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Abstract

This thesis presents a comprehensive investigation into the integration of machine
learning techniques to enhance the performance and applicability of Model Pre-
dictive Control (MPC). The main focus is on addressing challenging aspects of
MPC through innovative methodologies, contributing to the advancement of con-
trol strategies in complex systems. The initial focus is on solving Non-Linear Model
Predictive Control (NMPC) online, which is a computationally demanding task.
To mitigate this challenge and improve the real-time feasibility of NMPC, a novel
supervised learning framework is proposed. The framework harnesses the potential
of neural networks injected with explicit constraint knowledge, and integrating in-
sights from Karush-Kuhn-Tucker (KKT) conditions through the use of logarithmic
barrier functions in the loss function. This approach effectively approximates the
complex optimization problem, providing faster solutions while maintaining a fine
balance between optimality and constraint satisfaction.

In the next chapter, the thesis introduces an RL-based Economic Nonlinear
MPC (ENMPC) scheme to improve closed-loop performance even when the sys-
tem’s model is inaccurate. This scheme employs comprehensive data-based tun-
ing for the real system, targeting performance improvements during transient and
steady-state operations. Additionally, the integration of a Real-Time Optimization
(RTO) layer aids in data-based tuning of the optimal control policy. Furthermore,
to address the limitations of Reinforcement Learning (RL), specifically the time
and computational efforts required to learn the optimal control policy, the the-
sis proposes a method to approximate the action-value function from the optimal
solution of the value function using nonlinear programming sensitivities. This ap-
proach significantly reduces computational efforts while maintaining comparable
closed-loop performance to conventional methods.

Overall, this thesis contributes to the advancement of Model Predictive Control
through the development of efficient supervised learning approximations, integra-
tion with reinforcement learning techniques, and data-based tuning strategies. The
proposed methods open new avenues for enhancing control performance and over-
coming computational challenges in real-world control applications.
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Preface

The main motivation behind the last three years of my research is the realization
that machine learning in process control is the ability to predict failures, schedule
maintenance, reduce downtime and operating costs, improve efficiency by identify-
ing bottlenecks and suboptimal operating conditions.

After completing my Master’s degree in Instrumentation and Control at the
College of Engineering in Pune, I worked for a short time at Aker Solutions in
India. This experience provided me with valuable insight into the workflow between
researchand practice and the human aspects associated with successful industrial
use of control and optimization. During my time as a master’s student and as
a professional, I noticed that the huge chunks of valuable information is often
discarded in industries. The natural question that came to me was, "How can we
use this data efficiently to leverage this information to support optimization tools
and improve production optimization?

With some well-motivated research questions, I decided to pursue my PhD. I
was very pleased when Prof. Sigurd Skogestad (Department of Chemical Engineer-
ing, NTNU) offered me a PhD position in his Process Systems Group, NTNU. I
arrived in Trondheim at the end of September 2019 and started my PhD studies.
In the last four years, I have been working on different approaches for surrogate
optimization using neural networks for MPC; data-driven approaches for real-time
optimization, and ENMPC using reinforcement learning, which are presented in
this PhD thesis.

The PhD research was carried out at the Department of Chemical Engineer-
ing, at the Norwegian University of Science and Technology (NTNU) under the
supervision of Prof. Sigurd Skogestad as my main supervisor and Prof. Sébastien
Gros as my co-supervisor during the period from September 2019 to January 2022.
The work has been funded by the Norwegian Research Council, NTNU and major
industrial partners ( Project number 299585).

This thesis is submitted in partial fulfillment of the requirements for the de-
gree of Philosophiae Doctor (PhD) at the Norwegian University of Science and
Technology (NTNU).
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Chapter 1

Introduction

This chapter provides a concise introduction to the motivation behind the topics
explored in this thesis. It outlines the primary contributions made in this research
and provides an overview of the publications presented in this work. Additionally,
an outline of the thesis structure is also provided in this chapter.

1.1 Motivation

Machine learning (ML) has surged in popularity, driven by notable breakthroughs
such as deep learning and the growing commercial focus on big data analytics.
However, amidst this enthusiasm, skepticism from respected experts is understand-
able, considering past disappointments with neural networks and other AI methods.
Nonetheless, recent fundamental advancements, such as the capability to train deep
neural networks with numerous layers for hierarchical feature learning, could open
up substantial technological and commercial prospects [1].

Model Predictive Control (MPC) utilizes an optimization-based control strategy
with a receding horizon approach [2]. In MPC, a model of the real system dynamics,
which may have some inaccuracies, is employed to generate an input-state sequence
within a specified finite horizon. This trajectory is optimized based on a given cost
function while ensuring compliance with system constraints. At each time step, the
optimization problem is solved using the current system state, and the first input
from the optimal solution is applied to the system. Due to the finite-horizon nature
and potential discrepancies in the model, MPC typically provides a reasonable but
suboptimal approximation of the optimal policy.

Due to computational constraints, the MPC scheme generally favors straightfor-
ward models. Consequently, the MPC model often lacks the necessary complexity
to accurately capture the genuine system dynamics and stochastic behavior. Con-
sequently, MPC typically provides a practical yet suboptimal approximation of the
optimal policy.

In recent studies, researchers have explored the integration of Machine Learning
(ML) into Model Predictive Control (MPC) to learn the system model used in the
MPC scheme from data [3]. While this approach holds promise, it doesn’t entirely
resolve challenges associated with model inaccuracies. The effectiveness of a policy
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1. Introduction

derived from an MPC system incorporating an ML-based model is inherently tied
to the quality of the ML model itself. Therefore, it remains constrained by the
structure and decisions made during the ML model development process.

A number of approaches to approximate optimal control law given by MPC us-
ing machine learning methods have been explored in literature. In these approaches,
the control law is typically approximated using various parametric approximators
often termed as imitation learning or supervised learning [3, 4, 5]. The inability to
guarantee constraint satisfaction using these methods is one of the major limita-
tions, contributing to active research in this direction.

Reinforcement Learning (RL) is a powerful paradigm in the field of machine
learning that holds significant promise for various control tasks. Unlike supervised
learning, RL agents learn to make sequences of decisions by interacting with an
environment, receiving feedback in the form of rewards or penalties based on their
actions. This trial-and-error learning approach makes RL particularly well-suited
for dynamic and complex control scenarios. In industrial settings, RL is applied
to optimize processes, manage resources, and enhance efficiency. For instance, in
autonomous robotics, RL algorithms enable robots to learn optimal paths and
actions to navigate through changing environments. In autonomous vehicles, RL
can be used to develop adaptive driving policies, allowing the vehicle to respond
intelligently to diverse road conditions. RL is also valuable in energy manage-
ment systems, where it optimizes energy usage by learning patterns of demand
and supply, thereby reducing costs and promoting sustainability. The ability of
RL algorithms to learn and adapt in real-time positions them as a transformative
technology in the realm of control, offering solutions to challenges that demand
intelligent decision-making in dynamic, uncertain environments.

Certainly, RL proves to be a potent tool for addressing Markov Decision Process
(MDP) challenges even when prior knowledge of the controlled process is lacking.
Most RL methods focus on learning the optimal policy and value functions for the
real system, described by an MDP, using a function approximator. It’s imperative
to ensure that this function approximator is sufficiently versatile to capture the op-
timal policy or value function of the given MDP. A prevalent choice in the RL com-
munity is to employ a Deep Neural Network (DNN) for this purpose. For example,
in [6], baseline control is utilized to maintain the stability and tracking performance
of an Autonomous Surface Vehicle (ASV). Simultaneously, DNN-based RL is inte-
grated to address uncertainties and collision avoidance, showcasing the flexibility
and effectiveness of using neural networks in reinforcement learning applications.

Regrettably, analyzing the closed-loop stability of a system utilizing the optimal
policy derived from a Deep Neural Network (DNN) or a generic function approxi-
mation can be a complex task, as stated in [7]. Additionally, assigning meaningful
initial weights to the DNN poses a significant challenge.

The concept of employing Model Predictive Control (MPC) as a function ap-
proximator for a specific Markov Decision Process (MDP) was initially introduced
and substantiated in [8]. The study demonstrated that a parameterized MPC can
accurately capture the optimal policy and value function of the MDP. This is
achieved through modifications to the stage cost and terminal cost, even when a
basic and imprecise model is utilized within the MPC framework. Subsequently,
Reinforcement Learning (RL) methods like Q-learning and policy gradient tech-
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1.1. Motivation

niques can be applied to adjust the parameters, aiming to attain the most favorable
long-term closed-loop performance.

Despite recent publications covering the central theories related to MPC-based
learning, there are lingering questions in this area. Therefore, this thesis aims to
address specific application challenges by building upon previous research. These
challenges involve extending prior work, applying the method to diverse engineering
applications like Gas lift optimization, and highlighting its advantages in addressing
complex queries within the realm of (E)MPC, RL, and MDP. The subsequent
section of this chapter provides summaries of the developed theories.

To summarize, this thesis tries to address the following questions:

• Integration of ML into MPC: How can Machine Learning (ML) be ef-
fectively integrated into Model Predictive Control (MPC) to overcome the
limitations associated with computational constraints and model inaccura-
cies?

• Quality of ML Models: What is the impact of the quality of ML models
on the effectiveness of policies derived from MPC systems incorporating ML-
based models? How does the ML model’s structure and development decisions
influence the derived policy?

• Approximation of Optimal Control Law: Can machine learning methods
approximate the optimal control law provided by MPC, and how do these
methods perform in comparison to traditional approaches?

• Ensuring Constraint Satisfaction: How can the challenge of guaranteeing
constraint satisfaction be effectively addressed when using machine learning
methods for MPC?

• Role of RL in Control: What is the potential role of Reinforcement
Learning (RL) in addressing challenges related to Markov Decision Processes
(MDP), especially in cases where prior knowledge of the controlled process
is limited?

• Optimal Policy Capture: Can Model Predictive Control (MPC) serve as
a reliable function approximator for a specific MDP, capturing the optimal
policy and value function accurately?

• Adaptive Adjustment with RL: How effective are Reinforcement Learn-
ing (RL) methods, such as Q-learning and policy gradient techniques, in
adjusting parameters to achieve favorable long-term closed-loop performance
in the MPC framework?

• Application Challenges: How do the proposed methodologies extend to
diverse engineering applications, such as gas lift optimization, and what ad-
vantages do they offer in addressing complex queries within the realms of
(E)MPC, RL, and MDP?
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1. Introduction

1.2 Research Contribution and the Thesis Structure

The thesis adopts a paper-based structure, comprising five chapters. Chapter 1 out-
lines the thesis’s motivation and objectives. The subsequent chapters delve into the
research contributions accomplished during this PhD study, each detailed below.

• Constrained Neural Networks for NMPC.

– Saket Adhau, Vihangkumar Naik and Sigurd Skogestad. “Constrained
Neural Networks for Approximate Nonlinear Model Predictive Control".
In 2021 60th IEEE Conference on Decision and Control (CDC) (2021),
pp.295− 300.

• RTO-RLMPC for GasLift Optimization: Practical Implementation

– Saket Adhau, José Matias, Sebastien Gros, and Sigurd Skogestad.“Data
Driven Framework for Combining Real-Time Optimization and Eco-
nomic NMPC on an Experimental Rig” In preparations.

• NLP Sensitivites for FAST RLMPC

– Saket Adhau, Dirk Peter Reinhardt, Sigurd Skogestad, and Sebastien
Gros. “ Fast Reinforcement Learning Based MPC Using NLP Sensitivi-
ties". In IFAC World Congress 2023.

• RLMPC using Neural Networks for unknown dynamical systems

– Saket Adhau, Sebastien Gros, and Sigurd Skogestad. “Reinforcement
Learning based MPC with Neural Dynamical Models.” Submitted to
2024 European Control Conference (ECC) (2024)
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Chapter 2

Background

In this chapter, we begin by offering essential background information on Neural
Networks and MDPs, a fundamental concept in Machine Learning. Neural networks
play a pivotal role in Model Predictive Control (MPC) by offering adaptive and
data-driven solutions to complex control problems. By leveraging historical data,
neural networks can learn the intricate relationships within a system, providing
accurate approximations of its dynamics.

MDP serves as a comprehensive description of real systems, ensuring their state
transitions adhere to the Markov property. Subsequently, we delve into Reinforce-
ment Learning (RL), a practical and robust technique for solving MDPs. Within
this section, we explore Q-learning and policy gradient methods. Additionally, we
provide an overview of Model Predictive Control (MPC) and explain the policies
derived from MPC schemes. Lastly, we explore the integration of MPC and RL,
introducing a pivotal theorem recently developed to delineate the primary focus of
our current research.

2.1 Neural Networks

Neural networks are increasingly employed in Model Predictive Control (MPC) due
to their ability to model complex, non-linear relationships in data. In the context of
MPC, neural networks serve as function approximators, capturing the underlying
dynamics of the system being controlled. These networks are trained on historical
data to learn the relationships between input variables and system responses.

One common application of neural networks in MPC is in system modeling.
Traditional MPC requires an accurate model of the system dynamics, which can be
challenging to obtain, especially for complex processes. Neural networks can learn
the system behavior from data, allowing MPC controllers to operate effectively
even when the underlying system model is unknown or difficult to characterize.

Neural networks can also be used within the MPC framework to approximate
cost functions or constraints, enabling more flexible and adaptive control strategies.
By employing neural networks, MPC controllers can handle high-dimensional and
non-linear systems, making them suitable for a wide range of real-world applications
such as robotics, autonomous vehicles, and industrial processes.
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2. Background

Moreover, recent advancements in deep learning, a subset of neural networks,
have further enhanced the capabilities of MPC. Deep neural networks, with multiple
hidden layers, can learn intricate patterns and dependencies in data, making them
well-suited for modeling complex systems and optimizing control actions.

2.1.1 Artificial Neural Networks

This subsection briefly revisits the basic principles of artificial neural networks. A
feed-forward neural network is structured as a series of interconnected layers of
neurons, collectively defining a mathematical function of the form N : Rnx → Rnu

N (x : θ,M,L) = (2.1)
{
fL+1 ◦ gL ◦ fL ◦ · · · ◦ g1 ◦ f1(x) for L ≤ 2,

fL+1 ◦ gL ◦ f1(x), for L = 1,
(2.2)

In this setup, the network takes an input x from the space Rnx and produces an
output u in Rnu . Here, M represents the number of neurons in each hidden layer,
and L indicates the total number of hidden layers. When L ≤ 2 , the network is
referred to as a deep neural network, and if L = 1 , it is termed a shallow neural
network. Each hidden layer comprises an affine function:

fl(ξl−1) = Wlξl−1 + bl, (2.3)

where, ξl−1 ∈ RM is the output of the previous layer with ξ0 = x. The second
element of the neural network is a nonlinear activation function gl. Rectifier linear
units (ReLU) are considered as activation function, which compute the element-
wise maximum between zero and the affine function of the current layer l:

gl(fl) = max(0, fl). (2.4)

The parameter θ = {θ1, θ2, . . . , θL+1} contains all and biases of the affine functions
of each layer,

θl = {Wl, bl} ∀l = 1, . . . , L+ 1, (2.5)

where the weights are

Wl ∈





RM×nx if l = 1,

RM×M if l = 2, . . . , L,

Rnu×M if l = L+ 1,

(2.6)

and the biases are

bl ∈
{
RM if l = 1, . . . , L,

Rnu if l = L+ 1,
(2.7)
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2.2. Markov Decision Processes

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) serve as a standardized framework for optimal
control in discrete-time stochastic processes. In this context, the stage cost and
transition probability are determined solely by the current state and input of the
system. An MDP operates within defined state (S) and action (A) spaces, which can
be discrete, continuous, or a combination of both. Here, ρ represents a conditional
probability measure defining the system dynamics. For a specific state-action pair
(s,a) ∈ S ×A, the subsequent state (s+) is distributed according to,

s+ ∼ ρ(·|s, a) (2.8)

Note that (2.8) represents a generalization of classic dynamics, whether determin-
istic or stochastic, frequently explored within the realm of control theory, usually
represented as,

s+ = F(s, a,w), w ∼W (2.9)

where w ∈ D is a random disturbance from distribution W and F : S×A×D → S
is a Borel-measurable function. In the special case w = 0 yeilds deterministic
dynamics. Solving an MDP is then the problem of finding the optimal policy π⋆ :
S → A solution of:

π⋆ ∈ argmin
π

J(π), (2.10)

where J(π) is the performance function and depends on the optimality criteria
describing the MDP.

2.2.1 Discounted setting

In the discounted setting, an MDP is characterized by the triplet (L, γ, ρ), where
L : S × A→ R represents the stage cost, γ ∈ (0, 1] is the discount factor, and the
performance function J(π) is defined as follows:

J(π) = E

[ ∞∑

k=0

γkL(sk,ak)

∣∣∣∣∣ak = π(sk)

]
, (2.11)

Here, the expected value operator E[·] is computed over the (possibly) stochastic
closed-loop trajectories of the system. Solving MDPs is often approached using the
Bellman equations, implicitly defining the optimal value function V ⋆ : S → R and
the optimal action-value function Q⋆ : S ×A→ R as

V ⋆(s) = min
a

Q⋆(s, a), (2.12)

Q⋆(s, a) = L(s, a) + γE[V ⋆(s+)|s, a] (2.13)

The optimal policy, denoted as π⋆(s) is determined by selecting actions that min-
imize Q⋆(s, a),

π⋆(s) ∈ argmin
a

Q⋆(s, a) (2.14)

7



2. Background

2.3 Reinforcement Learning

As previously mentioned, solving an MDP involves determining an optimal pol-
icy that minimizes the expected cumulative cost, considering the current state.
Dynamic Programming (DP) techniques are commonly employed to solve MDPs
through the Bellman equations. However, solving these equations becomes compu-
tationally infeasible, especially in high-dimensional problems [9]. This challenge,
known as the "curse of dimensionality" in literature, hampers the applicability of
DP methods [10]. Additionally, DP necessitates precise knowledge of the transition
probabilities in MDPs. In practical engineering contexts, obtaining exact transition
probabilities for real systems is often unfeasible.

Reinforcement Learning (RL) emerges as a prevalent approach to overcome
these challenges. Its core objective is to utilize data to approximate the optimal
policy, denoted as π⋆. RL provides effective strategies for addressing MDPs without
requiring precise knowledge of the underlying state transition probability distribu-
tion, ρ. RL methods typically operate by directly approximating the optimal policy
or indirectly approximating the action-value function.

The field broadly falls into two main categories: value-based methods and
policy-based methods. In this context, we will elaborate on Q-learning, representing
an indirect approach, and Policy Gradient methods, representing a direct approach.

2.3.1 Q-Learning

Q-learning is a widely used reinforcement learning algorithm that enables an agent
to learn optimal actions in a Markov Decision Process (MDP). It operates by es-
timating the quality of actions through a Q-value, which represents the expected
cumulative reward obtained from taking a specific action in a particular state and
following an optimal policy thereafter. The algorithm iteratively updates Q-values
based on the agent’s experiences in the environment. Through exploration and ex-
ploitation strategies, Q-learning converges towards an optimal policy, allowing the
agent to make informed decisions even in complex and dynamic environments. This
approach, rooted in the principle of temporal difference learning, has been applied
across various domains, showcasing its effectiveness in solving diverse reinforcement
learning problems.

Q-learning, involves approximating the optimal action-value function Q⋆ us-
ing a parameterized function Qθ. The parameters θ are iteratively adjusted using
data, ensuring that the approximated Q-values, denoted as Qθ⋆ , closely match the
optimal Qθ ≈ Q⋆ for the corresponding optimal parameters θ⋆.

Q-learning addresses a Least Squares (LS) problem, aiming to find the best
parameters θ⋆ that accurately describe the optimal action-value function Q⋆.

min
θ

E
[
(Qθ(sk,ak)−Q⋆(sk,ak))

2
]
. (2.15)

Temporal-Difference (TD) learning provides a widely used approach to address
(2.15). In this context, a fundamental TD-based learning step involves updating
the parameters θ at time instance k, in the discounted setting when γ = 1, using

8



2.4. Model Predictive Control

the following update rule:

δk = L(sk,ak) + γVθ(sk+1)−Qθ(sk,ak), (2.16)
θ ← θ + ζδk∇θ(sk,ak) (2.17)

where the scalar ζ > 0 is the learning step-size, δk is labeled the TD error and Vθ

is the parameterized value function. An approximation of the optimal policy π⋆

can then be obtained using:

π̂⋆(s) = argmin
a

Qθ⋆(s, a) (2.18)

2.4 Model Predictive Control

Model Predictive Control (MPC) is an advanced control strategy widely used in
engineering and industrial applications. Unlike traditional control methods, MPC
operates by predicting the system’s future behavior using a dynamic model and op-
timizing the control inputs over a finite prediction horizon. This predictive approach
enables MPC to account for system constraints, input limitations, and desired per-
formance criteria, making it particularly effective for complex and nonlinear sys-
tems. MPC continuously reoptimizes the control inputs based on real-time feed-
back, ensuring the system’s optimal performance while adhering to constraints. Its
ability to handle multivariable systems, deal with constraints, and adapt to chang-
ing operating conditions makes MPC a powerful and versatile control technique
used in various fields such as process industries, automotive systems, robotics, and
energy management. MPC is often formulated as:

min
x,a

=T (xN ) +

N−1∑

k=0

L(xk,uk) (2.19)

s.txk+1 = f(xk,uk), x0 = s (2.20)
h(xk,uk) ≤ 0, uk ∈ A (2.21)

for a given system state s, where N is the horizon length, T is the terminal cost,
f is a model of the system and h is the mixed input-state constraint.

Equation (2.19) generates a comprehensive set of control inputs u⋆ = {u⋆
0, . . . ,u

⋆
N+1}

along with corresponding state predictions x = {x⋆
0, . . . ,u

⋆
N}. However, only the

initial element u⋆
0 from the input sequence u⋆ is implemented in the system. Upon

receiving the next state s at the subsequent physical sampling instant, (2.19) is
recalculated, producing a new sequence of u⋆. MPC yeilds a policy,

πMPC(s) = u⋆
0 (2.22)

using u⋆
0 solution from (2.19) for a given s. Achieving this policy depends heavily

on how well the MPC model f approximates the actual dynamics (2.8). This aspect
poses a significant challenge, as accurately modeling many systems is inherently
complex. Moreover, selecting the most appropriate model f within a modeling
framework, one that optimally aligns with the data collected from the real system,
is a daunting task. There’s no guarantee that the model f that best fits the collected
data is also the best model in terms of J(πMPC).

9



2. Background

2.5 Learning based MPC

The integration of Reinforcement Learning (RL) and Model Predictive Control
(MPC) offers a solution to the challenges outlined earlier. In this section, we present
a key finding that supports this assertion. To understand this, it’s beneficial to view
MPC as a potentially localized model of the action-value function, Q⋆. Consider
an MPC-based policy,

πθ(s) = u⋆
0 (2.23)

where u⋆
0 is part of :

x⋆,u⋆ = argmin
x,u

Tθ(xN ) +

N−1∑

k=0

Lθ(xk,uk), (2.24a)

s.t xk+1 = fθ(xk,uk), x0 = s, (2.24b)
hθ(xk,uk) ≤ 0, uk ∈ A. (2.24c)

This MPC formulation mirrors equation (2.19), yet with a crucial difference: the
cost, constraints, and dynamics within the MPC scheme are now all parameterized
in θ, except for the input constraint uk ∈ U The rationale behind this choice is
explained below. The MPC-derived model of Q⋆ can thus be represented as:

Qθ(s, a) =min
x,u

(2.24a) (2.25)

s.t.(2.24b)− (2.24c), u0 = a, (2.26)

A constraint u0 = a on the initial input has been introduced to (2.24). The MPC
formulation (2.25) serves as a valid model of Q⋆ as it fulfills the relationships (2.12)
and (2.14), i.e:

πθ(s) = argmin
a

Qθ(s, a), Vθ(s) = min
a

Qθ(s, a) (2.27)

In this context, Vθ(s) represents the optimal cost obtained by solving MPC equation
(2.24). It is crucial to note that if the MPC parameters θ are chosen in a way that
Qθ = Q⋆, the MPC scheme (2.24) yields the optimal policy π⋆ as per equation
(2.23), denoted as πθ = π⋆. A significant question arises: how well can an MPC
scheme approximate Q⋆, particularly in the vicinity of a = π⋆(s)? Moreover, Q⋆ is
usually constructed using a discounted sum of the stage costs L, while undiscounted
MPC formulations are typically preferred.

The theorem presented below addresses these concerns and serves as the key
rationale for considering the MPC parametrization (2.24) in learning-based MPC.
It establishes that under certain mild conditions, (2.25) can precisely model Q⋆,
even if its predictive model (2.24a) is imprecise. Consequently, MPC formulation
(2.24a) can achieve optimal closed-loop performances, even when the MPC model
is inaccurate.

Theorem 2.1. Assuming that the parameterized stage cost, terminal cost, and
constraints in (2.24) can universally approximate functions with adjustable parame-
ters θ, there exist specific parameters denoted as θ for which the following identities
hold, ∀γ:

10



2.5. Learning based MPC

(i) Vθ⋆(s) = V ⋆(s),∀s ∈ S
(ii) πθ⋆(s) = π⋆(s),∀s ∈ S
(iii) Qθ⋆(s, a) = Q⋆(s, a),∀a ∈ A such that

|V ⋆(fθ⋆(s, a))| <∞.
if the set,

S =
{
s ∈ S

∣∣∣|[V ⋆(x⋆
k)]| <∞,∀k ≤ N

}
(2.28)

is non-empty.

Proof. We select the parameters such that the following holds:

Tθ⋆(s) = V ⋆(s) (2.29a)

Lθ⋆(s, a) =

{
Q⋆(s, a)− V ⋆(f⋆θ(s, a)) if |V ⋆(fθ⋆(s, a))| <∞
∞ otherwise

(2.29b)

The proof can be derived from the principles outlined in [8].
Theorem 2.1 asserts that, within a given Markov Decision Process (MDP), an

MPC scheme, even with a potentially imprecise model, can yield the optimal value
functions and policy of the original MDP. This achievement hinges on the careful
selection of appropriate stage cost, terminal cost, and constraints. The theorem’s
applicability extends to various MPC variants, including robust MPC, stochastic
MPC, and Economic MPC (EMPC), regardless of whether they are discounted or
not. The assumption stated in (2.28) can be interpreted as a stability condition
for fθ⋆ under the optimal trajectory x⋆. Essentially, this assumption necessitates
the existence of a non-empty set wherein the optimal value function V ⋆ for the
predicted trajectories x⋆ based on the system model remains finite with a unitary
probability for all initial states within this set.

To achieve the optimal parameter θ⋆, RL techniques, elaborated upon in the
previous section, such as Q-learning and the policy gradient method, can be uti-
lized to fine-tune the parameters θ of the parameterized MPC scheme (2.24). This
approach enables the approximation of the optimal parameter θ⋆.
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Chapter 3

Contributions

3.1 Constrained Neural Networks for NMPC

This paper delves into the innovative application of constrained neural networks
in the realm of Approximate Nonlinear Model Predictive Control (NMPC). The
study explores the integration of neural networks to approximate complex non-
linear systems, focusing specifically on NMPC, a powerful control technique used
in various fields. By introducing constraints into the neural network architecture,
we aim to enhance the accuracy and reliability of control predictions in real-time
scenarios.

The paper discusses the methodology employed, emphasizing the incorporation
of constraints within the neural network model. This approach involves optimizing
the network’s architecture to handle specific system constraints efficiently. We also
present experimental results and simulations, demonstrating the effectiveness of
this proposed Constrained Neural Network approach in NMPC applications. Com-
parisons with traditional NMPC techniques and other neural network models have
been included to showcase the advantages of their method.

Abstract

Solving Non-Linear Model Predictive Control (NMPC) online is often challenging
due to the computational complexities involved. This issue can be avoided by ap-
proximating the optimization problem using supervised learning methods which
comes with a trade-off on the optimality and/or constraint satisfaction. In this pa-
per, a novel supervised learning framework for approximating NMPC is proposed,
where we explicitly impart constraint knowledge within the neural networks. This
knowledge is inherited by augmenting the loss function of the neural networks dur-
ing the training phase with insights from KKT conditions. Logarithmic barrier
functions are utilized to augment the loss function including conditions of primal
and dual feasibility. The proposed framework can be applied to other machine
learning based parametric approximators. This approach is easy to implement and
its efficacy is demonstrated on a benchmark NMPC problem for continuous stirred
tank reactor (CSTR).
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Constrained Neural Networks for Approximate

Nonlinear Model Predictive Control

Saket Adhau, Vihangkumar V. Naik, Sigurd Skogestad

I. INTRODUCTION

Model Predictive Control (MPC) has widespread usage in industrial applications ranging from

chemical plants, petroleum refineries, aerospace, and automotive domains [1]. However, the

applicability of MPC, especially non-linear MPC (NMPC) is limited due to computational com-

plexity involved in solving the associated nonconvex optimization problem within the stipulated

sampling time. Problems of this class are being investigated by control as well as machine

learning communities. Especially, by using machine learning tools such as Neural Networks to

approximate the optimal control law given by MPC. Such approaches encounter challenges for

industrial applications where the availability of necessary data could be limited, and synthesizing

the available data could be challenging. Another underlying problem is that such approximated

control laws often make a trade-off between performance and constraints satisfaction. Satisfying

the constraints while approximating the control law can be of paramount importance and needs

to be addressed.

Related Work:

1) Approximate MPC: A number of approaches to approximate optimal control law given by

MPC using machine learning methods have been explored in literature. In these approaches, the

control law is typically approximated using various parametric approximators often termed as

imitation learning or supervised learning [2]–[4].
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2) Constraint handling in Neural Networks: The inability to guarantee constraint satisfaction

using these methods is one of the major limitations, contributing to active research in this

direction. The authors in [5], provide guarantees on closed-loop constraint satisfaction and

asymptotic stability. Projection of feasible control input on polytopes derived from maximal

control invariant set of the system is presented in [6] and similar methods have also been

shown in [7]. Furthermore, two separate networks for primal and dual problems are trained to

estimate sub-optimality and probabilistic bounds are provided on the trained linear controller in

[8]. In [9], the network is trained while adjusting the architecture until probabilistic bounds are

satisfied. Additionally, instead of replacing the traditional MPC with approximate control law,

neural networks have also been examined to assist the controller in warm starting, such as [10],

[11]. The contribution in [12] present end to end learning of both system dynamics and control

policies with constraint satisfaction capabilities.

Research work [13] dating back as early as 90′s, exhibit a class of neural networks for

approximating general non-linear programming problems including equality and inequality con-

straints. The method is based on Lagrangian multipliers in optimization and provide solutions to

satisfy the necessary conditions of optimality. The authors in [14] devise Lagrange type neural

networks which can handle inequality constraints, whereas stability and convergence is discussed

using Liapunov’s approximation principle. The optimization aspects of imposing hard inequality

constraints on Convolutional neural network (CNN), by using Log barrier functions along-with

Lagrangian-dual optimization has been presented in [15]. In addition, [16]–[20] discuss methods

from optimization theory especially KKT conditions to impose constraints on neural networks.

To the best of the authors’ knowledge, none of the ideas mentioned above have been studied in

control domain for assisting in approximating optimal control laws.

In this paper, we present a novel constraint handling approach exploiting the domain knowledge

from KKT conditions while approximating the NMPC problem. Typically, constraint handling

in neural network based approximators is done at a later stage, only after the network is trained.

Conversely, in our approach, primal and dual feasibility conditions are inherently passed on to the

network during the training phase itself. This is achieved by augmenting the loss function with

penalties on primal and dual feasibility. Hence, the overall idea is to introduce domain specific

knowledge whilst training, to better leverage constraint characterization inside the network. We

analyze performance of the proposed approach for approximating NMPC applied to a benchmark

continuous stirred tank reactor (CSTR) problem. It is interesting to note that the proposed idea
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is applicable to approximate a wide range of constrained optimization problems.

The paper is organized as follows: Section II introduces background for neural networks.

NMPC problem formulation, the conventional approach for NMPC approximation and the pro-

posed approach are presented in Section III. Implementation of the proposed approach and results

are discussed in Section IV while the paper concludes in Section V.

II. BACKGROUND

This section introduces the loss function of neural networks to be utilized as a basis for the

proposed framework. Let N be the number of training samples where, input matrix is denoted

by X = {x1, x2, . . . , xN}⊤ ∈ RN×d, and output matrix is denoted by Y = {y1, . . . , yN}⊤ ∈
RN×m for the training data {xi, yi}Ni=1. Input dimensions are denoted by d, whereas m denotes

output dimensions. A fully connected feedforward network consisting of L layers indexed as

0, 1, 2, . . . , L corresponding to input layer is considered. These hidden layers are composed of

weight matrices (Wk)
L
k=1 ∈ W := Rd×n1 × · · · × Rnk−1×nk × · · · × RnL−1×m where nk denotes

number of neurons on layer k, n0 = d and nL = m whereas the bias on the layers (bk)Lk=1 ∈ B :=

Rn1 × . . .RnL . We use nonlinear Rectified Linear Unit (ReLU), a non differentiable activation

function σ : R → R. Let Ψ ∈ RN×nk be the matrix containing feature vectors of layer k after

application of activation function. Once the network architecture is designed, the Loss function

Φ : θ → R of the network can be defined as,

Φ

(
(Wk, bk)

L
k=1

)
=

1

mN

N∑

i=1

m∑

j=1

(
(ΨLj (xi))− yij

)
. (1)

In this paper, we consider, Mean Squared Error (MSE) as our loss function which is assumed

to be continuously differentiable.

III. NEURAL NETWORK BASED APPROXIMATE NMPC

Consider a discrete-time nonlinear system of the form,

x(t+ 1) = f(x(t), u(t)), (2)

where the current states x ∈ X , the control input u ∈ U are constrained to lie in compact sets

of X ⊂ Rnx and U ⊂ Rnu . The nominal model, f : X × U → X is assumed to be twice

differentiable in x and u.
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The NMPC problem P(x(t)) can be formulated as,

min
x(.),u(.)

∫ t0+T

t0

1

2

(
||x(t)− xref(t)||2Q + ||u(t)− uref(t)||2R

)
dt

+ ||x(t0 + T )− xref(t0 + T )||2P , (3a)

subjected to following constraints for all t ∈ [t0, t0 + T ]

x(t0) = x̂0, (3b)

x(t+ 1) = f(x(t), u(t)), (3c)

u ≤ u(t) ≤ u, ∀u ∈ U , (3d)

x ≤ x(t) ≤ x, ∀x ∈ X . (3e)

where, T > 0 is the prediction horizon, x(t) ∈ Rnx and u(t) ∈ Rnu . The cost function is

weighted by Q ⪰ 0, P ⪰ 0, and R ≻ 0 and x̂0 is the current state estimate in (3b) at time t0.

The control input is bounded by u and u and states by x and x, see [21], [22, Chapter 2]. The

resulting NMPC control law is given by,

u∗(t) = πMPC(x(t)). (4)

Solving this problem online at each sampling time t is often computationally complex and may

become impractical with increase in problem size.

A. Approximate NMPC

The problem in (3) can be approximated with neural networks using the loss function given

by,

L(x; θ) = 1

N

N∑

i=1

(πapprox(xi; θ)− u∗i )2 . (5)

In the above equation, πapprox(xi; θ) is a trained policy such that πapprox ≈ πMPC and u∗i is the

optimal control input or labeled dataset. The loss function L(x; θ) is minimized w.r.t θ =W×B
which is an unconstrained optimization problem.

However, in general the nonlinear programming (NLP) problems arising in NMPC formulation

contains constraints on u and/or x, such as on both in (3d) and (3e). The approximate control

law πapprox may not mimic the behavior of the optimal policy accurately, often leading to a

poor approximation, which results in constraints being not satisfied at all times. As a rule of
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thumb, the control input/s are saturated/clipped off for input constraint satisfaction [7], which

may deteriorate the overall control performance. In order to derive a better approximation, we

describe a novel supervised learning framework in the following sections.

B. Penalty methods and Logarithmic Barrier Functions

Penalty methods are often used to convert constrained optimization problem into an uncon-

strained optimization problem, by augmenting the objective function with a penalty when con-

straints are violated. However, penalty methods may not always guarantee constraint satisfaction

and need precise tuning of the weight for each penalty term in the equation. If in a cost function,

there are several constraints, penalty functions will not act as barriers at the boundaries of feasible

region but rather be null. This may lead to oscillations and make the training unstable [15]. To

overcome these drawbacks in penalty terms, we use Logarithmic barrier functions.

Consider the following NLP problem,

min
w

ψ(w), (6a)

s.t gi(w) ≤ 0, ∀i ∈ {1, . . . ,m}, (6b)

where the strictly feasible region F0 is defined by,

F0 ≡ {w ∈ Rn|gi(w) ≤ 0}, ∀i ∈ {1, . . . ,m}, (7)

and F0 is assumed to be non-empty. The logarithmic barrier function for the constraint, gi(w) ≤
0, ∀i ∈ {1, . . . ,m}, denoted by ϕ(w) is,

ϕ(w) =
∑

i∈I
− log(−gi(w)), (8)

where log(.) is natural logarithm. The value of the function approaches ∞ as w moves towards

the edge of feasible region F0 implying when the constraints are violated, a high penalty of ∞
would be added to the cost function1. In the event of no constraint violation, the barrier term

would be 0. The new objective function for the constrained optimization problem (6), when

converted into an unconstrained optimization problem, can be written as,

min
w,µk

ψ(w)− µk

m∑

i=1

log(−gi(w)), (9)

where, µk is a sequence of positive scalar barrier parameters, [23, Chapter 6].

1In case of neural networks, where the gradient of ∞ cannot be evaluated, a penalty of high value is imposed.
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Fig. 1. Illustration of the proposed methodology for injecting constraint knowledge during the training phase for approximating

constrained optimization problems.

C. Approximation of Constrained Optimization Problems

For approximating the NMPC problem (3), the main idea here is to introduce constraints (3d)

and (3e) inside the neural networks during the training phase. This can be done by augmenting

the loss function defined in (5), with (3d) and (3e) using logarithmic barrier function as in (9).

We start by introducing the input constraints (3d) in the loss functions (5) given by,

L(x; θ) = 1

N

N∑

i=1

(∥∥∥πapprox(xi; θ)− u∗i
∥∥∥
2

2
+

µu

∥∥∥fb(ûi, ui)
∥∥∥
2

2
+ µu

∥∥∥fb(ûi, ui)
∥∥∥
2

2

)
,

where, µu, µu > 0 are the barrier parameters. The function fb for lower and upper bound is

defined as per (8),

fb(ûi, ui) : ui − ûi ≤ 0 : − log(ûi − ui), (10a)

fb(ûi, ui) : ûi − ui ≤ 0 : − log(ui − ûi). (10b)

Furthermore, to include state constraints (3e), a new policy π̂x is required to be defined which

will not only predict the optimal control inputs but also the next states,
[
û x̂+

]⊤
= π̂x(xi; θ). (11)
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The resulting loss function is formulated as,

Lx(x; θ) =
1

N

N∑

i=1

(∥∥∥π̂x(xi; θ)− z∗xi

∥∥∥
2

2
+

µu

∥∥∥fb(ûi, ui)
∥∥∥
2

2
+ µu

∥∥∥fb(ûi, ui)
∥∥∥
2

2
+

µx

∥∥∥fb(x̂i, xi)
∥∥∥
2

2
+ µx

∥∥∥fb(x̂i, xi)
∥∥∥
2

2

)
, (12)

where, µx, µx > 0, vector z∗x consists of [u∗ x+]⊤ calculated by solving the NMPC problem

P(x).
To better leverage constraint characterization inside the network, we also exploit the insights

from KKT conditions, specifically the dual feasibility. In order to do this, for the sake of

simplicity of notations, we rewrite inequality constraints in (3d) & (3e) and the dual variables

associated with the inequality constraints as, A = [−u + u, u − u,−x + x, x − x]⊤ ≤ 0,

λ = [λu, λu, λx, λx]
⊤ ≥ 0 respectively where, λ ∈ R2nx+2nu . For including dual feasibility

λ ≥ 0, the function fλ to be used in loss function is defined similar to (10) as,

fλ(λ̂i) : − λ̂i ≤ 0 : − log(λ̂i).

Next, we define a new policy π̂λ(xi; θ), such that it predicts dual variables λ̂ along-with

predicted inputs û and next states x̂+ as in (11). Finally, we write the proposed loss function

as,

Lλ(x; θ) =
1

N

N∑

i=1

(∥∥∥π̂λ(xi; θ)− z∗λi

∥∥∥
2

2
+

µu

∥∥∥fb(ûi, ui)
∥∥∥
2

2
+ µu

∥∥∥fb(ûi, ui)
∥∥∥
2

2
+

µx

∥∥∥fb(x̂i, xi)
∥∥∥
2

2
+ µx

∥∥∥fb(x̂i, xi)
∥∥∥
2

2
+ µλ

∥∥∥fλ(λ̂i)
∥∥∥
2

2

)
, (13)

where, µλ > 0 and the vector z∗λi
consists [u∗ x+ λ∗]⊤. Using dual variables, the idea is

to ensure constraint satisfaction when feasible solution exists and help the network optimize

its policy-parameters θ, while inheriting constraint knowledge. The proposed general idea for

approximating constrained optimization problems is illustrated in Fig. 1.

The barrier terms are only active in the loss function when constraints are violated, reducing

the excessive gradient ascent iterations and making the training less computationally expensive

[15].
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The detailed procedure for the proposed approach is summarized in Algorithm 1. We start

with a formulated NMPC problem P(x), a null dataset D for collecting the data required

and a feasible state space X . For each instance i = 1, . . . , N , the NMPC problem is solved

by randomly choosing xi from the feasible state space X and the dataset D is updated with

xi, u
∗
i , x

+
i , λ

∗
i . Eventually, once N samples are processed, the network is trained using the cost

function described in (13).

Algorithm 1 Learning of constrained approximate NMPC.
Input: NMPC problem P(x), feasible set X , null dataset D

1: for i = 1 to N do

2: Sample xi ∈ X
3: Collect u∗i and x+i for every xi by solving P(xi) and λ∗i for every inequality constraint

4: Update the dataset, D ← D ∪ {(xi, u∗i , x+i , λ∗i )}
5: end for

6: θ ← (13)

Output: π̂λ(xi; θ).

IV. SIMULATION RESULTS

As an illustrative example, we consider the Continuous Stirred Tank Reactor (CSTR) bench-

mark system [24] given by,

ẋ1 =
1
β
(1− x1)− cx1e−

S
x2 ,

ẋ2 =
1
β
(xf − x2) + cx1e

− S
x2 − αu(x2 − xc),

(14)

where the states are product concentration x1 and the reactant coolant temperature x2. The

feasible state space is given by X = [0.0632, 0.4632] × [0.4519, 0.8519] and the coolant flow

input rate u is characterized as U = [−0.7853, 1.2147].
The system parameters considered are β = 20, c = 300, S = 5, xf = 0.3947, xc = 0.3816

and α = 0.117. The control objective is to take the system from a locally stable steady state

to a locally unstable steady state point, xref = [0.2632, 0.6519]⊤ which makes the problem

challenging. This control problem is solved using the formulation in (3). The initial conditions

for NMPC formulation are x0 = [0.9831, 0.3918]⊤ with a prediction horizon of T = 60 and

sampling time of t = 0.5s.
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Step I: Generating data for Neural Networks: We use grid-based sampling approach as seen

in [9]. An uniform grid of size (8 · 10−3) consisting of (1.6 · 105) data points is created out of

which around (1.4·105) data points were identified as feasible. Detailed procedure for generating

training data as required by the proposed method is given in Algorithm 1. NMPC problem P(x)
from (3) was solved for all xi ∈ X using CasADi v3.5.5 for Python [25].

Step II: Learning: For comparison, we train 3 different policies namely, (i) supervised learning

approach πapprox(xi; θ) in (5); (ii) log barrier penalty function for input and state constraints

π̂x(xi; θ) as in (12); (iii) the proposed method π̂λ(xi; θ) in (13).

For training of the above mentioned policies, a feedforward neural network consisting of

two hidden layers of 160 and 1560 neurons respectively were used. ReLU and linear activation

functions were used with Adam optimizer. The neural network architecture was implemented in

Keras v2.3.0 for Python with a learning rate of 1 · 10−3, batch size of 500 and 512 epochs. The

barrier parameters used in the cost function are µu = µu = 0.1, µx = µx = 0.1 and µλ = 0.01.

All the simulations in this paper including training of the policies, have been done on a

MacBook Pro with Intel Core i7, 2.6GHz processor and 16GB of memory. The time required

for training the policies is reported in Table. I. It is also observed that training time for the

proposed approach π̂λ(xi; θ) is only marginally increased.

TABLE I

COMPARISON OF TRAINING TIMES FOR VARIOUS POLICIES.

Policy πapprox(xi; θ) π̂x(xi; θ) π̂λ(xi; θ)

Time [s] 103.54 106.22 108.58

A. Result Analysis

We use the standard NMPC results as primary reference and compare with three approaches

described in Step II of Section IV. Figs. 2–4 show the experimental results of state evaluation

for x1, x2 and control input u for a benchmark CSTR problem.

The results in Fig. 2 show that, the most commonly used method of the control input generated

by the policy πapprox(xi; θ) results in violation of constraints imposed on the coolant flow rate

input. Secondly, we observed that the results denoted by π̂x(xi; θ), demonstrate how the inclusion

22



0 5 10 15 20 25 30 35

Time  t

-0.5

0

0.5

1

1.5

C
o

o
la

n
t 

F
lo

w
 R

at
e

 u

0 5 10 15 20 25 30 35

0.5

0.55

0.6

0.65

0.7
T

em
p

er
at

u
re

 x
2

0 5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

C
o

n
ce

n
tr

at
io

n

 x
1

15 20
1

1.2

1.4

Fig. 2. CSTR benchmark: Performance comparison of states x1, x2 and control input u using various approaches v.i.z traditional

supervised learning approach πapprox(xi; θ); penalty for input and state constraints π̂x(xi; θ) and the proposed method π̂λ(xi; θ).

of input and state constraint penalties as described in the loss function (12), are not sufficient

for constraints satisfaction. Though as a convention, adding saturation to the control input for

the policies πapprox(xi; θ) and π̂x(xi; θ) would satisfy the constraints on coolant flow rate input,

the control performance gets degraded as demonstrated in Fig. 3. Finally, the results of π̂λ(xi; θ)

are same in Fig. 2 and 3 for illustration purposes, which denotes performance of the proposed

method including the dual variables, characterized by (13). From Fig. 3, it can be concluded that

using π̂λ(xi; θ) there are no input constraint violation (without saturating the control input) and

it renders the best performance in terms of state evaluation against standard NMPC approach.

As observed in Fig. 4, the policies πapprox(xi; θ) and π̂x(xi; θ) violate the constraints for state

x2. Whereas using the proposed approach, state constraints are always ensured, even with a

different initial states as compared to the former figures, which is further illustrated in Fig. 5.

Fig 5 shows evolution of states x1 vs x2 inside the feasible region X considering different initial

states for the NMPC as well as the proposed policy π̂λ(xi; θ). For each of the initial conditions

considered, it can be observed that the proposed approach is able to mimic the NMPC trajectories

without any constraint violation.

23



Furthermore, the proposed method is evaluated for 5000 different trajectories. The resulting

values of key performance indices (KPIs) compared with standard NMPC and maximum state

constraint violations are reported in Table. II. The approximations rendered by the proposed

approach π̂λ(xi; θ), outperforms standard approach πapprox(xi; θ) as well as π̂x(xi; θ).

V. CONCLUSION

In this paper, we proposed simple yet effective approach for constraint handling for approxi-

mating nonlinear MPC problems using neural networks. The basic idea of including the domain

knowledge pertaining to the underlying nonlinear optimization problem while training the neural

network has been explored. Specifically, the intuitive insights of KKT conditions (primal and dual

feasibility) and log barrier methods are utilized to modify the loss function of the neural networks.

Thorough numerical simulations on a benchmark CSTR problem have demonstrated the ability

to explicitly handle constraints on both, input as well as states. The proposed framework rendered

improved performance in terms of input and state evaluation compared to the conventional neural
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Fig. 3. CSTR benchmark: Performance comparison for states x1, x2 and control input u using various approaches v.i.z traditional

supervised learning approach πapprox(xi; θ) with clipping of control input; penalty for input and state constraints π̂x(xi; θ) with
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Fig. 5. CSTR benchmark: Concentration (x1) vs. temperature (x2) for randomly initiated evolution of states using proposed

method against NMPC, black dashed line represents reference values.

network based method. This approach is not limited to NMPC but can be used to approximate

a wide range of constrained optimization problems.
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TABLE II

COMPARISON OF KPIS WITH NMPC FOR OVER 5000 TRAJECTORIES

KPI πapprox(xi; θ) π̂x(xi; θ) π̂λ(xi; θ)

Comparison for states

ISE 0.148 · 10−6 8.71 · 10−6 2.56 · 10−6

IAE 0.8857 0.5017 0.1528

ITSE 0.3821 0.2914 0.1566

Comparison for control input

ISCE 3.02 · 10−5 1.35 · 10−5 0.142 · 10−5

Maximum state constraint violation

4.4231 3.2783 0.7739
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3. Contributions

3.2 RTO-RLMPC for GasLift Optimization: Practical
Implementation

In this paper, we present the real-world implementation of the RTO-RLMPC (Real-
Time Optimization - Reinforcement Learning Model Predictive Control), a novel
approach presented in the context of gas lift optimization. Gas lift optimization
is a crucial process in various industrial applications, and this study demonstrates
the practical application of the RTO-RLMPC technique in this specific domain.
The paper provides insights into how the theoretical framework of RTO-RLMPC
translates into actual experimental settings, offering valuable information about
its feasibility, effectiveness, and performance in optimizing gas lift operations. By
showcasing the implementation on a real gas lift pilot plant, the paper bridges the
gap between theoretical concepts and practical applications, providing valuable
implications for the field of process optimization.

Abstract

In this section, we present a Reinforcement Learning (RL) based Economic Nonlin-
ear MPC (ENMPC) scheme to improve closed-loop performance of the controller
when using an inaccurate model of the system at hand. The proposed scheme uses
a comprehensive data-based tuning of the ENMPC scheme for the real system.
The tuning targets performance improvements both through the transients and at
steady-state. Moreover, we show how the Real Time Optimization (RTO) layer can
be harmoniously combined with the proposed tools to further assist the data-based
tuning of the optimal control policy. The method is validated on an experimental
rig that emulates a subsea oil-well network. We show that the proposed method can
tune the ENMPC scheme using offline measurement data from the real system. We
compare the performance of the proposed framework with a naive ENMPC scheme
and present the gains in terms of profit achieved.
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Data Driven Framework for Combining Real-Time

Optimization and Economic NMPC on an

Experimental Rig

Saket Adhau, José Matias, Sébastien Gros, Sigurd Skogestad

I. INTRODUCTION

In chemical plants, deciding the best operating strategy in terms of increasing profit or reducing

costs is a key way to respond to a competitive globalized market. However, defining this strategy

in face of frequent changing operating conditions, different feedstocks, variable constraints and

major changes in economics (such as product and feedstock prices) is challenging.

The conventional approach is to divide the decision-making process into successive layered

problems, as shown in Fig. 1. Each layer deals with a problem concerning different time scales

and scopes, such as daily scheduling decisions to avoid storage problems or local PID controllers

rejecting process disturbances in comparison to plant-wide feedstock purchasing decisions [1].

The translation of economic objectives into operational objectives is achieved through two

sequential layers: the real-time optimization (RTO) and the model predictive control (MPC) layer.

The former converts business decisions into setpoints for controlled and manipulated variables,

whereas the latter uses a multivariable linear dynamic model to provide real-time tracking of these

setpoints. Typically, the decisions of the RTO and MPC layers are defined by an optimization

problem. This hierarchical decomposition simplifies the design of the control system by making

it possible to use different models and objective functions in each layer. For example, the RTO

layer usually minimizes an economic cost function based on a physical nonlinear static model,
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Saket Adhau and Sigurd Skogestad are with the Department of Chemical Engineering from Norwegian University of Science
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Fig. 1. Typical plant decision hierarchy for optimal plant operating strategy. Adapted from [1]

and computes setpoints to the MPC layer. The MPC layer operates on an intermediate time

scale (minutes) and typically uses a dynamic linear model while minimizing a cost function that

involves setpoint deviations. The regulatory PID control layer, on the other hand, works on a

faster time scale (seconds) and deals with disturbance rejection and stabilization.

The main disadvantage of this approach arises when the assumption of time scale separation

does not hold. For instance, a batch process is never at a steady state, making it necessary to

include dynamics in the control layer. In other cases, it may be more beneficial to combine the

MPC and PID layers. In such situations, economic model predictive control (EMPC) becomes

an attractive solution, as it can combine all three layers.

Furthermore, the performance of model-based optimization tools such as RTO and ENMPC

heavily relies on the accuracy of the system model. Plant-model mismatch can cause the con-

troller to drive the system to a non-economical steady-state point. In the context of EMPC,

data-driven approaches can be employed to adapt the EMPC model and compensate for plant-

model mismatch and model uncertainties. However, it is important to note that the EMPC model

may not fully capture the behavior of the real system, and fitting the data to the model may not

necessarily lead to an optimal policy from the EMPC scheme.

Data-driven approaches can be an effective way to address plant-model mismatch and model

uncertainties in control systems. These approaches involve using data from the system to adapt

or refine the model used for control. The basic idea is to use the real-time data generated by the

system to update the control model so that it better matches the actual system behavior.

One specific technique that has been used conventionally to address these issues in RTO is
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Modifier Adaptation (MA), see [2]. This approach involves introducing modifier terms in the

objective function and constraints of the optimization problem to compensate for the model-plant

mismatch. MA has been shown to improve the performance of the optimization algorithm and

reduce the sensitivity to model uncertainties and disturbances.

In recent years, researcher have explored data-driven approaches for control systems, including

Reinforcement Learning (RL) based frameworks. In a series of papers, authors [3]–[5] have

proposed an approach where the ENMPC scheme can be viewed as a model for the solution

of the Markov Decision Process (MDP). This model consists of a policy, value function, and

action-value function. Specifically, the ENMPC scheme is used to approximate the MDP action-

value function, which is a departure from the classical use of Deep Neural Networks (DNN) in

RL.

In this work, we propose an integrated data-driven learning strategy that builds upon the works

of [3] and incorporates the concepts of RTO and Modifier Adaptation to enhance the performance

of the control system both in transient and steady-state. Our goal is to achieve optimal economic

performance in the presence of modeling errors and unforeseen disturbances.

The proposed framework consists of two main parts: (i) A parameterized RTO layer that uses

modifier terms in the steady-state model, stage cost, and constraints, and (ii) A parameterized

lower layer ENMPC scheme that uses modifier terms in the dynamic model, stage cost, terminal

cost, and constraints. The RTO layer provides optimal steady-state inputs that can be directly

incorporated into the lower layer ENMPC scheme as a terminal penalty. RL tools will seek to

adjust the parameters shared between both the layers, to improve the performance of the RTO

and the ENMPC scheme in synergy.

To evaluate the proposed approach, we implement three control strategies on an experimental

rig that emulates a sub-sea oil well network. The first is a naive ENMPC approach that uses a

nominal model, the second is an RL-MPC approach that uses a single parameterized ENMPC

scheme as shown in [3], and the third is the proposed approach consisting of RTO and ENMPC,

which we refer to as RTO-RLMPC. We compare the experimental results in terms of the overall

closed-loop performance of the control policy, and the results demonstrate the effectiveness of

the proposed approach in improving system performance.

The paper is organized as follows: Section II briefly introduces concepts from RTO, MA,

and machine learning in process control to handle plant-model mismatch. Introduction for

Reinforcement Learning in process control and fundamental results regarding RL-MPC have been
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presented in Section II. The proposed approach RTO-RLMPC has been presented in Sections IV.

Experimental implementation of the proposed approach and results are discussed in Sections V-

VI respectively. The paper concludes in Section VIII.

II. REINFORCEMENT LEARNING

Machine learning models and tools have been proposed in the literature as as a combat

method for plant-model mismatch. As previously mentioned, one potential cause of plant-

model mismatch is the need for a deep understanding of the system to obtain models based on

first-principle relationships. Conversely, machine learning-based models require only minimal

understanding of the inner workings of the system during their development. If the available

data of the system is rich enough, a proper representation of the system under investigation can

be obtained using a data-driven paradigm [6].

In the RL framework, an agent enacts a control policy and receives only partial information

about the effectiveness of its control strategy. One of the major challenges in RL is the develop-

ment of an action-value function Q, that describes the value or quality of being in a particular

state and making a particular control policy decision. Over time, the agent learns and refines

this Q function, improving its ability to make better decisions.

Recent studies have focused exclusively on using RL to address plant-model mismatch and

have used generic function approximators such as Deep Neural Networks (DNNs) for policy and

value function approximations, as in [7]–[10].

One of the keys to a successful implementation of RL in control problems is the selection

of an appropriate value function approximation. Using a generic function approximator for e.g.

conventional deep neural networks for the policy approximation limits the ability to formally

analyze and deliver certificates on the behavior of the generated optimal policy. The authors [3]

propose to use a parameterized ENMPC scheme instead of a conventional DNN for policy and

value function approximation in RL, so that the rich theory underlying ENMPC can be used to

deliver certificates on the behavior of the policy. In the following part, we briefly illustrate the

basic structure of RL.

A. Markov Decision Process

The framework of the Markov Decision Process (MDP) is not commonly used in the RTO

literature. The MDP is a mathematical framework used in reinforcement learning, where an
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agent makes decisions in an environment to maximize a reward, considering the current state

and possible actions.

In RL literature, it is common to use s ∈ Rnx and a ∈ Rnu for state-input pair. In this paper,

we use x, u to represent predicted states and inputs, whereas s, a are used for observed states

and applied actions to the true system. At each discrete time instant, a policy delivers an action

to be applied to the system based on the current system state, or recent past observations, i.e.

at time instant k, the action ak is provided by:

ak = π (sk) (1)

where sk is the current state of the system. Over the closed-loop trajectories of the system subject

to policy π, a stage cost

L (sk, ak) ∈ R (2)

is collected. The objective of solving the MDP is then to find the optimal policy π⋆ that minimizes

a cumulative cost:

π⋆ = argmin
π

E

[ ∞∑

k=0

γkL (sk, ak)

∣∣∣∣∣ ak = π (sk)

]
(3)

where the expected value is taken over the (possibly) stochastic closed-loop trajectories of the

system, and γ ∈ (0, 1] is a discount factor.

In that context, RL is a set of tools that allows one to find arbitrarily close approximations

of π⋆ without the need of building a model of the system at hand, using purely observations of

the state-input trajectories and the associated stage costs [11]. For example, RL can be used to

train unsupervised tasks such as autonomous driving [12], operations-research flavored optimal

control [13], and robotics [14], [15].

III. PLANT-MODEL MISMATCH IN RTO

In a typical RTO setup, process performance is optimized based on a steady-state rigorous

nonlinear model based on first-principles [1]. However, developing a detailed model requires a

thorough knowledge of the system, specially if the process has highly complex nonlinear behavior

and, as such, plant-model mismatch and model uncertainty is very likely to occur. Therefore,
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the performance of this model-based approach is highly dependent on the quality of the model

used. A typical formulation of an RTO problem reads as,

x,u = argmin
x,u

lp(x,u) (4a)

s.t x = f(x,u) (4b)

h(x,u) ≤ 0 (4c)

The most common approach to handle plant-model mismatch is to adapt the model parameters

so that the model outputs fit the available process measurements. Then, the adapted model is

used to compute the new optimal operating point. This approach, called two-step RTO or model

parameter adaptation (MPA) [16], [17], does not guarantee that the model will perform adequately

for use within a process optimization framework [18].

For instance, if the model structure matches the plant (i.e., there is only parametric plant-

model mismatch) and the parameters can be accurately estimated, the resulting RTO framework

is able to converge to the ”true” plant optimum. However, due to the complexity of large-scale

industrial processes, it is very difficult to know the true model structure, and cases with only

parametric plant-model mismatch are rare in practice [19]. In this case, the solution computed

by the RTO framework is likely to be suboptimal and may lead to constraint violations [20].

Since feasibility is a key aspect of any practical process optimization method, practitioners tend

to introduce back-offs from the constraints, which further decreases the RTO benefits [19].

Convergence of the two-step RTO under structural plant–model mismatch has been discussed

by, for example, [21]. Here, the authors proposed a point-wise model adequacy criterion for

the RTO model. The conditions assume stationarity of the model-based optimization gradient

and negative definiteness of the Hessian in the reduced space of the optimization problem.

Pragmatically, however, simply adapting the parameters of a ”simplified” model is very unlikely

to mitigate plant-model mismatch in rigorous mathematical terms [18], [19].

1) Modifier Adaptation (MA): Due to the limitations of the conventional two-step RTO

approach in handling structural plant-model mismatch, several variants have been proposed

in the literature. One such variant is Modifier Adaptation (MA) [2], which imposes stronger

mathematical requirements to guarantee optimality of process operation. With MA, the resulting

RTO framework is able to predict the optimality conditions of the plant optimization problem,

specifically the Karush-Kuhn-Tucker conditions, and steer the operation towards the true plant

optimum.
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To understand the concept of the classical MA framework, we first present the formulation of

the optimization problem. We assume that the plant can be represented by a steady-state map

yp(u,dp), in which u ∈ Rnu are the decision variables, dp ∈ Rnd the process disturbances, and

yp ∈ Rny the plant measurements. However, we only have access to an approximation of the

plant map y(u,θ), i.e. the process model parametrized by a set of parameters θ ∈ Rnθ . In the

traditional MPA formulation, we try to find the ”true” plant optimum at time k by solving:

min
u∈U

ϕ(u,y(u, θ̂k)) (5a)

s.t. g(u,y(u, θ̂k)) ≤ 0 (5b)

in which, U is a the input constraint set, ϕ : Rnu ×Rny → R is an economic cost function, and

g : Rnu × Rny → Rg are the system constraints. As discussed, only adapting θ may not suffice

to deal with plant-model mismatch, and the solution of the optimization problem in Eq.(5) may

not optimal (or even feasible) for the plant. Hence, in MA, instead of solely adapting the model

parameters to represent the current plant state, we add modifiers to the nominal process model

y(·,θnom) and solve the modified optimization problem:

min
u∈U

ϕ(u,y(u,θnom)) + λT
ϕ,k(u− uk) (6a)

s.t. g(u,y(u,θnom)) + ϵg,k + λT
g,k(u− uk) ≤ 0 (6b)

where, ϵg,k ∈ Rng are the zeroth-order modifiers and correspond to the difference between the

constraints measured in the plant and the process model predictions at time k:

ϵg,k = g(uk,yp(uk,dp,k))− g(uk,y(uk,θnom)) (7)

whereas the first-order modifiers represent the differences between the plant and model gradients

at time k:

(λT
ϕ,k) =

∂ϕ(u,yp)

∂u

∣∣∣∣
uk,dp,k

− ∂ϕ(u,y)

∂u

∣∣∣∣
uk,θnom

(8a)

(λT
g,k) =

∂g(u,yp)

∂u

∣∣∣∣
uk,dp,k

− ∂g(u,y)

∂u

∣∣∣∣
uk,θnom

(8b)

It has been shown that, under some mild assumptions regarding model y(·,θnom) adequacy,

the MA scheme is able to reach the “true” plant optimum by iteratively solving the problem

in Eq.(6), see [22] for details. However, the convergence to the true plant optimum may be

slow. For dealing with these issues, some authors (for instance, [23] and [24]) studied the effect
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of solving the MA optimization problem above while also updating the model parameters to

improve the performance of the iterative MA scheme, that is using θ̂k instead of θnom.

Apart from the rate of convergence, the practical implementation of MA can be challenging

since the computation of the first-order modifiers need plant gradients estimates, which may

require a series of time-consuming experimental measurements in order to evaluate them.

A. Integration of RTO and MPC

In the RTO approach, only steady-state optimization is taken into account. As shown in

Fig. 1, RTO systems send their optimal decisions to a lower level MPC, which is responsible for

setpoint control. This two-level implementation strategy presents numerous difficulties that limit

the achievable flexibility and overall economic benefit [25]. For instance, RTO strategies usually

use a nonlinear stationary system representation whereas MPC generally relies on linear dynamic

models. These two different model paradigms may present inconsistencies such as different

steady-state gains, which may affect the system abilities to handle unmeasured disturbances,

decreasing the stability of the RTO system [26].

To address this issue, a single-layer strategy combining RTO and MPC has been proposed.

Initial work in this field (e.g., [27]–[29]) focused primarily on solving the economic optimization

problem at the MPC level by considering an objective function that combines plant economics

and control tracking, balanced with appropriate weights. Here, the optimal steady-state conditions

of the plant are still computed using a rigorous nonlinear process model, while the trajectory to be

followed is predicted using a linear dynamic model. The biggest challenge of these preliminary

works was to provide a workable solution of the resulting control/optimization problem at each

sampling step.

In this paper, our focus is on utilizing an ENMPC scheme to handle transients. Addressing

model uncertainties and stochasticity within the ENMPC layer remains a less-explored area. We

aim to leverage recent theories that combine ENMPC and Reinforcement Learning to optimize

these transients in the ENMPC layer [3].f

1) Economic Nonlinear MPC: Recent advances in the development of efficient large-scale

NLP solvers [30] together with strategies for fast control move updates based on NLP sensitivity

information [31] and closed-loop stability and convergence theory [32] allowed the development

and deployment of economic nonlinear MPCs (ENMPC). The optimization problem associated

with ENMPC is generally designed based on a nonlinear dynamic model describing the plant,
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and the objective function could be based purely on economics [33], or a hybrid between cost

and control performance [34]. The ENMPC optimization problem can be formulated as:

min
u∈U

N−1∑

k=0

Φ (uk,yk) + V f (yN) (9a)

s.t.

xk+1 = F (xk,uk,θnom) k = 0, . . . N − 1 (9b)

yk = H (xk,uk,θnom) k = 0, . . . N − 1 (9c)

x0 = x(0) (9d)

G (uk,yk) ≤ 0, k = 0, . . . N − 1 (9e)

Gf(yN) ≤ 0 (9f)

where, x ∈ Rnx are the system states, F : Rnx × Rnu × Rnθ → Rnx and H : Rnx × Rnu ×
Rnθ → Rnx are the nonlinear dynamic model of the system. G : Rnu × Rny → Rng and

Φ : Rnu × Rny → R are the discrete-time version of the constraints and objective function. V f

and Gf are the terminal costs and constraints. N is the prediction horizon and x(0) is the states

at the current time.

Note that tracking the optimal steady set points (in an economical sense) and computing the

input trajectory as in Eq. (9) can lead to significantly differences operation strategies, even for

nominal cases [35]. To ensure that Economic NMPC converges to steady state, typically one has

to enforce terminal costs and constraints to the optimization problem above.

Nevertheless, enforcing convergence to a steady-state is not sufficient to handle plant-model

mismatch. Similarly to the steady-state case, the use of a fixed dynamic nominal model is

typically insufficient to drive the plant to optimality, even with more frequent feedback from the

plant to compensate for the model inaccuracies [36]. In order to deal with this issue, several

authors proposed blending ideas from Modifier Adaptation and Economic MPC (e.g., [37], [38],

and [39]). Unfortunately, the proposed frameworks still require estimation of plant gradients.

2) ENMPC as a Function Approximator: In this section we explain how to approximate

the optimal policy and value functions π⋆, V⋆, Q⋆ by adjusting the stage cost and constraints in

NMPC, even when using an incorrect model of the system.

We formulate the parameterized ENMPC scheme, which can be used as a function approx-

imator in RL. We consider the parameterization of the value function V⋆ using the following
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ENMPC scheme parameterized by θ,

Vθ(s) = min
u,x,σ

λθ(x0) + γN
(
V f
θ (xN ) + w⊤

f σN

)

+
N−1∑

k=0

γk
(
ℓθ(xk,uk) + w⊤σk

)
(10a)

s.t. xk+1 = fθ (xk,uk) , x0 = s, (10b)

g (uk) ≤ 0, (10c)

hθ (xk,uk) ≤ σk, hfθ(xN ) ≤ σN . (10d)

where ℓθ, V f
θ are the parameterized stage cost and terminal cost respectively whereas fθ, hθ

contain the model and constraint function parameterization. The extra cost λθ is to bridge the

gap between ENMPC stability theory and RL tools. For a detailed explanation on the function

of λθ, the reader is directed to [3, Section V]. The parameterized value function in (10) is a

classic ENMPC formulation if γ = 1 and λθ = 0, see [40].

Note that we will use x,u for the ENMPC predicted states in the rest of this paper. The slack

variables σk are used for constraint relaxation with w,wf being the weights for relaxation.

The parameterized ENMPC gives the policy,

πθ(s) = u⋆
0, (11)

where u⋆0 is the first element of the input sequence u⋆
0, . . . ,u

⋆
N−1 of the solution of (10) for a

given state s. The action-value function Qθ(s, a) is given as,

Qθ(s, a) = min
u,x

(10) (12a)

s.t. (10b)− (10d), (12b)

u0 = a. (12c)

The proposed parameterization satisfies the fundamental equalities underlying the Bellman equa-

tions [41]. More specifically, one can verify that the policy πθ(s), the value function Vθ(s) and

the action-value function Qθ(s, a) satisfy,

πθ(s) = argmin
a

Qθ(s, a), Vθ(s) = min
a

Qθ(s, a). (13)

The goal of RL is to find the parameters θ that maximizes the closed loop performance under

the policy πθ(s).
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IV. PROPOSED TWO-STEP ITERATIVE LEARNING

Using a parameterized ENMPC scheme with modifications in the stage cost, terminal cost

and constraints, in theory it is possible to generate an optimal policy for the incorrect model.

However, the ENMPC scheme proposed in [3] is focused on performance improvements during

transients and steady state is not considered. Therefore, the ENMPC may converge to a non-

economically steady-state point or to a different steady-state than desired at the same time [42].

In a conventional hierarchical control structure that combines an RTO with economic cost and

an MPC with tracking cost, the two layers, RTO and MPC are combined so that the upper layer

provides setpoints that are tracked by the lower layer MPC, see Fig. 2 [1], [43]–[45].

In order to achieve an offset-free MPC, we propose to include parameterized modifier terms in

the RTO layer such that the attained equilibrium is the true optimum for the plant. Additionally,

we also parameterize the lower layer economic MPC such that RL will attempt to tune the

parameters from the MPC layer as well as the RTO layer subsequently. The proposed RL learning

framework is able to compensate for unknown disturbances and reach the true optimum for the

plant.

To reduce the complexity of the proposed framework, one could argue that the optimal control

policy can be obtained by simply using a parameterized upper layer RTO instead of the economic

MPC and using a tracking MPC in the lower layer in a more traditional sense. Similarly one may

also argue that, instead of having an economic NMPC, a parameterized tracking formulation of

the MPC such as (10) can be used with appropriate modifications in a traditional setup of RTO

and MPC. In both cases, learning may introduce inconsistencies between the two simulation

models (RTO and MPC), and the complete structure may still suffer from poor closed loop

performance.
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Another naive approach would be to tune both the layers separately, i.e. generate an optimal

policy for the RTO scheme as well as another optimal policy for the tracking MPC using RL.

This approach would make the framework extremely complex and the time required to learn both

the policies would be substantial. Furthermore, the simulation models in RTO and the tracking

MPC would still be inconsistent and it would be difficult to track the setpoints even in the

absence of any kind of plant-model mismatch.

A. Parameterized RTO with Modifier terms

In this section, we explain the proposed method on the modifier-adaptation technique. For a

detailed discussion of modifier-adaptation, we refer the interested readers to [2], [22].

Consider a process described by a discrete-time nonlinear model,

xk+1 = fθ(xk,uk), (14a)

yk = h(xk,uk),

where uk ∈ Rnu denotes the decision variables; yk ∈ Rny are the measured output variables;

and xk ∈ Rnx are the states at time step k respectively. The model is parameterized by a set

of time-varying parameters represented by θ ∈ Rnm . The model equations are represented by

f : Rnx × Rnu × Rnm → Rnx and h : Rnx × Rnu → Rny .

We will now consider the parameterization of the steady-state optimization scheme parame-

terized by θ with some additional modifier terms as,

u⋆
k+1,y

⋆
k+1 =argmax

u
λθ(y) + Φ̄(y,u) + (λϕθ )

⊤
k (u− uk) (15a)

s.t. y = fθ(x,u), (15b)

u ≤ u ≤ u, (15c)

gθ(y,u) + (ϵgθ )k + (λgθ )
⊤
k (u− uk) ≤ 0, (15d)

where Φ̄ : Rnu ×Rny → R is the economic objective function, gθ : Rnu ×Rny → Rnc describes

the vector of parameterized non-linear constraints, the bounds on the input are denoted separately

in (15c). Note that Φ̄ and g are not directly dependent on the parameters θ, but implicitly via

the process outputs y governed by the model (14).

The first-order modifier terms (λϕθ )
⊤ and (λgθ )

⊤ and the zero-order correction term ϵgθ included

in the constraint function of the optimization problem to adjust the model cost and constraint
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Fig. 3. Schematic representation of the integration of reinforcement learning with real-time optimization and economic MPC.

functions due to the presence of uncertainty. Note that, if the cost and constraints are the known

functions of the inputs u, then the corresponding correction terms are zero, since no model

adaptation is required.

The above mentioned terms closely represent the correction terms used in conventional modi-

fier adaptation approaches, wherein the terms are evaluated using the plant gradient information

as described in [21], [46], [47]. The plant gradients ∂Φ̄p

∂u
uk and ∂gp

∂u
uk are assumed to be available

at uk where (·)p is used for variables associated with the plant. However, RL does not require

the plant gradient estimation to adjust these correction terms and can learn simply by observing

the transient input-output data.

At the kth RTO iteration, the next optimal inputs u⋆
k+1 are computed by solving (15) which

can directly enter (10) as a terminal penalty. While several formulations of the economic MPC

are possible, in this particular work, we use a terminal equality constraint to achieve asymptotic

stability, see [48].

B. Q−Learning for ENMPC

The classical Q− Learning is a simple yet powerful tool to adjust the parameters θ in the

parameterized ENMPC scheme (10). In its simplest form, Q− Learning minimizes the temporal-
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difference error,

τk = L(sk, ak) + γ Vθ(sk+1)−Qθ(sk, ak), (16a)

where,

L(sk, ak) = ℓθ(xk,uk) + w⊤max (0, hθ (xk,uk)) , (16b)

where uk is selected according to the NMPC policy πθ(s) and the parameter update reads as,

θ ← θ + ατk∇θQθ(xk,uk), (16c)

where α > 0 is the step size or the learning rate used commonly in stochastic gradient-based

approaches.

The evaluation of the gradient ∇θQθ requires one to compute the sensitivities of the action-

value function (12) and is briefly discussed in [3]. The RL parameters θ impact Qθ directly via

the ENMPC scheme and indirectly via the RTO scheme in (15), by modifying the optimal input

u⋆ which enters as a terminal constraint in the ENMPC scheme. The gradient ∇θQθ associated

to the proposed RTO-RLMPC scheme is given by the following total derivative:

∂Qθ

∂θ
=
∂Qθ

∂θ
+
∂Qθ

∂u⋆

∂u⋆

∂θ
(17)

In the next section, we briefly review on how to compute these sensitivities for (12) and (15).

C. Sensitivities for the RTO-RLMPC Scheme

To compute the sensitivities, we denote the Lagrange function associated with the ENMPC

Problem (12) and the RTO Problem (15) as Lθ and L⋄
θ respectively:

L = Φθ + λ⊤Hθ + µ⊤Gθ, (18a)

L⋄ = Φ̄θ + λ̄⊤H̄θ + µ̄⊤Ḡθ, (18b)

where Φ, Φ̄ are the cost of the ENMPC and RTO problems, and λ, λ̄ are the Lagrange multipliers

associated with the equality constraints Hθ, H̄θ. Variables µ, µ̄ are the Lagrange multipliers for the

inequality constraints Gθ, Ḡθ. Furthermore, we also introduce y = {p,λ,µ} and ȳ = {p̄, λ̄, µ̄}
as the vector of the primal-dual variable associated to the ENMPC and RTO problems, where

p, p̄ denote the vector of primal variables. The sensitivities of the ENMPC scheme can be

computed as described in [3] as,

∂Qθ

∂θ
=
∂Lθ(y

⋆)

∂θ
, (19)
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where y⋆ is the primal-dual solution vector of (12).

The sensitivity ∂u⋆

∂θ
associated to the RTO scheme in (15) can be obtained using the Implicit

Function Theorem (IFT) on the Karush Kuhn Tucker (KKT) conditions underlying the parametric

Nonlinear Parametric Programming (NLP). Assuming that the linear independence constraint

qualification (LICQ), second order sufficient condition (SOSC), and strict complementarity (SC)

hold at ȳ⋆ [49], then,

∂ȳ⋆

∂θ
= −∂Rθ

∂ȳ

−1∂Rθ

∂θ

∣∣∣∣∣
u⋆

, (20a)

where

Rθ =




∇p̄L̄θ

H̄θ

µ⋆⊤Ḡθ


 = 0, (20b)

are the KKT conditions associated to the parameterized RTO in (15). Since u⋆ is a part of ȳ⋆,

the sensitivity of the associated RTO problem ,∂u
⋆

∂θ
as required in (17) can be extracted from the

matrix ∂ȳ⋆

∂θ
.

V. CASE STUDY: SUBSEA OIL-WELL NETWORK

The goal of a subsea oil drilling network is to extract natural oil and gas trapped beneath the

geological structures of the seabed. This oil and gas can be extracted by drilling a network of

wells into the seafloor and transporting the extracted oil and gas to the seafloor through long

vertical pipes called risers. The pressure in the reservoir is usually sufficient to move the fluids to

the surface. However, if the pressure is not sufficient to lift the fluids to the surface, artificial gas

lift methods such as electric submersible pumps, subsea boosting stations, or gas lift methods

can be used. Gas lift is a commonly used method because of its robust design and relatively low

operating costs.

In a typical gas-lift approach, a specific compressed gas is injected into the bottom of the well

via the annulus to reduce fluid mixture density [50]. The gas injection leads to a decrease in

Hydrostatic pressure drop, increasing the flow from the reservoir. However, if too much of the

gas is injected, it will increase the frictional pressure drop, creating a negative effect on the flow

rate. At one point, this counter effect of the frictional pressure drop will dominate the effect of

the positive hydrostatic pressure drop, decreasing the flow from the reservoir [51]. Thus, there

is an optimal gas lift injection rate that corresponds to the maximum oil production. In addition,
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Fig. 4. Experimental schematic adapted from [52]. The input to the system is the gas injection flowrates (FI104, FI105, and

FI106) and the measurements are the well top pressures (PI101, PI102 and PI103), the pump outlet pressure (PI104), and

the liquid flowrates (FI101, FI102, and FI103). The reservoir valve openings (CV101, CV102, and CV103) act as system

disturbances.

the availability of lift gas may be limited by the gas processing capacity at the surface, and this

resource must be optimally distributed among the various wells.

Thus, the objective is to find the optimal gas lift injection rate for each well so that the total

oil production is maximized, taking into account gas availability constraints.

A. Experimental rig

To experimentally validate the proposed method, we use a laboratory scale experimental rig

emulating the subsea oil production network used in [52]. For simplicity, the experimental rig

uses air and water as a substitute for oil and gas. The choice of working fluids does not affect

the gas lift phenomenon. In addition, air and water have been used to replace oil and gas in

experimental oil rigs representing subsea oil wells, see e.g [53].

A simplified flowsheet of the rig is depicted in Fig. 4. The system consists of three sections:

a reservoir, wells, and the riser section.

The reservoir consists of a stainless steel tank with 200 L to replicate oil storage in subsea.

A centrifugal pump with a controller is also provided to regulate the pump rotation. The outlet

pressure (PI104) is kept constant at 0.3 bar for all experiments.. The setup contains three control
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valves (CV101, CV102, CV103) whose openings can be manipulated in order to represent

disturbances from reservoir, for instance to emulate pressure oscillations or reservoir depletion.

This reservoir setup will produce liquid and it’s output flow will range from 2 Lmin−1 to

15 Lmin−1. Three flow meters (FI101, FI102, FI103) are located just before the reservoir valves

to measure the outflow rates.

The second section consists of wells represented by three flexible hoses having inner diameter

of 2 cm and length of 1.5m. Air is injected into the wells approximately 10 cm just after the

reservoir valves, with the use of three air flow controllers (FIC104, FIC105, FIC106). The flow

controllers work within the range of 1 sL/min to 5 sL/min.

The riser consists of three vertical pipes having inner diameter 2 cm and 2.2m in length are

placed orthogonal to the wells. The pressure in the top is measured using the indicators (PI101,

PI102, PI103) followed by three manual valves. A detailed description of the experimental setup

can be found in [52].

B. Process Modeling and Model parameterization

The first step in designing a control problem using the proposed methods is to obtain steady-

state and dynamic models for the experimental rig. A detailed first principles model was designed

in [52].

The proposed methodology, in theory can adapt to structural mismatch given there are some

parameters which can be updated. The selection of adjustable parameters should be the ones

that can be updated such that the most significant process disturbance are reflected in the model.

Since the main disturbances in our experimental rig are associated with the reservoir valves

(CV101, CV102 and CV103), it is important to adjust parameters associated with the behavior

of these valves. We select the following adjustable parameters in the model,

θm = [θres,1, θres,2, θres,3, θtop,1, θtop,2, θtop,3]
⊤ , (21)

where θres,i is the reservoir valve constant and i = 1, 2, 3 denote the well number.

VI. EXPERIMENTAL SETUP

The objective of this paper is to capture the optimal policy π⋆ based on an inaccurate model

by observing the transient input-output data of the real system. We implement the proposed

learning framework for the experimental oil-rig setup. We also present some guidelines and

recommendations for the practical implementation of RTO-RLMPC.
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A. Dataset

Our experimental dataset is obtained by observing real system dynamics with a sampling time

of Ts = 10 s. The transient input-output dataset consists of 1.0 × 103 data points with each

episode of approximately 20min having about 1000 data points. The generation of the optimal

control policy is based on the closed-loop observation of the dynamics of the model and thus no

extra measurement of the real system is required. To improve the generalization across dynamic

modes, the data set was chosen such that it encompasses most of the dynamics and disturbances

of the real system.

B. Problem Formulation

The optimal operation of the experimental rig is achieved by maximizing the “oil” revenue,

while still considering for gas availability constraints and bounds on the gas lift flowrates. The

economic objective function J is chosen as [52]:

J = 20Ql,1 + 10Ql,2 + 30Ql,3 , (22)

where Ql are the liquid flowrates of wells 1, 2 and 3. For illustrative purposes, it has been assumed

that the three wells produce different valued hydrocarbons, reflected by different weights in the

cost function. The input vector is given by,

u =
[
Qgl,1 Qgl,2 Qgl,3

]⊤
, (23)

where Qgl are the injected gas flowrates of wells 1, 2 and 3 respectively. The constraint sets g in

(10) and g in (15) are composed by the gas lift injection Qg lower and upper bounds (Qg,min =

1 sL/min and Qg,max = 5 sL/min) and the gas availability constraints (Qg,1 + Qg,2 + Qg,3 ≤
7.5 sL/min). The initial value of the inputs is specified as Qg,1 = Qg,2 = Qg,3 = 2.5 sL/min.

C. Offline Learning

For comparison and analysis, we generate 2 different policies, (i) using the standard RLMPC

approach in (10) presented in [3]; (ii) using the proposed RTO-RLMPC approach. For learning

the policies, we use the discount factor γ = 0.99. To introduce a rich exploration, we perturb

the optimal feedback as follows,

a = sat(u⋆0 + e, ul, ub), e ∼ N (0, 0.1) (24)
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where sat(·, ul, ub) saturates the input between its lower and upper bounds. The learning con-

cludes when delta error τ in (16a) average outs to zero or max episodes are met. Since the

parameters θ are only locally valid, sometimes they may show aggressive behavior. In this case,

different step sizes α shall be used for different parameters or first order filters. The nominal

value of the step size was set to α = 10−4.

VII. RESULTS

In the previous section, we presented the procedure for learning the optimal policy using the

transient input-output data and RL. Before implementing the learned policies on the experimental

rig, we initially validated the controller using a high fidelity dynamic model developed in Matlab.

The reader is directed to our source code available on GitHub for detailed model source code

and parameters.1

We begin by implementing an ENMPC using a nominal model, followed by implementing

learned control policies RLMPC and RTO-RLMPC on the experimental rig. To compare the

performance of the proposed system, we perform experiments each of 20min. To simulate a

disturbance in the process, we vary the opening of valves CV101, CV102, and CV103. The pump

outlet pressure Ppump is kept constant. The disturbance scenario emulates declining production

of the oil wells over time. The bottom-most pane of Fig. 5 depicts the designed disturbance

scenario.

The top 3 panes in Fig. 5 shows the profile of manipulated variable Qgl. At the beginning

of the experiment i.e. from t = 0min to t = 6min, well 3 is prioritized (evident by sudden

increase in gas lift flowrate) over well 1 due to larger weight on J . The gas injection in well

2 is kept minimum (Qg,min = 1 sL/min) due to lower values both in terms of valve opening

(CV102) and weights on J .

In the next time segment t = 6min to t = 14min, the opening of the valve CV101 is

gradually decreasing, involuntarily making the vale opening CV103 > CV101, which in turn

further increasing the gas injection in well 3 and decreasing in well 1. At the end, the gas

injection in well 2 starts to rise as both the valve openings CV101, CV103 < CV102, but still

with Qg,3 > Qg,1 > Qg,2.

The profiles in Fig. 5 confirm that all the methods ,v.i.z. naive ENMPC, RLMPC, RTO-RLMPC

follow the expected behavior. RTO-RLMPC, however, is able to capture more dynamics and is

1https://github.com/Process-Optimization-and-Control/ProductionOptRig
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more responsive to changes in disturbances. We also note that RLMPC is slower to adapt the

inputs in the face of disturbances as compared to ENMPC, which could be due to the RL

parameters θ not being properly tuned.

Fig. 7 shows the constraint satisfaction (Qg,1 + Qg,2 + Qg,3 ≤ 7.5 sL/min) for all the three

methods. In general, due to process and measurement noise, the actual system is noisy. In such

a noisy environment, tightly controlling the hard constraints is a challenging task. RTO-RLMPC

is still able to improve the plant performance without any significant constraint violations.

Comparison of the optimal cost: Fig. 6 shows the comparison of the profit obtained using RL

with the naive ENMPC approach. We use a 60 s moving average for smoothing the profiles to

reduce the noise and jitters in the measurements. As expected, RLMPC and RTO-RLMPC have a

better performance in terms of cost than the naive ENMPC. We also compute the total difference.

We observed that RLMPC and RTO-RLMPC increased the obtained profit by approximately

4.73% and 8.60% respectively when compared with ENMPC.

These studies may not fully capture the scale, complexity, and real-world variabilities present

in industrial processes. The equipment and instrumentation used in experimental setups are

typically smaller in scale and less sophisticated than those found in industrial settings, where

large-scale and complex processes require advanced instrumentation and control strategies. Ex-

perimental studies may overlook external environmental factors, while industrial process control

must consider the impact of weather, temperature variations, and other environmental conditions.

Additionally, safety considerations in experimental studies may be less stringent compared

to the strict adherence to safety regulations and standards in industrial settings. Long-term

stability, integration with legacy systems, and optimization considering economic and operational

constraints are crucial aspects that experimental studies may not fully address. Bridging these

gaps is essential for researchers and practitioners to ensure the successful implementation of

process control in real industrial environments, considering the complexities and challenges

unique to large-scale, dynamic, and unpredictable industrial systems.

VIII. CONCLUSION

In this paper, we have explored the combination of RTO and economic NMPC in the context

of RL. We proposed a framework to merge concepts from modifier adaptation and show that the

combined RTO and ENMPC scheme can generate an optimal policy for the real system, even

if the underlying model is inaccurate, with modifications in stage cost and constraint function.
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Fig. 5. Gas lift flowrate Qg in each well for Economic MPC, RLMPC and RTO-RLMPC. Disturbance profile used for simulation

is shown in the bottom most pane which depicts declining oil production in wells 1 and 3.

Specifically, we propose to combine two main elements: a tailored formulation of RTO consisting

of modifier terms, and a parameterized ENMPC scheme to be solved at each NMPC iteration.

We suggest using modifier terms in the RTO scheme to reach the true optimum, providing

optimal solution which can be directly given as a terminal penalty in the lower layer ENMPC.

Our approach eliminates the crucial element of steady-state plant gradient estimation in MA.

The main contribution of this paper also regards to the experimental validation of the proposed

method, motivating the use of RL for potential implementation in industries. Our paper confirmed

the previous in-silico findings, experimentally showing that the RL-MPC proposed in [3] is able to

49



0 5 10 15 20

280

307

333

360

387

413

440

467

493

520

ENMPC RLMPC RTO-RL-MPC

Fig. 6. Comparison of average profit from the experimental rig using various approaches v.i.z. ENMPC, RLMPC, RTO-RLMPC.

0 5 10 15 20

7

7.2

7.4

7.6

7.8

8

Fig. 7. Constraint satisfaction: Qg,1+Qg,2+Qg,3 ≤ 7.5 sL/min for ENMPC, RLMPC and RTO-RLMPC from the experimental

rig

improve the closed loop performance in-spite of having plant-model mismatch. We also validated

the ability of the proposed approach on an experimental rig, to converge to the true optimum

with an improved performance of over 8.60% as compared to the standard ENMPC when using

a nominal model.
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[11] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement learning for control: Performance, stability,

and deep approximators,” Annual Reviews in Control, vol. 46, pp. 8–28, 2018.

[12] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake, “Scalable end-to-end autonomous vehicle testing via

rare-event simulation,” Proceedings of the 32nd International Conference on Neural Information Processing Systems, p.

9849–9860, 2018.

[13] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an overview,” Proceedings of 1995 34th IEEE

Conference on Decision and Control, vol. 1, pp. 560–564, 1995.

[14] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for robotics,” Foundations and Trends in Robotics,

vol. 2, pp. 388–403, 2013.

[15] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The International Journal of Robotics

Research, vol. 32, pp. 1238–1274, 2013.

[16] C. Y. Chen and B. Joseph, “On-line optimization using a two-phase approach: An application study,” Industrial &

engineering chemistry research, vol. 26, pp. 1924–1930, 1987.

[17] S.-S. Jang, B. Joseph, and H. Mukai, “On-line optimization of constrained multivariable chemical processes,” AIChE

Journal, vol. 33, pp. 26–35, 1987.

[18] B. Chachuat, B. Srinivasan, and D. Bonvin, “Adaptation strategies for real-time optimization,” Computers & Chemical

Engineering, vol. 33, pp. 1557–1567, 2009.

[19] A. D. Quelhas, N. J. C. de Jesus, and J. C. Pinto, “Common vulnerabilities of RTO implementations in real chemical

processes,” The Canadian Journal of Chemical Engineering, vol. 91, pp. 652–668, 2013.

[20] H. Yoo, H. E. Byun, D. Han, and J. H. Lee, “Reinforcement learning for batch process control: Review and perspectives,”

Annual Reviews in Control, vol. 52, pp. 108–119, 2021.

[21] J. F. Forbes and T. E. Marlin, “Model accuracy for economic optimizing controllers: The bias update case,” Industrial &

Engineering Chemistry Research, vol. 33, pp. 1919–1929, 1994.

[22] A. G. Marchetti, G. François, T. Faulwasser, and D. Bonvin, “Modifier adaptation for real-time optimization—methods

and applications,” Processes, vol. 4, p. 55, 2016.

51



[23] A. Ahmad, W. Gao, and S. Engell, “A study of model adaptation in iterative real-time optimization of processes with

uncertainties,” Computers & Chemical Engineering, vol. 122, pp. 218–227, 2019.
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3. Contributions

3.3 NLP Sensitivites for FAST RLMPC

This section proposes a comprehensive approach to improve the computational effi-
ciency of Reinforcement Learning (RL) based Model Predictive Controller (MPC).
Although MPC will ensure controller safety and RL can generate optimal control
policies, combining the two requires substantial time and computational effort, par-
ticularly for larger data sets. In a typical RL-based MPC and Q learning workflow,
two not-so-different MPC problems must be evaluated at each RL iteration, i.e.
one for the action-value and one for the value function, which is time-consuming
and prohibitively expensive in terms of computations. We employ nonlinear pro-
gramming (NLP) sensitivities to approximate the action-value function using the
optimal solution from the value function, reducing computational time. The pro-
posed approach can achieve comparable performance to the conventional method
but with significantly lower computational time. We demonstrate the proposed
approach on two examples: Linear Quadratic Regulator (LQR) problem and Con-
tinuously Stirred Tank Reactor (CSTR).

54
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using NLP-Sensitivities
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I. INTRODUCTION

Model predictive control (MPC) has been widely used for the control of dynamic systems due

to its ability to optimize future control actions based on a mathematical model of the system

[1]. However, uncertainties in model parameters, measurement errors, stochasticity, unmodeled

dynamics, and incomplete knowledge of the system can introduce errors, leading to suboptimal

control performance. To address these challenges, researchers have proposed combining data-

driven and model-based control. In particular, [2], proposed an approach that leverages data-

driven techniques to enhance the performance of MPC in complex systems with nonlinear

dynamics and uncertainties, without relying solely on a precise mathematical model of the

system. This approach will hereafter be termed as RL based MPC or simply RL-MPC.

The approach proposed by [2] can achieve good control performance for complex systems

with uncertain and nonlinear dynamics, but it is often computationally inefficient due to the

iterative nature of updating the policy parameters. In their approach, an MPC scheme is used

to support the parametrization to approximate the action-value function, which requires iterative

updates of the policy parameters to converge to an optimal solution. This iterative process can be

time-consuming and computationally expensive, especially for systems with high-dimensional

state and action spaces. The usual workflow in this approach is to evaluate two optimal control

problems (OCP) in a single RL iteration, as both the value function and action-value function
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are parameterized using an MPC scheme. As a result, this increases the computational burden,

making the approach less efficient for real-time control applications. Additionally, RL algorithms

require large amounts of data to train to an acceptable level of performance, further increasing

the computational cost.

To mitigate these challenges, we propose a method to reduce the computational burden

by approximating the action-value function using nonlinear programming (NLP) sensitivities

derived from the optimal solution of the value function. By exploiting these sensitivities, we

only need to evaluate one optimal control problem (OCP) in a single RL iteration, instead of

two, resulting in a significant reduction of computational effort and time without compromising

control performance. This approach is particularly well-suited for complex real-time control

applications. We demonstrate our approach on two benchmark methods commonly used in the

field of control engineering. We show that even using NLP sensitivities for action-value function

approximation can provide comparable control performance to traditional RL methods. This

highlights the potential of our method to improve the computational efficiency of RL-based

control strategies.

The paper is organized as follows: In Section II, we provide a brief overview of parametric

nonlinear programming and sensitivity analysis. Section III introduces background on RL-based

MPC. The proposed approach for approximating the OCP associated with the action-value

function is presented in Section IV, followed by implementations and numerical examples in

Section V. Finally, in Section VI, we conclude the paper.

II. NLP SENSITIVITIES

Nonlinear model predictive control (NMPC) is a widely used control technique in various

fields due to its ability to handle nonlinear and non-convex systems. However, it is also known

to pose significant computational challenges due to the need to solve a sequence of online

optimization problems repeatedly. Additionally, the presence of constraints and nonlinearities

can further exacerbate these challenges [3]. To tackle this problem, various real-time NMPC

strategies have been proposed, including explicit MPC for e.g. [4], neighboring extremals for

e.g. [5], Newton-type controllers for e.g. [6], and controllers based on NLP sensitivities for e.g.

[7], [8].

The authors [8] and [9] suggest the use of NLP sensitivities to predict the future state of

the plant based on the current control action. This allows for the approximation of the future
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optimal control problem (OCP) in advance and was later used to solve MPC problems with an

economic objective function by [10]. Alternatively, the real-time iteration scheme proposed by

[5] approximates the next control law by solving a few quadratic programming (QP) problems,

which are considerably faster to evaluate. This real-time iteration (RTI) scheme was also adapted

as a function approximator for RL by [11]. This integration of RTI scheme has enabled the

implementation of the approach proposed in [2] to a wide range of real-time systems. In the

upcoming section, we will delve into a concise explanation of the theory behind NLP sensitivities.

A. Parametric Nonlinear Optimization Problem

Parametric NLP involves solving a nonlinear optimization problem where the objective func-

tion and constraints depend on a set of parameters. In this context, we consider a general

parametric NLP with both equality and inequality constraints, which can be written as:

P(p) = min
w

F (w, p), (1a)

s.t. ci(w, p) = 0, ∀i ∈ E , (1b)

gi(w, p) ≤ 0, ∀i ∈ I, (1c)

where the decision variables are denoted by w ∈ Rnw and the parameter vector by p ∈ Rnp .

Further, F : Rnw × Rnp → R is the scalar cost, I denotes the set of indices of inequality

constraints, and E denotes the set of indices of equality constraints.

The Lagrangian function L for the problem P(p) is given by:

L(w,λ,µ, p) := F (w, p) + λ⊤c(w, p) + µ⊤g(w, p), (2)

where λ and µ are the Lagrangian multipliers corresponding to the respective equality and

inequality constraints. Suppose that F (·, ·), and g(·, ·) are continuously differentiable and w⋆ is

a local optimizer. If the linear independence constraint qualification (LICQ) condition holds at

w⋆, then the first-order optimality or Karush-Kuhn-Tucker (KKT) conditions for P(p) are given
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by

∇wL(w⋆,λ⋆,µ⋆, p) = 0, (3a)

ci(w
⋆, p) = 0, ∀i ∈ E , (3b)

gi(w
⋆, p) ≤ 0, ∀i ∈ I, (3c)

µ⋆
i ≥ 0, ∀i ∈ I, (3d)

µ⋆
i gi(w

⋆, p) = 0, ∀i ∈ I. (3e)

A point z⋆(p) := [w⋆,λ⋆,µ⋆] of primal-dual variables satisfying the KKT conditions (3) for

a given initial parameter p, is called a KKT point for p. If the parameter p is clear from the

context, we simply write z⋆ instead of z⋆(p0).

The set of indices of active constraints is denoted by IA, and is defined as IA = {i ∈
I : gi(w

⋆) = 0} ∪ E . However, for a local minimizer of (1) to be a KKT point, a constraint

qualification is required [12]. Specifically, the LICQ condition must hold at w, which means

that the vectors {∇gi(w)}i∈IA are linearly independent. Moreover, the strict complementarity

condition holds if µi > 0 for all i ∈ IA.

This set of KKT conditions is typically expressed as a system of nonlinear equations and

inequalities in the primal and dual variables, and is used to solve parametric NLP problems

numerically, using optimization algorithms such as sequential quadratic programming (SQP)

and interior point methods.

φ(z⋆(p), p) =




∇wL(z⋆(p), p)

c(w⋆, p)

µ⋆⊤g(w⋆, p)


 = 0. (4)

Theorem 1: Let F (·, ·), c(·, ·) and g(·, ·) of the parametric NLP problem P(p) be twice

continuous differentiable in a neighborhood of the KKT point z⋆(p0). Further, assume strict

complementarity (SC), linear independence constraint qualification (LICQ), and second order

sufficient condition (SOSC) hold for the solution vector z⋆(p0). Then,

• z⋆(p0) is an isolated local minimizer of P(p0) and the associated Lagrangian multipliers

λ⋆ are unique.

• For parametric perturbations ∆p in the neighborhood of p0, there exits a unique, continuous

and differentiable vector function z⋆(p0 +∆p) which is a local minimizer satisfying SOSC

and LICQ for P(p0 +∆p).
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• For parametric perturbations ∆p in the neighborhood of p0, the set of active constraints

remain unchanged.

See [13].

The above results allow us to apply the implicit function theorem to (4) at z⋆(p0), such that:

∂

∂p
φ(z⋆(p), p)

∣∣∣∣∣
p=p0

=
∂φ

∂z

∂z⋆

∂p
+
∂φ

∂p
= 0 . (5)

Since the nominal solution satisfies both the SOSC and LICQ conditions, the KKT matrix (4)

at the KKT point z⋆(p0) is non-singular [12], and hence, can be used to calculate the sensitivity

matrix from (5). The first-order estimates of the solution for neighboring problems can then be

obtained as:

z̃(p) ≈ z⋆(p0) +
∂z⋆(p0)

∂p
∆p , (6)

where z̃(p) is the approximate primal-dual solution of the optimization problem P(p0+∆p). This

is a computationally efficient approach, as the cost of solving this linear system is typically much

lower than that of solving P(p0 +∆p) through a conventional optimization routine, especially

when the number of decision variables is large, provided the solution z⋆(p0) is available. This

makes sensitivity analysis a powerful tool in optimizing and controlling complex systems.

Similarly, the first order Taylor expansion of the optimal cost for the problem P(p0 + ∆p)

can be expressed as

F (z(p)) ≈ F (z⋆(p0)) +
∂F (z⋆(p0))

∂p
∆p , (7)

where the first order sensitivity derivative of the objective function is given by [7]

∂

∂p
F (z⋆(p), p)

∣∣∣∣∣
p=p0

=
∂

∂p
L(z⋆(p0)), (8)

and the second order Taylor expansion of the optimal cost is given as

F (z(p)) ≈ F (z⋆(p0)) +
∂F (z⋆(p0))

∂p
∆p

+
1

2
(∆p)⊤

∂2F (z⋆(p0))

∂p2
∆p. (9)
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III. REINFORCEMENT LEARNING BACKGROUND

Consider a real system having state transition dynamics described by a Markov Process (MP)

with state s and action a and a state transition s,a→ s+ described by a probability density

P[s+|s,a] . (10)

To model the system as a Markov Decision Process (MDP), we augment this model with a stage

cost function ℓ(s,a) and a discount factor 0 ≤ γ ≤ 1.

Let us consider a deterministic policy that delivers the control action a = π(s), giving a

Markov Chain distribution τπ. The ultimate goal of RL is to find the best policy π⋆ by evaluating

the cumulative cost of the policy π, i.e. by solving,

π⋆ := argmin
π
J(π) := Eτπ

[ ∞∑

k=0

γkℓ (sk, π(sk))

]
. (11)

The optimal action-value function Q⋆, value function V ⋆, and optimal policy π⋆(s) associated

to the MDP, are defined by the Bellman equations [14]:

Q⋆ (s,a) = ℓ (s,a) + γE [V ⋆(s+) | s,a] , (12a)

V ⋆ (s) = Q⋆ (s, π⋆ (s)) = min
a

Q⋆ (s,a) . (12b)

Various RL methods have been proposed in the literature to generate the optimal policy π⋆.

However, in this paper, we will be specifically focusing on the classical Q−-learning algorithm.

A. ENMPC as a Function Approximator

The use of an ENMPC scheme as a generic function approximator for RL has been proposed

by [2]. The authors, have demonstrated that an ENMPC scheme can support the parametrization

of the action-value function Qθ, Vθ and the policy πθ. The central result is that with some

modifications in the stage cost, terminal cost, and constraints, ENMPC scheme can deliver

optimal control policy even when the model underlying the MPC scheme is incorrect. We briefly

summarize the main results of [2] in the following.
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Let us use a parameter vector θ and consider the following parametrization of an ENMPC

scheme to approximate the value function:

Vθ(s) = min
x,u

λθ(x0) + γNV f
θ (xN) +

N−1∑

k=0

γkℓθ(xk,uk) (13a)

s.t. x0 = s, (13b)

xk+1 = f θ(xk,uk), (13c)

g(uk) ≤ 0, (13d)

hθ(xk,uk) ≤ 0, hf
θ(xN) ≤ 0, (13e)

where the stage and terminal cost ℓθ, V f
θ , the system dynamics f θ and the constraints hθ,h

f
θ and

the storage cost λθ are parametric functions of θ. To ensure feasibility of (13), [2] propose to

use an exact relaxation of the state-dependent constraints. We define the policy

πθ(s) = u⋆
, , (14)

where u⋆
0 is the first element of the optimal input sequence u⋆

0, . . . ,u
⋆
N−1 solution of (13) for a

given state s. Further, we define the action-value function Qθ(s,a) as

Qθ(s,a) = min
u,x

(13a), (15a)

s.t. (13b)− (13e), (15b)

u0 = a, (15c)

Note that the two problems i.e. (13) and (15) differ only with an additional constraint u0 = a in

(15). The proposed parametrization satisfies the fundamental equalities underlying the bellman

equations, i.e.,

πθ(s) = argmin
a

Qθ(s,a), Vθ(s) = min
a

Qθ(s,a). (16)

Additionally, the Lagrange function underlying the parameterized ENMPC scheme in (15) is

given as:

Lθ(y) =λθ(x0) + γNV f
θ (xN) + χ⊤

0 (x0 − s) + µ⊤
Nh

f
θ (xN)

+
N−1∑

k=0

χ⊤
k+1 (f θ(xk,uk)− xk+1) + ν⊤

k gθ(uk)

+ γkℓθ(xk,uk) + µ⊤
k hθ(xk,uk) + ζ⊤(u0 − a), (17)
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where χ,µ,ν, ζ are the multipliers associated to the constraints (15b)-(15c), and y = (x,u,χ,µ,ν, ζ)

are the primal-dual variables associated to (15). Note that for ζ = 0, Lθ(y) is the Lagrange

function associated to the problem (13), or Vθ(s). Using the results in (8), we observe that,

∂

∂θ
Vθ(s) =

∂

∂θ
Lθ(y

⋄), (18)

where y⋄ is the primal-dual solution of (13).

B. Q−Learning for ENMPC

In Q−learning, the action-value function is parameterized as Qθ(s,a), where θ is a vector

of parameters. The classical Q−learning algorithm updates these parameters based on temporal

differences, with instantaneous policy updates.

δk = ℓ(sk,ak) + γmin
ak+1

Qθ (sk+1,ak+1)−Qθ (sk,ak) , (19a)

θ ← θ + αδk∇θQθ (sk,ak) , (19b)

where the scalar α > 0 is the learning rate.

IV. SENSITIVITY ANALYSIS

To use ENMPC as a function approximator in RL using the Q−learning method, one needs

to evaluate Qθ(s,a), Vθ(s) in (19a) and its parametric sensitivities, i.e ∇θQθ in (19b). The

terms Qθ(s,a), Vθ(s) are conventionally obtained by evaluation of two parametric nonlinear

programming problems, i.e. (13), and (15), of which, both need to be solved at each iteration.

The evaluation of these two NLP problems can be computationally demanding and on a closer

observation, (13) and (15) differ only with a single constraint, i.e. u0 = a. Hence, Qθ(s,a) can

be approximated with the help of parametric NLP sensitivities using the optimal solution from

(13). Approximation of Qθ(s,a) from the optimal value function Vθ(s), avoiding the evaluation

of one extra NLP, and reducing the computational time required for a single RL iteration.

A. Approximation of Qθ(s,a) and ∇θQθ using NLP Sensitivities

In this section, we detail on how to approximate the action-value function Qθ(s,a) and its

gradient ∇θQθ from the optimal solution of (13) using the results presented in Section II-A.
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More specifically, we propose to solve problem (13) to full convergence and avoid solving (15).

Using (9), the second order Taylor expansion of the optimal value function can be written as

Qθ(s,a) ≈ Vθ(s) +
∂Qθ(s,a)

∂a
∆a

∣∣∣∣∣
a=πθ(s)

+
1

2
(∆a)⊤

∂2Qθ(s,a)

∂a2
∆a

∣∣∣∣∣
a=πθ(s)

, (20)

where ∆a = a− πθ(s) and πθ(s) is the policy (14). Note that the first order Taylor expansion

cannot be used because the term,

∂Qθ(s,a)

∂a

∣∣∣∣∣
a=πθ(s)

=
∂

∂a
Lθ(y

⋆) = 0, (21)

where Lθ(y
⋆) and y⋆ are associated to the problem (15).

Next, we detail on how to approximate the gradient of Qθ(s,a) as required in (19b) using

Taylor expansion:

∂

∂θ
Qθ(s,a) ≈

∂

∂θ
Vθ(s) +

∂2Qθ(s,a)

∂θ∂a
(a− π(s))

∣∣∣∣∣
π(s)

, (22)

where,

∂2Qθ(s,a)

∂θ∂a
=

d

dθ

∂Qθ(s,a)

∂a
=

d

dθ

∂Lθ(y
⋆)

∂a

=
∂2Lθ(y

⋆)

∂θ∂a
+
∂2Lθ(y

⋆)

∂a∂y

∂y

∂θ
. (23)

V. SIMULATIONS

In this section, we demontsrate the capabilities of our proposed method by applying it to two

benchmark problems. We apply the approach to a simple LQR case study and an example from

the process industry, namely continuously stirred tank reactor (CSTR). These simulations serve

to illustrate the potential of our approach for practical applications in economic MPC.

A. LQR case

Consider the trivial linear dynamics and quadratic stage cost of a regulator LQR problem.

sk+1 = 2sk − ak, L(s, a) = s2 + a2 + 4sa ≱ 0 (24)
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The optimal steady-state, denoted as (ss, as) = (0, 0), can be easily calculated for the given

linear dynamics and quadratic stage cost. Using the Riccati equation, the exact optimal value

function and policy can be given as:

V ∗(s) = 11.7446s2, π⋆(s) = 1.6861s

The parameterized stage cost ℓ̂θ, the terminal cost Tθ and the storage function λθ are selected

as

λθ(s) = θ1s
2, Tθ(s) = θ2s

2, (25a)

ℓ̂θ(s) =


s
a




⊤ 
θ3 θ4

θ5 θ6




s
a


 , (25b)

where the vector of parameters θ = θ1, . . . , θ6 can be adjusted using Q−learning. We initialize

these parameters as θ0 = [0.1, 1, 1, 0, 0, 0]⊤. For our simulations, we set the prediction horizon

to N = 5, learning rate to α = 5e−3 and the discount factor to γ = 1.

The iterative updates of the parameters θ using Q−learning are compared between two

methods: solving Qθ(s,a) to full convergence and approximating it using NLP sensitivities,

as shown in Fig.1. The results indicate that the update steps are similar for both methods.

Furthermore, Fig.2 demonstrates that Q−learning can capture the optimal value function even

when Qθ(s,a) and ∇θQθ(s,a) are approximated using NLP sensitivities.
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Fig. 1. Comparison of the iterative update of parameter vector θ using Q−learning when the action-value function Qθ(s,a) is

solved until full convergence vs. when it is approximated using NLP sensitivities. The plots show the progress of the parameter

updates over time for both methods. Note that the scales are different.
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B. CSTR Case Study

We demonstrate the proposed method using the isothermal Van de Vusse reaction in a contin-

uous stirred tank reactor as an illustrative example [15], [16]. This model includes both material

and enthalpy balances, and is described by the following equations:

˙cA = rA(cA, T ) + [cin − cA]u1 (26a)

˙cB = rB(cA, cB, T )− cBu1, (26b)

Ṫ = h(cA, cB, T ) + φ[Tc − T ] + [Tin − T ]u1, (26c)

Ṫc = β[T − Tc] + ςu2, (26d)

with cA(t), cB(t) the concentrations of A and B respectively, T (t) and Tc(t) the temperatures

in the reactor and in the cooling jacket. The reaction rates rA and rB, and the reaction enthalpy

contribution h are described by

rA(cA, T ) =− k1(T )cA − k2(T )c2A, (27)

rB(cA, cB, T ) = k1(T )[cA − cB], (28)

h(cA, cB, T ) =− ϑ[k1(T )[cA∆HAB + cB∆HBC ]

+ k2(T )c
2
A∆HAD] , (29)

with the functions k1(T ) and k2(T ) of the Arrhenius type:

ki(T ) = ki0 exp

( −Ei

T + 273.15

)
, i = 1, 2. (30)
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Fig. 2. Convergence of the approximated value function to the optimal V ⋆ using the proposed approach..
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The above mentioned concentrations and temperatures constitute the state x = [cA, cB, T, Tc]

with dynamics given by (26a)–(26d). The control inputs u = [u1, u2] are normalized input flow

rate u1(t) > 0 through the reactor and the cooling power u2(t) < 0 applied in the cooling jacket.

The model parameters are summarized in Table I.

TABLE I

MODEL PARAMETERS AND THE CONSIDERED SETPOINTS OF THE CSTR SYSTEM [15].

φ = 30.8285 h−1 β = 86.688 h−1

ϑ = 3.556× 10−4 m3K/kJ ς = 0.1KkJ−1

k10 = (1.287)× 1012 h−1 E1 = 9758.3

k20 = (9.043)× 106 m3/mol h E2 = 8560

∆HAB = 4.2 kJmol−1

∆HBC = −11 kJmol−1

∆HAD = −41.85 kJmol−1

cin = 5100± 600mol/m3 Tin = 104.9K−1

cA0 = 3517.5mol/m3 cB0 = 740mol/m3

T0 = 87K Tc0 = 79.8K

We consider the problem of maximizing the production rate of cB:

F = −cBu1, (31)

and the ENMPC scheme is designed as depicted in (13), with N = 12min and sampling time

of Ts = 6 s,

min
x,u

λθ(x0) + γNV f
θ (xN + ω⊤σf) (32a)

+
N−1∑

k=0

γk
(
F (xk, uk) + ω⊤σk

)
(32b)

s.t. xk+1 = fθ(xk, uk), x0 = s, (32c)

g(uk) ≤ 0, hθ(xk) ≤ σk. (32d)

In this work, for formulating the MPC problem, we use CasADi [17] with IPOPT as the

Nonlinear Programming (NLP) solver. For learning the optimal policy, we use Q−learning with

a learning rate of α = 10−3. The discount factor, was set to γ = 0.99. All the simulations have

been performed on a MacBook Pro with Intel Core i7 running at 2.6GHz and 16GB of memory.
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Fig. 3. Performance comparison of two approaches for states cB , T , and control inputs u1, u2. The first approach involves

solving (13) until full convergence, while the second approach approximates (13) using NLP sensitivities

We conducted a closed-loop simulation to compare the performance of the proposed method

with the conventional approach, wherein both optimization problems are solved. The experimen-

tal results of state evaluation for cB, T , and the control inputs u1 and u2 are depicted in Figure 3.

As observed, the performance of both methods is remarkably similar, thereby establishing that

the proposed approach would not impede the closed-loop performance.

Table II presents the computational time required to solve problem (15) to full convergence

and to approximate problem (13) using NLP sensitivities in a single RL iteration. Notably, the

proposed approach substantially reduces the average CPU time needed for a single RL iteration,

without compromising the average cost.

TABLE II

COMPARISON OF AVERAGE COST AND COMPUTATION TIME FOR THE CSTR SYSTEM WHEN SOLVING (13) UNTIL FULL

CONVERGENCE AND WHEN APPROXIMATING IT USING NLP SENSITIVITIES.

CSTR Average Cost Average CPU time [s]

Full Convergence 28463 9.57
NLP Sensitivities 28943 3.48
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VI. CONCLUSION

In this paper, we have presented a simple yet effective approach to enhance the computational

efficiency of RL-based MPC by utilizing NLP sensitivities. Our proposed method approximates

the action-value function by exploiting similarities between consecutive nonlinear programming

problems and leveraging NLP sensitivities. Through numerical simulations on two benchmark

problems, we have demonstrated that our approach is capable of significantly reducing computa-

tional time without compromising controller performance. Our results suggest that the proposed

framework offers a promising direction for future research aimed at further improving the

computational efficiency of RL-based MPC.
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3. Contributions

3.4 RLMPC using Neural Networks for unknown systems

This section presents an end-to-end learning approach to developing a Nonlinear
Model Predictive Control (NMPC) policy, which does not require an explicit first-
principles model and assumes that the system dynamics are either unknown or
partially known. The paper proposes the use of available measurements to iden-
tify a nominal Recurrent Neural Network (RNN) model to capture the nonlinear
dynamics, which includes constraints on the state variables and input. To address
the issue of suboptimal control policies resulting from simply fitting the model to
the data, the paper uses Reinforcement learning (RL) to tune the NMPC scheme
and generate an optimal policy for the real system. The approach’s novelty lies in
the use of RL to overcome the limitations of the nominal RNN model and generate
a more accurate control policy. The paper discusses the implementation aspects of
initial state estimation for RNN models and integration of neural models in MPC.
The presented method is demonstrated on a classic benchmark control problem:
cascaded two tank system (CTS).
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Reinforcement Learning based MPC with Neural

Dynamical Models

Saket Adhau, Sébastien Gros, Sigurd Skogestad

Abstract

This paper presents an end-to-end learning approach to developing a Nonlinear Model Predictive

Control (NMPC) policy, which does not require an explicit first-principles model and assumes that

the system dynamics are either unknown or partially known. The paper proposes the use of available

measurements to identify a nominal Recurrent Neural Network (RNN) model to capture the nonlinear

dynamics, which includes constraints on the state variables and input. To address the issue of suboptimal

control policies resulting from simply fitting the model to the data, the paper uses Reinforcement learning

(RL) to tune the NMPC scheme and generate an optimal policy for the real system. The approach’s

novelty lies in the use of RL to overcome the limitations of the nominal RNN model and generate a

more accurate control policy. The paper discusses the implementation aspects of initial state estimation

for RNN models and integration of neural models in MPC. The presented method is demonstrated on

a classic benchmark control problem: cascaded two tank system (CTS).

I. INTRODUCTION

Model Predictive Control (MPC) is a widely used control strategy in various fields such

as process control, robotics, and autonomous systems [1]. The success of MPC depends on the

availability of a mathematical model that predicts the future behavior of the system and optimizes

control actions accordingly [2]. However, uncertainties in model parameters, measurement errors,

stochiasticity, unmodeled dynamics, and incomplete knowledge of the system can introduce

errors, leading to suboptimal control performance. To address these challenges, the authors of [3]
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Saket Adhau and Sigurd Skogestad are with the Department of Chemical Engineering, Norwegian University of Science and

Technology, 7491, Trondheim, Norway. (e-mail: {saket.adhau, sigurd.skogestad}@ntnu.no)
Sebastien Gros is with the Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491

Trondheim, Norway (e-mail: sebastien.gros@ntnu.no)

71



proposed combining data-driven and model-based control to enhance MPC performance. This

approach enables the control of complex systems with nonlinear dynamics and uncertainties,

without relying on an accurate mathematical model of the system.

Although the approach presented in [3] can address model uncertainties, it still assumes the

availability of some form of mathematical model to define the state and action spaces. In real-

world scenarios, a detailed mathematical model or complete knowledge of the system dynamics

may not be available, and only input-output data may be accessible. In such cases, techniques

such as system identification [4] or data-driven approaches [5] can be used to estimate the

system’s dynamics and construct a model that can be utilized for control purposes.

In this paper, we propose to construct a “domain-aware” neural network model for modeling

the unknown system dynamics. The purpose of this model is to replace the classic dynamic

model used in [3]. The neural network can handle complex nonlinear systems where defining a

state space may be difficult. During the training phase, we include constraints on both the state

variables and input of the model to ensures that it remains physically meaningful and consistent

with the real system. By constraining the state variables, we can ensure that the model remains

within a physically feasible region of operation, and by constraining the input, we ensure that

the control inputs generated by the model are within the range of physically feasible inputs. This

dynamical model will then be integrated into an RL-based MPC framework proposed in [3] to

build an optimal MPC policy with focus on closed loop performance. Our aim is to improve

the closed loop performance of the system by using this neural network model, which provides

more flexibility and adaptability compared to a classic dynamic model.

The initial state estimation is addressed using a past window of both measurements and

outputs. The measured outputs are sequentially fed to the model instead of the predicted ones.

We present discussions on adaptation of the neural model in case of model mismatch, and also

the integration of neural dynamical models in MPC pipeline. We analyze the performance of

the proposed approach on a classical benchmark problem: Cascaded Two tank system (CTS).

The proposed method is highly sample efficient with only one requirement: a sufficiently excited

time-series data set of the system dynamics.

The paper is organized into several sections. Section I provides an introduction to the problem

and motivation for the research. Section II reviews the relevant literature and presents the

background information on the RL-based MPC approach. Section III describes the approach

to system identification using neural networks. In Section IV, we present the implementation
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of our proposed approach and the results of our experiments. Finally, Section V concludes the

paper.

II. BACKGROUND

Obtaining an accurate mathematical model to represent the dynamics of a physical system can

be a daunting task, particularly for complex systems with nonlinear dynamics and uncertainties.

A well-performing model should be able to capture the essential dynamics of the system and

accurately predict its behavior in response to control inputs. Additionally, the model should

be inexpensive to evaluate and differentiate, especially for real-time MPC applications. This

necessitates that the model be of appropriate complexity, neither too simple to overlook important

dynamics nor too complex to become computationally intractable.

While System identification is often considered an essential step in developing an MPC

strategy, its necessity depends on the specific application and the characteristics of the system

being controlled. Numerous techniques have been developed for system identification, ranging

from classical methods to more advanced data-driven approaches [6].

Classical system identification methods include black-box modeling techniques such as ARX,

ARMAX, and state-space modeling [7]. These methods do not require an explicit understanding

of the underlying system dynamics to model the system, and can be effective for complex

nonlinear systems. However, they still require some knowledge of the system and its behavior,

specifically the inputs and outputs of the system and their relationship to each other. As a result,

these methods may not be suitable for systems with limited or poor quality input-output data.

Neural dynamical models are a powerful tool for modeling nonlinear dynamics as they can

capture complex and nonlinear relationships between input and output data without relying on

a mathematical model [8]. Unlike traditional modeling techniques, these models can handle

nonlinearities and interactions between system variables. RNNs are a type of neural network

that can maintain information from previous inputs, making them well-suited for time series

data and increasingly popular for tackling nonlinear problems [9], [10]. With their ability to

capture the dynamic behavior of a system, neural dynamical models can be useful for system

identification and control in a wide range of applications.

Recently, researchers [11] proposed an approach for modeling the dynamics of complex

systems using RNNs, demonstrating the potential of this method in accurately identifying and

controlling nonlinear systems. Another study [12] utilized constrained block-nonlinear neural
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networks to identify and model nonlinear systems. The authors demonstrated that this method

can effectively capture the dynamics of a wide range of systems, and can be used to design

control strategies that achieve improved performance compared to traditional approaches.

A. Reinforcement Learning

Consider a problem described by Markov Decision Process (MDP) with potentially stochastic

state transition dynamics denoted by,

P[s+|s,a] , (1)

where s,a is the current state-action pair and s+ is the subsequent state and P is the conditional

probability. The state-action space s ∈ S,a ∈ A is assumed to be continuous and P is a

probability density, but the theory proposed here is valid in general. The notation used for state

transitions in (1) is standard in MDP literature, whereas the control literature commonly employs

s+ = f(s,a, ζ) where ζ is a stochastic variable and f is a possibly nonlinear function.

Let us consider a stage cost L(sk,ak) associated to the MDP can take the form of:

L(sk,ak) = ℓ(sk,ak) + I∞(h(sk,ak)) , (2)

where ℓ(sk,ak) captures the cost given to different input-output pairs, and the constraints

h(sk,ak) ≤ 0 , (3)

capture undesirable states and inputs, and infinite values are given to L when (3) is violated.

Additionally, we use the indicator function,

I∞(x) =




∞ if xi > 0 for some i

0 otherwise.
(4)

With the addition of a discount factor 0 < γ ≤ 1, given (1) and (2), any optimal discounted

policy π⋆ minimizes the expected total discounted cost,

J(π) = E

[ ∞∑

k=0

γkL(sk,ak)

∣∣∣∣∣ak = π(sk)

]
, (5)

where the expected value E[·] is taken over the (possibly) stochastic state transition dynamics

(1) in closed loop with policy π.
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The optimal action-value function Q⋆, value function V⋆, and optimal policy π⋆(s) associated

to the MDP, are defined by the Bellman equations [13]:

Q⋆ (s,a) = L (s,a) + γE [V⋆(s+) | s,a] , (6a)

V⋆ (s) = Q⋆ (s, π⋆ (s)) = min
a

Q⋆ (s,a) . (6b)

Throughout the paper we will assume that the associated stage cost L, and the discount factor

γ yield a well posed problem, i.e. the value function defined by (6) are well posed, and finite

over some non-empty sets.

We then consider a model of the real system having state transition dynamics

P[ŝ+|s,a] (7)

which typically do not match (1) perfectly. We now consider a modified stage cost defined as:

L̂(s,a) =




Q⋆(s,a)− γV+(s,a) if |V+(s,a)| <∞
∞ otherwise

(8)

where V+(s,a) = E[V⋆(ŝ+)|s,a] where the expectation is taken over the distribution (7). We

now briefly reiterate the central theorem in [3], stating that under some condition, the policy π⋆

that minimizes the stage cost L for the true dynamics (1) can also be generated using the model

(7) combined with the stage cost L̂. The approach here used is to bypass the difficult evaluation

of (8), and replacing it by learning L̂ directly from the data.

Let us consider the parametrization of value function V⋆ using the following ENMPC scheme

parameterized using θ:

Vθ(s) = min
x,u

λθ(x) + γNV f
θ (xN) +

N−1∑

k=0

γkℓθ(xk,uk) (9a)

s.t. x0 = s, (9b)

xk+1 = f θ(xk,uk), (9c)

g(uk) ≤ 0, (9d)

hθ(xk,uk) ≤ 0, hf
θ(xN) ≤ 0, (9e)

where the ENMPC scheme (9) holds a model parametrization fθ, a constraint parametrization

hθ, a parametrization of the stage cost ℓθ and terminal cost V f
θ with the storage function λθ.

While the pure input constraints are fixed g(a) ≤ 0 are arguably fixed, the mixed constraints
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in the ENMPC scheme ought to be modified, in order to capture the domain where L̂(s,a)

is finite. Additionally, a relaxed version of L and of mixed constraints is considered to avoid

infinite penalties in case of constraint violations.

Further, we define the action-value function Qθ(s,a) as

Qθ(s,a) = min
u,x

(9a) , (10a)

s.t. (9b)− (9e) , (10b)

u0 = a . (10c)

The proposed parametrization trivially satisfies the fundamental equalities underlying the Bellman

equations, i.e.,

πθ(s) = argmin
a

Qθ(s,a), Vθ(s) = min
a

Qθ(s,a). (11)

B. Q−Learning for ENMPC

In the Q−learning algorithm, the action-value function is represented by Qθ(s,a), where θ is

a vector of parameters. The classical approach to Q−learning involves updating these parameters

based on temporal differences δ, which are computed from the difference between the predicted

and actual rewards received from taking a particular action in a given state. This approach is

coupled with instantaneous policy updates, where:

δk = ℓ(sk,ak) + γmin
ak+1

Qθ (sk+1,ak+1)−Qθ (sk,ak) , (12a)

θ ← θ + αδk∇θQθ (sk,ak) , (12b)

where the scalar α > 0 is the learning rate. For further clarification such as the gradient

calculation in the RL-based MPC scheme, readers are directed to the paper by [3].

C. Need for a Model

In the approach presented above, a model is needed to formulate the state and action spaces,

which are essential for training the RL agent. While the agent can learn the optimal policy from

data, it still requires a model to operate within a well-defined state and action space. Therefore,

even though the RL-based MPC scheme can handle model mismatch or uncertainties, a model

is still required to formulate the state and action spaces, as well as to evaluate the performance

of the learned policy.
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Fig. 1. Illustration depicting the proposed methodology that employs nonlinear neural dynamical models, constructed using

measurement data, within a RL based MPC framework, to attain an optimal control policy.

III. RECURRENT NEURAL NETWORKS

The use of RNNs for modeling dynamical systems in MPC settings has several advantages

over classical system identification methods. RNNs excel at capturing complex and nonlinear

relationships between input and output data, making them well-suited for time series data and

nonlinear problems.

A. Constrained system identification using RNNs

Consider a discrete-time dynamical system, denoted by S which takes input values u ∈ Rnu

and produces output values y ∈ Rny . At any given time step k, the system’s output may depend

on all previous input samples, i.e., it exhibits memory,

yk = S(uk, uk−1, . . . , u0). (13)

Assuming that the system S can be adequately represented by a nonlinear dynamical model,

denoted by M:

ŷk =M(uk, uk−1, . . . , u0; θ) (14)

where θ ∈ Rnθ is a parameter vector to be determined.

We use bold symbols u and y to denote the sequence of N input and output samples in a

dataset D.
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In this paper, we assume that the model has the following state-space representation:

xk+1 = F(xk,uk; θF) (15a)

ŷk = G(xk,uk; θG), (15b)

where xk ∈ Rnx is the unknown system state, uk ∈ Rnu is the control input at time k. In this

paper, F and G are the state-update and output mappings respectively, both parameterized by

θ = θF , θG . In particular, F and G are neural networks, and the overall model (15) is a RNN.

The data is assumed to be available in the form of input-output tuples, denoted by

D = {(yi
k,u

i
k), (y

i
k+1,u

i
k+1), . . . , (y

i
k+N ,u

i
k+N)}, i ∈ Nn

1 (16)

where n is the number of sample trajectories with N time steps. The primary aim is to learn a

constrained neural equivalent of the unknown system dynamics, given input-output time-series

dataset (16) obtained by observing the system.

B. System identification loss

The neural state space dynamics (15) are trained on the sampled input-output trajectories (16)

using the loss function described below:

Lϕ(Y
true,Y, Ȳ,

¯
Y|θ) =

1

nN

n∑

i=1

N∑

k=1

(∣∣∣
∣∣∣ytrue,i

k − yi
k

∣∣∣
∣∣∣
2

2
+Qy

∣∣∣
∣∣∣p(yi

k,
¯
yi
k+1)

∣∣∣
∣∣∣
2

2
+

+Qy

∣∣∣
∣∣∣p(yi

k, ȳ
i
k+1)

∣∣∣
∣∣∣
2

2
+Qu

∣∣∣
∣∣∣p(fu(ui

k),
¯
fu)
∣∣∣
∣∣∣
2

2
+

Qu

∣∣∣
∣∣∣p(fu(ui

k), f̄u)
∣∣∣
∣∣∣
2

2

)
, (17)

where k represents the time step of the prediction horizon N , whereas i is the batch index of

n sampled trajectories. The tracking loss is given by the first term, taken as two norm over the

residual vector between true Ytrue = {Ytrue,i
1 , . . . ,Ytrue,i

N } and predicted Y = {Yi
1, . . . ,Y

i
N}

output trajectories over N step. The second term is optional and is used to promote smoothening

of the trajectories of dynamic models. Furthermore, the third and fourth terms impose constraints

on the output trajectories using penalty functions. We apply inequality constraints on predictions

during the training phase itself, making the unconstrained optimization problem amenable to
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the gradient-based optimization methods used in deep learning. We use the following penalty

functions for time-varying lower and upper bounds ȳk,
¯
yk:

¯
p(yk,

¯
yk) = max(0,−yk +

¯
yk) , (18a)

p̄(yk, ȳk) = max(0,yk − ȳk) , (18b)

The penalty functions shown in (18) are easy to implement and can be modified according the

specific requirements as shown in [14]. The iterative gradient-based optimization algorithms, like

Adam [15], can be used to minimize the loss. The required derivatives computation is accom-

plished using standard reverse-mode Automatic Differentiation (AD) algorithms and software

[16]. As standard practice is followed for nominal model training, we will not discuss it in more

detail.

C. RNN initial state estimation

The estimation of initial state in an RNN model is very important, especially for our application

of MPC [17]. The initial state can affect the state transition predictions and thus needs to be

estimated accurately. Extending the ideas used in [11] we denote the predicted output ŷk which

is a part of the state:

xk+1 = F(xk, ŷk,uk; θF) (19a)

ŷk+1 = G(xk+1, ŷk,uk; θG), (19b)

for k = 0, 1, . . . , Nc − 1. (19c)

While the predictions are performed using (19), the initial state is estimated using a window of the

past data {yk−1, . . . ,yk−Nc
,uk−1, . . . ,uk−Nc}, where the measured outputs yk−i are sequentially

fed to the model instead of the predicted ones for Nc steps, and xk−Nc is set to zero. In particular,

the state estimation is performed by opening the output prediction loop for the first Nc steps:

xk+1 = F(xk,yk,uk; θF) (20a)

ŷk+1 = G(xk+1,yk,uk; θG), (20b)

D. Using RNN models in MPC scheme

In MPC, the control law is typically obtained by solving an optimization problem that involves

the system model. If a neural network is chosen as the system model, it is crucial for it to
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Fig. 2. Schematics of the cascaded two-tank system.

be differentiable to calculate gradients for the optimization problem. This is because most

optimization algorithms typically used in MPC rely on the gradient information to find the

optimal control inputs.

Fortunately, most neural network architectures used in practice, such as feedforward networks

and recurrent networks, are differentiable and can be used in MPC. However, there are additional

challenges when using neural network-based models in MPC. The choice of network architecture

and the selection of appropriate regularization methods are some of the important considerations.

Despite these challenges, neural network-based models can still be a powerful tool for improving

the performance of MPC systems when carefully designed and implemented.

The detailed procedure for the proposed method is illustrated in Fig. 1. The method begins by

constructing a neural model of the system using available measurement data. This model is then

utilized in RL based MPC scheme to optimize the closed loop performance. By employing the

RL-MPC scheme, we are able to modify the cost function as well as model (if required) to adapt

and learn from the system’s behavior in real-time, leading to improved control performance.

IV. CASE STUDY

To demonstrate the effectiveness of neural network-based models in an RL-based MPC ap-

proach, we utilize the Cascaded Tanks System (CTS) depicted in Fig. 2 with descriptions in

[18].

The CTS is a control system for fluid level that involves two tanks with free outlets, supplied

by a pump. The controlled pump transfers water from a bottom reservoir to the upper tank. The
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water from the upper tank flows into the lower tank via a small opening and subsequently into

the reservoir via another small opening. The system input, denoted as u, is the water flow from

the bottom reservoir to the upper tank. Meanwhile, the state variables h1 and h2 represent the

water levels in the upper and lower tanks, respectively.

The identification of the CTS system poses a significant challenge due to several factors.

The system’s hard saturation nonlinearity, combined with its weakly nonlinear behavior during

regular operation, makes the identification process complex. Moreover, the overflow from the

upper to the lower tank introduces input-dependent process noise, which further complicates the

problem.

DataSet: The experimental dataset was obtained from the collection 1 of public benchmarks

widely used in system identification. These datasets are commonly used as a benchmark for

testing the accuracy and robustness of system identification methods. The training and test

datasets contain 1024 points each, collected at a constant sampling time ∆t = 5 s.

Metrics: We use Root Mean Square Error (RMSE) to evaluate the performance index as it is

suggested in the description of the benchmark problem [18]:

Neural Network: The proposed method utilizes the PyTorch Deep Learning (DL) framework

[16] for training neural network models with the adaptation of RNN based system identification

module from [11]. The network comprises of one hidden layer with 128 neurons, utilizing

Leaky ReLU as the activation function. Gradient-based optimization is carried out using the

Adam optimizer [15], with the learning rate parameter set to 10−3. The batch size is set to 64,

and n = 10000 iterations are carried out to ensure convergence to a cost function plateau. The

training process takes approximately 400 seconds.

The neural networks’ weight parameters are initialized with random Gaussian variables with

zero mean and a standard deviation of 10−4, while the bias terms are initialized to zero, These

values are observed to be effective in aiding the convergence of the model during the training

process.

RL and MPC: In this work, for formulating the MPC problem, we use CasADi [19] with

IPOPT as the Nonlinear Programming (NLP) solver [20]. For learning the optimal policy, we

use Q−learning with a learning rate of α = 10−3. The discount factor, was set to γ = 0.99.

1http://www.nonlinearbenchmark.org
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To enable the use of arbitrary neural network models trained in PyTorch with CasADi, we

use the implementation 2 from [21]. This implementation allows seamless integration of neural

network models trained in PyTorch into the CasADi framework, enabling the use of deep learning

techniques in control problems. All the simulations have been performed on a Macbook Pro with

Intel Core i7 running at 2.6GHz and 16GB of memory.
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ŷ

0 1000 2000 3000 4000

Time (s)

2

4

6

u
[V

]

u

Fig. 3. CTS Benchmark: Open-loop trajectories of the trained neural model (red) and real system (black).

A. Result Analysis:

Fig. 3 displays the time trajectories of both the true and model output. Due to visualization

constraints, only a subset of the test dataset is presented. Notably, the fitted model accurately

characterizes the system dynamics with a high degree of precision. The neural loop training

achieved an RMSE of 0.2912 indicating a satisfactory level of accuracy in the model’s predictions.

Although our proposed approach has resulted in better RMSE results compared to the state-

of-the-art black-box nonlinear identification methods used for this benchmark [22]–[24], it is

2https://github.com/TUM-AAS/ml-casadi
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Fig. 4. CTS Benchmark: Simulated closed-loop control trajectories demonstrating RL based MPC with neural dynamical model.

The upper pane depicts the reference (dashed black) alongside the controlled state h2, while the lower panel shows the measured

state h1.

important to note that the main goal of this approach is not to obtain a highly accurate model

of the system. Rather, the primary objective is to develop a model that can effectively function

within the RL-MPC framework. The RL-MPC approach can then fine-tune the control policy as

required.

Fig. 4 depicts the simulated closed loop trajectories of RL based MPC for the CTS benchmark

problem. Our intention is to showcase that the proposed approach is capable of achieving the

desired results. It is important to note that these results are presented solely for the purpose of

demonstrating the capabilities of the approach and are not compared to any other technique.

V. CONCLUSION

In many real-world scenarios, obtaining a completely accurate model of a system can be

challenging, and often measurement data is only available. In this paper, we propose a method

that utilizes this measurement data to build a nonlinear neural dynamical model of the system.
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The developed neural model may not be completely accurate, but we show that it is still

possible to achieve optimal control policies using an RL-based MPC framework. RL-MPC uses

a combination of reinforcement learning and model predictive control to learn and improve the

overall closed loop performance even when the model is incomplete or inaccurate.

This approach has significant potential for practical applications in various fields where ac-

curate models are difficult to obtain or not available. The use of neural networks and RL-based

MPC can offer a robust and adaptive control strategy that can learn and improve based on the

system’s feedback.
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[20] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale

nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2006.

[21] T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scaramuzza, and M. Ryll, “Real-time neural mpc: Deep learning

model predictive control for quadrotors and agile robotic platforms,” IEEE Robotics and Automation Letters, vol. 8, pp.

2397–2404, 2023.

[22] R. Relan, K. Tiels, A. Marconato, and J. Schoukens, “An unstructured flexible nonlinear model for the cascaded water-tanks

benchmark,” IFAC-PapersOnLine, vol. 50, pp. 452–457, 2017.

[23] G. Birpoutsoukis, P. Z. Csurcsia, and J. Schoukens, “Efficient multidimensional regularization for volterra series estimation,”

Mechanical Systems and Signal Processing, vol. 104, pp. 896–914, 2018.

[24] A. Svensson and T. B. Schön, “A flexible state–space model for learning nonlinear dynamical systems,” Automatica, vol. 80,

pp. 189–199, 2017.

85





Chapter 4

Discussions

4.1 Conclusion

In this concluding chapter, the thesis’s pivotal contributions are summarized and
discussed in depth, offering insights into the multifaceted challenges faced in the
dynamic field of control and process systems engineering.

The contemporary fervor surrounding machine learning and artificial intelli-
gence has galvanized researchers and industry professionals in the domain. While
several applications have shown rapid progress, the most intellectually stimulating
challenge lies in devising conceptual frameworks to navigate the intricate landscape
of online process optimization.

Addressing the limitations of data-centric machine learning, we introduced in-
novative methods to enhance control strategies. In Section 3.1, a powerful technique
was proposed to handle constraints in approximating nonlinear Model Predictive
Control (MPC) problems using neural networks. This method harnessed domain-
specific knowledge, leveraging the intuitive understanding of KKT conditions and
log barrier methods to refine the loss function of neural networks.

A paradigm shift from neural networks to Reinforcement Learning (RL) in
control tasks was explored, emphasizing dynamic learning and decision-making
processes. Transitioning to RL, systems could directly learn optimal policies from
interactions with their environments, rendering explicit models unnecessary. This
approach not only adeptly handled complexity and uncertainty but also empowered
autonomous systems to refine strategies continuously, making it an enticing choice
for real-world applications.

In Section 3.2, we delved into the fusion of Real-Time Optimization (RTO)
and Economic Nonlinear Model Predictive Control (ENMPC) within the realm of
Reinforcement Learning (RL). Our innovative framework, blending concepts from
modifier adaptation, showcased the capacity of combined RTO and ENMPC to
generate optimal policies for real systems, even amidst inaccurate underlying mod-
els. By integrating modifier terms into the RTO scheme, we eliminated the need for
steady-state plant gradient estimation in Modifier Adaptation (MA), streamlining
the process significantly.

The limitations of the research at this stage primarily revolve around the imple-
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mentation practicalities in legacy control systems and the sustainability of control
schemes over time. Legacy control systems often favor simple structures for ease of
implementation and maintenance, posing a challenge for the adoption of more ad-
vanced intelligent control approaches. The complexity introduced by sophisticated
methods, such as those proposed in this research, may encounter resistance from
traditional control engineers who are accustomed to simpler structures. To address
this, future work should focus on demonstrating the practical implementation of
these advanced control schemes in legacy systems, emphasizing their ease of in-
tegration and long-term sustainability. Bridging the gap between traditional and
intelligent control methods will be crucial for widespread adoption and acceptance
within the control engineering community.

A novel approach to augment the computational efficiency of RL-based MPC
was detailed in Section 3.3. This method, utilizing Nonlinear Programming (NLP)
sensitivities, approximated the action-value function by capitalizing on the simi-
larities between consecutive nonlinear programming problems. Through meticulous
numerical simulations, we substantiated the substantial reduction in computational
time without compromising controller performance.

Lastly, in Section 3.4, we tackled the challenge of imperfect system modeling by
leveraging available measurement data to construct a nonlinear neural dynamical
model. Despite potential imprecision, our research demonstrated the feasibility of
achieving optimal control policies through an RL-based Model Predictive Control
(MPC) framework. By combining reinforcement learning and predictive control,
our approach enabled learning and enhancement of closed-loop performance, even
in the face of incomplete or imprecise models.

These contributions collectively underscore the thesis’s innovation and rele-
vance, offering promising directions for future research endeavors in the realm of
control and process systems engineering.

4.2 Future work

The current research has paved the way for future investigations, acknowledging
certain limitations and potential extensions. The following areas represent promis-
ing avenues for extending and refining the proposed methodology:

Exploration of Hybrid AI Approaches:

Future work could delve into exploring hybrid AI approaches that combine the
strengths of dynamic neural networks (DNNs) with other artificial intelligence
techniques for online modeling and control of complex and unknown nonlinear
systems. Investigate how hybrid models, integrating DNNs with complementary
AI methods, can enhance the adaptability, robustness, and efficiency of the pro-
posed framework. This exploration may include considering hybrid architectures,
ensemble methods, or incorporating domain-specific knowledge to further improve
the performance of the system in real-world applications.
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4.2. Future work

Enhanced Integration with Lower Layer Controllers:

Future work could involve a comprehensive re-evaluation of the proposed RTO-
RLMPC framework when enabling intelligent online control at the lower control
layers. Consider adaptive tuning strategies or hierarchical control architectures that
optimize the collaboration between the higher-level RTO-RLMPC and the lower-
level controllers. This exploration aims to enhance the adaptability and stability
of the overall control system in diverse operational scenarios.

Neural Networks to Model Unknown Systems

Utilizing neural networks to model unknown systems and employing Reinforcement
Learning (RL) techniques to fine-tune these networks can be a prominent approach.
This method involves using neural networks as function approximators to repre-
sent complex, non-linear relationships within unknown dynamic systems. Through
RL algorithms like Q-learning or policy gradient methods, these networks can be
adjusted and optimized based on real-time feedback, allowing them to adapt and
approximate the underlying system dynamics. This powerful combination of neu-
ral networks and RL not only enables accurate modeling of intricate systems but
also facilitates the development of intelligent control strategies and decision-making
processes in real-world applications.

Real-Time Implementation and Validation of RL-MPC: Bridging the
Gap Between Theory and Practice

Implementing and validating RL-based Model Predictive Control (MPC) in real-
time settings is a crucial next step. This involves deploying the developed RL-MPC
algorithms on actual systems, such as robots or industrial processes, and assessing
their performance in real-world scenarios. Real-time implementation and validation
are essential to ensure the effectiveness and reliability of the proposed techniques
in practical applications. The conducted research has established a foundation for
forthcoming investigations and refinements of the RTO-RLMPC approach. Promis-
ing avenues for extending the proposed methodology include exploring its adapt-
ability to diverse domains and industries beyond gas lift optimization. Addition-
ally, strategies to integrate a broader spectrum of constraints, encompassing pro-
cessing capacity, and stability requirements, should be investigated. The ongoing
enhancement of learning algorithms, particularly reinforcement learning techniques
within the RTO-RLMPC framework, remains a crucial focus. This involves exam-
ining advanced methods and alternative algorithms to bolster learning efficiency
and adaptability to various system dynamics. Addressing real-time implementation
challenges, such as computational requirements, is essential for practical applica-
tions. Furthermore, considering the impact of uncertainties in the system model
and proposing robust methods to handle them is imperative. Comparative studies
against existing control methods will contribute to a comprehensive understanding,
highlighting the strengths and weaknesses of the RTO-RLMPC approach. Future
plans should encompass experimental validation in a real gas lift or oil well network,
evaluating practical implementation aspects and anticipating challenges and bene-
fits. Exploring interdisciplinary collaboration with experts in control and petroleum
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engineering will enrich perspectives for addressing complex challenges in the oil and
gas industry. Scalability considerations for larger or more complex systems are crit-
ical, and strategies for user-friendly implementation, potentially through software
interfaces or frameworks, can facilitate broader adoption by practitioners. These
future directions aim to build on the current research, contributing to the ongoing
evolution of intelligent control strategies in dynamic and complex systems.

Investigation of MPC Failure Detection and Adaptation Mechanisms:

In future work, a thorough exploration of advanced techniques for detecting and iso-
lating sources of failures within the Model Predictive Control (MPC) framework
should be undertaken. This includes a comprehensive study of various potential
failure sources such as external disturbances, model mismatches, sensor failures,
drift, and offsets. Develop intelligent algorithms or monitoring systems capable
of identifying deviations from expected system behavior in real-time. Investigate
strategies to differentiate between disturbances and model inaccuracies to enable
targeted corrective actions. Explore adaptive MPC algorithms that dynamically
adjust control strategies in response to identified failures, ensuring continued op-
timal performance despite changing conditions. This research aims to enhance the
robustness and reliability of MPC systems by proactively addressing and adapting
to potential sources of failure in a real-world operational context.
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