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Summary

Recirculating aquaculture systems (RAS) are closed-loop systems that recycle
most of the effluent of a fish tank after particle removal and water treatment. This
type of process requires good control of the water quality, as the carbon dioxide,
ammonia, and nitrate concentrations are toxic for the Atlantic salmon (Salmo salar
- fish species considered) when above certain values, and oxygen concentration
needs to be in a certain range to the welfare of the fish. Due to the recycling, some
of those concentrations are handled by the water treatment units, such as CO2
stripper, and biofilter, which transforms ammonia into nitrate. The accumulation
of nitrate explains the necessity of water exchange, i.e., some of the recycling water
is purged while the makeup of fresh/brackish water is done.

To regulate these quantities into an optimal value considering the process
constraints and fish requirements, simplified steady-state and dynamic models
were developed, and validated with real data. The developed models include pH
modelling, which is an important variable in the system due to its effect on carbon
dioxide and ammonia concentrations, so it should be monitored and controlled.
The process was optimized using fish requirements for water quality only, but the
optimization problem was reformulated considering fish growth effect on the water
quality, and other real-life limitations, considering higher minimum recirculation
flow rate due to the risk of sedimentation in pipes and fish swimming requirements.

Water quality monitoring can be challenging due to the lack of the correct
sensors in the RAS facility. In these cases, the monitoring is done every now and
then by taking samples and analyzing them in a laboratory. The lab measurements
can differ a lot from reality, depending on the magnitude of the measured variable
and the precision of the equipment. Another issue is that the measurements take
time to be taken, adding a large gap between samples. The frequency of monitoring
is crucial to a RAS process, as one mistake can put all the fish dead. To mitigate
these issues with lab measurements, an automatic search for a soft sensor was
applied to the developed RAS model. The search tool, named Auto-keras, did
not find a good feedforward neural network that would take the steady-state trend
in the input features and predict well CO2, NH3, and NH+

4 concentrations. This
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Summary

might be due to the lack of information on the input features, i.e., large variability
of the output variables.

The results of this thesis show that the developed RAS model is sensitive to
fish metabolism, which was considered to produce constant quantities of carbon
dioxide and ammonia. In addition, the model showed numerical robustness and
good performance in monitoring, controlling, and optimizing the process.
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Chapter 1

Introduction

1.1 Motivation and Scope of the thesis

Aquaculture is a general term for breeding, rearing, and harvesting
aquatic animals. Some species of these aquatic animals are easier or more
economically appealing to be reared than others. From more than five hundred
species commercially farmed, Atlantic Salmon is one of the most profitable
species. Compared to other types of livestock, aquaculture provides a more
environmentally friendly solution, as it uses fewer water resources.

Over the past four years, COVID-19 has been disseminated across the
continents to the point it alerted the world of its deadly potential and countries
started to restrict their borders. With that, the exports of agri-food faced
difficulties, inhibiting trades of fish, in particular. In addition, the pandemic
reduced the number of workers, supplies, and availability of new animals. Besides
all the impacts in every step of the production chain, aquaculture has managed to
grow, despite being at a much lower pace than before the pandemic (FAO, 2022).

There are a lot of types of aquaculture, which are described in the next chapter.
This thesis focuses on modelling one of them, a recirculating aquaculture system
of Atlantic Salmon (Salmo Salar), on the application of a methodology for control
structures design to this type of system, and on the application of a feedforward
neural network to predict the main water quality parameters.

The Recirculating aquaculture system is a technology that includes complex
and interdependent systems. Modelling this technology is a hard task and a trade-
off should made between accuracy and computational time. The more detailed the
model, the more close to reality it is when simulating RAS. On the other hand, to
develop a good performance control, the more complex the model is, the longer it
takes to generate one sample or not even that (when there are numerical issues). As
time is a crucial variable in advanced control, frequently one needs to decrease the
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1. Introduction

complexity of the model for its use to be feasible. This research mainly focused
on developing simplified models (as simple as possible) for simulation and control
purposes.

This work is a collaboration with Nofitech, a company that designs and
provides recirculating aquaculture systems (RAS) for freshwater or seawater
operation, for smolt or higher phases of fish life-cycle. The system that this
contribution is about is the land-based design that they already have. The main
objective of this collaboration is to develop a model for pH, CO2, and alkalinity
control in recirculating aquaculture systems. The specific objectives are to study
the effects of placement of pH and alkalinity adjustments; predict the behavior
of the system in the main compartments (fish tank, bio-filter, and stripper); use
the model for production optimization and control, including a study of different
control structures, such as nonlinear model-based predictive control, economic
nonlinear model-based predictive control, and proportional integral control with
real-time optimization on top; and study the application of a feedforward neural
network as a surrogate model to predict carbon dioxide, ammonia, and ammonium.

1.2 Research Contribution and the Thesis Structure

The thesis is organized in a paper-based format with seven chapters. Chapter 1
introduced the motivation and the objectives of this thesis. The other chapters
present the research contributions developed during this PhD work and are
described below.

• Chapter 2 introduces the necessary background knowledge for the reader
to understand the fish farming categories.

• Chapter 3 contains the detailed RAS process description studied in this
thesis and the development of the RAS model for optimization and control.

• Chapter 4 formulates the optimization problem for RAS and compares three
optimization control structures, i.e., economic model predictive control,
model predictive control, and proportional integral controls with real-time
optimization on top.

• Chapter 5 reformulates the optimization problem for RAS with realistic
constraints on the water flow rate and CO2 exposure.

• Chapter 6 introduces a surrogate model for CO2, ammonia, and ammonium
concentrations to complement the lab-based monitoring of these quantities.

• Chapter 7 summarizes this thesis and presents suggestions for future work.
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Chapter 2

Background

Fish farming is quite an old technique for complementing the food source
of the surrounding population. It is unknown exactly when it began, but it is
speculated to have begun before 2000 b.c. in China, with the common carp
(Cyprinus carpio) aquaculture (Rabanal, 1988). Fish aquaculture’s popularity
increased a lot in the 1950s when they started to produce and hatch fish eggs to
produce fry instead of acquiring them from nature.

2.1 Fish farming processes

Rearing fish in a contained environment can be classified according to their
location, type of enclosure, fish food source, water disposal, and intensity of
human intervention. This section points out the main differences between these
types, but more details and other aquaculture systems can be found, for example,
in the book authored by Tidwell (2012).

2.1.1 Land-based vs offshore farming

Offshore farming consists of an enclosure that, despite keeping the fish
growing in a limited volume, enables the water to circulate easily between the
inside and outside of the caged water volume. The most common examples of
offshore fish farming are net pens, where the enclosure is made of nets, and
closed cages, where the seawater does not flow freely, but a lot easier than land-
based farming, see Figure 2.1. The disadvantages of net pens are the escaping
of fish, higher exposure to sea lice, thus pathogenic bacteria, and accelerated
contamination due to the high density of fish per volume unit. A solution to sea
lice exposure and the potential risk of an epidemic is locating the net pens far away
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from the wild fish (Frazer, 2009). Another solution to the exposure is closed cages,
when there is seawater treatment of the inlet and outlet streams.

Figure 2.1: A typical closed cage (BLUEGREEN GROUP, 2022).

In the case of Atlantic salmon, usually they are reared in land-based farms
until smoltification. After that, they are transferred to sea cages to grow until
market size. Recently, there has been much attention to growing smolts and post-
smolts in land-based farms, i.e., extending the time period of the land-based farm
phase. Therefore, studies about process modelling of smolt or post-smolt phases
are important to reduce the time the fish spend in sea cages and being exposed to
sea lice, and other diseases.

Land-based fish farming can rear single or multiple species. In case it is
multiple species, it is usually done in nature, such as aquaponics, and organic
aquaculture (Lembo and Mente, 2019), as in ponds with a small ecosystem, rivers,
or estuaries, while single-species farming is usually done in raceway tanks (see
Figure 2.2) or in large tanks in an industrial facility, which is the focus of this
work.

2.1.2 Extensive vs intensive farming

There is an extensive type of aquaculture where the fish food source is
cultivated along with the fish, while an intensive type relies completely on an
external food source. There are also semi-intensive farms, which consist of the
partial feeding of the fish from an external source when only an internal source is
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2.1. Fish farming processes

Figure 2.2: A typical raceway with water and solid treatment systems (Li et al., 2019).

not enough for farming purposes. The external food source provides controlled diet
food specifically developed to optimize fish performance and welfare. Commercial
providers usually indicate the daily portion size, although it does not remove the
necessity of feed control, as fish hunger may vary with water conditions, lighting,
and diseases.

To ensure fish performance, feeding must be controlled. Farheen et al.
(2018) developed an app connected with a feeding control so one can receive
alerts for feeder system malfunction, set a feeding schedule, and monitor fish
tank conditions with the aid of a camera. Even though it has an automatic
alert, one still needs to use their experience to make a decision over the feeding
system. An even more automated system was proposed by Liu et al. (2014). The
authors proposed a computer-vision method for measuring the feeding activity
of Atlantic salmon from a RAS facility, accounting for fish overlaps and water
surface reflections. They also validated their method by comparing their results
with manual observation.

There is also the possibility to mix extensive and intensive farming.
Villar-Navarro et al. (2021) developed experiments on the use of microalgae
biotechnology to remove nitrogen and phosphorous from recirculating aquaculture
systems (RAS) effluent, while generating fish feed additive and fish meal
substitute. This type of process is called semi-intensive farming.
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2. Background

2.1.3 Water circulation

In land-based intensive farming, the effluent is more accounted for in terms of
environmental impact. With the evolution of environmental laws, the regulation of
these types of processes also evolved, pushing the aquaculture industry to reduce
its environmental impact.

The quality of the effluent has received a lot of attention, which has led to the
development of a more complex treatment process with less environmental impact.
Along that line, part of the treated water can be recirculated or even reused entirely
in the process. When there is no water recirculation, the land-based intensive
system simply consists of flow-through systems with water discharge to nature or
to a sewage system. When most of the effluent is treated and recirculated, and the
rearing environment is fully controlled, the land-based intensive system is called a
recirculating aquaculture system.

2.2 RAS process

Recirculating aquaculture systems are closed-loop systems that combine
physical, chemical, and biological processes to rear a single species of fish.
In this type of process, almost all of the water used is treated and recycled
within the system. This characteristic enables the industry to build a controlled
environment in the operating conditions that satisfy the fish while generating
almost no environmental impact and waste. The RAS process, illustrated in
Figure 2.3, consists of fish tanks, water, and solid treatment systems, and has
several advantages, such as no losses of fish escaping, less contact with external
pathogens, controlled rearing conditions, and is more sustainable.

RAS offers several advantages over traditional open systems, including
improved water efficiency, reduced environmental impact, and better control over
the growth and health of aquatic animals. By reusing the water, RAS can reduce
the amount of water needed for fish farming by up to 90% compared to traditional
open systems. Additionally, RAS can reduce the need for antibiotics and other
chemicals, as the closed-loop system helps to prevent disease outbreaks and keeps
the water quality consistent.

RAS can be designed to operate on a small scale, such as in a backyard
garden, or on a commercial scale, such as in a large fish farm. The system
is highly flexible, and the design can be tailored to meet the specific needs of
the species being farmed. The key to successful RAS operation is maintaining
consistent water quality parameters, including temperature, pH, dissolved oxygen,
and ammonia and nitrite levels. This is achieved through a combination of solids
removal and water treatment systems. Water is recirculated through the system
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2.2. RAS process

continuously, with only a small percentage of water replaced to account for losses
due to evaporation and waste removal.

Figure 2.3: A typical industry facility of RAS (Hatchery - Feed & Management, 2020).

2.2.1 Fish tank

The fish tank geometry is a result of studies to reduce cost and manage risk,
by reducing the need for human interaction and reducing contact between different
fish populations, which can increase the probability of spreading diseases. These
issues can be avoided with larger tanks, but it also adds other types of problems,
such as difficulty in fishing the ones from the bottom. Summerfelt et al. (2016)
compiled a survey on large circular and octagonal tanks to aid the development of
a computational fluid dynamics (CFD) model to study what affects water rotational
velocities and mixing in such large tanks.

2.2.2 Solids removal system

The solids removal system is crucial to water recirculation. It consists
of mechanical unit operations to remove solid particulate matter. Cripps and
Bergheim (2000) did an extensive review on solids removal and management in
flow-through and recirculating systems. The authors described how the efficiency
of the solids management system can be increased with a pre-treatment phase,
which is the increasing of the solids concentration of the effluent, and also
described several types of solids removal systems. Summerfelt and Penne (2005)
studied how important is to add an inline sedimentation unit to remove heavy solids
before the drum filter, so its load is reduced, thus, avoiding equipment failure.
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2. Background

2.2.3 Water treatment system

The water treatment system’s goals are to eliminate or control substances that
are toxic to the fish, add oxygen, and reduce freshwater usage. The main units
consist of the biological treatment of ammonia and organic matter produced by the
fish, the stripper, that removes CO2 that can accumulate in the water, preventing
pH levels from becoming too low, and oxygen makeup. Some other units can also
be present, such as denitrification, ozonation, and UV units. A denitrification unit
can be added to the system to transform nitrate into nitrogen, and ozonation or UV
units are implemented to guarantee disinfection of the recirculating water.

2.2.4 Challenges of a RAS process

The major challenge for RAS is the financial aspects, followed by the difficulty
in obtaining more reliable and useful data, and system failures due to instability
or equipment malfunction. The cost of implementing a RAS process can be a
significant barrier to entry for smaller-scale farmers.

To obtain more reliable data, the RAS process companies need to invest more
in sensors and artificial intelligence technology to visualize fish performance
so they can be used in advanced control structures and improve the level of
automation. The major contribution of this thesis consists of developing a model
to reach this next level and avoid system instability with a robust control structure,
promoting fish welfare and high performance.

2.3 Modelling RAS and its challenges

There are a lot of challenges when modelling an intensive fish farming process,
such as the adaptable behavior of the Atlantic Salmon. Beyond the change
of optimal required conditions throughout its early stage in life, some types of
experience can affect the fish for its entire life cycle. Despite this species’ ability
to adapt to slight changes in pH, temperature, lighting, and salinity conditions,
if exposed to a certain level of carbon dioxide, ammonia, and nitrate, the growth
performance and welfare of the fish decreases (Thorarensen and Farrell, 2011).

Ammonia and nitrite are toxic compounds that can build up in RAS as a result
of fish waste and uneaten feed. Ammonia and nitrite levels must be monitored
and controlled through the use of biofiltration or chemical treatments. Davidson
et al. (2017) evaluated the performance of post-smolt Atlantic salmon in RAS
to two levels of exposure to nitrate. They concluded that a nitrate concentration
higher than 100 mg/L starts to affect post-smolt Atlantic Salmon performance and
welfare.
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Carbon dioxide toxicity is a concern in RAS and can impact the health and
growth of Atlantic salmon. The tolerance of Atlantic salmon to elevated CO2 levels
varies depending on factors such as fish size, life stage, and duration of exposure.
Mota et al. (2019) studied the effect of CO2 on growth, welfare, and health, and
concluded that increasing CO2 concentration in the water decreases linearly and
significantly growth of post-smolt Atlantic Salmon. Khan et al. (2018) went further
and studied the effect of acute and long-term exposure to CO2, which is a type of
experience that affects the fish for life.

There are several types of modelling that can be used to study and design RAS.
Among the most frequently used types are:

1. Hydrodynamic modelling: this approach simulates water flow within the
RAS. It aids in predicting water movement, treatment processes, distribution
to different tanks, and its return to the aquatic species.

2. Water quality modelling: this method forecasts changes in water quality
within the RAS. It assesses how different water treatment technologies
impact water quality and the effects on the health of aquatic organisms.

3. Biological modelling: this type is used to simulate the growth and behavior
of fish within RAS. It helps predict how varying conditions, feeding
strategies, and stocking densities influence the growth and welfare of the
aquatic species.

4. System dynamics modelling: This holistic modelling approach considers
the entire RAS system, examining interactions between subsystems such
as water treatment, fish cultivation, and energy generation. It aids in
comprehending overall system performance and identifies areas for potential
enhancement or optimization.

There is no model that reflects all types of subsystems in RAS reality so
far. The difficulty lies in integrating a water treatment model with fish growth
and solid treatment models while considering all effects among them, and water
quality requirements for the fish. Besides that, there is a large possibility that the
integration of all models would lead to a too complex model to be suitable for
optimization and control.

For this purpose, modelling each part of the RAS process and controlling it
separately might not lead to a global optimum, but it can still be beneficial by
generating stability and improvements.

Modelling a process has several types of levels regarding the amount of
detail and known behavior. It can be based purely on experimental data, as an
empirical model, based on material and energy balances, or even a mixture of both.
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2. Background

Depending on the assumptions, the level of detail can increase a lot the complexity
of the model, creating a barrier to good control of the operating conditions. The
aim of this work is to develop a simplified model, i.e., a model that is simple,
with empirical equations to simplify what is reasonable to simplify, but also with
physical equations to model the chemical unit operations, and use this model to
develop and compare optimal control structures.

Barbu et al. (2016) developed a model for the trickling biofilter, and used it to
control water level, oxygen concentration, and pH after the mechanical filter in a
pilot RAS plant rearing carp. In this case, the authors used acid and base to control
pH and the pH response varied from 2 to 12. Colt et al. (2012a) developed carbon
dioxide transfer models based on existing oxygen models and they also verified
the models for stripping data in a further study (Colt et al., 2012b). This type of
model was validated with experimental data, but its complexity and existence of a
single solution were not evaluated for process control purposes, which becomes a
suggestion for future work.

Wik et al. (2009) developed a model integrating water treatment and fish
growth models, but they did not explicitly model the pH, which is a very
important variable that affects ammonia and carbon dioxide levels, which, as
mentioned already, are toxic for the fish when above certain values. Another
issue was the numerical problems, challenging its usage for process optimization
and control. Pedersen and Wik (2020) improved the previous model solving the
numerical issues and adding new features, such as the denitrification process and
consideration of energy balances. The lack of a model that can represent a certain
stage of the process is necessary to reach the next level of automation in RAS.

The pH level of the water is another important aspect of water quality control in
RAS. Fish have specific pH requirements, and pH levels that are too high or too low
can be harmful. RAS typically uses pH adjustment systems to maintain the desired
pH level. By including pH in the model and assuming a stage in the fish’s life
where their metabolism is constant, we can simplify it by assuming that the amount
of feeding is exactly what they need and that there will not be leftovers. These
assumptions are definitely not close to reality during the fry and juvenile stages,
but during the smolt and post-smolt stages, these assumptions are reasonable. Not
considering feed accumulation or starvation means that the fish are satisfied with
the feeding, i.e., the fish metabolism is fairly constant if they are in optimal feeding
conditions with clean and oxygenated water. Therefore, we assume that feeding
and oxygen control have good performance.

The present thesis is focused on developing and using a simplified model with
pH included to optimize and control water conditions. The development of the
model is described in detail in Chapter 3, while the optimization and control are
presented in Chapters 4 and 5.
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Chapter 3

Steady-state and Dynamic
Modelling of Water Quality

This chapter presents the development of the steady-state and dynamic models
of Recirculating Aquaculture Systems for control and optimization purposes. The
chapter is very similar to Paper I, which was published in the Aquacultural
Engineering journal.

3.1 Abstract

In this work, simplified steady-state and dynamic models of a Recirculating
Aquaculture System (RAS) of Atlantic salmon (Salmo salar) are described. The
RAS process under study includes a fish tank, a biofilter, a CO2 stripper, and
an oxygen cone. Compared to existing models, the main contribution is that
it explicitly models the pH, by using reaction invariants such as total inorganic
carbon (TIC), total ammonia nitrogen (TAN), and alkalinity. As the possibility of
placing the pH/alkalinity adjustment (base or buffer addition) into the fish tank or
into the biofilter was considered, four steady-state scenarios were studied, where
one of the adjustments is utilized in each scenario. A dynamic simulation of
the process with oxygen and pH controllers was performed and compared with
commercial RAS production data, and what adjustments had to be done to get an
agreement between the model and the plant data.

3.2 Introduction

Fish aquaculture involves the use of large tanks filled with freshwater or
saltwater to cultivate fish. As the global demand for food continues to grow, the
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Food and Agriculture Organization of the United Nations (FAO) has recognized
aquaculture as a promising source of food to meet this demand (FAO, 2020).

Atlantic salmon undergo freshwater stages until they reach a mature smolt
size, after which they are transferred to net pens during the post-smolt phase and
continue to grow until they reach market size (Global Salmon Initiative, 2020).
Expanding the inland phase of aquaculture has several advantages, including
reducing fish losses from escapes, lowering the probability of diseases due to the
absence of contact with external pathogens, and the ability to provide controlled
rearing conditions with vaccinations. However, the main disadvantage is that as
the fish grow, they require more space and may need to be spread across multiple
tanks or transferred to larger tanks.

The current types of configuration of recirculating aquaculture systems (RAS)
show room for improvement, as they are not operated optimally and are not fully
automated, i.e., they are operated manually to preserve satisfactory conditions for
the welfare of the fish.

Carbon dioxide (CO2), ammonia (NH3), and nitrate (NO−
3 ) can be toxic

for fish above certain levels (Bergheim and Fivelstad, 2014; Davidson et al.,
2017; Mota et al., 2019), and maintaining an acceptable pH level is also crucial.
In industrial setups, CO2 and NH3 levels are typically monitored indirectly by
measuring the concentrations of total inorganic carbon (TIC), total ammonia
nitrogen (TAN), and alkalinity. These concentrations remain reaction invariant
with respect to pH and the equilibrium reactions that occur during this process,
meaning that their concentrations do not change when pH or the concentration of
any component involved in the equilibrium reactions fluctuates.

It is possible to develop a dynamic model for these quantities without explicitly
including pH in the model by using reaction-invariant quantities, such as TIC,
TAN, and alkalinity. Examples of such models can be found in the RAS model
developed by Wik et al. (2009) and the model extended by Pedersen and Wik
(2020). Both models include fish and bacteria metabolisms, with Pedersen and
Wik (2020) extending the model by including a model for the stripper. However,
neither model considers the effect of pH explicitly, as it is not necessary when
using reaction-invariant quantities.

To our knowledge, no dynamic models for RAS that consider the effect of pH
have been published in the literature. One approach to include pH in the model is
to use dynamic balances for all components, including the H+ concentration, and
use the extent of reactions as static coupling variables. However, an alternative
approach that uses reaction-invariant variables and fewer differential equations, as
proposed for pH systems since the 1980s (Gustafsson and Waller, 1983), may be
preferable due to numerical reasons. In this study, we test both approaches and
show how the reaction-invariant approach is more suitable.
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3.3. Process Description

In this paper, we present simple steady-state and dynamic models that are
suitable for controlling and optimizing the design of a RAS (from Nofitech). Our
main objective was to develop a water quality model for the main units (fish
tank, biofilter, and stripper) that also includes pH, and to study the effects of the
placement of substances to adjust pH and alkalinity.

3.3 Process Description

3.3.1 Process overview

The recirculating aquaculture system is composed of a fish tank and a water
treatment system, which includes a biofilter and a CO2 stripper. Solid removal
from the fish tank is also present, but for simplicity, solids are not included in our
model. Additionally, denitrifying and disinfection units could be present in other
configurations of RAS, but the RAS being studied does not have these types of
equipment. An illustration of the process is shown in Figure 3.1.

The fish tank receives two inlet streams, one containing fish feed in the form
of solid pellets and the other containing recirculated water enriched with oxygen.
Fish metabolism takes place in the tank, as described by reaction (3.1). The effluent
water from the fish tank is then sent to the biofilter, where a small amount of
makeup water is added. In the biofilter, bacteria convert ammonium into nitrate,
as described by reaction (3.2), with an assumed conversion efficiency of 97% of
TAN. The effluent from the biofilter is then sent to a CO2 stripper, where CO2 is
removed with an efficiency of around 60%-70%. To avoid the accumulation of
nitrate and other compounds, a purge stream is taken out after the stripper. The
remaining recycled water is then fed back to the fish tank after oxygen has been
added using an oxygen cone. In Figure 3.1, the red lines indicate the four options
for pH correction, which can be done in the fish tank (T) and/or in the biofilter (B)
by adding base (NaOH) or buffer (NaHCO3). Although buffer can be used for pH
correction, it also adds bicarbonate to the system, making it more difficult to keep
low CO2 levels. Therefore, it is not clear which one should be used. Additionally,
we assume that there is a possibility of adding pH correction in the fish tank, which
might not be common practice due to associated risks. However, we assume that
the fish farm is knowledgeable about handling this matter and has the power to
mitigate any risks.
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Figure 3.1: Flowsheet for RAS process studied in this paper with 4 optional base and
buffer intakes (in red lines).

3.3.2 Chemical reactions

In this work, we only focus on modelling the water system of the fish tank
and assume that the effect of the fish on the water system can be described by the
following empirical chemical equation provided by a commercial fish farm:

1 kg feed + 0.45 kg O2 +water−→ 0.9 kg fish biomass + 0.48 kg CO2

+ 0.047 kg NH3 +waste
(3.1)

This assumption is based on the premise that the fish receives an adequate
amount of feed. In practice, this is determined by monitoring any excess feed
and the behavior of the fish. However, there may be instances where the
feed is limited for a period, such as when the water is contaminated. In such
situations, the biomass growth rate may decrease, and the fish may consume only
what is necessary for survival. Nonetheless, in this study, we assume that the
fish consumes all the provided feed and that the water quality remains within
acceptable limits, thereby not affecting the fish metabolism. In reality, the apparent
feed conversion ratio (which is assumed to be 0.9 kgbiomass per kgfeed) reduces
at higher CO2 concentrations (Khan et al., 2018). However, this effect is not
taken into account in this paper. Although the reaction coefficients may vary
depending on the fish size, we assume that they are independent for simplicity.
That is, we presume that they hold these values during a particular stage in the
fish’s life cycle while using a standard food type for Atlantic salmon. If the same
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system is operated throughout a significant part of the fish’s life cycle or if the food
composition changes, a correction of these coefficients may be necessary.

The water treatment system is assumed to be unaffected by fish biomass.
Only the consumption of oxygen, as well as the production of carbon dioxide and
ammonia, are taken into account as factors that could impact the water treatment
process.

The feeding rate in the fish tank typically increases exponentially over a 90-
day period as the fish grows from approximately 200 g to 400 g. However, in this
paper, we only focus on the first day of operation with a constant fish feed rate of
580.6 g/min.

In the biofilter, nitrifying bacteria convert ammonia to nitrite and then to
nitrate, a process known as nitrification (Schreier et al., 2010). In our simulations,
we assume that 97% of the TAN (total ammonia nitrogen) is converted, following
the overall reaction:

NH3 + 2O2 −→ NO −
3 +H+ + 2H2O (3.2)

In addition to the biological reactions, it is assumed that all water streams in
the process comply with the following acid-base equilibrium reactions:

H2CO3

K1−−⇀↽−− H+ +HCO −
3 (3.3)

HCO −
3

K2−−⇀↽−− H+ +CO 2−
3 (3.4)

NH +
4

K3−−⇀↽−− H+ +NH3 (3.5)

H2O
Kw−−⇀↽−− H+ +OH− (3.6)

where K1,K2,K3 and Kw are the equilibrium constants for reactions (3.3)-(3.6).
The concentrations of the components in the acid-base reactions depend on pH,
which in this paper is computed as

pH = −log10(cH+/c0) (3.7)

where c0=1 mol/l.
In reaction (3.3), we assume that H2CO3 accounts for both H2CO3 and

dissolved CO2, which means that the equilibrium constant, K1, also accounts for
equilibrium between these two species, represented by the following equilibrium
reaction:

CO2 +H2O
K0−−⇀↽−− H2CO3 (3.8)

Reaction (3.8) has an equilibrium constant of about K0 = 1.2e-03 in water,
meaning that the concentration of dissolved CO2 is about 1000 times larger than
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H2CO3. Nevertheless, we represent all dissolved CO2 and H2CO3 as H2CO3 in
our model.

The model’s operational parameters are presented in Table 3.1, and the
physicochemical parameters are listed in Table 3.2. It is important to note that
the equilibrium constants used are not for pure water, but for a mixture of seawater
and pure water with a salinity of 15 g/kg and temperature of 14◦C. The salinity
and temperature have a direct impact on the solubility of the compounds, thereby
affecting the equilibrium constants. As a result, there is a shift in the equilibrium
graphs compared to fresh water at 25◦C (refer to Figures 3.2(a) and 3.2(b)).

Table 3.1: Operational parameters

Parameter Value Unit Description
ξB 0.97 - Biofilter conversion of TAN
Poper 1 bar Stripper operating pressure
fair 0.3324 - Stripper air bypass fraction
V T 2300 m3 Tank liquid volume
V B 282.5 m3 Biofilter liquid volume

Table 3.2: Physicochemical parameters at temperature of 14◦C, pressure of 1 bar
and salinity of 15 g/kg

Parameter Value Unit Description
K1 8.9002e-07 a mol/L Equilibrium constant of reaction (3.3)
K2 4.3112e-10 a mol/L Equilibrium constant of reaction (3.4)
K3 9.1592e-10 b mol/L Equilibrium constant of reaction (3.5)
Kw 5.2132e-15 c mol2/L2 Equilibrium constant of water dissociation
KH 5.8695e-02 d mol/(L bar) From Henry’s constant for CO2 in water
[O2]sat 9.39 e mg/L O2 concentration at 100% saturation
yin
CO2

4.15e-04 f - CO2 mole fraction in air (Sept. 2021)
MNH3 17.031 g/mol NH3 molar mass
MCO2 44.010 g/mol CO2 molar mass
M

NO−
3

62.005 g/mol NO−
3 molar mass

MO2 31.998 g/mol O2 molar mass
a Millero et al. (2006);
b Johansson and Wedborg (1980);
c Bandura and Lvov (2006), and Millero and Huang (2009);
d Weiss (1974);
e Benson and Krause (1984);
f California Institute of Technology (2021)

Three important variables for the model are TAN, TIC, and alkalinity. These
may be viewed as pseudo-components, but, throughout this work, they are
included in the components category for simplicity. These pseudo-components are
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reaction invariants with respect to the equilibrium reactions (3.3)-(3.6), meaning
that they are only affected by the in- and outflows of each unit and by the
biochemical reactions (3.1) and (3.2). The TAN, TIC, and alkalinity concentrations
are defined as follows:

cTAN = cNH3 + cNH+
4

(3.9)

cTIC = cH2CO3 + cHCO−
3
+ cCO2−

3
(3.10)

calk = cOH− + cHCO−
3
+ 2cCO2−

3
− cH+ + cNH3 (3.11)

It is important to note that these concentrations are typically measured in
the laboratory. There are several ways to derive these reaction invariants, and
it should be noted that they are not unique since different combinations can be
made. One straightforward method is to formulate atom balances for nitrogen,
carbon, hydrogen, and oxygen, which involve the eight components that participate
in the equilibrium reactions (3.3)-(3.6). TAN can be obtained directly from the
nitrogen (N) atom balance, while TIC can be obtained directly from the carbon
(C) atom balance. The alkalinity can be derived by stoichiometric considerations
(Gustafsson and Waller, 1983) or by combining all four atom balances (H, O, C,
N).

Assuming equilibrium in reactions (3.3)-(3.5), Figures 3.2(a) and 3.2(b)
illustrate the mole fractions for the carbonate system and ammonia system relative
to TIC and TAN as a function of pH, respectively. To maintain low levels of both
H2CO3 and NH3 in the fish tank, the pH should be kept within a specific range.
From the figures, it is apparent that a pH level above 7 is desirable to achieve low
concentrations of H2CO3, whereas a pH level below 8 is necessary to achieve low
concentrations of NH3. Thus, a pH range between 7 and 8 is optimal for the fish
tank.

The nitrifying bacteria in the biofilter are adaptable to pH, but they do not
function well at pH levels below 6 or above 10. The optimal range for their
activity is between 7.5 and 8, as reported by Raoeliaritiana (2016). Therefore, it
is assumed that a satisfactory conversion range falls between 7 and 8. To increase
the efficiency of the stripper, it is desirable to have high concentrations of CO2 (or
H2CO3 equivalent), as depicted in Figure 3.2(a). This requires a low pH level to
achieve high levels of TIC in the form of H2CO3. In practice, it may be better
to operate the biofilter at a pH of around 7 to achieve optimal stripper efficiency,
although a higher pH level would be better for the bacteria’s activity. Alternatively,
adding acid between the biofilter and the stripper could resolve this conflict, but
this approach is not explored in this study.
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Figure 3.2: Relative mole fraction for (a) carbonate system (TIC) and (b) ammonia system
(TAN) as a function of pH. Subscript s (solid lines) are values computed for salinity 15
g/kg at temperature 14◦C, and subscript p are values computed for pure water at 25◦C.

3.4 Process Model

3.4.1 Model assumptions

For simplicity, this section describes all assumptions and the steady-state molar
balances, which are then extended to the dynamic model.

The main assumption made for the model is that the system can be described by
the chemical reactions (3.1)-(3.6). Additionally, several assumptions were made,
including:

1. All food is consumed by the fish and the conversion is defined by reaction
(3.1). The biomass increases the mass of the fish, but it is assumed that it
does not affect the stoichiometry of reaction (3.1).

2. The tank and the biofilter are modeled as continuous stirred-tank reactors.

3. Nitrification is assumed to occur only in the biofilter with operating
conditions to achieve a given efficiency of TAN conversion according to
reaction (3.2).

4. The stripper is modeled as an equilibrium-stage column with a given air
bypass to represent that the real column has less than one equilibrium stage
while neglecting the holdup.

5. Neither carbon dioxide nor oxygen is lost to the air in the fish tank or
biofilter. Additionally, the variation of the oxygen concentration in the
stripper is neglected.
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6. The makeup water does not contain TIC, TAN, or alkalinity and does not
affect the salinity of the system.

7. Temperature is assumed to be perfectly controlled and to not affect fish
metabolism or vice versa.

8. The only relevant addition of water is the makeup water and the only relevant
removal is the purge.

9. The levels of the tank and the biofilter are considered perfectly controlled.

These assumptions provide a simplified model for the system, and although
they may not capture all the complexities of the real system, they allow for a
reasonable estimation of the system’s behavior.

The two main approaches for modelling the stripping column are the
equilibrium-stage model and the two-film mass transfer model. In Vinci et al.
(1996), the authors provided a detailed analysis of the latter, which may be more
realistic than an equilibrium model. However, this model involves equations with
decimal exponents, which can generate imaginary numbers when facing negative
arguments during the root-finding process. Therefore, we decided to use an
equilibrium-stage model with one stage and a bypass, as in Assumption 4, due
to its simplicity and fewer numerical issues. The bypass introduces some non-
ideality, which may be realistic since some air volumes may pass through the
stripper without reaching equilibrium with the water. Figure 3.3 illustrates this
modelling approach.

cB
youtCO2

ṁair

cS

yinCO2

fair

Figure 3.3: Simplified model representation of stripper with single equilibrium stage and
partial bypass of air.
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The bypass fraction was determined by comparing the model results with those
from an experimental packed column. The column was operated with an inlet CO2

concentration of 20 mg/L (0.45 mmol/L) and a volumetric gas-to-liquid ratio of 5
and was found to remove 60% of the CO2 (Summerfelt et al., 2000). Based on this
data, the calculated bypass fraction was determined to be 33.24% of the air inlet,
as shown in Table 3.1. It should be noted that as per Assumption 4, the stripper
holdup is neglected in the model, resulting in a static stripper model.

3.4.2 Steady-state molar balances

Based on the aforementioned assumptions, we present below the steady-state
molar balances for water, alkalinity, TIC, TAN, nitrate, and oxygen. The variables’
names and units are:

• Molar concentration, c [mol/m3
water]=[mmol/Lwater]

• Mass concentration, w [mg/Lwater]

• Liquid flow rate, q [m3
water/min]

• Molar flow rate, ṁ [mol/min]

3.4.2.1 Molar balances for water

When considering the mass balance for the mixing point of makeup water,
the independent variables or degrees of freedom are the makeup water flow rate,
denoted as qm, and the recirculation flow rate, denoted as q. Based on this, the
following equation is obtained:

qB = q + qm (3.12)

It is assumed that the liquid holdups remain constant at all times. Therefore,
the purge flow is equal to the makeup flow (qm), and the liquid flow rate is q after
the purge and before the makeup points. After the makeup and before the purge,
the liquid flow rate is qB , as illustrated in Figure 3.1.

3.4.2.2 Molar balances for alkalinity

• Tank:
qcTalk = qcinalk + ṁT

buffer + ṁT
base + λNH3F (3.13)

where ṁT
buffer and ṁT

base are the molar flow rates of NaHCO3 (HCO−
3 ) and

NaOH (OH−), respectively, being added in the tank. F is the fish feed rate,
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and λNH3 is the stoichiometric coefficient for NH3 in the fish metabolism
(reaction 3.1), given by:

λNH3 =
0.047

MNH3

mol/gfeed

where MNH3 is the molar mass of NH3.

• Biofilter:

qBcBalk = qcTalk + ṁB
buffer + ṁB

base − 2ξBqcTTAN (3.14)

where ṁB
buffer and ṁB

base are the molar flow rates [mol/min] of NaHCO3

and NaOH, respectively, being added in the biofilter. The last term
−2ξBqcTTAN comes from reaction (3.2), in which alkalinity has a
stochiometric coefficient of −2 because it forms H+ and consumes NH3.

• Stripper:
cSalk = cBalk (3.15)

3.4.2.3 Molar balances for total inorganic carbon (TIC)

• Tank:
qcTTIC = qcinTIC + ṁT

buffer + λCO2F (3.16)

where ṁT
buffer is the molar flow rate of NaHCO3 being added in the

tank, λCO2 is the stoichiometric coefficient for CO2 in the fish metabolism
(reaction 3.1), which is given by

λCO2 =
0.48

MCO2

mol/gfeed

• Biofilter:
qBcBTIC = qcTTIC + ṁB

buffer (3.17)

where ṁB
buffer is the molar flow rate of NaHCO3 being added in the

biofilter.

• Stripper: Assume CO2 equilibrium between gas and liquid outflow and use
the bypass fraction fair to represent that the real stripper has less than one
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equilibrium stage.

qBcSTIC + (1− fair)ṁ
I
air

youtCO2

1− youtCO2

=qBcBTIC

+ (1− fair)ṁ
I
air

yinCO2

1− yinCO2

(3.18)

youtCO2
=

cSH2CO3

KHPoper
(3.19)

where ṁI
air is the molar flow rate of air excluding its CO2 content, and youtCO2

is the molar fraction of CO2 at the outlet stream, meaning that the total air

flow rate at the inlet stream is given by ṁair =
ṁI

air

1− youtCO2

.

3.4.2.4 Molar balances for total ammonia nitrogen (TAN)

• Tank:
qcTTAN = qcinTAN + λNH3F (3.20)

• Biofilter:
qBcBTAN = qcTTAN − ξBqcTTAN (3.21)

• Stripper:
cSTAN = cBTAN (3.22)

3.4.2.5 Molar balances for nitrate

The NO−
3 ions are only produced in the biofilter and removed by the purge, so

we have at steady state:

• Tank:
cT
NO−

3
= cin

NO−
3

(3.23)

• Biofilter:
qBcB

NO−
3
= qcT

NO−
3
+ ξBqcTTAN (3.24)

• Stripper:
cS
NO−

3
= cB

NO−
3

(3.25)
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3.4.2.6 Molar balances for oxygen

• Tank:
qcTO2

= qcinO2
− λO2F (3.26)

where λO2 is the stoichiometric coefficient of O2 in the fish metabolism,
which is given by

λO2 =
0.45

MO2

mol/gfeed

• Biofilter:
qBcBO2 = qcTO2

− 2ξBqcTTAN (3.27)

• Stripper:

cSO2
= cBO2

(3.28)

• Purge + Oxygen cone:

qcinO2
= qcSO2

+ ṁO2 (3.29)

where ṁO2 is the molar flow rate of oxygen being injected into the stream
in the oxygen cone.

Note that, except for O2, which is added between the stripper and the tank, we
have that cin = cS .

The pH values at the different locations are calculated based on the provided
concentrations of alkalinity, TIC, and TAN using Eq. (3.30), as explained next.
The concentrations of ionic species can be determined from the calculated pH
values using the equilibrium reactions (3.3)-(3.6).

3.4.3 Computation of pH

In addition to the molar balances of reaction invariants, the acid-base
equilibrium in the system must also be considered in order to compute the pH,
along with the concentration of the species in equilibrium. This was done by
writing the equilibrium relations between species, according to reactions (3.3)-
(3.6), and solving the resulting system of algebraic equations as a function of the
reaction invariants.

A simple analytic expression for alkalinity was developed by Henson and
Seborg (1994), which enables the calculation of cH+ as a function of cTIC and
calk. We extend this analysis by including the dependence on cTAN to incorporate
the ammonia-ammonium equilibrium. The resulting analytic expression, which
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is used to compute cH+ (or pH) at each unit (fish tank, biofilter, and stripper),
becomes:

cialk = ciT IC

K1c
i
H+ + 2K1K2

(ci
H+)2 +K1ciH+ +K1K2

+
Kw

ci
H+

− ciH++ciTAN

K3

ci
H+ +K3

,

i = T,B, S

(3.30)

In Appendix, we show in detail how this expression was derived and its extension
to include the equilibrium of phosphate ions, if these are present.

3.4.4 Dynamic molar balances

This section describes the generalized model which can be utilized for
simulating steady-state and dynamic behavior. The model equations are consistent
with the previous sections but presented in a more general form. The model
considers five species or components, namely alkalinity, TIC, TAN, NO−

3 , and
O2. The molar balances for these five components in the tank and the biofilter are
described by Eq. (3.31) and (3.32), respectively.

V T dc
T

dt
= q(cin − cT ) + gT + hT (3.31)

V B dcB

dt
= qB

(
cT

q

qB
− cB

)
+ gB + hB (3.32)

where cin, cT , cB and cS are column vectors containing the concentration of the
five species at the inlet of the tank, in the fish tank, in the biofilter, and in the
stripper, respectively. gT and gB are column vectors representing the amount of
each component coming from input streams to the tank and biofilter, respectively,
and hT and hB are column vectors containing the amount of each component
generated or removed in the reactions (3.1) and (3.2), respectively. From this, gT ,
gB , hT and hB are defined as follows:
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gT =


ṁT

buffer + ṁT
base

ṁT
buffer

0
0
0

 gB =


ṁB

buffer + ṁB
base

ṁB
buffer

0
0
0



hT =


λNH3F
λCO2F
λNH3F

0
−λO2F

 hB =


−2qξBcTTAN

0
−qξBcTTAN

qξBcTTAN

−2qξBcTTAN


The set of ordinary differential equations (ODEs) presented above comprises a

total of 10 equations, which govern the dynamics of the system. In addition, there
are 4 static equations that describe the molar balances in the stripper and oxygen
cone.

To implement this system, we use a set of 10 differential states, as given in
Eqs. (3.31) and (3.32), which are derived from the molar balances of TIC, TAN,
alkalinity, oxygen, and nitrate in the tank and biofilter. We also use 4 algebraic
states, as given in Eqs. (3.18) and (3.30), which calculate the values of cSTIC and
cH+ after passing through the three units (tank, biofilter, and stripper). Although
cH+ (pH) is not necessary for dynamic simulation of the tank and biofilter, unless
one wants to know the pH and individual species concentrations, it is required for
modelling the stripper, as the H2CO3 concentration is the driving force for TIC
removal.

3.5 Degrees of Freedom for operation

The system can be operated through several manipulated variables (i.e.,
dynamic degrees of freedom), as illustrated in Figure 3.4. These variables are:

1. Fish feed (pellets);

2. Recirculation flow (i.e., liquid inflow to tank);

3. Liquid outflow from the tank;

4. Liquid inflow to biofilter;

5. Liquid outflow from biofilter;

6. Liquid outflow from stripper:

27



3. Steady-state and Dynamic Modelling of Water Quality

7. Liquid inflow to oxygen unit;

8. Pure oxygen feed;

9. Heating/cooling;

10. Purge;

11. Makeup water;

12. Air inflow to stripper;

13. Base/buffer added to tank/biofilter

The last variable could potentially represent up to four degrees of freedom,
although typically only one is used at a time. When proposing the model, it
was assumed constant liquid holdup in the fish tank, biofilter, stripper, oxygen
unit, mixing point for makeup water, and exit point for purge. This enabled us
to establish six molar balances, which we could utilize to eliminate six of the
previously mentioned variables. For instance, by taking into account the total
holdup in all units, we determined that the purge flow was equal to the makeup
water flow rate, qm. Additionally, the feed to the biofilter was equivalent to the
sum of the liquid flow out of the fish tank and the makeup water. Furthermore, the
liquid flow rate of the outlet of the fish tank, biofilter, stripper, and oxygen unit
was equivalent to their respective inlet flow rates. To simplify the system further,
we assumed that the temperature of the liquid streams was perfectly controlled,
removing the heating/cooling as a degree of freedom. In total, this eliminates
seven degrees of freedom, leaving us with six steady-state degrees of freedom
for operation and control. For our simulations, we consider the fish feed, F , as
a measured disturbance. As a result, we focus on the five degrees of freedom
(manipulated variables) for operation, which are provided in Table 3.3.

Table 3.3: Control degrees of freedom (manipulated variables) with steady-state effect

Description Variable Unit
Recirculation flow rate q m3/min
Air feed to stripper ṁair mol/min
Oxygen feed ṁO2 mol/min
Makeup water qm m3/min
Base/buffer feed ṁbase/ṁbuffer mol/min

The process flowsheet is shown in Figure 3.4, with the first four degrees
of freedom indicated with valve symbols. The degree(s) of freedom related
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3.5. Degrees of Freedom for operation

to buffer/base addition is not assigned in this flowsheet, as it can be any of
the buffer/base feed streams. Moreover, the flowsheet includes two stabilizing
controllers to control the nitrate and oxygen concentrations in the tank, which are
later used in the dynamic simulations.

Purge

Makeup
water

ṁO2

Fish feed

Air + CO2

cin

cS

q

qB

qm

qB

ṁair

Buffer Base
Buffer Base

q

Fish Tank

Biofilter

Oxygen cone

Stripper

CC        
NO3

- 

CC        
O2 

Figure 3.4: Flowsheet of RAS process where the valve symbols show control degrees of
freedom. Two stabilizing controllers for nitrate and oxygen are included. In addition, we
usually have a stabilizing pH controller using buffer/base addition.

With a given feed rate, there are five steady-state operational degrees of
freedom, and therefore we need five specifications to define the operation. In
the simulations, we use a typical set of specifications provided in Table 3.4.
Out of these specifications, two are on manipulated variables (MVs), namely the
recirculation flow rate and air feed to the stripper, while the other three are on
controlled variables (CVs). These three CV specifications (O2 saturation, nitrate
concentration, and pH) indirectly determine the value of the three remaining MVs
(O2 feed, makeup water, base/buffer addition).
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Table 3.4: Nominal operational specifications used in simulations

Variable Value Unit Description
q 30 m3/min Recirculation flow rate
ṁair 6285 mol/min Air feed to stripper
cO2% 80% - O2 saturation
wT
NO−

3

100 mg/L NO−
3 mass concentration in fish tank

pHB 7.05 - pH in biofilter
F 580.6 g/min Fish feed rate on day 1

3.6 Simulation results

In this section, we present some steady-state and dynamic simulation results,
which also contribute to validating the model.

3.6.1 Steady-state simulations

For the steady-state calculations, we utilized the five specifications in Table 3.4
in combination with the given feed rate. It is worth noting that we maintained the
oxygen level, the nitrate level, and the pH in the biofilter at fixed values. To achieve
control of the pH in the biofilter, we considered four different scenarios, where we
implemented one type of pH/alkalinity adjustment at a time (see Figure 3.4):

Scenario 1) Base addition in the tank (ṁT
base)

Scenario 2) Base addition in the biofilter (ṁB
base)

Scenario 3) Buffer addition in the tank (ṁT
buffer)

Scenario 4) Buffer addition in the biofilter (ṁB
buffer)

The steady-state system was solved for the four scenarios considering the
conditions for day 1. The makeup water flow rate was the same in all scenarios
(qm = 0.992 m3/min) because the nitrate concentration was specified. Since the
recirculation flow rate, q, was specified at 30 m3/min, the recirculation ratio was
r = q/(q + qm) = 0.968 in all scenarios. The oxygen feed rate was constant for
all scenarios at 11.49 mol/min. The results presented in Table 3.5 indicate that the
amount of base or buffer is the same regardless of the location where it is added.
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3.6. Simulation results

Table 3.5: Required addition of base (NaOH) or buffer (NaHCO3) to keep desired pH in
biofilter in each scenario [mol/min]

Variable Scenario 1 Scenario 2 Scenario 3 Scenario 4
ṁT

base 3.75 0 0 0
ṁB

base 0 3.75 0 0
ṁT

buffer 0 0 5.46 0
ṁB

buffer 0 0 0 5.46

Tables 3.6-3.9 present the results obtained from the steady-state simulation.
We see that the pH in the fish tank was generally higher than in the biofilter in most
scenarios, except in Scenario 2 where base was added to the biofilter. The decrease
in TAN and oxygen concentrations from the tank to the biofilter can be attributed
to reaction (3.2) and dilution by the makeup water. In terms of maximizing fish
growth, low levels of NH3 and CO2 (H2CO3) are preferred in the fish tank. The
pH in the fish tank significantly affects these values. For instance, a high pH of
7.33 resulted in a high concentration of ammonia (Scenario 1), while a low pH of
7.02 resulted in a high concentration of H2CO3 (Scenario 2). To achieve low levels
of CO2, it is better to use NaOH (base) (Scenarios 1 and 2) instead of NaHCO3

(buffer) for pH adjustment.

Despite using a large amount of buffer, Scenarios 3 and 4, which both use
sodium bicarbonate (buffer) for pH adjustment, have almost identical steady-state
values. This result is expected due to the well-known buffer effect.

Table 3.6: Steady-state concentrations [mmol/L or -] for each unit for Scenario 1

Variables Tank Biofilter Stripper
calk 2.26 2.07 2.07
cTIC 2.34 2.27 2.13
cH2CO3 0.12 0.21 0.08
cTAN 0.055 0.0016 0.0016
cNH3 2.89e-04 4.42e-06 1.07e-05
cNO−

3
1.61 1.61 1.61

cO2 0.23 0.12 0.12
pH 7.33 7.05 7.44
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Table 3.7: Steady-state concentrations [mmol/L or -] for each unit for Scenario 2

Variables Tank Biofilter Stripper
calk 2.12 2.07 2.07
cTIC 2.34 2.27 2.13
cH2CO3 0.23 0.21 0.08
cTAN 0.055 0.0016 0.0016
cNH3 1.42e-04 4.42e-06 1.07e-05
cNO−

3
1.61 1.61 1.61

cO2 0.23 0.12 0.12
pH 7.0186 7.05 7.44

Table 3.8: Steady-state concentrations [mmol/L or -] for each unit for Scenario 3

Variables Tank Biofilter Stripper
calk 3.85 3.62 3.62
cTIC 4.09 3.96 3.71
cH2CO3 0.27 0.36 0.13
cTAN 0.055 0.0016 0.0016
cNH3 2.12e-04 4.42e-06 1.16e-05
cNO−

3
1.61 1.61 1.61

cO2 0.23 0.12 0.12
pH 7.2 7.05 7.47

Table 3.9: Steady-state concentrations [mmol/L or -] for each unit for Scenario 4

Variables Tank Biofilter Stripper
calk 3.67 3.62 3.62
cTIC 3.92 3.96 3.71
cH2CO3 0.27 0.36 0.13
cTAN 0.055 0.0016 0.0016
cNH3 2.04e-04 4.42e-06 1.16e-05
cNO−

3
1.61 1.61 1.61

cO2 0.23 0.12 0.12
pH 7.18 7.05 7.47

3.6.2 Dynamic simulation

Figure 3.5 illustrates the dynamic response of the system to a step increase of
56.5 g/min in the fish feed (about 10% disturbance) with all the five manipulated
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variables kept constant, including the oxygen addition.

0 1 2 3
Time [days]

0.5

1.0

1.5

2.0

cT al
k[m

m
ol

/L
]

simulation results
min. bound

0 1 2 3
Time [days]

0.25

0.30

cT H
2C

O
3[m

m
ol

/L
]

simulation results
max. bound

0 1 2 3
Time [days]

7.0

7.2

7.4

pH
T simulation results

bounds

0 1 2 3
Time [days]

0.056

0.058

0.060

cT TA
N
[m

m
ol

/L
]

simulation results

0 1 2 3
Time [days]

1.625

1.650

1.675

1.700
cT N

O
3

[m
m

ol
/L

]
simulation results
max.bound

0 1 2 3
Time [days]

7.00

7.25

7.50

7.75

8.00

pH
B simulation results

bounds

0 1 2 3
Time [days]

0.4

0.2

0.0

0.2

cT O
2[m

m
ol

/L
]

simulation results
min. bound

0 1 2 3
Time [days]

0.00025

0.00050

0.00075

0.00100

cT N
H

3[m
m

ol
/L

]

simulation results
max. bound

0 1 2 3
Time [days]

7.350

7.375

7.400

7.425

pH
S

simulation results

Figure 3.5: Dynamic behavior for a step change of 56.5 g/min in the fish feed, F, at day
1, with no oxygen and nitrate control.

The simulation results indicated that the fish would not survive, even for a
day, mainly due to the oxygen level becoming negative in less than one day.
This result was caused by the consumption of oxygen according to reaction (3.1).
Furthermore, the nitrate concentration steadily increased, which is harmful to the
fish.

To prevent negative oxygen levels and the buildup of nitrate in the system, the
oxygen intake was controlled in the fish tank, and makeup water addition was used
to control nitrate in the tank, as shown in Figure 3.4.

With those controllers, we see in Figure 3.6 that oxygen and nitrate
concentrations are now kept constant, but other variables still go out of bounds,
including the pH in the tank and in the biofilter. This indicates the need to introduce
additional control loops, using buffer or base addition. However, since the aim of
this work was to present the process modeling, a more detailed control design will
be considered in future work.
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Figure 3.6: Dynamic behavior for a step change of 56.5 g/min in the fish feed, F, at day
1, with oxygen and nitrate controllers.

3.7 Comparison with real data

To validate the model, we compared it to data collected from a commercial
fish farm of Atlantic salmon that used the same RAS configuration as in Scenario
2, where base was added to the biofilter to regulate the pH. The data was collected
over a 44-day period and consisted of sensor readings taken every 30 minutes,
including temperature (T ), salinity (S), oxygen saturation (cO2%), and pH in the
fish tank (pHT ) and stripper (pHS), as well as various flow rates. Laboratory
measurements were also taken every other day on the outflow from the tank,
which included the concentrations of NO−

3 , H2CO3, TAN, and alkalinity (calk).
Figure 3.7 displays the average daily measurements of temperature and salinity.

In Figure 3.8, we compare the measured data with the simulated dynamic
responses. The upper six plots display the six operational degrees of freedom,
including the fish feed. The lower nine plots show six concentrations in the fish
tank (T) along with the pH after the fish tank, biofilter, and stripper.

The simulation model is similar to the one described earlier, with the exception
of the stoichiometric coefficient for ammonia in reaction (3.1), which was halved
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Figure 3.7: Temperature and salinity measured data.

to 0.0235 to better match the experimental data for TAN concentration in the fish
tank. The variation in the stoichiometric coefficients is expected as they depend
on the composition of the fish feed. Since the measured temperature and salinity
are not constant, the equilibrium constants change slightly over time as they are a
function of temperature and salinity.

It is important to note that the simulated responses were not generated by
directly entering the independent variables, i.e., feed flow rates, into the dynamic
model. This is because some flow rates were missing from the data, such as air
and oxygen inlet streams, and directly entering the measured base flow rate would
have resulted in significant offsets in pH and other concentrations. This is due
to the model predictions being highly sensitive to errors in the base feed flow
rate. Instead, the pH and concentration measurements were used as setpoints,
since these are more reliable, and feedback controllers were employed to adjust
the feed flow rates and match them with the measured values.

In order to match the simulation results with the measured data, several
adjustments were made to the model inputs. The details of these adjustments are
outlined below:

• The measured data for fish feed, denoted as F , was used in the model after
excluding the very small values. To account for situations where the fish stop
eating and operators stop feeding (which leads to these excluded values), the
feed rate was always set to be higher than a minimum amount of 50%F i,
where F i is the planned amount of feed for day i. Moreover, due to the
nature of the data, which reports the cumulative mass of food each day, we
assumed a step-like feed rate for each day, which may result in occasional
large deviations in concentrations.

• The measured rate of makeup water, qm, was used directly in the model.
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• The measured recirculation rate, q, was also used directly in the model. It
remained almost constant over the 44-day period, except for two days with
slightly lower values.

• The airflow to the stripper, V̇air, was not measured, so it was assumed to be
10 times the recirculation flow rate of project, which was assumed to be 23.7
m3/min (the mean of all q).

• The flow rate of the oxygen inlet was not measured. It was estimated
by matching the measured and simulated oxygen concentrations using a
feedback O2 controller with the measured oxygen saturation as the setpoint.

• The base addition was calculated by matching the measured and simulated
pH after the stripper, using a feedback pH controller with the daily average
of measured pH as the setpoint. To improve the match with other measured
data, such as alkalinity and CO2/H2CO3 concentrations in the fish tank, a
bias of 0.2 pH units was introduced for the measured pH after the stripper.
This means that the simulated pH after the stripper is 0.2 units lower than
the measured value (see the lower right plot in Figure 3.8).

The calculated base addition showed significant deviations from the measured
value, particularly during the first 14 days, which could be attributed to
measurement errors. The later deviations or peaks could be explained by
inaccuracies in the feed rate F , leading to errors in the CO2 produced by fish
metabolism, and thereby affecting the pH and the amount of base required. The
bias of 0.2 pH units introduced in the stripper was carried over to the fish tank,
resulting in a similar deviation. The reason for the deviation could be a sensor
error or modelling inaccuracies in the thermodynamics, which were not modelled
in much detail. The simulated concentrations of TAN, alkalinity, and H2CO3 in the
fish tank were in good agreement with the measured values from the laboratory.
The simulated pH was also close to the measured values, except for the bias of
about 0.2 pH units.

In Assumption 3, the constant conversion of TAN might not always reflect
reality. The operating region under study includes a change in behavior of the
conversion of TAN, where a constant value provides a better representation of
reality (0.1 to 0.5 mgTAN /L), and beyond which the Monod model might be
more suitable (when TAN mass concentration exceeds 0.5 mg/L) (Malone et al.,
2006). To evaluate the impact of TAN conversion on concentrations, a sensitivity
analysis was conducted, revealing that it only had a significant effect on TAN
concentration. This can be attributed to the disparity in magnitudes between
nitrate and ammonia quantities, resulting in the efficiency effect being negligible
on nitrate concentration. Consequently, the nitrate concentration is primarily
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Figure 3.8: Simulated (blue lines) and measured (red dots) flow rates and concentrations
for a real RAS plant over a 44-day period.
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influenced by purge/makeup water. Figure 3.9 illustrates that the amount of nitrate
formation in the biofilter is insufficient to significantly impact its concentration.
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Figure 3.9: Nitrate concentrations before and after the nitrification in the biofilter.

The simulated nitrate concentration was approximately twice the measured
value, which could be attributed to the accumulation of nitrate in the recirculating
system due to the small purge. In the model, some of the nitrogen from the
feed exits the system in the purge, mainly as nitrate. Since the simulated TAN
concentration in the fish tank was similar to the measured values, it is likely that
the actual system has other nitrate exits, such as in solid waste and denitrification
in the biofilm. However, the model did not account for solids or denitrification.
Therefore, the fish farm system could benefit from nitrate control to better use of
the makeup water.

3.8 Discussion

3.8.1 Stripper model

At first, we attempted to model the stripper by assuming a constant efficiency.
However, this resulted in the existence of multiple solutions, each of them in a
different pH zone. Therefore, it was numerically better and more physically correct
to model the stripping unit as a single-stage equilibrium column with some air
bypass. In this model, the efficiency was indirectly dependent on the pH, as the
concentration of H2CO3 available for stripping depends on pH.

3.8.2 Numerical solver

CasADi is an open-source tool that enables nonlinear optimization and
algorithmic differentiation. Its symbolic framework facilitates model simulation
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and implementation of numerical optimal control, which is the intended focus
of future work. The equation systems were solved using CasADi version 3.5.5
in Python version 3.8.8, and required a DAE solver, so IDAS from SUite of
Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) (Hindmarsh
et al., 2005), distributed along with CasADi, was used for the steady-state and
dynamic simulations.

3.8.3 Use of reaction invariants

In this work, the model development relied on incorporating three reaction
invariants, namely TAN, TIC, and alkalinity. Instead of representing individual
components, including pH, as dynamic states, static equilibrium relationships like
Eq. (3.30) were used to obtain their concentrations.

An alternative, and more straightforward, approach for this modelling involves
writing dynamic balances for all chemical components and introducing four
extents of reactions to represent reactions (3.3)-(3.6). This model was also
implemented, and the results agree with the model presented in this work, which
serves as validation of the proposed model. While the model based on the extent
of reactions avoids the use of reaction invariants, which can be non-physical
quantities, it results in numerical difficulties. The steady-state solution was highly
dependent on the initial condition, often leading to infeasibility with negative
concentrations. To overcome this issue, a numerical trick was used by making
these states equal to the exponential of the concentrations. While this solved the
infeasibility problem, the numerical solver could still diverge with the iterations
approaching very high concentrations. Thus, the approach based on reaction
invariants was preferred as it was more stable and reliable.

3.8.4 Steady-state simulations

The steady-state simulation yielded valuable insights into the system. Because
of the nitrate requirement, the amount of makeup water was constant in all
scenarios. To decrease the amount of the makeup water, one may add a
denitrification unit to the process to convert nitrate into nitrogen gas, as suggested
by Tal et al. (2009).

The steady-state results presented in Tables 3.6-3.9 indicate that the
concentration of H2CO3 in the tank was the lowest in Scenario 1 (cTH2CO3

= 0.13
mmol/L), where base was added in the biofilter, which is preferable for fish
growth since they thrive best with low H2CO3 levels (Khan et al., 2018). On
the other hand, the pH in the tank was also the highest in Scenario 1 (pHT =
7.33), resulting in a high concentration of ammonia (cTNH3

= 2.89 e-04 mmol/L).
Previous research has shown that high H2CO3 levels have a negative impact on
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fish growth, while high ammonia concentrations induce stress, which also affects
growth (Thorarensen and Farrell, 2011).

3.9 Conclusion

The generalized and simplified steady-state and dynamic models of a
Recirculating Aquaculture System (RAS) water treatment were developed for
control and optimization purposes.

Dynamic simulation of a nominal case with no control (Figure 3.5) revealed
the importance of a basic stabilization control structure that included controlling
the oxygen and nitrate concentrations in the fish tank (Figure 3.6). Additionally,
pH needs to be controlled in practice, and steady-state results in Tables 3.6-3.9
show four scenarios using base or buffer to control the pH in the biofilter. The
optimal location of the base or buffer feed and the choice between the two require
detailed analysis, as it depends on economic factors.

The proposed model demonstrated excellent performance when simulated
using real data, resulting in a trajectory with high similarity to reality, considering
the simplified nature of the model. However, to obtain more accurate carbon
dioxide and nitrate levels, all losses of these quantities should be taken into
account.

Overall, the proposed model is numerically robust and well-suited for further
studies on optimal operation and control of RAS water treatment systems.
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Chapter 4

Optimal Control of the Water
Quality

It is important to have automated solutions to reduce variations and optimize
operations. This chapter describes and presents three optimal control structures
to achieve that while avoiding unnecessary costs and keeping the welfare of the
fish. It is an extension of Paper II, which was published at the IFAC Symposium
on Dynamics and Control of Process Systems (DYCOPS, 2022). The extensions
mainly include the addition of figures and transfer functions that had to be omitted
in the IFAC version due to space limitations.

4.1 Abstract

This study compares nonlinear model predictive controls, using setpoint
tracking objective function (NMPC), and economic objective function (E-NMPC),
with a hierarchical control structure of PI controllers applied to the water treatment
of a Recirculating Aquaculture System (RAS), which consists of a tank, a biofilter,
a stripper and an oxygen cone. Two of the three control structures used in this
work consist of an optimization layer on top of proportional-integral (PI) control
loops or NMPC. The optimization layer reduces the degrees of freedom with an
economic objective function by deactivating some of the manipulated variables
when choosing between buffer and base addition and the location of addition to
the system. The third structure consists of a single layer with E-NMPC. The PI
control structure is easy to design once we know the relationship between the
variables. The PI controllers’ performance was satisfactory, but a small back-off
would be needed, if the constraints would not be soft constraints. Alternatively,
the use of buffer with base would be necessary to improve speed and avoid
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constraint violation, as one component took more than 6 days to reach the optimal
concentration. The NMPC and the E-NMPC performed better: the NMPC was
much faster in conducting the controlled variables to optimal conditions, despite
not providing optimal economic cost during the trajectory; and the E-NMPC
provided a mixture of smooth trajectory and optimal cost.

4.2 Introduction

Aquaculture systems for commercial purposes consist of rearing one or more
species of aquatic organisms inshore or offshore. In inshore or offshore closed
environments, the focus is usually on rearing only one species, as the conditions
are controlled and external contact is avoided. The effluent is significantly larger
in flow-through systems, which are also called raceways, due to the discharge of
the entire outflow of the tank (Ridler and Hishamunda, 2001). A modification
to raceways are recirculating of treated water, and these processes are called
Recirculating Aquaculture Systems (RAS).

Automated RAS, also called Smart RAS or Intelligent Aquaculture consists
of implementing control and optimization solutions to avoid risks and reduce
production with as little as possible of human interaction with the system (Lee
et al., 2020). This is a challenge due to the complexity of the system, but it is less
difficult when the system is divided into subsystems: rearing unit, solid, and water
treatments.

This study is focused on the water treatment part of Atlantic salmon (Salmo
salar) RAS, which consists of a tank, a biofilter, a stripper, and an oxygen cone.
The system is complex, but it was simplified in previous work (dos Santos et al.,
2023), where a model was developed for control and optimization purposes,
the steady state and dynamic behaviors were analyzed, and simple proportional
integral control of oxygen and nitrate were implemented. For optimal growth and
welfare of the fish, the conditions of the environment are assumed to have a small
range, so other controllers are required to keep them within this region.

Other authors have applied control and optimization to other RAS
configurations, including Wright (2011), Farghally et al. (2014), and Summerfelt
et al. (2015). In order for the control and optimization to be successful, one needs
to gather information on all the toxic compounds, important water conditions, and
all the safety bounds. When the system operates in optimal conditions, one is
able to distinguish which constraints affect the optimization directly or indirectly,
as they are active or not. The inactive constraints are important to the dynamic
optimization to avoid abrupt changes and going too far from optimal steady-state
conditions, and the active ones dictate these conditions.

The main contribution of this work is the comparison of nonlinear model

42



4.3. Process description

predictive control structures with a systematic procedure for control design applied
to a water treatment system of a recirculating aquaculture system of Atlantic
salmon.

4.3 Process description

The process, illustrated in Fig. 4.1, consists of a tank, where the fish is reared,
and a water treatment system. In the water treatment system, the tank effluent
is treated by a biofilter, on which bacteria convert ammonium into nitrate, and a
stripper, removes carbon dioxide from the system. Most of the effluent is recycled
back to the tank, and the rest is purged. There are makeup streams of water and
oxygen, and other inputs, such as air fanned through the stripper, fish feed added
in the fish tank, and base (NaOH) and/or buffer (NaHCO3) that can be added to
the tank or to the biofilter.

Fish Tank
Biofilter

 
 
 
 
 

Stripper 

Oxygen Cone

Buffer Base
Buffer Base

Makeup water

Purge

Air

Air + CO2

Makeup oxygen

Fish Feed

Figure 4.1: Process diagram.

The fish feed is considered a disturbance that changes from day to day in a
piece-wise constant manner. Fish metabolism is considered to produce ammonia,
carbon dioxide, and biomass, which is the mass growth of the fish, and their
production rates are assumed to be linear functions of the fish feed. In the biofilter,
bacteria are considered to transform ammonia (NH3) into nitrate (NO−

3 ) with a
constant conversion. The temperature and salinity are assumed to be constant and
equal to 14◦C and 15 g/kg, respectively.

The model uses three reactions invariant variables, which are variables that do
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not change with equilibrium reactions, and these variables are defined as follows:

cTAN = cNH3 + cNH+
4

(4.1)

cTIC = cH2CO3 + cHCO−
3
+ cCO2−

3
(4.2)

calk = cOH− + cHCO−
3
+ 2cCO2−

3
− cNH+

4
− cH+ (4.3)

where cj is the concentration of component j, TAN denotes total ammonia
nitrogen, TIC is total inorganic carbon, and alk is alkalinity.

Other differential states are nitrate and oxygen concentrations in the tank and
biofilter, and the algebraic states are TIC concentration in the stripper and pH in all
units. The model consists of 14 differential and algebraic equations. More details
about the process and model can be found in Chapter 3 or in dos Santos et al.
(2023).

4.4 Optimization Problem

4.4.1 Operating constraints

The system must satisfy a few constraints to keep the fish safe, healthy, and in
optimal growth rate conditions. Depending on the species and size of the RAS,
these constraints differ. Pedersen (2018) exemplifies an optimization of RAS
design for Rainbow trout and Atlantic salmon, where it cites different parameters
depending on the species. As the fish species in this work is Atlantic Salmon,
the restrictions for optimal growth rate and safety regarding wi, which is the mass
concentration of component i, pH, and alkalinity are given as follows:

• Carbon dioxide:
wT
H2CO3

≤ 15mg/L

• Nitrate:
wT
NO−

3
≤ 100mg/L

• Ammonia:
wT
NH3

≤ 20µg/L

• pH in the tank:
7 ≤ pHT ≤ 7.5

• pH in the biofilter:
7 ≤ pHB ≤ 8
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• Alkalinity in the tank:

wT
alk ≥ 50mg(CaCO3)/L

• Alkalinity in the biofilter:

wB
alk ≥ 50mg(CaCO3)/L

There are also some operating constraints that are based on the size parameters
described in 3 regarding oxygen mass concentration, wT

O2
, recirculating volumetric

flow rate, q, and maximum amount of air being ventilated through the stripper,
V̇air.

• Oxygen concentration:

80%× wO2,sat ≤ wT
O2

≤ 120%× wO2,sat

where wO2,sat is the mass concentration of oxygen in water at saturation.

• Recirculating volumetric flow rate:

5m3/min ≤ q ≤ 50m3/min

• Air flow rate:
V̇air ≤ 5qmax

4.4.2 Economic Objective Function

A general optimization problem is given by

min
x,z,u

J(x, z,u) (4.4)

s.t. ẋ = sd(x, z,u),

sa(x, z,u) = 0,

g(x, z,u) ≤ 0,

x(0) = x0

where functions sd and sa are the differential and the algebraic equations,
respectively, g is the set of inequality constraints mentioned in the previous
subsection, and x0 is the initial condition.
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Table 4.1: Price of each input and output

Variable Value Unit Description

p1 19.19 NOK/m3 Effluent disposal
p2 5.71e-05 NOK/mol Vacuum and Exhaustion fans
p3 0.102 NOK/mol NaOH flakes
p4 0.148 NOK/mol NaHCO3 powder
p5 14.17 NOK/m3 Makeup water
p6 1.87e-02 NOK/m3 Pump operation

As the model does not take the effect of water quality on the fish growth into
consideration, the cost of the plant, S, which is also the function J to be minimized
in a steady-state economic optimization in each step k, is purely given by the
operating cost, given by Eq. 4.5. In the case of dynamic economic optimization,
the corresponding cost function, J, becomes S plus the regularization term, as
shown in Eq. 4.10, in the next section.

J = S(uk) = p1(1− r)qB + p2 ṁair + p3
∑

i=T,B

ṁi
base

+ p4
∑

i=T,B

ṁi
buffer + p5 q

m + p6 q
(4.5)

where pj with j = 1, 2, ..., 6 are prices of operation of vacuum and exhaustion
fans (Nistad, 2018); base (Tianjin Chengyuan Chemical CO. LTD, 2021); buffer
(Farmasino CO. LTD, 2021); makeup water, which is assumed to have the same
price as fresh water; effluent disposal (Trondheim kommune, 2021); and standard
pump operation. The prices are listed in Table 4.1, it is assumed that they do not
change during the operation. q is the recirculation flow rate, qm is the makeup
water, qB is the water flow rate through the biofilter (which is calculated by the
sum q+ qm), r is the recycling ratio (which is calculated by q/qB), ṁair is the air
feed to stripper, ṁi

base is the base feed to the unit i, ṁi
buffer is the buffer feed to

the unit i, and i can be T, B, or S, which are tank, biofilter and stripper.

4.5 Control Design

A summary of all structures is presented in Figure 4.2. Case A consists of
an upper layer with a steady-state optimization, a middle layer with a Split-range
block, and a lower layer with PI control. Case B consists of an upper layer with a
steady-state optimization and a lower layer with nonlinear model predictive control
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(NMPC). Finally, Case C consists of a single layer with economic model predictive
control (E-NMPC).

Steady-State
Optimization

PI NMPC E-NMPC

Steady-State
Optimization

valves

Split-range

Case A Case B

Case C

Figure 4.2: Control structures.

Another point is that the disturbance changes in a piece-wise constant manner
dependent on the day of operation, and, thus, the system needs to be optimized
daily for Cases A and B.

The simulation of the plant, which is represented by a first-principle model
of the water treatment of RAS, uses IDAS method from SUite of Nonlinear
and DIfferential/ALgebraic equation Solvers (SUNDIALS), distributed along with
CasADi v3.5.5 for Python v3.8.8.

4.5.1 Case A

After formulating the optimization problem, the next steps are to optimize
using Eq. (4.4) and (4.5) for expected disturbances and implement the optimal
operation, defining what to control.

Based on the optimization result, the active constraints dictate the most
important variables to be controlled, and its setpoint becomes the restriction value.
The optimization also defines the location of base/buffer addition. In order to pass
this optimal decision to the regulatory layer, a split-range block must be put in
between to activate or deactivate the base/buffer addition, depending on the type
and location.

In dos Santos et al. (2023), we showed that it is essential to control oxygen
and nitrate concentrations. Based on that, the oxygen and nitrate pairings are set,
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but process knowledge needs to be used to suggest other pairings. A systematic
procedure is conducted for the remaining pairs to be defined.

4.5.1.1 Model identification:

First, the system is identified as a first order plus time delay (FOPTD) model.
To achieve that, a step change is applied in one manipulated variable (u) at a time,
and the identification of the dynamic responses is executed using the Scipy package
in Python, minimizing the integral of the absolute magnitude of the error (IAE),
subject to bound constraints, and described by the following equation:

min
t,y,k,τ,θ

∫ tf

0
|error(t, y, k, τ, θ)|dt (4.6)

s.t. θ ≥ 0,

τ ≥ 0

error(t, y, k, τ, θ) = k(1− exp(−(t− θ)/τ))− y (4.7)

where error is the error function described by Eq. 4.7 dependent on time, t, gain,
k, time constant, τ , and time delay, θ; y is the dynamic response vector; tf is the
duration of the dynamic response.

4.5.1.2 Closing the control loops:

After all pairings are set, the control loops are closed in an order, and the
identification is re-executed every time one loop is closed. The order of the closure
is told by prior knowledge of the system on how intensely one input variable can
affect the other controlled variables besides its pair.

Finally, the SIMC rules (Skogestad, 2003) (Skogestad’s PID settings) for
systems described by first order plus time delay (FOPTD) transfer functions are
used to tune the controllers. The transfer function of each pairing m is presented
in the equation below.

ym
um

= k
e−θs

τs+ 1
(4.8)
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4.5.2 Cases B and C

When letting the algorithm decide the location of the addition of base/buffer,
this decision can be added to a nonlinear model-based predictive control. In
order to solve the minimization problem of the model predictive control, the
integration method needs to be chosen carefully. For this system, which has a
measured disturbance that varies from day to day, the integration method single
shooting is not advised, and multiple shooting increases the computation time a lot.
Therefore, the method direct collocation was used, and set to have one intermediate
collocation point and to use a third-degree polynomial to interpolate within each
control interval.

The objective function to be minimized is given as follows:

Case B) Setpoint Tracking:

J =
N−1∑
k=0

[
||xk − xopt||2Q + ||uk − uk−1||2R

]
(4.9)

where N is the ratio between control horizon and control interval; Q
and R are diagonal matrices of dimension nx × nx, and nu × nu,
respectively. Here, nx is the number of differential states, x, and nu is
the number of manipulated variables, u; xopt is the optimal steady state
for the differential states, given by the upper layer; ||uk−uk−1||2R is the
penalty of change in the manipulated variables, also called regularization
term.

Case C) Economic Dynamic Optimization:

J =

N−1∑
k=0

[
S(uk) + ||uk − uk−1||2R

]
(4.10)

where S is the cost function given by Eq. (4.5).

4.6 Results and Discussion

4.6.1 Steady-state Optimization

With the optimization problem defined in Section 4.4, steady-state
optimization can be easily done. The results for the first day of the production
are presented in Tables 4.2 and 4.3.
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Table 4.2: Optimal operation data on day 1

Variable Value Unit

ṁair 1074.71 mol/min
qm 0.99 m3/min
ṁO2 11.36 mol/min
ṁT

base 4.21 mol/min
ṁB

base 1.21 mol/min
ṁT

buffer 0.0 mol/min
ṁB

buffer 0.0 mol/min
q 9.07 m3/min

Table 4.3: Optimal steady-state values for some variables on day 1 [mmol/L or -]

Variables Tank Biofilter Stripper

calk 4.32 3.85 3.85
cTIC 4.74 4.27 4.04
cH2CO3 0.27 0.43 0.21
cTAN 0.18 4.91e-03 4.91e-03
cNH3 8.09e-04 1.21e-05 2.40e-05
cNO−

3
1.61 1.61 1.61

cO2 0.35 1.01e-06 1.01e-06
pH 7.26 7.0 7.3

The optimization results in Table 4.2 indicate that only base should be to
the system. However, by manipulating the price of buffer, this could change,
as illustrated in Figure 4.3 in the region in the middle (between 0.005 and
0.04 NOK/mol, approximately), where base and buffer are needed. The figure
illustrates the trade-off between price and process requirement, and shows a range
of buffer prices that activates the upper bound constraints of alkalinity and/or TIC
concentration (range between 0 and 0.005 NOK/mol, approximately); a second
region in the middle, where base is added in the tank, and buffer is added in the
biofilter, referenced in this work as Case A.1; and a third region with only base
being used, referenced as Case A.2. The current price of buffer lies in the third
region, as seen from Table 4.1. The figure also shows that the addition of buffer in
the tank is not recommended to reach steady-state optimum conditions, as the blue
line lies under the others always marking 0 mol/min (zero).

Table 4.4 shows the operating constraints converted to the units of the system
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Figure 4.3: Buffer price sensitivity.

for better visualization. Comparing it with Table 4.3, we can see that the
constraints are active for cTO2

and cT
NO−

3

, so they are chosen to be controlled
variables. The other controlled variables are defined using process knowledge.

Table 4.4: Upper and lower constraints [mmol/L or -]

Lower bound Variables Upper bound

0.50 cTalk -
0.50 cBalk -

0 cTH2CO3
0.34

0 cTNH3
0.0012

0 cT
NO−

3

1.61

0.24 cTO2
0.35

7.0 pHT 7.5
7.0 pHB 8.0

4.6.2 PI Control Design

In order for the fish to have an optimal growth rate, the environment is
required to satisfy a few constraints. Besides oxygen and nitrate concentrations,
other restricted variables have a direct correlation with input variables, such as
ammonia concentration, which depends on TAN concentration and pH; carbon
dioxide, which depends on TIC concentration and pH; and pH, which is defined
by alkalinity, TAN and TIC concentrations.
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To reduce the number of controllers and reduce the nonlinearity of the
relationship between MV and CV, alkalinity, TAN, and TIC concentrations are
studied to be substituted for direct controls of carbon dioxide, ammonia, and pH.
TAN concentration in the biofilter is defined by the biofilter efficiency, which is
considered constant, TAN concentration in the tank, which depends linearly on the
fish feed according to the fish metabolism assumption, and the liquid flow rate,
q, which dictates how fast the water treatment is. Therefore, TAN concentration
in the tank needs to be controlled and its pair should be q, as the fish feed is a
disturbance.

Alkalinity and TIC concentrations (in the tank and in the biofilter) can be
controlled by the MVs left: the amount of base or buffer added in the tank and in
the biofilter, and the amount of air used for the stripper. TIC concentration in the
biofilter just changes with TIC concentration in the tank, recirculating volumetric
flow rate, q, makeup water, and air inlet. Therefore, one of the TIC concentrations
needs to be controlled by the air inlet, and the closest one from the stripper is TIC
concentration in the tank.

The bounded optimization solved to identify the responses was very sensitive
to the initial guess. Therefore, dynamic response graphs, which can be seen in
Figure 4.4, are important to set good initial guesses.
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Figure 4.4: FOPTD identification of the controlled variables. The simulated behavior is
in blue, while the predicted behavior using an FOPTD function is in orange.

Using the knowledge from the process acquired in previous work and choosing
the closest pair, the pairing is chosen as in Table 4.5, although the controller using
buffer is deactivated on day 1, it can be activated as needed by the Split-range
block. The step values applied to the manipulated variables are given in Table 4.6.
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Table 4.5: Suggested pairing and tuning parameter

MV CV τC

ṁO2 cTO2
15.46

qm cT
NO−

3

22.25

q cTTAN 1000.0
ṁT

base cTalk 645.38
ṁB

base cBalk 153.72
ṁB

buffer cBalk -
ṁair cTTIC 1900.0

Table 4.6: Step values applied to the MVs

MV Step value [%]

ṁO2 20
qm 10
q 20

ṁT
base 50

ṁB
base 5

ṁB
buffer -
ṁair 10

To each line m of Table 4.5, the transfer function was identified. They are
given by:

y1
u1

= 0.82
e−5.46s

2000s+ 1
(4.11)

y2
u2

= −1.48
e−12.18s

2476.75s+ 1
(4.12)

y3
u3

= −0.003
e−1.41E−09s

80s+ 1
(4.13)

y4
u4

= 0.71
e−60.77s

1009.39s+ 1
(4.14)

y5
u5

= 11.98
e−6.38s

1311.98s+ 1
(4.15)
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y6
u6

= −0.004
e−90s

2000s+ 1
(4.16)

The order of closing the loops affects the difficulty of controlling the system,
meaning that some CVs are coupled with more than one manipulated variable, as
expected, but this problem can be bypassed if the loops that affect other variables
the most are closed before. The order of closure of the loops, and the tuned τC ,
which is a vector of the variables to be tuned in each control when using the SIMC
rules, are also shown in the table below. The PI control structure of the process
can be seen in Figure 4.5 for better visualization.
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Figure 4.5: PI control structure of Case A.2.

4.6.3 Dynamic Simulation with PI controllers

The system has 8 dynamic degrees of freedom, but with the optimization
results no buffer is needed, in this case. Therefore, 6 controllers need to be active.

Figure 4.6 shows the main dynamic responses to step changes in the
disturbance with only oxygen and nitrate being controlled. Almost all variables
violate the constraints, leading the fish to suffer, and causing non-optimal growth
or death. Figure 4.7 shows the main CVs’ dynamic responses to the same
disturbance step changes. From this figure, it can be seen that one CV (cTTIC) does
not reach the setpoint within 6 days, and the controller could not have been any
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faster due to abrupt changes and constraint violation of other variables, such as pH.
Alternatively, a small back-off would be needed, or to use buffer at the beginning,
when there is a need for an abrupt increase in base intake. The latter alternative
could lead the system to optimal conditions quicker, as the pH would not violate
the constraints and alkalinity would increase faster with more base/buffer.

Overall, the closed loops performed well, and almost the entire system was
driven to optimal steady-state conditions eventually, being cTTIC the only variable
that did not reach optimal steady-state conditions. The pH constraint violation
does not guarantee an optimal growth condition during the violation period, which
might not lead to the best option as a control structure.
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Figure 4.6: Dynamic behavior of the process with oxygen and nitrate controls, and subject
to disturbance F

4.6.4 Model Predictive Control comparison

Two different objective functions for the optimal controllers were used:
setpoint tracking and economic objective function, described by Eq. (4.9) and
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(4.10), respectively. The tuned diagonal matrices Q and R are given as follows:

Q = diag(1e2, 1e2, 1e3, 1e3, 1e2, 1e2, 1, 1, 1, 1)

RNMPC = diag(1e−3, 1e3, 1e2, 1e2, 1e2, 1e2, 1e2, 1e2)

RE-NMPC = diag(1e−7, 10, 1, 1e−3, 1e−4, 1e−4, 1e−4, 10)

Figure 4.7 shows the closed loop response with a control horizon of 24 hours
and control interval of 20 minutes, for all cases. The NMPC conducted all
controlled variables to their optimum values plus algebraic variables in a really
short time (less than a day). The E-NMPC performed well also, although it took
more time for the CVs to reach optimal steady-state value. The input values are
presented in Figure 4.8.
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Figure 4.7: Dynamic behavior of the CVs of the 3 cases, subject to disturbance F.
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ṁ
T bu

ffe
r [

m
ol

/m
in

]

0 2 4 6
Time [days]

0

2

4

6

8

ṁ
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Figure 4.8: Dynamic behavior of the inputs of the 3 cases, where F is the disturbance.

4.7 Conclusion

The volumes of the different RAS units are large, except for the stripping
column, causing the time constant of the entire process to be high. On the other
hand, the disturbance can lead the process to infeasibility, if no control is done. To
speed up the process and avoid infeasibility, a control structure is needed.

In this work, we have presented a comparison of three optimal control
structures. Two of them are hierarchical control structures, where an optimization
layer calculates the optimal setpoints. In Case A, after the optimization layer,
a split-range block handles the switch between manipulated variables. In Case
B, the optimization layer gives the optimal setpoint directly to a nonlinear model
predictive controller. In Case C, the structure is a single block consisting of an
economic model predictive control, led by an economic objective function.

All the control structures gave a satisfactory performance, driving the system
to the optimal steady-state conditions. The PI control structure depends on how far
from optimal the system is at the beginning to drive it faster to optimal conditions,
as it took more than 6 days to reach optimality. To make the PI controllers
faster, buffer would be needed, which means that it would cost more, as buffer

57



4. Optimal Control of the Water Quality

is more expensive than base, according to the current prices. The E-NMPC
provided a trajectory that is economically optimal, but it achieves a different
steady-state optimum. On the other hand, the NMPC provided a dynamically
optimal trajectory, but also economically non-optimal, as it uses both buffer and
base. Comparing NMPC with the PI controllers, the NMPC performance was
faster in driving the system to optimal steady-state condition, as it uses buffer and
base. The trade-off between speed and cost is evident, but E-NMPC gave the best
trajectories, pushing the system to an optimal condition at a lower cost.

All the control structures were designed and tested using computational
simulations and the model presented in previous work. Therefore, an
implementation of these structures controlling the system with growth rate
variation and addition of noise is suggested to evaluate the effect of model
mismatch on the results.

4.8 Discussion of Paper II - Optimal Control of Water
Quality in a Recirculating Aquaculture System

This chapter described the development of control structures and optimization
of a RAS process. The model did not consider the effect of fish growth on fish
metabolism, but this effect might not be negligible for the optimization problem.
The next chapter presents a reformulation of the optimization problem considering
this effect and other real-life limitations.
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Chapter 5

Real-Life Limitations for
Optimal Control of Water
Quality

This chapter presents the imposition of real-life limitations on some input
variables and the reformulation of the optimization problem.

5.1 Reformulation of the Objective Function

The developed model in Chapter 3 does not take into consideration the effect
of water quality on fish growth, but, in reality, this effect might not be negligible.
To account for that, the cost of the plant, S was reformulated as

S(uk) =p1(1− r)qB + p2 ṁair + p3
∑

i=T,B

ṁi
base

+ p4
∑

i=T,B

ṁi
buffer + p5 q

m + p6 q + p7F − p8G
(5.1)

where pj with j = 1, 2, ..., 6 are essentially the same prices described in Table 4.1,
except that fish feed, F, and biomass, G, sale prices have been added, with j now
going up to 8. The updated table is presented below (Table 5.1).

5.2 Water flow rate and CO2 limitations

In order to approach real-life conditions, some constraints need to be changed.
One of them is the range of the recirculation flow rate, which is more limited
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Table 5.1: Price of each input and output

Variable Value Unit Description

p1 19.19 NOK/m3 Effluent disposal
p2 5.71e-05 NOK/mol Vacuum and Exhaustion fans
p3 0.102 NOK/mol NaOH flakes
p4 0.148 NOK/mol NaHCO3 powder
p5 14.17 NOK/m3 Makeup water
p6 1.87e-02 NOK/m3 Pump operation
p7 0.018 NOK/g feed Fish feed
p8 0.061 NOK/g fish Fish biomass sale

in real-life conditions due to events that were not considered when developing
the model, such as sedimentation in pipes and fish swimming requirements. To
avoid these events, a minimum opening of 70% of the recirculation flow valve
is required, which determines a new qmin. With this limitation, the maximum
opening is set to the optimum value calculated on the last day of RAS rearing (day
90), qopt90 . The new constraint is then given as

0.7 qopt90 ≤ q ≤ qopt90

Another deviation from the real-life conditions is that the air flow rate is kept
constant throughout the rearing period at the optimal value of the last day. These
two real-life conditions reduce the number of DoFs by two, leaving the oxygen
inlet, the makeup water, and base/buffer feed as the remaining DoFs. As the
oxygen inlet and the makeup water are used to stabilize oxygen and nitrate levels,
there is only one degree of freedom left at a steady state from day 1 to the day
when the optimal q is equal or higher than 0.7 qopt90 .

The effect of CO2 on the fish growth is also not negligible in reality (Khan
et al., 2018). Khan et al. studied this relationship by executing experiments with
varying CO2 exposure over the same amount of days to different groups of fish.
The authors found out that the concentration of dissolved CO2 affects negatively
the growth by approximately 10% for the mentioned range of dissolved CO2

concentration. This relationship can be represented by changing the assumption
of optimal and constant feed conversion ratio (FCR) to an apparent FCR (aFCR)
linearly dependent on the CO2 concentration. Therefore, two equations were
added to the model:

aFCR = 0.009MMCO2 × cTH2CO3
+ 0.97 (5.2)

G = F/aFCR (5.3)
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where cTH2CO3
is in [mmol/L], MMCO2 is the molar mass of CO2 in [g/mol] and

G is the growth rate in [g/min].

5.3 Results and Discussion

Optimizing the process on day 90 (the last day of rearing) gives new bounds
for the recirculation flow rate:

qopt90 = 39.82

0.7qopt90 = 27.87

27.87m3/min ≤ q ≤ 39.82 m3/min

On day 52, qopt is equal to 28.03m3/min, which is slightly higher than the
minimum value. This means that the process can operate at optimal conditions
from day 52 to day 90.

Optimal costs, active constraints, and how far we are from it are calculated in
order to analyze the optimization problem. It is shown in Tables 5.2-5.5 on three
different days: day 1, day 52 and day 90. Tables 5.2 and 5.3 show the results for
the new formulation with old constraints, named as Case 1; and Tables 5.4 and 5.5,
the new formulation with new q and V̇ constraints, named as Case 2.

Case 1: old q and V̇ constraints

Table 5.2: Optimal operational data of Case 1

Variable Day 1 Day 52 Day 90 Unit

ṁair 5682.63 10474.75 10474.75 mol/min
qm 0.99 2.29 3.61 m3/min
ṁO2 11.43 26.4 41.53 mol/min
ṁT

base 4.32 10.31 17.28 mol/min
ṁB

base 0.0 0.0 0.0 mol/min
ṁT

buffer 0.0 0.0 0.0 mol/min
ṁB

buffer 0.0 0.0 0.0 mol/min
q 12.88 28.03 39.82 m3/min
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Table 5.3: Constraint analysis of Case 1 in [mmol/L or -]

Lower bound Variable Day 1 Day 52 Day 90 Upper bound

- cTH2CO3
0.11 0.12 0.13 0.34

- cTNH3
9.92e-04 1.05e-03 1.17e-03 1.17e-03

- cT
NO−

3

1.61 1.61 1.61 1.61

0.23 cTO2
0.32 0.33 0.33 0.35

0.5 cTalk 3.09 3.25 3.61 -
0.5 cBalk 2.75 2.88 3.17 -
7.0 pHT 7.5 7.5 7.5 7.5
7.0 pHB 7.0 7.0 7.0 8.0

Case 2: new q and V̇ constraints

Table 5.4: Optimal operational data of Case 2

Variable Day 1 Day 52 Day 90 Unit

ṁair 10474.75 10474.75 10474.75 mol/min
qm 0.99 2.29 3.61 m3/min
ṁO2 11.56 26.4 41.53 mol/min
ṁT

base 3.83 10.31 17.28 mol/min
ṁB

base 0.0 0.0 0.0 mol/min
ṁT

buffer 0.0 0.0 0.0 mol/min
ṁB

buffer 0.0 0.0 0.0 mol/min
q 27.87 28.03 39.82 m3/min

Table 5.5: Constraint analysis of Case 2 in [mmol/L or -]

Lower bound Variable Day 1 Day 52 Day 90 Upper bound

- cTH2CO3
0.08 0.12 0.13 0.34

- cTNH3
4.59e-04 1.05e-03 1.17e-03 1.17e-03

- cT
NO−

3

1.61 1.61 1.61 1.61

0.23 cTO2
0.32 0.33 0.33 0.35

0.5 cTalk 2.39 3.25 3.61 -
0.5 cBalk 2.25 2.88 3.17 -
7.0 pHT 7.5 7.5 7.5 7.5
7.0 pHB 7.16 7.0 7.0 8.0
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These results show that, with the new formulation, the pHT constraint
becomes active, and the fish is less exposed to higher H2CO3 concentration as the
range of recirculation flow rate is narrower, giving faster and smaller deviations
on the water treatment. With the new constraints, the optimal correction of pH is
done by adding base to the fish tank only, but this is still dependent on the base
and buffer prices.
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Chapter 6

Soft Sensor of Key Components,
using Feedforward Networks

In this chapter, the authors intended to test the capabilities of an automatic
neural network search tool (neural architecture search tool) and test how well a
feedforward neural network model would represent a nonlinear model such as the
steady-state RAS model. It presents a machine-learning application for monitoring
important concentrations of a Recirculating Aquaculture System. It does not aim to
find the best model for the application, but a better alternative to manual sampling.
It is the same as Paper III, which was published in Computer Aided Chemical
Engineering journal.

6.1 Abstract

Recirculating Aquaculture Systems are known to have their water quality
conditions controlled, despite being common to have a simple control structure
and a lot of human interaction to achieve that. To avoid long-term exposure
to toxic levels of carbon dioxide and ammonia, its concentration needs to be
monitored more often than manual measurements normally allow. In this work, we
analyze the multilayer perceptron’s ability to monitor water quality components
that are important for the development of the fish. This alternative method
for monitoring has the potential to complement the current sensor structure and
laboratory procedures for manual measurement collection, but more studies need
to be done on the type of machine learning model.
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6.2 Introduction

Recirculating Aquaculture Systems (RAS) have two dynamic sub-systems:
fish metabolism and water treatment. The water treatment system is responsible
for keeping the water quality at high standards, reducing water consumption,
and reducing contact with external pathogens (European Market Observatory for
Fisheries and Aquaculture Products, 2021).

Regarding water quality, some components are important to be monitored and
controlled due to toxicity but are hard or not able to be measured continuously,
such as ammonia. In addition, it requires either several sensors or a central sensor
station with a sampling system to get information about the levels of dissolved
carbon dioxide and ammonia in all fish tanks and water treatment systems. One
way of using information about the process to estimate the concentration of these
toxic components is by using soft sensors (Fortuna et al., 2007).

The soft sensor technique is a combination of data, for parameter estimation,
and process knowledge, for feature selection. The development of the data-
driven models can be done, for example, using machine learning models, such
as feedforward neural networks (FNN). In this work, the main objective is to apply
multilayer perceptron (MLP) (Werbos, 1974), which is a classic type of FNN and
a universal approximator (Hornik et al., 1989), as a soft sensor for recirculating
aquaculture of Atlantic salmon (Salmo salar).

In RAS, even if fish, feed, and waste production increase in an exponential way,
the goal is that the water quality should be kept stable and good. Measurements of
ammonia are performed manually daily, whereas CO2 is measured continuously
at least at one point in the system. However, their levels might vary during
the day depending on feeding and other factors, and data about this may be
missed. Optimizing the water quality and fish growth would be easier with a higher
resolution of information. In addition, manual collection and laboratory analyzes
are time-consuming and therefore costly. Therefore, it is useful to develop an
alternative method to monitor these water quality variables.

As the system is assumed to reach a steady state after each day, the water
treatment system is approximated to a steady-state model developed in previous
work (dos Santos et al., 2023). The training and validation data are acquired from
this model, where some parameters are considered uncertainties. To improve the
soft sensor identification, the uncertainties are changed using Latin hypercube
sampling (LHS) (Jin et al., 2005), so it contains the operating region, which
provides conditions for fish optimal growth. After the addition of white noise, the
data is used to train different MLP configurations for predicting carbon dioxide,
ammonia, and ammonium concentrations.
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6.3 Process Description

Figure 6.1 shows a diagram of the RAS this work is focused on. The process
consists of a fish tank, a biofilter, a stripper, and an oxygen cone. The model
is a simplified version of the process, as it does not consider the effect of the
water quality on the fish metabolism if the conditions are kept within bounds.
This assumption is reasonable for each phase of the fish life, which can last from
weeks to years depending on a lot of factors. Therefore, this work is only valid
for the phase the model represents, which is the smolt phase. This could be easily
extended to other phases by changing some parameters in the model, such as the
amount of product generated by the fish metabolism per kg of fish feed.

The measurements that are available from sensors or additions include
recirculating volumetric flow rate, q; pH; fish feed rate, F ; buffer additions,
ṁbuffer; base additions, ṁbase; makeup water, qm; air inlet flow rate, ṁair;
makeup oxygen, ṁO2 ; average salinity, S; average temperature, T . More details
about the process can be found in dos Santos et al. (2023).

Fish Tank Bio-filter

 
 
 
 
 

Stripper 

Oxygen Cone

Buffer Base
Buffer Base

Makeup water

Purge

Air

Air + CO2

Makeup oxygen

Fish Feed

Figure 6.1: Process diagram of a recirculating aquaculture system.

6.4 Methodology

In order to develop a soft sensor, a standard procedure was followed. First,
data was gathered, then preprocessed and divided into training and validation data.
After that, the model was fitted to the data, and the best model was chosen for the
validation. Finally, the model was tested with industrial data.
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6.4.1 Training and Validation Data Acquisition

For the training and validation data acquisition, 6967 steady-state data points
were generated within the region described by Table 6.1, using CasADi v3.5.5
(Andersson et al., 2019) in Python v3.8.8. 5967 of these data points were generated
using latin hypercube sampling (LHS) built in pyDOE package in Python. LHS is
a popular algorithm for planning computer experiments covering the entire range
of uncertainties and disturbance in an optimally and distributed way for training.
The rest was generated randomly within the same region for validating the soft
sensor. After that, 1% white noise was added to both the input and output data of
both training and validation data.

Table 6.1: Region of operation

Parameter Mean Unit Range Description

G/L 2.7 - ± 50% Gas-liquid ratio in equilibrium over the stripper
ξB 0.75 - ± 25% Biofilter efficiency
T 14 ◦C ± 30% Average temperature of the system
pHm 7.0 - ± 10% pH of the makeup water
yinCO2

4.15e-04 - ± 10% CO2 composition in the air inlet
S 15.95 ppt ± 30% Average salinity of the system
pHB

des 7.2 - ± 1% Desired pH for the biofilter
q 20 m3/min ± 50% Recirculating volumetric flow rate
F 580.6 g/min + 50% Fish feed rate

6.4.2 Data Preprocessing

Some concentrations are very low in RAS, when compared with other
concentrations. Therefore, it is essential that all data is submitted to preprocessing.
As the soft sensor model applied in this work is a deep learning neural network,
the normalization of the datasets uses a minmax calculation of the training dataset.
After that, the datasets are ready to be used to train and validate the soft sensor.

6.4.3 Soft Sensor

The feedforward neural network (FNN) architectures were created and
optimized using the Auto-keras package (Jin et al., 2018), which is a package in
Python that automatizes the neural architecture search (NAS) of models supported
by another Python package named Keras.
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In this work, the FNNs are multilayer perceptron (MLP), trained using the
backpropagation method with a batch size of 500 samples. The objective function
of the NAS was the validation loss, where the loss function was the mean squared
error, and the maximum number of trials was 50. The features were chosen based
on knowledge of the process and the available measurements in a real RAS.

After choosing the model with the lowest validation loss, the MLP
performance was tested predicting the target concentrations from real data. To
avoid breaking the non-disclosure agreement, the collected industrial data was
normalized. The performances were compared using the root mean squared error
between the scaled predicted and collected data.

6.5 Results

The choice of inputs was based on the available measurements from sensors or
manual insertion of inlet streams described in the previous section. Three types of
models were tested: multiple-input, single-output MLP (MISO-MLP), multiple-
input, multiple-output MLP (MIMO-MLP), and a hybrid model, which consists
of a MIMO-MLP predicting ammonium and dissolved CO2 concentrations with
ammonia concentration being calculated using the equilibrium equation, see
Eq. (6.1).

cTNH3
=

K3(S, T ) c
T
NH+

4

cT
H+

(6.1)

where the equilibrium constant, K3, is dependent on salinity and temperature, and
the concentrations unit is mmol/L.

The inputs of the models were the same for MISO-MLPNH+
4

and MISO-
MLPNH3 models: fish feed rate, F , recirculating volumetric flow rate, q, and pH
in the tank, pHT . The MIMO-MLP, MISO-MLPH2CO3 and the hybrid models’
features included the same as the previous with the addition of a new feature: air
inlet flow rate, ṁair.

Figure 6.2 shows the prediction of the validation data using the MISO-MLP
models, and Figure 6.3 shows the results using the hybrid model, and Figure 6.4
shows the results using the MIMO-MLP model. Comparing Figures 6.2 and 6.3,
predictions of ammonium and dissolved carbon dioxide were similar, but ammonia
predictions are worse using the hybrid model. Comparing Figures 6.2 and 6.4, the
prediction of ammonia is slightly worse on the extremes using MIMO-MLP, and
the other predictions were similar.

In Table 6.2, we summarize the performance of the models at the validation
phase using the RMSE index. The best MLP architecture for this case study was
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Figure 6.2: Prediction of validation data using the MISO-MLP models separately
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Figure 6.3: Prediction of validation data using the hybrid model
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Figure 6.4: Prediction of validation data using the MIMO-MLP model
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the MISO-MLP models put together, which gave the lowest final RMSE at the
validation phase, and MIMO-NLP model was the second best giving similar, but
slightly higher, RMSE.

Table 6.2: Summary of the models performance at the validation phase - RMSE index

Output MISO-MLPs Hybrid MIMO-MLP

cTH2CO3
0.0645 0.0787 0.0694

cT
NH+

4

0.1204 0.1201 0.1230

cTNH3
0.1322 0.2611 0.1351

Final 0.1097 0.1720 0.1129

The architecture of the MLPs is described in Table 6.3. MISO-MLPH2CO3

model has two dense hidden layers with 32 nodes each using the rectified linear
activation function (ReLU), while the others have one dense hidden layer, but with
64 and 128 nodes using the same activation function on MISO-MLPNH+

4
and

MISO-MLPNH3 models, respectively. Note that ammonia concentration turned
out to be harder to estimate when compared with ammonium, and possibly the
NAS found a flat optimum, which means that probably an MLP with fewer nodes
would not improve but would not make the prediction much worse either.

Table 6.3: Number of nodes in each layer of each MISO-MLP model

Layers MISO-MLPH2CO3 MISO-MLPNH+
4

MISO-MLPNH3

Input 4 3 3
Normalization 3 3 3
Dense1 32 64 128
Dense2 32 0 0
Dropout 0 64 128
Output 1 1 1

The predictions of the industrial data using the MISO-MLP models are shown
in Figure 6.5. The predicted values of ammonia concentration seem to be closer
to the real data compared with ammonium predictions, which is unexpected. The
predicted cH2CO3 followed the same trend as the other concentrations for the first
few samples, which means that the model could not extract enough information
from the features on those points.
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Figure 6.5: Predictions of industrial data using the MISO-MLP models

6.6 Discussion

The prediction of ammonia was revealed to be much harder than that of
ammonium, resulting in a poor prediction of that variable. This might be due
to the noise of the input variables that affects the ammonia concentration a lot, as
its magnitude is much smaller. This effect does not disappear after preprocessing
the data; it expands instead, as the magnitude after normalization is approximately
1000 times higher.

The MISO-MLP models gave the best performance due to different input
features to each model, as adding not-so-important features can make NAS more
complex and add a lot of useless cases, as happened with the MIMO-MLP model
which showed slightly biased results, especially for ammonia concentration. This
could be solved by increasing the maximum number of trials at the NAS step, but
it would take longer, and would still have the possibility of finding different local
minima, for better or worse.

6.7 Conclusion

The measurement of key waste products is not always easy to collect in real-
time or at a required frequency, which reduces the possibility of stabilizing and
optimizing the water quality for the fish. This can be improved by using machine
learning models, such as multilayer perceptron.

The MLP models trained in this work are deep neural networks, and their
architectures were optimized using an automated neural architecture search and
tuning of hyperparameters. Three configurations were compared: MISO-MLPs;
hybrid model; and MIMO-MLP. The best configuration was the MISO-MLP
models together, although their performance was not so good. This might be
due to the possibility of NAS reaching a local minimum or that the models could
not capture the information from the training data, so a different type of model
could perform better. A soft sensor using these models for monitoring would
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perform better than the hybrid model, and the MIMO-MLP model, and could also
complement the manual measurements, when estimating dissolved CO2 and NH3

concentrations.

6.8 Discussion of Paper III - Soft Sensor of Key
Components in Recirculating Aquaculture Systems,
using Feedforward Neural Networks

This chapter described the application of an automatic neural architecture
search tool, named Auto-keras, in Python. This tool generates deep feedforward
neural networks. The results of the last chapter showed that this type of neural
network could not extract steady-state information from the input data. This
might be due to the large amount of information on the input features, i.e., large
variability on the output variables, even though the features were not exactly the
same for the MISO-MLP models.

One should note that the variation of the parameter gas-liquid ratio instead of
the bypass fraction of the stripper air inlet causes the same effect of varying the
stripper efficiency.
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Chapter 7

Conclusions and Suggestions for
Future Work

7.1 Conclusions

The recirculating aquaculture system has an inherent characteristic of being
easier to maintain the conditions at a desired level, contributing to the fish welfare,
than other types of aquaculture processes because it is in a closed environment
and most of the water is recirculated. The recirculation flow conditions have the
potential to be optimally controlled by automation instruments. In order to achieve
this, in this thesis, we developed a model that is simple enough to be used for this
purpose.

In the development phase, different types of models were tested. The extent
of reactions approach was proven to have numerical issues. The biofilter was
modelled as a CSTR and the ammonia conversion was considered to be constant.
This is a valid assumption for the studied case, where the mass concentration
of TAN is between 0.1 and 0.5 mg/L, although the same is not true when the
concentration is higher than that, then the Monod model would be more adequate.

A good operating condition range is expected to make the effect of feeding on
the fish metabolism insignificant. Within this range and assuming that the daily
required amount of feed is provided, the fish metabolism is considered constant
and described by reaction (3.1). This way, one can easily correct it when the fish’s
life cycle or the feed composition changes.

The developed models were used to design three control structures. Two
of the three consisted of an optimization layer on top of proportional-integral
(PI) control loops or nonlinear model-based predictive control (NMPC). A third
structure consisted of a single layer with an economic NMPC (E-NMPC). This
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part of the study presented how powerful can be the connection between RAS
and advanced process control by applying a systematic procedure for developing
PI control structures with steady-state optimal setpoints and comparing it with
standard NMPC and E-NMPC frameworks. The control structures showed good
performance after a transition period of two days except for the PI structure which
caused out-of-bounds response of some variables. This transition period was
mainly because the initial conditions were too far from the optimum.

The feedforward neural network application was developed in an attempt to
predict concentrations that are not so often measured in the RAS facility where
the test data came from. In the absence of real-time sampling, data-driven models
can be used to aid monitoring and decision-making of variables that are hard to
measure or not measured at all, considering more reliable and more frequently
sampled data (twice a day would improve the model already).

7.2 Suggestions for Future Work

7.2.1 Continuous simulation

The next step of this study would be the development of an application to
simulate the system continuously to help monitor the fish’s performance. This
would give a better visualization of dynamic responses of what to expect from
changes in input variables.

7.2.2 Addition of feeding control

The absence of impact of feed on fish performance holds true under typical
conditions. However, its reliability falters when unexpected events occur, like
increased turbidity negatively affecting fish performance. A potential solution lies
in implementing feeding controls, but a more robust approach involves exploring
alternative performance metrics, such as image analysis, to identify suitable
control variables for better adaptability.

7.2.3 Stripper model

In this work, the stripper modelled as a single-stage equilibrium column is fit
for the optimal control application due to its simplicity. A suggestion for future
work is to consider a more detailed model, for example, the model developed by
Colt et al. (2012a).
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7.2.4 Growth model

The main objective of optimizing the process is to maximize fish growth.
Growth modeling in RAS is essential for understanding and optimizing the growth
and production of fish, while taking into account both environmental conditions
(temperature, pH, CO2 and NH3 concentrations, etc.) and the composition of the
food. They are used to predict how various factors, such as water quality, feeding,
stocking density, and temperature, impact the growth of fish. Incorporating this
into the water quality model is a very challenging task.

7.2.5 Surrogate models

Chapter 6 studied the application of an automatic search tool to fit a
feedforward neural network (FNN) to aid monitoring and decision-making in
the absence of control or any fancier visualization technology to analyze fish
performance, such as using image analysis approach. A suggestion remains to
improve the study on the input features of the model. Another suggestion is
to evaluate the use of other types of surrogate functions, for example, Gaussian
process models.
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Appendix A

Complementary material for
Chapter 3

Derivation of Eq. (3.30)

Eq. (3.30) is used to compute pH as a function of the concentrations of the
reaction invariants (TAN, TIC, and alkalinity). Comparing Eq. (3.30) with the
equivalent equation in Henson and Seborg (1994), an extra term for TAN is added,
which is caused by the contribution of NH3 in the alkalinity definition.

Recall from Eq. (3.11) that the alkalinity is defined as:

calk = cOH− + cHCO−
3
+ 2cCO2−

3
− cH+ + cNH3 (A.1)

To derive Eq. (3.30), we need expressions for each species concentration as a
function of cH+ and the reaction invariants. First, we have that cOH− = Kw/cH+ .

For the carbonate system, the equilibrium reactions and the definition of TIC
concentration give:

cHCO−
3
= K1

cH2CO3

cH+

(A.2)

cCO2−
3

= K2

cHCO−
3

cH+

= K1K2
cH2CO3

(cH+)2
(A.3)

cTIC = cH2CO3 + cHCO−
3
+ cCO2−

3
(A.4)
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Combining Eqs. (A.2)-(A.4) gives:

cH2CO3 = cTIC

(
1 +

K1

cH+

+
K1K2

(cH+)2

)−1

(A.5)

cHCO−
3
= cTIC

K1

cH+

(
1 +

K1

cH+

+
K1K2

(cH+)2

)−1

(A.6)

cCO2−
3

= cTIC
K1K2

(cH+)2

(
1 +

K1

cH+

+
K1K2

(cH+)2

)−1

(A.7)

For ammonium, the ammonia-ammonium equilibrium reaction and the
definition of TAN concentration give:

cNH3 = K3

cNH+
4

cH+

(A.8)

cTAN = cNH3 + cNH+
4

(A.9)

Combining Eqs. (A.8) and (A.9) gives:

cNH3 = K3
cTAN

cH+

(
1 +

K3

cH+

)−1

= cTAN
K3

cH+ +K3
(A.10)

Substituting these expressions into the definition of alkalinity in Eq. (A.1)
gives:

calk =
Kw

cH+

+ cTIC

(
1 +

K1

cH+

+
K1K2

(cH+)2

)−1( K1

cH+

+ 2
K1K2

(cH+)2

)
− cH+ + cTAN

K3

cH+ +K3

(A.11)

or

calk = cTIC
K1cH+ + 2K1K2

(cH+)2 +K1cH+ +K1K2
+

Kw

cH+

− cH+

+cTAN
K3

cH+ +K3

(A.12)

which is the desired expression (3.30).
Phosphate. The expression in (A.12) may be extended to include other acids

or bases. Specifically, if we include phosphate in the system, which is common in
wastewater treatment systems, a fourth reaction invariant is needed, namely total
phosphorus (TP),

cTP = cH3PO4 + cH2PO−
4
+ cHPO2−

4
+ cPO3−

4
(A.13)
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Additional terms must be added to the alkalinity definition to account for H2PO−
4 ,

HPO2−
4 , and PO3−

4 contributions. From atomic balances, the alkalinity with
phosphate included becomes:

calk = cOH− + cHCO−
3
+ 2cCO2−

3
− cH+ + cNH3 + cH2PO−

4
+ 2cHPO2−

4

+ 3cPO3−
4

(A.14)

For the phosphate system, we have, from its three equilibrium reactions:

cH2PO−
4
= K4

cH3PO4

cH+

(A.15)

cHPO2−
4

= K5

cH2PO−
4

cH+

(A.16)

cPO3−
4

= K6

cHPO2−
4

cH+

(A.17)

Combining the definition of TP in Eq. (A.13) with Eqs. (A.15)-(A.17) gives the
following expression for the three contributions from phosphate to alkalinity (calk):

c
H2PO−

4
+ 2c

HPO2−
4

+ 3c
PO3−

4
= cTP

K4(cH+)2 + 2K4K5cH+ + 3K4K5K6

(cH+)3 +K4(cH+)2 +K4K5cH+ +K4K5K6

(A.18)

Eq. (A.18) needs to be added to the right-hand side of Eq. (A.12) and the
resulting expression for calk can be used to compute pH (i.e., cH+) as a function
of TIC, TAN, TP, and alkalinity. The phosphoric acid concentration is then given
by:

cH3PO4 = cTP

(
1 +

K4

cH+

+
K4K5

(cH+)2
+

K4K5K6

(cH+)3

)−1

(A.19)
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