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Abstract

The work presented in this thesis is part of FME HighEFF - Centre for
an Energy Efficient and Competitive Industry for the Future. This thesis
explores broad topics in the area of optimal control and operation of thermal
energy systems and it is divided into three parts.

Part I is entitled Optimal operation and control of heat-to-power cycles:
a new perspective from a systematic plantwide control approach. It aims at
giving an understanding of the operation and control problem for steam
cycles from a plantwide perspective. The analysis concerns a steam cycle
with one pressure level and producing power only. The reason for choosing
this process is that it is an extremely important thermal process where well-
functioning control structures have been developed over many years, and the
aim was to study the present control schemes as see if they could be improved
by applying a systematic plantwide control approach. The contribution is
twofold, consisting of a steady-state, and a dynamic analysis. The former
considers the optimal operation and control problem for a heat-to-power cycle
and provides a clear and systematic procedure for identifying the operational
objectives, specification or constraints and degrees of freedom from a steady-
state point of view. The latter examines the dynamic performance of different
control structures that can be used to implement optimal operation.

Part II is entitled Transformed inputs for linearization, decoupling and
feedforward control. It aims at providing a systematic theory for many
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nonlinear model-based calculation blocks used in power plants and the
chemical industry. These blocks include but are not limited to cascade
control, ratio, decoupling or nonlinear feedforward. It introduces inputs
transformation derived from a nonlinear process model with the purpose of
transforming a nonlinear system into a linear and decoupled system which
also has perfect feedforward disturbance rejection. The main assumptions
are that there are as many outputs as inputs, and that disturbances, and in
some cases additional states can be measured. The transformed inputs can
be derived from both a static and a dynamic model. For dynamic systems,
this theory is similar to feedback linearization for systems with relative
order 1. For higher order systems, we may introduce additional process
measurements to account for unmeasured process dynamics or may introduce
a chain of transformations. Three implementations are proposed: model-
based, feedback-based, and a combination of the two. The first option inverts
the process model and, with perfect measurement and perfect model, gives
perfect feedforward action, linearization and decoupling both dynamically
and at steady-state. Because it requires an inversion, it cannot handle process
delays and unstable zero-dynamics (equivalent to right-hand plane zero for
linear systems). The second option, uses a fast inner controller and does
not require inverting the process model. This is important for higher order
systems where the input (u) does not appear explicitly in the output (y)
model equation but has an effect through some internal states (w). However,
the response is not perfect dynamically because of the dynamics introduced
by the inner controller. Several simulation examples are presented. These
include case with a static model used to derive the input transformation and
applied to a dynamic process model. Because of the model difference, the
response may not be perfect dynamically, but some disturbance rejection
properties are kept. The process-model mismatch and unmeasured dynamics
are handled by an outer linear PID controller.

Finally, Part III is entitled Handling constraints on manipulated variables
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used for inventory control to balance supply and demand. Specifically, it
studies implementing optimal operation to cover cases of manipulated vari-
ables (MVs) saturation. The proposal is to use classical decentralized control
elements such as split range control or controllers with different setpoints in
combination with min or max selectors. Two applications are analyzed. The
first advocates the use of a bidirectional inventory control structure that is
able to maximize production when temporary or permanent bottlenecks occur
for multiple units in series by employing the buffer inventories at intermediate
storage. This bidirectional inventory control scheme has for each inventory
two controllers, one for the inflow and one for the outflow, with high and low
inventory setpoints, respectively. The inventory can typically be liquid (level)
or gas (pressure). When production cannot be maintained without breaching
physical constraints on the inventory, this control structure automatically
reconfigures the loops for consistent inventory control, which means that it
is radiating around the throughput manipulator to assure local consistency
and feasible operation. The second application is a district heating network
composed of a waste heat boiler, an electric boiler, a dump, a hot water
storage tank, and a set of consumers. Three alternatives for the supervisory
control layer are compared: split range control, controllers with different
setpoints, and model predictive control. The closed-loop performance in
the face of time-varying supply and demand, and using constant electricity
prices is evaluated. All alternatives were found to give similar performance.
Controllers with different setpoints is the easiest to implement, while model
predictive control is the most difficult.
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Chapter 1

Introduction

1.1 Motivation

The work presented in this thesis is part of FME HighEFF - Centre for an
Energy Efficient and Competitive Industry for the Future (HighEFF, 2022).

Within the scope of HighEFF, the initial motivation of this thesis was to
analyze the optimal operation and control problem of heat-to-power cycles.
Therefore, the motivation of the first part of the thesis is to systematically
identify the control objectives, operational and environmental constraints,
and degrees of freedom for a heat-to-power cycle. However, it quickly became
apparent that control strategies of industrial power plants has been developed
over many years to a stage where they are adopted by many plants and
work extremely well and it is not straightforward to make improvements.
Many of these control structures make extensive use of nonlinear model-based
calculation blocks, function blocks, or ratio stations to provide feedforward
action, decoupling or linearization (adaptive gain). These examples are case-
specific based, and a systematic theory for developing these calculation blocks
is missing in the literature. It is therefore the motivation of the second part of
the thesis to give a systematic theory for deriving in a systematic manner these
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model-based calculation blocks, which we will call input transformations.

Finally, the third part of the thesis aims at implementing optimal op-
eration for inventory control systems used to balance supply and demand.
The motivation is to design a supervisory control layer that can handle
active manipulate variables (MVs) or controlled variables (CVs) constraints
changes, using classical control elements such as split range control (SRC)
or PID-controllers with different setpoints in combination with selectors or
other simple logic blocks.

1.2 Scope

This thesis is divided in three parts which aims at answering the following
questions:

Part I: Optimal operation and control of heat-to-power cycles: a
new perspective from a systematic plantwide control approach.
What are the operational objective, degrees of freedom and constraints for
steam (heat-to-power) cycles? What are the resulted operational strategies?
What control structures can we use to implement these resulting operational
strategies?

Part II: Transformed inputs for linearization, decoupling and feed-
forward control. How to derive input transformations that give feed-
forward, linearization and decoupling in a systematic manner? How to
implement the input transformations? How does it relate to previous meth-
ods? How to handle higher order systems? What happens if a dynamic model
is not available? What happens if we apply a transformed input derived from
a static model to a dynamic process? What are the limitations?
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Part III: Handling constraints on MV used for inventory control
to balance supply and demand. How to handle MV-saturations for
inventory control problems used to balance supply and demand? How
to switch automatically between using different MVs to control the same
CV? How to give up automatically controlling less important CVs? How
to maintain production for tanks in series by employing the intermediate
inventory?

1.3 Thermal energy systems

The processes analyzed throughout this thesis fall under the general termi-
nology of thermal energy systems.

Let us first define a system. Figure 1.1 shows a schematic representation
of a system which is as a special domain separated by a boundary from the
environment, and which may be composed of several sub-systems interacting
with each other and with the surrounding environment (Preisig, 2020).

Environment

System

Sub-system A

Sub-system B

Transfer of mass or energy

Boundary

Figure 1.1: Schematic representation of a system and its subsystems separated by
a boundary from an environment.

In the context of this work, a thermal energy system refers to transfer
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of energy as heat or cooling between between the different subsystems of
the system or to the surroundings through boundaries, by convection (i.e.,
with the fluid) or conduction (i.e., direct contact). Examples include heat
exchangers, mixers, tanks used for hot water storage, district heating networks
(or more specifically the transport pipelines) or steam networks. It also
includes the conversion of heat to mechanical power in a turbine driving an
electrical generator to produce electrical power.

1.4 Thesis structure and main contributions

As mentioned before, this thesis is divided into three main parts. Part I
presents a new perspective on optimal operation and control of heat-to-power
cycles from a systematic plantwide control approach. It consists of a steady-
state and a dynamic analysis. The former considers the optimal operation
and control problem for a heat-to-power cycle and provide a clear and
systematic procedure for identifying the operational objectives, specification
or constraints and degrees of freedom from a steady-state point of view. The
latter examines the dynamic performance of different control structures that
can be used to implement optimal operation. This part is based on (Zotică
et al., 2020b).

Part II introduces input transformations for linearization, decoupling
and feedforward control. Section 3.1 presents the three-elements drum level
control used in power plant as an example supporting the need for a systematic
theory for deriving the many nonlinear model-based calculation blocks used
in the industry. Section 3.3 gives a brief overview of related methods in
the literature. Section 3.4 introduces the theory for deriving transformed
inputs from both a static and dynamic model, and Section 3.5 presents how
to implement these transformations. Sections 3.7-3.10 present applications
and the simulation results of transformed inputs (and outputs) for different
thermal energy systems, e.g., mixing processes, heat exchangers and steam
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networks. This chapter is adapted from (Skogestad et al., 2023; Zotică et al.,
2020a; Zotică and Skogestad, 2021; Zotică et al., 2022).

Part III presents handling constraints on manipulated variables (MVs)
used for inventory control to balance supply and demand. Chapter 4 describes
a general system for balancing supply and demand by using inventory control.
It proposes to handle saturation of the MV used for inventory control by
implementing MV-MV switching (split range control or controllers with
different setpoints) and potentially CV-CV switching (min or max selectors).
Chapter 5, based on (Zoticǎ et al., 2022), advocates the use of bidirectional
inventory control to maximize production when temporary or permanent
bottlenecks occur for multiple units in series by employing buffer inventories
at intermediate storage. Chapter 6, based on (Zotică et al., 2021), compares
three alternatives for designing the supervisory control layer of a district
heating network with a thermal energy storage tank. The control objective
is to minimizes the use of the more expensive electric boiler by using cheaper
waste-heat first, and storing excess heat for later use.

Part IV concludes this thesis with the main findings and future research
directions.

1.5 Papers not included in this thesis

The following co-authored published papers are related to the topics covered
in this thesis. However, these publications are not included in the thesis.

1. Reyes-Lúa A., Zotică C., Das T., Krishnamoorthy D. and Skogestad
S. Changing between active constraint regions for optimal operation:
classical advanced control versus model predictive control. Computer
aided chemical engineering, 43:1015-1020, 2018.

2. Reyes-Lúa A., Zotică C. and Skogestad S. Optimal operation with
changing active constraint regions using classical advanced control.
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IFAC-PapersOnLine, 51(18):440-445, 2018.

3. Reyes-Lúa A., Zotică C, Forsman K. and Skogestad S. Systematic
design of split range controllers. IFAC-PapersOnLine, 52(1):898-903,
2019.

4. Rohde D., Andresen T., Zotică C. and Wilpert P. Energy recovery from
furnace off-gas: Analysis of an integrated energy recovery system by
means of dynamic simulation. Refrigeration science and technology,
373-380, July 2020.
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plantwide control approach
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Chapter 2

Optimal operation and control
of heat-to-power cycles

This chapter presents using a plantwide control framework to systematically
identify the control objectives, operational and environmental constraints,
and degrees of freedom for a heat-to-power cycle with a drum, one pressure
level and with power as the only valuable product. The result is an unified
and systematic perspective on the optimal operation and control problems
for heat-to-power cycles.

The chapter is based based on the article “Optimal Operation and Control
of heat-to-power Cycles: a New Perspective from a Systematic Plantwide
Control Approach” (Zotică et al., 2020b).
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2. Optimal operation and control of heat-to-power cycles

2.1 Introduction to heat-to-power cycles

Current industrial control solutions for thermal power plants1 have evolved
over the years based on industrial practices to a stage where it becomes
less trivial to understand what are the operational objectives, constraints or
degrees of freedom available for optimal operation. Moreover, their transfer
to new cases or use by newcomers in the field may not be straightforward.

Often plant operators take established practices for granted, mainly
because it has always been done in the same way. On the other hand, optimal
operation changes with current operating conditions, i.e. feed composition,
product specification, prices or equipment which are subject to change during
the operating life of a plant. However, it is difficult to identify the new
optimal operation if the control policy is not systematically specified from
the beginning.

This effect is particularly marked for steam cycles providing utilities
(e.g. steam and power) for downstream units in chemical plants. In these
cases, optimal operation of the steam cycles is often overlooked. However,
considering the large amount of utilities used in chemical processing, there is
much to gain from operating steam cycles at their optimum. For example, we
consider the implication of controlling the superheated steam pressure. Often
power plants are operated at constant pressure to provide faster changes in
produced power. However, operation with floating pressure (i.e. the steam
pressure follows the fuel rate) could potentially result in higher efficiency
at low load for fossil fuel steam cycles (Silvestri et al., 1972) and especially
for combined cycles (i.e. integration of a gas turbine with a steam turbine)
(Polsky, 1982), or co-generation plants (i.e. plant providing both heat and
power) (Jonshagen and Genrup, 2010).

The contribution of this work is twofold, and consists of a steady-state
and a dynamic analysis. The former considers the optimal operation and

1Thermal power plants, steam cycles and heat-to-power cycles are used interchangeably.
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2. Optimal operation and control of heat-to-power cycles

control problem for a heat-to-power cycle and provides a clear and system-
atic procedure for identifying the operational objectives, specification or
constraints and degrees of freedom from a steady-state point of view. The
latter examines the dynamic performance of different control structures that
can be used to implement optimal operation.

We accomplish these objectives in the framework of plantwide control,
which handles control structure decisions for the entire plant. The goal is to
find a control strategy, preferably a simple one, that acts on a short time
scale to stabilize the plant (regulatory control), and on a longer time scale
to reach optimal economic operation (supervisory control). The advantage
of using a systematic plantwide control procedure is that it might reveal
new potentially overlooked control policies for existing processes (Downs and
Skogestad, 2011).

Plantwide control has been extensively applied to chemical plants, but to
a lesser degree for heat-to-power cycles in the open literature. For example,
the work by (Niva et al., 2017) presents a plantwide control analysis for the
combustion side of oxy-fired circulating fluidized bed boilers. The work by
(Prasad et al., 2000) briefly discusses the use of a plantwide control approach
to identify the main control objectives, operational constraints, degrees of
freedom and controlled variables with the purpose of designing a model
predictive control (MPC) strategy for a given thermal plant. The work
by (Govatsmark, 2003) applies a plantwide control design procedure to a
combined-cycle power plant. However, to the best of the authors knowledge
a thorough analysis from a plantwide control perspective for steam cycle is
missing, and it is therefore formalized in this work.

2.2 Plantwide control

The typical control hierarchy in a process plant is decentralized and is
decomposed on a time scale basis into several simpler layers: scheduling
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2. Optimal operation and control of heat-to-power cycles

Scheduling
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Site-wide Optimization
(day)

Local Optimization
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Supervisory Control
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Regulatory Control
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PID-controllers
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Advanced PID

Plant

CV1s
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Figure 2.1: Typical control hierarchy in a process plant.

(weeks), site-wide optimization (days), local optimization (hours), supervisory
control (minutes) and regulatory control (seconds), as shown in Figure 2.1.
Note that some processes can be slower. The top layers are responsible
for production planing on a long time scale, while the lower control layer
implements the setpoints given by the upper layer for optimal economic
operation and stabilizes the plant. Each layer receives process measurements
from the layers below, solves an optimization problem by using as degrees of
freedom the setpoints to the lower layers (Skogestad, 2004).

To systematically design each layer, we use the plantwide control proce-
dure proposed by (Skogestad, 2004). The procedure consists of a top-down
analysis concerning optimal steady-state operation, and a bottom-up analy-
sis targeting the lower control layer structure. The steady-state top-down
analysis involves the following steps:

Step 1 Define the optimal economic operation problem: the objective cost
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2. Optimal operation and control of heat-to-power cycles

function J and the set of operational constraints.
Step 2 Identify the steady-state degrees of freedom (DOF) (i.e. setpoints

for the lower layers). Determine the optimal operation for expected
disturbances using a steady-state model.

Step 3 Implement optimal operation. Select the primary controlled variables
(CV′) as the active constraints from Step 2, and the self-optimizing
variables (for unconstrained degrees of freedom) (i.e. variables that
give acceptable loss when kept at constant setpoint).

Step 4 Choose the location of the throughput manipulator (TPM), i.e.
decide where to set the production rate. This is both a dynamic issue
(with implications on the inventory control structure design), and an
economic issue (minimize back-off from active constraints).

The bottom-up design focuses on the control layer, which is divided into
the supervisory and the regulatory control layer.

The regulatory control layer typically takes care of control on the fastest
time scale. Controlled variables in the regulatory layer (CV′) include vari-
ables that contribute to “stabilization” of the process, for example levels
and pressures. In addition, they usually include a subset of the economic
controlled variables (CV), typically active constraints, that should be tightly
controlled for economic reasons. The regulatory layer is usually not subject
to reconfiguration, so one should be careful about what happens if one has
MV saturation in this layer (Reyes-Lúa and Skogestad, 2020). Considering
the large number of control loops in a typical plant, simple PID-controllers
are used for the regulatory layer.

The objectives of the supervisory (advanced) control layer are:

1. Achieve the economic objectives given by the upper optimization layers
by controlling the primary CVs at setpoint using as degrees of free-
dom the setpoints to the regulatory layer or any unused manipulated
variables.
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2. Optimal operation and control of heat-to-power cycles

2. Monitor the regulatory stabilizing layer to avoid saturation of MVs.

3. Identify active constrains and self-optimizing variables changes based
on the current operation region, and switch the control structure.

The steps of the bottom-up design are:

Step 5 Design the structure of regulatory control layer. The main issues are:
first, to select what to control on a fast time scale, both for stabilizing
control, and to achieve tight control of important active constraints,
and second, to chose appropriate MVs and pairings.

Step 6 Design the structure of supervisory control layer. Decide between
centralized control (i.e. Model Predictive Control) or decentralized
control (i.e. advanced control structures with simple logic block to
handle changes in active constraints (Reyes-Lúa et al., 2018).)

Step 7 Design the real-time optimization layer. Its objectives are to identify
the active constraints and compute the optimal setpoints for the lower
supervisory layer. For many plants, this layer is missing as it requires
a full model.

2.3 Plantwide control for a simple heat-to-power
cycle

2.3.1 Process Description

We consider the steam side of a heat-to-power cycle as shown in the simplified
process flowsheet in Fig. 2.2. Fuel is burned with air in stoichiometric ratio
in a combustion chamber resulting in high temperature flue gases. Thermal
energy carried by the flue gas superheats the working fluid (water) in a
boiler. Then, it is converted to mechanical energy in a turbine, followed
by conversion to electrical energy (W ) in a generator connected to the grid.
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2. Optimal operation and control of heat-to-power cycles

In this paper, we consider only the steam side of the process, that is, the
combustion side is excluded.

Boiler

Condenser

Turbine-Generator

G

MV2

Pump

Combustion

MV1

Water

Superheated
steam

Flue gas
Fuel

Air

Figure 2.2: Simplified heat-to-power cycle flowsheet. The air feed is set in ratio
to the fuel, but the combustion side of the process is not included in this work.

A detailed representation of the boiler-turbine system is shown in Fig.
2.3. The circulating working fluid (water) is heated from liquid (blue) to high-
pressure superheated steam (red) by receiving heat resulted from burning fuel
(MV1) (black) in a series of three heat exchangers dedicated to well defined
regimes, i.e. economizer (heating to saturated liquid), drum (evaporation)
and superheater (superheating). The superheated steam is desuperheated
by spraying cold feed water in the attemperator, therefore this is a bypass
stream of the three heat exchangers. The superheated steam is expanded in
a condensing type turbine, which drives a generator supplying electricity to
the electric grid. Cooling water (MV4) is used as utility in the condenser.
The low pressure water is then boosted by a variable speed pump (MV5)
and it is fed to the boiler (i.e. economizer). The cycle process also includes
a bypass of the turbine (MV3), and a direct bypass of the economizer cold
side (MV6).

We choose this drum configuration over a once-through boiler (with a
single heat exchanger instead of three) because it is most common both in
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Figure 2.3: Flowsheet of a steam cycle with a drum boiler, one pressure level,
and condensing turbine. The system has 7 manipulated variables (MVs). There
are shown 8 potential controlled variables (CVs). After closing 4 regulatory loops
for temperatures, pressure and level and noting that the bypass MV3 should be
kept closed if possible, MV1 (fuel) and MV2 (steam valve) are the two remaining
degrees of freedom (See also Table 2.1) and Section 2.3.2.4). Liquid water is in blue,
vapor in red.

operating power plants, and in chemical plants with on-site steam generation.
The once-through boiler is in theory more efficient because it does not have
the requirement of saturation (and thereby a fixed feedwater for a given
steam pressure) at a given location inside the heat exchanger sequence. For a
once-through boiler, the feedwater (MV5) may be used to control the steam
temperature. We choose a single steam pressure level because we want to
have a simple base for our analysis on which we can expand. For the same
reason, we do not include steam extraction or back-pressure turbines.

2.3.2 Top-down analysis

We proceed to formalize the control problem for steam cycles by applying
the top-down analysis to the described process. Therefore we systematically
identify the control objectives, operational and environmental constraints,
degrees of freedom, main disturbances and the location of the throughput
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2. Optimal operation and control of heat-to-power cycles

manipulator.

2.3.2.1 Step 1. Operational objective

The plant has two operational objectives. On a slow time scale (steady-state)
it should achieve the economic optimum, while it contributes to the grid
stability on a fast time scale. Due to the time scale separation, these objectives
are decoupled. However, the grid stability requirement may impose a back-off
from the maximum power production. Depending on local conditions, the
main operational objectives are:

1. Produce the energy as

(a) power to the electric grid at the required voltage and frequency
(usually large power plants with condensing turbines, i.e. >

100MW);

(b) steam at the required flowrate and pressure level (usually for
back-pressure turbines in large chemical plants);

(c) power and steam (combined heat and power cycles);

2. Process a given amount of by-product (e.g. waste gases or biomass
residues).

The same economic cost function, i.e. minimize the negative profit, can
be defined for all operational objectives, given by Eq.2.1.

J = −(pWW + pSS − pFF − pUU) [$/s] (2.1)

Here, W [J/s] is the produced power, S [kg/s] is the produced steam (= 0

in this paper), F [J/s] is the fuel (energy source), U [kg/s] is the utility
consumption, and p [$/kg] or [$/J] is the price of each. There may be
additional terms, for example several feed energy sources or several steam
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products. We analyze an operating plant and therefore, capital costs, personal,
and maintenance costs are not included. The cost J should be minimized
subject to satisfying a set of constraints, related to products specifications,
safe operation and regulations related to the environment. Typical constraints
for the operational objectives listed above for a steam cycle include (Prasad
et al., 2000):

C1 Keep the electrical power (W ) at a given value. This is for plants
required to participate in grid frequency regulation, i.e.W ≥ 100MW).

C2 Produce steam at the required demand (for cycles providing steam as
utility for chemical plants, and not included in the described process).

C3 Stabilize the process (i.e. keep the unstable drum level within limits).
C4 Keep the temperature of the superheated steam at a given value to

maximize turbine work, but within boundaries to prevent large thermal
gradients (i.e. T s

A = 529◦C).
C5 Keep the superheated steam pressure below a maximum value to avoid

high thermal and mechanical stress and to extend the operating life
(i.e. p ≤ pmax = 220 bar).

C6 Keep the steam pressure above a minimum value to avoid boiler trip
(i.e. p ≥ pmin).

C7 Keep the temperature (T g
E) of the flue gas outlet below environmental

limits, and above dew point to prevent corrosion ◦C (T g
E ≥ 150 ◦C).

Note that only plants with a higher concentration of pollutants (NOx or
SO2 have constraints on the maximum temperature, due to operation
limits on the filters used to reduce emissions.

C8 Keep MV4 fully open (i.e. MV4=MV4max) to bring the condenser
pressure at lower limit to maximize the pressure ratio in the turbine
(i.e. pC = 0.1 bar).

C9 Keep the turbine speed at the setpoint (n = 50Hz). If connected to the
grid, control is only needed at short time scale to avoid wear, because
on a long time scale, the turbine speed is given by the grid frequency.
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2. Optimal operation and control of heat-to-power cycles

Note that industrial turbines are normally operated at constant speed,
which can be the grid frequency or a different frequency (usually higher),
depending on their design. In the latter, a gear box is used, but the turbine
speed is still kept constant and it is not a degree of freedom available for
operation. Variable speed turbines may be used for experimental low load
organic Rankine cycles. However, variable speed turbines are out of the scope
of this work, and the interested reader is refereed to the work by (Quoilin
et al., 2011).

In addition to constraint C7, there are other operational constraints on
the combustion side, including requirements for waste incineration, O2, CO2

and NOx percentage in the flue gas or furnace pressure. However, a detailed
analysis of the combustion side is outside of the scope of this paper, and we
assume that these operational objectives are met on the combustion side of
the process. The interested reader is referred to the work by (Niva et al.,
2017) for an analysis on the combustion side for an oxy-fired circulating
fluidized bed boiler.

2.3.2.2 Step 2 (a). Identify the steady-state degrees of freedom
(DOF) (i.e. setpoints for the lower layers)

Table 2.1 shows the degrees of freedom together with comments on their
implication to control. The MVs are also shown in Fig.2.3. Note that we
have not decided yet on the pairing, and number of the MV and CV are
not corresponding in the next sections (i.e. MV1 is not necessarily used to
control CV1).

2.3.2.2.1 Steady-state effect of fuel (MV1) and steam valve (MV2)
Fig. 2.4 shows the open loop response for the superheated steam pressure
(CV8= p), and power produced (CV7= W ) to 1% increase in fuel MV2
in blue, and to fully opening the steam valve (MV2= 1) in green. Let us
explain the open loop response from physical considerations. Consider the
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Table 2.1: Manipulated variables

Manipulated variable Comments, analysis
MV1: Fuel • At steady-state the power produced can

only be changed by manipulating (MV1).
MV2: Steam valve • The turbine valve should optimally be

fully open to minimize throttling losses
(Shinskey, 1978).

• It has mainly a dynamic effect, as the
steady-state effect on produced power is
insignificant.

• It can improve the dynamic response for
power.

• To contribute to grid frequency stability it
may be required at nominal conditions to
partly close the steam valve opening (e.g.
90%). This will provide a back-off for tran-
sient operation.

MV3: Turbine bypass • Normally closed, needed when the energy
in the feed is larger than power demand.

• Used to avoid too high pressure, i.e. if p ≥
220 bar, MV3 opens to reduce the pressure.

MV4: Cooling water • Open at MV4=MV4max to minimize con-
denser pressure (pC).

MV5: Feedwater pump • Use only to control the drum level.
• Cannot be used to control the steam pres-

sure, as it has no steady-state effect (see
Table 2.3).

MV6: Economizer bypass • Use only if T g < T g,min.
MV7: Attemperator • Use only if T s > T s,max.
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linear valve m = zKV∆P where, m is the mass flow rate, z is the valve
opening, KV is the valve coefficient and ∆P is the pressure drop across the
valve. Increasing z causes a fast increase of m, which results in a decrease of
the pressure inventory before the valve. The latter results in a smaller ∆P ,
which results in a decrease of m after its initial increase. To increase m at
steady-state, ∆P has to increase, and this can only be achieved by increasing
the energy supplied to the system (MV1).
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(a) Power
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(b) Pressure

Figure 2.4: Open loop responses for pressure (p) at the valve inlet and power (W )
to a step increase of 1% step increase in fuel (MV1) (green), and 0.1 in steam valve
opening (MV2) (blue).

2.3.2.3 Step 2 (b). Identify the most important disturbances

The main disturbances for this process are given in Table 2.2.

2.3.2.4 Step 2 (c). Determine the optimal operation (including
active constraints) for the expected disturbances using a
steady-state model

Active constraints (AC) are variables that should be kept at their limiting
value for optimality. To determine which constraints will be active, we can
optimize the process at steady-state for the important disturbances. However,
engineering insight is often enough to determine which constraints are active,
and this is the approach we apply in this work. At the nominal operation
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Table 2.2: Main disturbances for steam cycle

Disturbance variable Comments
DV1: Combustion temperature Typically for waste heat
DV2: Fuel specific heat Typically for waste heat
DV3: Grid frequency (Load) Consumers increasing their demand

(load) or producers decreasing their
production

DV4: Required power setpoint Typically for power plants required
to participate in secondary or ter-
tiary grid frequency regulation

DV5: Cooling water temperature

we want to minimize bypass streams, that is the turbine bypass MV3, the
economizer bypass MV6 and the attemperator MV7 should be closed to use
the boiler efficiently. However, when a CV constraint becomes active, we use
the MV to control the respective CV. This implies a CV-MV switch, and it
can be handled by single loop PID-controllers without additional logic given
that antiwindup is implemented (Reyes-Lúa and Skogestad, 2020).

The active constraints are:

(AC1) MV3=0 (MV constraint);

(AC2) MV4=MV4max (MV constraint) or CV2= pC = pmin
C (CV constraint)

to maximize pressure ratio across the turbine and maximize work (W );

(AC3) MV6=0 (MV constraint) or CV3= TE = T g,min
E (CV constraint) to

maximize boiler heat transfer area usage;

(AC4) MV7=0 (MV constraint) or CV4= T s
A = T s,max

A (CV constraint) to
minimize desuperheating and maximize superheated steam tempera-
ture;

(AC5) n = ω, (i.e. the turbine speed is equal to the grid frequency).
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We use the term or for AC2, AC3 and AC4 because maximizing cooling
(MV4=MV4max) results in pC = pmin

C , closing the economizer bypass stream
(MV6=0) gives minimum temperature TE = T g,min

E , and closing the attem-
peration stream (MV7=0) gives maximum T s

A = T s,max
A . When pC < pmin

C ,
we give-up MV4=MV4max and use MV4 to increase pC . When TE < T s,min

E

we give-up MV6=0 and open MV6 to increase T g
E . When T g

A > T s,max
A we

give-up MV7=0, and open MV7 to decrease T g
A. As mentioned, this CV-MV

switch is handled by PID-controllers without additional logic block.

2.3.2.5 Step 3. Economic controlled variable (CV) selection

The objective is to select controlled variables such that we keep optimal
(or near optimal) operation when disturbances occur. The first controlled
variables candidates are the active constraints from Section 2.3.2.4, as well
as variables that need to be controlled to stabilize the process. Table 2.3
shows the possible controlled variables including the active constraints (a
subset of the operational constraints from Step 1 in Section 2.3.2.1).

2.3.2.6 Step 4. Location of throughput manipulator

The location of the throughput manipulator (TPM) is important from a dy-
namic point of view as it determines the structure of the inventory (pressure)
control system and also affects the dynamic performance for cases when the
TPM is used for control. In general, the TPM can be located at the feed,
inside the process or at the product. For a power plant, the “product” is the
turbine power output (W ), which ideally is given by Eq. 2.2.

W =

∫ pC

pT

V̇ dp (2.2)

where V̇ [m3/s] is the volumetric flow, pT and pC [Pa] are the turbine inlet
and outlet pressures. The volumetric flow is affected mainly by the turbine
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Table 2.3: Candidates controlled variables

Controlled variable Comments, analysis
CV1: Drum level (MD) • Levels are unstable inventories

and they need to be controlled
• No steady-state effect

CV2: Condenser pressure (pC) • See Section 2.3.2.4
CV3: Cold flue gas temperature
(T g

E)
• See Section 2.3.2.4

CV4: Superheated steam tempera-
ture (T s

A)
• See Section 2.3.2.4

CV5: Turbine speed • Active constraint for all operation
regions.

CV6: Grid freqeuncy • Imposed by grid stability
CV7: Power produced • Only for plants required to partic-

ipate in grid frequency regulation
CV8: Steam pressure • Given by the fuel (MV1) accord-

ing to the boiler energy balance
• Should not be at fixed setpoint

to utilize the fuel and boiler effi-
ciently
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speed, which is assumed to be fixed in this work (equal to the grid frequency).
Note that the inlet pressure pT is affected by the steam valve MV2. In
summary, for our plant, there are two possibilities for the TPM location:

• TPM at the feed, that is, the fuel (MV1) is the TPM

• TPM inside the plant, that is, the steam valve (MV2) is the TPM.

In many cases, the fuel rate is given (typically for base load boilers) or
the fuel rate is limiting the power output. In such cases, we clearly want
to have the TPM located at the feed (MV1) in order to maximize power
production. This case is considered briefly in the discussion section, but
otherwise the main focus of this paper is when the power demand is given.
To track variations in the power demand, it would be best from a dynamic
point of view to locate the TPM at the steam valve (MV2) at the inlet to
the power-producing turbine. Nevertheless, most control structures use the
fuel (MV1) as the TPM also in this case, and there are several main reasons
for this. First, it may happen that one would like to operate with a fixed fuel
under some conditions. Second, as seen from Fig. 2.4, the steady-state effect
of the steam valve (MV2) on the power (W) is very small when we have a
constant fuel rate (MV1) and in addition we may want to operate with a fully
open steam valve to minimize throttling losses. Third, the pressure drop over
MV2 is more a dynamic performance matter. The higher the pressure drop,
the higher the energy and mass stored in the boiler, and therefore the system
has better capability to change the load at the required rate (e.g. %/min).

2.3.3 Bottom-up design

We continue with the bottom-up design for the described process.
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2.3.3.1 Step 5. Structure of the regulatory layer

Liquid levels generally need to be controlled to maintain stability (see Section
2.2). The power cycle in Fig. 2.3 contains two liquid levels, but since this is
a closed system only one of them should be controlled, usually the smallest
holdup. Thus, we decide to control the boiler drum level (CV1= MD) and
leave the feedwater tank level uncontrolled. The steady-state value of MD

does not matter, except that it contributes to energy storage, which has
dynamic implications. Next, the steam pressure (CV8= p) is often controlled
because it may be drifting, and control of it may contribute to more stable
and predictable operation. However, as we will see, control of steam pressure
requires closing the steam valve (MV2) which gives losses and is not optimal
from an economic point of view. We will therefore not include control
of CV8 in the regulatory layer, but will leave for the supervisory control
layer (step 6 in Section 2.4). Condenser pressure (CV2= pC) is usually also
controlled, both because this contributes to stability and because it is optimal
to keep it above its lower constraint to avoid too much liquid at the outlet of
turbine. Two other constraints that are controlled in the regulatory layer are
superheated steam temperature (CV4= TA) and cold flue gas temperature
(CV3= TE). CV4 must be below a maximum for material reasons in the
turbine and CV3 should be above a minimum, for example, to avoid corrosion
caused by condensation. In the regulatory layer, we usually use single-loop
PID control, so for each CV we need to identify an appropriate input (MV).
We can make a decision based on mathematical tools such as the relative
gain array (RGA). Alternatively, as in this work, we can use guidelines such
as the pair close rule (i.e. small effective time delay from the MV to CV), or,
input saturation rule (i.e. pair an important CV (which cannot be given-up)
with an MV that is unlikely to saturate (Reyes-Lúa et al., 2018)).

We have 7 manipulated variables, but for economic reasons the turbine
bypass (MV3) should always be closed. The steam valve (MV2) and fuel
(MV1) will be used for control of power production and pressure in the
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supervisory layer. Thus, to control CV1, CV2, CV3 and CV4 we have as
manipulated variables MV4, MV5, MV6 and MV7. We follow the pair-close
rule, and suggest the following pairings for the regulatory layer:

• Use the cooling water (MV4) to control the condenser pressure (CV2);

• Use the feedwater pump (MV5) to control the drum level (CV1) (only
DOF left to control the level)

• Use the economizer bypass (MV6) to control the flue gas temperature
(CV3)

• Use the attemperator (MV7) to control the superheated steam temper-
ature (CV4) (only DOF available)

• Assume turbine speed is equal to the grid frequency

Note that MV4, MV6 and MV7 are likely to saturate at maximum cooling,
zero bypass and zero bypass, respectively. Fortunately, this is not a problem,
because when we reach one of these constraints, it is optimal to give up control
of the corresponding CV. This happens because the corresponding CV will
move away from its constraints of minimum pressure (CV2), minimum flue
gas temperature (CV3) and maximum steam temperature (CV4), respectively.
Thus, no further attention from the supervisory control layer is required
when these saturations happen.

2.4 Step 6. Control structures for supervisory con-
trol

From an optimal operation point of view, we want on a slow time scale
to maximize boiler efficiency (i.e. keep bypass streams closed and let the
pressure float) and minimize throttling losses (i.e. keep all valves close to
maximum). On a short time scale we may need participate in grid frequency
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control. We can meet both objective due to their time scale separation,
and this requires using the steam valve (MV2) dynamically, and drive to its
nominal opening (e.g. 90 % (Weissbach et al., 2006)) at steady-state.

We assume that all other loops are closed according to the pairing from
section 2.3.2.5, and therefore we analyse only the two remaining degrees of
freedom: MV1 (fuel) and MV2 (steam turbine valve). The remaining CVs
from Table 2.3 are the power produced (CV7= W ) and the superheated
steam pressure (CV8= p). The main issues that we consider concern:

1. pairing, that is what to do with the remaining degrees of freedom, MV1
and MV2?

2. should the pressure be controlled?

In the following, we show a simplified flowsheet of the steam side, with the
two remaining degrees of freedom: MV1 (fuel) and MV2 (steam valve). The
boiler illustrated symbolizes the economizer and its bypass, drum, superheater
and attemperator.

We analyse the case where we want to keep the power produced at
its setpoint, and we start by presenting the common control structures in
industrial steam cycles.

2.4.1 Standard industrial control structures for control of
power and pressure

The standard industrial control structures are boiler driven, turbine driven,
floating pressure and its variation, sliding pressure (Klefenz, 1986; Welfonder,
1999; der Autumation, 2003). The objective of this analysis is to understand
their steady-state and dynamics characteristics.
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2.4.1.1 Floating pressure operation

In floating pressure operation mode, Figure 2.5, the superheated steam
pressure (CV8) is not controlled, and it is given by the fuel (MV1), according
to the energy balance. The power produced can be controlled by manipulating
the fuel (MV1), the only DOF with a significant steady-state effect. Floating
pressure operation is optimal from an energy point of view because it allows
for the steam valve (MV2) to be fully open. When we say that steam valve
is opened, it may well be partly open because of the back-off required to
participate in droop control (see the discussion in Section 2.6.3). However,
because of the boiler inertia, this operation mode has a slow time constant
for controlling the power produced. When the pressure becomes an active
constraint (i.e. p = pmin or p = pmax), we give-up controlling the power using
MV1 (fuel), and use it to control the pressure instead. This is called CV-CV
switching, and we can use a MID block (i.e. logic to select the middle output
of all three controllers). Note that it is more efficient to use MV1 (fuel)
directly to control the pressure once it reaches its maximum limit than using
MV3 to bypass the steam turbine. Also note that all control structures imply
a MID selector to keep the pressure within bounds, but this is not shown
to simplify the illustrations.

2.4.1.2 Boiler driven operation

In boiler driven operation mode, the power produced is kept at setpoint by
manipulating the fuel MV1 (the throughput manipulator in this case), while
the superheated steam pressure is kept at constant setpoint using the steam
valve MV2, as shown in Figure 2.6. For this reason, boiler driven can be
considered as an extension of floating pressure. In this case, MV2 can only
be used to improve the dynamic response of the cycle, as it has a negligible
steady-state effect (see Figure 2.4).
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Figure 2.5: Floating pressure operation mode with a MID selector to keep the
pressure within bounds (pmin ≤ p ≤ pmax).
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Figure 2.6: Boiler driven operation mode
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2.4.1.3 Turbine driven operation

Turbine driven is the reverse pairing of boiler driven, i.e. the power produced
is controlled using the steam valve MV2 (the throughput manipulator in this
case), and the steam pressure is controlled using the fuel MV1, as shown
in Figure 2.7. Its advantage is a faster time response for control of power
(CV7= W ).

G

MV2
Fuel

MV1

WC W
W sp

PC
ppsp

Figure 2.7: Turbine driven operation mode

Both turbine and boiler driven have the advantage of utilizing the system’s
energy storage because of pressure build-up in the drum and superheater.
However, compared to floating pressure, there is some loss of energy efficiency.

2.4.1.4 Sliding pressure operation

In practice, power plants operators prefer to control the pressure. This
operation mode is a modification of floating pressure, as shown in Figure 2.8
(Klefenz, 1986). The sliding pressure curve is pre-defined as function of the
produced power (as a simple curve), and the steam mass flow is used to as
an indirect measure of the power produced in many control loops. Note that
disturbances in boiler and combustion may result in changes in steam mass
flow (m), and therefore measuring the steam mass flow rate may give a false
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indication of the changes in produced power. The pressure setpoint is only
changed at steady-state, but not dynamically, during power setpoint changes.

G

MV2
Fuel

MV1

WC
W

PC

+
−

p = f(m)
m

p
psp

Figure 2.8: Sliding pressure operation (not as optimal at steady state as floating
pressure) (Klefenz, 1986).

2.4.1.4.1 Comparison of different pressure operation modes Fig-
ure 2.9 illustrates the three pressure operation modes:

• constant (blue line), which is the operation mode for turbine driven
and boiler driven. This strategy give fast load changes response.

• sliding (green line), where the pressure is kept constant at high load
(W ≥ WL) for fast load change response, and it follows the power
produced at lower loads (W ≤ WL) to increase the boiler efficiency.

• pure floating (mauve line), where the pressure follows the power pro-
duced and the throttling losses are minimized.
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Figure 2.9: The three pressure operation modes discussed in this work

2.4.2 Improved control structures for floating pressure oper-
ation

We want to look into dynamic improvements of floating pressure operation.
This operation mode is optimal from a steady-state point of view because it is
optimal to keep the steam valve (MV2) fully open to minimize throttling losses.
However, the dynamic response for controlling produced power (CV7= W )
is rather slow because the throughput manipulator is located at the feed side
(MV1). Two alternatives for this are:

1. valve position controller (VPC), Figure 2.10

2. parallel control, Figure 2.11, using two controllers: a PI-controller for
MV1 and P-controller for MV2.

2.4.2.1 Valve position control

In VPC there is one fast acting MV1 that controls the CV, and one slow
MV2 that acts to bring MV1 to its nominal value (Shinskey, 1988). In our
case, the fast MV is MV2 (steam valve), and the slow MV is MV1 (fuel),
as shown in Figure 2.10. Valve position control acting on a valve-turbine
system is also described in (Farmer and Lipták, 2006).
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Figure 2.10: Valve position controller (VPC) to improves floating pressure opera-
tion

2.4.2.2 Parallel control

Similarly to VPC, this control structure can be used when two MV act on
the same CV, but with different time constants (Balchen and Mummé, 1988).
Only one of the two controllers can have integral action, otherwise there
maybe no unique steady-state solution for the MVs (Åström and Hägglund,
2006). MV1 (fuel) is the only degree of freedom with a significant steady-
state effect on the power, and therefore we use a PI-controller for MV1, and
P-controller for MV2 (steam valve), as shown in Figure 2.11. Once the error
is zero, the P-controller takes MV2 to its nominal values, which is set as the
controller bias.

2.5 Simulation study: optimal operation of a simple
heat-to-power cycle

We consider a typical steam cycle for simulating the control structures
presented in Section 2.4:

• Floating pressure (Figure 2.5)
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Figure 2.11: Parallel control with one PI-controller and one P-controller to improve
floating pressure operation

• Boiler driven (Figure 2.6)

• Turbine driven (Figure 2.7)

• Valve position control (Figure 2.10)

• Parallel control (Figure 2.11).

2.5.1 Model

A heat-to-power cycle can be decomposed into three subsystems (SS), which
can be modelled sequentially (Maffezzoni et al., 1983):

• SS1: water cycle
• SS2: combustion
• SS3: generator and connection to the electric grid.

Steam cycles models with different complexity are presented in the open
literature, and a good overview of modelling methods and tools is given by
(Alobaid et al., 2017).
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For control purposes, simpler models are often used, and the work by
(Ordys et al., 1994) outlines simple models for each component of a heat-to-
power cycle, which can then be used in a modular simulation approach. A
detailed dynamic model that has been extensively used for both modelling
and controller synthesis is the drum boiler presented in the work by (Åström
and Bell, 2000). Object oriented approaches have become an attractive
alternative for modelling due to their reusability and versatility. Modelling
and regulatory control design of a subcritical steam cycle using an object
oriented language and library is described in the work by (Chen et al., 2017).

With respect to steam turbines performance maps, static laws are com-
monly used because there is no accumulation in the turbine. The most
common is Stodola’s law of cones (Cooke, 1985), or constant mass flow
coefficient (considering choking conditions) (Cordes, 1963). Both of these
laws related the current operating conditions (i.e. off-design conditions) to
the design point. In addition to first principle derived relations, empirical
linear relations between the power produced and the steam mass flows, called
Willans lines, are described and used in the work by (Sun and Smith, 2015).

For our propose, the model has to be simple and robust, yet it also needs
to capture the main dynamics of the process. We develop a first principle
model for a typical steam cycle to test our analysis. As mentioned in Section
2.3, we consider only the water side subsystem (i.e. SS1). The interface with
SS1 is modelled via the hot flue gas inlet temperature, and the interface with
SS3 is modelled via the generator frequency.

The model consists of both algebraic mass- and energy balance repre-
senting fast time scale processes, as well as dynamic equations representing
the longer time scales. Therefore, the model is a system of differential and
algebraic equations (DAE).The differential states (x) are the temperatures
on the hot side of the heat exchangers (e.g. TE , TD and TS), the superheated
steam temperature after the attemperator (TA), the holdups in the drum
(MD) and superheater (MS) and the frequency (ω). The algebraic states (w)
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are the flue gas temperature on the cold side of the heat exchangers (e.g.
T g
E , T g

D and T g
S), turbine inlet pressure (pT ), and the produced power (W ).

The DAE model has a total of 12 states (7 differential and 5 algebraic). The
detailed model equations are given in 2.8.

2.5.2 Nominal operating conditions

We are interested in optimal operation of existing heat-to-power cycles,
therefore, the equipment design is given, and we must decide how to use it
optimally. We consider reasonable values for the nominal operating conditions
for a simple steam cycle with one pressure level (this may be typical for an
older operating plant). Similar values are found in Skogestad (2008) and
Åström and Bell (1987). Table 2.4 shows the nominal operating conditions.
The design parameters are given in Table 2.9, and are computed by solving
the model at steady-state for the nominal conditions (Table 2.4).

2.5.3 Controller

Eq. 2.3 shows the time domain expression for the PI-controllers used. Note
that we consider the saturation limits for the applied input up (i.e. a valve
cannot be more than fully open or close, or mass flows cannot be negative.),
and therefore antiwindup is implemented. We use the back-calculation
antiwindup method, where the controller output tracks the input applied
to the process (up) with a time constant (τT ) equal to the integral time
(τI)(Åström and Hägglund, 2006).

u(t) = u0 +KCe(t) +
KC

τI

∫ t

0
e(t)dt+

1

τT

∫ t

0
eu(t)dt

e = ysp − y

eu = up − u

up = min(umax,max(u, umin))

(2.3a)

(2.3b)

(2.3c)

(2.3d)
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Table 2.4: Nominal operating conditions

Variable Unit Value Unit

Holdup Economizer
Drum
Superheater
Attemperator

100
3000
100
10

kg

Water
temperature

Inlet
Economizer

45
303

◦C

Steam
temperature

Drum
Superheater
Attemperator

303
595
529

◦C

Fuel
(combustion
temperature)

Economizer
Drum
Superheater
Inlet

150
425
777
1000

◦C

Flowrate Pump
Economizer bypass
Attemperator
Turbine bypass
Gas

10.6309
0
0.6309
0
31.4018

kg/s

Power 16.55 MW
Frequency 50 Hz

2.5.3.1 Controller tuning

We find the controllers tuning parameters (proportional gain KC and inte-
gral time τI) by identifying a first-order plus time-delay (FOPTD) model

( k
τs+1e

−θs) or integrating model
(
g(s) = k′

s

)
from a step response in the

input u, followed by applying the SIMC tuning rules (Skogestad, 2003) with
a chosen closed loop time constant τC .
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For a first-order model, we use Eq. 2.4.

KC =
1

k

τ

τC + θ

τI = min(τ0, 4(τC + θ))

(2.4a)

(2.4b)

where, k is the steady-state gain from u to y, τ is the open loop time
constant, τC is the closed loop time constant and θ is the time delay.

For integrating process (i.e. for plants with large time constant such as
levels), we use Eq. 2.5.

KC =
1

k′
1

τC + θ

τI = 4(τC + θ)

(2.5a)

(2.5b)

where, k′ is the slope.

2.5.4 Step 5. Regulatory controller design

2.5.4.1 Controller tuning

We begin with tuning the controllers for the regulatory layer (i.e. level
controller and active constraints).

An secondary decision in decentralized control, is the order of tuning the
PI controllers. This is an important decision in highly coupled processes, and
we base our decision based on effective time delays in the process (Skogestad,
2003). In our case, we use a sequential tuning method, that is we first
tune the level controller, then close the loop, tune the next controller and
repeat the procedure. Table 2.5 gives the tuning parameters for the drum
level control (MD), superheated steam controller (TA), and flue gas outlet
temperature controller (T g

E). Note that we do not need to tune the condenser
pressure controller as we consider it constant, i.e. perfect control. The value
for the closed loop time constant τC is taken quite large to account for any
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unmodelled capacities and holdups, and make the model time scale more
realistic.

Table 2.5: Level and temperature controllers tuning

Type Loop τC [s] KC τI [s]

LC MV5-CV1 10 0.1 40
TC MV6-CV3 20 0.05 10
TC MV7-CV4 15 -0.0008 1

2.5.5 Step 6. Supervisory controller design

We proceed with the supervisory control design and we tune the controllers
using the fuel MV1 and the steam valve MV2 for the structures presented
in Section 2.4. In designing the supervisory control layer, we keep the same
tuning for the regulatory layer (Table 2.5), and follow the same tuning
procedure. Is important to note that we use the initial response in tuning
all controllers for MV2 (steam valve), as we are interested in using it on a
fast time scale (see Figure 2.4 and Section 2.3.2.2). For boiler driven, we
close first the pressure loop. Then, the open loop response from fuel MV1 to
power CV7 has one left-hand-plane zero and one left-hand-plane pole, and
we use a pure I-controller tuned based on the initial response.

Table 2.6: Standard industrial controllers tuning

Floating pressure Boiler driven Turbine driven
MV-CV MV1-

CV7
MV2=0.9 MV1-

CV7
MV2-
CV8

MV1-
CV8

MV2-
CV7

τC s 30 N/A 30 5 15 5
KC 0.0028 N/A 0 -1.48 1.1574 0.0004
τI 40 N/A 0.1 20 50 1
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Table 2.7: Parallel controllers tuning

VPC PI and P control
MV-CV MV1-MV2 MV2-CV7 MV1(PI)-

CV7
MV2(P)-
CV7

τC s 50 5 30 5
KC -2.84 0.0004 0.0041 0.0004
τI 115 1 55 N/A

2.5.6 Step 7. Control structure performance

We test the control structures for setpoint changes and disturbance rejection.

2.5.6.1 Setpoint changes

Figure 2.12a shows the response for the power, and Figure 2.12b shows the
pressure response, while Figure 2.12c and Figure 2.12d show the input usage
for fuel MV1 and steam valve MV2 respectively to a 10% step decrease
followed by 10% step increase in the power setpoint for all five control
structures described in Section 2.4.

2.5.6.2 Disturbance rejection

Figure 2.13a shows the response for the power, and Figure 2.12b shows the
pressure response, while Figure 2.13a and Figure 2.13d show the input usage
for fuel MV1 and steam valve MV2 respectively to a disturbance of 50 ◦C

step increase in the combustion temperature for all five control structures
from Section 2.4. This high change in temperature could be for example
given by changes in the fuel composition or heat quality.

2.5.6.3 Summary of comparison of the five control structures

Comparing the three common industrial standards (floating pressure, boiler
driven, turbine driven) in Figure 2.12, boiler driven structure reacts slower
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Figure 2.12: Closed loop responses to 10% step decrease at time t = 0 s followed
by 10% step increase at time t = 300 s in the power setpoint. Only turbine driven
and boiler driven have pressure control.
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Figure 2.13: Closed loop responses to a step change of 50 ◦C in T g
0 at time t = 0 s.

Only turbine driven and boiler driven have pressure control.
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for change in the produced power, but has the advantage that the fuel rate
(MV1) changes smoothly, and it does not overshoot as for all other control
structures. Turbine driven gives the fastest response to a step change in
power (CV7), yet, in comparison to boiler driven, the pressure (CV8) drifts
significantly from the setpoint in transient operation. These effects can
be explained considering the smaller effective time delay from controlling
CV7 or CV8 using the steam valve MV2, contrast to using the fuel MV1.
The VPC control structure has as similar response to turbine driven for a
power setpoint decrease, while it is the slowest to a setpoint increase because
the steam valve MV2 saturates. In addition, by design, the VPC is tuned
slow, and tuning it faster would result in an aggressive controller with a
high input usage for fuel MV1. In terms of performance the two controllers
(parallel control) seems very good and has the benefit of floating pressure
at steady state.) Considering throttling losses for the steam valve MV2,
both boiler and turbine driven results in higher losses because MV2 needs
to close more to keep the setpoint for power (CV7), compared to the other
control structures that do not have pressure control. To answer the question
if the pressure should be controlled (Section 2.4), we can say that controlling
the pressure gives a faster response when steam valve is used to control the
power, while letting the pressure float minimizes the throttling losses (also
see Section 2.6.1).

The response for a disturbance in the combustion temperature (T g
0 ) shows

that the boiler driven control structure may not be suited for plants with
large variations in this disturbances. An increase in T g

0 increases the enthalpy
of the hot flue gases, which results in more heat transferred in the boiler,
and an increase in the steam pressure (CV8). To decrease the pressure to
its setpoint, the steam valve MV2 has to open (Figure 2.13d), which results
in a higher overshoot for the power produced (Figure 2.13a) compared to
the other control structures. Moreover, in this particular example, the steam
valve (MV2) saturates, and we loose control of the pressure during transient
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operation. Note that the pressure response for boiler driven follows the
floating pressure initially (Figure 2.13b), but then it decreases faster because
the steam valve MV2 is fully open for boiler driven, while for floating pressure
is kept at 90% opening.

2.6 Discussion

2.6.1 Throttling losses

Having the steam valve partly open results in throttling losses. We define
throttling as a reduction in pressure without removal of energy in form of heat
or work, i.e. isenthalpic process. Throttling is irreversible and it translates
into increase of entropy and thereby exergy losses and decrease of available
work (Shinskey, 1978).
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no
throttling

Loss

BA

C

D

(a) Enthalpy-Entropy diagram

pin pt

pout

(b) Steam valve-turbine system

Figure 2.14: Enthalpy-Entropy diagram for an expansion process with and without
throttling, left, and, a steam valve-turbine system indicating the corresponding
pressures, right.

Figure 2.14 shows the enthalpy-entropy diagram for an expansion process
with and without throttling, where the purple lines represent the lines of
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constant pressure. The green path from A to D represents the isentropic
expansion from inlet pressure pin to outlet pressure pout without throttling.
The orange path from A to B represents throttling from inlet pressure pin to
pressure pt. The orange path from B to C represents the isentropic expansion
from the pressure after throttling pt to outlet pressure pout.

Considering constant outlet pressure pout, with throttling, steam is ex-
panded at a higher enthalpy, thus resulting in increase of entropy and loss of
available work. The loss in available work is graphically represented by the
difference in enthalpy between D and C.

Mathematically, the loss of available work is quantified by Eq. 2.6.

WLoss = V̇∆p (2.6)

where, WLoss = loss in available work, V̇ is the volumetric flow (assumed
constant), and ∆p = pin − pt is the pressure drop across the steam valve.

2.6.2 Floating pressure efficiency

The throttling losses mentioned above are relevant if we could replace the
valve by an adjustable small turbine. However, this is not the case here.
Instead, we consider keeping the steam valve fully open and let the pressure
float, leading to a lower steam drum pressure at low loads. This does not in
itself give an increased efficiency in terms of power produced because it does
not require more energy to increase the pressure. However, by lowering the
pressure and thus the temperature in the drum on the steam side, we get
improved temperature driving forces. Thus, with floating pressure operation
we are able to extract more energy from the fuel because we get a lower flue
gas exit temperature. In some cases, we are not allowed to lower the flue
gas exit temperature because of corrosion issues, and then there will be no
efficiency benefit of floating pressure operation. In Table 2.8, we analyse the
new steady-state operation conditions for a decrease in power by 10% from
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nominal (i.e. at 90 % load), both for floating and constant pressure. We
assume that the exit flue gas temperature (CV3=T g

E) is not controlled, that
is, the economizer bypass MV6 is kept closed. We assume that the turbine
efficiency is equal in all cases.

Table 2.8: Comparison of the steady-state values for floating and constant pressure
operation modes at 90 % load without controlling the cold flue gas temperature.

Pressure Power
(MW)

Fuel
(MV1)
(kg/s)

Pressure
(CV8)
(bar)

T g
E

(CV3)
(◦C)

T s
S (◦C) Attemperator

(MV7)
(kg/s)

Floating 14.9 27.79 79.9 128.4 611.4 0.7045
Constant 14.9 27.86 88.05 130.7 616.5 0.74

At 90 % load, the loss in used fuel for constant pressure is only 0.2%, and
the additional pump work needed to boost the pressure by 8 bar accounts to
0.05% of the produced power, which adds to only 0.25%. If the temperature of
the cold flue gas is controlled at its minimum limit (i.e. CV3= T g

E ≥ T g,min
E ),

then the loss in efficiency is reduced to 0.05% (i.e. account for the pump),
both floating and constant pressure operation modes At 65 % load, the energy
efficiency loss for constant pressure operation increases to 1% (without flue
gas temperature control). Therefore, the energy efficiency increases at low
loads in floating pressure operation, though the increase is not significant.
These numbers depend naturally on the process design, especially how
the heat exchange area is distributed between the economizer, drum and
superheater.

2.6.3 Steam turbine control

For a stand-alone turbine, or when a gear box is used to connect the turbine
and the generator, the turbine rotational speed may be used as a degree
of freedom, but we are here considering a turbine connected to the grid
without a gearbox. More precisely, the turbine is connected to an electric
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generator through a shaft and the electric generator is connected to the grid.
In principle, no control of the turbine is needed, because inertia and self-
regulation will imply that all these frequencies (turbine speed ωT , generator
speed and grid frequency ω) are the same at steady state. However, in
practice, speed (frequency) control is needed for two reasons:

1. Local level (speed control of turbine). To protect the turbine/ generator
system from damage caused by fast changes in the turbine speed, we
must keep the turbine frequency close to the grid frequency on a fast
time scale. This is done by installing a steam valve upstream the
turbine (MV2) which controls CV5 = ωt˘ω.

2. Grid level (droop control of grid frequency). The grid frequency ω

should be kept close to its desired setpoint ωsp (e.g., at 50 Hz in Europe
and 60 Hz in the US). The value of ω is directly proportional to the
amount of kinetic energy (inertia) stored in all the rotating equipment
in the grid. Any imbalance between power production and power
demand will therefore change ω. There is a certain self-regulation in
the power demand, but this is not enough. Thus, to maintain a desired
grid frequency ωsp in spite of variations in the power demand, some
of the main power producers must participate in controlling ω. That
is, we need to control CV6 = ω − ωsp. The manipulated variables
for this is the power production for each unit i (Wi), which at steady
state requires manipulating the fuel rates (MV1i). This control task is
divided into primary (droop), secondary and tertiary grid frequency
control.

The local level turbine speed control (CV5) is always present (Kurth
and Welfonder, 2006), (der Autumation, 2003). As mentioned, the inherent
self-regulation will keep CV5=0 at steady-state. Thus, integral action is not
needed for control of CV5, so in practice a proportional controller (droop)
is used. We will not discuss the control of CV5 in this paper, because it is
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generally considered a part of the equipment protection, and is not available
for control engineers. Furthermore, because the self-regulation of CV5 is fast
anyway, the design of this controller will not affect the rest of the control
system.

Next consider grid frequency control. Not all power producers participate
in grid frequency control, but the ones that do usually get a higher power
price. Let the power production (actually, the setpoint for power production)
from each producer be written as W sp

i = W sp
i,0 +∆W sp

i where ∆W sp
i comes

from the primary frequency control (proportional droop) and W sp
i0 from the

secondary frequency control. Figure 2.15 shows the primary and secondary
control loops for plant i in an isolated area with N power plants participating
in grid regulation. Note that the inner turbine control loop are not explicitly
shown, but this is inside the Power plant i block.

Let us first consider the primary droop control which takes place on a
fast time scale.

Ideally, we want to avoid centralized coordination of the participating
power producers at the fast time scale. The solution is then that each
producer has local control of the grid frequency, CV6. However, these local
controllers cannot have integral action, because otherwise there is no unique
steady state, and one may even get into cases where the controllers fight
each other, possibly resulting in one power plant closing down and another
reaching full capacity (Cohn, 1984), (Åström and Hägglund, 2006).

To solve this issue, we use proportional control of CV6= ω − ωsp. This
gives a unique steady state, where the power change from each producer i is
uniquely given by the change in grid frequency, ∆W sp

i = −1/Ri(ω
sp − ω).

Here 1/Ri is the proportional controller gain, typically between 3 and 10
%/%, where Ri is the steady-state process gain from power to frequency.
The MV available for achieving the desired change in power production
(∆Wi) is as mentioned the fuel (MV1), but to speed up the dynamic response
one frequently makes use of the steam valve (MV2). The required response
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time is usually specified in the contract for each producer. Note that the
steady-state effect of MV2 on the power production is negligible (Figure 2.4).

Next consider the secondary frequency control which involves a central-
ized controller with integral action. Integral action is needed because the
proportional action in droop control results in a steady-state offset in fre-
quency. This controller changes the bias W sp

i,0 in the power setpoint for each
producer (adjusted with a gain αi) on a slow time scale. Finally, for larger
changes in power demand on a longer time scale, it may be necessary to start
up or close down power production (tertiary frequency control).

When a plant participates in droop control, the fuel (MV1) has to be
lower that its maximum, which gives a loss in power production. Furthermore,
for fast response to changes in power demands, the steam valve (MV2) has
to be partly closed (e.g. 90 % opening) at nominal operation, which gives
a loss in efficiency. These issues explain why producers who participate in
droop control get a higher electricity price.
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Figure 2.15: Primary (green) and secondary (blue) frequency control for power
plant i in an area with N power plants participating in grid frequency control
(adapted from (Wood et al., 2014).)

2.6.4 Operation with given fuel rate (MV1)

In this case, MV1 must be used to control the TPM. Hence, from a steady-
state point of view, we have no degrees of freedom left to control the power
produced, and the steam cycle becomes a ”swing power producer“ (Fig-
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ure 2.16). In this case, the power plant clearly cannot participate in grid
frequency control. More importantly, there must be some other means (not
shown) to make the power output balance the fuel rate by controlling the
steam pressure. For example, there could be another steam flow added to
the turbine inlet or excess steam could be withdrawn and used for other
purposes. In addition, to make sure that the pressure is kept within bounds,
it is suggested (Figure 2.16) to give up controlling the fuel rate when a
pressure constraint is reached (i.e. p = pmax or p = pmin).

G

MV2
Fuel

MV1

MID

FC

PC

PC

F sp

pmax

p

pmin

Figure 2.16: Control structure with given fuel rate (MV1) and fully open steam
valve (MV2) to maximize power production. The mid-selector gives up controlling
the fuel rate when a pressure constraint becomes active. Under normal conditions,
pressure is controlled by some other manipulated variable (not shown), for example,
by producing steam.

2.6.5 Influence of level control time constant

Similarly to floating pressure, the drum level can be let to float between
it’s minimum and maximum limits, to utilize the stored energy in the hot
water. This can be achieved with a slow level control, in which case, the
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drum level would be allowed to decrease to a lower level and the steam flow
would be longer sustained when it is required to produce more power, while
feedwater is slowly pumped into the system. Note that with tight (fast) level
control, cold feedwater is pumped rapidly in the system which decreases the
drum temperature faster in transient operation. However, for the studied
simulation case, a slow level control showed limited improvement of the
dynamic performance. Figure 2.17 shows the power response for setpoint
changes (10% decrease at time t = 0s and 10% increase at time t = 300s

) for floating pressure (Figure 2.17a), boiler driven (Figure 2.17b), VPC
(Figure 2.17c) and two controllers (Figure 2.17d). Turbine driven has an
insignificant change. Note that the larger the closed loop time constant (τC),
the slower the drum level control is.

2.6.6 Effect of modelling simplifications

The steam cycle model used in this work makes use of several simplification
with the purpose of developing a process model becomes easier to develop,
use and simulate. The complete set of simplification assumptions are detailed
in Appendix 2.8, while their practical implications are discussed next.

The main real effects not included are unmodelled dynamics and effective
delays, and more rigorous (non-ideal) thermodynamics for the water-steam
side.

The combustion dynamics are not included, as we assume we can directly
manipulated the hot flue gas (MV1) resulted from the combustion process.
Depending on the type of fuel used, this may or may not good simplification.
For example, if the fuel is a gas, the combustion process happens at a
much faster scale than the steam cycle dynamics. On the other hand, these
dynamics may be in the order of minutes for other types of (solid) fuels such
as biomass, coal or waste.

The wall capacities are not included, meaning that the thermal inertia of
the steam cycle is smaller than in reality. In addition, each of the three heat
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Figure 2.17: Influence of the tuning of the drum level controller on the power
response to setpoint changes.
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exchangers are modelled as one cell instead of a distributed cell model. The
steam turbine is modelled as one expansion stage. In reality, these effects
would contribute to higher effective delays. Overall the dynamic response of
the modelled cycle is probably faster than reality.

The steam thermodynamics are assumed to be ideal, that is the water-
steam enthalpy is assumed to be a linear function of temperature only. More
rigorously, at high pressure and temperature, the steam enthalpy is a highly
nonlinear function of both temperature and pressure. One effect of this
assumption is higher turbine inlet temperature when using ideal thermody-
namics, cause by neglecting the temperature drop over the isenthalpic steam
valve throttling.

Nonetheless, these simple models are suitable for the purpose of studying
and understanding the dynamic response of the different control structures.

2.6.7 Implications of process simplification

In a real industrial implementation, a steam cycle is more complex, and
many more process configurations exists than the simple process analyzed in
this work. For example, it may have different pressure levels, a deaeraor for
reducing the feedwater oxygen content or steam extraction to provide heat
utility.

A steam cycle operating at low, intermediate and high pressure levels,
will have for each level the corresponding constraints, MVs and CVs as for
only one pressure level.

Extracting steam for process heating at different pressure levels, will act
as a disturbance for the existing control loops. With respect to operating
combined heat and power cycles, the optimal steam level that maximize
efficiency (or minimizes cost) should be identified.

A deaerator is installed downstream of the condenser and receiving steam
extracted from the turbine to deadsorb oxygen from feedwater and prevent
boiler corrosion. For consistent inventory control in the steam cycle, this
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level will be left uncontrolled.

The exceptions are the very few offshore installations where simpler steam
cycles, with one pressure level and once-through boiler are preferred due
to smaller footprint and simpler operation. As mentioned for once-through
boilers there is no drum level to control, and the feedwater flow is used to
control the superheated steam temperature.

2.7 Conclusions and final remarks

In this work, we used the systematic framework of plantwide control to
analyse the control and optimal operation of a simple steam cycle with one
pressure level, drum and condensing turbine.

After controlling the unstable inventory (drum level CV1), and the active
constraints: condenser pressure CV2, superheated steam temperature CV4,
cold flue has temperature CV3, we have two degrees of freedom left: the
fuel MV1 and the steam valve MV2. MV2 only has a dynamic effect on the
power produced, as shown in the response to setpoint changes in Figure 2.12
and in the disturbance rejection response in Figure 2.13.

At low loads, letting the pressure float is slightly more efficient. By keeping
the pressure constant the dynamic performance is improved, especially for
the turbine driven operation (Figures 2.12 and 2.13).

Of interest for future work is a more comprehensive analysis of the control
implications of variable heat sources with varying inlet temperature. The
extend to which the existing the storage capacity of the process (e.g., drum
and pipeline capacity) can be utilized as a short-time buffer between supply
and demand, should also be further investigated.
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Table 2.9: Design parameters

Parameter Value Unit
UAE 95.12 kW/°C
UAD 46.4 kW/°C
UAS 19.94 kW/°C
Cv,D 10 kg/°C
Kv 2.32 kg/bar

ϕD 3.625 kg/s
√
K/bar

M0 7.56 pu MW pu /rad/s
D0 2 pu MW pu /rad/s

2.8 Appendix

2.8.1 Design parameters

where pu represents per-unit, and it is used in electrical system to normalize
a given parameter wrt. a selected base value (i.e., ratio to a base value).

2.8.2 Model thermodynamics

Assumptions

(A1) Constant specific heat for each fluid (water, steam and flue gas);

(A2) The reference temperature is T ref = 0 ◦C;

(A3) The boiling reference temperature is T refB = 576 ◦C (drum nominal
temperature);

(A4) Ideal gas behaviour for steam;

(A5) Saturated steam pressure follows Antoine equation (Eq. 2.8b).
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Considering a constant cp, the specific enthalpy for the gas, water and steam
has a linear dependency on the temperature, as shown in Eq. 2.7.

∆Hg = cgp(T
g
j − T ref ) ∀j ∈ (i, S,D,E)

∆Hw = cwp (Tj − T ref ) ∀j ∈ (P,E)

∆Hs = cwp (T
b − T ref ) + csp(Tj − T b) + ∆Hv(T b)

∀j ∈ (D,S,A, T )

(2.7a)

(2.7b)

(2.7c)

Table 2.10 shows the specific heat for each component.

Table 2.10: Specific heat

Component cp Unit
water 4.18 kJ/kg/°C
steam 3 kJ/kg/°C
hot flue gas 1.25 kJ/kg/°C

The saturation pressure in the drum is computed using Antoine relation
(Eq. 2.8b) as a function of the temperature.

pD = 10α

α = A− B

TD + C

(2.8a)

(2.8b)

where T is in K and pD is in bar, and the constants are A = 5.11564B =

1687.537C = 42.98 (Reid et al., 1987).

2.8.3 Economizer and bypass model

Assumptions

(A6) Constant inlet temperature (due to tight condenser pressure control,see
below);
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(A7) Constant water holdup (→ neglect the mass balance);

(A8) Static mixing for the bypass and economizer outlet streams (i.e. fast
heat and mass dynamics and negligible holdup)(→ static mass and
energy balances);

We write a dynamic energy balance in temperature form for the steam side,
and an algebraic energy balance for the gas side.

mE

TP

mE

TEME

mG, T
g
DmG, T

g
E

mBE

mB

mM

TM

Figure 2.18: Economizer

dTE

dt
=

1

ME

(
mE(TP − TE) +

QE

cwp

)
0 = mgcgp(T

g
D − T g

E)−QE

QE = UAE

(
T g
D + T g

E

2
− TD + TE

2

)
TM =

mETE +mBETP

mM

(2.9a)

(2.9b)

(2.9c)

(2.9d)

2.8.4 Mass flowrates model

The flowrate for the pump, economizer bypass and attemperator are directly
given by (PI)-controllers (we assume fast inner cascade controllers on the
valve position), according to the general Eq. 2.10. Antiwindup with a
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tracking time constant equal to the integral time (τT = τI) is used.

mi = m0
i +KC,iei +

KC,i

τI

∫ t

0
ei(t)dt+

1

τT,i

∫ t

0
em,i(t)dt

ei = yspi − yi

em,i = mi,p −mi

mi,p = max(mi, 0)

(2.10a)

(2.10b)

(2.10c)

(2.10d)

i ∈ (P,AE,BE) and y ∈ (MD, T
g, TS)

The remaining flowrates are computed from steady-state mass balances,
according to Eq. 2.11.

mE = mP −mAE −mBE

mD = CV,D(pD − pS)

mS = mV −mAE

mV = zV KC(pS − pT )

(2.11a)

(2.11b)

(2.11c)

(2.11d)

2.8.5 Drum model

Assumptions
(A9) Perfect mixing;

(A10) Equal temperature in liquid and vapour phases;

(A11) Negligible vapour holdup (compared to the liquid holdup);

(A12) Saturated steam;

(A13) Outlet flow is given by a linear valve (fully open) equation as a function
of the pressure drop;
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(A14) Fixed vaporization in the drum, i.e. the drum inlet is saturated liquid
water, and the outlet is saturated vapour. This means that the vapor-
ization is know a-priori. Note that fixing the vaporization point may
not be optimal for operation, as the heat transfer area is not optimally
utilized. However, a variable phase transition point raises additional
modelling challenges, which we want to avoid;

For the drum, we write a dynamic mass (Eq.2.12a) and energy balance on
temperature form on the steam side (Eq.2.12b), and algebraic energy balance
on the gas side(Eq.2.12c).

mM

TM

mD

TD, pD

MD

mg

T g
S

mg

T g
D

Figure 2.19: Drum

dMD

dt
= mM −mD

dTD

dt
=

1

MDcwp
(mM (HM − cspTD) + . . .

−mD(HD − cspTD) +QD)

0 = mgcgp(T
g
D − T g

S)−QD

QD = UAD

(
T g
S + T g

D

2
− TM + TD

2

)

(2.12a)

(2.12b)

(2.12c)

(2.12d)
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2.8.6 Superheater and attemperator models

Assumptions

(A15) The steam holdup accounts for the entire steam holdup in the cycle
(→ need to consider a dynamic mass balance );

(A16) Static mixing in the attemperator (i.e. fast heat and mass dynamics
and negligible holdup) (→ static mass and energy balance);

We write a dynamic mass (Eq.2.13a) and energy balance on temperature
form on the steam side (Eq.2.13b), and algebraic energy balance on the gas
side(Eq.2.13c).
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Figure 2.20: Superheater and attemperator

dMS

dt
= mD −mS

dTS

dt
=

1

MScsp
(mD(HD − cspTS) + . . .

−mS(HS − cspTS) +QS)

0 = mgcgp(T
g
0 − T g

S)−QS

QS = UAS

(
T g
0 + T g

S

2
− TS + TD

2

)
0 = msHs +mAHP −mAHA

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)
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2.8.7 Steam valve, turbine and generator models

Assumptions. Steam turbine valve
(A17) Linear valve equation and pressure drop;

(A18) Isenthalpic;

(A19) Negligible holdup;
Assumptions. Turbine

(A20) Turbine map: constant mass flow coefficient (ϕ = m
√
T

p );

(A21) Isentropic expanssion with 100% efficiency;

(A22) Speed is given by generator frequency;

(A23) Neglijable holdup;
Assumptions. Generator

(A24) Another power plant is responsible for keeping the frequency at the
nominal value, therefore we can only use a P-controller for frequency
control;

2.8.8 Condenser models

Assumptions
(A25) Tight pressure control, i.e. constant condenser pressure (→ is not

modelled and the cycle is open);

zV

W G

ωmV

TA

mT

TT

mT
TC

mBT

Figure 2.21: Steam turbine
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mT = mV −mBT

mBT = 0

0 =
mT

√
TA

pT
− ϕd

TC = TT

(
pC
pT

)(R\csp)

0 = W +mT c
s
p(TT − TC)

dω

dt
=

1

Mg
(P − L−Dg(ω − ω0))

(2.14a)

(2.14b)

(2.14c)

(2.14d)

(2.14e)

(2.14f)

2.8.9 General for heat exchangers models

Assumptions
(A26) Constant and negligible holdup for the hot side;

(A27) Constant UA (heat transfer coefficient U (W/(m2K) times heat surface
area A (m2);

(A28) Temperature difference (∆T ) is the difference between the algebraic
mean on each side.

(A29) Neglected wall capacity
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feedforward control

65





Chapter 3

Transformed inputs for
linearization, decoupling and
feedforward control

The goal of the previous chapter was to have a better understanding of the
operation and control problem of steam cycles. However, it quickly became
apparent that control of industrial power plants has been developed over
many years to a stage where they are adopted by many plants and work
extremely well and it is not straightforward to make improvements.

Many of these control structures make extensive use of nonlinear model-
based calculation blocks, function blocks, or ratio stations to provide feed-
forward action, decoupling or linearization (adaptive gain). Examples from
steam cycles include superheated steam enthalpy control for disturbance
rejection (Shinskey and Louis, 1968), two-elements and three-elements drum
level control (Lindsley, 2000) or use of simplified reference dynamic models for
decoupling and linearization for coordinated load control (Welfonder, 1999).
Examples related to chemical processes are available in Shinskey (1981),
ch.8. These include air-to-feed ratio control for a Claus sulphur process,
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manipulating the ratio reflux-to-distillate for pressure control to provide
decoupling. In the latter, changes in the distillate flow used to control the
top composition, is reflected immediately in the reflux flow without needing
to wait for a change in the column pressure, thus reducing interactions and
improving the composition response. An example for stabilizing a distillation
column with two reboilers and controlling the two reboiler levels and column
temperature by means of “reversing” the static process model (given by mass
and energy balances) is also provided. These examples are case specific based,
and a systematic theory for developing these calculation blocks is missing. It
is therefore one of the the goal of this work to give some theoretical back-
ground for these nonlinear model calculation blocks studied in the context
of nonlinear input and output transformations. The question we want to
answer is

How do we derive good transformed inputs in a systematic man-
ner?

This part is based on the papers:

1. “Transformed manipulated variables for linearization, decoupling and
perfect disturbance rejection ” (Zotică et al., 2020a)

2. “Input transformation for linearization, decoupling and disturbance
rejection with application to steam networks ” (Zotică and Skogestad,
2021)

3. “Control of steam bottoming cycles using nonlinear input and output
transformations for feedforward disturbance rejection ” (Zotică et al.,
2022)

4. “Transformed inputs for linearization, decoupling and feedforward con-
trol” (Skogestad et al., 2023).
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3.1 Motivating example: three elements drum level
control

LC

×

+
+

FC

p1 p2

hs

hmeasured
level

Area Ar

vs

d
measured
steam
flow

ws = vsAr + d

w

measured
feedwater
flow

u = z

Figure 3.1: Cascade implementation of the three elements drum level control.
Adapted from (Lindsley (2000), ch.6). The variables’ names and colors reflect the
block diagram for transformed inputs in Figure 3.2

This section briefly explains the three elements drum level control solution,
and motivates the introduction of transformed inputs theory later in this
chapter.

The three elements control was introduced to speed-up the response to
a disturbance in the steam demand compared to the conventional feedback
solution where the drum level is controlled by manipulating the feedwater
flowrate (also see the process flowsheet in Figure 2.3). The name is derived
from the three measurements used: drum level, the steam flowrate and
the feedwater flowrate. It is widely applied (ABB, 2022; Lindsley, 2000),
and many implementations are available. One of them, a cascade based
implementation, is shown in Figure 3.1. As we will see later, this is equivalent
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to the feedback-based implementation of transformed inputs (see Figure 3.4c).

The control objective is to provide fast feedforward disturbance rejection
for changes in the steam demand. It uses the drum steady-state mass balance
to set the feedwater flowrate equal to the steam demand. The response
is improved compared to feedback only because it accounts for process
delays, nonlinearities in the valve characteristics and inaccurate drum level
measurement caused by the shrink and swell effect.

The shrink and swell effect may happen when steam demand increases
reducing the drum vapour mass and thus decreasing pressure. As a result,
the saturation temperature also decreases and, with the same heat input, the
evaporation rate increases producing more bubbles entrapped in the liquid
causing an “artificial” increase of the liquid level (swelling), although the mass
is decreasing. There is some self-regulating effect and eventually with the
same heat input, the steam outflow decreases when the pressure decreases.

3.1.1 Deriving the model-based flowsheet in Figure 3.1.

This example is given in the framework of the input transformation theory
later introduced in Section 3.4. However, it should be easy to follow without
knowing the theory.

Assume for simplicity a drum with constant cross-sectional area (Ar [m2])
and the mass balance

dh

dt
=

1

Ar
(qF − qS) (3.1)

where the feedwater flow qF [m3/s] may be expressed by the valve equation

q = Cvf(z)
√

|∆P | (3.2)

where Cv is valve coefficient, f(z) is the valve characteristic and ∆P = p1−p2

is the pressure drop over the valve with the opening z.

Defining the right-hand side of the mass balance equation as a transformed
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input v,

v =
1

Ar
(qF − qS) (3.3)

which replaces the feedwater flow qF to control the level h.
This is selected such that when substituted into the model gives the

transformed system
dh

dt
= v (3.4)

which is independent of disturbance qS .
To implement the transformed input v, we need to generate the feedwater

flowrate by solving (“reversing”) Eq. 3.3 for qF knowing the controller output
v and the measurement qS (the red circle in Figure 3.1).

qF = vAr + qS (3.5)

Finally, to implement qF an inner flow-controller is used which manip-
ulates the valve position z. This is cascade control which linearizes the
nonlinear valve characteristic f(z) in Eq. 3.2.

3.2 Introduction to transformed inputs

Figure 3.2 shows the block diagram for transformed inputs for achieving
linearization, decoupling and feedforward disturbance rejection. In Figure
3.2, u is the original (physical) input while v is the transformed input which
depends on u and other variables. The main idea is that the controller C (or
in some cases the operator) sets the value of the transformed input v rather
than the physical input u.

Shinskey (1981) (on page 119) writes in relation to selecting input and
output variables for control:

“There is no need to be limited to single measurable or ma-
nipulable variables. If a more meaningful variable happens to
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+
− Controller C

u = g−1(v, w, y, d)
Inverse input
transformation

Process
ys e v u

d

y

w

Transformed system

Figure 3.2: Use of transformed inputs v. For example, the transformed input
could be the ratio v = g(u, d) = u

d , and the “inverse input transformation” block
that inverts this relationship would then be u = g−1(v, d) = vd.

be a mathematical combination of two or more measurable or
manipulable variables, there is no reason why it cannot be used.”

We formalize the above statement and define the objective of introducing
the transformed input v as: The transformed input v replaces the physical
input u as the manipulated variable for control of the output y, with the
aim of simplifying the control task by including elements such as decoupling,
linearization and feedforward action.

Generally, the transformed input v is defined as a nonlinear static function
g of the physical input u and other variables:

v = g(u,w, y, d) (3.6)

where the specific function g is a design choice, and the other variables are:

v = transformed inputs

u = physical inputs

d = measured disturbances

y = controlled outputs (measured)
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w = other measured dependent variables (states).

Note that in this work, we do not include dynamic elements in the
definition of the transformed input v, although this is frequently done in
industrial practice.

In Eq. 3.6 we assume that we can measure disturbances d and some of the
internal variables (states) w. This is often not the case for real applications,
and there are two alternatives to deal with this. First, we can simplify the
expression for the ideal transformed variable by keeping only parts of the
benefits, for example decoupling, and leave the disturbance rejection to the
outer feedback controller C. Second, we can use an observer to estimate
d or w, though this is outside the scope of this work. To implement the
transformed inputs we need to find the physical input u by solving a set of
nonlinear algebraic equations that give u as a function of v, y, w, d.

Examples of transformed inputs from the process industry

v = u+ d

v =
u

d

v = u1 − u2

v =
u1
u2

v = w

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

Such transformed inputs are often introduced using a physical understanding
of the process. The transformed input v = u + d in Eq. 3.7a provides
feedforward action from a measured disturbance d, for example, in water
make-up systems where u and d represent two feedrates and we want to control
the combined flowrate u+ d. The ratio v = u

d in Eq. 3.7b gives feedforward
action and linearization, for example when u and d are two feedrates and
we want to control the quality (e.g., composition or temperature) of the
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combined feed. The transformed variables with two inputs such as the
difference v = u1−u2 in Eq. 3.7c or the ratio v = u1

u2
in Eq. 3.7d may provide

decoupling.
Starting from a static or dynamic process model, we derive ideal trans-

formed inputs which achieve linearization, decoupling and perfect disturbance
rejection.

To implement transformed inputs, we need to generate the physical input
u from a given value of v = g(u,w, y, d). Shinskey (1981) calls this “reversing
the process model”. There are two main ways of generating this inverse:

A. Model-based inverse

B. Feedback-based inverse using a cascade implementation with an inner
controller for v or w.

3.3 Literature review

The following paragraph give a short overview of a few selected methods
relevant to this work. The focus is on methods that are general rather than
case specific applications.

Shinskey (1981) presents several examples from his industrial process
control experience where nonlinear model-based calculation blocks are used
to provide feedforward action, decoupling or linearization for a nonlinear
system. These calculation blocks can often be traced back to a steady-state
nonlinear process models. However, there is no academic literature that offers
a systematic derivation of these calculation blocks based on static process
models.

On the other hand, there is a large body of academic literature that uses
a thorough mathematical treatment to transform a dynamic nonlinear model
into a dynamic linear system. These methods may also be extended to provide
disturbance rejection (sometimes called disturbance decoupling) or input-
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output decoupling for special classes of systems (Isidori, 1995; Khalil, 2015;
Nijmeijer and Schaft, 2016). A comprehensive review of specific nonlinear
control methods for process control applications is presented in (Bequette,
1991).

Perhaps the better known and studied in nonlinear control course of
these methods is feedback linearization (Isidori, 1995; Khalil, 2015). In
its pure form, feedback linearization uses change of coordinates and a full
static state feedback law to render the entire input-state map linear. This
requires that a full state measurement is available (or estimated) and that
the zero-dynamics are stable (i.e., equivalent to LHP-zero for linear systems,
so RHP-zeros are not allowed). Feedback linearization uses elements of
differential geometry and applies for systems with relative order r greater
or equal to 1. The relative order represents the number of times the output
needs to be differentiated wrt. time such that the input appears explicitly.
For linear systems, the relative order represents the difference between poles
and zeros. A similar relative order (ρd) can be defined for disturbances.
Then, perfect disturbance rejection can be achieved only if ρd ≤ r (Isidori,
1995; Henson and Seborg, 1997). Note that this is a physical limitation of
the system and not of the method itself, as a higher relative order from
disturbances implies a smaller effective delay from disturbance d to output y
than from the input u to output y.

For systems that either cannot be fully linearized or it is desired to
preserve some of their nonlinear dynamics, only the input-output map may
be linearized. The remaining dynamics of the system are included in the
zero-dynamics of the system (Isidori and Ruberti, 1984; Henson and Seborg,
1997). Systems that cannot be linearized include cases where the full state
measurement is not available, or the relative order of the systems is lower
than the system’s order (n).

For higher order systems, the transformed system becomes a chain (series)
of linear differential equations. Most examples in the literature transform
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the nonlinear system into an integrator system, which brings additional
control limitations and a state-feedback controller is needed to stabilize the
system. However, there is no requirement of transforming the systems into
an integrator and, for process control applications, we generally want to
avoid transforming the nonlinear system into an integrating system unless
it was originally already integrating. For example, in (Nijmeijer and Schaft,
2016) (ch.5 and 6) a nonlinear system affine in the input of the type

dx

dt
= f(x) + g(x)u (3.8)

is transformed into a linear first-order system of the type

dx

dt
= Ay +Bv (3.9)

.

Similarly, for input-output linearization, Isidori and Ruberti (1984);
Bastin and Dochain (1990) proposes obtaining a first order model linear
input-output of the form dy

dt = Ay + Bv. This is also the methods used in
this work for transformed input derived from a dynamic model.

In some cases, the state feedback law may not be possible to implement,
for example because the model equation becomes singular for some operating
points. To resolve this issues, a dynamic state feedback can be implemented
(Lee et al., 2016). Essentially, this is a pure integral controller which solves
numerically without the need to invert the transformation to generate the
physical input, similar to the feedback-based implementation described later
in Section 3.5.

Another method that provides nonlinear feedforward and linearization
is reference system synthesis (Bartusiak et al., 1989). The focus is not on
linearizing the original system, but rather on providing disturbance rejection
and offset-free control. A nonlinear feedforward and feedback control law is
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derived based on a nonlinear model such that the closed-loop behaviour of
the system follows a desired trajectory given by a set of integral-differential
equations, which may be linear or nonlinear. For systems with relative order
r = 1 it is equivalent to the differential geometric approaches of input-output
linearization.

Full mathematical treatment of feedback linearization with necessary
and sufficient conditions is presented in several nonlinear control books, e.g.,
Isidori (1995); Khalil (2015); Nijmeijer and Schaft (2016). This literature
provides a mathematical basis for issues related to the invertibility and stabil-
ity of the transformations proposed in this work. However, the mathematical
treatment is at a quite low level, such that these results may find their way
into industrial practice.

3.4 Derivation of ideal transformed inputs

This section explains how to systematically derive transformed inputs and
outputs starting from either a steady-state or dynamic model.

Consider a n × n system with n inputs u and n outputs y. The goal is
to use the steady-state or dynamic model equations to define n transformed
inputs v which ideally give linearization, decoupling and disturbance rejection.

Section 3.4.1 presents the derivation from a steady-state process model,
while Section 3.4.2 shows the derivation for transformed inputs from a
dynamic model. Section 3.4.3 discusses how in some cases, the model and
thus the expression for transformed inputs may be simplified by introducing
additional measured state variables (e.g., flowrates). Section 3.4.4 shows
how in other cases, the model becomes simpler by introducing a transformed
output (e.g., enthalpy). As shown in the example in Section 3.7, we may also
use a combination of steady-state and dynamic models.
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3.4.1 Obtaining ideal transformed system from a steady-state
process model

There are many examples from the process industry for specific application
that use steady-state process models to derive nonlinear feedforward or
decoupling blocks (e.g.,Shinskey (1981)) that on a closer inspection are similar
to the static input transformation derived below. While this derivation may
seem trivial, its purpose is to provide a formal theory that can be used
to move from case specific applications to a systematic approach. This
section discusses the ideal transformation with no model error and perfect
measurement of d.

We start from a steady-state process model with n + nx independent
equations given in its general form by Eq. 3.10.

0 = fx(u, x, y, d) (3.10)

where x are internal variables (states) and nx is the number of additional
equations necessary to have determined system.

Assuming that we can separate the variables x and y, we can use the nx

extra equations to eliminate the internal variables x to obtain a model (at
least formally) as given in Eq. 3.11.

0 = f(u, y, d) (3.11)

Assuming that all model equations in Eq. 3.11 independent, we can
separate y on the LHS and all the other variables on the RHS to obtain a
steady-state nonlinear model in the form of Eq. 3.12.

y = f0(u, d) (3.12)

where the subscript 0 in f0 denotes a steady-state (algebraic) function.
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Using the RHS of Eq. 3.12 and by introducing a tuning parameter B0,
we define the ideal static transformed input as:

v0 = B−1
0 f0(u, d)︸ ︷︷ ︸

g(u,d)

(3.13)

where the matrix B0 is free to choose. The selection of B0 is discussed in
Section 3.4.1.1, for example, we may select to have a steady-state gain of 1.

From Eq. 3.13 we have that f0(u, d) = B0v0 and substituting it into
Eq. 3.12 yields the transformed system:

y = B0v0 (3.14)

The transformed system in Eq. 3.14 is linear and independent of disturbances,
and for the multivariable case it is also decoupled if we select B0 to be a
diagonal matrix.

To implement the transformed input v0, we solve Eq. 3.13 with respect
to u given all other variables to obtain the ideal input

u = g−1(v0, d) (3.15)

where we assume we can explicitly or numerically find g−1. This implemen-
tation is discussed in Section 3.5.

Note that it may not be necessary to explicitly derive the expression for
f0(u, d) in Eq. 3.12. Rather, since the objective is to find the ideal input
u = g−1(v0, d) that gives the transformed system y = B0v0 in Eq. 3.14, it
may be simpler to keep with the original model equations in Eq. 3.11 or
Eq. 3.10, and solve these with respect to u for a given value of y = B0v0

to obtain u = g−1(v0, d). This solution can be done either analytically or
numerically, but a numerical solution is usually necessary for complicated
models, for example for the heat exchanger discussed in Section 3.8.
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3.4.1.1 Choice of the tuning parameter B0

The choice of B0 is not critical, as it can be compensated by changing the
gain of the outer controller C. It is more intuitive to select

B0 = In (3.16)

such that the ideal transformed input is simplified to the right-hand side of
the model in Eq. 3.12

v0 = f0(u, d) (3.17)

and the transformed system becomes

v0 = f0(u, d) (3.18)

In this case it may be tempting to think of the transformed input v0 as
the setpoint for the output y, but this is misleading because we usually have
an outer feedback controller C which has the “true” setpoint ys as one of its
inputs, whereas v0 is the output from C (see Figure 3.2). Thus, it is better
to think of v0 as the transformed process input, or possibly as a modified
setpoint as it is done in (Bastin and Dochain, 1990).

3.4.2 Obtaining ideal transformed input from a dynamic
process model

The ideal transformed input (vA) derived in this section is closely related to
the theory of feedback linearization for a system with relative order r = 1,
that is the input u explicitly appears in the time derivative of the output y.

We start from a nonlinear dynamic model written in the form of Eq. 3.19.

dy

dt
= f(u, y, d) (3.19)
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Using the right-hand-side of the model in Eq. 3.19, and by introducing
the tuning parameters the matrices A and B, we define the ideal transformed
input vA for as

vA = B−1(f(u, y, d)−Ay)︸ ︷︷ ︸
g(u,y,d)

(3.20)

where the subscript A in vA denotes a transformed input derived from a
dynamic function f and with a tuning parameter A. The tuning of the
matrices A and B is discussed in Section 3.4.2.1.

From Eq. 3.20 we have that f(u, y, d) = BvA + Ay which substituted
into Eq. 3.19 gives the transformed system from Eq. 3.21.

Then assuming no uncertainty (no model error for f(u, y, d) and perfect
measurements of d and y) the transformed system becomes

dy

dt
= Ay +BvA (3.21)

The transformed system in Eq. 3.21 is linear and independent of distur-
bances, and for the multivariable (n×n) case, it is also decoupled if we select
A and B to be diagonal matrices.

Note that we have assumed that we can generate from the transformed
input vA the exact corresponding physical input u using Eq. 3.22.

u = g−1(vA, y, d) (3.22)

To guarantee invertibility in Eq. 3.22, it is possible to restrict the class
of models to guarantee that we always have a solution, as is done in the
literature on feedback linearization. In particular, in this literature it is
assumed that the model is linear in the input u, that is, that we can write
the right-hand side of Eq. 3.19 as shown in Khalil (2015) (p. 293).

f(u, y, d) = f1(y, d) + f2(y, d) u (3.23)
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where the functions f1 and f2 must satisfy certain smoothness conditions.
Interestingly, many process models are linear in the flows, so if we make use of
inner flow controllers then many process models satisfy Eq. 3.23. Nevertheless,
we do not make this assumption in this paper, so the invertibility may need
to be studied separately for each application.

3.4.2.1 Choice of tuning parameter B

To achieve dynamic decoupling in Eq. 3.21 for the multivariable case, we
need to select both matrices B and A to be diagonal. Dynamic decoupling
is desirable because the optimal outer controller C is then diagonal (single-
loop controllers). Otherwise, the choice of B is not critical as it may be
compensated by changing the gain in the feedback controller C.

One simple choice is B = I, which is often used in feedback linearization.
Alternatively, to keep the initial (high-frequency) gain from vi to yi equal to
that of the original system (from ui to yi) we may choose B = diag(B̃) =

diag(∂f/∂u)∗ where the differentiation is performed at the nominal operating
point ∗. However, in most of the examples in this paper we select

B = −A (3.24)

because this gives y = vA at steady state (where dy
dt = f(u, y, d) = 0). 1 With

the choice B = −A, the transformed input and corresponding transformed
system become

vA = −A−1f(u, y, d) + y

dy

dt
= A(y − vA)

(3.25a)

(3.25b)

Equivalently, we may introduce the time constant matrix of the transformed

1Interestingly, since y = IvA at steady state, where I is the identity matrix, the choice
B = −A gives decoupling at steady state even if A (and thus B) is not diagonal. However,
to also get dynamic decoupling, we must choose A to be diagonal.
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system

TA = −A−1 (3.26)

and the transformed input and corresponding transformed system may be
written as

vA = TAf(u, y, d) + y

TA
dy

dt
+ y = vA

(3.27a)

(3.27b)

3.4.2.2 Choice of tuning parameter A

The choice of the parameter A (or equivalently of TA = −A−1) is important
as it determines the dynamics of the transformed system. However, the
importance should not be overemphasized, since we can change the closed-
loop dynamics by design of the outer controller C. Note that we must
choose A < 0 for the transformed system to be stable. We discuss below
three choices for the tuning parameter A, which we will then compare in
simulations using a mixing example in Section 3.11.2.

1. Keep the original dynamics, A = Ã. In most cases we propose
selecting

A = Ã ≡
(
∂f

∂y

)
∗

(3.28)

where the derivative of f wrt. y is evaluated at the nominal point ∗ of
operation. With this choice, the time constant of the transformed system
is equal to the time constant of the linearized system. This choice also
minimizes the effect of the measurements y on the transformed variables vA.

Proof: Linearizing the “original” nonlinear model dy
dt = f(u, y, d) yields

dy

dt
= df = Ãdy + B̃du+ B̃ddd (3.29)
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where the ∼ variables correspond to the linearized dynamics of the original
system Ã = (∂f/∂y)∗, B̃ = (∂f/∂u)∗ and B̃d = (∂f/∂d)∗, where the
evaluation of the derivatives is performed at the nominal point of operation,
denoted by ∗. Thus, if we select the tuning parameter A = Ã then the
transformed system in Eq. 3.21 will locally (close to the nominal operating
point ∗) have the same dynamics as the original system in Eq. 3.29.

Furthermore, from Eq. 3.20 the linearized transformed input becomes

dvA = B−1(df −Ady) = B−1(B̃du+ B̃ddd) (3.30)

and we find that dvA is independent of dy.

Thus, with the choice for A in (Eq. 3.28), there is no feedback from y

on the transformed input vA at the nominal point ∗. For the multivariable
case, to get a decoupled response, we may choose A equal to the diagonal
elements of the A-matrix of the original system,

A = diag(Ã) = diag
(
∂f

∂y

)
∗

(3.31)

For the multivariable case, this will not exactly keep the original dynamics
and there will be some feedback from y to v at the nominal point. However,
it provides a good comprise between decoupling and minimizing the feedback
from y. In any case, the exact value for A should not be overemphasized,
since we can change the closed-loop dynamics by design of the outer controller
C.

2. Make the transformed system faster: |A| > |Ã|. To speed up
the response from v to y, we may use larger magnitudes for the elements
in A than that resulting from Eq. 3.28. However, note that the presence of
a time delay in the measurement of y (or other dynamics that result in an
effective delay) may give instability if we choose the elements in A too large
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in magnitude. Alternatively, note that it is always possible to select A = Ã

as in Eq. 3.28 and instead “speed up” the response with the outer controller
C, which can be designed based on the experimental response from vA to y

and for which established robust design methods are available, for example,
the SIMC PID-rules (Skogestad, 2003).

3. Make the system integrating: A = 0. The choice A = 0 is often
seen in the examples in feedback linearization literature (Isidori, 1995). This
results in an integrating transformed system,

dy

dt
= Bv (3.32)

where usually B = In.

However, except for cases where the original system is already unstable
or close to integrating, the choice A = 0 is not recommended, at least not
for process control applications. There are two reasons for this. The main
reason is that the transformed system will not reach steady state without
the outer controller C. In particular, any unmeasured disturbances will
cause the output y to integrate and drift away from its desired steady state
(also see the simulations in Section 3.11.2). This drifting will only stop
when the input u reaches its physical maximum or minimum constraint,
when we loose control of y. This is very undesirable, because we may want
to be able to operate the transformed system without the outer controller
C. The second reason is that we generally want to use integral action in
the outer controller C to correct for uncertainty in the model, unmeasured
disturbances or delays. With A = 0, the integrator in the transformed
system poses performance limitations for disturbances at the plant input
(e.g., (Skogestad, 2003)). This performance limitation is not considered in the
feedback linearization literature because the theory assume state feedback,
that is, the outer controller C is a P-controller.
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3.4.3 Model and transformed input in terms of measured
state variables w

So far we have defined transformed variables for systems with relative order
at most r = 1 (the steady-state system in Eq. 3.12 and dynamic in Eq. 3.19).
Thus, for the scalar case we are restricted to first-order systems. However, if
we allow the function f to depend on additional measured states w, then the
class of systems is significantly larger.

However, the derived expressions for the ideal transformed inputs (v0 and
vA) also hold when we include additional measured dependent variables w

(states) in the expressions for f0 and f , that is, if we consider steady-state
models in the form

y = f0,w(u,w, d) (3.33)

and dynamic models in the form

dy

dt
= fw(u,w, y, d) (3.34)

Thus we treat the additional states w as measured (internal) disturbances.
This allows to simplify higher order models, because we no longer require a
model for w in Eq. 3.33 or Eq. 3.34.

By including the w variables, the ideal transformed input for the steady-
state system in Eq. 3.33 becomes

v0 = B−1
0 f0,w(u,w, d)︸ ︷︷ ︸

g(u,w,d)

(3.35)

and the ideal transformed input for a dynamic model in Eq. 3.34 becomes

vA = B−1(fw(u,w, y, d)−Ay)︸ ︷︷ ︸
g(u,w,y,d)

(3.36)
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Assuming that we are able to generate the exact inverse g−1 and that
the resulting transformed system is internally stable (see Section 3.6), the
resulting transformed system from the transformed input v to the output y

is defined as before, i.e., in Eq. 3.13 for the steady-state case, and in Eq. 3.20
for the dynamic case. That is the system is also decoupled, independent
of disturbances. Note that the the transformed system may no longer be
steady-state or first-order because it may include “hidden” dynamics through
the measured state variables w. These “hidden” dynamics may in some cases
result in unstable zeros 2 (inverse response in the scalar linear case) from u

to v and in such cases the use of the exact inverse will result in an internally
unstable transformed system (also see the simple example in Section 3.6.

Examples of w variables include the temperature in a steam network
when the CV is the network pressure (see the example in Section 3.10), or
the temperature at the cold outlet of a heat exchanger when the CV is the
temperature at the hot outlet (see the example in Section 3.8).

3.4.3.1 Dynamics of transformed system with measured state (w)
variables

When we include w-variables in the ideal static transformed inputs v0, then
the dynamics of the transformed system (from v0 to y) will no longer be the
same as of the original system (from u to y). The reason is the feedback
from w. An example is given by the variables v0,w for the heat exchanger
in Section 3.8 (Figure 3.15) where we find that the the dynamics of the
transformed system become slower. Note that for the steady-state case, we
have no tuning parameter to change the dynamics of the transformed system.

2Unstable zero dynamics go by many names. They are the same as RHP-zeros for
linear systems, and linear systems with RHP-zeros and/or time delay are also called
non-minimum phase systems. In the linear scalar case, RHP-zeros always give inverse
response in the time domain. More generally, for nonlinear systems the unstable zero
dynamics from u to v correspond to the unstable dynamics of the inverse map from v to u
(Isidori, 1995).
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On the other hand, in the dynamic case, that is, with ideal dynamic
transformed inputs vA, we can use the matrix A to freely set the dynamics
of the transformed system, also when vA depends on w. However, note that
in such cases the dynamics of the transformed system (from vA to y) will not
be the same as for the original dynamics (from u to y), no matter how we
choose A. One reason is that the number of differential equations describing
the transformed dynamic system dy

dt = Ay +Bv is generally lower than that
of the original dynamic system. The choice A = diag(∂fw/∂y)∗ may be a
good starting point as it gives little feedback from y, but this choice will
not keep the original dynamics, because u also has an indirect (and possible
high-order) effect on y through the variable w.

3.4.4 Transformed outputs

Often, when we develop a process model, we start from a linear model,
and we introduce bilinear or nonlinear expressions for variables we cannot
measure, thus complicating the model equations. For example we express
the mass of a tank as a function of the level or we write the energy balance
in form of temperature thus replacing internal energy as a state. The reason
to introduce the transformed output z is that the model may be simpler to
express in terms of z compared to in terms of the output y. In a way, we
want to mimic the linear model we started with. This also simplifies the
implementation of the transformed input v because it may be simpler to
invert the function g to generate the process input u, as later shown in the
steam cycle example in Section 3.9.

The transformed output z can be introduced both for steady-state and
dynamic systems and it is generally defined as

z = h(y, w, d) (3.37)

where y are the outputs that we want to control at a given setpoint ys and h
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is a static function of our choice.
By introducing the transformed output z, the transformed input v be-

comes a function of z instead of y (and of u, w, d.):

vz = gz(u,w, z, d) (3.38)

where the index z in vz and gz denotes the introduction of the transformed
output z.

3.4.4.1 Ideal transformed inputs and outputs from steady-state
model

Consider a steady-state process where we can write the model in Eq. 3.12
(y = f0(u,w, d)) in its simpler and more general form

h(y, w, d)︸ ︷︷ ︸
z

= gz(u,w, d)︸ ︷︷ ︸
vz0

(3.39)

where h is the function introduced in Eq. 3.37. Note that the outputs y are
on the LHS and the inputs u are on the RHS. The key idea now is that the
function gz on the right-hand side is easier to invert.

Similar to the previous section, we want to find a transformed input v

and output z that at steady-state give a transformed system y = v0 (Eq. 3.14
with B0 = In). It is straightforward to see that this can be achieved by
selecting the transformed output as the LHS of Eq. 3.39 which yields the
definition of z from Eq.3.37, and the transformed input the RHS of Eq. 3.39

vz0 = gz(u,w, d) (3.40)

To generate the process input u, we solve Eq. 3.40 for u, given

u = g−1
z (vz0, w, d) (3.41)
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which may be implemented as in Figure 3.7b.

3.4.4.2 Ideal transformed inputs and outputs from dynamic model

The idea is that it is easier to write the dynamic model in terms of the
transformed outputs z rather than in terms of the outputs y. Consider a
dynamic process where the model Eq. 3.19 can be written in its simpler and
more general form

dz

dt
= fz(u,w, z, d) (3.42)

where z = h(y, w, d) is the transformed output.
From Eq. 3.36 the ideal transformed input is vzA = B−1(fz −Az), and

the transformed system as seen from the controller C becomes

dz

dt
= Az +BvzA (3.43)

which is decoupled, linear and independent of disturbances. This simplifies
the design of the outer controller C. However, note from Figure 3.7a that
the disturbances that effect the transformed outputs z = h(y, d) will only be
counteracted if the feedback controller C is implemented.

3.4.5 Extension to higher order systems: chain of input
transformations

The transformed input derived in Section 3.4 is limited to systems where
the relative order from the input u to the output y is 0 for the steady-state
model case (v0) and 1 for the dynamic model case (vA).

The question we want to answer is how can we extend the theory to higher
order systems, that is when the input u does not appear explicitly in the model
equation for y, e.g., tanks in series when we want to control the temperature
of the last tank by using the inlet flow of the first tank. One option is
to introduce additional state measurements w and use the feedback-based
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implementation from Figure 3.4b. However, with this approach we will not
have perfect control of y because of dynamics introduced by the inner cascade
controller in generating the inversion u = g−1(v, w, y, d). Alternatively, if we
have a model for w as a function of u, we may introduce a second transformed
input v2 = g2(u,w, d) resulting in a chain of transformation, see Figure 3.3.

+
−

Controller
C

v2 = g−1
1 (v1, y, d1)

Inverse input
transformation 1

u = g−1
2 (v2, w, d2)

Inverse input
transformation 2

Process 2
(dynamic)

Process 1
(dynamic
or static)

ys v1 v2 u w

d2

d1

y

Figure 3.3: Chain of input transformations

Consider a system formed by two processes in series (the relative order
from u to y is 2), given by

Process 1:
dy

dt
= f1(w, y, d1)

Process 2:
dw

dt
= f2(u,w, d2)

(3.44a)

(3.44b)

Note that process 1 (Eq. 3.44a) may be either be steady-state or dynamic,
while process 2 (Eq. 3.44b) is dynamic.

Using Eq. 3.20 the transformed inputs for process 1 and process 2 are
defined as

Input transformation 1: v1 = vA = B−1 (f1(w, y, d1)−Ay)︸ ︷︷ ︸
g1(w,y,d1)

Input transformation 2: v2 = B−1 (f2(u,w, y, d2)−Aw)︸ ︷︷ ︸
g2(u,w,y,d2)

(3.45a)

(3.45b)
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The corresponding inputs are computed as

For control of y: u = g−1
2 (v2, w, d2)

For control of w: v2 = g−1
1 (v1, y, d1)

(3.46a)

(3.46b)

Note that the transformed system is subject to the same control limitation
as the original system. Therefore, we can only have perfect feedforward control
for disturbances with the same relative order as the input u. This means that
we cannot have perfect disturbances rejection if there is a larger effective
delay from u to y than from d to y. For example, consider a continuous
process with two mixing tanks in series where the objective is to control the
outlet temperature in the second tank (y = T2) using the heat input to the
first tank (u = Q1). We have an extra state measurement of the temperature
in the first tank (w = T1). In this case the relative order from u to y is 2
and perfect disturbance rejection is not possible for disturbances d1 directly
affecting y (e.g., another inlet stream to tank 2). However, since the relative
order from u to w is 1, it is possible, by using a chain of transformations,
to get perfect control for disturbances d2 directly affecting w (e.g., the inlet
feed temperature to tank 1).

A more detailed treatment of implementing the chain of transformations
together with simulation examples are available in the Master Thesis of
Kingstree (2021).

3.5 Implementation of transformed inputs

This section explains how to implement the transformed variables (v and z)
introduced in Section 3.4, starting with the the transformed input v.

As mentioned previously in Section 3.4 is is not enough to define and
derive the transformed input v, we need also to generate the corresponding
physical input u to implement v in the real process, that is we need to solve
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v = g(u,w, y, d) for u given all other variables. There are two main options:

A Model-based implementation, which solves numerically or algebraically
u = g−1(v, w, y, d) (Figures 3.4a and 3.4a)

B Feedback-based implementation, which uses an inner (P)I-controller to
find the u that gives v = vs, where vs is given by the outer controller
C that controls y (Figure 3.4b).

Note that we may also combine A and B (alternative C, Figure 3.4c). We
begin with a generalization of these three alternatives, followed by exemplify-
ing them for a level control problem, motivated by the three elements drum
level control common in power plants control systems (also see Section 3.1).

3.5.1 Alternative A: Model-based inversion (Figure 3.4a and
Figure 3.4a)

The first approach is shown in Figures 3.2 and 3.4a. The idea is to invert
the input transformation v = g(u,w, y, d) in Eq. 3.6, by analytically or
numerically finding the input u that corresponds to given values of vs, w, y
and d, which gives exactly v = vs both dynamically and at steady-state. We
can formally write the solution as

u = g−1(v, w, y, d) (3.47)

This gives the exact inverse g−1(v, w, y, d) if the inverse exists, if there is
no model uncertainty and if all variables w, y and d are measured perfectly.

3.5.2 Alternative B: Feedback inversion with inner v-controller
(cascade control) (Figure 3.4b)

In some cases the analytic inverse function g−1 may be difficult to compute.
In other cases, the inverse g−1 does not exist (even numerically) because g
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+
− Controller C

u = g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)

ys e v u

d

y

w

(a) Model-based implementation A of transformed input v = g(u,w, y, d).
The physical input u = g−1(v, w, y, d) is generated by a static (algebraic)
calculation block which inverts the transformed input model equations. The
model-based implementation generates the exact inverse for the case with no
model error.

+
−

Controller C +
− Controller Cv

(fast)

v = g(u,w, y, d)
Input transformation

(static)

Process
(nonlinear)

ys e vs

v

u

d

y
w

(b) Feedback implementation B of transformed input v = g(u,w, y, d) using
cascade control with an inner v-controller. The computed value of v is driven
to its setpoint vs by the inner feedback controller Cv which generates the
physical input u. This implementation generates an approximate inverse.

+
− Controller C

w = g−1(vs, y, d)
Inverse input
transformation

(static)

+
−

Controller Cw

(fast)
Process

(nonlinear)

ys e vs ws u

d

y

w

(c) Combined model-based and feedback implementation C of transformed
input v = g(w, y, d) using inner w-controller. Commonly, Cw is a flow
controller (w = flowrate) and u is the valve position. This implementation
generates an approximate inverse.

Figure 3.4: Alternative implementations for inverting the input transformation
v = g(u,w, y, d). C,Cv and Cw are usually single-loop PID controllers. The red
boxes fulfil the same role.
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does not depend explicitly on u (i.e., system with relative order r > 1), or it
may have a singularity. Finally, when v depends on some state variables w, it
may happen that the inverse map g−1 gives internal instability (zero dynamics
or inverse response). In all these cases, we may instead use the approximate
feedback-based approach for generating the physical input u. Note that this
approach is equivalent to the dynamic inversion implementation of feedback
linearization for avoiding problems with singularities (Lee et al., 2016).

Figure 3.4b shows the second implementation approach. This approach
does not imply inverting the transformed input, rather relies on feedback
and integral action to generated dynamically the physical input u. The
idea is that we compute the transformed input v = g(u,w, y, d) from the
physical measurements of u, w, y and d, and the inner controller Cv adjust
u dynamically such that v = vs, where vs is given by the outer controller C

controlling y. At steady-state v = vs and the nonlinearity in the responses
from u to v is effectively removed by the action of the feedback (P)I controller
Cv.

To tune the inner controller Cv in Figure 3.4b we may use a pure linear
I-controller (Eq. 3.48) because the function g is defined as a static function
and thus the response from u to v usually has a large direct (static) effect.
Note that an I-controller is generally recommended for pure steady-state
processes (Skogestad, 2003).

u(t) = u(t0) +KI

∫ t

t0

(vs(t)− v(t))dt (3.48)

where u(t0) is the bias and the integral gain KI is a tuning parameter.
The value of u(t0) does not matter (except initially), because it will be
compensated by the integral action. The integral action will make v = vs

at steady state (as time goes to infinity) and a larger value of KI will make
v(t) approach vs faster.

However, there may be some dynamics from u to v through the w variables.
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Thus, more generally, we may tune linear PID-controllers using the SIMC
rules (Skogestad, 2003) based on the experimental step response from u to
v. For the n× n multivariable case, we usually design n single-loop linear
controllers for Cv, although it is possible to use multivariable control.

3.5.3 Alternative C: Combined feedback- and model-based
inversion with inner w-controller (Figure 3.4c)

Figure 3.4c shows the combined implementation (C). This may be applied
when v does not depends explicitly on u, and instead we use measurement
of w in deriving the transformed input v = g(w(u), y, d) (see Section 3.4.3).
This alternative contains an inner Cw-controller that controls w at its setpoint
ws given by inverting the function g in a model-based inversion block (ws =

g−1(v, y, d)), which we assume can be inverted. Because of this assumption,
the cascade implementation C in Figure 3.4c is less general than the cascade
implementation B in Figure 3.4b.

There are a few advantages to the C implementation. First, the model
based inversion may contribute to linearization, feedforward and decoupling
compared. Second, control of w is usually less interactive than control of
v, which is a significant advantage for faster convergence with single-loop
control. Finally, the inner controller Cw controls a physical measurement
w, whereas v in Figure 3.4b is usually not a physical variable. The inner
controller Cw may be tuned in a similar way as Cv, based on an experimental
response from u to w.

For examples w may be the flowrate, and Cw is a fast flow controller
which allows us to use directly the flow in deriving the transformed input
v instead of the true plant input u, the valve position z. Another common
example is when w is temperature (T ) or power (Q) and u is a valve position
(z), and Cw is a temperature or power controller. In both these cases, we
may have a model for the relationship from u to w, which we could have
inverted and used in a model-based implementation A (Figure 3.4a), but
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instead we prefer to use feedback control based on a measurement of w to
invert the relationship, either because it is simpler or because it is more
accurate. Of course, this assumes that we can use a relatively high gain
in the inner controller Cw such that the time constant for the slave loop is
much smaller (typically by a factor 10 or more) than the time constant of
the outer loop controller C.

3.5.4 Comparison of the three alternative implementations
in Figure 3.4

Although the red blocks in the three block diagrams in Figure 3.4 perform the
same task of inverting the input transformation and generating the physical
input u from a given value of transformed input v and the other measured
variables (w, y, and d), there are important differences. First, in the two
feedback implementations (B, C), the transformed input v is replaced by its
setpoint vs and the response will not be perfect dynamically. Second, there
may be differences in the variables used. For example, and as mentioned,
the use of measured w-variables in the two feedback implementations (B, C)
may replace some process model equations and disturbance variables (d) in
the exact model-based implementation (A).

3.5.5 Implementation of transformed inputs: drum level
control example revisited

The objective of this example is to compare the three alternative implemen-
tations in Figures 3.4a to 3.4c on a (steam) drum level control problem.
Moreover, this example is chosen to show case how the input transformation
theory can be applied to derive a well adopted control structure in power
plants, i.e., the so-called 3-elements control (see Section 3.1). Similarly to
Section 2.3, we use the inflow to control the level y = H. We consider that
we have a fixed speed feedwater pump and the physical input u is the valve
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position, that is, u = z. From a mass balance for a tank with constant
cross-sectional area and constant density, the model can be written as

dH

dt
=

1

Ar
(qF (u)− qS) (3.49)

where H [m] is the level, Ar [m2] is the tank area, qF (u) [m3/s] is the
inflow (feedwater) and qS [m3/s] is the outflow (steam). The inflow qF [m3/s]
depends on z by the following valve equation:

qF (u) = F (u)kV

√
|p1 − p2|

ρ
(3.50)

where F (u) is the valve characteristic, kV [m2] is the valve constant,
ρ [kg/m3] is the liquid density, and p1 − p2 [N/m2] (disturbance d) is the
pressure drop over the valve.

We assume that the level (y = H) measurement is available, but it has
a delay and it may be inaccurate because of the shrink and swell effect as
explained in Section 3.1. We also have a measurement of the outflow (w = qS)
which we may use if desired.

qF

d = qS

LC
y = h

ys = hs

u = z

Figure 3.5: Level control with no input transformation.
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qF

d = qS

p1 p2

∆P

u = g(v, d)
Inverse input
transformation

LC

u = z

v

y

ys

(a) Exact inverse transformation (inverting model).

qF

d = qS

VC

u = z

LC

vs

y

ys

v = qF − qS
Input
transformation

w = q

v

(b) Inner controller for v = qF − qS .

qF

d = qS

FC

u = z

ws = vs − qS
Inverse input
transformation

w = qF

ws = qs

LC

vs

y

ys

(c) With inner controller for w = qF (flow controller).

Figure 3.6: Three alternative implementations for level control. The input trans-
formation provides feedforward control from qS thus linearization of the valve. The
transformation also provides disturbance rejection from p1 and p2 (by feedforward
in (a) and through feedback in (b) and (c).
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3.5.5.1 No input transformation

The simplest solution to implement is conventional feedback, as shown in
Figure 3.5. We directly control the level using a controller C, for example
a PI-controller, which adjusts the valve position u, that is without making
use of the extra measurement w = qF or of the model Eq. 3.49. While this
solution is simple, it may not give a good performance for tight level control
when there is delay and inaccuracy in the measurement of y = H. Thus, the
level may vary if there are disturbances in qS , p1 and p2. Furthermore, the
valve characteristic F (u) may be nonlinear which may give a low process
gain and thus slow control when F (u) is in a “flat” region, that is, when qF is
insensitive to changes in u. Typically, this will be when the valve approaches
fully open or fully closed.

3.5.5.2 With input transformation

We can select the transformed input as the right-hand side of the dynamic
model in Eq. 3.49 multiplied with a constant 1

B (where B is a parameter
that we introduce to generalize the method and that we can choose see
Section 3.4.2.1),

v = B−1 1

Ar
(qF (u)− qS) (3.51)

Compared to the generic transformed input in Eq. 3.20 derived systemat-
ically, we select the tuning parameter A = 0, which is typical for integrator
systems.

From Eq. 3.51 we have that 1
Ar

(qF (u)− qS) = Bv which substituted
into the dynamic model in Eq. 3.49 yields a transformed system that is an
integrator, similar to feedback linearization (Isidori, 1995),

dH

dt
= Bv (3.52)

The system in Eq. 3.52 has two advantages compared to the dynamic
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model in Eq. 3.49. First it is independent of disturbance p1 and p2. Second,
the possible nonlinearities from the valve characteristic F (u) are eliminated,
at least from the point of view of outer controller C which manipulates v to
control y = H.

For simplicity, in the following, we select the parameter B = 1
Ar

such
that the transformed variable becomes

v = qF (u)− qS (3.53)

The transformed input in Eq. 3.53 will give the transformed system in
Eq. 3.52 only if we generate and implement the corresponding physical input
u from a given value of v and the other measured variables. As described
above, there are two main options, model-based and feedback-based using
cascade.

3.5.5.2.1 Exact implementation: Inverting the valve model This
is the implementation from Figure 3.4a, which adapted to the drum level
control problem gives the solution in the flowsheet in Figure 3.6a.

Substituting the valve equation in Eq. 3.50 into Eq. 3.53 yields

v = F (u)kV

√
|p1 − p2|

ρ
)− qS︸ ︷︷ ︸

g(u,d)

(3.54)

where d = [qS , p1, p2]. Solving Eq. 3.54 with respect to u = z gives

u =
F (u)−1(v − qS)

kV

√
p1−p2

ρ︸ ︷︷ ︸
g−1(v,d)

(3.55)

where F (u)−1 denotes the inverse of the valve characteristic F (u). How-
ever, the inverse transformation in Eq. 3.55 requires a good model and it
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also requires measurements of the disturbances p1 and p2. Therefore, rather
than inverting the valve equation, it is more common and easier to measure
the inflow w = qF and use an inner flow controller, discussed next.

3.5.5.2.2 Alternative cascade implementations: Using the flow
measurement (cascade control) Introducing the extra measurement w,
the transformed input from Eq. 3.53 becomes

v = w − qS︸ ︷︷ ︸
g(w,d)

(3.56)

Observe that v in Eq. 3.56 does not depend explicitly on u, and we
must use one of the two cascade implementations in Figures 3.4b and 3.4c.
Adapted to the drum level control problem, this gives the flowsheets in
Figures 3.6b and 3.6c. More importantly, these implementations are similar
with the two implementation for 3-elements control from Lindsley (2000),
p.110 and p.111.

Note that for the cascade control of v, the controller Cv is actually a flow
controller because v is the difference between two flows. For the cascade
control of w, Cw is of course a flow controller since w = qF is a flow. For
cascade control of w, we need to invert Eq. 3.56 with respect to w = qF

which gives the “inverse static transformation”

ws = vs − qS︸ ︷︷ ︸
g−1
w (v,d)

(3.57)

The subscripts superscript s on w and v denote that ws and vs are
the setpoints for w and v, respectively. To achieve the desired disturbance
rejection and linearization, we must assume that the inner flow controller
(Cv or Cw) can be made fast compared to the expected process dynamics for
y = H and compared to the outer controller C. This is most likely possible,
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since the valve response from u to w = qF is usually very fast, that is, the
process is essentially static with a time constant (τ) close to zero. From the
SIMC PID rules (Skogestad, 2003), a pure I-controller may then be a good
choice for this flow controller.

3.5.6 Implementation of transformed outputs

Figure 3.7a shows the general implementation of combined transformed inputs
and outputs, whereas Figure 3.7b shows the block diagram for the case when
the transformed input is derived from a steady-state model. In Figure 3.7,
the outer controller C is controlling the transformed outputs z rather than
the (physical) outputs y for which we have a setpoint ys. However, because
both y and ys are sent through the same static transformation h, we will
achieve y = ys at steady state. Also note from Figure 3.7 that the input
transformation gz needs to be inverted (or approximately inverted using one
of the three options in Figure 3.4a), whereas inversion is not necessary for
the output transformation h.

h(ys, w, d) +
− C g−1

z (v, w, z, d) Process

h(y, w, d)

ys zs e v u

d

y

z

w

z

(a) General implementation of transformed output z

+
− C h(v, w, d) g−1

z (vz0, w, d) Process
ys e v vz0 u

d

y

w

(b) Alternative implementation of transformed output when the ideal
transformed input is based on a steady-state model.

Figure 3.7: System with both input and output transformations.
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3.6 Stability of the transformed system

It is beyond the scope of this work to give a detailed stability analysis of
nonlinear systems, and the reader is referred to the literature on feedback
linearization for related mathematical proofs (Isidori, 1995; Khalil, 2015).
The main objective of this section is to give the reader some insight into how
instability may arise and how to avoid it, particularly for using the state
measurement w.

3.6.1 Unstable zero dynamics and internal instability result-
ing from using the model-based inverse

So far, the w variables have been treated as a measured disturbances. If w is
a dynamic state variable, that is, w depends on the input u in a dynamic
way, then this will introduce dynamics in the map from u to the transformed
input v. If this results in unstable zero dynamics from u to v (which may
be v0 or vA or any other transformed input), then this will result in internal
instability for the transformed system if we implement the model-based
inverse u = g−1(v, w, y, d). This follows because the unstable zeros of the
original map become unstable poles of the inverse map. A simple example is
given in Section 3.6.

The model-based implementations (Alternative A) in Figures 3.4a and
3.2 may yield internal instability in some cases. Fortunately, it is not very
likely to happen in practice, because unstable zero dynamics require that the
indirect dependency of v on u through w is strong.

The internal instability can in any case be avoided if we use the alternative
feedback-based implementation with an inner v-controller in Figure 3.4b,
but the inner controller Cv then needs to be tuned sufficiently slow so that
the unfavorable zero dynamics do not cause closed-loop instability. Thus,
linearization, decoupling and disturbance rejection will not be perfect in this
case.
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The internal instability resulting from using an exact inverse u = g−1(vw, y, d)

(model-based implementation) for systems with unstable zero dynamics from
u to v applies to any transformed input v = g(u,w, y, d) that depends on
internal state variables w. For the systematically derived transformed inputs
v0 and vA, we have the additional property that the zero dynamics from u to
v are the same as the zero dynamics from u to y. This follows because of the
direct relationship between these variables, for example, y = v0 for the static
case. The problem with internal stability for the model-based inverse, is then
seen to be a special case of the well-known fact that with a causal controller
(no prediction allowed) and requiring internal stability, perfect control of the
output y cannot be achieved for a system with unstable zero dynamics from
u to y, no matter how good the model is or what we measure.

3.6.1.1 Example: Simple linear system with unstable zeros

As an example, we will analyze a simple linear system with unstable zero
dynamics. Consider the steady-state system

y = u+ w + d (3.58)

The ideal transformed input is defined as the right-hand-side of Eq. 3.58.

v0 = g(u,w, d) = u+ w + d (3.59)

For implementation, Eq. 3.59 may be solved with respect to u to get the
“inverse input transformation”

u = g−1(v, w, d) = v0 − w − d (3.60)

Note that in deriving v0 or generating u we have treated w as a measured
disturbances which we counteract by using the “feedforward” controller in
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Eq. 3.60. However, there is a “hidden” problem with potential internal
instability caused by the dynamic map from u to w. As an example, assume
the response from u to w is first-order with a steady state gain of -2

w =
−2u

4s+ 1
or

dw

dt
= −0.25(2u+ w) (3.61)

Substituting the w−dynamics (Eq. 3.61) into the input transformation
(Eq. 3.59) gives (in transfer function form)

v0 = u− 2u

4s+ 1
+ d

=
4s− 1

4s+ 1
u+ d

(3.62)

which has a RHP-zero at z = 0.25 from u to v. The reason is the
combined effect of a direct static effect from u to v with a gain of 1, and an
indirect dynamic effect from u to v (through w) with steady-state gain of
-2. Therefore, the indirect effect of u on v through w is larger in magnitude
than the direct effect.

This will result in internal instability if we use the exact inverse in Eq. 3.59.
To see this, we substitute Eq. 3.61 into Eq. 3.60, to get

u =
4s+ 1

4s− 1
(v0 − d) (3.63)

which as expected is unstable because of the RHP-pole at p = 0.25.
Similarly, the response from v to w is also unstable

w =
−2

4s− 1
(v0 − d) (3.64)

The two instabilities in Eqs. 3.63 and 3.64 cancel each other in Eq. 3.58
to give

y = v0 (3.65)
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The system from v0 to y therefore appears to be stable, but this is
not true if we consider the input u, and the “hidden” internally instability
will eventually appear also in the output y, either because of model error
or because infinite inputs u are not physically realizable. This “hidden”
internally instability may be avoided by implementing the feedback-based
method in Figure 3.4b which does not require generating an inverse for u.

We compare the model-based inversion (Figure 3.4a) and feedback-based
implementations (Figure 3.4b) by simulations. The outer controller is set
to C = 0. Figure 3.8 shows the response for the transformed system to a
setpoint change of ∆vs = 1 at time t = 1 s. Similarly, Figure 3.9 shows
the simulation responses for a step change in disturbance d of ∆d = 1 at
time t = 1 s. For the cascade implementation, we use an I-controller, with
the integral gain KI = −1/16. To find this value, we use the first order
Padé approximation, that is Gv = 4s−1

4s+1 ≈ − exp(−8s). Then we apply the
SIMC-rules (Skogestad, 2003) with τC = 8 s.

As explained and as expected, the exact model-based inversion imple-
mentation gives perfect control of y (Figures 3.8a and 3.9a respectively),
at the expense of internal instability for w (Figures 3.8b and 3.9b) and u

(Figures 3.8c and 3.9c)

In summary, the requirement for using the model-based inverse in Figure
3.4a is that the response from u to v has stable zero dynamics. For the case
when the transformed input v is obtained using one of the systematic methods
in Section 3.4, this is equivalent to requiring that the transfer function from
u to y has stable zero dynamics. In other cases and if one is uncertain, the
safest is to use the feedback-based implementation in Figure 3.4b which gives
an approximate inverse, but which can always be tuned to be stable.
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Figure 3.8: Comparison of model-based and cascade implementations for the
model in Eqs. 3.58 and 3.61 for a setpoint change of ∆vs = 1 at time t = 1 s.
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Figure 3.9: Comparison of model-based and feedback-based implementations for
the model in Eqs. 3.58 and 3.61 for disturbance rejection. ∆d = 1 at time t = 1 s.
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3.7 Example 1: mixing process flow and tempera-
ture control

Fig. 3.10 shows the mixing process with two inflows and one outflow for
which we systematically derive transformed inputs with the purpose of
linearization, decoupling and feedforward disturbance rejection. The purpose
of this example is to illustrate how we can combine the transformed inputs
derived from steady-state and dynamic model equations.

V(m3)

u1 = F1

d1 = T1

u2 = F2

d2 = T2

y = [ F T ]

Figure 3.10: Mixing process with two original MVs (u1 = F1 and u2 = F2) and
two CVs (y1 = F and y2 = T ).

The original inputs of the process are the two inlet flows: u1 = F1 [kg/s];
u2 = F2 [kg/s]. The outputs are the outlet flow F and temperature T : y1 =
F [kg/s] y2 = T [◦C]. The main disturbances are the temperatures of the
two inlet flows: d1 = T1 [◦C]; d2 = T2 [◦C]. Assuming constant m holdup,
and fast mixing (reasonable assumption for a pipe), the mass balance (static)
is given by Eq. 3.66.

F = F1 + F2

y1 = u1 + u2︸ ︷︷ ︸
f1(u)

(3.66)

Assuming constant and equal heat capacity cP , and after substituting the
mass balance (Eq. 3.66), the dynamic energy balance can be rearranged as
given by Eq. 3.67.
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dT

dt
=

F1

m
(T1 − T ) +

F2

m
(T2 − T )

dy2
dt

=
u1
y1

(d1 − y) +
u2
y1

(d2 − y)︸ ︷︷ ︸
f2(u,y,d)

(3.67)

We see from Eq. 3.66 and Eq. 3.67 that this is a coupled (interactive)
process, since both inputs (u1 = F1 and u2 = F2) affect both outputs
(y1 = F and y2 = T ). This makes single-loop control challenging and control
performance may be poor. We therefore want to consider the use of ideal
transformed inputs which has the potential of giving a linear and decoupled
transformed system, and in addition give perfect feedforward action from the
disturbances in d1 = T1 and d2 = T2.

3.7.1 Ideal transformed inputs for the mixing process

We can derive two ideal transformed inputs, one from the steady-state mass
balance in Eq. 3.66 and one from the dynamic energy balance in Eq. 3.67.

The first transformed input is defined in Eq. 3.68 as the right-hand side of
the mass balance (f1(u) in Eq. 3.66). We chose the tuning parameter B0 = I

(also see the theory in Section 3.4 and the general definition in Eq. 3.14).

v0,1 = u1 + u2 (3.68)

The second ideal transformed input is defined in Eq. 3.69 by using the
right-hand side of the dynamic energy balance (f2(u, y, d) in Eq. 3.67) and
by introducing the tuning parameter A and B = −A (which gives y2 = vA,2

at steady state) from the theory in Section 3.4.

111



3. Transformed inputs for linearization, decoupling and feedforward control

vA,2 = y2 −A−1f2(u, y, d)

= y2 −A−1 1

m
(u1(d1 − y2) + u2(d2 − y2))︸ ︷︷ ︸

g2(u,y,d)

(3.69a)

(3.69b)

3.7.1.1 Implementation of transformed inputs

To implement the transformed inputs v0,1 and vA,2 in practice, we need
to compute the physical inputs u (flowrates u1 and u2) from the inverse
transformation u = g−1(v, y, d), see Figure 3.4a. From Eq. 3.68) and Eq.
3.69b we solve for u:

u1 = g−1(v, y, d)1 =
v0,1(y2 − d2)−Am(vA,2 − y2)

d1 − d2

u2 = g−1(v, y, d)2 =
v0,1(d1 − y2) +Am(vA,2 − y2)

d1 − d2

(3.70a)

(3.70b)

Note that the denominator in Eq. 3.70 becomes 0 when d1 = d2. However,
physically, temperature control of the mixing is clearly not possible when
both inlet stream have equal temperature, so this is then a control limitation
of the system, and not of the transformed inputs method.

3.7.1.2 Transformed system for the mixing process

Introducing the ideal transformed inputs v = [v0,1 vA,2] into the model
equations yields the transformed system in Eq. 3.71

y1 = v0,1

dy2
dt

= (y2 − vA,2)

(3.71a)

(3.71b)
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which is decoupled, independent of disturbances and linear since the tuning
parameter A is a constant.

As discussed in Section 3.4.2.2 and Eq. 3.28, we may eliminate the
feedback from the output y2 = T to the transformed variable v2 in Eq. 3.69b
at the nominal operating point, by choosing A such that we keep the nominal
linearized dynamics of the original system, which from Eq. 3.28 gives

A =

(
∂f2
∂y2

)
∗

= −F ∗

m

(3.72)

where ∗ denotes nominal condition, i.e., F ∗ = u∗1 + u∗2 = v∗0,1 is the nominal
total flowrate.

3.7.1.3 Outer controller C

The outer controller C in Figure 3.4a manipulates the transformed input
such that the output y is kept at its setpoint. Because the transformed
system in Eq. 3.71 is decoupled and we may use single-loop controllers
C = diag(C1, C2). Here, C1 is a flow controller with integral action only3

that computes v0,1, and a temperature controller (PI) that computes v0,2.

With perfect model and measurement, the outer controller C is not
necessary. The effect of disturbances is eliminated in the input calculation
block in Figure 3.4a, while the setpoint ys can be changed by directly setting
v0,1 and v2 equal to the setpoint ys1 and ys2, respectively. However, in practice,
there will always be unmeasured disturbances (for example heat losses) and
model or measurement uncertainty. In addition, the outer controller C can
be used to speed up or slow down the response of from v to y.

3From the SIMC tuning rules (Skogestad, 2003), it results that a pure I-controller is
used for a static process.
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3.7.2 Ideal static transformed input derived from steady-
state model

The purpose of this example is to illustrate the effect of using a transformed
input derived from a steady-state model applied to a dynamic system. These
types of transformations are often applied in industrial process control
applications, e.g., see (Shinskey, 1981). Therefore, we use transformed
inputs derived from a steady-state model for control of both the total flow
and temperature.

We start by deriving the steady-state energy balance. Setting dy2
dt = 0

in the dynamic energy balance in Eq. 3.67, dividing by the mass m (non-
negative) and solving for T yields

T =
F1T1 + F2T2

F1 + F2

y2 =
u1d1 + u2d2
u1 + u2 f0,2

(u, y, d)︸ ︷︷ ︸
(3.73)

The transformed input derived from a steady-state model (v0,2) for
controlling the temperature is simply the right-hand side (f0,2) of Eq. 3.73

v0,2 =
u1d1 + u2d2
u1 + u2

(3.74)

The transformed input (v0,1) for controlling the total flow (y1) remains
the same as given in Eq. 3.68. To answer what happens when we apply the
static transformed input v0,2 to the dynamic system in Eq. 3.67, we need to
solve wrt. the physical inputs u1 and u2 the system formed by Eq. 3.68 and
Eq. 3.74 given all other variables. This results in

u1 = g−1(v, y, d)1 =
v1(v2 − d2)

d1 − d2

u2 = g−1(v, y, d)0,2 =
v1(d2 − v2)

d1 − d2

(3.75a)

(3.75b)
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Substituting u1 and u2 from Eq. 3.75 into the steady-state mass balance
(Eq. 3.66) and the dynamic energy balance in Eq. 3.67, and simplifying the
expression gives the transformed system

y1 = v0,1

dy2
dt

= −v0,1
m

(y2 − v0,2)

(3.76a)

(3.76b)

Note that at the nominal point, the fraction −v0,1
m in Eq. 3.76b is equal to

the tuning parameter A from Eq. 3.72. This indicates that the two systems
in Eq. 3.76b and Eq. 3.71 will respond similarly if starting from the same
steady-state, as later shown in the simulations results in Figure 3.11.

The transformed system in Eq.3.76 is independent of both disturbances
d1 and d2 both dynamically and at steady-state4. However, the transformed
system in Eq. 3.76 is not decoupled dynamically because v0,1 also affects
output y2. Nevertheless, if the system is initially at steady-state, we have
that y2 = v0,2 and the right-hand side of Eq. 3.76b is 0 regardless of change
in v0,1. Moreover, compared to transformed system derived from a dynamic
energy balance (Eq. 3.71) the transformed system derived using a steady-state
energy balance (Eq. 3.76) is no longer linear because of the multiplication
with the term v0,1 which is time-varying.

In conclusion, the advantage of using a transformed input derived from
a more complex dynamic model is that the transformed system is linear
dynamically. In addition, in some cases, the steady-state process model is
simpler to derive (see the heat exchanger example in Section 3.8 and the
steam generator example in Section 3.9). Therefore, it not surprising that

4Generally, when we apply static transformed inputs v0 to a dynamic system of the
form dy

dt
= f(u, y, d), we need to make the assumption that the system is initially at

steady state to get perfect dynamic disturbances rejection. However, this assumption is
not necessary for this particular case since the disturbances drop out completely in the
transformed system.
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these static transformations are commonly used.

3.7.3 Dynamic simulations results

We illustrate how the input transformations work in a simulation case study,
assuming no model error and perfect measurement of the disturbances. In all
simulations, the process is given by the nonlinear model in the steady-state
mass balance (Eq. 3.66) and the dynamic energy balance (Eq. 3.67). In
addition, all simulations use the implementation with the model-based inverse
in Figure 3.4a. That is, the physical input is calculated using the inverse
transformation in Eq. 3.70 when we use the ideal transformed inputs v0,1 and
vA,2 based on a dynamic model for temperature (y2) or Eq. 3.75 when we
use the ideal transformed inputs v0,1 and v0,2 based on a steady-state model
for temperature (y2). The outer controller is not needed in these simulations
because we assume perfect model and perfect disturbance measurement.
That is we set C = 0, and setpoint changes are handled by directly changing
v.

Process data Table 3.1 shows the nominal operating conditions for the
mixing process. At the nominal operating point the two inputs are equal
(F1 = F2), which makes the process highly coupled and difficult to control
using conventional single-loop PID-controllers.

Table 3.1: Nominal operating conditions for Example 5 (mixing process).

Variable F1 F2 F T1 T2 T m

Value 5 5 10 20 50 35 100
Unit kg/s kg/s kg/s ◦C ◦C ◦C kg

With no model error and perfect disturbance measurement, the simula-
tions show that both outputs y1 = F (Figure 3.11a) and y2 = T (Figure
3.11b) are independent of the two disturbances, and for setpoint changes
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they follow the original system dynamics. This holds for both ideal static
transformed variables v0 and the ideal dynamic variables vA. The inputs u1

in Figure 3.11c and u2 in Figure 3.11d change in a step-wise manner because
we use a static algebraic block to compute them.

The simulation results are not very exciting or surprising, and simply
confirm what is expected from the transformed system models in Eq. 3.71
and Eq. 3.76b. The responses for the ideal static and dynamics transformed
inputs are identical, except for the dynamic transients when we have a
setpoint change for y2 (at t = 100s). This is because v0,1 is at 12 kg/s, rather
higher than at it’s nominal value of 10 kg/s, which results in a slightly faster
response for y2 for the static case (v0). We also see that the inputs u1 and
u2 make a larger initial change at t = 100s for the static case.

The benefit of using the dynamic transformed input vA rather than the
static transformed input v0 is mainly that we get a linear transformed system
for designing the outer controller C, but this benefit is not seen in these
simulations since we have used C = 0.

3.8 Example 2: heat exchanger process outlet tem-
perature control

We continue the analysis of the systems behaviour when we apply a static
transformation on a dynamic system. We now consider a heat exchanger,
which may benefit from introducing input transformations to reduce nonlin-
earity and improve the disturbance rejection.

The objective of the heat exchanger in Figure 3.12 is to control the outlet
temperature of stream 1 (the process side) by exchanging heat with stream 2
(the utility side). The MV is the utility flowrate, u = Fc, where we assumer
a fast inner loop flow controller manipulates the true MV which is the valve
position z. The MV and CV for this example are the utility flowrate and
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Figure 3.11: Simulation response for the mixing process in Example 5 using using
both ideal static (v0) and dynamic (vA) transformed inputs and using the exact
implementation of the inverse (Figure 3.4a).
The simulations are for the following four step changes: 1 kg/s increase in setpoint
ys1 = F s at time t = 50 s. 1 ◦C increase in setpoint ys2 = T s at time t = 10 s. 2 ◦C
increase in disturbance d1 = T1 at time t = 150 s. 5 ◦C increase in disturbance
d2 = T2 at time t = 200 s. The responses are without the outer controller C, so the
setpoint changes are implemented by changing the corresponding v0 and vA.
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d2 = T 0
h

d3 = F2

y = Th

w = Tc

u = Fc

d1 = T 0
c

Figure 3.12: Heat exchanger where the objective is to control the outlet temper-
ature Th of stream 1 (hot process side) by exchanging heat with stream 2 (cold
utility side).

process side temperature respectively:

u = Fc, y = Th

The measured disturbances are the inlet temperatures and the flowrate of
stream 1:

d = [T 0
h T 0

c Fh]

In the simulations, we will also consider an unmeasured disturbance in the
UA-value, for example, caused by fouling or gas bubbles in the streams:

dunmeasured = UA

A possible extra measurement (in addition to Fc) which depends on the input
u is the utility outlet temperature

w = Tc

The dynamic and steady-state behaviors of heat exchangers are highly non-
linear. For example, for small values of u = Fc (relative to Fh), the process
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gain k = dy
du is large and relatively constant, but for large values of u = Fc,

the gain k approaches 0 and makes it difficult to control y = Th. This is
because we get a pinch for Th (constant value) with y = Th approaching the
inlet temperature T 0

c .

3.8.1 Dynamic cells heat exchanger model

The process is given by the dynamic lumped model given in Eq. 3.77
(Mathisen, 1994), where the heat exchanger is discretized in space in N = 100

cells. The boundary conditions for cell i = 1 is T 0
h = T 0

h , and for cell i = N is
TN+1
c = T 0

c . With infinite cells, the dynamic model has the same steady-state
as the steady-state model. Wall capacities are neglected. Phase changes are
not considered.

dT i
c

dt
=

Fc

ρcV i
c

(T i+1
c − T i

c) +
UA(T i

h − T i
c)

NρcV i
c cpc

dT i
h

dt
=

Fh

ρhV
i
h

(T i−1
h − T i

h) +
UA(T i

h − T i
c)

NρhV
i
hcph

∀i ∈ 1 . . . N

(3.77a)

(3.77b)

where, N = 100 well-mixed cells, c is the cold side, h is the hot side, V is
the volume, U is the heat transfer coefficient, A is the heat transfer area, ρ
is density and cp is specific heat.

In total, the model in Eq.3.77 gives 200 differential equations to represent
the temperature dynamics, and we cannot use it to derive the input trans-
formation because its relative order is greater than 1. That is, we cannot
rewrite it in the form of the general model in Eq. 3.19 (dydt = f(u, y, d)) which
which allows for only one differential equation.
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3.8.2 Input transformation

This leads us to consider transformed inputs based on a steady-state model
of the heat exchanger. We will consider two transformed inputs, defined
formally in Eq. 3.78.

v0 = f0(u, d)

v0,w = f0,w(u,w, d)

(3.78a)

(3.78b)

The transformed input v0 is defined from a detailed steady-state model
using as variables the input u and the three disturbances d. The second
transformed input v0,w is defined from a simpler steady-state energy balance
where we use as additional measured variables the cold side outlet temperature
w = Tc. This is inspired by an actual industrial implementation.

3.8.3 Ideal transformed input v0 based on full steady-state
model

Assuming ideal countercurrent flow, no phase change and constant heat
capacity for each fluid, the steady-state energy balance for the heat exchanger
in Figure 3.12 is given by the following three equations for the heat transfer
Q from the hot stream to the cold stream:

Q = Fhcph(T
0
h − Th)

Q = Fccpc(Tc − T 0
c )

Q = UA

(
T 0
h − Tc

)
−
(
Th − T 0

c

)
ln
(

T 0
h−Tc

Th−T 0
c

)
(3.79a)

(3.79b)

(3.79c)

The system in Eq. 3.79 has 3 equations with 3 unknowns (Q, Th, Tc) and it
can be solved analytically to find the following expression for Th as a function
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of the input and disturbances (e.g., Soave and Barolo (2021)),

y = Th = T 0
h + ϵ(T 0

c − T 0
h )︸ ︷︷ ︸

f0(u,d)

(3.80)

where
ϵ =

1− E

C − E

C =
F1cp1
F2cp2

E = exp

(
UA

(
1

F1cp1

1

F2cp2

))
The transformed input v0 is then defined in Eq. 3.81 as the right-hand

side of Eq. 3.80. Note that we choose the tuning parameter B0 = 1.

v0 = f0(u, d) = T 0
h + ϵ(T 0

c − T 0
h ) (3.81)

3.8.4 Transformed input v0,w using w− variables

To derive the second transformed input v0,w, we ignore the third expression
for Q equation Eq. 3.79c because we make use of the measured state w = Tc

to replace the model in Eq. 3.79c for Q. Setting Eq. 3.79a equal to Eq. 3.79b
and solve for y2 = Tc, yields

y = Th = T 0
h +

Fccpc
Fhcph

(T 0
c − Tc)︸ ︷︷ ︸

f0,w(u,w,d)

(3.82)

The ideal transformed input v0,w is defined as the right-hand side of
Eq. 3.82

v0,w = f0,w(u,w, d) = T 0
h +

Fccpc
Fhcph

(T 0
c − Tc) (3.83)
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3.8.5 Comparison between v0 and v0,w

Both transformed inputs based on steady-state expressions for y = Th and
give y = vs at steady state (also see the open loop responses in Figure 3.14).
Hence, they will give linearization and perfect disturbance rejection for the
three measured disturbances d at steady-state. However, without the outer
controller C, changes in the unmeasured disturbance UA will results in a
steady-state offset when implementing the transformed input v0. We will not
have an offset when implementing v0,w because changes in UA are captured
in the measurement w = Tc (see Eq. 3.77a). The drawback of using the
measurement w = Tc is that we introduce the dynamics from w = Tc into
the input transformation, and these propagate when computing the physical
input u. Thus, input u is no longer changing in a step-wise manner. Overall,
the effect is that the dynamic response for y = Th is slower compared to
using the static v0. Note that these dynamics correspond to an left-hand
plane zero so they are stable.

3.8.6 Implementation

The open-loop responses from v0 and v0,w to y respectively are generated
using the exact model-based inverse (Figure 3.4a) to be able to observe the
dynamic response without any influence from the inner cascade controller
used in the feedback-based implementation (Figure 3.4b). However, Eq. 3.81
(v0) does not have an analytical solution and it has to be solved numerically.
This proved to be slow and prone to convergence issues with the inbuilt
Matlab numerical solvers. Therefore, we avoid implementing a numerical
solver by using the pure feedback-based implementation to generate the
closed-loop responses for both transformed inputs.

Controller tuning The response from u = F2 to v0 in Eq. 3.81 is purely
static, and therefore, for the inner v0-controller a pure I-controller is recom-
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mended (Skogestad, 2003).

The response from u = F2 to v0,w has an initial overshoot cause by
introducing the measurement w = Tc which depends on u (left-hand plane
zero). We choose to tune also a pure I-controller based on the initial process
gain rather than on the steady-state gain because this give a smaller controller
gain which is more robust (Skogestad, 2003).

In summary, we use I-controllers for both v0 and v0,w, tuned based on
the initial gain, and with the same closed-loop time constant (τC = 10 s); see
Table 3.4.

3.8.7 Simulations

We consider a cooler with data as given in Table 3.2 (Skogestad, 2008).

Table 3.2: Nominal operating conditions for the heat exchanger from (Skogestad,
2008)

Variable Value Unit
Fh 3 kg/s
Fc 5 kg/s
T s
h 24.2 ◦C

T 0
h 20 ◦C

T 0
c 70 ◦C

U 150 W/m2/°C
A 90 m2

Vh = Vh 0.45 m3

cph 1200 J/kgK
cpc 1500 J/kgK
ρh 980 kg/m3

ρc 890 kg/m3
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3.8.7.1 Open-loop responses

Figure 3.13 shows the open-loop responses for the two transformed input
v0 and v0,w to a step change in the physical input u of ∆u = 0.5 kg/s (left)
and ∆u = −0.5 kg/s (right) at time 100 s. The response for v0 is purely
static, while the response for v0,w is dynamic and shows an overshoot (LHP
zero) caused by introducing dynamics from the measurement w = Tc in the
transformation.
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Figure 3.13: Open-loop response for v0 and v0,w to a step change in the physical
input of ∆u = 0.5 kg/s (left) and ∆u = −0.5 kg/s (right) at time 100 s.

Figure 3.14 shows the open-loop response for y = Th to a step change
in the transformed inputs v0 and v0,w together with the original process
dynamics (dashed black line). The size of the step changes are selected such
that they correspond to change in the physical input u of ∆u = 0.5 kg/s

(left) and ∆u = −0.5 kg/s (right) at time 100 s (same as in Figure 3.13).
Implementing v0 keeps the original process dynamic, while v0,w slows the
process.
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Figure 3.14: Open-loop response for for step changes in the transformed inputs
v0 and v0,w with a magnitude equivalent to a step change in the physical input of
∆u = 0.5 kg/s (left) and ∆u = −0.5 kg/s (right) at time 100] s. Original process
dynamics are in black dashed line.

Steady-state gains from u to y and from v to y. Table 3.3 shows the
steady-state gains from the physical input u to the output y (kuy) and from
the transformed inputs v0 and v0,w in both for an increase and a decrease in
input.

Table 3.3: Steady-state process gains from u to y and from v to y

Process gain Input increase Input decrease [s]
kuy -0.78 -1.03
kv0 1.04 1.04
kv0,wy 1 1

For both transformed systems the steady-state gains in both directions
are equal, whereas for the original system they are not. The reason the
process gain from v0,w to y is 1, while the process gain from v0 to y is 1.04 is
the feedback from the state measurement w = Tc in generating the physical
input u from v0,w. In addition the dynamic model used in the simulations is
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a cell model which does not give perfect countercurrent flow as is assumed in
the model used to derive v0.

In summary, the process gains in Table 3.3 together with the dynamic
response from in Figure 3.14 illustrated that the benefit of using v0,w com-
pared to v0 is a steady-state gain of 1, while the drawback is slower dynamic
response. For the transformed system the steady-state gains in both direc-
tions are equal, whereas for the original system they are not. If the models
used for the transformation and dynamic simulation were identical, we would
have 1. a process gain of 1 (rather than 1.04) and 2. y = v at steady state (so
the read and blue lines should start and end at the same value in Fig. 3.14).

3.8.8 Closed-loop responses

Table 3.4 shows the controller tuning for the v−controllers. The outer
controller is set to C = 0.

Table 3.4: Tunings for inner v-controller heat exchanger example

Transformed input KI τC [s]
v0 -0.125 10
v0,w -0.01 10

The simulations in Figure 3.15 compare the two alternative transformed
inputs (the setpoints for v0 or v0,w are given) with the open-loop (OL)
response with no input transformation (Coolant flow u = F2 is constant).
The setpoint of the transformed input vs is initially at 24.2 ◦C and changes
to 29.2 ◦C at time t = 167min. The simulations show responses to step
disturbances in Fh, T 0

c and T 0
h (all measured) and to a step change in the

heat transfer parameter UA (unmeasured).
From the response for the controlled variable (y = Th) in Figure 3.15a,

we clearly see that there is a benefit of using transformed inputs. Both
transformed inputs give in theory perfect control at steady state (y = v)
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Figure 3.15: Dynamic simulation of heat exchanger (Example 6) using the cascade
feedback implementation B in Figure 3.4b with a v-controller. Two choices of the
transformed input, v0 and v0,w, are compared with the open-loop (OL) case with
no transformation.
The simulations are for the following step changes: Fh from 3 to 4 kg/s at t = 8min,
T 0
c from 20 to 25 ◦C at t = 80min, T 0

h from 70 to 55 ◦C at t = 117min, setpoint
vs = ys from 24.2 to 29.2 ◦C at t = 167min and U from 150 to 100W/m2/°C at
t = 217min.
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for measured disturbances and this is confirmed by the simulations. Note
however, that, there is a small offset for v0 (but not for v0,w) (corresponding
to the process gain in Table 3.3), but this is hard to see. For the unmeasured
disturbance in UA (towards the end of the simulation in Figure 3.15a), we
see as expected that we get an offset for y = Th when we use v0 (red curve)
as the transformed input, but not when we use v0,w (blue curve) which makes
use of the state measurement w = Tc.

Dynamically, we find that the responses are best (fastest) when we use v0

as the transformed input (red curves). As expected, the dynamics are similar
to the quite fast dynamics of the uncontrolled heat exchanger (green curves).
However, even with v0, the disturbance rejection is not perfect dynamically
because of the process dynamics are quite complex and not described by a
first-order model.

On the other hand, when we use v0,w (blue curves), which contains
feedback from w = Tc, the dynamics for the return to the steady state are
much slower. There is not much we can do about this, as there is no tuning
parameter for ideal transformed inputs based on a steady-state model. The
inner controller can be used to make the inversion faster, but it will not
help in this case. Even with a perfect inverse, the dynamics caused by the
feedback from w = Tc will be present, as seen in the open-loop response in
Figure 3.14. It may be possible to use the outer C controller to speed drive
up the response for y, but this could give instability if there is a measurement
delays for y.

In summary, for this example, the responses are best (fastest) when we use
the transformed input v0 based on the full steady-state model. The exception
is for disturbances in the heat exchanger model parameters, including the
UA-value, but these can be taken care of by the outer controller C. On the
other hand, the implementation of v0 based on the full steady-state model is
complex, so it is nevertheless likely that the simpler implementation using
v0,w may be chosen in practice.
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Figure 3.16: Simplified flowsheet of a combined cycle where steam is generated in
a once-through steam generator (OTSG). The boundary for this example is shown
in black dashed line.

3.9 Example 3: phase change heat exchanger outlet
temperature control

This example is based on the work in (Zotică et al., 2022). It presents
controlling the superheated steam temperature in a once-through boiler in
the framework of the input (and output) transformation theory.

This example has several purposes. First, it further unifies the input
transformation theory with the analysis of operation and control of steam
cycles in Part 2 of this thesis. Second, it provided a case study for combining
inputs and outputs transformations. Third, it extend the heat exchanger
example in Section 3.8 to include a phase change process with non-ideal
thermodynamics.

Figure 3.16 shows a simplified flowsheet of a combined cycle where heat
from the exhaust of a gas turbine is recovered by generating steam in a once-
through steam generator (OTSG). The superheated steam is then expanded
in a turbine-generator system to produce electrical power, thus increasing
the thermal efficiency of the system. The low-pressure steam is condensed

130



3. Transformed inputs for linearization, decoupling and feedforward control

to water and fed back to the boiler by a pump. The dashed black line
shows the boundary of this example. The gas-turbine may be operated over
a wide range of loads (power setpoint), thus its exhaust gas may have a
large variation in mass flowrate and temperature. The steam cycle is fast
to respond to these disturbances because of the small OTSG inventory (no
drum storage). As already discussed in Section 2.3, the superheated steam
temperature should be kept with a small operating region to reduce thermal
stresses on the turbine blades. For this reason, feedforward information from
the gas turbine exhaust may improve the disturbance rejection response of
the steam temperature. Similar examples using a steady-state model-based
nonlinear feedforward are present in the literature (e.g., Shinskey and Louis
(1968), Montañés et al. (2021)). The difference is that in this example the
control

Process model The dynamic behaviour of the OTSG is rigorously mod-
elled in Dymola. The model is developed in the work of Montañés et al.
(2021). The detailed geometry of the OTSG is discretized in space in 72
cells and for each cells dynamic mass and energy balances are solved. The
model considers ideal behavior for the exhaust gas behaviour, and non-ideal
thermodynamic for the water and steam modelled using the IF97 standard
(Åberg et al., 2017).

Process variables for control purposes Compared to the drum-based
configuration in Part 2 (see the flowsheet in Figure 2.3), there is no drum
inventory to be controlled and there is no attemperator (i.e., bypass of the
boiler in the water side used to control the steam temperature). Thus for
controlling the steam temperature y = Ts, we use as physical input the
feedwater flowrate u = Ff . Note that the actual actuator is the feedwater
pump, but we will use a fast cascade flow-controller (pump in reality). The
available measured disturbances are the inlet temperature (d1 = T 0

g ) and
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flowrate of the exhaust gas (d2 = Fg).

Additional available state measurements are the feedwater inlet tempera-
ture (w1 = Tf ) and pressure (w2 = pf ), the steam pressure (w3 = ps) and
the exhaust gas outlet temperature (w4 = Tg).

3.9.1 Derivation of transformed input output

The OTSG dynamic model has more than 40 000 states, and it cannot be used
to derive a transformed input because it is far too complex to be written as
a model with relative order 1. Similar to Example 3.8, we use a steady-state
energy balance to derive the transformed input v0. Compared to Eq. 3.79
in the previous example, we can no longer assume constant specific heat cp

for the water side because of the phase change and non-ideal water/steam
properties. This leads to using directly the enthalpy of the water (Hl) and
steam (Hs) in the steady-state energy balance in Eq. 3.84.

Q = Ff (Hs(Ts, ps)−Hf (Tf , pf ))

Q = Fgcpg(T
0
g − Tg)

(3.84a)

(3.84b)

where H(T, p) is the specific enthalpy. The steam flowrate is assumed to be
equal to the water flowrate.

Because the model in Eq. 3.84a is simpler to express in term of the specific
enthalpy, we will introduce this as the transformed output z

z = h(w) = Hs(Ts, ps) (3.85)

While the specific enthalpy cannot be measured directly, it can be esti-
mated, for example by using a look-up table. Note that selecting to control
the steam enthalpy is not new, e.g.,Shinskey and Louis (1968).

To derive the input transformation v0, we set Eq.3.84a equal to Eq. 3.84b

132



3. Transformed inputs for linearization, decoupling and feedforward control

and solve for Hs(Ts, ps) to get

Hs(Ts, ps)︸ ︷︷ ︸
z(w)

= Hf (Tf , pf ) + cpg(T
0
g − Tg)

Fg

Ff︸ ︷︷ ︸
f0z(u,d,w)

(3.86)

The ideal transformed input v0 is then the right-hand side of Eq. 3.86

v0 = f0z(u, d, w)

= Hf (Tf , pf ) + cpg(T
0
g − Tg)

Fg

Ff

(3.87)

The physical input u = Ff is computed as the inverse of Eq. 3.87

Ff =
Fgcpg(T

0
g − Tg)

v0 −Hf︸ ︷︷ ︸
f−1
0z (v,w,d)

(3.88)

3.9.2 Simulation results

To implement in input and output transformations in the rigorous dynamic
model, we use the combined model based inversion (Eq. 3.88) and cascade
approach from Figure 3.4c because the model has an inner flow controller for
feedwater pump. This inner controller is tuned with the SIMC rules with a
closed-loop time constant τc = 5 s. The outer controller is active and to have
a time scale separation between the two, we use a closed-loop time constant
5 times slower of τc = 60 s.

Table 3.5 summarizes the nominal operating conditions for the OTSG
from (Zotică et al., 2022).

Figure 3.17 shows the disturbance rejection response for the physical input
(u = Ff ) (left) and the superheated steam temperature (y = Ts) (right). The
disturbances in d1 = T 0

g and d2 = Fg are simultaneously caused by setpoint
changes in the combined cycle power. Initially, the cycle produces 92MW,
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Table 3.5: Nominal operating conditions for the OTSG

Variable Symbol Value Unit
Superheated steam pressure ps 23 bar
Superheated steam temperature Ts 354 ◦C
Exhaust gas inlet temperature T 0

g 443 ◦C

Exhaust gas outlet temperature Tg 169 ◦C
Feedwater inlet temperature Tf 27 ◦C
Feedwater inlet pressure pf 0.034 bar
Feedwater mass flowrate Ff 21.9 kg/s
Exhaust gas mass flowrate Fg 225.5 kg/s

and at time 30min, this is reduced to 46MW with an increment of 2MW

each 1000 s (16.67min). At time 400min the power setpoint is increased
back to 92MW with the same increment. As expected, the response for
y = Ts in Figure 3.17 is not perfect because of the difference the model used
in the simulation and in deriving the input transformation. However, the
temperature is kept within 10 ◦C variation over a wide-range of operating
points of the gas-turbine.

It may seem that the system in Figure 3.17 is oscillating. To illustrate
better the responses, Figure 3.18 shows a close-up of Figure 3.17. The two
overshoots are cause by the the feedback and feedforward acting simultane-
ously and compensating for each other. This happens only when the outer
controller C is active and there is a mismatch between the plant model and
the model used to derive the transformed input for the feedforward action.

3.10 Example 4: steam network pressure control

Pressure-flow networks are inherently multivariable, coupled and nonlinear
systems that are not straightforward handled by conventional PID controllers.
In this work we analyze the control problem for a steam distribution network
in the framework of of the theory for inputs transformation from Section 3.4.
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Figure 3.17: Simulation responses for the physical input (u = Ff ) (left) and the
superheated steam temperature () (right) to step changes in the combined cycle
power setpoint from 92MW to 46MW with an increment of 2MW each 1000 s
(16.67min) from time 30min until 400min followed by an increase back to 92MW
with the same increment. These step changes introduce simultaneous disturbances
in the exhaust gas inlet temperature and flowrate (d1 and d2).
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Figure 3.18: Close-up of the responses in Figure 3.17.
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Steam networks are used to produce and transfer steam as utility for
downstream processes such as distillation column, paper machines, reactors
etc. Pressure-flow networks are inherently highly coupled system where a
large and fast disturbance such as a shut-downs or start-ups becomes a large
disturbance both on the generation and the demand side. In addition, the
dynamics of steam generators are much slower compared to the dynamics of
the steam network. Therefore, to be able to respond fast to load changes,
control of the network pressure is commonly implemented in industry (Ma-
janne, 2005). There is however a self-regulating effect: a decrease in the
network pressure increases the pressure drop on the supply side (i.e the steam
flow increases), but decreases the pressure drop on the demand side (i.e.
the steam flow decreases) until a new equilibrium is reached. However, the
pressure might not satisfy the requirements for the pressure levels which may
cause process shut-downs, and control of steam header pressure is needed.

Both decentralized and centralized control methods for steam networks
are presented in the literature. The work by Bertrand and McAvoy (1986)
presents a solution based on PI-controllers that has good performance for dis-
turbance rejection. The work by Kristoffersen et al. (2014) implements model
predictive control (MPC) combined with real time optimization approach to
increase the energy efficiency. The work by (Majanne, 2005) compares the
performance of PI-controllers and MPC, and the MPC outperforms due to
its ability of handling coupled systems.

Figure 3.19 shows the steam network we analyze within the transformed
inputs method. It is composed of a high-pressure header (i.e. pipelines that
physically connect the steam generators and consumers), a turbine and a
low-pressure header. High-pressure steam is produced at a pressure p0 by
burning fuel in a boiler. Note that we do not include the boiler in our analysis.
The high-pressure steam is supplied as utility to one high pressure consumer
with receiving pressure pHC . The remaining steam is expanded to lower
pressure steam, either through a fixed-speed back pressure turbine connected
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Figure 3.19: Process flowsheet of the steam network with two pressure headers
(high and low) considered in this work.

to the electric grid to produce electricity or through a valve that bypasses the
turbine (zTB). Note that the fixed-speed turbine is not a degree of freedom
available for operation. The low-pressure steam is supplied as utility to two
consumers, with receiving pressures pLC1 and pLC2 respectively.

The manipulated variables are u = [zH zTB] (the supply of high pressure
steam and the turbine bypass). The controlled variables are y = [pH pL]

(pressure in the high and low pressure headers). The main disturbances are
d = [p0 zHC zLC1 zLC2 pHC pLC1 pLC2] (the high pressure steam supply,
and the consumers demand given by changes at the consumers pressure
or of the valve positions (zHC , zLC1 and zLC2). The additional states are:
w = [TT TL] (the temperature at the turbine outlet and in the lower pressure
header.)

137



3. Transformed inputs for linearization, decoupling and feedforward control

3.10.1 Nominal operating conditions for the steam network

Table 3.6 shows the nominal operating conditions, typical for a steam network
found in a chemical plant. Here, V is the volume of the two headers.

Table 3.6: Nominal operating conditions

Variable p0 pH pHC pL pLC1 pLC2 z TH TL VH VL

Value 42 40 38 7 6 5 0.5 380 200 1 5
Unit bar bar bar bar bar bar - ◦C ◦C m3 m3

3.10.2 Model

We assume ideal gas, constant specific heat capacity, no pressure losses and
perfect mixing in both pressure headers. Assuming isothermal conditions
in the high pressure header (TH constant), the dynamic mass balance in
pressure form becomes Eq. 3.89.

dpH
dt

=
RTH

VH
(qH − qHC − qTB − qT )

def
= fH (3.89)

where qj is the molar flow though a valve.
The low pressure header is not isothermal because work is extracted in

the turbine, and therefore the mass and energy balance become coupled. The
energy balance in temperature form is given in Eq.3.90.

dTL

dt
=

RTL

VLpL
(qTB(TH − TL) + qT (TT − TL)) (3.90)

The mass balance in pressure form is given in Eq. 3.91.

dpL
dt

=
R

VL
(qTBTH + qTTT − qLC1TL − qLC2TL)

def
= fL (3.91)

We assume isentropic expansion in the turbine and that there are no con-
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straints for the power supplied to the electric grid. Therefore the temperature
at the turbine outlet (TT ) is computed from Eq.3.92.

TT = TH

(
pL
pH

) γ−1
γ

(3.92)

where γ is the steam heat ratio capacity.

To model the molar flows through valves, we use a valve equation with a
linear valve characteristic (Eq.3.93).

qi = Cv,izi

√
|p2in − p2out|, ∀i ∈ (H,HC, TB,LC) (3.93)

where Cv,i is the valve coefficient, zi is the valve opening, pin and pout are
the pressures before and after the valve respectively.

To model the molar flow through the turbine, we assume a constant mass
flow coefficient (ϕ), equivalent to a chocked turbine (Eq. 3.94).

qT = ϕ
pH√
TH

(3.94)

3.10.3 Derivation of transformed inputs

The transformed input v = [vH vL] is defined by applying Eq. 3.20 resulting
in Eq. 3.95. We assume that the measurements for TH , TL and TT are
available. We consider the tuning parameter B = I.

vi = fi −Aipi, ∀i = (H,L) (3.95)

where Ai =
∂fj
∂pi

, ∀i = (H,L), evaluated at the nominal conditions from Table
3.6.

The transformed system in Eq.3.96 is linear, decoupled and has perfect
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disturbance rejection.

dpi
dt

= vi −Aiyi, ∀i = (H,L) (3.96)

3.10.4 Input calculation

We find the unknown variable u = [zH zTB] by solving the system of linear
equations (Eq. 3.97) resulted from rewriting Eq. 3.95.

[
zH

zTB

]
=

[
α −β

0 β

]−1 [ VH
RTH

(vH +AHpH) + qHC + qT
VL
R (vL +ALpL)− qTTT + (qLC1 + qLC2)TL

]
(3.97)

with α = CvH

√
|p20 − p2H |, β = CvTBTH

√
|p2H − p2L|, the flows q calculated

from Eq. 3.93.
Note that from Eq. 3.90, TL depends on u, therefore it is not a true

disturbance. However, the use of a measured TL in the input transformation
is not a problem in this case because the dynamics from the inputs u to
the outputs y have a stable inverse (have no RHP-zeros), hence the inverse
generated by the input transformation will be stable.

3.10.5 Simulation results

Figure 3.20 shows the responses for disturbance rejection and setpoint changes
for y = [pH pL] (Figures 3.20a) and 3.20b), w = [TH TL] (Figure 3.20d),
u = [zh zTB] (Figure 3.20c) and v = [vH vL] (Figures 3.20e and 3.20f) to
p0 = 42 bar at time t = 10 s, pHC = 39bar at time t = 20 s, pLC1 = 5.5 bar

at time t = 30 s, pLC2 = 1bar at time t = 40 s, psH = 39bar at time t = 50 s

and psL = 6bar at time t = 60 s. We tune the PI-controllers with τC = − 1
2A ,

which are only used for setpoint changes. The results in Figure 3.20 show a
decoupled process with perfect disturbance rejection.

In summary, steam networks are interactive systems, where the main task
of the control system is to reject disturbances either on the steam generation
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Figure 3.20: Simulation results for disturbance rejection and setpoint changes.
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or demand side. We design the control structure by using a method for input
transformation that gives decoupling and perfect disturbance rejection both
dynamically and at steady-state (Eq. 3.96), which makes it a good fit for the
control structure of a steam network, as seen in Figure 3.20.

3.11 Discussion

This section continues the mixing example introduced in Section 3.7 and
it presents how to handle input saturation and the effect of selecting the
parameter A when there are unmeasured disturbances.

3.11.1 Example 5 (example 3 continued): accounting for
input saturation

In most of the previous examples we have considered the flows as the ma-
nipulated variables. In reality, the inputs are valves or pumps that have
limited operating range (actuation). Therefore, we show by simulation how
the input transformation implementation behaves in presence of (physical)
input constraints for the mixing example introduced in Section 3.7. The ideal
input transformations were derived in Eq. 3.68 and Eq. 3.69, respectively.
We compare two implementation, the model-based inversion (Figure 3.4a)
and feedback-based (Figure 3.4b). For the feedback-based implementation,
we need to decide on the pairing u− v. For the mixing example there are two
possible choices: u1 − v1;u2 − v2 and u1 − v2;u2 − v1, and we them consider
both for simulation purposes. For both loops, we use an I-controller tuned
on the initial response that also has antiwind-up (back-calculation method)
that tracks the real plant input a time constant τT = 1 s. In addition, v is
calculated using the real plant input.

Figure 3.21 shows the simulation results to a setpoint change at t = 100 s

of ∆qs1 = 5 kg/s, a disturbance step change at t = 200 s of ∆T1 = 5 ◦C and
finally a disturbance step change at t = 300 s of ∆T2 = 20 ◦C. Note that for

142



3. Transformed inputs for linearization, decoupling and feedforward control

simplicity, we set the constraints directly on the flows qmax = 10 kg/s. The
simulation results in Figure 3.21 show that with model-based inversion we
loose control of all CVs, while with the feedback-based (cascade) implementa-
tion we retain control of the CVs controlled by the transformed input which
does not saturates. The difference between the two implementations is that
the feedback-based uses the real plant input to calculate the transformed
input v. Thus, it has knowledge about the input constraints.

In summary, we may handle input saturation using the feedback-based
implementation. For multivariable systems, we select the pairing u − v

according to the input saturation rule (Reyes-Lúa and Skogestad, 2020), i.e.
pair the input that is most likely to saturate with the CV that we can give
up controlling.

3.11.2 Example 6 (example 3 continued): choice of the tuning
parameter A and effect of unmeasured disturbances

We analyse by simulation the effect of tuning parameter A = − 1
τ when there

are errors in the disturbance measurements. We consider four cases:

1. A = diag
(
∂y
∂f

)
∗
, i.e. keeping the original system dynamics

2. A = 2diag
(
∂y
∂f

)
∗
, i.e. making the system faster

3. A = 0.5diag
(
∂y
∂f

)
∗
, i.e. making the system slower

4. A = 0, i.e. equivalent to feedback linearization.

where ∗ denotes nominal operating conditions.
The ideal input transformations were derived in Eq. 3.68 and Eq. 3.69,

respectively.
Figure 3.22 compares the simulation responses for four choices of the

tuning parameter A to a step disturbance ∆d1 = ∆T 0
1 = −2 ◦C at time

100 s considering 5 ◦C disturbance measurement error for d1 = T 0
1 . The
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0 100 200 300 400 500

Time [s]

34

35

36

37

38

39

40

41

T
em

p
er

at
u
re

 (
y

2
=

T
) 

[o
C

] Model-based inversion

: u
1
-v

1
; u

2
-v

2

: u
1
-v

2
; u

2
-v

1

y
2

s

(b) Controlled variable y2 = T
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(e) Feedback: transformed input v1
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(f) Feedback: transformed input v2

Figure 3.21: Simulation results for the mixing example with input saturation for
the model-based implementation, and feedback-based implementation with the two
possible pairing (u1 − v1;u2 − v2 and u1 − v2;u2 − v1 )144



3. Transformed inputs for linearization, decoupling and feedforward control

disturbance error implies that the calculation block in Figure 3.4a uses the
nominal value for d1 = T 0

1 .

The choice of tuning parameter A only affects the dynamics for y2

(Figure 3.22b). In Figure 3.22a, y1 is perfectly controlled because the model
assumes steady-state mass balance and we use a static input transformation
to define v10 (Eq. 3.68). Selecting A = ∂y2

∂f2
(blue line) means that for small

changes, there is no feedback from y in the transformation and the system
behaves as in “open loop". Increasing (in absolute value ) A (indigo line)
makes the system faster, and the steady-state offset is reduced because now
there is some feedback from y to v. On the other hand, decreasing (in absolute
value) A (pink line) slows down the system and the offset is increased. Finally,
selecting A = 0 (i.e. as in feedback linearization) makes the system unstable
as both input saturate (green line). This simulation example demonstrates
the danger of selecting A = 0 when there are measurement errors.

3.12 Summary and conclusion

In this work we introduce transformed inputs v = g(u,w, y, d) to provide a
systematic approach to derive model-based nonlinear calculation blocks and
cascade control schemes which are frequently used in industrial practices for
linearization, decoupling or feedforward disturbance rejection.

The transformed input v replaces the physical input u for controlling the
output y. The main assumptions are that we can measure the disturbances
and in some cases additional state variables w, and that we have equal
number of input and outputs. Measurement of the w variables may be used
to replace the model equations describing its dynamics, thus simplifying the
model for y.

To derive these transformations, we start from either a steady-state model
(y = f0(u, d)) or a dynamic model (dydt = f(u, y, w, d)). For the steady-state
case, the ideal transformed input is then simply the right-hand side of the

145



3. Transformed inputs for linearization, decoupling and feedforward control

0 100 200 300

Time [s]

9

9.5

10

10.5

11

F
lo

w
ra

te
 (

y
1
=

q
) 

[k
g
/s

] y
1

y
1

s

(a) Controlled variable y1 = q

0 100 200 300

Time [s]

15

20

25

30

35

T
em

p
er

at
u
re

 (
y

2
=

T
) 

[o
C

]

A=-0.01 (original)

A=-0.02 (faster)

A=-0.005 (slower)

A=0 (Feedback linearization)

y
2

s

(b) Controlled variable y2 = T
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Figure 3.22: Comparison of simulation responses to a step disturbance ∆d1 =
∆T 0

1 = −5 ◦C at time 100 s for four choices of the tuning parameter A considering
5 ◦C measurement error for d1 = T 0

1 . The system becomes unstable for A = 0. The
outer controller is not included.
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3. Transformed inputs for linearization, decoupling and feedforward control

model, v0 = f0, which substituted in the model gives y = v0 which is linear,
decoupled and has no effect from the disturbances.

For the dynamic case, we also use the right-hand side of the model
equation, but we introduce two tuning parameters A and B to define the
transformed input vA in Eq. 3.20 (see Sections 3.4.2.2-3.4.2.1 for how to
select A and B). The idea is to obtain a first-order transformed system on
the form dy

dt = Ay +BvA which is also linear, decoupled and with no effect
from disturbances.

Note that we may also apply input transformations derived from a steady-
state model to a dynamic process model, see the heat exchanger example in
Section 3.8. In this case, the response will not be perfect dynamically, but it
will retain some of the feedforward disturbance rejection effect.

The main advantage of vA over v is that we may select A to change the
dynamics of the transformed system compared to the original system. This
is relevant when we introduce measured states w in v0, the resulting feedback
gives changes in the dynamics. For the heat exchanger in Section 3.8, the
response of the transformed system became worse (slower), but there may
exist cases where the dynamics in w make the response faster than the
original system.

In some cases, the implementation of transformed input may be simplified
by introducing transformed outputs z = h(y, w, d) because the model is easier
to express in terms of z than y. This was used in the heat exchanger example
in Section 3.9.

To implement v, we need to solve the input transformation equation
(v = g(u, y, w, d) wrt. to the physical input u, given all other variables. In
some cases, we may use the exact model-based inverse in Figure 3.4a. In
other cases, for example when there is no analytical solution, or for systems
with relative order greater than 1, we may use feedback control as a “trick”
to solve the equations by using the cascade implementation in Figure 3.4b
with an inner v-controller. The cascade implementation is be more robust
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3. Transformed inputs for linearization, decoupling and feedforward control

than the model-based inversion when we make use of the w measurement
because of the potential problem with internal instability of the hidden w

dynamics. Internal instability may occur if the indirect (dynamic) effect of u
on v through w is large compared to the direct (static) effect of u on v.

The outer controller C is needed to correct for errors in the model and
measurements and to reject unmeasured or unmodelled disturbances thus
to achieve offset-free control at steady state. For multivariable systems,
single-loop PID-controllers are usually sufficient because the response from v

to y is linear and decoupled, at least in the ideal case.
Finally, for higher order systems, it possible to introduce chain of transfor-

mations, similar to the feedback linearization techniques. However, for more
general cases, including cases with more complex dynamics or constraints,
there are other control approaches that may be more suitable. One approach
is nonlinear model predictive control which allows for more general dynamic
models and allows for taking into account much more general control objec-
tives, including constraints and the trade-off between input usage and output
performance. The main advantage with the use of transformed inputs is the
simplicity, ease of understanding and that they can be implemented into the
basic control layer.
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Part III

Handling constraints on
manipulated variables used for
inventory control to balance

supply and demand
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Chapter 4

General system for balancing
supply and demand

This chapter is based on the papers “Supervisory control design for balancing
supply and demand in a district heating system with thermal energy storage”
(Zotică et al., 2021) and “Bidirectional inventory control with optimal use of
intermediate storage” (Zoticǎ et al., 2022).
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4. General system for balancing supply and demand

4.1 Introduction

Consider a general system for balancing supply and demand in Figure 4.1.
This is an inventory (m) control problem with two main MVs: adjustable
supply (MVs) and flexible demand (MVd), and two DVs: given time-variable
supply (d1) and given time-variable demand (d2) and the mass balance in
Eq.4.1. Each MV in Figure 4.1 may consist of different sources for the supply
side (e.g., u1 and u2) or different sinks for the demand side (e.g., u3, u4 and
u5). Thus we make use of input transformations in defining each MV as a
sum of its corresponding physical inputs (flows u).

m

u1

u2

u3

u4

u5

d1 = variable supply

d2 = variable demand

MVs :=
adjustable
supply

MVd :=
flexible
demand

Figure 4.1: General solution for balancing a system with variable supply (d1) and
variable demand (d2) using an adjustable supply (MVs) and an adjustable demand
(MVd).

The mass balance Eq.4.1 shows that the inventory is a measure for the
demand-supply equilibrium, and we do not need to measure directly the
supply or demand.

dm

dt
= MVs + d1 − MVd − d2 (4.1)

The idea is that the adjustable supply MVs should be used when the
variable demand (d2) is larger than the base load (cheap) supply (d1), and
the adjustable demand (MVd) should be used when d1 > d2. One should
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4. General system for balancing supply and demand

normally not use MVs and MVd simultaneously, though this may happen
for economic reasons. For example, the general system in Figure 4.1 can
be a district heating network (DHN) where cheap time-varying waste heat
(d1) is available, and a DH operator minimizes its heat generation (MVs)
cost, i.e., allocation of heat sources u1 and u2. The flexible demand MVd

is represented by any form of dissipating excess waste heat, for example
using thermal storage (hot water tank or building thermal inertia), or to
the environment. The operational objective here is to satisfy the given
time-varying heat demand of a set of consumers (d2).

4.2 Control structures design for active constraints
switching

The scope of this work is to design decentralized feedback control structures
that set the values of MVs and MVd to control the inventory m, thus keeping
the balance between demand and supply. Moreover, we consider how to
handle cases when the MV used to control the inventory, that is the active MV,
saturates at its max limit and we loose control of the CV. For example, for the
general system in Figure 4.1, when the adjustable supply MVs saturates, we
need to start using the adjustable demand MVd for controlling the inventory.
To do this, we need a MV-MV switching and possibly also a CV-CV switching
(selector) if the MV is already used for another CV.

To implement MV-MV switching, we first need to identify if there are
any unused MVs. With no additional MVs left (case 1), we have to give-up
controlling a second and less important CV by using a selector for CV-CV
switching, and use this second MV to control the inventory, which is the
more important CV. Note that this is a case of CV-MV switching (Reyes-
Lúa and Skogestad, 2020). As we will later see in Section 5, this CV-MV
switching involves moving the throughput manipulator (TPM) to the new
bottleneck and it may affect many units as we need to rearrange relevant
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loops to be radiating around the new TPM (see Section 5). With additional
(unused) MVs (case 2), multiple inflows or outflows may be used when the
original MV reaches a max constraint. Compared to case 1, the advantage
is it eliminates the need to reconfigure the direction of the inventory loop
such that MV-MV switching has only local effect. We first decide if the
MVs should become active in a predefined order, that is if MVi+1 activates
when MVi saturates (subcase 1), or, if all additional MVs should be used
simultaneously (subcase 2). Usually this choice is made based on economic
reasons, that is on the price of using each MV. An example for the first
subcase is using the MVs in a predefined order by a district heating operator
with different heat sources (MVs) such as waste heat, hot water storage tank
(dynamic storage) and electric heating (given in order of increasing prices).
The desired value for the expensive heat sources (MV) is fully closed, but we
start using this MV when the inventory y (pressure) drops to ymin = plow

(see Section 6). An example for the second subcase is the power grid, where
several power plants run in parallel and share the load for balancing the
variable time-varying consumers demand (see Figure 2.15). Another example
relevant to chemical processing plants is a steam distribution network where
several boilers (steam generators) are operated in parallel to supply the steam
requirement of the plant. To implement this using decentralized control,
we may use one controller with I-action and the rest only with P-action, or
simply all P-controllers (also known as droop control). In droop control, the
proportional gain (K) is used to proportionally allocate the change in load to
the MVs. Here we get some offset for y (and this is the reason for the word
droop). This subcase is not further extended in this thesis, but simulations
results for a balancing supply and demand in a steam distribution network
are available in the master thesis of Vik (2021).

Particularly, the examples in this thesis compare simulations split range
control (SRC) and controllers different setpoints together with min selectors.
Thus these control structures are explained next.
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4.2.1 MV-MV switching: split range control

+
− C

SRC

SR Process
ys e v

u1

u2

y

Figure 4.2: Split range control (SRC) with two MVs (u1 and u2) and one CV (y).
Controller (C) sends an internal signal (v) to the split range block.

SRC is a multiple-input single-output (MISO) control structure that uses
a new MV when the initial MV is at its limiting value to keep the CV at a
constant setpoint. Thus it extends the steady-state operating range for the
CV. SRC is a classical advanced control structure included in many process
control textbooks (Bequette, 2002; Seborg et al., 2003) and in industrial
applications (e.g., Forsman and Adlouni (2018)).

Figure 4.2 shows the block diagram for SRC that keeps one CV (y) at
the setpoint by manipulating two MVs (u1 and u2). Note that more MVs
can be handled. A feedback controller (C), sends an internal signal (v) to
the split range block (SR). The split range block returns the values for the
physical MVs (u) based on a predefined function, Eq. 4.2 and Figure 4.3.

ui = u0i + αiv ∀i = (1 . . . N) (4.2)

where u0 is a bias, α is the slope in the split range block and N is the number
of MVs.

There are different alternatives for the split range block, e.g., logic (if-else
statements), lookup tables, or functions, which is the implementation we use
in this work. Figure 4.3 shows a split range block for two MVs (u1 and u2)
with two positive and not equal slopes (α) corresponding to the effect from
the MVs to the CV, i.e. different gains with the opposite sign. For v < v∗,
u1 is active while u2 is fully open. On the other side, for v > v∗, u2 is active
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Figure 4.3: Split range block for Fig. 4.2. The slopes α are different because the
two MVs have different effect on the CV.

and u1 is fully open.

Although its broad use, a systematic tuning procedure has only recently
been introduced by the work of Reyes-Lúa et al. (2019). This procedure
considers the different effects from each MV on the CV to tune the slopes
(α) in the split range block and get the desired controller gain for each MV.
In SRC we can only have one integral time. However, the controller gain
for the individual MVi-CV pair is adjusted by selecting the slopes αi in
the split range block. (Reyes-Lúa et al., 2019) proposes to select αi from
KC,i = αiKC , where KC is the common proportional controller gain, and
KC,i is the proportional gain for each manipulated variable.

4.2.2 MV-MV switching: controllers with different setpoints

Controllers with different setpoints is an alternative to SRC. Figure 4.4 shows
the block diagram for two independent PI-controllers with different setpoints
ys1 and ys2 that control y by manipulating u1 and u2 respectively. Note
that it is possible to use more than two controllers. The idea is to start
using a new uj once y has reached a new threshold given by yj = ysi +∆ysj .
During normal operation, one and only one of the controller gives an output
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Figure 4.4: Controllers with different setpoints for controlling y using u1 and u2.
During normal operation, u1 is the active MV, and u2 activates when y reaches a
new threshold given by ys1 +∆ys.

umin
i < ui < umax

i , i.e. within the physical limitations of the actuator. The
remaining N − 1 controllers are not active because their output uj is beyond
the physical limit of the actuator, and thus ũj ∀j ∈ (1 . . . N) \ i is either fully
closed or fully open. Controller j becomes active, (umin

j < uj < umax
j ) when

y deviates from the setpoint ysi and reaches the next setpoint yj = ysi +∆ysj ,
usually when ui saturates. Dynamically, y may reach ysj even though ui

is not saturated, for example because of a large disturbance, and it may
happen that more than one controller are active simultaneously. It follows
that the order in which the controller j activates is a-priori determined by
the selected ∆ysj . The value and sign of ∆ysj is selected during the design
phase based on physical understanding of the process, that is on the sign
of the process gain from u to y and if the MV should be fully open or fully
closed at nominal operation.

The advantages are that the controllers can easily be tuned independently,
and the switching is directly handled by the CV value, and not the MV
maximum or minimum limit as in the split range block, and therefore logic
is not needed. In applications with the objective of tight setpoint control,
this structure has the disadvantage that the setpoint is not constant and
this will cause some delay during switching. However, the disadvantage
of waiting for the controllers to activate becomes an advantage when we
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want to maintain production because it allows the level to be uncontrolled
between the two setpoints. This effect is used in the example in Section 5,
where the control objective is to maintain production for tanks in series when
temporary bottlenecks occur.

4.2.3 CV-CV switching: selectors

+
−

+
−

C1

C2

min /
max

Selector

u0

Process

ys1

ys2

e1

e2

u1

u2

u
y1

y2

Figure 4.5: Selector (min or max or mid) to switch from controlling CV1= y1 to
CV2= y2 when CV2 becomes an active constraint. All controllers have tracking
antiwind-up (not shown).

Selector logic blocks, also called overrides, are used when only one MV
is available for several CVs. There is an independent controller for each
controlled variable and a min or max or combination thereof is used to select
the plant input (u) from all controller outputs (ui). When the controller
output is not selected, the integral action in the controller will continue to
increase and the controller winds-up, which will cause a delayed activation. To
avoid this issue, all controllers must have antiwind-up implemented (Åström
and Hägglund, 2006). Figure 4.5 shows the block diagram for two CVs and
one MV, where we give up controlling the less important CV1 when the
more important controlled variable CV2 reaches a constraint. The work
by (Krishnamoorthy and Skogestad, 2020) presents a systematic design of
selectors used for switching between controlling different CVs. The theory
states that a max-selector is used for constraints that are satisfied with a
large input, and a min-selector for constraints that are satisfied with a small
input.
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Examples. This generalization of balancing supply and demand using
inventory control is a result of working on different applications for MV-MV
and CV-CV switching. These are:

1. No extra MV available: Bidirectional inventory control with optimal
use of intermediate storage (Chapter 5).

2. Extra MVs available: Balancing supply and demand in a district heating
system with thermal energy storage (Chapter 6).
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Chapter 5

Bidirectional inventory control
with optimal use of
intermediate storage

The scope of this chapter is to advocate the use of a decentralized control
system that is able to maximize production when temporary or permanent
bottlenecks occur for multiple units in series by employing the buffer inven-
tories at intermediate storage. This bidirectional inventory control scheme
has for each inventory two controllers, one for the inflow and one for the
outflow, with high and low inventory setpoints, respectively. The inventory
can typically be liquid (level) or gas (pressure). When production cannot
be maintained without breaching physical constraints on the inventory, this
control structure automatically reconfigures the loops for consistent inventory
control, which means that it is radiating around the throughput manipulator
to assure local consistency and feasible operation. The chapter is based on
Zoticǎ et al. (2022) with the addition of more simulation responses presented
and analyzed.
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5.1 Introduction to inventory control

Process down-time due to failures, extended operation at non-optimum
points, long periods of switch-over from one mode of operation to another or
prolonged operation with off-specification products are identified as causes
for economic loss in a chemical plant (Stephanopoulos and Ng, 2000). The
root cause for these problems is often that the normal control system is not
able to handle certain disturbances or failures, which makes it necessary to
switch some control loops to manual mode.

In general, the operation of a system has two main objectives. The first
is to stabilize the process and avoid that it drifts into an undesired operating
region. The second is to minimize the economic cost J (or equivalently
maximize the profit) subject to satisfying the operational constraints. The
focus in this paper is on the economic objective.

Unit 1

h1

Unit 2

h2

Unit 3

h3

F0

u0 = z0

F1

u1 = z1

F2

u2 = z2

F3

u3 = z3

Figure 5.1: Flowsheet of the three units in series studied in this work. For
simplicity the inventory is assumed to be liquid, but it could also be gas. We
will not include the six flows without a valve in the later figures. These can be
considered additional disturbances.

Figure 5.1 shows a simplified process consisting of three units (N = 3) in
series which we consider. In Figure 5.1, there are four manipulated variables
(MVs), which are the adjustable flows Fk (valves zk) into and out of each unit.
Three of these MVs must be used to control (stabilize) the inventory (level)
in the units, whereas the remaining degree of freedom, which we denote
the throughput manipulator (TPM), sets the flowrate through the system.
Although most process plants have some units in series, this is certainly not
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a general processing flowsheet, as for example, recycle flows are not included.
Nevertheless, it is a fairly general structure for the case where we have N

inventories that should be controlled using N + 1 MVs. The inventories need
to be controlled with given minimum and maximum bounds but otherwise
the inventory (buffer) setpoints are degrees of freedom for optimizing the
economics (minimizing operational cost J). This decision is a key part of
the present paper.

The location of the TPM has a significant effect on the structure of
the inventory loops which have to be radiating around the bottleneck for
steady-state consistency (Price et al., 1994) (see also Figure 5.3). The desired
production rate is typically set by the production planning team, and this
determines the desired value (setpoint) for the TPM (at least when averaged
over time). In other cases, the production rate may be set by one critical unit,
which should operate at a fixed or maximum production rate (for example,
the paper machine in a pulp and paper mill). However, during operation
one may encounter disturbances which restrict the processing capacity. One
important disturbance, which is the main focus in this paper, is a temporary
or permanent reduction of the flow through one of the units, that is, the
appearance of a new bottleneck in the process.

Bottleneck definition. A bottleneck is an active constraint that limits
further increase in throughput (gives maximum network flow subject to feasible
operation).

There may be some flexibility in temporarily isolating or containing a
temporary bottleneck by making use of the stored or available (empty) buffer
volume by temporarily giving up inventory control. However, inventories
are restricted by minimum and maximum values, hence eventually it will
be necessary to either stop production or to move the TPM to the new
bottleneck, thus to rearrange the inventory loops correspondingly.

From this, we identify two challenges when encountering a new bottleneck:

Challenge 1. Use of intermediate storage for bottleneck isolation (con-
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tainment): How to optimally select the inventory (level) setpoints to maximize
the time until a new bottleneck makes it is necessary to decrease the through-
put?

Challenge 2. Inventory control rearrangement to handle bottlenecks:
How to implement a logic that automatically rearranges the inventory loops to
maintain consistent inventory control when encountering a new bottleneck?

In this work, we explore these challenges by considering temporary and
permanent bottlenecks. For a temporary bottleneck, the duration of the new
active constraint may be short enough to isolate locally its effect such that
we can utilize the buffer capacity thus avoid reducing the TPM (challenge
1). For a permanent bottleneck, the new active constraint propagates to the
adjacent units and, after some delay which we want to maximize (challenge
1), we will need to rearrange the loops and reduce the TPM (challenge 2).

Mathematically, let the MVs be the four valve positions in Figure 5.1:
u = [z0 z1 z2 z3], and let F̄ denote the average production over a given time
T

F̄ =
1

T

∫ T

0
Fk(t)dt, k ∈ [0 . . . N ]. (5.1)

The primary operational objective is to keep Fk at a given location k

at a given value (setpoint) F s
k , but if this cannot be achieved, the average

production should be maximized (Eq. 5.2a). Thus, the operational objective
is to maximize F̄ subject to Eq. 5.2b. The buffer inventories (levels hi) in
each tank they must be kept within high and low bounds (Eq. 5.2c). The
degrees of freedom u are the valve positions z. They are physically limited
by upper and lower bounds (Eq. 5.2d), where typically zmin = 0 (fully closed
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valve) and zmax = 1 (fully open valve).

J = max
u

F̄

s.t. Fk(t) ≤ F s
k (t) ∀k ∈ [0, . . . , N ]

hmin
i ≤ hi(t) ≤ hmax

i ∀i ∈ [1, . . . , N ]

zmin
k ≤ zk(t) ≤ zmax

k ∀k ∈ [0, . . . , N ]

(5.2a)

(5.2b)

(5.2c)

(5.2d)

The main disturbances will be assumed to be changes in the maximum
flow through the units, which may be represented as a change in zmax

j .
These operational objectives are also found in batch-plant scheduling and

the operation research literature under the names intermediate storage (Lee
and Reklaitis, 1989) or buffer management strategy (Chong and Swartz, 2016).
For example, the work by (Dubé, 2000) presents a numerical optimization
method with the objective of maximizing throughput by coordinating the
inventories for planned and unplanned shutdowns and reducing down time.
This means that previous work benefits from pre-shutdown preparation, that
is, charging the inventory of the tank downstream in anticipation of a-priori
known reduced production or shut-down upstream.

In this paper, we consider the use of standard advanced control, which
includes the use of single-loop decentralized PID controllers combined with
simple blocks such as selectors. The original goal of this work was to propose
a simple control structure to automatically rearrange the inventory control
loops (challenge 2). This corresponds to automatic MV-MV switching. The
first obvious choice is to use split range control (SRC, also see Section 4.2.1)
(Reyes-Lúa and Skogestad, 2020). However, SRC (for MV-MV switching) in
combination with selectors (for CV-CV switching) is difficult to implement
in a way that avoids delays during switching. An alternative to SRC is to use
two controllers, one for each level setpoint (H and L) (also see Section 4.2.2).
The resulting proposed control strategy is shown in Figure 5.2. A similar
control structure is presented in Shinskey (1981), ch. 3.7. The main difference
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is that we present a more detailed analysis of how it solves both challenges 1
and 2.

Unit 1

IC IC

H L

Unit 2

IC IC

H L

Unit 3

IC IC

H L

min

F s

min

F s

min

F s

min

F s

Figure 5.2: Bidirectional inventory control (IC) using selectors as proposed by
(Shinskey, 1981). H and L are the high and low inventory setpoints. The operator
can set the desired throughput F s at any given location (k ∈ [0 . . . N ]). F s should
be set to F s = ∞ to maximize throughput at this location.

5.2 Inventory (level) control with fixed control struc-
ture

In this section, we consider inventory control with a fixed control structure
(fixed pairings), and review existing results. Level control is common in
process plants and it has been extensively studied in the literature (Buckley,
1964; Marlin, 2000; Seborg et al., 2003; Shinskey, 1988; Stephanopoulos,
1984).

We consider the use of single-loop controllers. There are then two decisions
that we need to make:

1. Choice of input-output pairings for inventory controllers.

2. Controller tuning.

We will consider them in opposite order.
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5.2.1 Tuning of inventory controllers

With a fixed level control pairing, there are two extreme cases which are
frequently studied in the literature, tight and averaging level control (Marlin,
2000). The main difference between the two is in the selection of controllers
tuning parameters.

Tight level control. The control objective is to keep the level (y)
close to its setpoint (ys), and MV variations are not important. In this
case, we want to use tight tunings (largest possible controller gain subject to
satisfying robustness requirements). For example, using the SIMC tuning
rules (Skogestad, 2003), we select the closed loop time constant τC = θ,
where θ is the effective time delay in the level loop.

Averaging level control. The objective is to average out the flow
disturbances by allowing variations in the level. There is no fixed level setpoint
except for keeping the level within bounds. Thus the control objective is
to minimize the dynamic MV variations. This may be important if MV
variations cause disturbances to other units. In this case, we want to use
smooth tunings (smallest possible controller gain subject to satisfying level
constraints). For example, Skogestad (2006) recommends for smooth tunings
to choose the minimum proportional gain KC , and the integral time τI as
given in Eq. 5.3.

KC =
|∆F |
|∆h|

τI = 4τr

(5.3a)

(5.3b)

where |∆F | is the maximum change in flow disturbance,|∆h| is the maximum
allowed change in the level h, and τr is the tank residence time.

In this paper, we allow for level variations, so one may at first think that
this is a use of averaging level control where smooth tunings are desired.
However, the objective is not to minimize the dynamic MV variations, but
rather to maximize the flow through the system subject to satisfying the
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level and flow constraints in Eq. 5.2c and Eq. 5.2d, respectively. The optimal
is then to use tight level control tunings to be able to make full use of the
buffer volume by operating close to the physical constraints hmax and hmin.
Note that the high (H) and low (L) inventory setpoints in Figure 5.2 are set
fairly close to these physical constraints.

5.2.2 Input-output pairings for consistent inventory control

As we will see, for consistency the choice of input-output inventory pairings
depends on the location of the throughput manipulator (TPM), so let us
first define the TPM and consistency (Aske and Skogestad, 2009a).

Throughput manipulator (TPM). A TPM is a degree of freedom that
affects the network flow, and which is not directly or indirectly determined by
the control of the individual units, including their inventory control.

For systems operating at maximum production, we have reached a bottle-
neck (active constraint) such that there is not really any degree of freedom
left for changing the network flow. In such cases, we will refer to this limiting
bottleneck (active constraint) as the TPM. This is in agreement with the
above definition, because the limiting value of the active constraint affects
the network flow.

Consistency. An inventory control system is said to be consistent if the
steady-state mass balances are satisfied for any part of the process, including
the individual units and the overall plant. Consistency is equivalent with
internal stability of the system, and therefore this is a required property for
steady-state operation. In addition, we usually want to have local consistency,
which means that we want to control all inventories locally, that is, using the
local inflow or outflow.

For local consistent inventory control we need to follow the radiation
rule, which says that the input-output pairings must be radiating around the
location of a given flow (TPM) (Price et al., 1994).

Radiating rule for local consistency. Inventory control must be in the
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direction of flow downstream the location of a given flow (TPM). Inventory
control must be in the direction opposite to flow upstream the location of a
given flow (TPM).

For the simple example process in Figure 5.1, the radiating rule leads to
the four different pairing solutions in Figure 5.3 (Price et al., 1994). The
aim of this paper is to follow the radiating rule. Figure 5.3a shows a control
structure with the plant feed setting the throughput with the TPM at F0.
The inventories (levels) are controlled in direction of the flow, that is, all
levels are controlled by the outflow. This is most common configuration in
process plants (Stephanopoulos, 1984). Figures 5.3b and 5.3c show a control
structure with the throughput set by some conditions inside the plant with
the TPM at F1 and F2, respectively. The inventories (levels) are controlled
radiating from the TPM, that is, the levels upstream are controlled using the
inflow, and the levels downstream are controlled using the outflow. Finally,
Figure 5.3d shows a control structure with the plant product setting the
throughput with the TPM at F3. The inventories (levels) are controlled in
opposite direction of the flow, i.e. all levels are controlled by the inflow.

It is also possible to have consistent structures with use of non-local
pairings (“long loops") that do not follow the radiating rule. One example is
shown in Figure 5.4 for the case with the TPM located at the feed F0. It is
possible to device more complex rules for the consistency of such complex
structures (see for example Kida (2004), in Japanese) and one important
rule is that it is not allowed to have any inventory loops crossing the TPM
location. However, such complex structures with “long loops” are undesirable
for obvious reasons and will not be considered in this paper.
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Tank 1

IC

Tank 2

IC

Tank 3

IC

F0 F1 F2 F3

FC

TPM = F s

(a) The TPM location is at the plant feed at F0. Inventory control in direction of flow.

Tank 1

IC

Tank 2

IC

Tank 3

IC

F0 F1 F2 F3

FC

TPM = F s

(b) The TPM location is inside the plant at F1. Inventory control radiating around the
TPM.

Tank 1

IC

Tank 2

IC

Tank 3

IC

F0 F1 F2 F3

FC

TPM = F s

(c) The TPM location is inside the plant at F2. Inventory control radiating around the
TPM.

Tank 1

IC

Tank 2

IC

Tank 3

IC

F0 F1 F2 F3

FC

TPM = F s

(d) The TPM location is at the plant product at F3. Inventory control in direction
opposite of flow.

Figure 5.3: Locally consistent inventory control system radiating around the
throughput manipulator (TPM). The location of the TPM also determines the
optimal inventory setpoints for temporarily isolating the effect of new bottlenecks
on the TPM flowrate (see Section 5.3).
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Tank 1 Tank 2 Tank 3
F0 F1 F2 F3

IC IC

IC
“Long loop”

FC

TPM = F s

Figure 5.4: Consistent (but not locally consistent) inventory control structure
with undesirable non-local pairing (“long loop”). Such structures are not studies in
this paper.

5.3 Optimal inventory (buffer) setpoints (challenge
1)

In this section, we analyze how to isolate or contain the effect of bottlenecks for
as long time as possible. We consider here the case of a temporary bottleneck.
As an example, consider a temporary flow reduction (new bottleneck) in the
feed F0 for a case where F0 is used for inventory control of a downstream
unit (Figure 5.3b, Figure 5.3c and Figure 5.3d). If we do nothing, then the
level (h1) in unit 1 starts falling below its setpoint (hs1) and without input
constraints, h1 reaches its minimum value hmin

1 = 0% after the buffer time

tb1 =
A1(h

s
1 − hmin

1 )

∆F0
(5.4)

Here ∆F0 is the reduction in the flowrate F0 and A1 [m2] is the unit (tank)
cross-sectional area which we for simplicity have assumed is constant. We
assume that hs1 = 0.9hmax

1 = 2.07m and hmin
1 = 0m. Setting ∆F0 = 0.5F0

and substituting the model parameters given in 5.9.1 in Eq. 5.4 yields
tb1 = 4.14min. This means that if the downtime for F0 is less than tb1, then
the strategy of doing nothing will be acceptable, and give no loss in the
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production rate (reduction of the TPM). This is confirmed by a simulation of
a flow reduction from 100% to 50% of its original value for 3min in Figure 5.5
(see 5.9.1 for model parameters and controllers tunings ). We see that we
by making use of the stored volume in tank 1 have been able to isolate
the effect of the temporary reduction in the flow F0 to tank 1. From this
simple analysis we conclude that in order to maximize the time tb1, we should
maximize the value of hs1, that is, to have a high inventory setpoint if the
inventory is controlled by the inflow.
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(c) Flows

Figure 5.5: Simulation of a 3 min temporary bottleneck in feed flow F0 used for
control of downstream level for the control structures in Figure 5.3b, Figure 5.3c and
Figure 5.3d. Note that the downstream flowrates (F1, F2 and F3 are not affected.)

For similar reasons, it will be optimal to have low inventory setpoints if
the outflow is used for inventory control. A simulation is shown in Figure 5.6
for a 5min temporary flow reduction (bottleneck) in F2.

This leads to the following general rule for selection of inventory setpoints
(which provides the solution to challenge 1).

Rule for bottleneck isolation (Figure 5.3). To delay as long as
possible the time before a new bottleneck will affect other units, the inventory
setpoints should be set high for all inventories controlled by the inflow and
the inventory setpoint should be set low for all inventories controlled by the
outflow.

A closer look at Figure 5.3 shows that all the inventories have been
selected to follow this rule. Also note that Figure 5.4 follows this rule.
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Figure 5.6: Simulation of a 5 min temporary bottleneck in flow F2 used for control
of upstream level h2 for the control structures (Figure 5.3a and Figure 5.3b). Note
that the upstream flowrates (F0 and F1 are not affected).

5.4 Inventory control rearrangement to handle bot-
tlenecks (challenge 2)

Let us first note that the TPM sets the steady-state flow through the system.
If we during a dynamic transition fix also another flow or encounter a new
bottleneck, then there will temporarily be two TPMs and this inconsistency
is resolved by temporarily giving up the control of one of the inventories. This
was what we did in Section 5.3 (Figure 5.5 and Figure 5.6), but the bottleneck
was temporary so it was not necessary to move the TPM and rearrange the
inventory control loops. We now expand the analysis to a longer time or even
permanent bottleneck. The goal is therefore to identify the new bottleneck,
and select it as the new TPM and then rearrange the inventory loops between
the new and old TPM such that we follow the radiation rule (Figure 5.3).
For example, if originally the TPM is at the product F3 (Figure 5.3d), but
then the feed rate F0 becomes the bottleneck, we would need to rearrange
all the three level loops to get the structure in Figure 5.3a. It may seem that
this requires a centralized supervisor which identifies the new bottleneck and
then uses logic to rearrange the control loops accordingly. However, as shown
in this section, it can be achieved also with decentralized single-loop PID
controllers (Figure 5.2).
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The root cause for rearranging loops is that we have encountered a new
bottleneck. That is, a MV used for level control is saturated and no longer
available. However, we want to maintain level control and therefore need
to find a new MV to use. This is the issue of MV-MV switching. However,
since all MVs are already used to control other CVs, we need in addition a
CV-CV switching, that is, a min or max selector (Reyes-Lúa and Skogestad,
2020).

5.4.1 Bidirectional inventory control using split range control
and min− selectors

Figure 5.7 shows the bidirectional inventory control structure using SRC for
MV-MV switching and min-selectors for CV-CV switching. In Figure 5.7, z1k
sets the desired flow at location k (it is set at ∞ if the goal is to maximize
at this location), and the remaining signals zik are the SRC outputs from the
inventory controllers.

However, SRC is not recommended in combination with CV-CV switching
because of delays in switching as it is also apparent from the simulation in
Figure 5.8 and also discussed in Section 5.9.5. The responses in Figure 5.8
are for a permanent reduction of 50% at the plant feed (F0) which implies
reconfiguring the inventory loops to move the TPM from the product (F3)
to the feed (F0). The SRC scheme is able to handle the reconfiguration of
loops, but as it can be seen from Figure 5.8, the level control is not very
good and there are large overshoots in the MVs (flows). The reason is that
SRC in combination with CV-CV switching results in delays in the MV-MV
switching. The reason for the delay is that the min and max limits in the
split range block are not the same as the actual values encountered during
switching (see Section 5.9.5). There are possible ways to avoid this, but
it becomes complicated to implement (see 5.9.5.1). Fortunately, there is a
simpler alternative solution, namely to use controllers with different setpoints
(Figure 5.9).
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Figure 5.7: Bidirectional inventory control with SRC for MV-MV switching and
min-selectors for CV-CV switching. The scheme rearranges the inventory control
loops (challenge 2) but it does not solve challenge 1 of optimizing the inventory
setpoints because hs

i is fixed.
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Figure 5.8: Simulation of the SRC structure (Figure 5.7) for reconfiguring the
inventory loops to move the TPM from F3 to F0. The plant feed F0 decreases by
50 % at time t = 10min.
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5.4.2 Bidirectional inventory control using controllers with
different setpoints and min selectors

Figure 5.9 shows the bidirectional inventory control structure using two con-
trollers, with different setpoints (H and L), and min-selectors. In Figure 5.9,
z1k sets the desired flow at location k, z2k is the output of the controller with
a high (H) inventory setpoint located downstream of valve k for k = [0, 1, 2],
and z3k is the output of the controller with a low (L) inventory setpoint
located upstream of valve k for k = [1, 2, 3].

Since the root cause is that we have encountered a new bottleneck, it
means that we must reduce the flow. Thus, a min selector is needed. From
this the proposed structure in Figure 5.2 (and in Figure 5.9) follows directly.
The main difference between Figure 5.2 and Figure 5.9 is that we in Figure 5.2
have implicitly assumed to have implemented flow controllers (although not
shown), whereas we in Figure 5.9, directly manipulate the valve positions
zk. Otherwise, they behave in the same way, and they will always maximize
the network flow and keep the levels within bounds. We can set the flow at
any location k by setting F s in Figure 5.2 or z1k in Figure 5.9, but it will only
be selected if it is sufficiently low such that it becomes a bottleneck for the
network.

Figure 5.10 shows the simulation responses for a permanent reduction of
50% at the plant feed (F0) which implies reconfiguring the inventory loops
to move the TPM from the product (F3) to the feed (F0). To reduce the
switching time and make the results more comparable to the SRC structure
in Figure 5.8, we use a small difference between the high (H ) and the low (L)
setpoints (see Eq. 5.4); the high setpoint is hHi = 55% and the low setpoint
is hLi = 45%.
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Figure 5.9: Proposed bidirectional inventory control structure, which lets the
levels optimally vary between high (H ) and low L limits. This is the same structure
as in Figure 5.2, except that that we have introduced the valve position zi as the
MVi. This also allows for using valve saturation to represent new bottlenecks in
the simulation.
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Figure 5.10: Simulation of the proposed structure with different setpoints (Fig-
ure 5.9) for reconfiguring the inventory loops to move the TPM from F3 to F0. Note
that the difference between the level setpoints (hH

i = 55% and hL
i = 45%) is quite

small in this case to give a short switching time.
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5.4.3 Comparison of the two bidirectional control structures

The details of the tuning for the two bidirectional control (Figure 5.7 and
Figure 5.9) structures are given in 5.9.3 and 5.9.4, respectively. All controllers
are PI-controllers tuned with the SIMC-rules (Skogestad, 2003) with the
closed loop time constant τC = 0.5 min, which gives an integral time τI =

4τC = 2 min.

The simulations show that the control structure with different setpoints
(Figure 5.9) is much better than with SRC (Figure 5.7). As mentioned, the
reason for the poor performance is the switching delays encountered within
SRC. The structure with different setpoints in Figure 5.9 avoids these delays
because the switching is done based on the CV measurement and not on the
saturation limits of the MV as in SRC, and because of the use of antiwindup
which tracks the plant input (we use a back-calculation implementation
(Åström and Hägglund, 2006)). There will be some delay because of the
difference in setpoints (H and L), but as shown next this can be an advantage.

In summary, we find that the scheme with two controllers (Figure 5.9) is
better for rearranging the inventory loops than standard SRC (Figure 5.7). It
is thus best for addressing challenge 2. Since it has two inventory setpoints
it may also address challenge 1. This is discussed in the next section.

5.5 Optimal use of intermediate storage (challenges
1 and 2)

We have shown that the scheme in Figure 5.2 and Figure 5.9 with two con-
trollers addresses challenge 2, and by making use of the two inventory
setpoints (H and L) it can also optimally solve challenge 1. The reason
is that the ordering of the level setpoints needed to address challenge 2 is
consistent with the optimal setpoints given by the rule for bottleneck isolation
given in section 5.3. That is, to make use of the maximum flexibility we
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select the setpoint hH close to hmax and the setpoint hL close to hmin.

To better demonstrate the usefulness of this scheme, we show several
simulation cases. We consider the case where the TPM is originally located
at the product F3, but the scheme works equally well with the TPM at other
locations (see the additional simulations in Section 5.6). Thus, originally, the
controllers in Figure 5.9 are active in the direction opposite of flow as shown
in Figure 5.3d, and with all levels at their high setpoints. The system is then
ideally suited to delay the effect of bottlenecks appearing in the upstream
process (F0, F1, F2).
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Figure 5.11: Simulation of a temporary (19min) 50% decrease in feed F0 for the
proposed control structure in Figure 5.9 at t = 10min. The TPM is initially at the
product (F3). During the recovery period after t = 29min, the flows are at their
maximum value due to physical valve constraints.

In Figure 5.11, we consider a temporary (19min) 50% decrease in feed
F0, by changing zmax

0 from 1 to 0.3. Because F0 is located further away from
F3, we can make use of all the inventories h1, h2 and h3 to isolate the effect
of the new bottleneck in F0 on F3. This is the same case as in Figure 5.10,
but we have chosen the level setpoints far away (hH = 90% and hL = 10%)
in order to delay as much as possible the effect of the reduction in the feed F0

on the product F3. Initially, the system responds with the level h1 dropping
(Figure 5.5a). When the level h1 starts approaching its minimum value (hL1 ),
the level controller with a low setpoint for h1 becomes active and starts
reducing F1. This makes level h2 drop and eventually this gives a reduction
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also in F2. This effect propagates and h3 starts decreasing. However, in this
case the bottleneck in F0 disappears at t = 29min, before h3 reaches its
minimum value (hL3 ), and thus there is no effect on F3. During the recovery
period, when we want to increase F0 again (and also F1 and F2), the flows F0,
F1 and F2 need to overshoot to regain the lost production, while F3 is kept at
its original desired throughput. Because the selector blocks have been set up
to maximize the flow (we can show this more clearly by noting that we could
have set F s

k = ∞ or z1k = ∞), we initially reach the maximum constraints
on F0, F1 and F2 (or more exactly on their valve positions). During the
recovery period, we lose control of all inventories until they are close to their
maximum bounds when the level controllers with high inventory setpoints
(hHi ) becomes active. Then, for t > 60min (approximately), the inventory
loops are again in the direction shown in Figure 5.3d, and the system is
prepared for future bottlenecks. Detailed response of the controller outputs
are shown in 5.9.2.
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Figure 5.12: Simulation of a temporary (19min) bottleneck in flow F1 for the
proposed control structure in Figure 5.9. The TPM is initially at the product (F3).

In Figure 5.12, we consider a temporary (19min) bottleneck (disturbance)
for F1. Here the upstream level h1 initially has a small increase above its high
setpoint hH1 , but it is restored to hH1 by the activation of the level controller
which reduces F0. In this case, the new bottleneck is closer to the TPM, so
we have less isolation and we get a short-term reduction in the TPM F3 at
about t = 28min.
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Figure 5.13: Simulation of a (19min) temporary bottleneck in flow F2 for the
proposed control structure in Figure 5.9. The TPM is initially at the product F3.

Finally, in Figure 5.13, we consider a temporary (19min) bottleneck for
F2. In this case, the new bottleneck is even closer to the TPM, and we get a
reduction in the desired product (TPM) F3 from t = 20min. Note that we
initially have some small increase on the levels h1 and h2. This makes the
disturbance in F2 propagate quickly to reduce F1 and F0.

5.6 Additional simulations for challenge 1 and 2

This section completes Section 5.5 and presents additional simulations for all
other TPM locations at the feed F0, and inside the plant at F1 and F2.

5.6.1 The throughput manipulator is originally at the feed
F0

We consider first the case where the TPM is originally located at the feed F0.
Thus, originally, the controllers in Figure 5.9 are active in the direction of
flow as shown in Figure 5.3a, and with all levels at their low setpoints. The
system is then ideally suited to delay the effect of bottlenecks appearing in
the downstream processes (in F1, F2 and F3).

In Figure 5.14, we consider a temporary (19min) 50% decrease in flow
F1, by changing zmax

1 from 1 to 0.4. This new bottleneck is close to the
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original TPM at F0, thus we can only make use of the inventory h1 to delay
the effect of the reduction in the internal flow F1 on the feed F0. Initially,
the system responds with the level h1 increasing (Figure 5.14a). When the
level h1 starts approaching its maximum value (hH1 ), the level controller
with a high setpoint for h1 becomes active and starts reducing F0. From
time t = 19min to t = 29min) (approximately), the location of the TPM
has changed from z0 to z1, that is the controllers are active in the direction
shown in Figure 5.3b.

During the recovery period (from time t = 29min to t = 35min approxi-
mately), when we want to increase F1 again (and also F1 and F2), the flows
F1, F2 and F3 need to overshoot to regain the lost production, while F0 is
kept at its original desired throughput. Because the selector blocks have
been set up to maximize the flow (we can show this more clearly by noting
that we could have set F s

k = ∞ or z1k = ∞), we initially reach the maximum
constraints on F1(or more exactly on the valve position). During the recovery
period, we lose control of h1 until it becomes close to it’s minimum bound
when the level controller with low inventory setpoint (hL1 ) becomes active.
Then, from t > 45min (approximately), the inventory loops are again in
the direction shown in Figure 5.3a, and the system is prepared for future
bottlenecks.
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Figure 5.14: Simulation of a (19 min) temporary bottleneck in flow F1 for the
proposed control structure in Figure 5.9. The TPM is initially at the feed F0.

In Figure 5.15, we consider a temporary (19min) 50% decrease in flow
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F2, by changing zmax
1 from 1 to 0.35. In this case, we can make use of both

inventories h1 and h2 to delay the effect of the reduction in the internal
flow F1 on the feed F0. Thus the bottleneck is isolated for a longer period
compared to a reduction in flow F1 in Figure 5.14. Initially, the system
responds with the level h2 increasing (Figure 5.15a). When the level h2 starts
approaching its maximum value (hH2 ), the level controller with a high setpoint
for h2 becomes active and starts reducing F1, which increases the level h1.
When the level h1 starts approaching it’s maximum bound (hH1 ), we give-up
maximizing the flow F0 and use this flow to control h1. This changes the
TPM location to z2, and the controllers are active in the direction shown in
Figure 5.3b. Finally, when the bottleneck on F2 disappears at t = 29min,
the lost production is recovered by maximizing F0, F1 (until t = 35min) and
F2 (until t = 40min) during which time we loose control of h1 and h2. Note
that the reduction in flow F2, level h3 is controlled by F3, and the temporary
deviations from setpoint are caused by the disturbances in F2.
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Figure 5.15: Simulation of a (19min) temporary bottleneck in flow F2 for the
proposed control structure in Figure 5.9. The TPM is initially at the feed F0.

Finally, in Figure 5.16 we consider a temporary (19min) 50% decrease in
flow F3, by changing zmax

1 from 1 to 0.5. Here, the original TPM is furthest
away from the new bottleneck we can use all three inventories to isolate the
effect of reduction in product F3 on the feed F0.

183



5. Bidirectional inventory control with optimal use of intermediate storage

0 20 40 60 80

Time [min]

0

50

100

L
e
v

e
l 

[%
]

h
H

h
L

h
1

h
2

h
3

(a) Levels

0 20 40 60 80

Time [min]

0

50

100

V
al

v
e 

p
o

si
ti

o
n

 [
%

]

z
0

z
1

z
2

z
3

(b) Valve positions

0 20 40 60 80

Time [min]

0

0.5

1

1.5

F
lo

w
ra

te
 [

m
3
/m

in
]

F
0

F
1

F
2

F
3

(c) Flows

Figure 5.16: Simulation of a (19 min) temporary bottleneck in flow F3 for the
proposed control structure in Figure 5.9. The TPM is initially at the feed F0.

5.6.2 The throughput manipulator is originally inside the
plant at F1

We consider next the case where the TPM is originally located inside the
plant at F1. Thus, originally, the controllers in Figure 5.9 are active in the
direction shown in Figure 5.3b, and with the upstream level at it’s high
setpoint and with the downstream levels at their low setpoints. The system
is then ideally suited to delay the effect of bottlenecks appearing in the
upstream process (F0) and the downstream processes (F2 and F3).

In Figure 5.17, we consider a temporary (19min) 50% decrease in the
feed F0, by changing zmax

1 from 1 to 0.4. In this case, the reduction in
flow is close to the original TPM, and we can only use the inventory h1 to
maintain production and delay the effect of the reduction in the feed F0 on
the internal flow F1. Initially the level h1 decreases, and when it approaches
it’s minimum bound (hL1 ), the output of the controller with a low setatpoint
becomes selected by the min selector, and we give-up maximizing the flow F1

and use it to control the level h2. The TPM is now at the feed F0 and the
controllers are active in the direction of the flow shown in Figure 5.3a. After
the disappearance of the bottleneck and the production recovery period, the
TPM returns inside the plant at F1.

In Figure 5.18, we consider a temporary (19min) 50% decrease in flow
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Figure 5.17: Simulation of a (19 min) temporary bottleneck in flow F0 for the
proposed control structure in Figure 5.9. The TPM is initially is inside the plant at
F1.

F2, by changing zmax
2 from 1 to 0.35. In this case, the reduction in flow is

close to the original TPM, and we can only use the inventory h2 to delay
the effect of the reduction in F2 on the internal flow F1. Initially, the level
h2 increases, and when it approached the maximum bound the controller
with a high setpoint (hH2 ) becomes selected and F1 is no longer maximized,
but used to control h2. Thus temporarily, the TPM changes to F2 and the
controllers are active as shown in Figure 5.3c. Note that the overshoots for
h3 is caused by the disturbance in F2, while for h1 is caused by the decrease
in F1 given by change in TPM from F1 to F2.
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Figure 5.18: Simulation of a (19min) temporary bottleneck in flow F2 for the
proposed control structure in Figure 5.9. The TPM is initially is inside the plant at
F1.

Finally, in Figure 5.19, we consider a temporary (15min) 50% decrease
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in flow F3, by changing zmax
3 from 1 to 0.3. Here we can make use of both

inventories h1 and h2 to completely isolate the effect of the new bottleneck
in product F3 on the flow F1 (and the upstream feed F2). The disturbance
in F3 does not propagate to the feed at F0 and the level h1 does not change.
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Figure 5.19: Simulation of a (15min) temporary bottleneck in flow F3 for the
proposed control structure in Figure 5.9. The TPM is initially is inside the plant at
F1.

5.6.3 The throughput manipulator is originally at inside the
plant at F2

Similarly, we consider next the case where the TPM is originally located
inside the plant at F2. Thus, originally, the controllers in Figure 5.9 are
active in the direction shown in Figure 5.3c, and with the upstream levels
at their high setpoints and with the downstream levels at it’s low setpoints.
The system is then ideally suited to delay the effect of bottlenecks appearing
in the upstream processes (F0 and F1) and the downstream process (F3).

In Figure 5.20 we consider a temporary (9min) 50% decrease in the feed
F0, by changing zmax

0 from 1 to 0.5. As the new bottleneck is located furthest
away from the original TPM, we are able to use the intermediate inventories
h1 and h2 to completely isolate the effect of a reduction in the feed F0 on
the internal flow F2 and the product F3. Thus the level h3 it kept at its
minimum bound hL3 .
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Initially the level h1 decreases. When h1 approaches it’s minimum bound,
the controller with a low setpoint is selected and F1 starts decreasing to
control h1. This propagates the disturbance in F0 to the second tank, and
the level h2 starts decreasing. However, the bottleneck in F0 disappears
at t = 19min which explains the small overshoot for h1 at t = 20min

(approximately). The level h1 is still controlled at the low setpoint using
F1, so to keep the level constant when F0 increases, F1 must also increases,
which subsequently increases the level h2. When h2 approaches it’s maximum
bound hH2 , the controller with a high setpoint is selected, and F1 is reduced
to control h2. Eventually, the decrease in flow propagates to the feed F0, and
the controller become active in the original direction in Figure 5.3c.
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Figure 5.20: Simulation of a (9 min) temporary bottleneck in flow F0 for the
proposed control structure in Figure 5.9. The TPM is initially is inside the plant at
F2.

In Figure 5.21 we consider a temporary (9min) 50% decrease in the
internal flow F1, by changing zmax

1 from 1 to 0.35. In this case, the new
bottleneck is close to the original TPM, and it is not possible to isolate
complete the effect of reducing F1 on the flow F2. Thus, when h2 approaches
it’s minimum bound, the controller with a low setpoint hL2 is selected and
we give-up maximizing F2 for a short time. Thus F2 is reduced it to keep
h2 at the low setpoint. The reduction in F2 is a disturbance for h3, and F3

must also be reduced accordingly to keep h3 at the low setpoint hL3 . After
the disappearance of the bottleneck, F1 increases, which decreases h1 and
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increases h2. After a period of recovery, once h2 approaches it’s maximum
bound, the controller with a high setpoint, hH2 is selected and F1 is decreased
to maintain control of h3. This effect propagates to h1 which increases, and
eventually, F0 is also reduced to keep control of h1 at the high setpoint, thus
restoring the control loops in the direction shown in Figure 5.3c.
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Figure 5.21: Simulation of a (9 min) temporary bottleneck in flow F1 for the
proposed control structure in Figure 5.9. The TPM is initially is inside the plant at
F2.

Finally, in Figure 5.22 we consider temporary (9min) 50% decrease in
the product F2, by changing zmax

3 from 1 to 0.3. In this case, the duration of
the new bottleneck is short enough that we isolate the effect of reducing F3

on the flow F2 only by using the inventory h3.
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Figure 5.22: Simulation of a (9 min) temporary bottleneck in flow F3 for the
proposed control structure in Figure 5.9. The TPM is initially is inside the plant at
F2.
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5.7 Discussion

5.7.1 Choice of throughput manipulator location

The proposed control system in Figure 5.2 (and the more detailed Figure 5.9)
automatically moves the TPM to the new (permanent) bottleneck and recon-
figures the inventory loops to give the arrangement in Figure 5.3 (challenge 2).
However, there may also be cases where the production rate is not determined
by a bottleneck, but rather has a given setpoint, for example, determined by
market conditions. Where should the TPM be located in this case? There
may be many considerations. If we do not expect bottlenecks, then it is often
recommended to locate the TPM at a place where we want small dynamic
variations, for example, at the feed of a critical unit. For a process with
a long recycle loop, it is often recommended to locate the TPM inside the
recycle loop (Luyben, 1993). For cases where bottlenecks are expected, it
is recommended in the literature that the TPM should be located at the
expected future bottleneck (Aske and Skogestad, 2009b). The reason is to be
able to achieve tight control at the bottleneck when it occurs. This avoids
“long loops” (Figure 5.4) and reduces the back-off. However, this recommen-
dation is under the assumption that we are not allowed to rearrange the
inventory control loops, hence it does not apply for the proposal in Figure 5.2
(and Figure 5.9) with bidirectional inventory control. Interestingly, for the
proposed control system in Figure 5.2 (and Figure 5.9), which have automatic
reconfiguration of the loops, the recommendation is opposite: The set flow
F s (and thus the TPM) should be located as far away as possible from the
expected next bottleneck. We can then use all the inventories between the new
bottleneck and TPM to isolate the new bottleneck, that is, we can delay as
long as possible the time before we must reduce the throughput (challenge
1). Of course, if the bottleneck is permanent, the TPM will move to the
new bottleneck, which is consistent with the recommendation by (Aske et al.,
2007; Aske and Skogestad, 2009b).

189



5. Bidirectional inventory control with optimal use of intermediate storage

5.7.2 Alternative implementation: model predictive control
(MPC)

MPC handles constraints changes by design, and it therefore seems to be
a good alternative for our case. However, while it may be suited for fast
MV-MV switching and tight level control (challenge 2), we do not see an easy
implementation of changing the inventory setpoints in an optimal manner
(challenge 1). A possible approach would be to set the objective function
as to maximize the flows subject to constraints on the valves. However the
implementation effort may not be worth because the same result can be
achieved with decentralized control (controllers with different setpoints)

Moreover, the decentralized solutions that we propose in this work have
six advantages over more advanced multivariable control such as MPC:

1. they are easier to implement

2. they do not require a full dynamic plant model

3. they require only local information (i.e. level measurement in our case)

4. they do not require solving a dynamic optimization problems

5. they do not require disturbance measurement or forecast

6. it is easier to embed information about what to do in case of future
disturbances.

5.8 Conclusion

In this work we propose to use the bidirectional inventory control structure
in Figure 5.2 with a high and a low setpoints for each inventory. This scheme
maximizes throughput when there are changes in the operation that give
new temporary or permanent bottlenecks in other units. In order to isolate
the effect of a new bottleneck, the inventories will be floating between the

190



5. Bidirectional inventory control with optimal use of intermediate storage

minimum and maximum values at certain times. This structure automatically
identifies the new bottleneck without the need for centralized logic, and thus
it automatically reconfigures the inventory loops to be radiating around the
TPM to get local consistency of the inventory control system (challenge 2).
That is, it automatically gives the four desired structures in Figure 5.3 as
special cases. Moreover, it automatically adjusts the inventory setpoints
for optimal disturbance isolation (challenge 1), by setting large inventory
setpoint upstream TPM and small inventory setpoint downstream. Finally,
it automatically recovers the lost production for a temporary bottleneck.

5.9 Appendix

5.9.1 Process model and parameters

Assuming constant density (ρ) and constant cross-sectional tank area, the
mass balance for each tank is

dhi
dt

=
1

Ai
(Fi−1 − Fi) ∀i ∈ (1, 2, 3) (5.5)

where h [m] is the level, A [m2] is the cross-sectional tank area (Table 5.1)
and F [m3/min] is the volumetric flowrate in and out of the tank respectively
calculated from Eq. 5.6.

Fi = Cv,i

√
∆Pi

ρ︸ ︷︷ ︸
kv,i

fi(z) ∀i ∈ [0, 1, 2, 3] (5.6)

where Cv is the valve coefficient, ∆P [Pa] is the pressure drop over the
valve assumed constant, ρ [kg/m3] is the water density assumed constant and
f(z) is the valve characteristic, which we assume linear, i.e. f(z) = z,.

Table 5.1 shows the tank design parameters, VTank is the design volume,
A is the tank cross-sectional area and hTank is the tank design height.
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Table 5.1: Design parameters for the three tanks

i VTank [m3] A [m2] hTank [m]
1 2.3 1 2.3
2 4.2 1.5 2.8
3 6.4 2 3.2

Table 5.2 shows parameter kv (Eq. 5.6) for the four valves together with
the nominal valve openings (z∗) corresponding to a flow value of F = 1

m3/min. Note that for the different cases we locate the smallest kv value at
the original TPM at zmax = 1, and this is the reason for the different initial
valve openings between Figure 5.6, Figure 5.5 and Figure 5.11.

Table 5.2: Design parameters for the four valves.

z∗ kv [m3/min]
1 1

0.8 1.25
0.7 1.428
0.6 1.667

5.9.2 Controllers outputs for the structure in Figure 5.9

Figure 5.23 complements the simulation results in Figure 5.11 and it shows
the inputs to (interrupted lines), and the outputs from (continuous lines)
the four min selectors blocks of the structures with controllers with different
setpoints (Figure 5.9).

5.9.3 Tuning of controllers with different setpoint

We can tune the two PI-controllers independently, meaning that we can
consider the different effects from the MVs (valves) on the CV (level) given
by the different valve characteristics Cv and and pressure drops (∆P ) over
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(b) Valve z1
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(d) Valve z3

Figure 5.23: Inputs and outputs for all min−selectors in Figure 5.9 corresponding
with the simulation responses in Figure 5.11. The continuous line is the selected
physical valve position. To maximize throughput we set z10 = z11 = z12 = z13 = ∞.
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Table 5.3: Tuning parameters for controllers with different setpoints.

Tank LC hs
KC τI τT τCTPM=F0 TPM=F2 TPM=F3

1 high 90% 2 1.6 1.2 2 1 0.5
low 10 % -1.6 -1.4 -1.4 2 1 0.5

2 high 90% 2.4 2.1 2.1 2 1 0.5
low 10 % -2.1 -3 -2.4 2 1 0.5

3 high 90% 2.8 4 3.2 2 1 0.5
low 10 % 2.4 -2.4 -4 2 1 0.5

the valve. For example, we may apply the SIMC tuning rules (Skogestad,
2003) to the model given in 5.9.1, which is an integrating process with a large
open loop time constant τ → ∞. Table 5.3 shows the tuning parameters.
These are the high and low level setpoints (hs), the controller proportional
gain KC , the integral time τI , and the tracking time constant τT . Here, τC
is the desired closed loop time constant.

5.9.4 Tuning of SRC

We follow the procedure proposed by Reyes-Lúa et al. (2019) to tune the
SRC parameters. These are the common controller gain KC , the common
integral time τI and the individual slopes αi. The slopes αi allow for different
controller gains for each MV considering the different valve size (Eq. 5.7a).
We define the normal range for the internal signal v to be from 0 % to 100 %,
and we scale the MVs also from 0 % to 100 %. Then, for each tank, we solve
the system formed by the Eq. 5.7.

KC,i = αiKC , ∀i ∈ (1, 2)

∆v1 +∆v2 = 100

∆vi =
umax − umin

|αi|
=

100

|αi|
, ∀i ∈ (1, 2)

(5.7a)

(5.7b)

(5.7c)
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Table 5.4: Modified KC and τI for the three SRC in Figure 5.7.

Tank hs KC τI τC min α1 α2 v∗ u0,1 u0,2
1 50 % 65 2 0.5 1.8571 -2.1667 53.85 0 216.167
2 50 % 112 2 0.5 1.875 -2.1429 53.33 0 214.286
3 50 % 178 2 0.5 1.8 -2.25 55.55 0 225

where the significances of ∆v and α are shown in Figure 5.24a.

However, we can only have one integral time (τI) and we need to compro-
mise on its value. Because the slowest process is critical we select the largest
τI of the two options (for inlet and outlet valves in Table 5.3). However,
with no delay and same τC , all τI are equal. However, the common controller
gains KC were found to be too small in simulations, and the min selector
output would alternate between the two controllers. To improve the dynamic
performance, we increased them and the new values are given in Table 5.4.
The slopes α remain the same.

Figure 5.24a shows the split range block for tank 1. Figure 5.24b shows
the split range block for tank 2. Figure 5.24c shows the split range block for
tank 3.

5.9.5 Performance of bidirectional inventory control using
split range control

SRC gives poor level control, especially of h1 (Figure 5.8a). The reason is
that there are two delays in the MV-MV switching. Initially, the TPM is a
the product F3 (Figure 5.3d), and the valve openings are z0 = z20 = 0.6 and
z1 = z21 = 0.7 (Figure 5.7). Then at t = 10 min, the feed flow F0 drops to 50
% of its original value. In the simulation, we do this by changing the value
of z10 from 1 to 0.3, but physically it could be caused by a bottleneck inside
process which the controller does not know about. This causes the level h1
in tank 1 to drop, and the SRC responds by trying to open the valve z0.
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Figure 5.24: Split range blocks for Figure 5.7.
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This has no initial effect because z0 is fixed at z0 = 0.3 due to the bottleneck
in the unit. This causes the first delay. Eventually, when z0 reaches 1 (the
max-value in the SR-bock), the SRC switches the MV to z1, which starts
at its max value, z31 = 1, which is larger then the nominal z21 = 0.7. Thus,
the action of SRC now has to decrease the value down to z1 = 0.7 before the
min-selector changes the level control direction. This causes the second delay,
before finally the action of SRC has some effect on the level h1. To improve
the level control performance for SRC, we may do some more complex fixes
such as updating the bias for the internal controller.

5.9.5.1 Bias update for SRC

We propose here a method to avoid the two delays in switching within SRC
and achieve tight level control by updating the bias for the internal controller.
In Figure 5.25, we make a “jump” in ∆v such that the switching happens
immediately, without having to wait for the signal v to travel the pattern
area. The figure refers to tank 2 in particular, but it is also valid for the
other two tanks.
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Figure 5.25: Possible bias update for SRC for tank 2 to achieve tight level control.
Without the update, the controller would have to integrate over the pattern area
which is the cause of the delay in switching.

To compute what the actual value of z2 should be, we set F1 = F2, and
invert the valve equation (Eq. 5.6) to solve for z2 with known flowrate F2
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(Eq. 5.8). This is similar to a type of nonlinear feedforward (ratio) control.

z2 =
kv1
kv2

z1 (5.8)

where kv1 and kv2 are given in Table 5.2.
Then, we can update the internal PI-controller bias (v0) by adding to it

the value
∆v = v(z2)− v(z1) (5.9)

where v(z1) and v(z2) are the values of the output (v) of the internal
PI-controller in SRC for the two valve positions (z1 and z2), for example,
determined from Figure 5.25 (or the corresponding equations).

198



Chapter 6

Supervisory control design for
balancing supply and demand
in a district heating system
with thermal energy storage

This chapter is based on Zotică et al. (2021) and presents a systematic
comparison between three alternatives to design the supervisory control layer
of a district heating network composed of a waste heat boiler, an electric
boiler, a dump, a hot water storage tank, and a set of consumers. The
three alternatives are split range control (SRC), controllers with different
setpoints, and model predictive control (MPC). We evaluate the closed-loop
performance in the face of time-varying supply and demand, and constant
electricity prices. All alternatives were found to give similar performance.
Controllers with different setpoints is the easiest to implement, while model
predictive control is the most difficult.
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heating system with thermal energy storage

6.1 Introduction

The storage of thermal energy is an effective solution to the problem of
integrating intermittent heat sources such as solar thermal and industrial
waste heat into district heating systems (Lund et al., 2014; Miró et al., 2016;
Guelpa and Verda, 2019). The most common form of storage currently used
in district heating is the accumulation of hot water in tanks due to its low
installation cost and high reliability (Hennessy et al., 2019).

The optimal use of energy storage has been studied extensively in the
operations research literature (van de Ven et al., 2013; Harsha and Dahleh,
2014; Zhou et al., 2016, 2019). Despite a few problems with special struc-
ture, most energy storage problems relevant in applications do not have a
closed-form solution and a numerical solution by dynamic programming is
impractical. Therefore, we resort instead to suboptimal, yet effective, policies.
Economic model predictive control (EMPC) is an example of such policy
(Ma et al., 2009; Kumar et al., 2020). An alternative approach is to design
a hierarchy of optimization and control layers that work independently on
different time scales (Skogestad and Postlethwaite, 2005). This is known as
hierarchical control and is the approach we adopt in this paper.

Within the hierarchical control paradigm, MPC has become the technique
of choice for designing the supervisory control layer in most of the thermal
energy storage systems reported in the literature due to its ability to handle
constrained multivariable systems by design (Cole et al., 2012). On the
other hand, classical advanced PID-based control structures are widely used
in practice (Powell and Edgar, 2012; Oliveira et al., 2016). However, the
systematic design and benchmarking of these control structures for thermal
energy storage systems have received little attention in the literature.

We consider a district heating system with thermal energy storage. The
system is assumed to be already designed and we only consider its operation.
We also assume constant electricity prices.
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This chapter proposes an alternative decentralized control solution based
on PI controllers with different setpoints. The advantage of SRC and con-
trollers with different setpoints is that they handle active manipulated variable
(MV) constraint switching without explicitly solving an optimization problem.

The main contribution of this work is a systematic comparison of two
decentralized control solutions (SRC and PI controllers with different set-
points) and MPC for designing the supervisory control layer for a district
heating system with thermal energy storage.

6.2 Supervisory control layer: Model predictive con-
trol as alternative to decentralized switching

MPC is an alternative to MV-MV switching using SRC (see Section 4.2.1)
and controllers with different setpoints (see Section 4.2.2).

MPC is a unified systematic procedure for controlling constrained multi-
variable systems commonly used in industrial applications (Qin and Badgwell,
2003; Mayne, 2014). At each sampling time, it uses the current plant measure-
ment as the initial state to solve a finite-horizon open-loop optimal control
problem to determine the optimal control sequence. Then, the first control
is applied to the plant and the process is repeated at the next time step
(Mayne et al., 2000). It handles constraints and interactive processes by
design. However, it requires a detailed process model, which may not be
available at the plant start-up.

The closed-loop performance of MPC depends firstly on the accuracy of
the dynamic model and secondly on the choice of tuning parameters, e.g.,
weights in the objective function, prediction and control horizon, input rate
constraints or constraints back-off (Lu et al., 2020).

Finding the MPC tuning parameters is done by trial and error, heuristics,
or optimization of indicators of the closed-loop performance, e.g., overshoot,
integral square error, robustness, etc. The work by Garriga and Soroush
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(2010) presents an overview of theoretical and practical guidelines for tuning
the controller parameters in an MPC. The work by Santamaría and Gómez
(2016) presents a gradient-based tuning algorithm with application to chemical
processes. The work by Lu et al. (2020) presents derivative-free tuning
algorithms based on Bayesian optimization techniques. In this work, we use
trial and error.

6.3 District heating control problem

Figure 6.1 shows the thermal energy storage system analyzed in this work,
where the working fluid is hot water. For example, this can be a district
heating network supplying hot water to residential households. This system
has a direct physical connection between supply and demand, such that
hot water can be directly sent to the consumers bypassing the storage tank
(flowrate qSP ). There are also other distribution networks, for example,
in industrial clusters, that exchange energy only through the storage tank
(Scholten et al., 2017; Knudsen et al., 2019; Thombre and Krishnamoorthy,
2019).

The operational objective of the network in Figure 6.1 is to manipulate
the inputs u to minimize the electric boiler usage (u2 = qEP ) (Eq. 6.1a),
while balancing the supply and demand (Eq. 6.1b). Furthermore, the storage
capacity constraints (Eq. 6.1c) and the model equations (see Section 6.4 for
details) must be satisfied.

min
u

J =

∫ ∞

0
qEP (t) dt

s.t. supply = demand

V min ≤ Vh(t) ≤ V max

(6.1a)

(6.1b)

(6.1c)

The four inputs (degrees of freedom) in Figure 6.1 are u = [qD qEP qST qTP ].
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Waste heat
boiler

Variable supply

Pipelines
(m, p)

Consumers

Variable demand

d1 = qS qSP d2 = q

u1 = qD

Air
cooling

Dump

u2 = qEP

Electric
boiler

Hot water
storage tank

Vh

u4 = qST

Charging

u3 = qTP

Discharging

Figure 6.1: Flowsheet of distribution network studied in this work with one waste
heat boiler, one electric boiler, one air cooling (dump), and one hot water storage
tank supplying hot water through pipelines to consumers.

In the system, heat is mainly supplied by the waste incineration boiler (qS),
which extracts heat by burning waste. This may be viewed as a disturbance
to the system along with the consumer demand (q), i.e. d = [qS q]. Note that
the inputs u correspond to physical valves in Figure 6.1. Later, we will make
use of some transformed inputs (MVs) for the purpose of balancing supply
and demand. Based on process insight, the four degrees of freedom can be
used to balance supply and demand as follows:

1. Excess supply: charge hot water to storage (qST ).

2. Excess supply (when storage is full): dump hot water to air (qD).

3. Excess demand: discharge hot water from storage (qTP ).

4. Excess demand (when storage is empty): use electric boiler (qEP ).

The switching between these four operating regions must be taken care
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of by the supervisory control layer. Given that electricity prices are assumed
constant, this corresponds with the optimal storage policy. That is, this is
the optimal solution to Eq. 6.1. If electricity prices were time-varying, it
would be optimal to store energy at low prices to be used later when prices
are high, but this is beyond the scope of this work.

The main objective of the supervisory control system is to meet the
energy demand of the consumers by switching between the four operating
regions. To simplify the design of the supervisory control system, we will
consider three MVs in this layer, rather than the four physical valves (degrees
of freedom) shown in Figure 6.1:

MV1: hot water from waste heat boiler (qSP )

MV2: hot water from storage tank (qTP )

MV3: hot water from electric boiler (qEP ).

The motivation of selecting the three MVs is that they are the three
suppliers of hot water to the consumers in an actual district heating system.
Here, MV1 is the flow in the direct physical connection from the variable
supply to the consumers. Note that MV1 does not correspond to a physical
valve, but it is indirectly given by the material balance in Eq. 6.2.

MV1 := qSP = qS − qST − qD (6.2)

Here, the supply qS is a disturbance, whereas the charge qST and dump
qD are physical valves. For cases where we want qSP to be smaller than qS

(that is, we have excess supply), we first charge the tank (qST ) and then,
when it is full, we start dumping (qD). We will assume that this logic is
taken care of by a separate block “charging policy logic”, which will be part of
the regulatory control system (see Section 6.5.1). As mentioned, the reason
for doing this is to simplify the design of the supervisory control system.
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In summary, the three MVs are related as follows to the physical inputs
(u):

MV1 : = d1 − u1 − u4

MV2 : = u3

MV3 : = u2

(6.3a)

(6.3b)

(6.3c)

Note that the maximum values for MV1 = qSP and MV2 = qTP are
time-varying. That is, qSP is limited by the hot water from the waste-heat
boiler (qSP ≤ qS), and qTP = 0 when the storage tank is empty.

The temperature of the hot water produced in the waste heat and electric
boiler is kept constant by water injection, not shown in Figure 6.1. This is
a common practice in district heating networks. There are also other flows
not shown in Figure 6.1, for example, the water supply to the electric boiler
and the water return from the air cooling. Actually, in Figure 6.1, it may be
better to view the varying water flows q [m3/h] as being energy flows Q [J/h].
Because of the assumption of constant temperature, q and Q are directly
proportional: Q = kq.

In practice, measurement of the heat demand is not available. Therefore,
and we choose to control the network pressure (p), which is proportional
to the mass m (see Figure 6.1) in the pipeline. This is a dynamic variable
that couples the supply and demand. Therefore, it is an indirect and reliable
measurement of the supply-demand balance in a water distribution network.

In summary, Table 6.1 shows the three MVs, one CV and the two main
disturbances (DVs) for the supervisory control considered in this work.
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Table 6.1: MVs, CVs, and DVs for supervisory control.

Manipulated variables Controlled variables Disturbances

MV1: Hot water from
waste heat boiler (qSP )

CV1: Network pres-
sure (p)

DV1: Hot water
from waste heat
boiler (qS)

MV2: Hot water from stor-
age tank (qTP )

DV2: Hot water de-
mand (q)

MV3: Hot water from elec-
tric boiler (qEP )

6.4 Process model

The change of mass (m) in the pipelines system is given by the mass balance
in the network, Eq. 6.4.

dm

dt
= ρ(qSP + qTP + qEP − q) (6.4)

where, ρ [kg/m3] is the water density, assumed constant.

To model the changes in the network (pipeline) pressure (p), we consider
that it is proportional to the change of network mass (m), Eq 6.5.

p = p0

(
1 +

m−m0

ϵm0

)
(6.5)

where, m [kg] is the network water mass, m0 [kg] is the water mass at the
reference flow, ϵ is the constant compressibility coefficient and p0 [bar] is the
pressure at the reference flow. Hence m = ρV , the compressibility factor ϵ

takes into account the increase in liquid density and more importantly the
increase in pipelines volume by increasing the pressure.

Substituting Eq. 6.5 into Eq. 6.4 yields the mass balance expressed in
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terms of the network pressure, Eq. 6.6.

dp

dt
=

p0ρ

m0ϵ
(qSP + qTP + qEP − q) (6.6)

To model the storage tank inventory, we neglect changes in density (ρ)
and assume no heat losses. The dynamic mass balance for the storage tank
is given by Eq. 6.7

dVh

dt
= qST − qTP (6.7)

where, Vh [m3] is the volume of the hot water, which must be within the
limits V min = 0 and V max.

With constant inlet temperature (TS), constant heat capacity (cP ) and
perfect mixing, the tank temperature (Th) is constant and equal to the inlet
temperature (TS = Th).

6.4.1 Model parameters

Table 6.2 shows the model parameters.

Table 6.2: Model parameters

Definition Variable Value Unit

Hot water storage tank volume V max 5000 m3

Maximum flowrate qmax 1000 m3/h
Network reference mass m0 15000 kg
Network reference pressure p0 5 bar
Compressibility coefficient ϵ 0.1 -
Water density ρ 1000 kg/m3

6.4.2 Dynamic behaviour

The dynamic behaviour of the model is analyzed from step responses in the
disturbances and inputs. MV3 = qEP has the same effect on p as MV1 and
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MV2 and is not shown. Figure 6.2 shows the response for a step increase
in MV1 = ∆qSP = 250m3/h given by an increase in the available hot
water supply (DV1 = ∆qS = 250m3/h). Figure 6.2c shows the network
pressure response which is an integrating process as given in Eq. 6.5 with
slope k′ = 3.33 bar/m3. The hot water volume (Figure 6.2b) is constant.
Note that the time scale is in seconds because the pressure dynamics are fast.

Figure 6.3 shows the response to an increase in the discharge MV2 =

∆qTP = 250m3/h. The hot water volume (Figure 6.5b) is an integrating
process with initial slope k′ = −1.

Figure 6.4 shows the response for a step increase in the available hot
water supply (DV1 = ∆qS = 250m3/h) with MV1 = qSP constant. The
“charging policy logic” first sends the excess hot water to the storage tank,
and once the tank is full, it is dumped (Figure 6.4a). The time scale is in
hours because the storage tank dynamics are slow. Figure 6.4b shows the hot
water volume. The network pressure (Figure 6.4c) is constant because MV1
=qSP is constant.

Finally, Figure 6.5 shows the response to an increase in the demand DV2
= ∆q = 250m3/h with the MVs constant.

6.5 Control system design

We want to implement a control system that optimally switches the operation
between the four options described in Section 6.3.

6.5.1 Regulatory control: charging policy logic

As mentioned before, to simplify the design of the control system we include
the charging policy logic in the regulatory control system. The logic is:

1. The storage tank is charged with excess hot water (qST ) when the hot
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Figure 6.2: Open-loop step responses for an increase in MV1 = ∆qSP = 250m3/h.
The excess heat is sent to the consumers.
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Figure 6.3: Open-loop step responses for an increase in MV 2 = ∆qTP = 250m3/h.
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Figure 6.4: Open-loop step responses for an increase in waste heat supply DV1
= ∆qS = 250m3/h with MV1 = qSP constant and with charging logic. First the
excess hot water supply is charged to the tank (qST ) and then at t = 12 h it is sent
to air dump (qD).
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Figure 6.5: Open-loop step responses for an increase in DV 2 = ∆q = 250m3/h.
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water storage is below maximum capacity, Eq. 6.8.

qST (%) =

100%− qSP (%) if Vh < V max

0 if Vh = V max
(6.8)

2. On the other hand, when the storage tank is full, excess heat is dumped,
Eq. 6.9.

qD (%) =

0 if Vh < V max

100%− qSP (%) if Vh = V max
(6.9)

6.5.2 Alternative 1 for supervisory control: split range con-
trol

We first consider SRC (see Section 4.2.1 for definition) to keep the network
pressure at the setpoint by using one MV at a time, starting with the cheapest,
and switching to the more expensive as demand increases or the availability
of the cheap MV decreases. In our case, we first want to use the available hot
water from the waste heat boiler (MV1 = qSP ), followed by the hot water
stored in the tank (MV2 = qTP ), and lastly the electric boiler (MV3 = qEP ).
Figure 6.6 shows the SRC implementation.

6.5.2.1 Tuning parameters for SRC

We follow the procedure of Reyes-Lúa et al. (2019). We define the normal
range for the internal signal v to be from 0% to 100%, and we scale the MVs
from 0% to 100%, see Figure 6.7. The tuning parameters for SRC are the
PI-tunings for the common controller C and the slopes αi in the split range
block in Figure 6.7. The slopes αi are used to allows for different controller
gains for each MV, however, from the network mass balance (Eq. 6.4), all
MVs have the same effect on the CV. Therefore, the three slopes in the split
range block are equal, and we get αSP = αTP = αEP = 3. Figure 6.7 shows
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Figure 6.6: SRC structure for balancing supply and demand by controlling the
network pressure.

the split range block. The controller parameters are obtained by applying
the SIMC tuning rules (Skogestad, 2003) for an integrating process (i.e. the
network pressure balance Eq. 6.6). We select the closed-loop time constant
τC = 10 s, resulting in the proportional gain for each MV is KC,i = 54 and
the integral time τI = 8 s (see Section 6.7.4). We find the common controller
gain KC = KC,i = 54/αi = 18. To handle the time-variable availability of
MV1 and MV2 we update the PI-controller bias (u0), such that when one
MV is no longer available, the new MV starts from the value of the former.
Alternatively, this could have been handled by using a “discharging policy
logic" block and only four MVs for the SRC (see Section 6.7.1).

Note that we have assumed that we directly manipulate the flows qi,
that is, we have assumed that all valves have flow controllers. Without flow
controllers, we would have had to use different slopes αi in the split range
block (Figure 6.7).

214



6. Supervisory control design for balancing supply and demand in a district
heating system with thermal energy storage

0% 100%

Internal signal to split range block (v)

qmin
SP

qSP

qmax
SP

qmin
TP

qTP

qmax
TP

qmin
EP

qEP

qmax
EP

M
an

ip
u
la
te
d

V
ar
ia
b
le

0 %

100 %

αqSP αqTP αqEP

∆vqSP
∆vqTP

∆vqEP

Figure 6.7: Split range block for Figure 6.6.

6.5.3 Alternative 2 for supervisory control: controllers with
different setpoints

Figure 6.8 shows the control structure with three different PI-controllers
with different setpoints for controlling the network pressure (p) that uses
as degrees of freedom MV1 (qSP ), MV2 (qTP ) and MV3 (qEP ). Similar to
SRC, we order the use of MVs based on economics, and we use the cheapest
MV first. Therefore, we order the three setpoints SP1 > SP2 > SP3

(psSP > psTP > psEB) such that only one MV is actively used at any given
time. See Section 4.2.2

6.5.3.1 Setpoint selection

We select the setpoints order based on physical insight. The process gain
from the MVs to the CV is positive (Figure 6.2). Therefore the controller gain
is positive, and a negative controller error (ps − p) gives a negative controller
output (see Eq. 6.12). Setting the controller bias u = 0, and considering that
the minimum physical limit for the MV is 0, the MV only starts to open when
the controller error becomes positive. Specifically, when p ≥ psTP , MV1 is
active, and MV2 and MV3 are fully closed. Once MV1 reaches its maximum
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Figure 6.8: Three controllers with different setpoints for balancing supply and
demand by controlling the network pressure. The order of the setpoints is: SP1 >
SP2 > SP3 (psSP > psTP > psEB).

limit, supply is smaller than demand, and the network pressure drops. Once
the pressure reaches a lower threshold, psEP < p < psTP , MV2 becomes the
active MV, while MV3 is fully closed. Finally, when the supply is smaller
than demand, MV2 becomes saturated at its maximum and the pressure
drops. Once it reaches an even lower threshold p < psEP , MV3 becomes the
active MV. This control structure handles the intermittent availability of
MV1 and MV2 by design as long as antiwindup with tracking of the plant
input is implemented.

6.5.3.2 Tuning parameters for controllers with different setpoints

As mentioned, all MVs have the same effect on the CV and we use equal
controller tuning parameters: KC = 54, τI = 8 s. The setpoints are: SP1 =

psSP = 5bar, SP2 = psTP = psSP − ∆psTP = 4.5 bar, SP3 = psEP = psTP −
∆psEP = 4bar. We implement antiwind-up with the back-calculation method
(Åström and Hägglund, 2006) with the tracking time constant set to half of
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the integral time.

6.5.4 Alternative 3 for supervisory control: model predictive
control

We design the MPC to handle also the charging of the storage tank. Therefore
it has the role of the supervisory and regulatory layer previously described.
We include qD as the fourth MV, while qST is calculated from the mass
balance (Eq. 6.2).

The system we are analyzing is somewhat atypical because it has more
MVs than CVs. Therefore, the tuning of MPC is not straightforward, and
we must give careful consideration in setting up the objective function to
prioritize the use of MVs. We achieve this by selecting the weights (ω) in
the objective function (Reyes-Lúa et al., 2018). We formulate the optimal
control problem with the objective function given in Eq. 6.10a. We want
to maximize discharging the tank (qST ), minimizing dump (qD), minimize
using the electric boiler and keep the network pressure (p) at its setpoint
(ps). As mentioned before, the MPC controls the network pressure as an
indirect measure of the hot water demand. However, the MPC uses the full
model (Section 6.4), and it requires information about the demand hot water.
We solve the optimization problem subject to model Eqs. 6.10b, 6.10d and
6.10c, and operation constraints (Eqs. 6.10e, 6.10f, 6.10g and 6.10h).
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min
N∑
k=1

ωTP q2TP,k + ωD q2D,k + ωEP q2EP,k + ωp (pk − ps)2

s.t. pk = g(qSP,k, qTP,k, qEP,k, qk)

Vh,k = h(qST,k, qTP,k)

qST,k = qS,k − qD,k − qSP,k

0 ≤ Vh,k ≤ V max

pmin ≤ pk ≤ pmax

qSP,k ≤ qS,k

0 ≤ qi,k ≤ qmax
i ∀i ∈ {D,TP,EP}

(6.10a)

(6.10b)

(6.10c)

(6.10d)

(6.10e)

(6.10f)

(6.10g)

(6.10h)

Here, k is the current iteration, N is the number of control intervals, ωi

are the weights in the optimization problem, and Eqs. 6.10b and 6.10c are
discretized versions of the mass balances Eqs. 6.6 and 6.7, respectively.

We formulate the MPC problem using CasADi (Andersson, 2013), and
we use IPOPT to solve the NLP (Wächter and Biegler, 2006). The tuning
parameters were found by trial and error. We use 10 control intervals, 10min

prediction horizon and 1min sampling time. In practice, the sampling time
will need to be smaller because of the fast pressure dynamics. The weights
in the optimization function were also found by trial and error and are
ωTP = 10−6, ωD = 10−5, ωEP = 10−3 and ωp = 104.

6.6 Simulation case study

We compare the performance of the three control system alternatives to
switch between the four operating options (see Section 6.3) using the model
described in Section 6.4.

At the initial state of the system, the tank is half full (Vh = 2500m3),
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and the hot water supply from the waste heat boiler is equal to the demand,
i.e. qS = q = 500m3h.

6.6.1 Simulations step changes

We perform the following series of step changes (see also Figure 6.9):

Step 1 at time t = 1h: The hot water supply from the waste heat boiler (DV1)
increases from qS = 500m3/h to qS = 1000m3/h.

Step 2 at time t = 12h: The hot water demand (DV2) increases from q =

500m3/h to q = 1000m3/h.

Step 3 at time t = 15h: The hot water supply from the waste heat boiler
(DV1) decreases from qS = 1000m3/h to qS = 500m3/h.

Step 4 at time t = 30h: The hot water demand (DV2) decrease from q =

1000m3/h to q = 750m3/h.
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Figure 6.9: Disturbances in supply and demand profiles.

Figure 6.10 compares the closed-loop responses for split range control
(SRC-left), three PI-controllers with different setpoints (3C-middle) and
model predictive control (MPC-right). Figures 6.10a, 6.10b and 6.10c show
the response for the MVs, Figures 6.10d, 6.10e and 6.10f show the response
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for the tank storage, Figures 6.10g, 6.10h and 6.10i show the response for the
network pressure.
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Figure 6.10: Closed-loop simulation results for SRC (left), three PI-controllers
with different setpoints (middle), and MPC (right).

6.6.2 Results analysis

The closed-loop simulation results in Figure 6.10 demonstrate that all three
alternative control structures can successfully implement optimal operation
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Figure 6.11: Comparison of network pressure for SRC and MPC (short time
scale).

for this system. Because the simulation time scale is in hours, it is not easy
to see some of the differences between the three alternatives for MV3 = qEP

and for the network pressure (p). SRC and MPC perform similarly. In the
MPC formulation, the step changes in disturbances happen at the sampling
time and there is feedforward action from disturbances qS and q at each
sampling time. Therefore, there is less variation in the network pressure p in
Figure 6.10i compared to Figure 6.10g. This is shown more clearly at time
t = 12h in Figure 6.11.

The pressure response for controllers with different setpoints (Figure 6.10h)
is as expected different from SRC (Figure 6.10g) and MPC (Figure 6.10i).
However, the response for the tank storage (Figure 6.10e) and MVs (Fig-
ure 6.10b) is not significantly different because 1) the pressure only has a
dynamic effect on the flows, that is, the flow values are independent of the
pressure setpoint and 2) pressure dynamics are fast compared to the storage
dynamics.

In Figure 6.10a, SRC changes qTP instantaneously because we update
the controller bias. However, for controllers with different setpoints (3C),
there is a small delay until the new MV takes over, because the pressure (p)
has to drop below the setpoint (psi ) given to the controller that regulates
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the respective MV. The MV overshoots, leading to two MVs being active
simultaneously for a short period (Figure 6.10b and Table 6.3).

In terms of dynamic input usage, table 6.3 compares the total input
variation (i.e. TV =

∑∞
1 |u| ) for SRC, controllers with different setpoints

(3C) and MPC. Among the three, the alternative of controllers with different
setpoints shows the highest input usage. The total variation for qEP is equal
for SRC and MPC, meaning that the electricity cost is equal. Compared
to SRC, MPC uses slightly less qSP compensated by using slightly more
qTP and marginally dumping more heat qD. This means that in the MPC
implementation, the tank is simultaneously charged and discharged. However,
the short-term peaks in qEP for controllers with different setpoint (3C) which
do not matter much for the integrated cost, see Eq.6.1.

Table 6.3: Comparison of input usage: total input variation

MV SRC 3C MPC
qSP 1290 1444 1281
qD 1000 1539 1000.1
qTP 1022 1359 1027
qEP 1000 1897 1000

6.7 Discussion

6.7.1 General control structure for balancing supply and
demand in a district heating network with thermal
energy storage

We explore how does this example fit in the framework of the general system
for balancing supply and demand presented in Section 4.

The system in Figure 6.1 has four available MVs, though only three MVs
were selected because these are the ones used in a practical application. At
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the time of implementation, the simplest options seemed to be choosing
these three MVs to be the controller outputs in the three compared control
structures, SRC (Figure 4.2), controllers with different setpoint (Figure 4.2)
and MPC.

Upon further consideration of this example, a much simpler alternative
was found to be using only two MVs, one variable supply (MVs) and one
variable demand (MVd), as shown in Figure 4.1. Thus for inventory control,
we may use SRC or controllers with different setpoints.

Figure 6.12 shows the split range block At the split value (v∗), d1 = d2

and the variable demand balances the variable supply.
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MV max
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Figure 6.12: Split range block for general control structure for balancing supply
and demand. At v∗, the variable supply (d1) balances the variable demand (d2)
and MVs = MVd = 0.

Alternatively, we may use two controllers for MVs and MVd with two
different setpoints for the inventory m.

Next, we need to decide on how to implement MVs and MVd using the
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physical inputs (u1, u2, u3 and u4, in our case). From Figure 4.1 we have

MVs = qfrom storage + qelectric boiler

= u2 + u3

MVd = qto storage + qdump

= u1 + u4

(6.11a)

(6.11b)

Since the objective is to minimize the use of electric boiler (and minimize
dump to store when possible), it becomes clear what we should do. If MVs

is active, we first use hot water from storage (u3) until the storage tank is
empty, and then use the more expensive electric boiler (u2). If MVd is active,
we first send excess hot water to storage (u4) and when the storage tank is
full, send it to dump (u1). This corresponds to the four operation regions in
Section 6.3. In practice, this may be implemented using a “charging policy”
logic for MVs and a “discharging policy” for MVd.

6.7.2 Ease of implementation

In terms of ease of implementation, the use of three controllers is the simplest.
It allows for using three independently tuned controllers and it avoids the
logic needed in SRC. The logic can be avoided because the switching is done
based on the output (CV = p) and not the limit on the MV-value. However,
it has two disadvantages: 1) somewhat worse dynamic performance (see
Table 6.3) and 2) varying setpoint. Because each controller can be tuned
independently, we do not need to compromise on the integral time as in SRC.
This was not relevant for the process studied because the MVs have the same
effect on the CV (see the model in Section 6.4), but it can become important
for other systems with different dynamics, for example with different valve
sizes.

The MPC controller is by far the most difficult to implement. In addition
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to requiring a dynamic model, it was also difficult to adjust the tuning
parameters (e.g. weights in the objective function, prediction horizon and
sampling time) to obtain the desired performance. We selected a short
prediction horizon because with larger values, hot water was dumped before
the tank was at maximum storage capacity. Formulating the objective
function (Eq. 6.10a) was also done by trial and error. In the end, the
weights on qTP and qD were added to give information to the MPC about
which flowrates to prioritize. Without these, the MPC would use two MVs
simultaneously. For example, with no excess heat, it would discharge the
storage tank instead of using hot water from the waste heat boiler, and
dump the remaining hot water. This was because the MPC does not have
information about future demand in its prediction, and it is not aware that
it should charge the storage tank. One could also add a penalty for not
charging the storage tank in the objective function. However, as with any
multi-objective problem, there will be a compromise and the tank will not
be charged to maximum capacity.

6.7.3 Setpoint difference for three controllers

We select the setpoints for the three controllers in Section 6.5.3.2 by trial
and error. This choice is a trade-off. A smaller setpoint difference may result
in having more than one MV active at a given time, while a larger setpoint
difference results in a larger delay until the next MV activates.

6.7.4 PI controller tuning

The PI-controller is given in Eq. 6.12.

u = u0 +KC(y
s − y) +

KC

τI

∫ t

0
(ys − y)dt (6.12)
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where KC is the proportional gain, τI is the integral time constant, derived
from applying the SIMC tuning rules (Eq. 6.13) (Skogestad, 2003).

KC =
1

k′
1

τC + θ

τI = min(τ, 4(τC + θ))

(6.13a)

(6.13b)

where k′ is the initial slope of the step response, θ is the time delay, τ is
the time constant, and τC is the desired closed-loop time constant. The
PI-controllers in this paper are for integrating process, when τ → ∞.

6.8 Conclusion

The use of inventory (pressure) control is an effective way of balancing supply
and demand for the district heating system. For the case of constant electric-
ity prices, optimal operation for the system studied is easy to identify based
on physical insight (see Section 6.3). In this work, we compare three alterna-
tive control implementations (split range control, controllers with different
setpoints, and model predictive control) to handle MV-MV switches. The
closed-loop simulation results in Figure 6.10 show that all control structure
successfully switch between the four operating options to balance supply
and demand. However, MPC requires careful tuning to obtain the desired
performance, making it more difficult to implement than the decentralized
solutions.
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Chapter 7

Conclusions and future work

This chapter summarizes the content of this thesis and presents the key
findings and suggestions for future work. Part I presents a plantwide control
perspective on optimal operation and control of heat-to-power cycles. It
consists of a steady-state and a dynamic analysis for a steam cycle with
one pressure level, a drum boiler and producing power only. The steady-
state analysis concerns systematically identifying the operational objective,
available degrees of freedom, process and environmental constraints, main dis-
turbances and the location of the throughput manipulator. A heat-to-power
cycle has two main operational objectives: 1. to produce energy as electric
power, steam or both, and 2. to process a given amount of by-product, e.g.,
waste gases from an upstream gas turbine or biomass incineration. After
stabilizing the process and controlling the active constraints, there are two
degrees of freedom left, the fuel (MV1) and the steam turbine valve (MV2).
The second has a small steady state effect on the power output correspond-
ing to throttling losses. The dynamic analysis concerns implementing the
operating strategies resulting from the steady-state analysis. The control
objectives are separated on a time scale. On a short-time scale, the control
system is responsible for grid frequency regulation, stabilizing the plant
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and rejecting local disturbances. On a long time scale, it achieves optimal
operation. The dynamic analysis starts with understanding current control
strategies used in industrial settings, namely turbine driven (Figure 2.7),
boiler driven (Figure 2.6) and floating pressure (Figure 2.5). Further, it
proposes two parallel control structures that use both the fuel (MV1) and
steam valve (MV2) to control the power while the steam pressure is floating,
i.e., it follows the heat input. The two control structures are valve position
control (VPC, Figure 2.10) and using one P and one PI controllers with the
same power setpoint (Figure 2.11). Note that in this case, both P and PI
controllers are active simultaneously, unlike to using two PI controllers with
different setpoints when only one PI-controllers is active. This setup makes
use of the fast dynamic response from the steam valve to the power output,
in addition to minimizing the steady-state throttling losses by keeping the
steam valve close to maximum opening (e.g., 90%).

In summary, the results in Figure 2.12 show that turbine drive is fastest
to respond to a power setpoint change, while floating pressure is the slowest
at the expense of higher throttling losses. These results are in agreement
with the pair-close rule.

The analysis done in this work can be extended to other types of heat-to-
power cycles. These included steam cycles with more than one pressure level,
once-through boilers, cycles producing both electric power and heat, cycles
recovering heat from an upstream process, or using other working fluids such
as supercritical CO2.

Part II presents a systematic theory for deriving and implementing trans-
formed inputs that give linearization, decoupling and feedforward disturbance
rejection. Control structures using model-based calculation blocks are often
found in industrial settings. Typical examples for the chemical industry are
ratio, decoupling or feedforward elements, while a supporting example related
to steam cycles is introduced in Section 3.1. However, their development is
case-specific and an unifying theory is missing in the control literature. In
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this work, the transformed input is formally defined as v = g(u,w, y, d), and
can be derived from either a static model (y = f0(u, d)) or a dynamic model
(dydt = f(u, y, w, d)). For the static case, the ideal transformed input is the
right-hand side of the model, v0 = f0, which substituted in the model gives
y = v0 which is linear, decoupled and independent of the disturbances. For
the dynamic case, we also use the right-hand side of the model equation, and
we introduce two tuning parameters A and B to define the transformed input
vA in Eq. 3.20 (see Sections 3.4.2.2-3.4.2.1 for how to select A and B). The
idea is to obtain a first-order transformed system of the form dy

dt = Ay+BvA,
which is also linear, decoupled and with no effect from disturbances.

There are two options for systems with relative order greater than 1.
First, we may use measurements of additional internal states w to replace
their respective dynamic model equations (see Section 3.4.3). Second, we
may introduce a chain of transformations (see Section 3.4.5). The first option
is easier to implement, and is recommended. However, there is a potential
problem due to internal instability of these “hidden internal dynamics”. First,
using the measurement of w in the transformation may slow-down or speed-
up the dynamics of the original system. Second, it may result in internal
instability if the indirect (dynamic) effect of u on v through w is large
compared to the direct (static) effect of u on v (see example in Section 3.6).

To implement transformed inputs, we need to generate the physical input
u from a given value of v = g(u,w, y, d). We may use the model-based inverse
in Figure 3.4a, or the feedback-based inverse with an inner controller for v

or w shown in Figure 3.4b, or a combination of the two shown in Figure 3.4c.
The cascade implementation is recommended when we make use of the w

measurement, or when there is no analytical solution to u = g−1(v, w, y, d).
In some cases, the implementation of transformed input may be simplified by
introducing transformed outputs z = h(y, w, d) because the model is easier
to express in terms of z than y. This was used in the heat exchanger example
in Section 3.9.
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The outer controller C is needed to correct for model and measurements
errors and to reject unmeasured or unmodelled disturbances thus to achieve
offset-free control at steady state. For multivariable systems, single-loop
PID-controllers are usually sufficient because the response from v to y is
linear and decoupled, at least in the ideal case.

Several simulation examples are presented throughout Sections 3.7-3.10.
The simple mixing example in Section 3.7 illustrates how to combine the
transformed inputs derived from static and dynamic model equations. The
benefit of using the dynamic transformed input vA rather than the static
transformed input v0 is mainly that we get a linear transformed system for
designing the outer controller C. This benefit is not seen in the simulations
in Figure 3.11 because we have set the outer control to C = 0. The same
example is used to illustrate the effect of input saturations (Section 3.11.1)
and unmeasured disturbances (Section 3.11.2). The feedback-based imple-
mentation is more robust to input saturations because we can keep track
of the plant input, and we only loose control of some of the controlled vari-
ables (CVs), at least for multivariable systems. We select the pairing u− v

according to the input saturation rule (Reyes-Lúa and Skogestad, 2020),
i.e. pair the input that is most likely to saturate with the CV that we can
give-up controlling. Both Section 3.8 and Section 3.9 present heat exchangers
examples. The former is a simple process with no phase change. The latter is
a complex once-through boiler with phase change from water to superheated
steam. The control objective for both is to control the process side outlet
temperature. The examples show that processes with complex dynamics
may benefit from simple input transformations derived from simple static
models to improve the disturbance rejection response. Finally, the steam
network example in Section 3.10 illustrates using w as measured variables
to substitute part of the model dynamics for higher order systems. In this
particular case and similarly to the heat exchanger example in Section 3.8,
the response was slowed down by introducing the w variable measurement.
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For general cases, including cases with more complex dynamics or con-
straints, there are other control approaches that may be more suitable. One
approach is nonlinear model predictive control which allows for more general
dynamic models and control objectives, including constraints and the trade-
off between input usage and output performance. The main advantage in
using transformed inputs is simplicity, ease of understanding and that they
can be implemented into the basic control layer.

In Part III, the focus is on designing decentralized supervisory control
systems for handling constraints on manipulated variables (MVs) used for
inventory control to balance supply and demand (Figure 4.1). Two systems
are analyzed. In the first case, i.e, maintaining production for units in series in
Chapter 5, there are no additional MVs left and we have to give-up controlling
a second and less important CV by using a selector for CV-CV switching
in addition to MV-MV switching. In the second case, i.e., district heating
network with thermal energy storage, in Chapter 6, there are additional MVs
which we can activate in a predefined order, from cheap to expensive, when
the previous MV reaches a constraint.

For both cases, MV-MV switching is implemented using split range
control (SRC) and controllers with different setpoints. SRC keeps track of
the MVs (see the split range block in Figure 4.3) and it switches to a new
MV as soon as the original MV saturates. On the other hand, controllers
with different setpoints only uses the CV measurement, and it switches to a
new MV once its corresponding controller setpoint has been reached. This
implies a delay in switching. The duration of delay is related to the chosen
setpoint difference between the controllers. This means that SRC has the
advantage of tighter CV control, which may be preferred for the district
heating network with thermal energy storage in Chapter 6. However, the
delay in switching maximizes throughput for the system in Chapter 5 when
changes in operation give new temporary or permanent bottlenecks in other
units. Further, controllers with different setpoints structure is easier to

233



7. Conclusions and future work

implement and the controllers can be tuned to account for different MV-CV
dynamics.

The work for maintaining production for units in series in Chapter when
bottleneck occurs may be extended to include min flow constrains, that is
to avoid the the flow in or out of a unit reaches a min bound. The work
for district heating systems with thermal energy storage can be extended to
include systems with variable energy prices, or with demand side management
measures in which the consumers actively participate in supply-demand
balance.
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