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Main goal

Find implementation strategies for the optimal operation of 

processes during transients

 Focus on cases where dynamic behavior is 

important in terms of economic performance

We are not only interested in finding (numerical) optimal 

solutions

 but specially in the practical implementation 

strategies using feedback control

 Challenge: disturbances and uncertainties!!
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Main question

How to achieve acceptable performance in the face of  

unknown disturbances and uncertainties?

By acceptable we mean: 

• Near-optimal economic cost 

• stable operation 

• minimum constraint violations

Our focus is to find simple policies to achieve this 

goal 
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Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

 Chapters 7 and 8

Optimal operation of energy storage systems 

 Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: anti-slug 

control system for oil production optimization

 Chapters 5 and 6

Concluding remarks
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Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

 Chapters 7 and 8

Optimal operation of energy storage systems 

 Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: 

Application to anti-slug control

 Chapters 5 and 6

Concluding remarks
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Null-space method for optimal operation 

of transient processes (Ch. 8)

We consider a dynamic optimization problem in the form

𝑥 ∈ ℛ𝑛𝑥 :=differential states

𝑢 ∈ ℛ𝑛𝑢 :=control inputs

y ∈ ℛ𝑛𝑦 :=measurements

d ∈ ℛ𝑛𝑑 :=uncertain parameters

Nominal solution:

• 𝑑0, 𝑢0, 𝑥0, 𝑦0
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Main goal

Achieve near-optimal economic performance 

despite uncertainty/disturbances without the 

need for re-optimization*

(*) Solving dynamic optimization problems can be veeery time-

consuming
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Self-optimizing control

Step 3) Be optimal without re-optimizing despite uncertainties in 𝑑

Step 1)  Find a function of measurements 𝑐 ≔ ℎ(𝑦) whose 

optimal is invariant to changes in 𝑑
𝑐𝑜𝑝𝑡 𝑡, 𝑑0 = 𝑐𝑜𝑝𝑡 𝑡, 𝑑1 = ⋯

Step 2) Control c(t) to its reference 𝑐𝑠 = 𝑐𝑜𝑝𝑡(𝑡, 𝑑0)

using your favorite controller
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Proposed method

Control a linear combination

𝑐 𝑡 = 𝐻 𝑡 𝑦 𝑡 , (𝐻 is a 𝑛𝑢 × 𝑛𝑦 matrix )

This is the (local) optimal choice if

𝐻(𝑡)𝐹(𝑡) = 0

𝐻(𝑡) must lie in the left nullspace of 𝐹 𝑡 ∗
 Thus the name, 

‘Nullspace method’

(*) Nullspace method for steady-state problems originally published in Alstad (2007).

Optimal sensitivities

𝐹(𝑡) =
𝜕𝑦𝑜𝑝𝑡(𝑡, 𝑑)

𝜕𝑑
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Outline of the procedure

Offline steps

• Define main uncertainties 𝑑
• Compute nominal solution 𝑑0, 𝑢0, 𝑥0, 𝑦0
• Compute sensitivities 𝐹(𝑡) and the matrix 𝐻(𝑡)
• Compute the reference trajectory 𝑐𝑠 𝑡 = 𝐻 𝑡 𝑦0 𝑡

Online step
• Track references 𝑐𝑠 using feedback control

• By doing so, we are near-optimal without the need 
for re-optimization, despite d
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Simulation example: fed-batch reactor

u

We have two chemical reactions happening

𝐴 + 𝐵 → 𝐶 and    𝐵 → 𝐷

Subject to the following dynamics

ሶ𝑐𝐴 = −𝑘1𝑐𝐴𝑐𝐵 −
𝑐𝐴𝑢

𝑉

ሶ𝑐𝐵 = −𝑘1𝑐𝐴𝑐𝐵 − 2𝑘2𝑐𝐵 −
𝑐𝐵−𝑐𝐵,𝑖𝑛 𝑢

𝑉
ሶ𝑉 = 𝑢

We want to compute to maximize C − 𝐷

Main uncertainties (𝑘1and 𝑘2)
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Nominal solution

Next steps

• Compute sensitivity matrix 
𝐹(𝑡) and combination 𝐻(𝑡)

• Obtain 𝑐𝑠(𝑡) = 𝐻 𝑡 𝑦0(𝑡)
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Example of invariant trajectory

𝑐 = [ℎ1 ℎ2 ℎ3 ]
𝑐𝐴
𝑐𝐵
𝑉

Control 𝑐 using a PI 
controller
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Results with 20% error in 𝑘𝟏 and 𝑘𝟐

Open-loop

Proposed

Optimal

Cost comparison

𝐽𝑜𝑝𝑡 𝐽𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐽𝑜𝑝𝑒𝑛𝑙𝑜𝑜𝑝

-0.1957 -0.1957 -0.1904

Near-optimal operation without re-optimization 

despite disturbances
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What you should remember

Step 3) Be (almost) optimal without re-optimizing despite uncertainties in 𝑑

Step 1) Compute reference 𝑐𝑠(𝑡) ≔ 𝐻 𝑡 𝑦0(𝑡) whose optimal is 

invariant due to disturbances.  We showed how to compute 𝐻(𝑡). 

Step 2) Control 𝑐(𝑡) to its reference 𝑐𝑠 = 𝑐𝑜𝑝𝑡(𝑡, 𝑑0) using your 

favorite controller

PID
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How could you best use the approach? 

Combine with EMPC
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Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

 Chapters 7 and 8

Optimal operation of energy storage systems 

 Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: anti-

slug control system for oil production optimization

 Chapters 5 and 6

Concluding remarks
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Motivation

Increase of use of 
renewable energy

Strong dependence 
on weather 
conditions 

Energy production 
must cover demand 
at all times

Influence demand 
by real-time pricing
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Example of electricity price in Norway*

Future trend: 
use of smart 

meters 

Consumer 
charged in a 
hourly basis

Electricity 
price available 

in real-time

(*) http://www.nordpoolspot.com/



21

21

Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty

How can end-user take advantage of this 

scenario?

Key requirement:  energy storage

• Allows us to move the consumption to more 
favorable periods → flexible consumption
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Storage capacity is not enough

Main requirements:

• Near-optimal results good savings without sacrifices 

• Low (computational) cost for widespread use

Users are unlikely to 
change their 

behavior

Need automatic 
control and 
optimization
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Some examples of energy storage

• Batteries

• Ice banks

• Building's mass (Topic of Ch. 4)

• Compressed air storage

• Hot-water tanks (Topic of Ch. 2 and 3)
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Process model
Control degrees of freedom (𝑢)

• Electric power: 𝑄

• Inflows:  𝑞𝑐𝑤, and 𝑞𝑖𝑛

Differential variables (𝑥)

• Liquid temperature: 𝑇

• Liquid volume:   𝑉

Algebraic variables (𝑦)

• Hot water temp. 𝑇ℎ𝑤
• Tank outlet: 𝑞𝑜𝑢𝑡

Disturbances (𝑑)

• Hot water flow rate: 𝑞ℎ𝑤
• Hot water temp. setpoint: 𝑇ℎ𝑤,𝑠𝑝
• Electricity price: 𝑝



25

25

Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty

Problem formulation

Minimize:    𝐽 = 𝑡0׬
∞
𝑝 𝑡 𝑄 𝑡 𝑑𝑡 (𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡)

subject to:

𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥

𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥

0 ≤ 𝑄 ≤ 𝑄𝑚𝑎𝑥

ሶ𝑥 = 𝑓(𝑥, 𝑑, 𝑢)

Satisfy demand at all 

times

Most important constraint for optimization

𝑇 ≥ 𝑇𝑚𝑖𝑛 = 𝑇ℎ𝑤,𝑠𝑝
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Main complications:

• Time-varying electricity price 𝑝(𝑡)

• Time-varying and highly uncertain hot water demand 𝑞ℎ𝑤
• Nonlinear dynamics

Demand varies in a fast 

time-scale (s-min) 

need fast sampling time

Economics evolve in a 

slower pace (hours-

days) need long 

horizon
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Popular at the moment: Economic Model 

Predictive Control (EMPC) 

Combine optimization and 
control in one big layer

Computational cost very high!
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Proposed hierarchical control structure

Great simplification of the problem is 

achieved with this structure
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Great simplification of the problem by

Right choice of DoF
for the optimization. 

Use of time-scale 
separation

Make use of periodic 
behavior of problem
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Optimization layer problem formulation

Right choice of decision variables

We use the concept of energy storage

𝐸 = 𝜌𝑐𝑝𝑉(𝑇 − 𝑇𝑐𝑤)

Because of the choice of reference temp (𝑇0 = 𝑇𝑐𝑤),  𝑞𝑖𝑛 does 

not affect 𝐸  Reduction of # of degrees of freedom

Using 𝐸(𝑡) as our decision variable  problem becomes 

linear
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Optimization layer problem formulation

time-scale separation

Disturbances can be split into two frequency components

𝑑 = 𝑑𝑠𝑙𝑜𝑤 + ∆𝑑𝑓𝑎𝑠𝑡

Assume 𝑑𝑠𝑙𝑜𝑤 is more important for the economics  e.g. 

electricity  price (hours)

• Optimize 𝐸 according to 𝑑𝑠𝑙𝑜𝑤 time-scale

• Use feedback control to reject fast variations 

∆𝑑𝑓𝑎𝑠𝑡
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Optimization layer problem formulation

Take advantage of the periodicity of the problem

Add a final constraint

𝐸 𝑡𝑓 = 𝐸𝑚𝑎𝑥

This constraint the 
optimization problem 
of two consecutive 

days
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Proposed formulation (in terms of energy storage)

Linear program (LP) + Small number of decision variables

Very low computational cost
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Controlled variable selection

Optimization DoF:
𝐸 = 𝜌𝑐𝑝𝑉(𝑇 − 𝑇𝑐𝑤)

Obvious CV candidates:
• Liquid volume 𝑉
• Liquid temperature 𝑇
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Case study

Compare our approach with:

• Maximum storage policy 

(full tank all the time) 

• Ideal case (assume 

perfect knowledge of the 

future)
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Alternative strategy:

Maximum storage 

policy: 

• 𝑇𝑠 = 𝑇𝑚𝑎𝑥

• 𝑉𝑠 = 𝑉𝑚𝑎𝑥

Safest policy in terms of 

constraint violations
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Ideal case

EMPC with perfect 
knowledge about 

the future

Not achievable in 
practice
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Results

Considerable 
savings at low 
computational 

cost
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Results

Considerable 
savings at low 
computational 

cost
Increased performance 

by increasing 
optimization frequency
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Great simplification of the problem by

Right choice of 
DoF for the 
optimization. Use 
process insight.

• Introduction of energy storage 𝐸 allows a linear 
formulation

• Fewer decision variables since water refilling 𝑞𝑖𝑛 has 
no effect in 𝐸

Use of time-scale 
separation

• Energy storage 𝐸 varies in a slower time-scale 
compared to heat input 𝑄

• Control layer takes of fast varying disturbances and 
handle constraints

Make use of 
periodic behavior 
of problem

• We add a constraint 𝐸 = 𝐸𝑚𝑎𝑥 late in the night. 

• Decouples the optimization problem of two 
consecutive days
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Main benefits

• Optimal operation

• Minimum modeling efforts

• Very low computational cost suitable for embedded 

hardware

Low-cost 
solutions

Enable 
widespread 

usage of 
energy 
storage

Ease 
integration of 

renewable 
energy sources 

into the grid
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Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

 Chapters 7 and 8

Optimal operation of energy storage systems 

 Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: anti-

slug control system for oil production optimization

 Chapters 5 and 6

Concluding remarks
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The big picture
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The slug cycle
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The slug cycle (video)

Experiments 

performed by 

the 

Multiphase 

Laboratory, 

NTNU
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p1

p2

z

Slug cycle (stable limit cycle)
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Problems caused by severe slugging

• Large disturbances in the separators

– Causing poor separation performance

– Can cause total plant shutdown  production losses!

– Increase flaring.

• Large and rapid variation in compressor load

• Limits production capacity (increase pressure in pipeline)
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p1

p2

z
Avoid slugging:

Close valve (but increases pressure)

Problematic for aging fields  increased pressure limits 

production

No slugging when valve is closed
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Avoid slugging:

”Active” feedback control
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Anti slug control: Full-scale offshore 

experiments at Hod-Vallhall field (Havre,1999)
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Problems with current anti-slug control 

systems

• Tend to become unstable (oscillating) after some time

– Inflow conditions change

– Require frequent retuning by an expert  costly 

• Ideal operating point (pressure set-point) is unknown

– If pressure setpoint is too high  production is reduced

– If pressure setpoint is too low  system may become unstable
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Motivation 

We want to 

increase valve 

opening

But larger 

openings = worse 

controllability 

• The lager the valve opening the more difficult it is to stabilize the system

– Controller gets more sensitive to uncertainties

– Process gain is reduced
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Our proposed autonomous control system

Setpoint change is key for the adaptation to work well

Robust adaptive 

control
Plant

Autonomous 

supervisor

• Periodically checks the stability of the system

• Reduces setpoint if control loop is working fine

𝑃𝑍

𝑃𝑠𝑝
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How does it work?
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Adaptive control based on adaptive augmentation

Relies on state-of-the-art output feedback adaptive control techniques

 Very successful in the aerospace industry
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Adaptive control design

Open-loop system dynamics

ሶx = 𝐴𝑥 + 𝐵Λ 𝑢 + Θ𝑇Φ 𝑥 𝑦𝑚𝑒𝑎𝑠 = 𝐶𝑥

Uncertainty model

Λ → control effectiveness uncertainty. Affects the process gain

Θ𝑇Φ 𝑥 → state-dependent nonlinear uncertainty. Affects poles 

and zeros

Θ → matrix of unknown coefficients 

Φ 𝑥 → vector of Lipschitz basis functions



57

57

Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty

Adaptive control design

Define reference model

ሶො𝑥 = 𝐴𝑟𝑒𝑓 ො𝑥 + 𝐵𝑟𝑒𝑓𝑟 + 𝑳𝒗(𝒚 − ෝ𝒚)

Output Feedback Adaptive Laws 

• ሶ෡Θ = ΓΘProj(෡Θ,Φ ො𝑥, 𝑢𝑏𝑙 𝑦 − ො𝑦 𝑇)

• ሶ෡𝐾𝑢 = ΓuProj(𝐾𝑢, 𝑢𝑏𝑙 𝑦 − ො𝑦 𝑇)

• 𝑢𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = −෡𝐾𝑢𝑢𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − ෡Θ𝑇Φ(𝑥)

Robust baseline + adaptive output feedback

𝑢 = 𝑢𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑢𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒

• 𝑢𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 computed using your favorite method (PID, 𝐻∞, LQG/LTR, …)

Feedback term to 

improve transient 

dynamics
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How does it perform in practice?
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2009-2013: Esmaeil Jahanshahi, PhD-work supported by Siemens

Experimental mini-rig

Pump

Buffer

Tank

Water

Reservoir

Seperator

Air to atm.

Mixing Point

safety valve

P1

Pipeline

Riser

Subsea Valve

Top-side

Valve

Water Recycle

FT water

FT air

P3

P4

P2

3m

• its dynamical behavior is 

quite similar to that of 

much larger rigs

water+air mixture
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Experimental Results

• Baseline controller tuned for Z=30%

• Linearized mechanistic or simple empirical models 

can be used

Note: our models agree very well with experiments
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Autonomous supervisor and adaptive LTR controller

Safely operates 

at very large 

valve openings
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Autonomous supervisor and adaptive LTR controller

Adaptation gains
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Oops, Big disturbance!

Emulates a 

‘gas-to-oil’ 

ratio change  

over 60%
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Large change in the operating conditions

Supervisor quickly 
detects major 
disturbance

Moves to safer
operating point

Adaptive control 
stabilizes under new 
operating conditions
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What happens if the baseline controller is poorly tuned?
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Poorly tuned PI control as baseline: Adaptation is OFF
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Poorly tuned PI control as baseline: Adaptation is ON

1. Supervisor quickly detects major disturbance Desired 

closed-loop 

performance 

is recovered!
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Comparison

Case Mean valve 

opening

ISE

Bad baseline + adaptation OFF 38,45 % 6,2

Bad baseline + adaptation ON 50,42% 0,76

Good baseline + adaptation ON 53,23% 0,64

Large is good

Small is good

𝐼𝑆𝐸 = ׬ 𝑒2𝑑𝑡
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Take home message

• Our 2-layered anti-slug control system  works very well in 

practice

• The interaction between the two layers create a very nice 

synergy:

Setpoint changes triggered by the supervisor makes the 

adaptation work well

A well functioning adaptive control makes it possible to 

safely operate at large valve openings, thus maximizing 

production
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Take home message

Expected benefits

• Stable and safe operation in a wide range of 

conditions

• Reduced need for control tuning

• Reduced workload on operators

• Increased production

• This work resulted in a patent application

• Cooperation agreement with industrial partner on the 

way

• Industrial pilot project (hopefully) coming soon
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Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

 Chapters 7 and 8

Optimal operation of energy storage systems 

 Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit:         

anti-slug control system for oil production optimization

 Chapters 5 and 6

Concluding remarks
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Concluding remarks

We have seen different strategies for near-optimal operation under 

uncertainty:

• Null-space method for batch processes

• Simplified optimization scheme of energy storage 

systems based on a hierarchical control structure

• Intelligent adaptive anti-slug control system for oil 

production maximization
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Thank you for your attention 

`
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Not included in the presentation

Ch. 4: Dynamic online optimization of a house heating system 

in a fluctuating energy price scenario.

Ch. 6: A comparison between Internal Model Control, optimal 

PIDF and robust controllers for unstable flow in risers. 

Ch. 7: Neighbouring-Extremal Control for Steady-State 

Optimization Using Noisy Measurements.


