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Overview: Scope

I Optimal operation and control for steam cycles – plantwide
perspective

II Input transformations for linearization, decoupling and feedforward
disturbance rejection

Industry nonlinear static model based calculation block, but little
theory

Academia heavy mathematical treatment of linearizing nonlinear
dynamic systems, but few applications

III Handling constraints on manipulated used for inventory control to
balance supply and demand
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1. Overview: operation and control
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1. Overview: thermal energy systems
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C. Zotică (NTNU) PhD Defence February 2023 4 / 27



1. Overview: thermal energy systems

m(kg)

F1, T1

F2, T2

F , T

d2 = T 0
h

d3 = F2

y = Th

w = Tc

u = Fc

d1 = T 0
c

d1 = F

d2 = T 0

d3 = c0

y = T

d4 = p

u = Q

Boiler

Condenser

Turbine-Generator

G

MV2

Pump

Combustion

MV1

water

superheated
steam

Flue gas
Fuel

Air

zH

p0

TH

zHC

pH pHC

TT
pL TL

zTB

pLC1

zLC1

pLC2

zLC2

G
Electric
grid

Waste heat
boiler

Variable supply

Pipelines
(m, p)

Consumers

Variable demand

d1 = qS qSP d2 = q

u1 = qD

Air
cooling

Dump

u2 = qEP

Electric
boiler

Hot water
storage tank

Vh

u4 = qST

Charging

u3 = qTP

Discharging
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2. Optimal operation and control of steam cycles
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2. Optimal operation and control of steam cycles
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2. Optimal operation and control of steam cycles:
steady-state analysis

Degrees of freedom
→ 2 after stabilizing the process and controlling the active constraints
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C. Zotică (NTNU) PhD Defence February 2023 7 / 27



2. Optimal operation and control of steam cycles: dynamic
analysis

Operation modes – industrial standards
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2. Optimal operation and control of steam cycles: dynamic
analysis

Operation modes – parallel control
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2. Optimal operation and control of steam cycles:
simulation results
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3.Input transformations for linearization, decoupling and
feedforward disturbance rejection

The main idea

+
−
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What? Powerful and simple approach for control of nonlinear systems to
achieve decoupling, linear response and disturbance rejection.

Why? Existing theories (e.g. feedback linearization) are (seemingly) very
complex and not widely used in industrial settings.

How? Simple manipulated variable (MV) transformations derived from
nonlinear model equations
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3.Input transformations for linearization, decoupling and
feedforward disturbance rejection
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−

Controller C
(dynamic)

g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)
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Example: static process

Model: y = u − d

Transformed input: v = u − d
⇒ Transformed system: y = v

Find u: u = v + d , given v and d .
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3. Input transformation

+
−

Controller C
(dynamic)

g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)

ys e v u

d

y

w

Transformed system (linear)

y ∈ Rny outputs

w ∈ Rnw additional measurements

u ∈ Rnu original inputs

y s ∈ Rny setpoint

d ∈ Rnd disturbances

v ∈ Rnu transformed inputs

Assumptions

as many outputs as inputs (ny = nu)

disturbances (d) can be measured

some variables (w) can be measured (e.g. flows, or additional states)
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3. Derivation of transformed inputs

+
−

Controller C
(dynamic)

g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)

ys e v u
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Transformed system (linear)

Dynamic Static

Model: dy
dt = f (y , u, d) y = f0(u, d)

Model: A, B and B0 are tuning parameters.
The transformed system is:
Model:dydt = Ay + BvA y = B0v0

First-order (dynamic case), linear, decoupled system and with no effect
from disturbances.
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Use of extra measurements

+
−

Controller C
(dynamic)

g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)

ys e v u

d

y

w

Transformed system (linear)

Model: dy
dt = f (y , u,w , d)

Transformed input (v): vA = B−1
0 (f (y , u,w , d)− Ay

Extra variables w that depend on u

may replace measurements of disturbances

may be used for unmodelled dynamics or uncertainties

should be stable (i.e. no RHP-zeros).
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Tuning parameters A and B

Transformed input (v): vA = B−1 (f (y , u,w , d)− Ay)

How to select A? ⇒ Design decision

1 A = diag
(
∂f (y ,u,w ,d)

∂y

∣∣∣∗), i.e. diagonal elements of the Jacobian

⇒ small positive feedback from y to v nominally

2 larger A to speed-up the response

3 smaller A to slow-down the response

4 A = 0 for integrating processes, e.g., level control (i.e., similarly to
feedback linearization methods).

How to select B? ⇒ Design decision

B = I

keep kvy = kuy ⇒ B = diag(B̃) = diag(∂f (y ,u,w ,d)
∂u )∗

B = −A
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C. Zotică (NTNU) PhD Defence February 2023 16 / 27



Tuning parameters A and B

Transformed input (v): vA = B−1 (f (y , u,w , d)− Ay)

How to select A? ⇒ Design decision

1 A = diag
(
∂f (y ,u,w ,d)

∂y

∣∣∣∗), i.e. diagonal elements of the Jacobian

⇒ small positive feedback from y to v nominally

2 larger A to speed-up the response

3 smaller A to slow-down the response

4 A = 0 for integrating processes, e.g., level control (i.e., similarly to
feedback linearization methods).

How to select B? ⇒ Design decision

B = I

keep kvy = kuy ⇒ B = diag(B̃) = diag(∂f (y ,u,w ,d)
∂u )∗

B = −A
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Implementation of transformed inputs

Solves v = f (y , u,w , d)− Ay w.r.t u, given v , y , d , and in some cases w .
Nonlinear feedforward controller

Implementations

exact model based inversion ⇒ explicit solution u = g−1y , v ,w , d

feedback based using an I-controller (cascade).

+
−

Controller C
(dynamic)

g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)

ys e v u

d

y

w

Transformed system (linear)
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Feedback based implementation

Advantages

safer implementation ⇒ does not invert the input transformation eq.
to solve for u

handles ⇒ RHP-zeros, measurement delays, plant-model mismatch

more robust

Drawback

does not give perfect disturbance rejection

+
−

Controller C1

(slow)
+
− Controller C2

(fast)

Input
transformation

(static)

Process
(nonlinear)

ys e vs

v

u

d

y

[y w]
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Linear controller

perfect model and measurements ⇒ do not need the outer feedback
loop because the transformation ⇒ nonlinear feedforward controller

setpoint changes can be handled by directly changing v s

real plant ⇒ unmeasured disturbances and unmodelled dynamics
⇒ use decentralized SISO controllers for controlling y using v as
inputs.

g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)

v u

d

y

w

Transformed system (linear)

d

Time0

y

Time0
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Example: control of heat exchanger hot outlet temperature

d2 = T 0
h

d3 = F2

y = Th

w = Tc

u = Fc

d1 = T 0
c

MVs (original inputs):

u = Fc [kg/s]

CVs (outputs):

y = Th [◦C]

DVs (disturbances):

d1 = T 0
c [◦C]

d2 = T 0
h [◦C]

d3 = Fh [kg/s]
d4 = UA (unmeasured)

w -variables:

w = Tc [◦C]
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Example: control of heat exchanger hot outlet temperature

Objective: find transformed input (v0) ⇒ disturbance rejection.

Transformed system: y = v0 or y = v0,w Tuning parameter: B0 = I
Actual process is dynamic, but we use an input transformation derived
from a static model
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Example: control of heat exchanger hot outlet
temperature. Open loop responses

Feedback-based implementation without the outer controller

Step response from v to y
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Example: control of heat exchanger hot outlet
temperature. Closed loop responses
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Handling constraints on manipulated variables (MVs) used
to balance supply and demand

m

u1

u2

u3

u4

u5

d1 = variable supply

d2 = variable demand

MVs :=
adjustable
supply

MVd :=
flexible
demand

Inventory m: measure of demand-supply balance
Control objective: design decentralized control structure that sets the
values of MVs and MVd to control m
Use MVs when d2 > d1 Use MVd when d1 > d2
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Handling constraints on (MVs) used to balance supply and
demand

How to handle MV saturation?

MVs = MVs
max ⇒ use MVd

Implementation:

split-range control

controllers with different setpoints

selectors
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Bidirectional inventory control with optimal use of storage
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C. Zotică (NTNU) PhD Defence February 2023 26 / 27



Conclusion

Optimal operation and control of heat to power cycles

steady-state and dynamic analysis

turbine drive is faster, floating pressure has minimal throttling losses

Transformed inputs

control structures with embedded knowledge through input and
output transformations

resulting transformed system from v to y ⇒ linear, independent of
disturbances, decoupled

Handling MVs saturation for balancing supply and demand

MV-MV switching: split-range control, controllers with different
setpoints

CV-CV switching: selectors

bidirectional inventory control with high and low setpoints for each
inventory gives optimal buffer storage management
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