicted solution variable. In such a case:

cij(λs,j) = ∇yitmLi(yitm, λs,j) (4.14)

Controlling cij to 0 leads to optimal operation with zero loss.

Proof : Intermediate predicted solution identification method

Consider the partial derivative ∂yitm

∂ûj
, which represents the sensitivity of the inter-

mediate variable yitm with respect to the predicted solution of another subsystem,
ûj . Notably, this information is not locally accessible.

Let ∂Li

∂yitm
denote the partial derivative of the Lagrange function Li with respect

to the intermediate variable yitm. Importantly, this information is locally accessible.
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Now, let’s examine the chain rule for derivatives, which relates these expressions.

∂Li

∂ûj
=

∂Li

∂yitm

∂yitm
∂ûj

It becomes clear that by controlling ∂Li

∂yitm
to zero, we achieve optimal operation.

This control action is equivalent to controlling ∂Li

∂ûj
to zero.

4.3.5 Local Estimators
To evaluate (4.12)-(4.13), each subsystem i must locally estimate its steady-state cost

and constraint gradient using either model-based or model-free techniques, as discussed
in [35] and [74]. This process is depicted in Figure (4.2), aided by the transformations
detailed in Section 4.3.1 and Equation (4.8), crucial for constructing a dual-based dFoS for
an interactive system.

4.3.6 Summary of Proposed Framework
Equation (4.12) shows that by driving ∇ui

Li(ui, λ) to 0 within each subsystem i by
employing simple feedback controllers like PID controllers, and by iterative updates of
the Lagrangian multipliers (with assumption that the iterations converge), we can avoid
solving the optimization problem online.

In this framework, the master controller has limited knowledge of the individual sub-
systems, influencing only the Lagrangian multipliers, commonly known as shadow prices.
Consequently, subsystems are relieved from the necessity of sharing intricate details such
as models, measurements, local constraints, and objective functions. The only essential
information to be shared pertains to constrained variables, including those employed for
solution predictions.

The proposed framework eliminates the need for online numerical optimization, which
means that the sampling rate is no longer limited by computation time. This flexibility al-
lows master controllers and various subproblems to operate at different sampling rates,
enhancing adaptability to system requirements. Furthermore, the framework can be im-
plemented across subsystems with different time scales, accommodating a wide range of
system configurations. Additionally, depending on the choice of the gradient estimation
scheme used, the proposed scheme also avoids the steady-state wait-time issue.

In traditional distributed optimization framework, the master coordinator problem and
the subproblems require several iterations to converge to the optimal solution at each time
step. Meanwhile, in dFoS, we use real-time measurements (which are not the solution to a
optimization problem), to update the Lagrange multiplier λ in the master controller. This
process resembles real-time iteration between the master controller and the subproblems,
driving the entire plant toward the correct direction for achieving a steady-state optimal.

Under assumption of perfect control, dFoS can also be shown that as t → ∞, the
different subproblems converges to a KKT point of problem 4.1.

4.4 Numerical Examples
In this section, we present two illustrative examples. The first highlights a static sys-

tem, emphasizing the importance of solution predictors and consensus controllers in dFoS
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(proposed framework) without intermediate variables. Conversely, the second example
focuses on a dynamic system, emphasizing solution predictors and consensus controllers
with intermediate variables.

4.4.1 Motivating Example
In this section, we evaluate the propose framework against the standard dual-based

dFoS [41], and also apply primal-dual FoC, which does not involve system decomposition.

Problem description
Consider the following steady-state optimization problem with decision variables ui

and parameters/disturbances pi associated with subsystems i = 1, 2:

min
u1, u2

J = f (u1, p1, u2, p2) (4.15a)

s.t. g : u1 + u2 − 0.4 + p3 ≤ 0 (4.15b)

where p3 is the coupling parameter/disturbance. The overall objective function combines
the local objectives of the two subsystems (J = J1 + J2), where local objectives:

J1 = f1 (u1, u2, p1) = 2u2
1 − (1.5 + p1)u2

J2 = f2 (u1, u2, p2) = 3u2
2 − (1.0 + p2)u1

Additionally, the state variables zi for i = 1, 2 are determined by:

z1 = (1.5 + p1)u2, z2 = (1.0 + p2)u1

System analysis
Note that z1 is influenced by subsystem 2’s decision variable (u2), similar to z2 and

u1, rendering the cost function non-additively separable. When evaluating the augmented
linearized gain matrix Gup for u and p to∇uL, we find:

Gup =

[
4 0 0 −1
0 −1 6 0

]

According to Definition 2.4, assuming constant parameters categorizes this system as
decoupled or decomposed. However, with time-varying parameters, it becomes interact-
ive; ∇u1L is influenced by subsystem 2’s parameters, and vice versa (as noted in Remark
2.8). Thus, the interactive components are the parameters or disturbances.

As a result, the overall system is interactive and non-separable. Consequently, at-
tempting system decomposition becomes infeasible, since the objective function of each
subsystem relies on other subsystems. Furthermore, highlighting the significance of the
solution predictor, when ignoring interactive components, subsystem solutions become
disturbance-independent.
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Identification of predicted solution variables and problem reformulation
To construct a decomposable non-interactive system, we introduce predicted solution

variables of other subsystems in a local subsystem. For instance, in subsystem 1, we intro-
duce û2 as a local predicted solution variable of subsystem 2. This introduction reconfigure
Problem (4.15) into the following form:

min
u1, u2

f1 (u1, p1, û2) + f2 (u2, p2, û1) (4.16a)

s.t. g : u1 + u2 − 0.4 + p3 ≤ 0, (4.16b)
g1 : u1 − û1 = 0, (4.16c)
g2 : u2 − û2 = 0 (4.16d)

Defining u = {u1, û2, u2, û1}, the gradient of the Lagrangian of problem (4.16) w.r.t
the the input u is given as:

∇uL(u, λ) =




∇u1
L1(u, λ)

∇û2
L1(u, λ)

∇u2L2(u, λ)
∇û1L2(u, λ)


 =




4u1

− (1.5 + p1)
6u2

− (1.0 + p2)


+




λg + λg1

−λg2

λg + λg2

−λg1


 (4.17)

where the associated Lagrange multipliers (λg, λg1 , λg2) will be updated using master
controllers, and distributed to all subsystems. As a result, predicted solution variables
eliminate dependencies of subsystem 1 on u2 and subsystem 2 on u1.

Control structure in the proposed framework
Figure 4.3 shows the control structure of proposed framework. The solid black line PID
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u2,û1,p̂2

PID
SP=0

PID
SP=0

û2
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Figure 4.3: Proposed control structure for motivating example

controller with a max selector (on the top right) is a master controller from [41], acting
as a constraint controller with automatic active constraint switching. Inside the light blue
box, PID controllers with solid black lines represent the original local self-optimizing con-
trollers from [40]. Solid blue line PID controllers serve as solution predictors (providing
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information for local estimator), adjusted by master controllers for consensus with actual
values. The solid red and green line PID controllers are master controllers (as consensus
controllers) aligning predicted and actual values. All controllers use SIMC tuning [52].
Controller details are in Table 4.1-4.2.

Table 4.1: Parameters used in the local controllers shown in Figure 4.3

Tuning Local Grad. Solution Local Grad. Solution
Par. Controller 1 Predictor 1 Controller 2 Predictor 2
KI 0.1250 0.0833 0.0833 0.1250

Table 4.2: Parameters used in the master controllers shown in Figure 4.3

Tuning Constraint Consensus Consensus
Par. Controller Controller 1 Controller 2
KP −0.7937 −1.4297 −0.0420
KI −0.1984 −0.0275 −0.0008
KAW 0.4000 − −

Parameter or disturbance estimation technique
We employ a model-based estimation technique within each local estimator. Mathem-

atically, this approach is represented as:

p̂1 =

(
2u2

1 − J1
)

û2
− 1.5 (4.18a)

p̂2 =

(
3u2

2 − J2
)

û1
− 1.0 (4.18b)

Note that û2 is locally provided by the solution predictors feedback locally within sub-
system 1, while û1 is similarly provided within subsystem 2. Meanwhile, we estimate
p̂3 = g − utot + 0.4, where utot = u1 + u2. This estimation is performed immediately
using measured constrained variables.

Simulation results
Figure 4.4 demonstrates that our proposed framework, with solution predictors and

consensus controllers, achieves steady-state optimal profits as the primal-dual FoC can
achieve. In contrast, the original dual-based dFoS (without solution predictors), not only
falls short in profit but also loses its sensitivity to disturbances residing within interact-
ive components. This compelling illustration emphasises the necessity of incorporating
solution predictors and consensus controllers.

Equation (4.18) shows that without predictors, predicted variables, i.e., û1 and û2

will not be updated. In the original dual-based dFoS framework, this leads to inaccur-
ate local disturbance estimation. However, Figure 4.5 demonstrates that solution predict-
ors and consensus controllers allow each subsystem to autonomously estimate paramet-
ers/disturbances locally.

Figure 4.6 demonstrates the proposed framework’s ability to control and switch active
constraint regions. Notably, the proposed framework, along with the original dual-based
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Figure 4.4: Simulation results: Profits
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Figure 4.5: Simulation results: Disturbance/Parameter Estimation

dFoS, operates on a slower time scale for constraint control compared to primal-dual FoC.
This becomes apparent from t = 10 to t = 15 hours, where shadow price updates are slow,
resulting in significant dynamic violations in the proposed dual-based dFoS framework.
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Figure 4.6: Simulation results: CV - MV of coupling constraint controllers

Figures 4.7(a)-4.7(b) display stationary states achieved with local gradient controllers,
while Figures 4.7(c)-4.7(d) depict similar outcomes for the auxiliary stationary states with
solution predictors. Figure 4.8 verifies consensus between predicted and actual solutions
achieved using consensus controllers.

In summary, simulation results from Figures 4.4 to 4.8 indicate the promise of the pro-
posed framework in decomposing interactive systems and achieving system-wide steady-
state optimal performance. In the next example, we demonstrate its effectiveness in a more
realistic case study.
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Figure 4.7: Simulation results: Stationary conditions
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Figure 4.8: Simulation results: Consensus of predicted and actual solutions

4.4.2 Interactive Gas Lift Optimization
Problem description

In this section, we apply the proposed framework on a subsea gas-lifted oil production
well network, including the riser (see Fig. 4.9) with N = 2 subsystems (clusters), operated
by two independent production units. Unit i operates well i within cluster i for i = 1, 2.

We evaluate the proposed framework by comparing it with the original dual-based dFoS
[41] and a primal-dual FoC, serving as a benchmark. The overall objective is to optimize
revenue from oil production and minimize gas lift compression costs. The two production
units, operating different wells, share a common topside process facility as illustrated in
Figure 4.9. However, this facility has capacity limitations, restricting the total gas that can
be exported. This limitation on total gas production is a key coupling constraint among
the subsystems, resulting in the following optimization problem:

min
wgl,1, . . . , wgl,N

− $o

N∑

i=1

woe,i + $gl

N∑

i=1

wgl,i (4.19a)

s.t. wtot
ge − w̄ge ≤ 0 (4.19b)
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where $o is the oil price, and $gl is the cost of gas compression. Further, the total gas
export, wtot

ge =
∑N

i=1 wge,i.

Flash Separator

Reservoir 1

Reservoir 2

Riser

wge

woe

pm
wgl,1

wgl,2

Figure 4.9: A simplified process diagram of a subsea gas-lifted oil production well network.

In this context, we consider the gas-lift injection rate, denoted as wgl,i, as the decision
variable. Additionally, we have exported oil and gas production rates, woe,i and wge,i,
respectively, which depend on the gas-lift injection. The local objective function is repres-
ented as:

Ji = −$owoe,i + $glwgl,i

Furthermore, the gas-to-oil ratio (GOR), a reservoir property, serves as a time-varying
disturbance affecting different wells (feed disturbance). In this simulation study, we as-
sume variable GOR values for different wells. A high GOR indicates that a well contains
lighter fluid, requiring a smaller gas-lift injection rate compared to wells with lower GOR
values to produce the same amount of oil.

Primal Dual Feedback-optimizing Control
In a centralized manner (undecomposed system), units typically share information

across the entire system, making primal-dual FoC a suitable choice. For this case study,
we employ the same control structure used in Chapter 2, as shown in Figure 2.17. Note
that, when employing model-based parameter and gradient estimation, a good complete
model of the entire system is required.

Dual-based Distributed Feedback-optimizing System
Efficient production operations typically entail sharing only effective information, avoid-

ing the inefficiency of sharing all data. For instance, Gas-Oil Ratio (GOR) typically need
not be distributed beyond its relevant production operation unit. This concept is visually
depicted in Figure 4.9 by limiting information sharing within the dashed blue line. Con-
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sequently, the system necessitates decomposition into two independent production units.
Furthermore, an offshore riser is required for hydrocarbon transport from subsea to

surface facilities. Therefore, we may also need one additional local subsystem with lim-
ited information sharing. Yet, from an optimization standpoint, we assume no degrees of
freedom for optimal decisions within the riser.

To achieve distributed optimal operation, we control the proposed local self-optimizing
variable (4.12). However, decomposing the two wells into separate production units chal-
lenges the assumption of an additively separable cost function. This challenge arises be-
cause the production from one well can impact the other due to factors like commingle
pressure, such as manifold pressure. To address this interaction and enable the independ-
ent operation of production units, we control the manifold pressure to a constant value. The
setpoint can be obtained from the results of a prior and slower time-scale optimization.

Given a constant pressure manifold, in this example, (4.12) can be represented as,

∇wgl,i
Li(wgl,i, λge) = ∇wgl,i

Ĵi +
(
∇wgl,i

ŵge,i

)⊤
λge (4.20)

where the Lagrange multiplier (also known as dual variable or shadow price) associated
with constraint (4.19b) is labelled as λge.
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Figure 4.10: Dual-based dFoS control structure for interactive gas lift optimization problem.

In Figure 4.10, we illustrate the control structure of the original dual-based dFoS im-
plemented in the interactive gas lift optimization problem. Notably, the local feedback-
optimizing algorithm within the light blue box exclusively relies on local measurements
from well 1 (managed by production unit 1) and dual variables from the constraint con-
troller (inside the light red box). No information exchange occurs with the other unit.

Furthermore, in the context of model-based parameter estimation, the local estimator
requires a set of constant local parameters, denoted as p1, forming the foundation for
first-principle modeling techniques. Within this set, one crucial element is the manifold
pressure, represented as pm.

Unlike primal-dual FoC, our dual-based dFoS does not require a riser model for model-
based parameter and gradient estimation. Only the local well model is required.

Dual-based Distributed Feedback-optimizing System with Solution Predictors
As mentioned, the key strategy of the proposed framework involves identifying pre-

dicted solution variables to equalize with the actual ones. An obvious candidate is the
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optimal gas-lift flow rate of the other production unit. However, this candidate proves
impractical for prediction due to its dependence on measurements from the other unit.

To address this challenge, we utilize Theorem 4.1 and introduce an intermediate pre-
dicted solution variable. In this context, the manifold pressure stands out as the ideal
candidate, denoted as p̂m,i for unit i. Instead of regulating the manifold pressure to a
constant value, our local optimization problem treats this variable as a "decision variable."
This approach enables the incorporation of a feedback-based solution predictor to predict
the optimal value of the actual manifold pressure, locally managed by the riser system.
Consequently, the local steady-state optimization problem takes the form:

min
wgl,i, p̂m,i

− $owoe,i + $glwgl,i (4.21a)

s.t. wge,i − h̄i ≤ 0, (4.21b)
p̂m,i − pm = 0 (4.21c)

where the new decision variables are ui =
[
wgl,i p̂m,i

]⊤
, and the actual manifold pres-

sure, pm, is locally managed by riser system operation unit. Further, h̄i is any constant
value but it will be eliminated after the first derivative.

Define gi =
[
gi(1) gi(2)

]⊤
=
[
wge,i − h̄i p̂m,i − pm

]⊤
, and g = wtot

ge − w̄ge. Let
λg and λgi be the associated Lagrange multipliers of constraint g and gi(2), respectively.
Figure 4.11 illustrates the implementation of a dual-based distributed feedback-optimizing
system with solution predictors in the interactive gas lift optimization problem. Solid
blue line and PIDs in blue are the additional control structure that incorporate solution
predictors (inside light blue boxes) and consensus controllers (inside light red boxes).
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∇u2
ĝ2
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Figure 4.11: Proposed framework: Dual-based distributed feedback-optimizing system with solu-
tion predictors for interactive gas lift optimization problem.

Figure 4.11 shows that the predicted solution variables, p̂m,i, are locally updated and
informed to local estimator. These updates facilitate more accurate disturbance and para-
meter estimation within each unit. Notably, this estimation process operates independ-
ently, requiring no actual information exchange with other operation units. Instead, it
relies on the local Lagrange multipliers from the consensus controllers. These multipliers
enable control actions to align the predicted variables with the actual values managed by
the riser operation unit.
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Most importantly, while predicted solution variables are formulated as decision vari-
ables, there is no requirement for additional manipulated variables, such as pressure con-
troller, in the actual process. The values of these variables are only transmitted to the local
estimator.

In this example, the self-optimizing control variable linked to the solution predictor
(4.13) variable, p̂m,i, can be defined as,

∇p̂m,i
Li(wgl,i, p̂m,i, λge, λgi) = ∇p̂m,i

Ĵi + λgi (4.22)

The solution predictor variable, p̂m,i, is continuously updated in real-time to drive the
self-optimizing control variable (4.22) to 0.

Given the real-time update manifold pressure, the self-optimizing control variables
(4.12) can be represented as in equations (4.20). This approach operates without needing
a riser model for the model-based parameter and gradient estimation. It only requires the
local well model. This is possible because there is no degree of freedom in the riser system.
In a broader system context, the manifold pressure variable acts as artificial boundary
(that need to be updated properly), connecting two sequential small optimization problems
(serial interconnection). Nevertheless, we do not explore this concept further to maintain
focus on this chapter’s topic.

Parameter Estimation
Local estimators, whether incorporated in dual-based dFoS with or without solution

predictors and consensus controllers, or an integrated estimator within primal-dual FoC,
share a common two-step process. In the first step, disturbance estimation takes place,
facilitated by a comprehensive measurement set. This stage employs the extended Kalman
filter [26, 75], resulting in the estimation of disturbance, differential, and algebraic states.

Given both the decision variables and the estimated disturbance, as well as the differ-
ential states provided in the first step, the second step involves the estimation of the steady-
state gradients of cost and constraint functions. In this chapter, we adopt a model-based
gradient estimation framework proposed by [55]. Note that this framework is not restric-
ted to this specific gradient estimation approach, as alternative model-based or model-free
gradient estimation schemes [35] can be employed instead.

PID Controllers
In this study, we use PID controllers that are tuned using the SIMC tuning rules recom-

mended by [52]. These controllers are designed with a sampling time of 1 second. For
controller tuning and parameter values utilized in this simulation, see Table 4.3-4.4.

Table 4.3: Parameters used in the local controllers shown in Figure 4.11

Tuning Local Grad. Solution Local Grad. Solution
Par. Controller 1 Predictor 1 Controller 2 Predictor 2
KP 11.9688 − 11.1624 −
KI 0.0199 1.2332 0.0186 1.2110
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Table 4.4: Parameters used in the master controllers shown in Figure 4.11

Tuning Constraint Consensus Consensus
Par. Controller Controller 1 Controller 2
KP −0.0240 −8.8457e− 04 −9.0683e− 04
KI −1.2413e− 04 −7.6919e− 07 −7.8040e− 07
KAW 19.3346 − −

Simulation Setup
The overall plant is modelled as a DAE (Differential Algebraic Equations). The model

equations can be found in Appendix A, and the model parameters used in this case study
are shown in Table 4.5. The plant simulator is developed using the CasADi ver.
3.5.1 toolbox ([53]) in MATLAB R2019b and is simulated using the IDAS integrator.

Table 4.5: List of wells and riser parameters and their corresponding values in the simulation.

Par. [units] Well 1 Well 2 Par. [units] Riser
Lw [m] 1500 1500 Lr [m] 400
Hw [m] 1000 1000 Hr [m] 300
Dw [m] 0.121 0.121 Dr [m] 0.121
Lbh [m] 500 500 - -
Hbh [m] 500 500 - -
Dbh [m] 0.121 0.121 - -
La [m] 1500 1500 - -
Ha [m] 1000 1000 - -
Da [m] 0.189 0.189 - -
ρo [kg/m3] 800 800 ρor [kg/m3] 800
Civ [m2] 1E-4 1E-4 Cpr [m2] 1E-2
Cpc [m2] 2E-3 2E-3 - -
pr [bar] 150 155 ps [bar] 20
PI [kg/bar.s] 3.5 3.5 - -
Ta [oC] 28 28 Tr [oC] 30
Tw [oC] 32 32 - -

Simulation Results
The Gas-Oil Ratio (GOR) exhibits variations, as shown in Figure 4.12(a) and 4.12(c).

These fluctuations introduce disturbances affecting optimal gas-lift allocation. To assess
GOR estimation accuracy, we examine the absolute error obtained by primal-dual FoC,
original dual-based dFoS, and the proposed framework, as displayed in Figure 4.12(b) and
4.12(d). These figures highlight the effectiveness of the proposed framework in minim-
izing steady-state estimation errors. In contrast, the absence of predictors and consensus
controllers results in persistent steady-state errors.
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Figure 4.12: Simulation results: True and Estimated Disturbances (GOR), along with the absolute
error between them (in the right-hand plots)

Figure 4.13 presents simulation results, comparing primal-dual FoC, original dual-
based dFoS, and the proposed framework. The absolute error between the steady-state
optimum and both the original dual-based dFoS and the proposed framework is shown
in Figure 4.13(b) and 4.13(d) for total exported oil and gas. These figures illustrate the
proposed framework’s successful convergence to the steady-state optimum, whereas the
original dual-based dFoS cannot eliminate steady-state errors.
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Figure 4.13: Simulation results: the performance of original dFoS and proposed framework com-
pared to the steady-state optimum provided by primal-dual FoC, along with the absolute error
between them (in the right-hand plots)
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The original dual-based dFoS fails to eliminate steady-state errors due to the absence of
a feature that drives predicted variables toward optimal solutions, essential for eliminating
interaction effects. Figure 4.14 illustrates the success of the proposed framework in locally
driving predicted variables (manifold pressures) to optimal solutions. Conversely, without
predictors and consensus controllers, these variables remain unupdated.
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Figure 4.14: Simulation results: Manifold pressure

Note that one might consider treating the unknown manifold pressure as a disturbance
and estimating it through a suitable parameter estimation technique. However, as shown
in Figure 4.14, this approach has drawbacks:

• It does not resolve the challenge of equalizing a key controlled variable to enable
system decomposition, leading to differing estimations across subsystems in steady-
state.

• It leads to less accurate disturbance estimation, relying solely on local measure-
ments.

To the end, the proposed framework eliminates steady-state losses (Figure 4.15(a)),
while the original dFoS experiences cumulative losses that rise over time (Figure 4.15(b)).
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Figure 4.15: Simulation results: the profit’s performance of dFoS and proposed framework (with
predictors and consensus controllers).

Figure 4.16 presents further simulation results for the proposed framework. Figure 4.16(c)
highlights how, from t = 18 − 32 h, constraint (4.19b) relaxes, leading to a decrease in
Lagrange multipliers λge. After t = 35 h, the gas processing capacity constraint tight-
ens. Additionally, Figure 4.16(d) shows that varying GOR influences the optimal dual
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variables of the equality constraints associated to the manifold pressure as the predicted
solution variable.
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Figure 4.16: More simulation results from the proposed framework

Discussions
During the transition, note that as GOR changes, the associated Lagrange multipliers

is converging in real-time, as seen in Figure 4.16(c). This may lead to temporary dynamic
violations of the total gas production rate, but these constraints are satisfied at steady-state.
Severe dynamic constraint violations can occur during the coupling constraint switch from
unconstrained to constrained scenarios, as shown in [41], primarily due to slow time-scale
constraint control.

Regarding manifold pressure local estimation, one might consider having the riser op-
eration unit directly transmit actual manifold pressure to each well subsystem. While this
strategy is feasible and effective, it contradicts the principle of limited information sharing
and deviates from the general system decomposition concept.

4.5 Chapter Summary
As introduced by [41], this chapter starts with a dual-based dFoS to decompose non-

interactive systems. This framework employs simple feedback controllers to control (4.12)
to a constant setpoint of zero. As (4.12) is a function of Lagrange multipliers, we showed
that by utilizing a master controller (with a max selector) for Lagrange multiplier updates,
it enables system-wide optimal operation.

Additionally, to address previous chapter concerns, we incorporate a dual-based dFoS
with solution predictors, featuring consensus controllers. This approach allows system de-
composition for interactive systems. The key idea involves predicting solution variables
and equalizing them, through consensus controllers, with measured variables, thereby en-
abling the decomposition of large-scale interactive systems. For serial interconnection
systems, it enables real-time artificial boundary updates.
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To the end, this proposed framework allows different time scale separations among
subsystems, mitigates numerical robustness issues, minimizes information sharing between
subsystems, and enables system-wide optimal operation. It is compatible with both model-
based and model-free gradient estimation schemes, making it widely applicable.

Assessment Table:
Let S-IX be the proposed framework of this chapter, the parameter we assess and

compare are described in section 2.5. Table 4.6 summarizes the assessment , where the

Table 4.6: Summary of Chapter 4

S-IV S-VI S-IX
(a) Yes Yes Yes
(b) Yes Yes Yes
(c) Yes Yes Yes
(d) No1 No1 No1

(e) No Yes Yes
(f) No (Medium) Yes Yes
(g) Yes No2 Yes
(h) No Yes Yes
(i) No No No
(j) Yes No No

"Yes": the approach has satisfied the success parameter
"Yes": the approach has satisfied the success parameter in this Chapter
"No": the approach does not satisfied the success parameter
"No": does not satisfied the success parameter, and will be addressed in this thesis.
1: is addressed in Chapter 3
2: is addressed in Chapter 4
"No (High)": does not satisfied the success parameter (f) at all (shown in Chapter 2).
"No (Medium)": has partly satisfied the success parameter (f) better than "No (High)".

approaches are:
• S-IV: Dual-based hybrid RTO
• S-VI: Primal dual FOC
• S-IX: Dual-based Distributed Feedback-Optimizing System

and the parameters we assess and compare are:
• (a): Is steady-state optimal achieved?
• (b): Is constraint controlled transparently (see Definition 2.1)?
• (c): Is flexible for active constraint switching?
• (d): Is constraint controlled directly (on fast time scale)?
• (e): Is applicable for less than twice differentiable Lagrange function?
• (f): Is numerical solver avoidable (computation time)?
• (g): Is it recommended for complex and large system?
• (h): Is input filter (or additional setpoint controller) avoidable?
• (i): Is parameters and states dynamic estimator avoidable?
• (j): Is gradient estimator avoidable?
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Future works: Transforming interactive problems into non-interactive ones is crucial
for enabling system decomposition and implementing the dual-based dFoS framework.
Experimental validation is discussed in Chapter 5. Beyond practical benefits, this trans-
formation enhances clarity for subsequent analyses, such as integrating override control-
lers, ensuring proper pairing of override controller, designing multi-input override control-
lers, and completing the algorithm with auxiliary constraint controllers. These additional
studies are addressed in Chapters 6 and 7, respectively.
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Chapter 5

Experimental Validation of
Dual-based DFoS Framework in
a Gas-lifted Oil Well Rig

The goal of this chapter is to experimentally validate the approach described in Chapter
4. This chapter is based on the work in [65]

5.1 Introduction
Many process systems feature multiple parallel units or subsystems coupled by stream

of energy or material flows, as highlighted in various studies [76, 77, 78, 66]. For in-
stance, in large industrial operations, a common power plant might supply steam to various
subprocesses [76, 78, 79]. Similarly, in oil production networks, multiple reservoirs’ oil
wells may utilize the same topside processing facility [80, 81, 82, 41]. In such scenarios,
the preference is often to break down and optimize subprocesses locally, as distributed
decision-making tools prove more practical and manageable in comparison to large-scale
centralized optimization.

To meet this requirement, we proposed the dual-based distributed feedback-optimizing
system (dual-based dFoS) framework, with its advantages detailed in [41] and Chapter
4. This approach, designed for linear coupling constraints, has been analytically demon-
strated to converge to the stationary point of the overall optimization problem under reas-
onable assumptions [40]. This approach has been applied in a simulation study to a large-
scale subsea production system with both linear and nonlinear coupling constraints, and
enabling active constraints switching in [41], where it was shown that the dual-based dFoS
framework was able to drive the system to its overall optimal operation without the need
to repeatedly solve numerical optimization problems online.

93
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Remark 5.1: Benefit 1 of dual-based dFoS framework

It is important to emphasize that dual-based dFoS framework mainly consists of
master controllers and local gradient controllers, which can be implemented using
simple tools such as PID controllers. Therefore, this framework can achieve optimal
performance in the steady-state without any numerical optimization solver.

Remark 5.2: Benefit 2 of dual-based dFoS framework

It is interesting to note that the estimation of the local steady-state cost and con-
straint gradients in each subsystem needs only the models and the real-time process
measurements of the local subsystem. This is a useful property that enables imple-
mentation of dual-based dFoS framework in systems where minimum data exchange
are important as motivated in [66, 40] for example.

Building on the previous work [40, 41], Chapter 4, we now experimentally validate
this approach on a lab-scale gas-lifted oil well rig consisting of three wells with the lift
gas being the shared resource that couples the three parallel wells together [83]. To this
end, the goal of this chapter is to experimentally validate the dual-based dual-based dFoS
framework ([41], Chapter 4) and benchmark its performance with a numerical optimiza-
tion based RTO.

5.2 Experimental Setup
In subsea production systems, wells are located on the seabed to extract the hydrocar-

bons trapped in the underground reservoir. The produced oil and gas is transported along
the seabed in pipelines to the processing facility where the riser pipeline takes it from the
seabed to the surface. If the reservoir pressure is low, either naturally or due to deple-
tion, artificial lift methods may be needed to overcome the pressure losses and bring the
hydrocarbons to the surface. Gas-lift is a commonly used artificial lift method, in which
compressed gases are injected into the well tubing to reduce the fluid mixture density and,
consequently, the hydrostatic pressure losses.

However, injecting too much gas increases the frictional pressure drop in the well
tubing, which has a counteracting effect [60]. Therefore, each well has a local optimum
corresponding to the gas lift injection rate. The total available lift gas is often a limited re-
source that must be optimally allocated among the wells to maximize the production from
the overall production network. For more practical information of production optimization
in oil and gas industry, the reader is referred to [14, 84] and the references therein.

5.2.1 Experimental rig as a subsea production system
To mimic the subsea gas-lifted oil production system, we use a lab-scale experimental

rig that uses water and air as working fluids instead of oil and gas for simplification. The
choice of working fluids does not influence the gas lift phenomenon, which can still be ob-
served in the lab rig. Thus, the rig is suited for studying production optimization methods,
where the gas lift effect is the phenomenon of interest.

Figure 5.1 shows a simplified flowsheet of the system indicating three sections: a reser-
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Figure 5.1: Experiment schematic. Adapted from [83].

voir, well, and riser section. The system measurements, denoted by yp, include well
top pressures (PI101, PI102, and PI103), pump outlet pressure (PI104), liquid flowrates
(FI101, FI102, and FI103), and gas flowrates (FI104, FI105, and FI106). Three PI control-
lers are used to control the gas flowrates, denoted by u =

[
Qgl,1 Qgl,2 Qgl,3

]⊤
, to the

calculated setpoints represented by usp =
[
Qsp

gl,1 Qsp
gl,2 Qsp

gl,3

]⊤
. The reservoir valve

openings (CV101, CV102, and CV103) represent the system disturbances. These open-
ings are adjusted during the experiments to simulate different reservoir behaviors while
keeping the pump outlet pressure constant through a PI controller.

The reservoir section contains a stainless steel tank, a centrifugal pump, and the three
control valves (CV101, CV102, and CV103). These valves are used to represent disturb-
ances from reservoir (for example, to emulate pressure oscillations, or reservoir depletion).
With this setup, the reservoir produces only liquid with outflow rates ranging from 2 L/min
to 15 L/min. Flow meters (FI101, FI102, and FI103) are located before the reservoir valves
to measure the outflow rates. The pump’s outlet pressure (PI104) is kept constant at 0.3
barg in this experiment using a PI controller that adjusts the pump rotation.

The wells consist of three parallel flexible hoses with 2 cm inner diameters and length
of 1.5 m. Approximately 10 cm after the reservoir valves, pressurized air at approximately
1 barg is injected by three air flow controllers (FIC104, FIC105, and FIC106) within the
range of 1 sL/min to 5 sL/min.

The risers are three vertical pipelines, orthogonal to the well section, with 2 cm inner
diameters and 2.2 m high. We measure the pressures on top of the risers (PI101, PI102,
and PI103). After the sensors, three manual valves are kept open during the experiments.
The air is vented out to the atmosphere, and the liquid is recirculated to the reservoir water
tank. More detailed description of the test setup can be found in [83]. The experimental
lab rig we use in this work are shown in Figure 5.1.
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5.2.2 Optimization problem setup
The objective of the optimization problem in this experimental setup is to maximize

the network liquid flow rate (i.e. the summation of the liquid production of the three
wells) given a limited amount of gas-lift injection. This objective can be expressed as an
economic objectives as follows,

J (u,p) :=

3∑

i=1

fi(ui, pi)

= −20Ql,1 (u1, p1)− 25Ql,2 (u2, p2)− 30Ql,3 (u3, p3)

(5.1)

where Ql,1, Ql,2, and Ql,3 are the produced liquid flowrates of wells 1, 2, and 3, respect-
ively. For illustration, we assume that the wells have different hydrocarbon prices as shown
above. The input vector is given by

u =
[
Qgl,1 Qgl,2 Qgl,3

]⊤

where Qgl,1, Qgl,2, and Qgl,3 are the injected gas flowrates of wells 1, 2, and 3, respect-
ively. Figure 5.2 and 5.3.

Figure 5.2: The equipment inside the red box are Reservoir valves, and inside the blue box are the
Injection valves.

In the context of optimization, these flowrates are the decision variables. Meanwhile,
for the plant, these flowrates are the setpoints that need to be tracked. As shown in
Figure 5.1, the experimental lab rig has flow indicator and controllers (FICs) 104, 105,
and 106 to regulate the air injection flowrates to their setpoints. To differentiate to the
actual one, we denote these decision variables of the optimization problem as usp =[
Qsp

gl,1 Qsp
gl,2 Qsp

gl,3

]⊤
. Furthermore, three elements of p, which are the reservoir valve

openings CV101, CV102, and CV103, are time-varying. This implies that the cost is also
a function of p.

Considering the valve opening of FICs as decision variables presents practical chal-
lenges due to valve non-linearity and hysteresis. Instead, using injected gas flow rates
as decision variables enables system decomposition and serves as a strategy to transform
an interactive system into a non-interactive one through vertical decomposition. This ap-
proach is specifically tailored to parallel systems. For a more general technique, refer to
Chapter 4.
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Figure 5.3: The equipment inside the red box are the risers.

The total gas availability, which is a shared (input) constraint, can also be expressed as
follows:

g (u,p) :=

3∑

i=1

gi(ui, pi)− gmax

= Qgl,1 +Qgl,2 +Qgl,3 −Qmax
gl

(5.2)

where we directly measure the constraint, and we use FICs to drive Qgl,i to Qsp
gl,i. As

these controllers are typically fast, we can approximate Qgl,i ≈ Qsp
gl,i. To the end, the

steady-state optimization problem of this rig can be expressed as follows:

min
usp

J (usp,p) (5.3a)

s.t. g (usp,p) = 0 (5.3b)

Remark 5.3: Equality Constraint

Note that the total gas availability in general is an inequality constraint. However, in
this experimental setup, we found that the gas lift constraint is always active, (which
is also common in many gas-lifted oil fields). Hence we can equivalently consider
the coupling constraint to be an equality constraint, and then we do not need the max
selector for λ update in the constraint control.

5.2.3 Dual-based Distributed Feedback-optimizing System Setup
Control structure design

We now implement the control structure of the dual-based distributed feedback-optimizing
system (dFoS) for our experimental setup. Given that we have three wells in the experi-
mental setup, we decompose the problem into three subsystems. For each subsystem, we
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Figure 5.4: The control structures of the dual-based dFoS framework implemented in the experi-
mental lab rig.

use a local gradient estimator that estimates the gradient of the local cost ∇Ql,i and the
constraint∇Qgl,i (cf. Remark 1). Each susbsystem has a local PI controllers that controls
ci(λ) (see Equation 4.12) to 0 (gradient controller). The output from the gradient control-
ler, denoted as Qsp

gl,i, is used as the setpoint for the flow controller FICi to adjust the air
injection valve opening.

The control structure implemented in the lab-rig is illustrated in Figure 5.4. The dia-
gram has three subproblems because the economic objective (5.1) is additively separable.
The plant defined in Figure 5.1 consists of well 1, well 2, well 3, FIC 104, FIC 105 and
FIC 106, which are inside dashed green lines in this diagram. The actual gas-lift flowrates
(Qgl,i) are states in the plant. The decision variables for dual-based dFoS scheme are the

gas-lift flowrates setpoints
(
Qsp

gl,i

)
. Using the flow controllers, the real manipulated vari-

ables for the well rig are the valve openings, labelled by vo,i. The well rig experiences
both input and output measurement noises, which are labeled as ηi,i and ηo,i, respectively.
Using the local measurement set (yi) and the local dynamic model adaptation, we estim-
ate differential states (x̂i), algebraic states (ẑi), and parameters/disturbances, (p̂i). In this
work, the "Dynamic Model Adaptation" is an extended Kalman filter.

Regarding the master or central constraint controller, we can directly measure the con-
straint g value for updating the Lagrange multiplier. However, we have to estimate both
cost and constraint gradient for the gradient controllers (i.e primal controllers). We use
forward sensitivity analysis to estimate these values since a reliable dynamic model of the
system is available. To compute the local sensitivities, we also need to estimate the cur-
rent states of the system (both differential and algebraic). Here, an extended Kalman filter
(EKF) is used in each subsystem to estimate the states using only the local measurements.
However, any suitable dynamic estimator can be applied, as long as it provides accurate
estimates of the states and effectively filters the measurement noise properly.
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Controller tuning
Once the control structure is defined, we need to tune the controllers. In the experi-

mental rig, the fastest possible sampling rate of the data acquisition software is 1 seconds.
In theory, we could execute both the gradient and the master/central constraint control-
lers at the same rate. However, depending on their tuning, they might compete against
each other, which might drive the system to instability. Therefore, we need a time scale
separation between these controllers. Given the cascaded structure, and need for proper
timescale separation for smooth operation, we now provide in depth discussion on how the
controllers were tuned.

The idea of dual decomposition is that the subproblems (represented by the dotted
boxes in Fig. 5.4) are solved for each update (iteration) of the central coordinator prob-
lem (represented by the master/central constraint controller). However, the subproblems
controlling ci(λ) to a setpoint of cspi are also solved by iteration, so in practice the subprob-
lems will not reach full convergence to their setpoint of cspi within each central coordinator
problem update. Fortunately, it is possible to estimate the approach to convergence when
solving the equations using feedback controllers, as in this paper.

The rate of convergence to the setpoint in each subproblem is given by the closed-loop
time constant τci of the corresponding control loop. More specifically, for a linear first-
order system, the approach to convergence (or steady state) is (1 − e−t/τci ) where τci is
the closed-loop time constant of the ith control loop, and t is the convergence time of the
central coordinator problem. Thus, the approach to convergence increases from 63% to
95.0% to 99.3 % as t/τci increases from 1 to 3 to 5. This implies that at 5 time constants
the approach is 99.3%, and convergence (or steady state) has for practical purposes been
reached. This may be regarded as the basis for the rule of thumb of requiring a time scale
separation between control layers of at least 5 [46]. If the time scale separation gets too
small, typically 3 or less, the layers will start interacting and we may experience undesired
oscillatory behavior or even instability [85]. A larger value (larger than 5) allows for
robustness to process gain variations which will affect the closed-loop time constants of
the control loops. However, with a too large value, the overall convergence (including the
central constraint controller) will be slow, so for practical purposes, a value for the time
scale separation of 5 to 10 is often recommended.

The limiting case of infinite time scale separation corresponds to ϵ = τci/t→ 0, which
is the singular perturbation condition in the mathematical literature. Note that a time scale
separation between 5 and 10, corresponds to ϵ between 0.2 and 0.1.

Remark 5.4: Timescale separation

Recently, it was shown analytically in [40] that the dual-based dFoS framework is
guaranteed to converge to the stationary point of the overall optimization problem
under the assumption of perfect control of the subproblems. This assumption can be
satisfied by using a timescale separation between 5 and 10. This implies sufficiently
small step for subgradient updates, and it is suggested to start with the slowest times-
cale separation.

In summary, the constraint should be controlled in a slow timescale (τλ,c), and the
gradient in a fast timescale (τu,c), where we typically select the ratio to be 5 to 10. In
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this paper, we use integral controllers that are tuned using SIMC-rules [52]. For the mas-
ter/central constraint controller the integral gain is given by

α =
1

Kλ (τλ,c + θλ)
(5.4)

where Kλ and θλ are the step response and the time delay of the constraint by the dual
variable (Lagrange multiplier), and τλ,c is the time scale that governs the evolution of g.
For the three local gradient controllers, the integral gain is given by

KI,i =
1

Kui (τui,c + θui)
(5.5)

where i = 1, 2, 3 is the well index, Kui
and θui

are the step response and the time delay of
the gradient by the primal variable (Decision variables/inputs), and τui,c is the time scale
that governs the evolution of ci(λ).

To determine Kλ, θλ, Kui
, and θui

, we analyze the step responses. Meanwhile, τui,c

and τλ,c are the tuning parameters that should carefully consider the concept of time scale
separation, where ϵi =

τui,c

τλ,c
should be less than 1, which implies that the outer loop has

slower time scale than the inner one. We can ideally choose τui,c = 1 since want to drive
the inner loop to the steady-state as fast as possible. However, it may be too aggressive.
Therefore, we adjust them (i.e., the controller’s parameter tuning) based on our practical
justification and observation.

Besides avoiding "too aggressive" controllers, we also consider the fact that local gradi-
ent controllers are not the lowest in the hierarchy (see Figure 5.4), and thus the timescale
of the gradient controllers should be slower than the plant (that contains the FICs and the
lab rig).

The type of PID Controller of FICs is designed by the manufacture, where the valve
drive is calculated based on the following PID controller equation.

δvko,i = Ik−1
FIC,i + IkFIC,i −

KP,FIC,i

65.536
Qk

gl,i (5.6a)

IkFIC,i =
KI,FIC,i

65.536

(
Qsp

gl,i −Qk
gl,i

)
(5.6b)

where IFIC,i is the integral value, KP,FIC,i is the proportional gain, KI,FIC,i is the integ-
ral gain, and δvo,i is the valve drive. This controller contributes in creating plant dynamic
in which the time constant may vary between 5-10 seconds.

Table 5.1 shows the controller and tuning parameters that we obtain. Note that the
largest ϵi is 0.2113, indicating that the time-scale ratio of the overall experimental oil rig
system is still within the acceptable condition of the time-scale separation concept.

Controller tuning validation
Before implementing the dual-based dFoS framework in the experimental rig, we first

validated the controller tunings in a lab rig model developed in MATLAB. The model is a
high-fidelity dynamic model of the rig, that includes the lower layer controller dynamics,
i.e. FICs, input and output noise. The noise was tuned according to the information
obtained from the rig. This modeling structure implies that both the lower layer controller
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Table 5.1: Controller and Tuning parameters

Description Variable Value
Experimental rig sensors sampling time Ts 1 second

HRTO
Execution periods ∆tHRTO 10 seconds

HRTO Input filter gain Ku 0.4
EKF parameters see Codes in Github

Dual-based dFoS
Execution periods ∆tPD 2 seconds

Central Constraint Controller step length α 0.0117
Gradient Controller Input 1 gain KI,1 0.0769
Gradient Controller Input 2 gain KI,2 0.0444
Gradient Controller Input 3 gain KI,3 0.0893

FIC 104 Proportional Gain KP,FIC,1 8560
FIC 105 Proportional Gain KP,FIC,2 8560
FIC 106 Proportional Gain KP,FIC,3 8560

FIC 104 Integral Gain KI,FIC,1 100
FIC 105 Integral Gain KI,FIC,2 100
FIC 106 Integral Gain KI,FIC,3 50

dynamics and the noise are part of the plant as presented by the diagram block shown in
Figure 5.4. The reader is referred to the code available on our Github page1 for detailed
parameters. In addition, [83] contains a detailed description of the model.

Remark 5.5: Simulator for Controller Tuning

Note that the simulator model of the test rig is only used to determine the control-
ler tuning parameters, before it is implemented on the actual rig. All results that
are presented later in Section 5.3 are from the actual experimental rig, and not the
simulator.

Benchmark method
To benchmark the performance of the distributed feedback-based RTO approach, this

paper considers the Hybrid Real-time Optimization (HRTO) 2 that solves the centralized
numerical optimization problem. We choose the HRTO approach as our benchmark since
this circumvents the steady-state wait time issue in traditional steady-state RTO (see [10]
and [11]). Simply put, HRTO continuously estimates the parameters (and differential
states in general cases) using dynamic models and transient measurements, e.g. by ap-
plying an extended Kalman filter. Then, the corresponding updated steady-state model
is used for computing the solution of the economic optimization problem. In our exper-
imental setup, we use the exact same state and parameter estimator for the HRTO and
our proposed DFRTO scheme. The optimal setpoints usp computed by the HRTO layer
are given to the flow controllers FIC. We consider HRTO with the execution period of 10

1https://github.com/Process-Optimization-and-Control/ProductionOptRig
2HRTO is the same as RTO with persistent parameter adaptation (ROPA) [11]
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Figure 5.5: Block diagram for Hybrid RTO (HRTO) Illustration.

seconds in this experiment. Figure 5.5 illustrates this method. The grey box represents a
given plant. The white boxes represent computational blocks. In this work, the "Dynamic
Model Adaptation" is an Extended Kalman Filter.

To summarize, the HRTO and dual-based dFoS framework differ in the fact that in
HRTO, a steady-state optimization problem is solved to determine the optimal setpoint
usp, whereas in dual-based dFoS framework, the optimal setpoints usp are given by the
feedback controllers. Thus, HRTO is a good benchmark for dual-based dFoS framework.

Steady-state Gradient Estimation
This paper uses forward sensitivity analysis to estimate the gradient. This gradient

estimation has two main steps. First, we use the current plant information to update the
state and parameters of the model using a dynamic adaptation scheme (here, extended
Kalman filter). Next, we use the updated model to compute the gradients via the forward
sensitivity analysis.

Remark 5.6: System Model

The system has a differential-algebraic model, where x ∈ Rnx is a vector of dif-
ferential states, z ∈ Rnz is a vector of algebraic states, and y ∈ Rny is a vector of
output (measured states). This model is necessary for state and parameter estimation.

In order to use the Kalman filter equations, we first linearize the available model. Note
that the model is a differential-algebraic equation (DAE) system; however, since it is an
index-1 model, it can be easily re-arranged into an ordinary differential equation (ODE).
Additionally, we assume that the unknown parameters are time-varying. Their dynamics
are determined by a random walk model:

pk+1 = pk + vk (5.7)

where vk follows a normal distribution with mean zero and covariance Vθ. Additionally,
we assume that the increments vk are independent of v ̸=k.

Then, we combine the system dynamics and parameter dynamics to obtain an extended
model that is used for parameter estimation. Since the model was linearized, we can apply
extended Kalman filter equations for estimating xk, zk, and pk simultaneously. For a
complete derivation of the EKF equations, please refer to [86].
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To use forward sensitivity analysis, consider the original nonlinear DAE model in the
following form:

xk+1 = F̆ (xk, zk,uk;pk)

0 = Ğ(xk, zk,uk;pk)
(5.8)

The steady-state gradients are estimated using the stationary value of forward sensitiv-
ity equations:

0 =
∂F̆⊤

∂x
SSS +

∂F̆⊤

∂z
RSS +

∂F̆⊤

∂u

0 =
∂Ğ⊤

∂x
SSS +

∂Ğ⊤

∂z
RSS +

∂Ğ⊤

∂u

(5.9)

where SSS and RSS are the sensitivities of the differential states x and algebraic states z
w.r.t. the inputs u.

Since, in our specific case, the objective J and constraint function g are linear functions
of the algebraic states (J = H̆Jz, g = H̆gz), we use the chain rule to obtain ∇uJ and
∇ug:

J = H̆Jz =⇒ ∇uJ = H̆JRss

g = H̆gz =⇒ ∇ug = H̆gRss

(5.10)

5.3 Experimental Results and Discussions
Utilizing the control and tuning parameters shown in Table 5.1, we implemented the

dual-based dFoS framework and the HRTO to serve as benchmark. Figure 5.6 shows the
reservoir valve openings (CV 101, CV 102, CV 103) that we consider as the disturbance
in this experiment. The first disturbance occurs when the opening of CV 101 gradually de-
creases from t = 5 to t = 11 minutes. We expect a decrease in the gas-lift injection in well
1, and a redirection of the gas supply to the other wells. The second disturbance occurs
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1

Figure 5.6: The change of reservoir valve openings (CV101, CV102, and CV103) during the exper-
iments for representing different reservoir behaviors.

when the opening of CV 103 also gradually decreases from t = 13 to t = 16.5 minutes.
We expect that the gas supply to well 3 reduces with larger rate since the "hydrocarbon
price" of this well is higher. Meanwhile the other wells will obtain more gas supply with
larger rate as well. We try to avoid sudden disturbance to ensure that the controller can
adjust the plant smoothly.

In the rig, we used a programming environment (LABVIEW [87]) to automate the
implementation of these disturbance. Therefore, it is possible to repeat the independent
experiments with the same disturbance profile.
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Comparison of the optimal setpoints

0 3 6 9 12 15 18

1.25

1.75

2.25

2.75

0 3 6 9 12 15 18
2

2.5

3

0 3 6 9 12 15 18
2

2.5

3

3.5

9 10 11 12

2.2

2.3

2.4

9 10 11 12

3

3.2

3.4

9 10 11 12

1.5

2

Figure 5.7: The gas-lift flow rate setpoint
(
usp = Qsp

gl

)
of every wells due to reservoir parameter

changing (disturbance) from the Experimental Lab Rig.
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Figure 5.8: The measured gas-lift flow rate (u) of every wells due to reservoir parameter changing
(disturbance) from the Experimental Lab Rig.

We first run the experimental results comparing dual-based dFoS framework and HRTO,
which are presented in Figure 5.7-5.9. Figure 5.8 depicts the actual gas-lift flow rate. The
measured trajectories are slightly different from the calculated input setpoint shown in
Figure 5.7. This difference occurs due to input measurement noise and the fact that the gas
flowrates controllers (FIC 104, FIC 105, FIC 106, see Figure 5.1) need time to settle the
actual gas-lift flow rate u to the setpoint of gas-lift flow rate usp. Sometimes the setpoint
change calculated by HRTO is quite significant such that the gas flowrates controllers res-
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Figure 5.9: Constraint satisfaction and Lagrange multiplier evolution due to reservoir parameter
changing (disturbance) from the Experimental Lab Rig.

ults in input spikes (see around t = 11 min in Figure 5.8). The number of these spikes is
reduced because we have implemented first order input filter in the setpoints computed by
HRTO, i.e.:

usp,k+1 = usp,k +Ku

(
usp,⋆,k − usp,k

)

where usp,⋆ is the optimal setpoint given by HRTO solver. Meanwhile, dual-based dFoS
framework does not have the input filter because it has gradient controller(s) as input
filter(s).

Figure 5.7-5.8 show that the dual-based dFoS framework is slower in responding to the
second disturbance (see around t = 15 min). This slow response is the consequence of
considering time-scale separation concept explained in Section 5.2.3. Specifically, each
plot in Figure 5.7 has a magnifying plot in the time window 9 to 12 minutes. These plots
show that when disturbance p1 start settling down at around 11 hrs, the calculated input
setpoints usp seem slightly off initially.

Figure 5.9 shows the constraint satisfaction and its associated Lagrange multiplier,
where the initial guess of the Lagrange multiplier is slightly off in dual-based dFoS frame-
work. The Lagrange multiplier λ of the dual-based dFoS framework is around 9.5 at t = 0
min. Meanwhile, the mean value of Lagrange multiplier λ of HRTO is around 9.1 at that
time. However, the dual-based dFoS framework slowly drives the Lagrange multiplier to
converge to a better value that is closer to HRTO solver obtains. We can observe the effect
of the more accurate λ estimate on the performance of the dual-based dFoS framework,
since, around t = 6 minutes, the active constraint is slightly better controlled. In any case
the difference here is not significant, and the variations are mainly due to measurement
noise.

From around t = 12 min, the dual-based dFoS framework converges slower than
HRTO following the second disturbance. This is mainly due to the tuning of the contraint
controller, where it can be seen in Figure 5.8 that the λ converges slower than the HRTO.
As λ converges, the dual-based dFoS converges to the same value as HRTO at around
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Figure 5.10: Total production comparison due to reservoir parameter changing (disturbance) from
the Experimental Lab Rig

t = 18 min, confirming that dual-based dFoS is able to povide the same adymptotic per-
formance as HRTO. This behavior is expected as we carefully design the master/central
constraint controller. By considering the timescale separation concept, we avoid undesired
behaviors, such as oscillatory behavior. On the other hand, the master/constraint control
performance becomes relatively slow, and thus any dynamic constraint violation may last
quite some time. Since we expressed the total gas capacity constraint as an equality con-
straint (see Equation (5.2)), the dynamic constraint violation also includes the situation
when the total of gas-lift flowrates is less than Qmax

gl .
Due to various process and measurement noise, tightly controlling the hard constraints

maybe a challenging task for the dual-based dFoS (which may need a back-off depend-
ing on the noise levels). Nevertheless, the dual-based dFoS still drives the system to the
optimal steady-state value.

In addition, the control structure of the dual-based dFoS allows the possibility to have
other sources of error such as additional control dynamic from master/central constraint
coordinator, gradient estimation error, transmission error, and measurement error. Any er-
ror (due to improper tuning or design) from one of them leads to the additional disturbance
for constraint satisfaction.

Surprisingly, although the Lagrange multiplier calculated by HRTO is sometimes slightly
off and less smooth than dual-based dFoS, HRTO has a relatively good constraint satisfac-
tion. This condition happens because the constraints are on the inputs. Therefore, even
a high degree of plant-model mismatch does not influence the constraint satisfaction per-
formance. In other words, the constraint model ends up with a simple summation of a
’known’ input. Therefore, HRTO may have a better constraint satisfaction performance in
handling an input constraint in this specific case.

To summarize, by observing Figure 5.7-5.10, we can conclude that the solutions of the
two compared approaches, i.e., dual-based dFoS and HRTO are similar in this experiment
run.

Average Values
To ensure reproducability, we then re-run the experiments once again with the same set

of disturbance profile for the different approaches. Figure 5.11 compares the input setpoint
rate ∆Qsp

gl,i = Qsp,k
gl,i − Qsp,k−1

gl,i of the implemented approaches from two independent
experiments.

Figure 5.11 also shows that the input rate setpoints of dual-based dFoS are, in general,
comparable to HRTO. However, we can still note that for well 1 and 3, HRTO has sig-
nificant outliers (-0.1 for well 1 and around 0.15 for well 3). These outliers might occur
due to a numerical optimizer with an imperfect numerical condition or a bad parameter
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estimation. In an extreme case, the HRTO may suffer from numerical robustness issues.
Figure 5.12 shows that the average inputs setpoint trajectory resulting from both ap-

proaches are similar over time. Based on these results, we can conclude that dual-based
dFoS has a similar performance to HRTO in general, which also supports the same obser-
vation stated in the previous results. Figure 5.12 also shows that in the time window t = 8
to t = 14 minute, the trajectories of average input solutions of dual-based dFoS seem mild.
However, after t = 14 minute, the input trajectories need to be more aggressive to achieve
optimal performance. This condition seems to create challenges for dual-based dFoS as it
may take more time to obtain the optimal performance.
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Figure 5.11: The comparison of ∆Qsp
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Figure 5.12: The comparison of average inputs setpoint trajectories from the Experimental Lab Rig
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Comparison of the optimal cost
To analyze the optimization performance of dual-based dFoS and HRTO, we compare

the profit (from both individual experiments) obtained by the two approaches with the
naive approach, where we consider fixed inputs, i.e.,

u =
[
Qsp

gl,1 Qsp
gl,2 Qsp

gl,3

]⊤
=
[
Qmax

gl

3

Qmax
gl

3

Qmax
gl

3

]⊤

The naive approach illustrates the case in which no information about the system is avail-
able. Hence, the best alternative is to divide the available gas equally among the wells.
This latter approach is another benchmark to show that the optimization methods, i.e,
dual-based dFoS and HRTO, will give more profit compared to not doing any optimization
at all.

To measure the performance, we plot the difference, in percentage, between the in-
stantaneous profit of the approach of interest (i.e. dual-based dFoS or HRTO) and the
naive approach. The difference is calculated as

Jdiff =
J − Jnaive
Jnaive

.100 (5.11)

where J is the profit of the approach of interest, and Jnaive is the profit of the naive
approach. In addition, we use a 60s moving average for smoothing the profiles, because
the instantaneous profit measurements are noisy.

Figure 5.13 shows that dual-based dFoS and HRTO are more profitable than the naive
strategy. Although both the approaches converge to the same optimal steady-state solution,
dual-based dFoS has slower transients (especially around t =15min) due to the chosen
controller tuning parameters. This resulted in a slightly smaller cumulative profit

∑
Jdiff

compared to HRTO.

0 3 6 9 12 15 18
-5

0

5

0 3 6 9 12 15 18
-5

0

5

0 3 6 9 12 15 18
-5

0

5

10

15

Figure 5.13: The average profit from the Experimental Lab Rig. The bottom subplot shows the
cumulative average profit
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5.4 Chapter Summary
In this work, we have done experiments to validate the dual-based dFoS method. Based

on the experiments we can conclude that
• The dual-based dFoS is able to provide the same asymptotic optimal performance as

HRTO. The transient behaviour is slightly different which is affected by the choice
of the controller tuning parameters.

• In the dual-based dFoS framework, it is necessary to consider the timescale separa-
tion between the gradient and constraint controllers. If the master/central constraint
controller is tuned to be in the same timescale as the gradient controllers, then it can
lead to instability or oscillatory behavior. However, if the master/central constraint
controller is tuned to be too slow, then the convergence to the optimal steady-state
can be too slow. This was also seen in the presented experiment results, where dual-
based dFoS converges slightly slower than the HRTO following some disturbances.

As future work, we suggest the following,
• In this experiment, the shared resource constraint was on the inputs, leading to linear

coupling constraints. Since the experimental rig does not have topside separation of
liquid and gas, we are not able to include the total produced gas capacity constraint,
as done in [41]. Validating the dual-based dFoS for nonlienar coupling constraints
such as in [41] could be a valuable future research.

• We also used integral controllers in the dual-based dFoS framework for its simplicity.
Another future research direction could be to consider more advanced controllers for
the gradient and master/constraint controllers in the dual-based dFoS framework.
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Chapter 6

Dual-based DFoS Framework
with Single Input Override and
Its Systematic Pairing

To be able to minimize constraint violations, as well as dealing with non-performing es-
timators, while also incorporating automatic active constraint switching within distrib-
uted feedback-optimizing system framework, this chapter suggests and describe how Dual-
based Distributed Feedback-optimizing system with single input override constraint con-
trol and its systematic pairing can be an effective solution. This chapter is based on the
work in [47, 88]:

6.1 Introduction
In Chapter 3, we introduced the primal-dual feedback-optimizing control with an over-

ride feature to address two primary objectives: direct constraint control and fast time scale
constraints control. This approach can be further categorized into single-input override
and multi-input override.

The first approach, single-input override, is typically preferred when dealing with mul-
tiple critical constraints and limited available inputs/manipulated variables (MVs). It ex-
cels in minimizing dynamic constraint violations but may have slower convergence (longer
transient) when reaching optimal steady-state from the opposite direction. For example,
in the case of switching from constrained to unconstrained case or from tight constrained
to more relax constrained case. Inappropriate pairing between a chosen input (MV) and
a critical constraint can lead to more profit loss. However, finding a systematic procedure
for this pairing in interactive systems can be challenging.

Fortunately, Chapter 4 demonstrated a potential strategy for transforming an interact-
ive system into a non-interactive one. Assuming effective performance of the consensus
controllers, a systematic pairing procedure can be carried out on a non-interactive system,
which offers analytical simplicity. Therefore, this chapter outlines a systematic pairing
procedure designed for the dual-based distributed feedback-optimizing system framework

111
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with single input/MV override constraint controllers, along with a demonstration of its
performance in a subsea oil production network. Meanwhile, the second approach, multi-
input override, is discussed in Chapter 7.

6.2 Problem Statement
Consider the following steady-state optimization problem of N different subsystems.

min
u

J (u,d) =

N∑

i=1

Ji (ui,di) (6.1a)

s.t. g (u,d) ≤ 0 (6.1b)

where ui ∈ Rnui denotes the inputs/MVs for subsystem i, nui is the number of in-
puts/MVs in subsystem i, and u =

[
u1 . . . uN

]⊤
, di ∈ Rndi denotes the disturbances

for subsystem i, ndi
is the number of disturbances in subsystem i, and d =

[
d1 . . . dN

]⊤
,

Ji : Rnui × Rndi → R is a function that denotes the local objective of subsystem i,
g : Rnu ×Rnd → Rng is a function that denotes the inequality (shared) constraints. ng is
the number of constraints.

The Lagrangian function of problem (6.1) is

L (u,d,λ) =
N∑

i=1

Ji (ui,di) + λ⊤g (u,d)

where λ ∈ Rng is the shadow price of the (shared) resource constraints.
To achieve system-wide steady-state optimal operation while adapting to changing act-

ive constraints, one viable approach is the dual-based distributed feedback-optimizing sys-
tem framework with single input/MV override constraint controllers. This method employs
a master/central constraint controller operating on a slow timescale. However, it suffers
from suboptimal performance due to certain practical challenges. For instance, disturb-
ances may occur too rapidly for the master/central constraint controller to handle, or nu-
merical solver-based local subsystems might not update their constrained variables in a
timely manner, leading to constraint violations (at least during transient). To address these
issues and minimize performance losses during transients, a systematic pairing proced-
ure is crucial to determine the pairing of a manipulated variable (MV) with a constrained
variable. This procedure is essential for the selection of the MV in the dual-based dis-
tributed feedback-optimizing system framework with single input/MV override constraint
controller proposed by [47].

When disturbances occur much more frequently than the master/central constraint con-
troller can effectively respond, the proposed solution can be considered a near-optimal
strategy.

6.3 Systematic Pairing for Single Input Override Control-
ler

To pair the constrained variables with a good MV, we propose a pairing procedure
based on MV’s sensitivities to its local disturbances with the following assumptions:
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Assumption 6.1: Manipulated and constrained variables conditions

• No saturation issues in the possible MVs, umin < ui < umax.
• Equal value of gain representing relation from any available MVs, i.e, ui and
uj , to the critical constraint, Gui = Guj .

Meanwhile, the remaining MVs control their self-optimizing control variables. To describe
this proposal, we consider an Indirect control problem formulation as described as the
following.

Without loss of generality, consider a case with two MVs, denoted as u1 ∈ R and
u2 ∈ R. Our objective is to control the gradient of the Lagrange function with respect
to its input, denoted as Lu (λ,u) ∈ R2×1, and the active constrained variable, denoted as
g (u). In this context, λ serves as the Lagrange multiplier for constraint function g (u), and
u =

[
u1 u2

]⊤
. The vector Lu (λ,u) comprises Lu1

(λ, u1) ∈ R and Lu2
(λ, u2) ∈ R.
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Figure 6.1: Indirect control problem formulation for systematic pairing

Suppose our aim is to control the constrained variables tightly with u2, considering
the influence of a disturbance vector, d ∈ R2×1, on input u2. This disturbance can result
from either local disturbances in subsystem 2 or changes in u2 due to setpoint adjustments,
often originating from changes in subsystem 1. As λ remains relatively constant (due to
the non-performing or very slow time scale constraint control) and gu1

(u1) is typically
constant (e.g., resource allocation), we primarily aim to control Ju1

(u1). This problem
can be expressed as an indirect control problem with the following set of equations:

Ju1 (u1) = G11u1 +G12u2 (6.2a)
g(u) = G21u1 +G22u2 (6.2b)
u2 = Gdd+ û2 (6.2c)

In this formulation, G11 represents the gain from u1 to Ju1
(u1), G12 is the gain from

u2 to Ju1
(u1), G21 is the gain from u1 to g (u), G22 is the gain from u2 to g (u), and Gd

is the disturbance gain affecting u2.
The objective, as shown in Figure 6.1, is to tightly control g (u) to the reference r2

directly using an override/direct constraint controller (DCC). Simultaneously, we aim to
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find u2 such that u2 indirectly controls Ju1 (u1) to reference r1 or through pairing with
g (u). This control structure offers better control of Ju1

(u1) compared to other possible
structures.

We assume that G22 is square and invertible. Otherwise, the solution can be approxim-
ated using the pseudoinverse. By rearranging Equation 6.2 and assuming perfect control
of g (u) ≈ r2, we can estimate that:

Ju1 (u1) ≈ G12G
−1
22 r2

which means that any small changes in r2 leads to small changes in Ju1 (u1) with linear
relation. Hence, we must choose r2 such that:

r2 ≈ G22G
−1
12 r1

According to [46], G12G
−1
22 should ideally be small. This often implies a preference

for pairings that yield the largest G22 value, where G22 = ∇u2
g (u). However, as per

Assumption 6.1, this approach may not be sufficient.
The presented formulation highlights the need to also consider small G12 values in

addition to large G22 values, especially when dealing with faster disturbances or a non-
performing upper layer in the dual-based distributed feedback-optimizing control system
framework with override constraint controller.

Selecting based on G12 complements common rules, constituting a near-optimal strategy,
particularly during transient, for the dual-based distributed feedback-optimizing control
system framework with an override constraint controller [47].

By defining d̂ = Gdd, G12 can be approximated as ∆Ju1

∆u2
=

∆Ju1

∆(d̂+û2)
. Given that keep-

ing û2 at the same value controls g (u), any change in d̂ can signify a shift. Referring to
Equation 6.2c, G12 ≈ ∆Ju1

∆d̂
. Moreover, assuming the stationary point aligns with the local

optimum and considering that Ju1
is controlled by u1, and Ju2

remains uncontrolled, any
disturbance to Ju1 leads to a shift in ∆Ju2 (indicating Lu2 drifts from 0). Consequently,
any disturbance on Ju1 leads to a total profit loss ∆J . Therefore, we can estimate G12 as
follows:

G12 ≈
∆J

∆d̂

6.4 Numerical Examples
6.4.1 Systematic Pairing Analysis

We apply the rules in a subsea gas-lifted oil production optimization problem with
a fixed gas lift compressor as described in [47], where the power consumption of the
compressor is modelled as a linear function:

Powgl = θ

N∑

i=1

wgl,i

where θ is a function of a fixed ratio of outlet and inlet pressure of the compressor. Further,
N is the total number of wells, and wgl,i is the gas-lift rate injected to well i. The case
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study involves a subsea gas-lifted oil production well network consisting of two wells and
each well is operated locally (Figure 6.2 illustrates this case and Table 6.1 presents the
model parameters). This means both control and parameter estimation in the optimization
framework are performed locally (distributed feedback-optimizing system). The optim-
ization goal is to maximize oil production income while minimizing gas lift costs. The
optimization problem can be expressed as follows:

min
wgl

N∑

i=1

(−po,iwpo,i + pgl,iwgl,i) (6.3a)

s.t. f (x,wgl,d) = 0, (6.3b)
g (x,wgl,d) ≤ 0, (6.3c)

gs (x,wgl,d) = Powgl − Powmax
gl ≤ 0 (6.3d)

where po,i, pgl,i and wpo,i are the price of produced oil, the cost of gas-lift, and the pro-
duced oil rate of well i, respectively. Powgl is the total power consumed by the fixed com-
pressor to inject the total gas-lift rate i, and Powmax

gl is the maximum available power. The
vector x ∈ Rnx , and d ∈ Rnd are the vectors of states, and disturbance (i.e., gas-oil-ratio)
for the entire system. nx is the number of states. wgl ∈ Rnwgl is the vector of inputs for
the entire system, where wgl =

[
wgl,1 . . . wgl,N

]⊤
. Constraint (6.3b) and (6.3c) rep-

resent model and physical constraints, respectively. We assume that Constraint (6.3d) is
locally managed to maintain the focus of the discussion. Eq. (6.3a) is additively separable,
and eq. (6.3d) is a linear and hard constraint. This setup utilizes a fixed-efficiency gas lift
compressor to supply the total gas lift rate.

1 2

wpo + wpg

Separator

Produced Oil

Produced Gas
Gas Lift Compressor

Powmax
gl

wgl,1 wgl,2

wgl

Figure 6.2: Field Illustration

We perform simulations where the Lagrange multiplier, λ, remains non-updated. We
present numerical results for the proposed pairing procedure or near-optimal performance
strategy (Structure 1) and compare its performance to the asynchronous protocol (Structure
0), in which local controllers continuously maintain the gradient of the Lagrange function
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Table 6.1: List of wells and gas lift compressor parameters in the simulation.

Par. [units] Well 1 Well 2 Gas lift compressor
— See Table 4.5 — -

pm [bar] 20 -
θ [MWs/kg] - 3674

with respect to the input at zero. We also provide results for an alternative structure (Struc-
ture 2). For clarity, Table 6.2 present the pairing for each structure.

Table 6.2: Pairing in each structure

Structure Pairing 1 Pairing 2
0 wgl,1 ↔ Lwgl,1

wgl,2 ↔ Lwgl,2

1 wgl,1 ↔ Lwgl,1
wgl,2 ↔ gs

2 wgl,1 ↔ gs wgl,2 ↔ Lwgl,2

We solve the steady-state optimization problem (6.3) to determine the optimal cost
for various disturbance cases, assuming a maximum historical disturbance error of ±5%.
The profit loss, denoted as ∆Jj = Jj − J⋆, is computed as the difference between the
steady-state cost of each structure (indexed by j ∈ 0, 1, 2) and the optimal cost.

First, we simulate the largest possible error case for Structure 0, which experiences
sequential disturbances starting with GOR1 +5%, GOR1 − 5%, GOR2 +5%, GOR2 −
5%, Powmax

gl +5%, and finally Powmax
gl −5%. Figure 6.3 illustrates that Structure 0 fails

to meet steady-state constraints when GOR1, GOR2, or Powmax
gl decreases by 5% (time

windows 18-32 hr, 48-62 hr, and 78-90 hr). This validates the necessity of a near-optimal
strategy within the dual-based distributed feedback-optimizing system framework.
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Figure 6.3: Steady-state constraint satisfaction

As discussed in Section 6.3, the first rule is to pair the input and active constraint with
the largest G22,j = ∇wgl,j

gs (x,wgl,d). We find that G22,1 = 3.6740 and G22,2 =
3.6740, which confirms the assumption of equal constraint-MVs gain and emphasizes the
need for an additional rule to achieve economically oriented results.



6.4. Numerical Examples 117

The second rule involves pairing the input and active constraint with the smallest G12,j ,
estimated by calculating ∆Jj

∆GORj
using the finite difference method. The results indicate

that the smallest G12,1 is 1.4441, and the smallest G12,2 is 1.4642. Following the method
outlined in Section 6.3, these findings suggest that Structure 1, pairing the active constraint
with wgl,2, is the most economically favorable.

Figure 6.4 compares profit loss between Structure 1 and Structure 2, demonstrating
that Structure 1 consistently minimizes steady-state loss more effectively under extreme
disturbances. Table 6.3 presents the steady-state profit loss for 24 hours in various extreme
disturbance scenarios.
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Figure 6.4: Profit loss comparison (per second) (left) and loss difference (per second) between
Structure 1 and 2 (right).

Table 6.3: Steady-state profit loss per day

Structure 0 1 2
GOR1 + 5% 630.7200 136.3423 139.7161
GOR1 − 5% sscv⋆ 151.6720 151.6730
GOR2 + 5% 751.6800 214.7048 215.0000
GOR2 − 5% sscv⋆ 238.8445 243.8771
Powmax

gl + 5% 656.6400 151.4331 153.3618

Powmax
gl − 5% sscv⋆ 168.2676 169.9576

sscv⋆ : steady-state constraint violation.

6.4.2 Implementation in Subsea Oil Production Network
In the context of the same case study discussed in the previous section, this section

presents a comparative analysis of the simulation results obtained from both dFoS frame-
works with single-input override. Refer to Figure 6.5 for structure 1 and Figure 6.6 for
structure 2. Please note that ym,i refers to the set of real-time measurements managed
locally by subsystem i. The diagram illustrates the physical system within the grey boxes,
with computation blocks denoted by white boxes. These computation blocks are further
categorized into three levels of timescales (from fast to slow), indicated by light green,
light blue, and light red boxes. For a more focus comparison with the standard primal-
dual or dFoS framework [41, 40], readers can refer to Chapter 3.
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Figure 6.5: Dual-based dFoS framework with single input override - Structure 1

Based on our systematic pairing analysis, we found that Structure 1, depicted in Fig-
ure 6.5, is the preferred choice for minimizing profit loss during transient. Our original
constraint gs ≤ 0 has been examined using step response, revealing that dgs

dwgl,2
> 0, indic-

ating that a small value of wgl,2 is good in terms of satisfying the constraint. To implement
this preference, we utilize a min selector, denoted as:

wgl,2 = min (wgl,2,dir, wgl,2,ind)

where wgl,2,dir is the manipulated variable computed by the override/direct constraint con-
troller, and wgl,2,ind is the primal manipulated variable set by the gradient controller. It is
important to note that, in the optimal steady state, we must ensure wgl,2,dir ≥ wgl,2,ind

or equivalently g̃s = wgl,2,ind − wgl,2,dir ≤ 0—a constraint controlled by the master
controller, as indicated in the light red box in Figure 6.5. This constraint is defined as
auxiliary constraint.

For further insight into this case study, please refer to Table 6.4, which shows the con-
trolled variables, setpoints, and manipulated variables. Additionally, we have employed
the same estimation method used in [41] to calculate the steady-state cost and constraint
gradient, denoted as∇wgl,i

Ĵ and ∇wgl,i
ĝs, respectively.

Table 6.4: Controlled Variables, Setpoints, and Manipulated Variables

Well CV CV sp Calc. MV Phys. MV
1 (indirect) CV1,ind = ∇wgl,1

L1 0 wgl,1,ind wgl,1

2 (indirect) CV2,ind = ∇wgl,2
L2 0 wgl,2,ind wgl,2

2 (direct) CV2,dir = Powgl Powmax
gl wgl,2,dir wgl,2

The concept of the auxiliary constraint involves adjusting the shadow price λ to ensure
that, over time, the manipulated variable’s (MV) value computed by the direct/override
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Figure 6.6: Dual-based dFoS framework with single input override - Structure 2

constraint control aligns with the steady-state optimal primal value determined by the
gradient controller when the constraint is active. To calculate the appropriate λ, a mas-
ter auxiliary constraint controller with a max selector can be employed. This selector,
which switches to 0 when the constraint is no longer active. The anti-windup serves to
minimize constant fluctuations in λ when there are active constraint region transitions.

Thus, this selector switches between 0 and the computed shadow price λ̂. The shadow
price λ̂ at iteration k can be expressed as follows:

λ̂ = λk +KP g̃
k
s +

k∑

τ=k−1

(
KI g̃

τ
s +KAW

(
λ− λ̂

)τ)
(6.4)

In this equation, KP , KI , and KAW represent the proportional, integral, and anti-wind-up
gain, respectively.

PI controllers in this study are tuned using the SIMC tuning method as introduced by
[52]. The controllers have a sampling time of 1 second. The master auxiliary constraint
controller operates 5 times slower than the local controllers.

Meanwhile, the override constraint controller runs at a significantly higher rate, per-
forming tasks five times faster than the local controllers. For detailed information about
the controllers and their corresponding tuning parameters, please refer to Table 6.5. It is
important to note that these controllers are designed without anti-windup mechanisms, as
this study focuses on scenarios where constraints are consistently active. In general cases,
the inclusion of anti-windup measures is necessary.

Figure 6.7 demonstrates the dynamic constraint violations for Structure 0, Structure
1 and Structure 2. Both structure 1 and 2 significantly minimize violations compared to
the standard dFoS framework (structure 0). Towards the simulation’s time, the structure
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Table 6.5: Parameters used in PID controllers shown in Figure 6.5- 6.6

Tuning Local Grad. Override Local Grad. Override Aux. Const.
Par. Controller 1 Controller 1 Controller 2 Predictor 2 Controller
KP 8.5696 − 8.2642 − −0.0174
KI 0.0129 0.0068 0.0130 0.0068 −4.3543e− 05

0 requires an additional 6310.3 MW of power. In contrast, structure 1 only necessitates
122.2 MW, and structure 2 requires 140.6 MW.
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0

2000

4000

6000

8000

Figure 6.7: Cumulative dynamic violation over the simulation time.

The transient time can significantly longer, depending on the scenario, particularly
when transitioning from a tight constrained case to a more relaxed one. This occurs,
for instance, with an increase in Gas-Oil Ratio (GOR) or a relaxation of power limits.
Figure 6.8 illustrates that Structure 1 is closer to the constraint limit (when the value is
negative), while Structure 2 is closer to the constraint limit (when the value is positive).
Notably, after disturbances at times t = 10 (GOR 1 increases), t = 45 (both GOR 1 and
2 increase), and t = 75 hours (maximum power limit increases), neither Structure 1 nor
Structure 2 have reached a steady state before the subsequent disturbance. This aligns
with the practical assumption discussed in Section 6.3. Hence, minimizing loss during
transients is importance, and finding the best pairing is crucial.

Figure 6.8: Difference between structure 2 and 1 in distance of constrained variable to the limit.

In summary, Structure 1 incurs an average monthly loss of USD 95,381, while Struc-
ture 2 records an average monthly loss of USD 95,770. Choosing Structure 1 results in
a reduction of USD 389 in monthly losses on average, representing a 0.41% decrease in
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losses, which is quite nice for an almost identical two wells network, and with no extra
cost. This outcome serves as a numerical validation of the approach outlined in Sec-
tion 6.3.

6.5 Chapter Summary
This chapter, as introduced by [89], presents a systematic pairing approach for single-

input override constraint controllers within the dFoS framework. The proposal’s validity is
numerically affirmed through the implementation of the dFoS framework with single-input
override in a subsea oil production network case study. This substantiates the feasibility of
integrating override controllers and auxiliary constraint controllers into the dFoS frame-
work, as proposed in [47].
Assessment Table:

Let S-X be the proposed framework of this chapter, the parameter we assess and com-
pare are as described in section 2.5. Table 6.6 summarizes the assessment, where the

Table 6.6: Summary of Chapter 6

S-IV S-VI S-IX S-X
(a) Yes Yes Yes Yes
(b) Yes Yes Yes Yes
(c) Yes Yes Yes Yes
(d) No1 No1 No1 Yes
(e) No Yes Yes Yes
(f) No (Medium) Yes Yes Yes
(g) Yes No2 Yes Yes
(h) No Yes Yes Yes
(i) No No No No
(j) Yes No No No

"Yes": the approach has satisfied the success parameter
"Yes": the approach has satisfied the success parameter in this Chapter
"No": the approach does not satisfied the success parameter
"No": does not satisfied the success parameter, and will be addressed in this thesis.
1: will be addressed in Chapter 3
2: will be addressed in Chapter 4
"No (High)": does not satisfied the success parameter (f) at all (shown in Chapter 2).
"No (Medium)": has partly satisfied the success parameter (f) better than "No (High)".

approaches are:
• S-IV: Dual-based hybrid RTO
• S-VI: Primal dual FOC
• S-IX: Dual-based Distributed Feedback-Optimizing System
• S-X: Dual-based Distributed Feedback-Optimizing System with Override

and the parameters we assess and compare are:
• (a): Is steady-state optimal achieved?
• (b): Is constraint controlled transparently (see Definition 2.1)?
• (c): Is flexible for active constraint switching?
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• (d): Is constraint controlled directly (on fast time scale)?
• (e): Is applicable for less than twice differentiable Lagrange function?
• (f): Is numerical solver avoidable (computation time)?
• (g): Is it recommended for complex and large system?
• (h): Is input filter (or additional setpoint controller) avoidable?
• (i): Is parameters and states dynamic estimator avoidable?
• (j): Is gradient estimator avoidable?

Future works: In future works, an intriguing avenue of research involves the develop-
ment of a control structure featuring multi-input override controllers equipped by auxiliary
constraint controllers. This study will be the focus of Chapter 7. Additionally, Chapter 9
will show the experimental validation of this approach.



Chapter 7

Procedures for Dual-based DFoS
Framework with Multi-Input
Override

In cases where parallel systems, such as gas-lift oil production optimization, are involved,
it is often possible to utilize multiple MVs concurrently to address important constraints.
To be able to effectively exploit the potential of Override Constraint Control within the
Dual-based dFoS Framework, this chapter suggests and describes how to construct mul-
tiple MVs (multi-input). This chapter is based on the work in [48].

7.1 Introduction
As introduced in Chapter 6, the single-input override approach is commonly favored

when addressing scenarios involving multiple critical constraints and limited available in-
puts or manipulated variables (MVs). However, it is also common in the process industry
to encounter parallel systems where an abundance of available inputs/MVs collaboratively
contribute to the control of a critical constraint.

The following sections of this Chapter is dedicated to explore various techniques within
the dual-based distributed feedback-optimizing system (dFoS) framework, focusing on the
implementation of multi-input or MV override constraint controllers. To illustrate these
concepts, we consider a practical case study involving a subsea oil production network
comprising parallel gas-lifted oil production wells.

7.2 Problem Statement
Chapter 3 introduced the concept of an auxiliary input constraint and implicit over-

ride as a solution to address input saturation issues. Identifying inputs prone to saturation
can be challenging, especially in the presence of unpredictable disturbances like those
from geological structures. Even if potential input constraints are identified, once satur-
ation occurs, the affected input temporarily loses its ability to control critical constraints,
potentially causing increased dynamic constraint violations. Furthermore, practical im-

123
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plementations often face the constraint of limited actuator rates, contributing to further
challenges in dealing with dynamic constraints as illustrated in Figure 7.1. This under-
scores the need for a more robust control structure, as relying on a single input to handle
critical constraints has inherent limitations.

Calculated Input

Actual Input

Gain reduction

Figure 7.1: Calculated and actual input in the presence of input rate saturation, adopted from [90].

Therefore, it is both practical and reasonable to design and implement a multi-input
override within the dual-based dFoS framework. This approach provides enhanced control
flexibility, allowing multiple inputs to contribute to the control of critical constraints. In
dynamic and uncertain environments, such a multi-input override strategy offers a more re-
silient and adaptable solution, mitigating the impact of input saturation and rate constraints
on the overall control performance.

7.3 Proposed Approach(es)
To address the issue outlined in Section 7.2, we introduce a multi-input override con-

straint control structure within the dual-based dFoS framework. The block diagram visu-
alizing this proposal is shown in Figure 7.2.

In the previous Chapter 6, we discussed single-input override constraint control [47],
where a single input is designated to regulate an active critical constraint. In the proposed
approach, multiple inputs jointly control the constraint directly on fast time scale. This
modification is highlighted with blue arrows and blocks in Figure 7.2, and we discuss this
topic in this chapter. Stacked white blocks on a light blue background represent a number
of independent subsystems which are the result of decomposition. Other aspects depicted
in the figure have been previously explained in earlier chapters.

7.3.1 Transform multi-input into single-input
To implement override constraint control, we must carefully select one combined input

vector (uc) for each critical constraint, as described by the equation:

uc = H⊤uind (7.1)

where uind ∈ Rnu denotes the vector of all inputs provided by gradient controllers, de-
noted with a light blue background.

In the scenario where only one critical constraint requires direct or tight control, we
simply choose a single input, resulting in H being a row vector. This vector is primar-
ily filled with zeros except for a single non-zero entry corresponding to the selected in-
put. However, in more complex cases involving multiple critical constraints that need
simultaneous tight control, we introduce a selection matrix H. This matrix, denoted by
H ∈ Rnu×ngA , where ngA is the number of critical constraints that we want to control
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Figure 7.2: Block diagram of multi-input override control within the dual-based dFoS framework.

tightly when they are active simultaneously. For instance, we might choose the following
configuration:

H⊤ =

[
h11 h21 0 0
0 0 h32 h42

]
(7.2)

In this example, the first two inputs are allocated to jointly control constraint g1, while the
last two inputs are assigned to constraint g2. Therefore, the selection matrix H offers a
versatile configuration where a constraint can be directly or tightly controlled by multiple
inputs.

7.3.2 Various procedures constructing selection matrix H

Option 1: Gain matrix as selection matrix
A rational approach is to prioritize inputs with a significant effect on the constraints.

Therefore, a straightforward choice is to consider:

H = ∇ugA (7.3)

where ∇ugA represents the gradient of constraints that are active simultaneously with
respect to the input. However, it is essential to assign less weight to inputs that are op-
erating close to their constraints or have a significant effective delay to the corresponding
constraint. For instance, we may opt for the following configuration:

H⊤ =

[
∇u1

g1 ∇u2
g1 0 0

0 0 ∇u3g2 ∇u4g2

]
(7.4)



126 Procedures for Dual-based DFoS Framework with Multi-Input Override

Option 2: Gain ratio matrix as selection matrix
Engineers commonly prioritize handling a critical constraint by selecting a specific

input to emphasize. To achieve this, we may normalize other inputs relative to the gain of
the chosen prioritized input. For instance, we might designate input u1 as the top-priority
input for managing constraint g1 and input u4 as the primary input for handling constraint
g2. As a result, the selection matrix takes the following form:

H⊤ =

[∇u1g1
∇u1

g1

∇u2g1
∇u1

g1
0 0

0 0
∇u3

g2
∇u4

g2

∇u4
g2

∇u4
g2

]
(7.5)

It is expected that this approach ensures the prioritized inputs effectively address the crit-
ical constraints while maintaining appropriate interrelations between the inputs.

Option 3: Disturbance sensitivity based matrix as selection matrix
The matrix formulation is devised to regulate the constraint as closely as possible to

its limit by compensating for gaps caused by disturbances. Given that the entire system
is interconnected through the coupling constraint, disturbances, regardless of their origin,
impact other subsystems and, consequently, affect the constraint. Therefore, we can as-
sume that the number of constraints is equal to the number of disturbances (ng = nd),
and the source of disturbance can arise from any subsystems.

Let ζ =
[
u λ

]⊤
. In the active constraint condition, optimal operation is achieved as

follows:
V(ζ,d) =

[
∇uL(u,λ,d) g(u,d)

]⊤
=
[
0 0

]
(7.6)

The total derivative of Equation (7.6) is given by:

∇ζVdζ +∇dVdd = 0 (7.7)

where

∇ζV =

[
∇uuL(u,λ,d) ∇ug(u,d)
∇⊤

ug(u,d) 0

]

and

∇dV =

[
∇udL(u,λ,d)
∇dg(u,d)

]

Rearranging Equation (7.7), we obtain:

dζ

dd
=

[
du
dd
dλ
dd

]
= −

(
∇ζV−1

)
∇dV (7.8)

where dζ
dd ∈ R(nu+ng)×ng and du

dd ∈ Rnu×ng . Finally, the selection matrix is defined as
follows:

H = c.

∣∣∣∣
du

dd

∣∣∣∣ (7.9)

where c is a tuning parameter.
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7.3.3 Combining override constraint controllers correction
Given uind ∈ Rnu , we can calculate the input u to be implemented on the plant using

the equation:

u = uind +
(
H†)⊤ ∆uc (7.10)

where H† ∈ RngA×nu is the pseudo inverse of H, and ∆uc labels the correction factor
computed as follows:

∆uc =
(
min

(
udir,H

⊤uind

)
−H⊤uind

)
(7.11)

where uc
dir ∈ RngA is the input obtained from override constraint controller, denoted in

light green background.
The choice of a min selector is based on the assumption that increasing the input brings

the constrained variables closer to the constraints. If the response of input-constrained
variables is in the opposite direction, a max selector would be used instead.

When we have two or more constraints that are never active simultaneously, and we
assign all available inputs to tightly control the active one, the selected correction factor
can be defined as follows:

∆uc = min
(
∆uc

g1 ,∆uc
g2

)

where ∆uc
g1 and ∆uc

g2 are the correction factors when g1 and g2 are active, respectively.
The implementation of this switching strategy can be found in [48].

When we assume that two constraints may be active simultaneously, we could split the
inputs, i.e., the first two inputs may be used to control the first constraint tightly, and the
last two may be used to the second constraint. One possible option of the selection matrix
for this formulation is:

H⊤ =

[
1 1 0 0
0 0 1 1

]

and it is not necessary to select the correction factor as both of the selection factors are re-
quired by the assigned inputs. To the end, this approach provides flexibility in constructing
the control structure that can satisfy any possible active constraints region/combination.

7.4 Numerical Examples
7.4.1 Various Multi-input Approaches in Active Constraint Handling
Problem and case description

We apply the proposed approach to a gas-lifted oil production network consisting of
six wells (N = 6), a setup closely resembling the one utilized in [47]. Each well operates
locally, and the oil production from each well, represented as wpo,i, is regulated through
the gas-lift injection rate wgl,i (noted as u = wgl). The capacity for handling the total
exported gas is limited, constrained to a maximum supply of wmax

pg (linked to constraint
function g). Figure 7.3 illustrates this case study. Within this setup, a manipulated vari-
ables (MV) are prioritized to control critical constraints, namely, wgl,4 ↔ g.

The ultimate objective of the production optimization problem is to optimally allocate
the shared gas lift among the wells in a manner that maximizes profit. This objective is
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encapsulated in the following optimization problem:

min
wgl,i,∀i ∈ N

JN = −
∑

i∈N

$o,iwpo,i +
∑

i∈N

$gl,iwgl,i (7.12a)

s.t. g(u,d) =:
∑

i∈N

wpg,i − wmax
pg ≤ 0 (7.12b)

where $o,i and $gl,i are the oil prices and the cost associated with gas compression for
gas-lift purposes, respectively. The total exported gas is denoted as RpgN

=
∑

i∈N wpg,i.
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Figure 7.3: A simplified process diagram of a gas-lift case with limited capacity for exported gas.

Furthermore, it is common for valves to be subject to input rate constraints. These
constraints are defined as follows:

∆wmin
gl ≤ ∆wgl,i ≤ ∆wmax

gl , i = 1, ..., N

where, ∆wmin
gl and ∆wmax

gl are the lower and upper bound of the inputs rate, respectively.
Additionally, variations in the gas-oil ratio (GOR), a reservoir property, are considered,

which are often associated with disturbances affecting different wells over time. Wells
with a high GOR have a lighter fluid column, reducing the need for extensive gas-lift
injection compared to wells with a low GOR. Consequently, changes in the GOR have a
significant impact on the optimal allocation of gas-lift injection.

Benchmarks
In our simulation-based comparisons, we focus on assessing the performance of vari-

ous approaches in active constraint handling. To maintain clarity and focus of this work,
we consider the following approaches:

• (C1) The standard dual-based dFoS, which can achieve steady-state optimal.
• (C2) The dual-based dFoS equipped with single-input override constraint control.
• (C3.1, C3.2, C3.3) The dual-based dFoS equipped with multi-input override con-

straint control. This category includes three distinct options for constructing the
selection matrix: Option 1, Option 2, and Option 3, respectively
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The standard dual-based dFoS framework
To address problem (7.12) using the standard dual-based dFoS framework (C1), please

refer to [41] or Chapter 4.

Single-input override constraint control in the dual-based dFoS framework
The single-input approach (C2) is a specific instance of the multi-input approach. In

line with the critical constraint configuration detailed earlier, we can represent the pairings
in a matrix form by choosing matrix H as:

H⊤ =
[
0 0 0 1 0 0

]

For the sake of clarity, we also exercise a simulation of single-input approach without any
input rate constraint, labelled as C2.0.

Multi-input override constraint control in the dual-based dFoS framework
In this scenario, we assume that subsystem/well 1, 2, and 3 have no access to con-

tribute in handling constraint g, and each of them applies the standard dual-based dFoS
framework. As as results, in multi-input control structure, we choose:

• H⊤ =
[
0 0 0 ∇u4

g ∇u5
g ∇u6

g
]
, for option 1 (C3.1).

• H⊤ =
[
0 0 0 1

∇u5g

∇u4
g

∇u6g

∇u4
g

]
, for option 2 (C3.2).

• H⊤ =

[
0 0 0

∣∣∣ ∂u
∂(GOR3)

∣∣∣
⊤
]

, for option 3 (C3.3).

No single input, wgl,i, is assigned to each active constraint for direct constraint control.
However, there are calculated inputs, i.e., wgl,wpg,dir, which are used to adjust the last
three inputs when the constraint g is active.

Master (auxiliary-) constraint controller
To determine λ, we use a PI controller as a master (auxiliary-) constraint controller. We

do not include max selector and anti windup as the disturbance scenario in this simulation
focuses on active constraint handling.

Steady-state gradient estimation techniques
To estimate the required steady-state gradients, we use the model-based gradient es-

timation framework proposed in [55]. Note that the proposed framework is not restricted
to this gradient estimation approach, so one may instead use any other model-based or
model-free gradient estimation scheme [35]. We assume that disturbance and differential
states are accurately estimated.

PID controllers setup
PID controllers are tuned using the SIMC tuning method introduced by [52]. The

local gradient controllers, the master auxiliary controller, and the override/direct constraint
controller are designed with a sampling time of 1 sec.

Simulation setup
The plant simulator is developed using the CasADi ver.3.5.1 toolbox ([53]) in

MATLAB R2019b, and is simulated using the IDAS integrator. The simulations are per-
formed on a 2.11 GHz processor with 16 GB memory for 10 hours simulation time.
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The system is subject to disturbances, i.e., gas oil ratio (GOR) for all wells are time-
varying as shown in Figure 7.4. A dramatic disturbance occurs at t = 2 hr, where both
GORs from well 1 and 5 increase 15%, GOR from well 2 increases 12%, and GOR from
well 3 decreases 5%.
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Figure 7.4: GOR variations (disturbances) in the six wells.

Simulation results
In Figure 7.5-7.7, we present simulation results comparing different control approaches:

C1, C2, C3.1, C3.2, and C3.3. Despite all approaches starting and converging to the same
steady-state optimal (i.e., constraint limits) after a disturbance originating from a GOR
change at t = 2 hr, notable differences emerge.

Table 7.1: Constraint Satisfaction Performance for the first 10 hrs.

C1 C2 C3.1 C3.2 C3.3
Max. Violation [kg/s] 0.7552 0.8849 0.7308 0.7343 0.7980
Int. Violation [kg] 190.47 273.27 166.91 170.08 241.21
Ave. Violation [kg] 0.0053 0.0076 0.0046 0.0047 0.0067
RMSE [kg] 0.0551 0.0637 0.0479 0.0485 0.0631
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Figure 7.5: Constraint Satisfaction Performance

C2, a single-input approach, falls short in significantly reducing the maximum viola-
tion due to input rate constraints, as evident from the dashed yellow line compared to the
red line at around t = 2 hr in Figure 7.6. On the other hand, multi-input options C3.1
and C3.2 exhibit comparable effectiveness in minimizing the maximum violation. How-
ever, C3.3 disappoints by failing to outperform the option without any override technique
(C1), though it still fares better than C2. The subpar performance of C3.3 is attributed
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Figure 7.6: Overridden Input for Single-Input
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Figure 7.7: Input 5 and Input 6 employed as overridden inputs in multi-input approaches.

to insufficient interaction facilitated by the coupling constraint, leading to an inadequate
representation of disturbances from other wells.

For instance, disturbances originating from other wells, excluding well 4, are not ad-
equately captured by the disturbance originating from well 4. Numerically, the fourth ele-
ment of matrix H is significantly larger than the fifth and sixth elements. Despite C3.3’s
limitations, overall, multi-input approaches are preferable compared to the single-input
one due to their ability to jointly control constraints. This is evident in Figure 7.7, where
inputs from both well 5 and 6 are used to minimize export gas overflow (constraint g).

Notably, the numerical analysis in Table 7.1 offers a more detailed comparative study.
C3.1 and C3.2 stand out by reducing the maximum constraint violation by 2.77− 3.23%,
integrated constraint violation by 11.8−13.9%, and the average violation by 11.3−13.2%
over the first 10 hours. Focusing on active constraint handling during this period, both
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approaches demonstrate a substantial reduction in root mean square error (RMSE) by
12.9− 13.8%.

7.4.2 Single vs Multi-input in Active Constraint Switching
Problem and case description

This second numerical simulation includes and focuses active constraint switching.
We consider the same case study as the one utilized in the previous subsection. However,
in addition to constraint (7.12b) (linked to constraint function g2), we also consider max-
imum available power for gas lift compressor, labelled as Powmax

gl , as another coupling
constraint (linked to constraint function g1). As a result, this problem is encapsulated in
the following optimization problem:

min
wgl,i,∀i ∈ N

JN = −
∑

i∈N

$o,iwpo,i +
∑

i∈N

$gl,iwgl,i (7.13a)

s.t. g1(u,d) =: Powgl − Powmax
gl ≤ 0, (7.13b)

g2(u,d) =:
∑

i∈N

wpg,i − wmax
pg ≤ 0 (7.13c)

Similarly, a manipulated variables (MV) are prioritized to control critical constraints,
namely, wgl,5 ↔ g2, and wgl,2 ↔ g1.

In addition to gas-oil ratio (GOR), we also consider that the maximum available power
for the gas-lift compressor is varying with time due to changing power load balance in
the processing facility. Furthermore, the total produced gas is limited by the maximum
capacity handling of the gas processing facility. This limit is also assumed to be time-
varying.

The GOR for all wells vary as shown in Figure 7.8, where it can be seen that the system
is frequently subject to disturbances, and a dramatic drop occurs at t = 6 hr. The available
power for the gas-lift compressor (Powmax

gl ) and gas processing capacity (wmax
pg ) also

varies, which affects the optimal allocation of the gas-lift.
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Figure 7.8: GOR variations (disturbances) in the six wells.

To maintain the focus of this work, we compare the performance of the following
approaches:

• (C0) The ideal steady-state optimal. To obtain the ideal steady-state optimal solu-
tions (C0), we solve problem (7.13) every 150 seconds.

• (C1) The standard dual-based dFoS (No direct/override constraint control). To solve
problem (7.13) using C1, one can read [41].

• (C2) The dual-based dFoS equipped with single-input override constraint control.
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• (C3.1) The dual-based dFoS equipped with multi-input override constraint control.
It is not necessary to include C3.2 and C3.3 as C3.1 is comparable to C3.2, and C3.3
is not better than C3.1.

The last two approaches are explained the following sections.

Single-input override constraint control in the dual-based dFoS framework
C2 is a special case of the multi-input approach. We choose to assign wgl,2 as the only

input that is responsible for tightly controlling active constraint Powgl to Powmax
gl , and

wgl,5 as the only input that is responsible for tightly controlling active constraint RpgN to
wmax

pg . Defining g1, and g2 as the first and second row of g, these pairings can also be
described in matrix formulation, where matrix H is chosen as follows.

H⊤ =

[
0 1 0 0 0 0
0 0 0 0 1 0

]

Multi-input override constraint control in the dual-based dFoS framework

In multi-input approach (C3.1), we choose H⊤ = ∇⊤
ugA. Thus, no single input,

wgl,i, is assigned to each active constraint for direct constraint control. However, there are
calculated inputs, i.e., wgl,powgl,dir and wgl,wpg,dir, which are used to adjust all the inputs,
labeled by wgl, if any of those constraints is active.

In this case, the two constraints (7.13b)-(7.13c) are never active simultaneously. Thus,
we assign all available inputs to tightly control the active one. In this case, the selected
correction factor is

∆wgl = min
(
∆wgl,powgl

,∆wgl,wpg

)

where ∆wgl,powgl
and ∆wgl,wpg

are the correction factors when g1 and g2 are active,
respectively. The selection matrices are H = ∇⊤

wgl
g1 to calculate ∆wgl,powgl

, and H =

∇⊤
wgl

g2 to calculate ∆wgl,wpg
.

Master (auxiliary-) constraint controller
To determine λ, we use a PI controller as a central constraint controller with a max

selector that gives λ = 0 when the constraint is no longer optimally active. The anti-
windup is necessary to avoid λ keeps changing in this case. Thus, this selector gives a
value of either 0 or λ̂.

λ̂ = λk +KP

(
Hc⊤wgl,ind −wgl,dir

)k

+

k∑

τ=k−1

(
KI

(
Hc⊤wgl,ind −wgl,dir

)τ
+Kaw

(
λ− λ̂

)τ) (7.14)

where k is the current step. KP , KI , and Kaw are proportional, integral and anti wind-up
gain, respectively.

Simulation results
Figure 7.9 shows the simulation results comparing the ideal optimum, single-input ap-

proach (C2), and multi-input approach option 1 (C3.1), where we can notice that after a
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Figure 7.9: Simulation results showing the constraint tracking and control performance of the multi-
input approach (C3.1) compared to single-input (C2), the standard dual dFoS framework (C1) and
ideal optimum (C0), along with the error to the ideal one (right-hand plots)

dramatic GOR drop at t = 6 hr, more power is required by the gas-lift compressor to sup-
ply more lift gas. Thus, the maximum available power constraint is active. Note that the
single-input approach does not work ’properly’ to control the constraint during the tran-
sient due to input rate saturation. On the other hand, the multi-input approach (C3.1) can
control the active constraint tightly. In addition, when the maximum gas handling capacity
drops and GOR of well 1 increases at t = 39 hr, the active constraint region switches,
and the maximum gas handling capacity is active. Without changing the control structure,
the multi-input approach (C3.1) can automatically switch its ’mode’. After switching, this
approach tightly controls the new active constraint. We can also notice that there is no
significant dynamic violation in this case, so that the back-off parameters are relatively
small, which means reducing more potential loss.

Figure 7.10 shows that probably the only issue of multi-input (in this case) is the over-
shoot of dual variables at t = 6 hr, that appears due to disturbance and the presence of
multi-input direct/override constraint control itself. Regarding active constraint switching,
Figure 7.10 (b) indicates that both single-input (C2) and multi-input (C3.1) can minim-
ize dynamic violation at t = 39 hr with a relatively short transient time. Meanwhile, the
standard dual dFoS framework (C1) consumes more transient time for switching.

Finally, Figure 7.11 compares and confirms that the multi-input is the approach that can
address the issue of input rate saturation indicated by its capability to reach the optimal-
steady state condition, and minimize the back-off.

Regarding economic loss due to back-off, one can notice in Figure 7.9(c) that the
standard dual dFoS framework (C1) needs to apply around 3.2 MW of back-off of the real
Powmax

gl , single-input (C2) around 1.1 MW, and multi-input (C3.1) almost 0 MW in this
case. This back-off has included the violation shown in Figure 7.9(d) because the change
of the cost shown in Figure 7.11(a) of the second constraint is less than the first one. After
implementing back-off strategy, both the standard dual dFoS framework (C1), and single-
input (C2) lose around $369/hr, and $104/hr, respectively. Meanwhile, the multi-input
approach (C3.1) loses almost $0/hr in this case.
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Figure 7.10: The comparison of the Lagrange multiplier of the single-input (C2), multi-input (C3.1),
the standard dual dFoS framework (C1), and ideal optimum approaches (C0).
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Figure 7.11: The overall performance of the multi-input approach (C3.1) compared to the single-
input (C2), the standard dual dFoS framework (C1), and ideal optimum (C0).
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7.5 Chapter Summary
In this paper, we proposed a multi-input direct/override constraint control that is com-

bined with dual-based dFoS framework. We showed that the proposed control structure
can overcome the issue of input rate saturation by introducing an online correction factor
for the assigned inputs. Since the correction factor is constructed by a selection matrix,
several inputs may jointly contribute to ’directly’ controlling the active constraint, thus,
avoiding the dependency on a single input. This strategy enables system-wide optimal
operation with minimum back-off even under saturated inputs rate conditions, and without
losing the flexibility of active constraint switching.



Chapter 8

Primal-based dFoS Framework
with Compensator: Minimizing
Dynamic Violation

In the realm of distributed feedback-optimizing system framework, this chapter suggests
other possible approach to handle critical constraint which is based on primal decompos-
ition equipped with compensator subsystem. This chapter is based on the work in [91].

8.1 Introduction
As shown previously, chapter 4-7 explore and exploit the potential of dual decom-

position in the construction of distributed feedback-optimizing system framework. The
aim of those chapters starting from transforming interactive to non-interactive problem,
numerical-based optimization to feedback-based optimization, and ending with handling
better constraints in a more realistic cases. As a continuation of our work, this chapter,
chapter 9, and chapter 10 explore and exploit the potential of primal decomposition in
the construction of distributed feedback-optimizing system framework. Specifically, the
main contribution of this chapter is constructing what so called primal-based distributed
feedback-optimizing system framework, that achieves optimal steady-state operation in a
distributed manner, without the need to solve numerical optimization problems online and
with minimum dynamic constraint violation.

8.2 Problem Formulation
In this section, we describe the optimization problem for the entire system consisting

of a network of N subsystems. These subsystems are denoted by the setN = {1, . . . , N}.
In practice, these subsystems are usually operated by different companies or organization
and therefore, we assume each subsystem is optimized locally. For example, four of seven
oil wells are operated by company A, and the remaining are operated by company B.
Typically, each company has its own best practice in optimizing their wells (also known

137
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as local optimization).
Let subsystem i be modeled as a nonlinear state-space system.

ẋi = fi(xi,ui,di)

yi = hi(xi,ui,di)
(8.1)

where xi ∈ Rnx,i , ui ∈ Rnu,i , di ∈ Rnd,i and yi ∈ Rny,i denote the vector of states,
inputs, disturbances/parameters and available measurements of each subsystem, respect-
ively. Each subsystem may also have local constraints.

We consider the overall network as a nonlinear state-space system and define all inputs,
states, and disturbances as shown in the following.

u =
[
u1, . . . ,uN

]⊤
;x =

[
x1, . . . ,xN

]⊤
;d =

[
d1, . . . ,dN

]⊤
(8.2)

The steady-state optimization problem is

min
ui,∀i ∈ N

JN =
∑

i∈N
JNi (8.3a)

s.t. f(x,u,d)= 0, (8.3b)
g(x,u,d)≤ 0 (8.3c)

where constraint (8.3b) is related to the entire system model, and constraint (8.3c) is a
(coupling) (in-)equality constraint.

8.3 Proposed Solution
8.3.1 Distributed Optimization using Primal Decomposition

Solving the integrated optimization problem (8.3) requires a detailed model and their
interactions in addition to the constraints and measurements, which may be undesirable or
unnecessary in the practical context. Therefore, we propose to solve problem (8.3) in a
distributed manner by decomposing the problem. In this paper, we propose an online op-
timization method, i.e., using simple feedback controllers, based on primal decomposition
and addressing the issue of primal infeasibility.

First, we introduce a virtual subsystem denoted as subsystem 0, in which the cost
function is JN ,0 = 0. As a consequence, we define the set N0 = {0, 1, . . . , N}.

Defining constraint (8.3c) as linear constraint (if it is non-linear, one can consider to
linearize it at the operating point), g(x,u,d) =

∑N
i=1 gi(xi,ui,di)−gmax (additive w.r.t

the contributions of the subsystems), we introduce a slack variable, g0, to convert any
inequality constraint in (8.3c) into equality constraints, where g(x,u,d) + g0 = 0. This
modification does not change the structure that (8.3a) is additively separable in the cost,
and the system model (8.3b) are imposed for each subsystem independently.

By providing an initial value of local constraint for the variables of the coupling con-
straint, labeled by gspi , where gsp =

∑N
i=1 g

sp
i , and letting a central problem deal with the

active coupling constraint satisfaction, integrated optimization problem (8.3) can be seen
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as the following separable problem.

min
ui,∀i ∈ N0

JN =
∑

i∈N
JN ,i (8.4a)

s.t. fi(xi,ui,di)= 0,∀i ∈ N , (8.4b)
gi(xi,ui,di)− gspi = 0,∀i ∈ N0, (8.4c)

∑

i∈N0

gspi = gmax (8.4d)

Note that here we introduce auxiliary primal variables gspi . Moreover, as long as Eq. (8.4d)
is satisfied, the primal feasibility of the coupling constraint (8.3c) is guaranteed.

By relaxing the local constraint (8.4c), problem (8.4) can be re-written as a Lagrange
function that can be decomposed into smaller subproblems, and each subproblem solves
the optimization problem for subsystem i.

Pi(g
sp
i ) := min

ui

Li(ui, g
sp
i , λi) (8.5)

where Li(ui, g
sp
i , λi) = JN ,i + λigi(xi,ui,di). The local Lagrange multiplier, labeled

by λi, is associated with local constraint (8.4c). The local constraint converges to the same
value in steady-state optimal conditions.

8.3.2 Controllers and Estimators
Each subsystem solves its local optimization problem by considering the setpoints

(auxiliary primal variables, gspi ) provided by the master/central constraint controllers.

Master/central constraint controllers
These controllers update the setpoints iteratively, based on given local Lagrange mul-

tipliers computed by each subproblem. The goal of these controllers in a central problem
is to provide setpoints that satisfy the primal feasibility (8.4d).

min
gsp0 , gsp1 , . . . , gspN

∑

i∈N0

Pi(g
sp
i ) (8.6a)

s.t.
∑

i∈N0

gspi = gmax, (8.6b)

gsp0 ≥ 0 (8.6c)

where Pi(g
sp
i ) is given by (8.5), constraint (8.6b) comes from Eq.(8.4d), and constraint

(8.6c) forms the foundation for using the max selector in the subsequent explanation of
the virtual subsystem.

Compensator subsystem:
To ensure primal feasibility, one local setpoint (e.g., subsystem N ) is given by

gsp,k+1
N = gmax −

(
gsp,k+1
0 + . . .+ gsp,k+1

N−1

)
(8.7)

We call this subsystem as compensator subsystem.
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Normal subsystem:
Each local setpoint gspi at time step k + 1 can be determined using the steepest des-

cent direction of the central problem (8.6a), which is given by the subgradient. For
j = {0, ..., N − 1},

∇gsp
j

(∑

i∈N0

Pi(g
sp,k
i )

)
= −λk

j + λk
N , (8.8)

The updated local setpoint at the next time step is,

gsp,k+1
i = gsp,ki +KI,i∇gsp

i

(∑

i∈N0

Pi(g
sp,k
i )

)
(8.9)

where we may consider an integrating controllers with integral gain KI,i = 1
Ki(τc,i)

,
and Ki is the step response gain, and τc,i is the desired closed-loop time constant. Note
that the desired time constant should be slow enough to satisfy the time-scale separation
concept [85]. This concept is necessary to avoid undesired behaviors such as oscillatory
and deviating behavior.

Note that to compensate any change in the normal subsystem, we assume that each
subsystem informs its local Lagrange multipliers λk

i to the compensator subsystem, and
receive the local Lagrange multipliers λk

N of the compensator subsystem.
Virtual subsystem:
Since we introduce a slack variable gsp0 to store un-utilized resource, and the storage is

physically never been negative, it is necessary to use max selector as follows.

gsp,k+1
0 = max

[
0, gsp,k0 +KI,0∇gsp

0

(∑

i∈N0

Pi(g
sp,k
i )

)]
(8.10)

By implementing these strategies, i.e., compensator, normal, and virtual subsystem,
the setpoints, provided by these controllers, guarantee the primal feasibility.

Local setpoint controllers
Given the local setpoint gspi , the local setpoint controller regulates the actual local

primal variables gi to gspi . The updated local input at the next time step usp,k+1
i is given

by
usp,k+1
i = usp,k

i +KIL,i

(
gi − gsp,ki

)
(8.11)

where we may consider an integrating controllers with integral gain KIL,i =
1

KL,i(τcL,i)
,

and KL,i is the step response gain, and τcL,i is the desired closed-loop time constant. Typ-
ically, the desired time constant is designed as fast as possible. However, it is necessary to
carefully choose the desired time constant τcL,i to ensure that the local setpoint controller
does not too aggressively track the setpoint given by central constraint controllers.

Remark 8.1: Special Case

Note that the setpoint controller is not necessary in the special case, when we have
a shared input constraint because the central constraint controller has provided the
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optimal input.

Local Lagrange Multiplier estimation
Note that (8.8) requires local Lagrange multiplier estimates. In the traditional RTO

framework, this is available when solving the numerical optimization problem. However,
when using feedback control, this is not directly available, and hence must be estimated,
which will be describe below. According to KKT (Karush-Kuhn-Tucker) conditions, the
stationary point is reached when

∇uiLi(ui, g
sp
i , λi) = 0

for all subsystems, and all λi converge to the same optimal value. Thus, the local Lagrange
Multiplier λi can be computed as follows.

λi = −∇ui
JN ,i (∇ui

gi(xi,ui,di))
−1 (8.12)

where the number of local manipulated variables must be equal to or more than the number
of constraints in common, and the solution must be unique.

In order to evaluate (8.12), each subsystem i is required to estimate its local steady-
state cost and constraint gradient, which can be achieved locally using any model-based
or model-free gradient estimation. This estimation takes into account the effect of the
updated input calculated in (8.11). For a list of gradient estimation techniques for RTO see
[35], and [74].

Remark 8.2: Virtual Local Lagrange Multipliers

Virtual subsystem, λ0 is always 0 because JN ,0 is defined as 0, and to limit the dual
variable to be non-negative in a steady-state condition (i.e., to satisfy steady-state
dual feasibility).

8.3.3 Online Primal Decomposition Framework
By combining the concept of primal decomposition, the idea of master/central con-

straint controllers, local setpoint controllers, and local Lagrange multiplier estimation
as described above, we propose to solve the problem of real-time resource allocation in
handling coupling constraint using distributed feedback-optimizing control using Primal
decomposition framework. This framework theoretically can reach steady-state optimal
condition and guarantees primal feasibility.

Fig. 8.1 illustrates the implementation of this framework in solving the above prob-
lem. The master/central constraint controllers, containing virtual, normal and compensator
subsystems, provide new set points for local coupling constraint, gi (see eq. (8.7),(8.9),
and (8.10)). These set points will be tracked by local setpoint controllers (see eq. (8.11)).
Should there be any disturbance di, one can use the current plant information to estim-
ate the plant’s current state and parameters/disturbance using local dynamic estimator
such as Extended Kalman Filter (EKF). Using the inputs, estimated states and paramet-
ers/disturbance, one can estimate both cost and constraint gradient to compute the local
Lagrange multipliers as shown in eq. (8.12). Thereafter, these multipliers are used by
master/central constraint controllers to determine the new setpoints.
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Central Constraint Controller
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Figure 8.1: The proposed primal-based distributed feedback-optimizing system framework using
simple feedback controllers and selector. The grey and white boxes represent the physical system
and the computation block, respectively.

Remark 8.3: Types of shared resources

Note that we have two types of shared resources here, the shared input, that we
need to optimally allocate, and the shared constraint, g, that all subsystem should
cooperate optimally to satisfy. The shared input can be total flow of materials, steam,
or energy that any kind of process industries usually need. The shared constraint can
be any type of constraint that two or more subsystems have influence on, i.e., plant
capacity. Specifically for the solid mining industry, we could consider the extracted
earth deposit as the flow of materials, and the maximum capacity of the processing
plant, e.g., smelter, as the shared constraint.

8.4 Numerical Example
We demonstrate the proposed method in a network of gas-lifted oil wells production

system. These oil wells are operated locally and share a common processing facility at
the topside. Using recent technology, the subsea production wells have capabilities for the
measurement of the multi-phase flow rates (i.e. multiphase flowmeter, MPFM or virtual
flowmeter, VFM technology solutions) at respective wellheads [92]. Since the export gas
handling capacity available on a platform is usually limited, it is necessary to optimally
allocate the lift gas among the different wells.

Note that the term of export and produced gas is interchangeable in this numerical
example. Both terms represent the total of the gas produced by reservoir and the injected
gas-lift.

In this section, we apply the proposed method control structure on a gas-lifted well net-
work (liquid and gas extraction activities) with N = 2 wells, that are operated locally. The
optimization objective of this case is to maximize total oil production, wto =

∑N
i=1 wpo,i
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while minimizing the cost of total gas lift, wgl =
∑N

i=1 wgl,i. Thus, JNi = −powpo,i +
pglwgl,i, where po, and pgl are the oil price and the gas lift cost, respectively. The coupling
constraint is g(x,u,d) =

∑N
i=1 wpg,i − wmax

pg , where wpg,i is the local export gas, and
wmax

pg is the maximum capacity to handle total export gas. Fig. 8.2 illustrates this case
study completed with the proposed control structure, where well 2 is assigned to ensure the
setpoint primal feasibility (see Eq. (8.7)). Note that each well has an MPFM to measure
the actual local export gas.

1 2
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Figure 8.2: A simplified process diagram of a gas-lifted oil production network with constraints in
maximum export gas handling capacity, and equipped with the proposed control structure. Dashed
lines represent data transmission in the proposed control structure. Act stands for actuator. K rep-
resents controllers.

The gas-oil ratio (GOR), one of the essential reservoir properties, is a time-varying
disturbance for the different wells (feed disturbance). Usually, the separator pressure is
controlled. To accommodate this scenario, we have to consider optimization problem
reformulation as described in Chapter 4. However, for simplification, we assume that the
manifold pressure is controlled, and the setpoint is time-varying due to the change in the
processing facility or other connected wells. Thus, we consider disturbance d consisting of
GOR and manifold pressure, as shown in Figure 8.3. In addition to these disturbances, the
produced gas processing capacity (wmax

pg ) varies, which affects the optimal allocation of
the lift gas. The disturbances may also lead to an unconstrained case, where the coupling
constraint (8.3c) is inactive.

The controllers are tuned using SIMC (Simple/Skogestad Internal Model Control) rules
introduced by [52]. The desired timescale of the local setpoint controllers is τcL,1 =
τcL,2 = 75 seconds. To satisfy the timescale separation concept, the chosen timescale for
the central constraint controllers is τc,1 = τc,2 = 131.25 seconds. Thus, the timescale
ratio ϵ = τcL,i/τc,i is 0.5714. Since the time delay is insignificant, one could consider
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Figure 8.3: Disturbance.

integrating controllers. However, we use PI controllers in this simulation. Tab 8.1 displays
the controllers’ parameters.

Table 8.1: The Parameters of Controllers

Gain Time Constant [sec] Time Delay [sec]
KI,0 0.375 τ1,0 617 θ0 0
KI,1 0.375 τ1,1 617 θ1 0
KIL,1 1.031 τ1L,1 643 θL,1 9
KIL,2 1.039 τ1L,2 614 θL,2 2

To estimate the local Lagrange multiplier, we execute three steps. First, we use the
current plant information to estimate the plant’s current state and parameters using EKF.
Next, we use the updated model to evaluate the steady-state gradients. These first two
steps utilize the same methods we use in [41]. Finally, we evaluate Eq. (8.12).

First, we solve the integrated production optimization problem (8.3) to obtain the ideal
steady-state optimal setpoint as the baseline. Then, we implement the proposed framework
described in Section 8.3.

Figure 8.4 shows the simulation results of the produced gas setpoints. These are the
output of the central constraint controllers’ performance, where we can observe that the
total setpoint of the produced gas is not violating the constraint. As a consequence, the
compensator subsystem (subsystem 2) ’absorbs’ the violation, indicated by oscillations
during transient. These associated oscillations can also be observed in Figure 8.5-8.6.
Moreover, the produced gas setpoint of each well reaches the steady-state optimal setpoint
labeled by wsp,⋆

pg,i . Furthermore, the steady-state slack variable wsp
pg,0 also reaches 0 in the

constrained case and wsp
pg,0 > 0 in unconstrained case.

Figure 8.5 depicts the simulation results showing the performance of the local setpoint
controllers and the local Lagrange multiplier estimator. The top plot shows that the local
setpoint controllers have successfully tracked the produced gas setpoints given by the cent-
ral constraint controllers. The middle one shows that the manipulated variable, i.e., gas-lift
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Figure 8.4: Top: Total produced gas optimal setpoint and its constraint. Middle: Produced gas
setpoints. Bottom: Optimal unutilized produced gas capacity setpoint.

rates, reached the optimal steady-state conditions. Additionally, the local Lagrange multi-
pliers converge to the optimal steady-state conditions and satisfy the dual feasibility in the
steady-state shown in the bottom plot. Note that, in unconstrained case, the steady-state
local Lagrange multiplier is 0. These results confirm the applicability of using a virtual
variable to store the unutilized produced gas handling capacity.

Figure 8.6 displays the simulation results for the actual cost and the produced gas.
The top plot shows that the presented method can reach the optimal steady-state cost.
Moreover, the total produced gas satisfies the constraint with relatively short duration and
insignificant magnitude violations during the transients. As mentioned above, this vi-
olation only depends on the tuning parameter we choose in the local setpoint controllers
because the central constraint controllers have given the setpoints that guarantee the primal
feasibility (see Fig. 8.4).

Fig. 8.7 shows the comparison with dual decomposition used in [41], where the central
constraint controllers has to be slower (in timescale) than the presented method in active
constraint switching (i.e., unconstrained to a constrained case). This requirement may
lead to dynamic constraint violation when local gradient controllers are too aggressive,
whereas central constraint controllers of the dual approach has no specific strategy to reg-
ulate the primal feasibility. During the transient, the Lagrange multiplier is suboptimal.
This condition significantly contributes to constraint violation. Unlike dual, the central
constraint controller of the presented approach ensures the total setpoint to satisfy the con-
straint. Thus, the ’small’ violation is purely the product of the aggressive local setpoint
controllers, which can be tuned more independently. Even this method does not need local
setpoint controllers when it only has input constraints. Meanwhile, the dual approach may
have an issue in tight constraint control as the central constraint controller has to be in a
slow timescale. Forcing a faster timescale central constraint controller (larger ϵ) may lead
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Figure 8.5: Top plot: Gas-lift rates (ui = wgl,i) and the optimal steady-state conditions. Middle
plot: Produced gas rates and the setpoints. Bottom plot: The local Lagrange multipliers and the
optimal steady-state.

to oscillatory behavior.
When it comes to solid extraction activities, one may consider a network of mines

and smelters in a metal mining industry [93], which fundamentally has similar class of
problem as the gas-lift well network. These mines produce concentrates that should be sold
and transported to the smelters for processing. The optimization problem is to optimally
allocate the raw materials from the mines in order to achieve maximum revenue since
production capacity of the smelters is limited.

8.5 Chapter Summary
In this paper, we presented a primal-based dFoS framework. We showed that such a

problem turns into a feedback control problem by introducing virtual subsystems or slack
variables to store unutilized resources, implementing master/central constraint controls
and local setpoint controls, and estimating Lagrange multipliers. The goals of central con-
straint controls are to directly control the constraint, update the local constrained variables
setpoints, and regulate the primal feasibility of the constrained variables. The objective of
local setpoint controls is to control constrained variables to the given setpoint. For the case
study we consider in the simulation example, this proposed framework leads to a system-
wide optimal operation without a numerical solver. Moreover, the setpoints provided by
the master/central constraint controls satisfy the primal feasibility.

Assessment Table:
Let S-XI be the proposed framework of this chapter, the parameter we assess and

compare are as described in section 2.5. Table 8.2 summarizes the assessment, where
the approaches are:
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Figure 8.7: Comparison with different timescales separation (ϵ) and method. Small ϵ means the
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• S-IX: Dual-based Distributed Feedback-Optimizing System
• S-X: Dual-based Distributed Feedback-Optimizing System with Override
• S-XI: Primal-based Distributed Feedback-Optimizing System with Compensator

and the parameters we assess and compare are:
• (a): Is steady-state optimal achieved?
• (b): Is constraint controlled transparently (see Definition 2.1)?
• (c): Is flexible for active constraint switching?
• (d): Is constraint controlled directly (on fast time scale)?
• (e): Is applicable for less than twice differentiable Lagrange function?
• (f): Is numerical solver avoidable (computation time)?
• (g): Is it recommended for complex and large system?
• (h): Is input filter (or additional setpoint controller) avoidable?
• (i): Is parameters and states dynamic estimator avoidable?
• (j): Is gradient estimator avoidable?

Primal-based dFoS with compensator (S-XI) vs Dual-based dFoS with override (S-X):
From Table 8.2, we may conclude that both Primal-based dFoS with compensator (S-

XI) and Dual-based dFoS with override (S-X) may produce comparable or equal perform-
ance. In fact, they are not. For instance, Primal-based dFoS with compensator is better
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Table 8.2: Summary of Chapter 8

S-IX S-X S-XI
(a) Yes Yes Yes
(b) Yes Yes Yes
(c) Yes Yes Yes
(d) No1 Yes Yes
(e) Yes Yes Yes
(f) Yes Yes Yes
(g) Yes Yes Yes
(h) Yes Yes Yes
(i) No No No
(j) No No No

"Yes": the approach has satisfied the success parameter
"Yes": the approach has satisfied the success parameter in this Chapter
"No": the approach does not satisfied the success parameter
"No": does not satisfied the success parameter, and will be addressed in this thesis.
1: is also addressed in Chapter 3 with different approach.

when handling optimization problem with a shared input constraint, i.e, optimal resource
allocation. It might also better when handling optimization problem with multiple shared
input constraints as long as the each resources provision is affected by the other resource.
However, Dual-based dFoS with override is more flexible in any type of optimization prob-
lem. For instance, for complex and interactive systems, Primal-based dFoS with com-
pensator may fail if the matrix operation to determine the local Lagrange multiplier does
not find unique solution.

Future works: As future works, Chapter 9 will not only show the experimental valid-
ation of primal-based dFoS equipped with compensator, but also compare it to the dual-
based dFoS with and without override. Furthermore, an intriguing avenue of research
involves the development of a decentralized feedback-optimizing system, where there is
no single master constraint controller play as the central role. All distributed structures
developed in Chapter 4, 6, 7, and 8 require a single central controller. Should there any
information in the master level is not given to this controller, optimal operation will not be
achieved. This study will be the focus of Chapter 10.



Chapter 9

A Comparative Study of DFoS
Frameworks: An Experimental
Validation in an Oil Well Rig

The goal of this chapter is to experimentally validate and compare the approaches de-
scribed in Chapter 4, 6, and 8 This chapter is based on the works in [94, 95]

9.1 Introduction
The distributed feedback-optimizing control scheme holds several crucial benefits for

process control (in order of the importance):

1. This scheme enables formulating each local problem independently (including in-
dependent local estimator), assuming that the overall objective consists of local ob-
jectives that are additively separable [13].

2. Fast local responses are achievable because one may use different closed-loop time
constants for each local system.

3. Solutions can be implemented immediately after each iteration, eliminating the need
to wait for convergence over several iterations.

4. This scheme circumvents slow response and numerical issues like divergence, often
encountered in centralized Real-Time Optimization (RTO) methods (for example,
the solution is not valid anymore due to fast disturbance).

5. The distributed feedback-optimizing control scheme may serve as an alternative to
numerical-based RTO approaches as it can be computationally expensive in certain
case.

Building on our previous work in Chapter 4, 6, and 8, the main contribution of this
work is to experimentally validate and compare the three schemes of distributed feedback-
optimizing control on a lab-scale gas-lifted oil well rig consisting of three wells with the
lift gas being the shared resource that couples the three wells together.

149
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9.2 Overview of Frameworks
Consider an integrated steady-state optimization problem of N different subproblems

(subsystem).

min
u

J (u,d) =

N∑

i=1

Ji (ui, di) (9.1a)

s.t. g (u,d) =

N∑

i=1

gi (ui, di)− ḡ ≤ 0 (9.1b)

where u ∈ Rnu are the set of manipulated variables, d ∈ Rnd denotes the set of dis-
turbances, J : Rnu × Rnd → R is the cost function, g : Rnu × Rnd → Rng denotes
the (coupling) constraints, and ḡ ∈ Rng is the conflicting variables or the limit of the
constraints.

Defining u =
[
u1, . . . , uN

]⊤
and d =

[
d1, . . . , dN

]⊤
, ui ∈ Rnui denotes the decision

variables and nui
is the number of decision variables in subsystem i, and di ∈ Rndi

denotes the disturbances and ndi is the number of the disturbances in subsystem i.
Further, Ji : Rnui × Rndi → R is a function that denotes the local objective of sub-

system i, gi : Rnui × Rndi → Rng is a function that denotes the (in-)equality constraints
in subsystem i, ng is the number of the coupling constraints.

This works aims to translate a large-scale optimization problem (9.1) into simple feed-
back control problems, that can be solved using a simple tool(s), i.e., PID controllers and
selector, or a configuration of them. To distributedly solve problem (9.1) using feedback
control schemes, three structures of distributed feedback-optimizing control are available
as described in the following sections.

9.2.1 Primal-based Distributed Feedback-optimizing System
This structure is based on the method proposed and discussed in [84, 91]. To be able

to implement primal-based distributed feedback-optimizing control, the subsystem should
satisfy Assumption 9.1.

Assumption 9.1: Sufficient local MVs

Each local system (subproblem) has enough input/manipulated variables (decision
variables), ui, to control the active coupling constraints, g. Mathematically, nui

≥
ng, i = 1, . . . , N .

By introducing a virtual subsystem (subsystem 0), one can reformulate problem (4.1)
as an equality constraint problem as follows.

min
u1, . . . , uN

J0 +

N∑

i=1

Ji (ui, di) (9.2a)

s.t. g0 +

N∑

i=1

gi (ui, di)− ḡ = 0, (9.2b)

g0 ≥ 0 (9.2c)
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where J0 is a constant and therefore will not influence any optimal solution, and g0 acts as
a storage of unused resources/values (which is non-negative) that transform the inequality
into an equality constraints (slack variables).

Subproblems as feedback control problems: Utilizing primal decomposition method,
one can decompose problem (9.2) into N subproblem (local system), and each local sys-
tem i has the following local subproblem.

min
ui

Ji (ui, di) , i = 1, . . . , N (9.3a)

s.t. gi (ui, di) = ti, i = 1, . . . , N (9.3b)

Each subsystem i solves problem (9.3) using feedback-optimizing control, i.e., reduced
gradient control, by executing the following steps.

1. Control gi(ui, di) to a setpoint of ti using ng degree of freedom.
2. For remaining nui−ng degree of freedoms, control reduced gradient, N⊤

i ∇uiJi (ui, di),
to setpoint of 0, where N⊤

i is the null space of∇ui
Ji (ui, di) [23, 96].

Remark 9.1: Pairing

The pairing can generally be done in practice by using some rule of thumb, i.e.,
pair-close rule, non-negative relative gain array (RGA), and pair on large gain [21].

Remark 9.2: Special case

In the special case of nui
= ng, reduced gradient controller is not required.

Computing Lagrange multipliers: Updating the setpoint ti, in each subsystem requires
the Lagrange multipliers corresponding to (9.3b). To compute Lagrange multipliers in a
feedback control setting, the following conditions are required.

Assumption 9.2: Clear time scale separation

There is a clear time scale separation between the local controllers in each subsys-
tem, and the controllers in the layer above used for coordination.

Note that the above assumption can be satisfied by tuning the local controllers 5 - 10
times faster than the controllers in the coordination layer [46, 85, 65, 57].

Assumption 9.3: The steady-state constraint gradient

The steady-state constraint gradient,∇ui
gi (ui, di), is non-singular matrix.

If Assumption 9.2 hold, the stationary condition is achieved.
The Lagrangian of problem (9.3) is as follows.

Li(ui, di, ti,λi) = Ji (ui, di) + λ⊤
i (gi (ui, di)− ti) (9.4)
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where λi ∈ Rng is a vector of Lagrange multipliers of the constraints.
At stationary condition∇ui

Li(ui, di, ti,λi) = 0. Thus,

∇ui
Ji (ui, di) + λ⊤

i ∇ui
gi (ui, di) = 0 (9.5)

If Assumption 9.3 hold, one can compute the local Lagrange multipliers as follows.

λ⊤
i = −∇ui

Ji (ui, di) [∇ui
gi (ui, di)]

−1 (9.6)

Note that each subsystem estimates the cost and constraint gradients locally using only the
local model and measurements.

Remark 9.3: Special case

In the special case of nui
= ng,∇ui

gi (ui, di) is a square matrix.

Coordinator: The coordinator problem is formulated as

min
t0, . . . , tN

N∑

i=0

Li(ui, di, ti,λi) (9.7a)

s.t.

N∑

i=0

ti − ḡ = 0, (9.7b)

t0 ≥ 0 (9.7c)

where λi is considered as parameter provided by local Langrange multipliers estimator
(9.6). Note that gi is equal to ti in the steady state (by utilizing local constraint control),
and t0 is non-negative (by incorporating max selector in a shown in equation (9.11a).

To solve problem (9.7) using a feedback control loop, one can for reformulate problem
(9.7) into the following problem.

min
t0,...,tN−1

N−1∑

i=0

[
λ⊤
i (gi (ui, di)− ti) + λ⊤

N (gN (uN , dN )− tN )

]
(9.8)

where tN = ḡ −∑N−1
i=0 ti [44].

At stationary condition,

∇ti

[
N−1∑

i=0

[
λ⊤
i (gi (ui, di)− ti) + λ⊤

N (gN (uN , dN )− tN )

]]
= 0 (9.9)

Thus,
−λ⊤

i + λ⊤
N = 0, i = 0, . . . , N − 1 (9.10)

Note that Ji (ui, di) terms can be omitted, since they are independent of ti and are con-
stants.
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Problem (9.8) is an unconstrained optimization with N degree of freedom, which can
be updated using I-controllers as follows.

tk+1
0 = tk0 + max (0,K0 (−λ0 + λN )) (9.11a)

tk+1
i = tki +Ki (−λi + λN ) , i = 1, . . . , N − 1 (9.11b)

tN = ḡ −
N−1∑

i=0

ti (9.11c)

where eq. (9.11a) is for virtual subsystem to store unutilized resources, and Max Selector
is chosen to ensure non-negative storage values. The value of λ0 is 0 because the value of
J0 is always constant. Further, eq. (9.11b) is for all i = 1, . . . , N − 1, and eq. (9.11c) is
for compensator subsystem that guarantees the constraint (primal) feasibility.

9.2.2 Dual-based Distributed Feedback-optimizing System
This structure is based on the method proposed and discussed in [40, 41, 65]. To

be able to implement dual-based distributed feedback-optimizing control, the subsystem
should satisfy Assumption 9.2.

Introducing the Lagrange function

L (λ,u,d) = J (u,d) + λ⊤g (u,d)

and defining g =
[
g1 . . . gng

]⊤
, and λ =

[
λ1 . . . λng

]⊤
, the necessary conditions

for optimality (KKT conditions) for the problem (9.1) can be expressed as

∇uL(λ,u,d) = 0 (9.12a)
gi(u,d) ≤ 0, for i = 1, . . . , ng (9.12b)

λi ≥ 0, for i = 1, . . . , ng (9.12c)
λigi(u,d) = 0, for i = 1, . . . , ng (9.12d)

The unknown variables in equation set (9.12) are u and λ. The equation set can be
solved using dual ascent [64]. Here we solve (9.12a) with respect to u with a fixed value
of λ, and then iteratively update λ in an outer loop to satisfy the remaining equations,
where the most important is to keep g = 0 for the case when the constraints are active,
which corresponds to a nonzero λ.

Subproblems as feedback control problems: Given a fixed value of λ, the stationary
condition (9.12a) is the solution of the following unconstrained problem,

q(λ) := min
u

L (λ,u,d) (9.13)

Assuming additively separable cost and constraint function, the controlled variable

c(λ) := ∇uL(λ,u,d)

=



∇u1

J1(u,d)
...

∇uN
JN (u,d)


+ λ⊤



∇u1

g(u,d)
...

∇uN
g(u,d)




(9.14)
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can be easily decomposed into each subsystem control as the following

ci(λ) := ∇ui
Li(λ,u,d) = ∇ui

Ji(u,d) + λ⊤∇ui
g(u,d) (9.15)

Therefore, the only step in the subsystem is controlling ci(λ) to setpoint of cspi = 0 by
manipulating the primal variable ui.

Coordinator: The coordinator problem is formulated as

max
λ

q(λ) (9.16)

Problem (9.16) is an unconstrained optimization with ng degree of freedom, which can be
updated using I-controllers (which is also known as subgradient updates in optimization
literatures) as follows.

λk+1
i = max

(
0, λk

i +Kλi
gi(u,d)

)
, for i = 1, . . . , ng (9.17)

Max Selector is chosen to ensure non-negative Lagrange multipliers. When the constraint
is inactive, Max Selector chose zero instead of negative for the associated Lagrange mul-
tipliers. This satisfies dual feasibility (9.12c).

9.2.3 Dual-based Distributed Feedback-optimizing System with Over-
ride

In the structure above, the constraints are controlled in the outer loop, in the slower
timescale. However, in many processes, it is desirable to control the constraints in the
faster timescale. To address this, we proposed dual-based approach with override [47]. To
be able to implement dual-based distributed feedback-optimizing control with override,
the subsystem should satisfy Assumption 9.2.

Subproblems as feedback control problems: Consider subsystem i that is specifically
assigned to control constraint gi in fast time scale, then Subsystem i solves problem (9.13)
and control the active constraint using feedback-optimizing control, by executing the fol-
lowing steps.

1. Gradient controller: Control ci(λ) to a setpoint of cspi = 0 by manipulating calcu-
lated primal variable ũi.

2. Override constraint controller: Control coupling constraint gi(u,d) to a setpoint of
0 by manipulating calculated primal variable ug

i .
3. Select implemented primal variable ui: If small value of primal variable is good for

constraint satisfaction, then ui = min (ũi, u
g
i ). Otherwise, ui = max (ũi, u

g
i ).

Coordinator: For the constraint that is overridden (when it’s active) in the subsystem,
an auxiliarry constraint is introduced as follows,

g̃i = ũi − ug
i (9.18)

which is controlled by manipulating the corresponding Lagrange multipliers. This can be
done using I-controllers as follows.

λk+1
i = max

(
0, λk

i +Kλi g̃i
)

(9.19)

Similarly, Max Selector is chosen to ensure non-negative Lagrange multipliers. This sat-
isfies dual feasibility (9.12c).
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Figure 9.1: This experiment’s schematic is based on [83].

9.3 Experimental Setup
Subsea production systems involve drilling wells on the seabed to extract hydrocarbons

from underground reservoirs. These hydrocarbons are transported in pipelines along the
seabed and lifted to the surface via a riser pipeline. However, if the reservoir pressure is
low, artificial lift methods, such as gas-lift, may be necessary to overcome pressure losses
and bring the hydrocarbons to the surface. In gas-lift, compressed gases are injected via
annulus into the well tubing to reduce the fluid mixture density and minimize hydrostatic
pressure losses. It’s important to note that excessive gas injection can increase frictional
pressure drop in the well tubing, counteracting the desired effect [60]. As such, each well
has a local optimum gas injection rate. Since the total lift gas available is often limited, it
must be optimally allocated among wells to maximize production across the network. For
further information on production optimization in the oil and gas industry, please refer to
[14, 84], and related literature.

9.3.1 Experimental rig as a subsea production system
In order to emulate a subsea gas-lifted oil production system, a laboratory-scale ex-

perimental rig is utilized. The rig operates using water and air as working fluids instead
of oil and gas for simplicity. The choice of working fluids does not affect the gas lift
phenomenon, which can still be observed in the lab rig. Therefore, the rig is suitable for
studying production optimization techniques, where the gas lift effect is the phenomenon
of interest. The schematic of the system, which includes a reservoir, well, and riser sec-
tion, is shown in Figure 9.1. The system measurements, denoted as yp, include the well top
pressures (PI101, PI102, and PI103), the pump outlet pressure (PI104), the liquid flowrates
(FI101, FI102, and FI103), and the gas flowrates (FI104, FI105, and FI106). To control
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the gas flowrates, denoted as u =
[
Qgl,1 Qgl,2 Qgl,3

]⊤
to the calculated setpoints

denoted as usp =
[
Qsp

gl,1 Qsp
gl,2 Qsp

gl,3

]⊤
, three PI controllers are used. The reservoir

valve openings (CV101, CV102, and CV103) represent system disturbances and vary dur-
ing the experiments to simulate different reservoir behaviors. A PI controller maintains a
constant pump outlet pressure throughout the experiment.

The reservoir section is comprised of a stainless steel tank, a centrifugal pump, and
three control valves (CV101, CV102, and CV103). These valves are utilized to mimic
disturbances from the reservoir, such as pressure oscillations or reservoir depletion. With
this setup, the reservoir produces only liquid with outflow rates ranging from 2 L/min to 15
L/min. Flow meters (FI101, FI102, and FI103) are installed before the reservoir valves to
measure the outflow rates. A PI controller is used to adjust the pump rotation and maintain
the pump’s outlet pressure (PI104) at a constant 0.3 barg in this experiment.

The well section consists of three parallel flexible hoses with 2 cm inner diameters and
a length of 1.5 m. Pressurized air at approximately 0.5 barg is injected by three air flow
controllers (FIC104, FIC105, and FIC106) approximately 10 cm after the reservoir valves,
within the range of 1 sL/min to 5 sL/min.

The riser section consists of three vertical pipelines, orthogonal to the well section,
with 2 cm inner diameters and a height of 2.2 m. The pressures on top of the risers
(PI101, PI102, and PI103) are measured. Three manual valves are kept open during the
experiments after the sensors. The air is vented out to the atmosphere, and the liquid is
recirculated to the reservoir water tank. Further details on the experimental setup can be
found in [83].

9.3.2 Optimization problem setup
In this experimental setup, the optimization problem aims to maximize the network

liquid flow rate, which is the combined production of liquid from three wells, while taking
into account a limited amount of gas-lift injection. To express the economic objectives in
line with problem (9.1), we can state the following:

J (u,p) :=

3∑

i=1

fi(ui, pi) =

− 20Ql,1 (u1, p1)− 25Ql,2 (u2, p2)− 30Ql,3 (u3, p3)

(9.20)

where Ql,1, Ql,2, and Ql,3 are the produced liquid flowrates of wells 1, 2, and 3, respect-
ively. For illustration, we assume that the wells have different hydrocarbon prices as shown
above. The input vector is given by

u =
[
Qgl,1 Qgl,2 Qgl,3

]⊤

where Qgl,1, Qgl,2, and Qgl,3 are the injected gas flowrates of wells 1, 2, and 3, respect-
ively.

Regarding optimization, the injected gas flowrates serve as the decision variables. For
the plant, however, they represent setpoints to be tracked. The experimental lab rig depic-
ted in Fig. 9.1 employs flow indicator and controllers (FICs) 104, 105, and 106 to maintain
the air injection flowrates at their respective setpoints. As a result, we denote these decision
variables as usp =

[
Qsp

gl,1 Qsp
gl,2 Qsp

gl,3

]⊤
. Some may suggest using valve opening of
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the FICs as the decision variables. However, this alternative may encounter practical is-
sues due to valve non-linearity, and hysteresis behavior. One crucial point to note is that
this alternative formulation renders immediate decomposition, as illustrated in equation
(9.14), impossible. Additionally, three components of p, which correspond to reservoir
valve openings CV101, CV102, and CV103, fluctuate over time. This implies that the cost
is also a function of p.

The total gas availability, which is a shared (input) constraint, can also be expressed as
follows:

g (u,p) :=

3∑

i=1

gi(ui, pi)− gmax

= Qgl,1 +Qgl,2 +Qgl,3 −Qmax
gl

(9.21)

where we directly measure the constraint, and we use FICs to drive Qgl,i to Qsp
gl,i.

Remark 9.4: Type of constraint

Note that the total gas availability in general is an inequality constraint. However, in
this experimental setup, we found that the gas lift constraint is always active, (which
is also common in many gas-lifted oil fields). Hence we can equivalently consider
the coupling constraint to be an equality constraint, and then we do not need the
virtual subsystem (9.11a) and the max selector (please refer to eq. (9.17) and (9.19))
for λ update.

9.4 Control Setup of Distributed Feedback-optimizing Sys-
tem

Here, we establish a distributed feedback-optimizing control structure for our experi-
mental setup, with each well representing a subsystem. These subsystems employ local
gradient estimators based on forward sensitivity analysis to evaluate the local cost gradient
and constraint gradient, supported by a reliable dynamic model. Estimating the system’s
current states, both differential and algebraic, is achieved via an extended Kalman filter
(EKF) in each subsystem, given accurate state estimation and proper noise filtering.

Control Tuning Parameter Selection: Recommended Practice The coordinator con-
troller operates on a slow timescale, while the local controller on a fast timescale, typically
chosen with a ratio between 5 to 10 [57]. We use PI (Proportional Integral) and I (Integral)
controllers tuned using SIMC-rules [52].

Controller tuning validation Prior to the implementation in the rig, we validated the
controller tunings using a high-fidelity dynamic MATLAB model that includes lower-layer
controller dynamics, i.e. FICs, and tuned noise parameters based on rig data. Detailed
parameters are available on our Github page1, and a comprehensive model description can
be found in [83].

1https://github.com/Process-Optimization-and-Control/ProductionOptRig
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Remark 9.5: Tuning Validation

The simulator model is solely utilized for controller tuning parameter determination,
preceding its implementation on the physical rig. All results in Section 5 originate
from experiments conducted on the actual rig, not the simulator.

Steady-state gradient estimation This work uses forward sensitivity analysis to estim-
ate the steady-state gradient which also has been described in 5.2.3.

9.4.1 Primal-based Distributed Feedback-optimizing Control Setup
In this experiment, individual subsystems do not require local PI controllers as we

consider shared input constraints. Coordinator/central controllers, responsible for equal-
izing all Lagrange multipliers, generate setpoints, denoted as Qsp

gl,i, which are used by the
flow controller FICi to regulate air injection valve openings. This eliminates the need for
additional layers beyond the local setpoint controller.

For the coordinator controllers, we use integral controllers, with integral gains denoted
as KI,i =

1
Kλ,i(τc,i+θi)

, where i represents the well index. Here, Kλ,i and θi denotes the
step response and time delay of the constraints determined by local Lagrange multipliers,
and τc,i is the closed-loop time constants.

The parameters Kλ,i and θi are determined by analyzing the step response. Initially,
setting τc,i = 1 is ideal for achieving fast steady-state, but considering the coordinator
controller’s timescale should be slower than the plant, adjusted parameters are chosen
based on observation and practical considerations.

Given the equality constraint, there’s no requirement for a virtual subsystem (see Re-
mark 9.3). Nevertheless, selecting a compensator subsystem remains necessary.

Compensator Subsystem Selection The Compensator subsystem is selected if its ac-
cummulated profit difference to the other subsystem at the steady-state is positive. The
difference, denoted as Pc(t), is calculated using the following formula,

Pd,c(t) =
Pc(t)− Pi(t)

Pi(t)
.100 (9.22)

where Pc(t) represents the accumulated profit with the candidate subsystem as the com-
pensator, and Pi(t) represents the accumulated profit with subsystem i as the compensator.
The accumulated profit values are determined using a MATLAB-developed lab rig model.

According to this metric, subsystem three (3) emerges as the optimal compensator
candidate. This result is expected due to well 3 having the most expensive oil, see eq.
(5.1). The implemented structure is depicted in Figure 9.2, and the controller and tuning
parameters for the primal-based scheme can be found in Table 9.1.

9.4.2 Dual-based Distributed feedback-optimizing Control Setup
The local gradient controller generates the setpoint for the PI flow controller FICi, reg-

ulating the air injection valve opening. For the central constraint controller, the constraint
g is directly measured to update to the Lagrange multiplier, essential for calculating con-
trolled variables in the local gradient controller. This necessitates the addition of two more
layers above the local setpoint controller.
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Figure 9.2: Primal-based distributed feedback-optimizing control implemented in the experimental
lab rig [91].

For the coordinator/central constraint controller, the integral gain (α) is determined as
1

Kλ(τλ,c+θλ)
, where Kλ and θλ pertain to the constraint’s step response and time delay,

while τλ,c governs g’s evolution.
For the three local gradient controllers (indexed by i = 1, 2, 3), the integral gain (KI,i)

is calculated as 1
Kui

(τui,c+θui)
, where Kui and θui correspond to the gradient’s step re-

sponse and time delay with respect to the primal variables, and τui,c governs the evolution
of ci(λ).

We determine Kλ, θλ, Kui
, and θui

by analyzing step responses, while considering
the concept of time scale separation for τui,c and τλ,c. Similarly, we adjust τui,c based on
observed results and practical justification.

We avoid overly aggressive control settings. Additionally, we acknowledge that local
gradient controllers are not at the lowest hierarchy level (Fig. 9.3), necessitating a slower
timescale than the plant. Refer to Fig. 9.3 for the lab-rig’s control structure, and find the
controller and tuning parameters for the dual-based scheme in Table 9.1.

9.4.3 Dual-based Distributed feedback-optimizing Control Setup with
Override

In this structure, the local gradient controller also generates the setpoint for the PI
flow controller FICi, regulating the air injection valve opening. Additionally, the central
constraint controller controls the auxiliary constraint g̃ to update the Lagrange multiplier.
A selected subsystem employs an override scheme, wherein the fast control of the actual
constraint g (typically faster than the local gradient controller), leading to the override of
the output (Qsp

gl,i) by the override constraint controller’s result.
In addition to the coordinator and local gradient controller, the dual-based with over-

ride scheme requires an override constraint controller. The integral gain, denoted as KI,g,
is calculated as KI,g = 1

Kg,i(τg,i+θg,i)
, where Kg,i and θg,i relate to the step response and

time delay of the constraint with respect to the chosen primal variable (ui), and τg,i gov-
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Figure 9.3: Dual-based distributed feedback-optimizing control implemented in the experimental
lab rig [65].

erns the evolution of g. The concept of determining and tuning the controller parameter
aligns with the prior controller explanation.

Anti-windup To choose between the control actions generated by the gradient controller
and the override constraint controller, a selector is employed, allowing only one control-
ler’s output to influence the plant at any given moment. This selective action can lead
to integral term accumulation, known as windup, in the controllers not currently in use.
To mitigate this issue, this paper adopts a back-calculation scheme proposed by [51] and
suggests an appropriate anti-windup gain value of Kaw = 1

τ1,g
, with τ1,g representing the

time constant for the override constraint controller.

Gain Scheduling To mitigate the deceleration of the dual variable trajectory due to act-
ive constraint satisfaction through override control, it is essential to incorporate a propor-
tional gain (KP,α) into the central constraint controller. This gain is computed as follows:

KP,α =

{
τ1,α

Kλ(τλ,c+θλ)
, if l = 1

0, otherwise
(9.23)

Here, τ1,α denotes the time constant, and l denotes the status of the override constraint
controller, with l = 1 denoting selection of the control action of the override constraint
controller, and l = 0 otherwise.

Override Subsystem Selection There are three potential configurations for a subsystem
to involves an override scheme due to one constraint and three subsystems. The selection
process involves ensuring that the chosen configuration avoids local input constraints (see
Section 9.3.1) to maintain simplicity in the problem formulation. Additionally, the config-
uration with the best constraint satisfaction, often assessed using the maximum constraint
violation magnitude, is preferred, with the selection process facilitated using a MATLAB-
based lab rig model. Based on this selection strategy, we found that subsystem three (3) is
the best candidate to contribute in override scheme.
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Figure 9.4: Dual-based distributed feedback-optimizing control with override implemented in the
experimental lab rig [47].

Given the selected override configuration, and based on the description in Section 2.3,
Figure 9.4 illustrates the implemented structure, and Table 9.1 contains the obtained con-
troller and tuning parameters for Dual-based with override.

9.5 Experimental Results
Utilizing the control and tuning parameters shown in Table 9.1, we implemented primal-

based, dual-based, and dual-based with override scheme. Figure 9.5 shows the reservoir
valve openings (CV 101, CV 102, CV 103) that we consider as the disturbance in this ex-
periment. The first disturbance occurs when the opening of CV 101 gradually decreases
from t = 6.5 to t = 14 minutes. We expect a decrease in the gas-lift injection in well
1, and a redirection of the gas supply to the other wells. The second disturbance occurs
when the opening of CV 103 also gradually decreases from t = 15.5 to t = 21 minutes.
We expect that the gas supply to well 3 reduces with larger rate since the "hydrocarbon
price" of this well is higher. Meanwhile the other wells will obtain more gas supply with
larger rate as well. The third disturbance occurs when the opening of CV 103 gradually
increases from t = 24 to t = 29.5 minutes. We expect a reverse reaction to the reac-
tion of the second disturbance. Finally, the fourth disturbance occurs when the opening of
CV 101 also gradually increases from t = 33 to t = 42 minutes. Similarly, we expect a
reverse reaction to the reaction of the first disturbance. We try to avoid sudden disturbance
to ensure that the controller can adjust the plant smoothly.

In the rig, we used a programming environment (LABVIEW [87]) to automate the
implementation of these disturbance. Therefore, it is possible to repeat the independent
experiments with the same disturbance profile. The following results are the average of
three independent experiments.

Comparison of the optimal setpoints We run the experimental results comparing primal-
based, dual-based, dual-based with back-off and dual-based with override scheme, which
are presented in Figure 9.6-9.8. Figure 9.6 depicts the actual gas-lift flow rate. The meas-
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Table 9.1: Controller and Tuning parameters

Description Variable Value
Exp. rig sensors sampling time Ts 1 second

Primal-based
Coordinator 1 I-Gain KI,1 -0.016
Coordinator 2 I-Gain KI,2 -0.014
Coordinator 3 I-Gain KI,3 -0.011

Dual-based
Coordinator I-Gain α 0.0088

Gradient Controller Input 1 I-Gain KI,1 0.016
Gradient Controller Input 2 I-Gain KI,2 0.014
Gradient Controller Input 3 I-Gain KI,3 0.011

Dual-based with Override
Coordinator P-Gain KP,α 1.7686
Coordinator I-gain α 0.00368

Gradient Controller Input 1 I-Gain KI,1 0.016
Gradient Controller Input 2 I-Gain KI,2 0.014
Gradient Controller Input 3 I-Gain KI,3 0.011

Override Controller I-Gain KI,3 0.1
Override Controller AntiWindup-Gain Kaw 0.4

Local set point controllers
FIC 104 P-Gain KP,FIC,1 8560
FIC 105 P-Gain KP,FIC,2 8560
FIC 106 P-Gain KP,FIC,3 8560
FIC 104 I-Gain KI,FIC,1 100
FIC 105 I-Gain KI,FIC,2 100
FIC 106 I-Gain KI,FIC,3 50

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Figure 9.5: The change of reservoir valve openings (CV101, CV102, and CV103) during the ex-
periments for representing different reservoir behaviors. These reservoir valve openings are system
disturbances.
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Figure 9.6: The measured gas-lift flow rate (u) of every wells due to reservoir parameter changing
(disturbance) from the Experimental Lab Rig.

ured trajectories are slightly different from the calculated input setpoint shown in Fig-
ure 9.7. This difference occurs due to input measurement noise and the fact that the gas
flowrates controllers (FIC 104, FIC 105, FIC 106, see Figure 9.1) need time to settle the
actual gas-lift flow rate u to the setpoint of gas-lift flow rate usp.

Figure 9.6-9.7 show that the dual-based are relatively slower in responding to the
second disturbance (see around t = 25 min). This slow response is the consequence
of considering time-scale separation concept.

Comparison of constraint satisfaction As can be seen in the top plot of Figure 9.8, due
to time-scale separation, the dual-based scheme significantly violates the constraint. One
may think that incorporating Proportional-gain can be viable solution. Unfortunately, that
idea leads to even worse constraint violation because the central constraint controller be-
comes more aggressive. For this specific case, primal-based scheme appears to be the best
in satisfying the constraint compared to all dual-based schemes. This is the result of the
presence of the compensator subsystem. Meanwhile, dual-based scheme seems requiring
back-off to satisfy the constraint better, and relatively slow to recover. Dual-based with
override scheme seems performing pretty well in satisfying the constraint compared to
dual-based scheme. It may still relatively slow to reach the active constraint, but the pres-
ence of override control and gain scheduling have shown significant result in satisfying the
constraint (see after t = 25 minutes). Thus, back-off parameter may be insignificant or
even unnecessary.

The bottom plot of Figure 9.8 shows the associated Lagrange multiplier for the dif-
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Figure 9.7: The gas-lift flow rate setpoint
(
usp = Qsp

gl

)
of every wells due to reservoir parameter

changing (disturbance) from the Experimental Lab Rig.

ferent schemes. It is important to notice that all the three local Lagrange multipliers of
the primal based converge to the same trajectory, and in general, they are faster than all
dual-based schemes. Meanwhile, each dual-based scheme has one Lagrange multiplier,
and they are slower as they are controlled in the slow time scales. It is interesting to notice
that before t = 25 minute, dual-based with override has similar performance (trajectory) to
dual-based scheme. However, after t = 25 minute, dual-based with override has quite sim-
ilar performance (trajectory) to primal-based scheme. Specifically at the period between
t = 25 to t = 35 minute, we can notice that dual-based with override is "enforcing" the
trajectory (both the constraint and the associated dual variable) in order to minimize the
constraint violation (in terms of magnitude and/or duration).

Comparison of the optimal cost To analyze the optimization performance of primal-
based, dual-based with back-off and dual-based with override, we compare the profit (from
both individual experiments) obtained by the three schemes with the naive approach, where
we consider fixed inputs, i.e.,

u =
[
Qsp

gl,1 Qsp
gl,2 Qsp

gl,3

]⊤
=
[
Qmax

gl

3

Qmax
gl

3

Qmax
gl

3

]⊤

The naive approach illustrates the case in which no information about the system is avail-
able. Hence, the best alternative is to divide the available gas equally among the wells.
This latter approach is another benchmark to show that the optimization schemes, will
give more profit compared to not doing any optimization at all.
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Figure 9.8: Constraint satisfaction and Lagrange multiplier evolution due to reservoir parameter
changing (disturbance) from the Experimental Lab Rig.

Note that we do not include dual-based in comparison as it significantly violates the
constraint, which implies that it has significant trajectory in infeasible region. In other
words, dual-based requires significant extra resource starting from t = 25 min.

To measure the performance, we plot the difference, in percentage, between the in-
stantaneous profit of the approach of interest and the naive approach. The difference is
calculated as

Pdiff =
P − Pnaive

Pnaive
.100 (9.24)

where P is the profit of the approach of interest, and Pnaive is the profit of the naive
approach.

Figure 9.9 depicts the cumulative profit/loss difference (
∑

Pdiff ) of all the three
schemes of interest (i.e., primal-based, dual-based with back-off, and dual-based with
override) to the naive strategy. Figure9.9 shows that the primal-based scheme has the
highest cumulative profit difference, and followed by dual-based with override scheme.
Interestingly, due to incorporating back-off, dual-based scheme has less cumulative profit
compared to the naive approach.

Performance consistency To ensure validity of the results, we then re-run the experi-
ments three times with the same set of disturbance profile for the different approaches.
This confirms that the observation discussed earlier is valid.



166 A Comparative Study of DFoS Frameworks: An Experimental Validation in an Oil Well Rig

0 5 10 15 20 25 30 35 40 45
-10

0

10

20

30

40

Figure 9.9: The cumulative profit difference from the Experimental Lab Rig.

9.6 Discussion
The presence of local constraint: The primal-based approach entails a relatively strong
assumption, as indicated in Assumption 9.1. Specifically, this scheme is not designed to
handle saturated inputs, such as when a valve reaches its maximum or minimum opening.
In practice, if saturated inputs or local constraints are present, additional strategies must be
employed to effectively implement the primal-based scheme. In contrast, any form of dual-
based scheme, whether with or without an override, does not suffer from the limitations
imposed by local constraints. These constraints can be treated as coupled constraints, but
the associated coordinator is only distributed to the affected subsystem. If the constraint
solely affects the subsystem in which it is located, it is considered a local constraint. This
characteristic distinguishes the dual-based approach, which proves to be more versatile
and adaptable in the presence of various types of constraints within a distributed feedback-
optimizing control system.

The generation of Lagrange multipliers: The primal-based approach estimates local
Lagrange multipliers by evaluating a matrix calculation as depicted in equation (9.6).
However, this method relies on the strong assumption that the local Lagrange multipliers
are both unique and exist. In contrast, the dual-based approach, whether with or without an
override, estimates the Lagrange multipliers through feedback mechanisms, thereby cir-
cumventing the need for extensive matrix calculations. As a result, the dual-based method
exhibits a reduced likelihood of encountering numerical issues, offering a more robust
alternative in more general practical applications.

The number of coupling constraint: According to Assumption 9.1, the primal-based
approach is capable of handling a maximum number of coupling constraints equal to or
less than the minimum number of local manipulated variables (ng ≤ nui

). In contrast,
the dual-based approach, with or without an override, can handle a maximum number
of coupling constraints equal to or less than the total number of available manipulated
variables (ng ≤ nu). This fundamental distinction implies that the dual-based scheme
has the advantage of being able to accommodate a larger number of active constraints
compared to its primal-based counterpart.

Additional benefit of the proposed feedback-optimizing schemes In the introduction,
we presented 5 benefits of the proposed schemes. When writing this paper, we find that an
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additional benefit is that the the dual-based schemes can easily handle linear cost and/or
constraints functions. To illustrate this, consider a cost function: J(u) = 2u along with
a linear constraint. Consequently, the gradient of the Lagrange function can be expressed
as: ∇uL(u) = 2 + c. In this case, attempting to solve the equation∇uL(u) = 0 (in order
to fulfill the stationary condition) becomes unfeasible, as the decision variable u does not
exist after the first differentiation. In contrast, by using feedback, an initial guess of the
decision variables is provided and updated throughout the closed-loop system [97].

9.7 Chapter Summary
In this work, we have done experiments to validate all the three distributed feedback-

optimizing control schemes. Based on the experiments we can conclude that
• All the three schemes are able to optimally allocate the shared resource. The transi-

ent behaviour is slightly different which is affected by the control structure and the
choice of the controller tuning parameters.

• In the dual-based schemes, it is necessary to consider the timescale separation between
the gradient and constraint controllers. If the central constraint controller is tuned
to be in the same timescale as the gradient controllers, then it can lead to instability
or oscillatory behavior. However, if the central constraint controller is tuned to be
too slow, then the convergence to the optimal steady-state can be too slow. As a
consequence, constraint violation is inevitable. Therefore, incorporating back-off is
necessary to avoid or at least to minimize constraint violation, leading to steady-state
losses.

• Alternatively, this can be addressed by incorporating override constraint control
combined with gain scheduling, which improved the constraint handling.

• In this specific case, primal-based scheme is the best among the three schemes.
However, primal-based scheme is limited by Assumption 9.1. Considering a more
’general’ case, dual-based scheme with override would be the recommended ap-
proach.
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Chapter 10

Graph-based Primal-based DFoS
Framework: Eliminating
Coordinator

Both primal-and dual-based distributed optimization system require a master coordinator.
However, the use of this coordinator may introduce additional practical challenges, such
as impartiality issues, or additional operating costs. This chapter discusses graph-based
primal-based dFoS framework as an alternative solution. This chapter is based on the
work in [84].

10.1 Introduction
Operating a subsea oil production network entails significant challenges and risks, ne-

cessitating cooperation among multiple organizations or operator companies. From ex-
ploration to exploitation, remote reservoir location discovery is common, often making
local processing platform construction economically unviable. Subsea tie-ins, with shared
processing facilities, offer a potential solution, utilizing multiple subsea clusters operated
by diverse entities with varied local objectives. However, the dispersed locations of these
clusters may render centralized coordination economically impractical.

An alternative approach to eliminate the necessity of a master coordinator involves
direct coordination among subsystems via a fixed communication network, further redu-
cing information exchange by limiting data communication to a few subsystems rather
than broadcasting to a master coordinator [98]. A similar cooperative game approach was
employed in interconnected Model Predictive Controller (MPC) in [99], where each MPC
collaborates with others through a communication channel to determine optimal input set-
points for reference tracking. Cooperative game models have also been proposed to ascer-
tain optimal set-points or trajectories of shared resources, gradually achieving system-wide
optimal set-points via neighborhood interactions [100].

Expanding on the work in chapter 8, this chapter explores a graph-based (or consensus-
based) decentralized real-time optimization for oil and gas production networks. Here,
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subsystems collaborate by negotiating coupling constraints via a fixed communication
channel. Information exchange is restricted to directly connected agents, with the negoti-
ated constraints utilized in solving local subproblems, thus achieving system-wide optim-
ization. These local problems may be solved numerically or through feedback mechanisms
as detailed in Chapter 8.

10.2 Problem Formulation
Consider a generic optimal resource sharing problem in N different subsystems.

min
x1, . . . , xN

N∑

i=1

fi(xi) (10.1a)

s.t.

N∑

i=1

Aixi − x̄ ≤ 0 (10.1b)

where xi ∈ Rnxi denotes the decision variables for subsystem i and nxi
is the number

of decision variables in subsystem i, Ai ∈ Rmx×nxi is a matrix that couples different
subsystems, x̄ ∈ Rmx is the shared resource constraints, mx is the number of shared
resource constraints, and fi : Rnxi → R is a function that denotes the local objective
of subsystem i. Without loss of generality xi > 0 implies that the shared resources is
consumed by subsystem i.

Remark 10.1: Local constraints

Each subsystem i may also have local constraints that are assumed to be locally man-
aged by each organization, and are not explicitly shown in the problem formulation
(10.1).

Defining x = {x1, . . . , xN}, the Lagrangian of problem (1) is as follows.

L(x,λ) =
N∑

i=1

fi(xi) + λ⊤
(

N∑

i=1

Aixi − x̄

)
(10.2)

where λ ∈ Rmx is the Lagrange multiplier of the shared resource constraints.
The objective of the problem (10.1) is to determine optimal shared resource allocation

in order to achieve system-wide steady-state optimal operation in a decentralized fashion
with limited information sharing over a fixed communication network.

This can be described by an undirected graph G = (S, E ,V) with the set of subsystems
S = {1, 2, . . . , N}, set of communication channel, E ⊆ S × S and, an adjacency matrix
V = [vi,j ]. The communication channel of G is denoted by ei,j = {i, j}, meaning that
there exists a data transmission between subsystems i and j. Since we consider an undir-
ected graph, ei,j = ej,i. The adjacency elements associated with the communication line
of the graph are positive, i.e. ei,j ∈ E ⇔ vi,j = 1. Consequently, for ei,j /∈ E ⇔ vi,j = 0,
and we consider vi,i = 0 for all i.

The set of neighboring connected plant of subsystem i is defined as follows.

Ni = {j ∈ S : ei,j = (i, j) ∈ E} (10.3)
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In other words, the setNi represents the set of subsystems that directly communicates with
subsystem i. Figure 10.1(b) illustrates the definition of neighboring subsystems.
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Figure 10.1: (a) Centralized distributed RTO with central coordinator (MC), (b) Decentralized RTO,
where N1 = {2, 3, 4}, N2 = {1, 3, 5}, N3 = {1, 2}, N4 = {1}, and N5 = {2}

.

The degree of the subsystem i is defined as

di =

N∑

j=1

vi,j (10.4)

which denotes the number of directly connected neighbours of subsystem i.
We assume that undirected graph G is connected. Reference [101] provides compre-

hensive definition of connected graph. Thus, in order to use the proposed method, we need
to look at if the graph G is connected by evaluating the rank of its Laplacian matrix, L. G
is connected, if and only if rank (L(G)) = N − 1, where L = D − V , and [D]i,i = di.

10.3 Proposed Solution
In this paper, we aim to solve the steady-state optimal resource allocation problem

(10.1) in a decentralized manner without a central coordinator using consensus-based ap-
proach and primal decomposition. To this end, we want to propose a framework that so
called consensus-based decentralized RTO using primal decomposition as shown in Fig-
ure 10.2.

Consider x0 ∈ Rmx as the decision variables for a virtual subsystem 0 to allocate
unused available shared resources, problem 1 can be expressed as a problem with equality
constraints.

min
x0, x1, . . . , xN

f0(x0) +

N∑

i=1

fi(xi) (10.5a)

s.t. x0 +

N∑

i=1

Aixi − x̄ = 0 (10.5b)

where f0(x0) gives constant value. This virtual subsystem can be attached to any physical
subsystem.
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Figure 10.2: The proposed decentralized RTO. Grey box represents the physical system and white
box represents the computation block. Purple box and lines represent constraint negotiation process
between subsystem 1 and its neighbor (N1). Blue box and lines represent constraint negotiation
process between subsystem 2 and its neighbor (N2). Red box and lines represent constraint negoti-
ation process between subsystem 3 and N3. Green lines represents information transmission from
subsystem 3 as a neighbor in a constraint negotiation process for other subsystems. As local con-
trollers, MPC needs estimated states, labelled by ŷi, and estimated disturbance, ζ̂i. For PID as local
controllers, ŷi = yi, which is an outputs measurement, thus dynamic estimator is unnecessary for
PID controller but important to estimate disturbance ζ̂i for the optimizer.

Defining x̄i ∈ Rmx as shared resource constraints for subsystem i, we can decompose
problem (10.1) into N +1 different local problems, where

∑N
i=0 x̄i = x̄. This decompos-

ition is centralized. To construct decentralized framework, we define xj = {xj : j ∈ Ni},
and x̄Ni as available shared resource constraints known by subsystem i and its neighbors
Ni. Thus, we can express the neighborhood-wise problem for subsystem i as follows.

min
xi,xj

fi(xi) +
∑

j∈Ni

fj(xj) (10.6a)

s.t. Aixi +
∑

j∈Ni

Ajxj − x̄Ni = 0 (10.6b)

where xj denotes the decision variables for subsystem j, and j ∈ Ni.
The Lagrangian of problem (10.6a) is as follows:

Li(xi,xj ,λNi
) = fi(xi) +

∑

j∈Ni

fj(xj) + λ⊤
Ni


Aixi +

∑

j∈Ni

Ajxj − x̄Ni


 (10.7)

where λNi
∈ Rmx is the Lagrange multiplier of the shared resource constraints in the

neighborhood i.
As an initial step (s = 0), each neighboring subsystem considers all resources con-

sumed as its local shared resource constraints (i.e., x̄0
j = Ajx

0
j ), Thus, consider a primal
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decomposition as follows.

min
xi

fi(xi) (10.8a)

s.t. Aixi +
∑

j∈Ni

x̄s
j − x̄s

Ni
= 0 (10.8b)

Note that, we now consider constrained problem with equality constraint as we have intro-
duced a virtual subsystem.

Defining x̄s
Ni

= x̄s
Ni
−∑j∈Ni

x̄s
j , we can see that problem (10.7) becomes additively

separable, where each subproblem is given as a function of the local shadow price λi.

Pi(λi) := min
xi

Li(xi,λi) (10.9)

where
Li(xi,λi) = fi(xi) + λ⊤

i

(
Aixi − x̄s

Ni

)
+

ρ

2

∥∥Aixi − x̄s
Ni

∥∥2
2

This is known as augmented Lagrangian decomposition, where ρ > 0 is a step length.
Starting from an initial guess λ0

i , we solve problem (10.9) and updates the Lagrange
multipliers iteratively.

xk+1
i := argmin

xi

Li(xi,λ
k
i ) (10.10)

λk+1
i := λk

i + ρ
(
Aix

k+1
i − x̄s

Ni

)
(10.11)

where xk
i is optimal resources allocation at iteration k. The Lagrange multipliers λi de-

notes the shadow price of the shared resource, which has an economic interpretation of
matching the supply and demand of the shared resource from the perspective of subsys-
tem i based on its knowledge within its neighborhood. This is also known as method of
multipliers for solving problem (10.8). When we combine the decomposability of dual
ascent with the method of multipliers, it is also known as alternating direction method of
multipliers (ADMM). [64].

When the iteration converges and stop, it means that Aix
s⋆
i = x̄s

Ni
. If λs⋆

i > 0, it
means that subsystem i needs more resources. When the iteration does not satisfy the
constraint and stop, it means that Aix

s⋆
i < x̄s

Ni
and λs⋆

i indicates that subsystem i can
release some of its resource allocation.

Based on these obtained local Lagrangian multipliers, we update local shared con-
straint for the next step as follows.

x̄s+1
i := x̄s

i + α
∑

j∈Ni

(
λs⋆
i − λs⋆

j

)
(10.12)

where α is a step length.
From the Lagrangian decomposition framework, it can be seen that for the stationary

condition of the entire network, we need ∇L(x⋆,λ⋆) = 0, where every subsystem in the
network has the same value of λ⋆. By updating the local shared constraint at every step as
shown in Eq. (10.12), we adjust the local shadow prices λs⋆

i (i ∈ S) in order to reach the
common values λ⋆.
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Subsequently, in order to ensure that resource allocation is updated in the entire net-
work, we update x̄Ni

for the next step as follows.

x̄s+1
Ni

= x̄s+1
i +

∑

j∈Ni

x̄s+1
j (10.13)

Before the entire network converges, x̄s+1
Ni
̸= x̄s

Ni
because x̄s+1

j is updated based on its
neighborhood-wise knowledge Nj .

By iteratively executing Eqs. (10.10), (10.11), and (10.12) locally in paralel and
(10.13) in neighborhood-wise, we can avoid the need for central coordinator, and we can
obtain optimal resource allocation for local RTO in decentralized fashion. Moreover, a
subsystem has only limited knowledge about the others subsystems in its neighborhood,
and even has no knowledge about others subsystems outside its neighborhood. Thus, a
subsystem do not need to share local information such as the detail models, measure-
ments, local constraints, and the objective function, across the different subsystems. The
only information that needs to be shared to its neighbor is the local shadow price λs⋆

i .

10.4 Numerical Example
In this section, we apply the proposed approach on a subsea gas-lifted oil production

well network with N = 5 subsystems (subsea clusters), operated by different organizations
as shown in Figure 10.3. The overall network G and its neighboring sets (Ni) is given by
Figure 10.1 (b). Rank (L(G)) = 4, indicating that G is a connected graph/network.

1 2 3 4 5 6 7 8 9 10 11 12

wpo,1 + wpg,1 wpo,2 + wpg,2 wpo,3 + wpg,3 wpo,4 + wpg,4 wpo,5 + wpg,5

Separator
Produced Oil

Produced Gas

Gas Lift Compressor

w̄gl

wgl,1 wgl,2 wgl,3 wgl,4 wgl,5

Figure 10.3: A simplified process diagram of a large-scale offshore field with shared gas-lift re-
source, equipped with constraints in gas-lift compressor.

The produced oil and gas from each subsystem gather in a common topside process
facility that has the gas compression station as shown in Figure 10.3. In gas lifted wells,
compressed gas is injected into the well tubing in order to reduce the hydrostatic pressure
losses and increase oil production. The lift gas supplied from the gas compressor is a
common shared resource that must be optimally allocated among the different subsystems.

The objective is to maximize the revenue from the oil production from each subsystems
and minimize the costs associated with the gas lift compression. The lift gas wgl is a shared
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resource that must be optimally allocated amongst the subsystems. Thus, the optimization
problem for problem (10.1) is given as follows.

min
wgl,1, . . . , wgl,N

− $o

N∑

i=1

wpo,i + $gl

N∑

i=1

wgl,i (10.14a)

s.t.

N∑

i=1

wgl,i − w̄gl ≤ 0 (10.14b)

where $o is the oil price, and $gl is the cost of gas compression. Total gas lift constraint
is labelled by w̄gl. Gas-lift injection rate, wgl,i, are the decision variables, wpo,i is the oil
production rates, which depend on wgl,i. The local objective function is given by

fi(wgl,i) = −$owpo,i(wgl,i) + $glwgl,i

0 3 6 9 12 15
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0.11
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Figure 10.4: GOR variations. labelled by ζi,wid, of well wid in subsystem i.

Defining w̄s
gl,i as local shared gas lift constraint for subsystem i at step s, the local

subproblem can be expressed as follows.

ws⋆
gl,i := arg min fi(wgl,i) (10.15a)

s.t. wgl,i − w̄s
gl,i = 0 (10.15b)

where
∑N

i=1 w̄
s
gl,i = w̄gl.

The gas-to-oil ratio (GOR), which is a reservoir property, is a time varying disturbance
for the different wells. In this simulation study, the GOR are assumed to vary as shown
in Figure 10.4. High GOR indicates that the well has a lighter fluid requires less amount
of gas-lift rate compared to the wells with lower GOR to produce the same amount of oil.
GOR is normally local information.

Local RTO problem (10.8) is solved every 60 sec. We use extended kalman filter
(EKF) as the local dynamic estimator to update the model parameters using transient
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Figure 10.5: Simulation results showing the performance of the proposed framework can reach
optimal steady-state setpoints, along with the absolute error between them (total produced oil in
top-right subplot, and total gas lift rate in bottom-right subplot).

measurements [10]. Note that the proposed approach is not just restricted to this local
RTO approach, and one may instead use any other approach such as dynamic RTO.

In this paper, we use PI controllers for each well for local setpoint, which are tuned
using the SIMC tuning rules [52]. The controller is designed with a sampling time of 1
sec. Each well uses this controller to drive the wellhead pressure, wph,i,wid, to an optimal
setpoint computed by the local optimizer (10.15).

The overall plant is modelled as an Index-1 DAE. The model equations can be found
in A. The plant simulator is developed using the CasADi ver. 3.5.1 toolbox ([53])
in MATLAB R2019b and is simulated using the IDAS integrator [102]. The simulations
are performed on a 2.11 GHz processor with 16 GB memory. The simulations are
performed for a total simulation time of 15 hours.

We solve the centralized optimization problem (10.14) to obtain ideal optimal setpoints
as the baseline to measure the performance of the proposed method.

Figure 10.5(a) shows the simulation results comparing the ideal optimum obtained
by solving problem (10.15), and the proposed method. The absolute errors between the
ideal optimum and the proposed method are shown in Fig. 10.5(b) and 10.5(d) for total
oil production rate and total gas lift injection rate respectively, which indicate that the
proposed method is able to converge to the ideal optimum at steady-state.

Figure 10.6(a) shows resource allocation of each subsystem that is updated at every
step and changed due disturbances (i.e., GOR and shared resource capacity constraints).
In unconstrained case, virtual subsystem store the unused share resource. Figure 10.6(b)
shows that local shadow prices converge to certain values at steady-state, which means that
each subsystem pays the same price in the steady-state condition. In unconstrained case,
no subsystem needs to pay since the shared resource is available. But, when the resource
is limited, then they need to pay.
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Figure 10.6: The left subplot shows local constraint of each subsystem, including the virtual one.
The virtual local constraint is non zero when the constraint is inactive. The right subplot shows local
shadow of each subsystem that converges to certain values at steady-state, The shadow prices are
zero when the constraint is inactive.

10.5 Discussion
Solving local problems isn not limited to numerical solvers; in favorable matrix con-

ditions, estimating shadow prices can be achieved via an equation detailed in Chapter 8.
Moreover, this proposed approach not only eliminates the need for a master coordinator but
also enhances information sharing robustness [84], ensuring steady-state optimality even
if communication channels fail within a connected graph. Furthermore, an open issue
in system-wide optimization is convergence rate, crucial due to limited information shar-
ing across subsystems. Various methods aim to accelerate convergence, such as [103]’s
quadratic approximation for coupling constraints and [104]’s gain adaptation.

10.6 Chapter Summary
In this paper, we presented a decentralized RTO framework using primal decompos-

ition for local constraint update for optimal resource allocation with limited information
sharing, where we showed that the proposed approach can be an alternative to eliminate the
need for central coordinator. The simulation results show that the proposed strategy is able
to converge to optimal steady-state setpoint. This framework also allows the negotiation
among subsystems within connected neighborhood, and enables system-wide optimal op-
eration. Moreover, this approach has relatively no additional cost, making it attractive for
marginal oil production field.
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Chapter 11

Self-optimizing Control for
Recirculated Gas-Lifted Problem
under Limited Measurements

Optimizing subsea oil production systems utilizing recirculated gas lift and limited pro-
duced gas treatment capacity presents challenges. Real-time optimization (RTO) is a used
method for optimizing such systems, but it is restricted by the lack of reliable sensors and
the high cost of developing and updating models. As a result, the RTO is typically executed
infrequently, and the optimal set points are not updated in real time, leading to suboptimal
plant performance over extended periods. This chapter suggests self-optimizing control
(SOC) techniques as an alternative solution that can handle frequent disturbances and
drive the plant towards near-optimal performance without requiring frequent model up-
dates or solver use. It compares different SOC structures in recirculated gas-lifted oil
production optimization, their advantages, and disadvantages. This chapter is based on
the work in [105].

11.1 Introduction
The subsea oil and gas industry has placed greater emphasis on efficient production

processes while meeting safety, environmental, and cost-effectiveness requirements. This
has led to the development of innovative artificial lift techniques such as gas-lifted subsea
oil production optimization to increase the flow rate of oil from a reservoir. This technique
involves injecting compressed gas into the wellbore to reduce the hydrostatic pressure
of the fluid column, allowing the reservoir to flow more easily. The compressed gas is
typically produced gas or gas injected from a separate source. Taking gas from a separate
source may be less commercially attractive for offshore facilities.

Overall, a gas lift system is a forgiving method of enhanced production, in other words,
even a poor gas lift design may increase production [59]. However, many optimization
studies have been limited by less realistic assumptions, such as a fixed separator pressure
and gas lift supply from an separate source [60, 106], which is less likely designed for
offshore facilities. Here, we consider a case of recirculated gas lift oil production system,

181
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which utilizes produced gas as its total gas lift supply and injects it into wells using a gas
lift compressor train. This is the most practically common structure of gas lift oil pro-
duction system. To improve accuracy, a dynamic separator model that considers varying
pressure conditions has also been developed.

When it comes to optimizing a recirculated gas lift subsea oil production system with
limited produced gas treatment capacity, one might think that numerical-based real-time
optimization (RTO) completed with a dynamic estimator is the obvious solution. This
method involves optimizing the process economics using rigorous steady-state models,
while disturbances are estimated by the dynamic estimator [10, 11]. However, there are
several challenges that this method may not be able to overcome. The challenges are as
follows:

1. Costly suitable model development for numerical solver leading to infrequent op-
timal set point updates: Experienced process engineers may create suitable models,
but it can be time-consuming due to numerous parameter updates. Frequent optim-
ization may not be easily performed, and regular set point updates may only occur
weekly or even monthly. However, disturbances can occur more frequently, requir-
ing fast time scale self-optimizing control (SOC) structures.

2. Limited available measurement to estimate essential parameters such as disturb-
ances and gradients: Accurate estimations of essential parameters such as disturb-
ance and gradient are necessary for optimization purposes, but they may be hindered
by the lack of sufficient or reliable sensors in the measurement. Thus, gradient-based
SOC techniques or the use of dynamic estimator may not be preferable, or their ap-
plication may be limited.

3. Numerical solvers may have issues with numerical robustness: This kind of issue
may occur due to several reasons, including not having a solver-friendly model (even
though it is a good model for simulation). Furthermore, some solvers may fail to
find the solution due to this issue.

4. Costly dynamic model development for dynamic estimator in large and complex
systems with multiple units and different timescales can be challenging and time-
consuming: This dynamic model is required for dynamic estimator, and without
a good dynamic model, parameter estimation may not be accurate or may provide
non-sense estimation.

Hence, alternative solutions, such as SOC, are considered to address these challenges.
This work explores several potential self-optimizing control structures for recirculated gas-
lifted subsea oil production systems.

11.2 Problem Description
This section describes a case study designed to explore the possibility of identifying

the most effective and suitable self-optimizing control structure that can maximize profits,
even under conditions of reservoir uncertainty and limited produced gas treatment capa-
city.

11.2.1 Recirculated Gas Lifted Subsea Oil Production System
The recirculated gas lift oil production system is depicted in Figure 11.1. The system

consists of six (6) gas lifted-oil producing wells, riser, separator, gas lift compressor train
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Figure 11.1: The recirculated gas lift oil production system. Black valves represent pressure drop.
The opening of the white valves can be manipulated in practice.

(series of three centrifugal compressor), and gas lift supply line. The model is based
on extensive research, modification and integration from various sources, including [107,
60, 108, 109, 110], to name a few. The model equation is available in Appendix A. By
incorporating more realistic assumptions, we aim to provide a more realistic representation
of the gas lift oil production process, which has not been previously discussed to the best
of the author’s knowledge.

11.2.2 Steady-state Optimization Problem Formulation
The problem at hand involves determining the optimal gas lift choke valve (GLC)

positions and surge control valve (SCV) positions for each gas lift compressor to maximize
revenue from produced oil, minimize energy consumption of the compressor train, and
satisfy operational constraints. The production choke valves (PCV) are assumed to be fixed
and fully open (to hold convex problem assumption), regardless of the disturbance being
considered. Additionally, fixed angular velocity is assumed for each gas lift compressor
for practical reasons. The steady-state optimization problem formulation can be expressed
as follows:

min
u

J (u, d) = −poilwos + penΦgl (11.1a)

s.t. gzgl,i (u, d) : zgl,i − 1 ≤ 0 i = 1, . . . , 6, (11.1b)
gzs,i (u, d) : −zs,i + 0 ≤ 0 i = 1, . . . , 3, (11.1c)

gsi (u, d) : si − s̄i ≤ 0 i = 1, . . . , 3, (11.1d)
g (u, d) : wgs − w̄gs ≤ 0 (11.1e)
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Here, the manipulated variables (MVs) are as follows:

u =
[
z1 . . . znu

]⊤
=
[
zgl,1 . . . zgl,6 zs,1 . . . zs,3

]⊤

where zgl,i is the position of GLC of well i, zs,i is the position of SCV of gas lift com-
pressor i, and nu = 9 is the number of MVs. The disturbance d comes from reservoir
uncertainty. The produced oil rate, produced gas rate, and maximum produced gas treat-
ment capacity are represented by wos, wgs, and w̄gs, respectively. The price of oil and
energy are represented by poil and pen, respectively.The energy consumed by the gas lift
compressor train is represented by, Φgl =

∑3
i=1 Φgl,i. The surge of gas lift compressor i

is represented as si, and the associated limit is represented as s̄i. The input constraints for
the GLC and SCV are shown in constraints (11.1b) and (11.1c), respectively. The surge
constraint of gas lift compressor i is shown in constraint (11.1d), and the produced gas
constraint is shown in constraint (11.1e).

In addition to constrained variables, we assume that the available measurements are:

y =
[
pbh,2 pwh,2 pd,3 ps

]⊤

Here, pd,3 represents the discharge pressure of the gas lift compressor train, and ps rep-
resents the separator pressure. Both of them are the artificial boundaries in the previous
studies. Meanwhile pbh,2 and pwh,2 are bottom hole and wellhead pressure of well 2,
respectively.

11.2.3 The Nominal Optimal Operating Point
When the numerical solver finds the optimal solution by solving problem (11.1), a

nominal optimal steady-state operating point can be obtained. This process most likely
occur at a slow and infrequent time scale. The obtained decision/MVs associated with this
nominal optimal operating point are as follows.

u⋆ =
[
0.88 0.49 1.00 0.64 0.60 0.81 0.00 0.00 0.00

]⊤
(11.2)

Further, the active constraints associated with this nominal optimal operating point are
g⋆zgl,3 , g⋆zs,1 , g⋆zs,2 , g⋆zs,3 , g⋆s,1, g⋆s,2, g⋆s,3, and g⋆. It means that with a given disturbance d,
optimal operation happen if constraints (11.1c)-(11.1e) are active, and the position of GLC
3 is fully open.

11.2.4 Reservoir Uncertainty (Disturbances)
The uncertainty in the reservoir, denoted by d, is related to the gas-oil-ratio of a partic-

ular well that exhibits unstable conditions. To be specific, we assume that the disturbance
is originating from well 2, and is represented by d = GOR2.

Multiphase flow meter (MPFM) has recently been recommended for frequent estima-
tion of the GOR or other parameters of a well, replacing the use of test separator. Despite
its promising performance, only 3% of the 70,000 active oil producing wells worldwide
have utilized MPFM [111]. Any new report will most likely provide larger percentage
of MPFM utilization as this technology is relatively recent, and there are many old wells
are still producing. To address the majority of the case, we assume that we are unable to
frequently and accurately estimate the GOR of the well and rely on the historical data of
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well testing using test separator to obtain the GOR fluctuation range as the information
we have. Therefore, in this case, we assume that based on well testing, this disturbance
to fluctuate by up to ±2.5%. If the disturbance increases by 2.5%, the optimal state is
achieved when constraint (11.1e) is active. On the other hand, the optimal state is attained
when constraint (11.1e) is inactive.

11.3 Self-optimizing Control Structure
This section provides a brief introduction to self-optimizing control, and its imple-

mentation on the problem described in Section 2. For a more detailed review of SOC,
please refer to the survey paper by [33].

11.3.1 General Principle
The goal of self-optimizing control (SOC) is to achieve near-optimal operation by con-

trolling a combination of selected variables c ∈ Rnu at their constant set points [8]. The
objective is to maintain these variables at their set-points despite the presence of varying
disturbances, resulting in an acceptably low loss during operation. This is accomplished
by utilizing feedback from the appropriate combination of measurements to counteract the
effect of unmeasured disturbances d. It is important to note that this technique assumes
the same active constraints remain active for all values of the disturbances, and these
constraints are controlled.

This goal of this technique can be achieved through a heuristic method, null space
method introduced by [29], or a combination of them. In the following sections, several
self-optimizing control structures applicable to a recirculated gas-lifted subsea oil produc-
tion well are described. Constraints related to limited produced gas treatment capacity are
considered.

11.3.2 Active Constraint Control
When the optimal set points remain unchanged, the position of the GLCs and the SCVs

are typically maintained, which implies that the MVs remain constant at the values spe-
cified in Eq. 11.2. This configuration is referred to as Structure 1.

In this study, both the produced gas and surge line constraints are active at the nominal
optimal operating point. To achieve effective control, the MVs (valve positions) should be
paired with the constrained variables closely. This implies that the relationship between
the constrained variables and MVs should have a high gain for better control, but the
MVs’ initial nominal optimal values should not readily lead to saturation in controlling the
constraint. Therefore, manipulating GLC 3 to control the produced gas constraint (11.1e)
is not recommended. Instead, we suggest using zgl,5 (GLC 5) to control constraint (11.1e)
as it has enough maneuvering room to handle the disturbance variation caused by GOR2

increasing or decreasing by up to 2.5%. GLC 5 also has the highest gain compared to
the remaining GLCs. This ensure effective control of active constraints which is essential,
according to [8]. This relationship can be expressed as

zgl,5 → g(u, d)

With respect to the gas-lift compressors, the most efficient operating point is achieved
when the surge constraints (11.1d) are active. Although the SCVs are already saturated
(fully closed) at the nominal optimal, in some cases, opening the SCV is necessary to
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ensure that the surge line constraint remains active. In other cases, when the SCV is fully
closed (and already saturated), the discharge pressure of the gas lift compressor train is
automatically adjusted, and the discharge pressure is considered floating and will never be
saturated. As a result, we propose pairing the SCV with the associated surge line constraint
(11.1d), which can be expressed mathematically as

zs,i → gzs,i(u, d)

for i = 1, 2, 3. By incorporating these active constraint controllers, we refer to this con-
figuration as Structure 2.

11.3.3 Heuristic Method
The gas production of a reservoir can fluctuate due to various factors, such as the gas-

oil-ratio (GOR). When well 2 produces more gas from the reservoir, as indicated by the
increase in parameter GOR2, the active constraint controller adjusts the position of GLC
5 for maximum produced gas handling capacity. This ensures no steady-state violation
on the produced gas constraint (11.1e). However, if the amount of gas produced by well
2 decreases, the calculated position of GLC 5 from the active constraint controller may
become unsuitable, rendering the assumption of self-optimizing control invalid. In such
cases, it is necessary to identify an alternative self-optimizing controlled variable that is
good and measurable for GLC 5. The position of GLC 5 itself is an obvious option.
Additionally, we assume that the active surge constraint (11.1d) is the best choice for all
values of expected disturbance.

When selecting a self-optimizing controlled variable, it is also important to consider
its proximity to the source of the disturbance, which, in this case, is GOR2. One option
for stabilization is to use a readily available and measured variable, such as the bottom
hole pressure of well 2. Thus, the position of GLC 2 can be replaced with the bottom
hole pressure of well 2 (zgl,2 → pbh,2). However, the bottom hole pressure may not
always be a practical variable to measure, as damage to the associated sensor may require
costly replacements due to its location. As an alternative, we can use wellhead pressure
(zgl,2 → pwh,2), which is easier to maintain and replace, although it may not be the closest
variable to the source of the disturbance.

Another possible self-optimizing controlled variable is the differential pressure between
wellhead and bottom hole pressure, which can be used to maintain the flow rate from the
well by keeping the differential pressure constant (This strategy will be affected by dens-
ity changes and rates/friction). This can be performed by embedding an observer that
considers all necessary pressure profile in the well to establish analytical redundancy if the
sensor in the bottomhole underperforms.

Based on these heuristic steps, we construct three potentially promising control struc-
tures, named Structure 3, 4, and 5, as illustrated in Figure 11.2. However, this heuristic
method does not explore other measurement sets and remaining MVs, which may be im-
practical and time-consuming. This is the limitation of heuristic method.

11.3.4 Null Space Method
Combining different measurements can result in a better performing control structure.

To incorporate unexplored measurements and MVs in a systematic way, we use the null
space method. Let us assume that we have nu independent unconstrained free variables
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Figure 11.2: Structure 1 removes all controllers and selector, while Structure 2 removes the pres-
sure controller and selector, leaving only the online produced gas flow controller and surge con-
trollers. Structure 3 considers a MIN selector that allows the active constraint to change with
zgl,5 as the self-optimizing controlled variable when GOR2 decreases, and pbh,2 as another self-
optimizing controlled variable for stabilization purposes. Structure 4 considers wellhead pressure
of well 2 (pwh,2) instead of pbh,2, and Structure 5 considers the differential pressure of well 2
(∆pbw,2 = pbh,2 − pwh,2) instead of pbh,2. Black valves represent pressure drops.

u, nd independent disturbances d, and ny independent measurements y. Our goal is to
obtain nc = nu independent controlled variables c that are linear combinations of the
measurements, which can be expressed as:

c = Hy

To achieve this, we use the optimal sensitivity matrix

F =
∂y⋆

∂d

which is evaluated with constant active constraints. If ny ≥ nu + nd, we can select the
matrix H in the left null space of F, such that HF = 0. This choice of H ensures that
fixing c at its nominal optimal value is first-order optimal for disturbances d, resulting in
zero loss as long as the sensitivity matrix F remains unchanged [29]. However, to prevent
unnecessary complexity and cost, the number of measurements used in the structure should
be limited. Ideally, a cost-benefit analysis should be performed to determine the optimal
instrumentation for the plant.

Furthermore, null space method still assumes that the same active constraints remain
active for all values of the disturbances. To relax this assumption into the design, we use
a selector for active constraint switching. Similar to the heuristic method, we choose zgl,5
as the self-optimizing controlled variable when GOR2 decreases, using the MIN selector.
This strategy eliminates the need to explicitly estimate GOR2. Instead, any variation in
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GOR2 is indirectly detected through changes in the total produced gas wgs, which serves
as the CV. The selector is determined by the relationship between MV and CV, as de-
scribed by [51]. Moreover, when the well is equipped with an adequate measurement set,
it becomes feasible to estimate GOR2 using a straightforward model or data processing
techniques.

Ideally, we can implement null space method for unconstrained case, and construct
another control structure for this case. This control structure can also be switched using
selector [33]. However, the optimal operating point of the other case is normally unknown
in practice. Therefore, an insight from previous heuristic method is necessary.

Utilizing single MV (Structure 6):
In addition to flexible active constraint controls (that is combined with MIN selector),

this structure (denoted as Structure 6) consider the following measurement set: y =[
pbh,2 pwh,2

]⊤
.

It is possible to replace one of the measurements with the position of GLC 2. However,
doing so would result in a loss of control over either the bottom hole or wellhead pressure,
which is undesirable as maintaining proper stabilizing control is crucial. Here, zgl,2 is
considered as an MV for stabilizing control.

To obtain the sensitivity matrix F, numerical methods were employed. The null space
method was then utilized to determine the optimal matrix H, which corresponds to the
following controlled variables:

c = 0.521pbh,2 + 0.854pwh,2 (11.3)

This structure has the same measurement elements as Structure 3-5. Hence, comparing
them is justified.

Based on branch and bound algorithm [112] and the requirement to keep at least either
pbh,2 or pwh,2 as one of the measurements, we found that Structure 6 is still the best option.

Utilizing two MVs (Structure 7):
As we consider two MVs (i.e., zgl,2 and zgl,4) and one disturbance (nd = 1), three

measurement is required (ny = 3). Further, as we have four measurement candidate and
we want to include at least either pbh,2 or pwh,2 in the measurement set, four combinations
of measurements need to be evaluated. Unfortunately, the branch and bound algorithm
[112] is not applicable because zgl,4 may be saturated when GOR2 increases up to 2.5%.
Therefore, the only possible evaluation technique to determine the best combination is
the average steady-state lost. Based on this technique, we found the best combination of
measurement is: y =

[
pbh,2 pwh,2 pd,3

]⊤
, and the corresponded controlled variables

are:

c =

[
c(1)
c(2)

]
=

[
0.520pbh,2 + 0.854pwh,2 − 0.012pd,3
0.041pbh,2 − 0.012pwh,2 + 0.999pd,3

]
(11.4)

Based on Relative-Gain-Array (RGA) analysis [46], the recommended pairing is: zgl,2 →
c(1), and zgl,4 → c(2).
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Figure 11.3: Comparison of steady-state monthly loss of different structures. Red boxes indicates
estimated loss evaluation.

11.4 Results and discussions
11.4.1 Estimated Loss Evaluation

One of the motivation of utilizing SOC is numerical robustness issues. In this sim-
ulation, we evaluate problem (11.1) with eleven (11) different value of GOR2 ranging
from 97.5% to 102.5% of GOR2 nominal with 0.5% interval. The plant simulator is de-
veloped using the CasADi ver. 3.5.1 toolbox ([53]) in MATLAB R2019b and is
simulated using the IDAS integrator. The simulations are performed on a 2.11 GHz
processor with 16 GB memory. The solver used is IPOPT with MUMPS as linear solver.
Note that there are many linear solvers available and each has its own numerical limitation
[113]. Table 11.1 shows solver’s performance, indicating that the solver is not always pos-
sible to obtain optimal solutions. For those cases, we estimate the optimal solutions based
on the linear regression from the closest available two solution points. Thus, we consider
an optimal profit set containing the solver-based optimal profit and the estimated optimal
profit.

Steady-state loss is the difference between the profit obtained by the discussed/proposed
control structure and the optimal profit from the optimal profit set. Table 11.2 summarizes
steady-state loss obtained by different control structures when GOR2 increases or de-
creases up to 2.5%. As described in previous sections, structure 1 keeps the position of
GLCs and SCVs unchanged, while structure 2 implements active constraint control on
both surge constraints and export/produced gas constraint (see section 11.3.2). In addi-
tion to active constraint control, structure 3, 4, and 5 introduces bottom hole, wellhead,
and the differential pressure as self-optimizing controlled variable, respectively (see sec-
tion 11.3.3). Finally, structure 6 and 7 utilize a combination of 2 and 3 measurements as
self-optimizing controlled variable, respectively (see section 11.3.4).

Table 11.1: Solver’s success and fail performance

−2.5% −2.0% −1.5% −1.0% −0.5%
✓ ✗ ✓ ✓ ✓

0.5% 1.0% 1.5% 2.0% 2.5%
✓ ✓ ✓ ✗ ✗
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11.4.2 Active Constraint Control
Structure 1 lacks a control strategy to handle reservoir uncertainty. This option is not

ideal because an increase in GOR2 leads to an increase in the amount of total produced
gas. In steady-state, this violates the maximum gas handling capacity constraint. By
installing constraint controllers, described in Structure 2, these violations are successfully
eliminated. However, it is worth noting that the expected steady-state loss when GOR2

decreases is much higher compared to Structure 1 (see Table 11.2).

11.4.3 Heuristic Method
When GOR2 decreases, in Structure 3-5, the self-optimizing controlled variable for

GLC 5 is the position of the GLC 5, while the SCVs handle the surge constraints. As
a result, Structure 3-5 has successfully decreased the expected average steady-state loss
compared to Structure 2 (see Table. 11.2). In general, Structure 3 outperforms other
heuristic-based structures.

Depending on the reservoir dynamics and the possible controlling tuning, each control
structure may reach the steady-state with different time steps/time constant. In addition
to that, the selection of control structure should also consider the specific situation and
constraints of the field. If immediate stabilization action is required and there is a reliable
bottomhole sensor, Structure 3 would be a good option. On the other hand, if maintain-
ing the wellhead pressure is more feasible than installing and maintaining a bottomhole
sensor, Structure 4 may be preferable. Structure 5 requires both a bottomhole and well-
head pressure sensor and is only viable if both sensors are functional.

The heuristic method is an intuitively useful tool for engineers. For instance, provid-
ing alternative self-optimizing controlled variable for GLC 5 when GOR2 decreases is
determined heuristically. This is significant considering null space method assumes the
same active constraint for any disturbance values. While this method may provide valu-
able insights, it can also require significant effort and resources to achieve meaningful
results. Therefore, it is essential to carefully consider the benefits and drawbacks of us-
ing the heuristic method in each specific situation, taking into account factors such as the
scope of the problem, available resources, and the desired outcome.

Table 11.2: Steady-state monthly loss

Control −2.5% GOR2 +2.5% GOR2

Structure (est.)
1 NOK 59.544 Inf
2 NOK 6.116.745 NOK ∼ 3.444.831
3 NOK 604.897 NOK ∼ 2.810.376
4 NOK 686.095 NOK ∼ 3.595.481
5 NOK 633.027 NOK ∼ 3.065.285
6 NOK 124.246 NOK ∼ 1.523.036
7 NOK 248.667 NOK ∼ 1.817.930
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Figure 11.4: Comparison of transient performance of Structure 6 and Structure 7 (consider pd,3 in
the measurement combination)

11.4.4 Null Space Method
As expected, with the same element of measurement set, Structure 6 outperforms con-

trol Structure 3-5, developed heuristically (see Figure 11.3). When we consider more
candidate of measurement, and utilize branch and bound algorithm to find the optimal
measurement set, we found that Structure 6 still outperforms other possible control struc-
tures, containing artificial boundaries, i.e, separator pressure and discharge compressor
pressure. This is an essential result to demonstrate the importance of eliminating artificial
boundaries.

Increasing the number of the use of measurement set (ny = 3 in Structure 7) may not
always leading to lower steady-state loss than Structure 6, for instance, if the additional
used MV is saturated (see Figure 11.3). In addition, null space method may maximize the
use of available MVs by providing more measurement but it does not take into account
the effect of the location of the suggested measurement element. For instance, Structure
7 has discharge pressure in the measurement set which is located far away from its MVs
(GLCs). As a consequence, it consumes more time in reaching the steady-state, as shown
in Figure 11.4. This comparison obtained with controller tuned using Simple IMC rule
[52].

11.4.5 Further Discussion Points
The wells interact with each other, creating back pressure in the process. This means

that disturbing one well affects others due to this interaction. In Chapter 4, we address
this issue by proposing a problem reformulation and introducing the concept of solution
predictors. However, in this chapter, we regard it as a natural behavior of a well network.

In this study, we also assume that we have undertaken relatively robust data pre-
processing/pre-conditioning steps to minimize noise or erroneous data until reaching an
acceptable composition. Without adequate data pre-processing, the controller may re-
spond more to noise rather than the disturbance, thus impeding the achievement of the
self-optimizing control structure’s objective.

In practical scenarios, actuators often have several limitations. For example, GLCs
are frequently not continuous but rather operate in a stepwise manner. This design choice
inevitably affects the performance of the optimizing-control structure. Consequently, the
convergence rate may decrease, and consistent ripples may emerge. Economically, this
can be unfavorable or lead to divergence if the step size is too large.
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Another noteworthy constraint in this case study is related to water treatment capacity.
Assessing this constraint necessitates including water-cut in the model. When employing
a self-optimizing control strategy, it may be necessary to allocate an available GLC to
manage the water treatment capacity constraint, potentially reducing oil production to meet
this requirement.

In practice, additional constraints may arise. At times, determining self-optimizing
controlled variables may not even be feasible due to a lack of available manipulated vari-
ables, leading to what is typically termed a fully constrained case. Ultimately, addressing
this issue becomes a matter of tailoring solutions to the specific case at hand.

11.5 Conclusion
This paper investigated the possibilities of applying self-optimizing control to a re-

circulated gas lifted subsea oil well production optimization. This study reconfirms the
previous work that self-optimizing control can be an alternative for optimization strategy
without solver.

It was found that the most recommended control structure is Structure 6. This structure
uses null space method in determining the optimal combination of controlled variables,
uses a selector to allow active constraint region switching, and consider a required stabil-
izing control. This concludes that both heuristic and null space method are necessary and
comply one to another.

As future works, we suggest considering cascade controller to solve the issue of having
saturated MVs. In addition, it is also interesting design a control structure for a more
realistic case where the surge constraint may be inactive, measurable GOR (including
using embedded observer), multiple well with unstable GOR, and PCVs as manipulated
variables.
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Chapter 12

Concluding Remarks and Future
Works

12.1 Concluding Remarks
This main objective of this thesis is to suggest optimization strategies that have higher

chances for practical implementation for a complex and/or large-scale oil production oper-
ation system that consists sub-processes with varying timescales, and potentially numerous
constraints. Considering the common working culture of this industry, this thesis recom-
mend to utilize the common, well-known and established tools such as PID controllers
and selectors, with occasional use of small-scale numerical solvers for specific cases. Fur-
thermore, experimental works were also conducted to validate the proposed optimization
strategies.

To address this goal, this thesis started by examining a small-scale process system with
many constraints. Due to frequent disturbances, the active constraint configuration may
change for optimal operation. The most common existing approach to handle this active
constraint switching is reduced-gradient approach. However, this approach is becoming
impractical for a system that has too many constraints. As a solution, this thesis sugges-
ted primal-dual framework where active constraint switching can be handled with a fixed
control structure.

While the Primal-dual framework adeptly manages active constraint switching, its
drawbacks include limited control over tight constraints and heavy reliance on accurate
real-time gradient estimations. These limitations are particularly problematic for critical
constraints in the oil and gas sector, where safety cannot be compromised. With stricter
environmental regulations, failure to tightly control constraints could have substantial eco-
nomic and reputational impacts. To mitigate these issues, this thesis proposed integrating
an override constraint controller and introducing auxiliary constraints within the primal-
dual framework.

The primal-dual framework also offers another powerful benefit: system decomposi-
tion into manageable subsystems. This enables the breakdown of large-scale oil produc-
tion systems into smaller and more manageable units. Known as dual-based distributed
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feedback-optimizing systems, this framework facilitates the coordination of subsystems
for system-wide optimal performance. However, not all systems are easily decomposable
due to interactive subsystems. To address this, this thesis proposed dual-based distributed
feedback-optimizing control with solution predictors that introduce intermediate solution
variables estimated via feedback mechanisms. These variables allow the decomposition of
interactive large-scale systems. Experimentally validating this approach, the thesis com-
pared it with numerical-solver based RTO like Hybrid RTO for decomposable optimization
problems.

Similar to primal-dual, dual-based distributed feedback optimization relies on accurate
real-time gradient estimations but offers clearer insight into the effect of non-performing
local gradient estimations. This facilitates systematic pairing for an override controller to
minimize economic loss in the presence of such issues. Therefore, this thesis suggested a
systematic pairing procedure to minimize the economic loss.

Given its need for tight constraint control, override requests often entail aggressive
actions but are practically restricted by input rate limits. For instance, control valve ac-
tuators may only adjust in limited step size. Moreover, multiple manipulated variables
often collaborate to manage a critical constraint; for instance, gas-lift valves from various
wells might collectively regulate a shared export gas constraint. Thus, this thesis proposed
several possible procedures to facilitate multi-input overrides.

While dual-based distributed feedback-optimizing system offers advantages, it may
lose profit during transient in handling of a total input constraint, even with override. This
thesis proposed a primal-based distributed feedback-optimizing system that is capable of
handling a total input or an output constraint. Experimental validation demonstrates the
benefit of primal-based feedback-optimizing system in managing a total input constraint.

Both primal-and dual-based distributed feedback-optimizing systems efficiently co-
ordinate large-scale processes for system-wide optimal performance. However, their reli-
ance on a central coordinator poses challenges, particularly in decentralized contexts like
marginal offshore oil fields with multiple company interests. This case may lead to im-
partiality concerns and heightened technical risks due to increase information exchange
(each subsystems has a communication channel to central coordinator). To mitigate these
issues, this thesis proposes a graph-based primal-based distributed feedback-optimizing
system where information sharing is limited to neighboring subsystems and ensuring ro-
bustness in achieving optimal performance even with acceptable communication channel
failures.

Addressing the lack of reliable sensors in recirculated gas-lift systems, this thesis ex-
tended the existing gas-lift model to a more realistic one by incorporating separator and
compressor models, while also integrating gas-lift recirculation into the well. It proposed
utilizing self-optimizing control to achieve near-optimal performance, addressing the lim-
itation of standard RTO approaches due to sensor reliability issues.

In summary, no single approach can address all problems. Yet, the ability to break
down problems into subproblems is crucial. This allows for tailored approaches, selected
based on the specific nature of each subproblem, as outlined in Table 12.1.
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Table 12.1: Summary of Approaches Discussed in This Thesis

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
S-I Y N Y N Y N Y N N Y
S-II N Y N Y Y Y N Y Y Y
S-III Y Y N Y N N Y N N N
S-IV Y Y Y N N N Y N N Y
S-V Y Y N Y Y Y N Y N N
S-VI Y Y Y N Y Y N Y N N
S-VII Y Y Y Y N N Y N N Y
S-VIII Y Y Y Y Y Y N Y N N
S-IX Y Y Y N Y Y Y Y N N
S-X Y Y Y Y Y Y Y Y N N
S-XI Y Y Y Y Y Y Y Y N N

"Y": the approach has satisfied the success parameter
"N": the approach does not satisfied the success parameter

where the approaches are:

• S-I: Steady-state RTO with dynamic model adaptation (also known as Hybrid RTO)

• S-II: Traditional Self-optimizing Control

• S-III: Reduced gradient hybrid RTO

• S-IV: Dual-based hybrid RTO

• S-V: Reduced gradient FOC

• S-VI: Primal dual FOC

• S-VII : Dual-based hybrid RTO with override

• S-VIII : Primal dual FOC with override

• S-IX : Dual-based Feedback-optimizing system

• S-X : Dual-based Feedback-optimizing system with override

• S-XI : Primal-based Feedback-optimizing system

and the parameters we assess and compare are:

• (a): Is steady-state optimal achieved?

• (b): Is constraint controlled transparently (see Definition 2.1)?

• (c): Is flexible for active constraint switching?

• (d): Is constraint controlled directly (on fast time scale)?

• (e): Is applicable for less than twice differentiable Lagrange function?

• (f): Is numerical solver avoidable (computation time)?

• (g): Is it recommended for complex and large system?

• (h): Is input filter (or additional setpoint controller) avoidable?

• (i): Is parameters and states dynamic estimator avoidable?

• (j): Is gradient estimator avoidable?
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12.2 Recommended Future Works
Based on the conducted research works, the following research directions can extend

the work presented in this thesis:

• A standard dual-based feedback-optimizing system is theoretically struggle with
serial interconnection subsystems due to assumed acceptable constraint violation,
while the coupling constraint linked to artificial boundaries presents a hard con-
straint. This thesis suggested three approaches: dual-based feedback-optimizing
systems with override or solution predictors, and primal-based feedback-optimizing
systems with compensators to address constraint associated with artificial bound-
ary. Over the past four years, the author has been focusing on implementing these
approaches in a serial connection scenario involving multiple parallel production
wells, a separation system, gas export compressors, oil pumps, and gas lift com-
pressors. However, this work remains ongoing at the time of thesis submission,
making it intriguing to observe and analyze the results in such a practical setting.

• As discussed in Chapters 8 and 9, a key challenge in primal-based distributed feedback-
optimizing systems arises from assuming a unique solution for estimating local
Lagrange multipliers. This becomes particularly problematic when numerous coup-
ling constraints are present, leading to a higher likelihood of non-uniqueness solu-
tion. Thus, exploring solutions to this issue becomes imperative. Addressing this
challenge could potentially disrupt the conclusion of the generality of dual-based
feedback-optimizing systems.

• As indicated in Table 12.1, the most unresolved question revolves around the neces-
sity of parameters, states, and gradient estimators. While a parameters and states
estimator might result in inaccurate estimations due to structural mismatches in the
plant model, focusing on accurate real-time gradient estimation could circumvent
this issue. Extremum seeking control offers one possibility but tends to converge
slowly and may struggle with multiple gradient estimations in interactive systems.
Alternatively, real-time data-based techniques, such as least square error or machine
learning tools, offer promising avenues for gradient estimation. Noteworthy is the
modifier adaptation with quadratic approximation discussed in [114], serving as a
potential starting point for real-time data-based gradient estimation.

• The last but not the least, it is crucial to consistently test and validate coordinated
feedback-optimizing systems across diverse practical cases and using the findings
to develop new features.
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Appendix A

Interactive Gas Lift 1

A.1 Simple gas-lift system model
The mass balance equations are as follows:

ṁgl = wco,gl −
N∑

i=1

wgl,i (A.1a)

ṁga,i = wgl,i − wiv,i (A.1b)
(A.1c)

where mgl is the mass of gas inside the supply line from gas lift compressor discharge
point up to the gas-lift choke valve for all well, mga,i is the mass of gas of each well inside
the annulus from gas-lift choke valve up to the injection valve for each well, wco,gl is gas
mass flow rate supplied by a gas-lift compressor, wgl,i is gas mass flow rate of each well
injected to the annulus, and wiv,i is gas mass flow rate of each well injected to well tubing.

The mass flow rate equations are as follows:

wgl,i = ugl,i.cgl,i

√
ρc,gl (pco,gl − pai,i) (A.2a)

wiv,i = uiv,i.civ,i

√
ρai,i (pai,i − pwi,i) (A.2b)

where cgl,i is the valve coefficient of gas-lift choke valve, civ,i is the valve coefficient of
injection valve, ρc,gl is gas mass density in gas-lift supply line, ρai,i is gas mass density
in annulus of each well, pco,gl is gas pressure in supply line, pai,i is gas pressure inside
annulus, pwi,i is injection pressure inside well tubing, ugl,i is the valve opening of gas-lift
choke valve and uiv,i is the valve opening of injection valve. If required, wgl,i and/or wiv,i

can be controlled by ugl,i and/or uiv,i as manipulated variables.
Given wc,gl, supplied by a gas-lift compressor, ugl,i gives splitting ratio to each well.

Traditionally, ugl,i is set manually based on well testing data that estimate Gas-to-oil ratio.
Meanwhile, uiv,i is set constant as it typically represents pressure drop from annulus to
injection point in the tubing.
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The gas density are defined as follows:

ρc,gl =
Mw

R.Tc,gl
pco,gl (A.3a)

ρai,i =
Mw

R.Tai,i
pai,i (A.3b)

where Mw is molecular weight, R is Reynold number, Tc,gl and Tai,i are the temperature
of the gas inside gas supply line and annulus in each well respectively.

The pressure are defined as follows:

pco,gl =
R.Tc,gl

Mw

mgl

π.r2gl.Lgl
(A.4a)

pai,i =

(
R.Tai,i

Mw
+ g.Hai,i

)
mga

π.(r2ai,i − r2wi,i).Lai,i
(A.4b)

where rgl, rai,i and rwi,i are the radius of gas-lift supply line, annulus and well tubing
respectively. Lgl, and Lai,i are the length of gas-lift supply line, and annulus respectively.
g is the gravity force, and Hai,i is the height of annulus.

A.2 Simple oil production well model
The mass balance equations are as follows:

ṁgt,i = wrg,i + wiv,i − wpg,i (A.5a)
ṁot,i = wro,i − wpo,i (A.5b)

where mgt,i is the mass of gas inside well tubing, mot,i is the mass of oil inside well tubing,
wrg,i is gas mass flow rate from reservoir, wro,i is oil mass flow rate from reservoir, wpg,i

is produced gas mass flow rate, and wpo,i is produced oil mass flow rate.
The mass flow rate equations are as follows:

wpc,i = upc,i.cpc,i

√
ρmix,i (pwh,i − pm) (A.6a)

wrg,i = GORi.wro,i (A.6b)

wpg,i =
mgt,i

mgt,i +mot,i
.wpc,i (A.6c)

wro,i = PIi. (pres,i − pbh,i) (A.6d)

wpo,i =
mot,i

mgt,i +mot,i
.wpc,i (A.6e)

where wpc,i is produced hydrocarbon (both oil and gas) mass flow rate, cpc,i is the valve
coefficient of production choke valve, ρmix,i is mixed mass density in the well tubing,
pres,i is reservoir pressure of each well, pbh,i is bottomhole pressure of each well, pwh,i is
wellhead pressure of each well, pm is manifold pressure, GORi is gas-to-oil ratio of each
well, and PIi is well productivity index.

Usually, upc,i is fully open to maximize the production flow. However, this valve can
be used to control or even close the well in case of significant reservoir disturbance i.e.,
gas coning.
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The mass density is defined as follows:

ρmix,i =
mgt,i +mot,i − ρo,i.π.r

2
bh,iLbh,i

π.r2wi,iLwi,i
(A.7a)

where ρo,i is oil density, rbh,i is the radius of bottomhole, and Lbh,i and Lwi,i are the
length of bottomhole, and well tubing respectively.

The pressure are defined as follows:

pwh,i =
R.Twi,i

Mw

mgt,i

π.r2wi,i.Lwi,i + π.r2bh,i.Lbh,i − mot,i

ρo,i

−∆pfric,wi,i (A.8a)

pwi,i = pwh,i +
mgt,i +mot,i − ρo.π.r

2
bh,i.Lbh,i

π.r2wi,i.Lwi,i
.g.Hwi,i (A.8b)

pbh,i = pwi,i + ρo,i.g.Hbh,i (A.8c)

pm = prh + g.Hr.
mor +mgr

π.r2r .Lr
(A.8d)

where Twi,i is the temperature in well tubing, ∆pfric,wi,i is pressure drop due to friction,
Hwi,i is the height of well tubing from well head to injection point, and Hbh,i is the height
from injection point to the bottomhole.

The manifold pressure, pm depends on riser head pressure, prh, height of riser, Hr,
mass of oil, mor and gas mgr in the riser, and radius, rr and length Lr of riser, given by
simple riser system model.

The assumptions in the aforementioned equations are:

1. The oil density ρo,i is relatively constant.

2. The mass of oil computed for mixture density excludes mass of oil in the bottom-
hole.

A.3 Simple riser model
The mass balance equations are as follows:

ṁgr =

N∑

i=1

wpg,i − wgr (A.9a)

ṁor =

N∑

i=1

wpo,i − wor (A.9b)

where mgr is the mass of gas inside the riser, mor is the mass of oil inside the riser, wgr

is gas mass flow rate in the riser, and wor is oil mass flow rate in the riser.
The mass flow rate equations are as follows:

wpr,i = upr.cpr

√
ρr (prh − psep) (A.10a)

wgr,i =
mgr

mgr +mor
.wpr (A.10b)

wor,i =
mor

mgr +mor
.wpr (A.10c)
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where wpr is total produced hydrocarbon (both oil and gas) mass flow rate in the riser, cpr
is the valve coefficient of riser choke valve, ρr is mass density in the riser, prh is riserhead
pressure, and psep is separator pressure.

The separator pressure, psep depends on gas volume capacity in the separator. Usually,
upr is set constant as it typically represents pressure drop from manifold to the riser head.

The mass density is defined as follows:

ρr =
mgr +mor

π.r2rLr
(A.11a)

where rr is the radius of the riser and Lr is the length of the riser.
The pressure are defined as follows:

prh =
R.Tr

Mw

mgr

π.r2r .Lr
−∆pfric,r (A.12a)

where Tr is the temperature in the riser, ∆pfric,r is pressure drop due to friction in the
riser, and Lr is the length of riser from riserhead to manifold.

A.4 Simple separator model
The mass balance equations are as follows:

ṁgs = wgr − wgs (A.13a)
ṁos = wor − wos (A.13b)

where mgs is the mass of gas inside the separator, mos is the mass of oil inside the separ-
ator, wgs is gas mass out flow rate from separator, and wos is oil mass out flow rate from
the separator.

If some of the gas are used for gas-lift injection, then

wgs = wci,gl + wc,ge (A.14a)

where wc,ge is gas mass flow rate exported to gas processing facilities, and wci,gl is gas
mass flow rate exported to gas lift compressor,

The gas flow rate wci,gl and wc,ge are influenced by compressor capacity. Meanwhile,
the oil flow rate wos is influenced by pump capacity.

The pressure is defined as dynamic model as follows:

ṗsep =
R.Tsep

VgsMw
(ṁgs) +

psep
Vgsρo

(ṁos) (A.15a)

pos = psep + ρo.g.hos (A.15b)

where Tsep is the temperature in the separator, pos is pressure in the oil outlet of the
separator, and hos is the height of oil level in the separator. Note that the separator pressure
psep is influenced by both the gas in-and out mass flow rate, and the gas volume inside the
separator that is influenced by both the oil in-and out mass flow rate.



A.5. Simple compressor model 215

The height of oil level in the separator is defined as follows:

ḣos =
1

ρo
(ṁos)

1

2.Lsep.
√
hos (2.rsep − hos)

(A.16a)

(A.16b)

where Lsep is the length of separator and rsep is the radius of separator. Here, we consider
horizontal separator.

A.5 Simple compressor model
For the sake of simplification, we consider an isothermal compressor as follows:

wco,gl = Powc,gl.
Mw

R.Tc,gl.Φc,gl
(A.17a)

wco,ge = Powc,ge.
Mw

R.Tc,ge.Φc,ge
(A.17b)

where Powc,gl is the power required to deliver gas flow rate wco,gl, with pressure ratio
Φc,gl at temperature Tc,gl And Powc,ge is the power required to deliver gas flow rate
wco,ge, with pressure ratio Φc,ge at temperature Tc,ge. Note that, we do not consider re-
cycle line in this model. Thus, wco,gl = wci,gl, and wco,ge = wci,ge.

The pressure ratios are defined as follows:

Φc,gl = ln
pco,gl
pci,gl

(A.18a)

Φc,ge = ln
pco,ge
psep

(A.18b)

where pci,gl = psep if some of the gas separated in the separator are used for gas-lift
injection. If we consider fixed compressor, then Eq. (A.18) are constant.

A more comprehensive compressor model is also considered when it is necessary. In
this case, we consider the well-known compressor model originally developed by [115]
and later extended by [107]. This model was also used in control and optimization invest-
igation by [108, 110].

The pressure are defined as dynamic compressor model as follows:

ṗs,gl = C1,gl (wci,gl + wrec,gl − wc,gl) (A.19a)
ṗs,ge = C1,ge (wci,ge + wrec,ge − wc,ge) (A.19b)
ṗd,gl = C2,gl (wc,gl − wrec,gl − wco,gl) (A.19c)

ṗd,ge = C2,ge (wc,ge − wrec,ge − wco,ge) (A.19d)

where ps,gl, ps,ge, pd,gl, and pd,ge are suction pressure of gas lift compressor, suction
pressure of gas export compressor, downstream pressure of gas lift compressor, and down-
stream pressure of gas export compressor, respectively. wci,gl, wci,ge, wco,gl, wco,ge, wc,gl,
wc,ge, wrec,gl, and wrec,ge are the mass flow rate of incoming gas in gas-lift compressor,
incoming gas in gas-export compressor, outgoing gas in gas-lift compressor, outgoing gas
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in gas-export compressor, gas inside gas-lift compressor, gas inside gas-export compressor,
recycle gas inside gas-lift compressor, and recycle gas inside gas-export compressor, re-
spectively. C1,gl, C1,ge, C2,gl, and C2,ge are model coefficients.

The gas mass flow rate inside the compressor is also defined as dynamic compressor
model as follows:

ẇc,gl = C3,gl (ps,glΠgl − pd,gl) (A.20a)
ẇc,ge = C3,ge (ps,geΠge − pd,ge) (A.20b)

where Πgl and Πge are the pressure ratio of gas-lift compressor and gas-export compressor
respectively. C3,gl, and C3,ge are model coefficients.

Furthermore, we have the following relationships:

wci,gl = uci,glcci,gl

√
ρgl (pci,gl − ps,gl) (A.21a)

wci,ge = uci,gecci,ge

√
ρge (pci,ge − ps,ge) (A.21b)
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For this work, the notation shown in Table B.1-B.2 are used. This is the same notation as
used in the Matlab file, but it is slightly different from the somewhat simplified notation
that we have used in Chapter 3, for example, in Chapter 3, we write wl instead of wgl for
the gas lift mass flow.

We assume constant oil density, and hence can express the rate of change in each well
tubing, and in the riser, which are described by the following differential equations.

V̇ot,i =qor,i − qot,i (B.1a)

V̇oe =

4∑

i=1

qot,i − qoe (B.1b)

We assume ideal gas behavior for constant temperature, the pressure dynamics in each
annulus, well tubing, and in the riser can be written as

ṗa,i =

ρga,iRTa,i

Mg
(qgl,i − qga,i)

Va
(B.2a)

ṗh,i =

ρgt,iRTt,i

Mg
(qga,i + qgr,i − qgt,i) + ph,iV̇ot,i

Vgt,i
(B.2b)

ṗe =

ρgeRTe

Mg

(∑4
i=1 qgt,i − qge

)
+ peV̇oe

Vge
(B.2c)

The volume of gas inside annulus, well and riser tubing are given by,

Vga,i =πr2a,iLa,i − πr2t,iLt,i (B.3a)

Vgt,i =Vt,i − Vot,i (B.3b)
Vge,i =Ve,i − Voe,i (B.3c)

217
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The fluid velocities are given by,

vft,i =
qfh,i
At,i

(B.4a)

vfe =
qfe
Ae

(B.4b)

The additional pressures are calculated by,

pb,i =ph,i +∆pxt,i +∆pyt,i (B.5a)
∆pxt,i =kρft,iLt,i (B.5b)

∆pyt,i =ρft,iwt,i

(
Lt,iv

2
ft,i

2At,i

)
(B.5c)

pj,i =pb,i − kρft,iLj,i − ρft,iwt,i

(
Lj,iv

2
ft,i

2At,i

)
(B.5d)

pm =pe +∆pxe +∆pye (B.5e)
∆pxe =kρfeLe (B.5f)

∆pye =ρfewe

(
Lev

2
fe

2Ae

)
(B.5g)

The volumetric flow rates are given by,

qgl,i =ugl,icgl,i

√
max

(
0,
(
p2s − p2a,i

))
(B.6a)

qga,i =cga,i

√
max

(
0,
(
p2a,i − p2j,i

))
(B.6b)

qor,i =

(
1−

(
pb,i
pr,i

)2
)ni

Qi (B.6c)

qgr,i =GORi.qor,i (B.6d)

qfh,i =cfh,i

√
max

(
0,
(
p2h,i − p2m

))
(B.6e)

qot,i =
Vot,i

Vt,i
.qfh,i (B.6f)

qgt,i =
Vgt,i

Vt,i
.qfh,i (B.6g)

qfe =cfe

√
max (0, (p2e − p2d)) (B.6h)

qoe =
Voe

Ve
.qfe (B.6i)

qge =
Vge

Ve
.qfe (B.6j)
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The mixture densities are given by,

ρft,i =
Vgt,i

Vt,i
ρgt,i +

Vot,i

Vt,i
ρot,i (B.7a)

ρfe =
Vge

Ve
ρge +

Voe

Ve
ρoe (B.7b)

As seen from (B.1a) - (B.7b), the gas lifted well is modelled as a semi-explicit index-1
DAE system of the form with the set of differential equations (B.1a) - (B.2c) and the set
of algebraic equations (B.3a) - (B.7b).

Table B.1: Notation used in Appendix and Matlab model-1

Notation Description
i well index
u choke valve opening
f fluid (both oil and gas)
o oil
g gas
x hydro static
y friction
ga gas - annulus
ge gas - riser (export)
gl gas - lift supply
gr gas - reservoir
gt gas - well tubing
oe oil - riser (export)
or oil - reservoir
ot oil - well tubing
a annulus
b bottomhole
d separator
e riser (-head)
h wellhead
j gas lift injection point
m manifold
r reservoir
s gas lift supply line
t well tubing
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Table B.2: Notation used in Appendix and Matlab model-2

Notation Description
A cross section area

GOR gas oil ratio
L length
M molar mass
Q maximum reservoir oil volumetric rate
R gas constant
T temperature
V volume
c valve coefficient
k gravity
n flow exponent coefficient
p pressure
q volumetric flow rate
v velocity
w friction factor
ρ density
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