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Classic Example : The Door Dilemma

Imagine two people, Alice and Bob, trying to go through a
door, but only one person can pass at a time due to
limited space. The decision variables are binary:
• A = 1 if Alice goes through the door.
• B = 1 if Bob goes through the door.

The complementarity constraint in this scenario is
straightforward:
A+B = 1 or A ·B = 0.

They are used to model situations where two or more
variables must satisfy a certain relationship.
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Karush-Kuhn–Tucker (KKT) Conditions

The early motivation for studying the Linear Complementarity Problem (LCP) was because the
KKT optimality conditions for Linear andQuadratic Programs (QP) constitute of
Complementarity Problems.

The complementarity condition in KKT often involves the product of a Lagrange multiplier and
the corresponding constraint.
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Karush Kuhn Tucker (KKT) Conditions
Inequality-constrained optimization problem

min
x

f(x)

s.t gi(x) ≤ 0, ∀i ∈ {1, . . . ,m}

the Lagrangian is defined as,

L(x, λ) = f(x) +
m∑
i=1

λigi(x
⋆)

and the KKT conditions are given by,

∇xL(x⋆, λ⋆) = 0

gi(x
⋆) ≤ 0, ∀i ∈ I

λ⋆
i ≥ 0 , ∀i ∈ I

λ⋆
i gi(x

⋆) = 0 , ∀i ∈ I

• λ⋆
i gi(x

⋆) = 0 is a complementary slackness condition.
• strict complementarity holds if λ⋆

i ≥ 0 for all i ∈ A(x⋆)
Saket Adhau (NTNU) PhD Defense - Trial Lecture Friday, 26 January 2024 4 / 31



1 What are Complementarity Constraints?

2 Motivation for Studying Complementarity Constraints in Optimization

3 Automatic Differentiation (AD)

4 How to use them ?

Saket Adhau (NTNU) PhD Defense - Trial Lecture Friday, 26 January 2024 4 / 31



Motivation for Studying Complementarity Constraints in Optimization

Complementarity conditions often introduce non-smoothness to an optimization problem due
to the presence of non-differentiable functions, discontinuities, or piecewise-defined

relationships within the constraints or the complementarity terms themselves.

The lack of smoothness in this scenario presents difficulties for conventional optimization
algorithms that heavily depend on gradients.
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What is a derivative ?

Slope of the tangent line.

Saket Adhau (NTNU) PhD Defense - Trial Lecture Friday, 26 January 2024 6 / 31



What is a Gradient ?

Direction along which the function increases at the fastest rate
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Manual Differentiation

It will help if we first contrast AutoDiff with some other methods.

• Manual Differentiation

f(x) = e2x − x3 −−−→ f ′(x) = 2e2x − 3x2

• Differentiate using basic derivatives rules.
• We could simply code up the result and call it a day
• But this can be a fairly tedious process for more complicated functions.
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Numerical Differentiation

Approximating derivatives through finite differences involves utilizing the values of the original
function computed at specific sample points.

For a scalar valued function f : Rn → R
Approximate Gradient∇f is given by:

∂f(x)

∂xi
≈ f(x+ hei)− f(x)

h
,

where ei is the ith unit vector and h > 0 is a small step size, e.g. 10−5.

Numerical differentiation inherently suffers from ill-conditioning and instability, giving rise to
truncation and rounding errors.
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Carefull Consideration of Step size h

Truncation error due to non-zero h
Rounding error due to limited precision of floating point arithmetic

Needs O(n) evaluations of f for a gradient in n dimensions .
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Symbolic Differentiation: Automated Version of Manual Differentiation

Automatic manipulation of expressions for obtaining derivative expressions, carried out by
applying transformations representing rules of differentiation.

Iterations of the logistic map ln+1 = 4ln(1− ln), l1 = x and the corresponding
derivatives of ln with respect to x

When functions become increasingly complex, a phenomenon called “expression swell” occurs.
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Automatic Differentiation (AD): Efficiently Calculating Derivatives of
Mathematical Functions
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Automatic Differentiation (AD): Enhancing Precision in Derivative
Computation
AD provides accurate and exact derivatives, making it a powerful tool in optimization, machine
learning, and scientific computing.

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]

def f(x1, x2) :

a = x1 / x2

b = np.exp(x2)

return (np.sin(a) + a− b) ∗ (a− b)
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Automatic Differentiation (AD): Enhancing Precision in Derivative
Computation

• Bypasses symbolic inefficiency by leveraging intermediate variables present in the original
functions implementations.

def f(x1, x2) :

a = x1 / x2

b = np.exp(x2)

return (np.sin(a) + a− b) ∗ (a− b)
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Automatic Differentiation (AD): Enhancing Precision in Derivative
Computation

• Implemented differential functions are composed of underlying primitive operations whose
derivatives we know.

• The chain rule allows us to compose this together.

def f(x1, x2) :

a = x1 / x2

b = np. exp (x2)

return (np. sin (a) + a − b) ∗ (a − b)
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Automatic Differentiation (AD)

Forward Mode Reverse Mode
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Forward Mode

• Augment each individual variable during evaluation of a function with its derivative.

νi −→ (νi, ν̇i)
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Forward Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]
We have two scalar input x1, x2 and a single scalar output. We also see repeated use of some
sub expressions.

x1

x2

1notation from Griewank and Walther, 2008
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Forward Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]

x1

x2

ν−1

x1

ν0

x2

1notation from Griewank and Walther, 2008
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Forward Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

1notation from Griewank and Walther, 2008
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Forward Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]
As we proceed, we evaluate intermediate variables some of which will be used later in the
computation.

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

1notation from Griewank and Walther, 2008
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Forward Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]
We eventually reach the final function output.

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

ν5

ν2 + ν4

ν6

ν5 × ν4

f(x1, x2)

1notation from Griewank and Walther, 2008
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Forward Mode

∂f

∂x1
at (1.5, 0.5)?

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

ν5

ν2 + ν4

ν6

ν5 × ν4

f(x1, x2)

A single pass through the function now produces not only the original output, but partial
derivative of the interest.

1notation from Griewank and Walther, 2008
Saket Adhau (NTNU) PhD Defense - Trial Lecture Friday, 26 January 2024 16 / 31



Forward Mode

What about multiple outputs ?

compute
∂f

∂x1
and

∂f

∂x2
in a single forward pass.

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

ν5

ν2 + ν4

ν6

ν5 × ν4

f1(x1, x2)

ν7

ν2 × ν4

f2(x1, x2)

A separate forward pass is required for each input variable of interest.

1notation from Griewank and Walther, 2008
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Forward Mode

Consider general function

f : Rn → Rm

Jf =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn



Each pass produces one column of the corresponding jacobian.
Forward mode is ideal/preferred when n << m (few inputs and many outputs)
for e.g. , in “Sensitivity analysis”
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Jacobian Vector Product

More generally we can compute the jacobian vector products without ever computing the
jacobian matrix itself.

Jfr =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn



r1...
rn



We set ẋ = r to the vector if interest, and proceed with forward mode AutoDiff.

Now, this seems a little bit weird, after all we just said that forward mode requires one pass
through the function for each input.
We can basically think of the jacobian vector product as just the jacobian of a different function.
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Jacobian Vector Product

The composition of our original function and one with a single scalar input whose jacobian is
the column vector r.

Jh = Jfr =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn



r1...
rn



h = f · g
Jg = r
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Jacobian Vector Product

Because, the overall jacobian of this composed function, now only has one column.
Therefore a single pass is sufficient.

Jh = Jfr =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn



r1...
rn

 ∈ Rm×1

h = f · g
Jg = r
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Automatic Differentiation (AD)

Forward Mode Reverse Mode
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Reverse Mode

Rather than propagating derivatives forward, they will be propagated backwards, from the
output.
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Reverse Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]
Two part process, let’s start with forward pass.

Forward Pass

x1

x2
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Reverse Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]
Forward Pass

x1

x2

ν−1

x1

ν0

x2
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Reverse Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]
Forward Pass

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)
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Reverse Mode

f(x1, x2) =

[
sin

(
x1
x2

)
+

x1
x2

− ex2

]
×
[
x1
x2

− ex2

]
evaluating intermediate variables as we did before.

Forward Pass

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3
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Reverse Mode

However, instead of simultaneously computing derivatives, we store the dependencies of the
expression tree in memory.

Forward Pass

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

ν5

ν2 + ν4

ν6

ν5 × ν4

f(x1, x2)
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Reverse Mode

After completion of the forward pass, we compute partial derivatives of the output with respect
to the intermediate variable quantities known as adjoints.

Forward Pass Reverse Pass

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

ν5

ν2 + ν4

ν6

ν5 × ν4

f(x1, x2)

“Adjoint” νi =
∂f
∂νi
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Reverse Mode

To obtain the adjoint ν̄i for a particular node, we look at each of the nodes children.
Further we multiply the adjoint with the partial derivative of the child w.r.t. νi

Forward Pass Reverse Pass

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

ν5

ν2 + ν4

ν6

ν5 × ν4

f(x1, x2)

“Adjoint” νi =
∂f
∂νi

=
∑

j:child of i νj
∂νj
∂νi
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Reverse Mode

So νi’s contribution to the final output is determined both by how it’s children affect the output
and how it affects each of it’s children.

Forward Pass Reverse Pass

x1

x2

ν−1

x1

ν0

x2

ν1

ν−1/ν0

ν3

exp(ν0)

ν2

sin(ν1)

ν4

ν1 − ν3

ν5

ν2 + ν4

ν6

ν5 × ν4

ν6 = f = 1

f(x1, x2)

‘Adjoint” νi =
∂f
∂νi

=
∑

j:child of i νj =
∂νj
∂νi
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Reverse Mode

At the end we obtain partial derivatives w.r.t each input. So the gradient is computed with just a
single execution of Reverse mode AutoDiff

Forward Pass Reverse Pass

x1
x1 = ν−1

x2
x2 = ν0

ν−1

x1

ν−1 =
ν1
ν0

ν0

x2

ν0 = ν3ν3 −
ν1ν−1

ν2
0

ν1

ν−1/ν0

ν1 = ν2 cos(ν1) + ν4

ν3

exp(ν0)

ν3 = −ν4

ν2

sin(ν1)

ν2 = ν5

ν4

ν1 − ν3

ν4 = ν5 × ν6 + ν5

ν5

ν2 + ν4

ν5 = ν4 × ν6

ν6

ν5 × ν4

ν6 = f = 1

f(x1, x2)

“Adjoint” νi =
∂f
∂νi

=
∑

j:child of i νj =
∂νj
∂νi
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Reverse Mode

For general vector valued function,
f : Rn → Rm

Reverse mode produces one row of the jacobian at a time, when we have few outputs compared
to inputs.
Computational cost of one sweep forward or reverse is roughly equivalent, but reverse mode
requires access to intermediate variables, requiring more memory.

Jf =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn


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Automatic Differentiation (AD)

Forward Mode Reverse Mode

• Forward and Reverse mode are the two extremes of automatic differentiation, however, in
some settings a hybrid approach is preferred.

• For example, in second order optimization, where information on objective’s curvature is
taken into account, a hessian vector product is sometimes required.
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What about Hessian ?

Reverse-on-Forward Version of AutoDiff allows efficient computation of this product.

f : Rn → Rm

Goal : Compute Hfν

First we use forward mode to compute directional∇f · ν (set ẋ = ν) as we did before,

then reverse mode is used to differentiate resulting in∇2f · ν = Hfν without the explicit
computation of hessian matrix itself.

1see Pearlmutter, 1994
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The Logarithmic Barrier Method

Inequality-constrained optimization problem

min
w

f(w)

s.t gi(w) ≤ 0, ∀i ∈ {1, . . . ,m}

When converted into an unconstrained optimization
problem,

min
w,µk

f(w)− µk
m∑
i=1

log(−gi(w)), 1.2 1.4 1.6 1.8 2

1

2

3

4

5

6

7
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The Fischer-Burmeister Method

Consider complementarity constraints of the form.

xi ≥ 0, yi ≥ 0, xi · yi = 0

where xi and yi are variables.

Fischer-Burmeister function:

FB(x, y) = x+ y −
√

x2 + y2

This function is designed to capture the essence of the
complementarity condition x · y = 0
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Implementation Example

1Example from Autograd Github Library
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Implementation Example

1Example from Autograd Github Library
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Computational Efficiency

Helmholtz free energy function of a mixed fluid

f(x) = RT

n∑
i=0

log
xi

1− b⊤x
− x⊤Ax√

8b⊤x
log

1 + (1 +
√
2b⊤x)

1 + (1−
√
2b⊤x)

1Baydin et. all, 2018, Peng and Robinson, 1976
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Overview

• Automatic differentiation (AutoDiff) refers to a general way of taking a program which
computes a value, and automatically constructing a procedure for computing derivatives of
that value.

• Back-propagation is the special case of AutoDiff applied to neural nets
• Autodiff is both efficient (linear in the cost of computing the value) and numerically stable

What is Autodiff not ?
• Autodiff is not symbolic differentiation (e.g. Mathematica)
• The goal of AutoDiff is not a formula, but a procedure for computing derivatives.

Applications of AutoDiff
• Newton’s method for solving nonlinear equations
• Optimization (utilizing gradients/Hessian)
• Inverse problems/data assimilation
• Neural networks
• Solving stiff ODEs
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Thank you.
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