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Main goal

Find implementation strategies for the optimal operation of
processes during transients

v Focus on cases where dynamic behavior is
Important in terms of economic performance

We are not only interested in finding (numerical) optimal
solutions

- but specially in the practical implementation
strategies using feedback control

- Challenge: disturbances and uncertainties!!
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Main question

How to achieve acceptable performance in the face of
unknown disturbances and uncertainties?

By acceptable we mean:

* Near-optimal economic cost

« stable operation

e minimum constraint violations

Our focus is to find simple policies to achieve this
goal
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Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

v' Chapters 7 and 8

Optimal operation of energy storage systems

v Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: anti-slug
control system for oil production optimization

v' Chapters 5 and 6

Concluding remarks
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Presentation outline

Near-optimal operation of uncertain batch systems

v' Chapters 7 and 8
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Null-space method for optimal operation
of transient processes (Ch. 8)

We consider a dynamic optimization problem in the form

subject to:

X € R™
u € RMu
y € R™
d e R"d

www.ntnu.no

min J(z(tf), d)

(i

T = f(x,u,d)
y = g(x)
plx,u) <0
=differential states Nominal solution:

:=control inputs

e dn, Un, X
-=measurements 0, Yo, X0, Yo

:=uncertain parameters
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Main goal

a9V . . )
Achieve near-optimal economic performance

despite uncertainty/disturbances without the

need for re-optimization*
\- /

(*) Solving dynamic optimization problems can be veeery time-
consuming
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Self-optimizing control

Step 1) Find a function of measurements c := h(y) whose
optimal is invariant to changes in d

Cope(t, do) = Cope(t,dy) = -

Step 2) Control c(t) to its reference c; = ¢, (t, do)
using your favorite controller d

cs(t) —n > K | System > Y

c(t) H(Y Y

| Step 3) Be optimal without re-optimizing despite uncertainties in d
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Optimal sensitivities

Proposed method F(t) = aycpgg»@

Control a linear combination
c(t) = H(t)y(t), (H is an, X n, matrix )

This is the (local) optimal choice if
Ht)F(t) =0

H(t) must lie in the left nullspace of F(t)* - Thus the name,
‘Nullspace method’

(*) Nullspace method for steady-state problems originally published in Alstad (2007).
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Outline of the procedure

Offline steps

Online step

cs(t)

Define main uncertainties d
Compute nominal solution d, ug, Xg, Yo

« Compute sensitivities F(t) and the matrix H(t)

Compute the reference trajectory c,(t) = H(t)y,(t)

Track references c, using feedback control

By doing so, we are near-optimal without the need
for re-optimization, despite d

d
> € K “ System Y
c(t
(t) o) Y
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Simulation example: fed-batch reactor

We have two chemical reactions happening

)

A+B—-C and B-D

Subject to the following dynamics

. cau

Ca = —kycacp — v

. CB—CB in)U
CB — _k]_CACB - 2k2CB — ( v ln)

V =u

We want to compute to maximize C — D

Main uncertainties (k,and k)
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Nominal solution

80
i 60 \
;E; 20
0 50 100 150 200 250 0
0 50 100 150 200 250
| | | ‘ [Next steps ]
0 50 100 150 200 250
1.1 _ :
- « Compute sensitivity matrix
= 105 F(t) and combination H(t)
' 50 100 150 200 250

Time, min e Obtain ¢,(t) = H(t)yo (t)
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Example of invariant trajectory

1.14 1

S
”T“I 1.12
S
1.1
50 100 150 200 250
1 L
I3
= 05
= hy (1)
0 "
50 100 150 200 25
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Time, min

Ca

¢ =|hy hy h3 ]|CB

V

Control c using a Pl

controller
d
K l System
clt
(t) n y
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Results with 20% error in k{ and k,

Cost comparison

80 »
\ ]opt ]proposed ]Openloop

Open-loop
60 \< -0.1957 -0.1957 -0.1904

~ Proposed

20

Scaled input u, %
A
S

> Optimall

p
Near-optimal operation without re-optimization
_despite disturbances
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What you should remember

Step 1) Compute reference c,(t) = H(t)y,(t) whose optimal is
Invariant due to disturbances. We showed how to compute H(t).

Step 2) Control c(t) to its reference ¢y = ¢, (t, dg) USINg your
favorite controller d

¢s(t) » System > Y

c(t) H(Y Y

| Step 3) Be (almost) optimal without re-optimizing despite uncertainties in d
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How could you best use the approach?
Combine with EMPC

Optimizer | Cs e U
(MPC) » ) K | System
-
| tfast
| C Y
I H |
__________ slow
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Presentation outline

Optimal operation of energy storage systems

v' Chapters 2, 3and 4
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Motivation

Increase of use of
renewable energy

Strong dependence
on weather
conditions

Energy production
must cover demand
at all times

www.ntnu.no

.

Influence demand
by real-time pricing
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Example of electricity price in Norway*

70 f )
Future trend:
o use of smart
meters
= 50| N ) J
=
=
~
W 40 g )
S Consumer
2. charged in a
% hourly basis
g ‘ ’
m 20
10 - A g L )
Electricity
0 | | price available
0 10 20 30 40 50 60 70 in real-time
Time. h \ J

(*) http://www.nordpoolspot.com/
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How can end-user take advantage of this
scenario?

4 )

Key requirement: energy storage
. J

 Allows us to move the consumption to more
favorable periods — flexible consumption

\
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Storage capacity Is not enough

(

N
Users are unlikely to
change their
behavior

J

Malin requirements:

-
Need automatic
control and
optimization
\_

« Near-optimal results—> good savings without sacrifices

« Low (computational) cost for widespread use

www.ntnu.no
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Some examples of energy storage

Batteries

* |ce banks

« Compressed air storage

 Hot-water tanks (Topic of Ch. 2 and 3)
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Process model

Control degrees of freedom (u)

Tou [K]
Cold water Qin [M3/5] ¢ EleCtI‘IC pOWGI’ Q
> * Inflows: q.y,and g;,
S Differential variables (x)
 Liquid temperature: T
 Liquid volume: V
T [K] Tourr
- zQ W] Algebraic variables (y)
V [m?) * Hot water temp. Ty,
- « Tank outlet: g,
Tout =T Tcw [K}

Qout M3 /3] Mixer  Gew [m3/s] DIStUTbanceS (d)

Y+ Hot water flow rate: gy,

i ] * Hot water temp. setpoint: Ty,
Ty (K] « Electricity price: p
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Problem formulation

Minimize: ] = f:p(t)Q(t) dt (energy cost)

subject to:

Toin < T < gy S_atlsfy demand at all
0<Q < Qnax  UMES
x=f(x,d,u)

A

\

Most important constraint for optimization
T'zThin = Thw,sp

\
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[Main complications: ]

« Time-varying electricity price p(t)
« Time-varying and highly uncertain hot water demand q;,,
* Nonlinear dynamics

Demand varies in a fast

2 ool time-scale (s-min) =

< 0 need fast sampling time
> 1,000 -

- ’)OOM ‘LLMJ\\JNMM Economics evolve in a

5 4 6 s 10 12 14 16 15 20 SlOWer pace (hOUFS'
2l day_s)e need long
: horizon
0

0 2 4 6 8 10 12 14 16 18 20
Time, Days
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Popular at the moment: Economic Model
Predictive Control (EMPC)

T,
Cold

control in one big layer

Combine optimization and ]

EMPC
}_3

Computational cost very high! ]
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Proposed hierarchical control structure

Predictions

l

- - - -3 Optimizer

Cs

Great simplification of the problem is

c achieved with this structure

|
|
|
I
I
I
:
| 1 Controller
I
I
|
|
|
I
I
I

d

System k———
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Great simplification of the problem by

4 N
Right choice of DoF
for the optimization.

\ Y,

4 N
Use of time-scale
separation

\ Y,

4 N

Make use of periodic
behavior of problem

\_ J
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Optimization layer problem formulation

Right choice of decision variables

We use the concept of energy storage
E=pc,V(T = Tew)

Because of the choice of reference temp (T, = T,,,), q;, do€s
not affect E - Reduction of # of degrees of freedom

Using E (t) as our decision variable - problem becomes
linear
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Optimization layer problem formulation

time-scale separation

Disturbances can be split into two frequency components
d = dgow + Adfast

Assume dg,;,,, IS more important for the economics - e.g.
electricity price (hours)

« Optimize E according to dg;,,, time-scale A

« Use feedback control to reject fast variations
Adfast
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Optimization layer problem formulation

Take advantage of the periodicity of the problem

4 )
=
= 1,500 , :
§ Add a final constraint
@)
Z 1,000 E(tf) = FE oy
500 g L y
0.5 1 1.5 2 2.5 3
g 10 4 )
= . .
- This constraint the
S optimization problem
of two consecutive
0 days
0 0.5 1 1.5 2 2.5 3
Time, Days \ /
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Proposed formulation (in terms of energy storage)

N-1 N
mEi;Il JN = Z Pk [Ek_|_1 — Ek + Atocgk,demand] + Z N[Ek:]_
k=0 k=1
subject to:

Emin — &k E Ek: S Ema:l:

0 S (Ek—l—l — Ek)/Ato + Qk,demand § Qma:c
EN — Ema,a:

Linear program (LP) + Small number of decision variables
Very low computational cost
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Controlled variable selection

TC w

Cold water
old water i

— Optimization DoF:
i E = pc,V(T = T,y)

-_‘:%- ...... — | Obvious CV candidates:

e Liquid volume V
T * Liquid temperature T

Simple MPC
Setpoint logic

Cold water

hw

__________ - Thw,s
Hot water
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Case study

Z 1o Compare our approach with:
”
S 1.000 | U| _ _
« Maximum storage policy
A 5001 | MMM (full tank all the time)
2 4 6 8 1}0 1}2 1|4 1‘6 1‘8 éD

210 « |deal case (assume

= perfect knowledge of the

=00 future)

0_

0 2 4 6 8 10 12 14 16 18 20
Time, Days
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Alternative strategy: 1.

C vater i
“old water din

Maximum storage

policy:
° TS Tmax

T
T <
Q
oD
14

Safest pohc_y In terms of M
constraint violations .

:,(/ @ Cold water

__________ w hw,s
Hot water 1
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|deal case

I‘(_' wr

Cold water a 4 N\

B3 EMPC with perfect
T knowledge about

— the future
E \__ y,
= T
<
_____ ’ 1% ( )

T T Not achievable In
practice

Hot water
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Results

A

. )
Considerable
150 | savings at low
computational
cost
\ J
S
100
Z
8
50
e Ideal case
——  Maximum storage policy
—— Simplified MPC (At = 30 min)
0 ‘ . . . ‘ . . -

0 2 4 6 & 10 12 14 16 18 20
Time, Days
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Results

. )
Considerable
150 | savings at low
Increased performance computational
by increasing cost
optimization frequency ~ \ J
o |
> 100
3
50 | ------- Ideal case

MPC (At = 60min)
—— MPC (At = 45min)
A —— MPC (At = 30min)
— MPC (Af = 10min)
0 2 4 6 8 10 12 14 16 18 20
Time, Days
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Great simplification of the problem by

: . * Introduction of energy storage E allows a linear
Right choice of formulation

DoF for the <
optimization. Use
process insight.

» Fewer decision variables since water refilling g;,, has
no effect in E

" [+ Energy storage E varies in a slower time-scale
compared to heat input Q

Control layer takes of fast varying disturbances and

Use of time-scale _<

separation handle constraints
-
/‘
Make use of « We add a constraint E = E,,,;, late in the night.
periodic behavior << |+ Decouples the optimization problem of two
of problem consecutive days
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Main benefits

« Optimal operation
* Minimum modeling efforts

* Very low computational cost > suitable for embedded

hardware
4 p f p f p
.gnable q Ease
) widesprea integration of
LO;Nt.COSt usage of renewable
Solutions energy energy sources
storage into the grid

\. J \. J \_ J
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Presentation outline

Optimal operation of dynamic systems at their stability limit: anti-
slug control system for oil production optimization

v' Chapters 5and 6
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/Standard Subszé;fr%és“ )

ok

Guidelineless Tre
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The slug cycle

(1) Slug Formation

(3) Blowout

(4) Liquid Fallback J:)

\
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The slug cycle (video)

www.ntnu.no

Experiments
performed by
the
Multiphase
Laboratory,




Slug cycle (stable limit cycle)  P—

100 % Apen ventil

0.14
R F='1
0.12 — R, -
O1F - 1
= 0.08f |
]
=]
=~ 0.08}
=
=
- 0.04f
“'GE\/\/\/\NV\/\/\/V\N\N\/\I\/\/\/\/\'
D. -
—0.0 ' '
0 50 100 150 200 230 300
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Problems caused by severe slugging

« Large disturbances in the separators

— Causing poor separation performance
— Can cause total plant shutdown - production losses!
— Increase flaring.

« Large and rapid variation in compressor load

« Limits production capacity (increase pressure in pipeline)
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Avoid slugging: )
Close valve (but increases pressure)

No slugging when valve is closed
50

min & max = = = steady-state ‘Q

]
—
=T =

ro
[
I

0 10 20 30 40 5|0 6|0 70 80 90 100

7 [%]
Problematic for aging fields - increased pressure limits
production
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Avoid slugging:
”Active” feedback control

Inlet
separator

Topside
P, choke
1 :
/ Riser
Qg PT) .
P USUb T min & max = = = steady-state

Subsea |'w / / Pg Al

wells \/ ¥
Subsea < wf

choke 5
20

1 1 1 1 T T T t
0 0 20 30 4 50 60 70 80 9 100
7%
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Anti slug control: Full-scale offshore
experiments at Hod-Vallhall field (Havre,1999)

130
120 - -
110

|

I

| |

I I

| |

100 - i |
i i

| :

|

1

a0
20 _ Controller starts
10 4

Controller in
manual mode

G [kg/s]==p V [%] =4 p [pzi]
o

|
|
I
| -15 T
] - 10 &
i ~—15 5
1 i D i
| 1

45 50 -
1

S -

’ Slug flow Stabilizing control Slug flow (build-up)
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Problems with current anti-slug control
systems

« Tend to become unstable (oscillating) after some time

— Inflow conditions change
— Require frequent retuning by an expert = costly

» |deal operating point (pressure set-point) is unknown

— If pressure setpoint is too high = production is reduced
— If pressure setpoint is too low - system may become unstable
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Motivation

50 | | | | We want to
min & max = = = steady-state increase valve

40+ ] opening
= 30r .
m‘*

0 -

But larger
0 ‘ ‘ | | openings = worse
0 10 20 30 40 5 60 70 8 9 100 controllability
AR

* The lager the valve opening ->the more difficult it is to stabilize the system

— Controller gets more sensitive to uncertainties
— Process gain is reduced

www.ntnu.no Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty




Our proposed autonomous control system

» Periodically checks the stability of the system
« Reduces setpoint if control loop is working fine

4 D
Autonomous

supervisor
- J

Py |

Robust adaptive} Z

o

Plant
control J

!

Setpoint change is key for the adaptation to work well

\
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How does it work?
Autonomous Supervisory

| )
|| Stability Decrease I
|| Analysis setpoint '
| x |
I
| I
| ! |
| | ‘I’IES | I
| | \ 4 A 4 |
| New |
| Data Increase ] |
reparation setpoint | | operating |
{ P A point |
Setpuintl
Robu?t Inputs Outputs
Adaptive Plant >
Controller
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Adaptive control based on adaptive augmentation

Advanced Textbooks in Control and Signal Processing

A Estimated Eugene Layretsky
setpoints Observer-Based output + | - Kevin A. Wise

»| Reference > )4_
Model h R Ob u&:ta n d

state

Estimaed ! AdaptivéControl
f WithAemsp'aTﬂPpliAtions

Outputs
—

@ Springer

Relies on state-of-the-art output feedback adaptive control techniques
- Very successful in the aerospace industry
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Adaptive control design

Open-loop system dynamics

x=Ax+BA(u+0TD(x))  Ymeas = Cx

Uncertainty model
A — control effectiveness uncertainty. Affects the process gain

0T d(x) - state-dependent nonlinear uncertainty. Affects poles
and zeros

® — matrix of unknown coefficients
®(x) — vector of Lipschitz basis functions
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Adaptive control design

Define reference model

x = Arefjc\ + Brefr +L,(y—Y)

Output Feedback Adaptive Laws

.
—~

e 0 =TyProj(®, @&, up)(y — M7

« K, =T, Proj(Ky,uy(y — 97

-~

— aT
Ugdaptive — _Kuubaseline -0 CI)(x)
Robust baseline + adaptive output feedback
U = Upgseline T Uadaptive

Upaseline = computed using your favorite method (PID, H,,, LQG/LTR, ...)

\
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How does it perform in practice?
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2009-2013: Esmaeil Jahanshahi, PhD-work supported by Siemens

Experimental mini-rig

P
Top-side Airto atm.

Valve Seperatol

A
/

water+air mixture /

/
/

3m

-+ its dynamical behavior is
; quite similar to that of

much larger rigs

www.ntnhu.no Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty




Experimental Results

 Baseline controller tuned for Z=30%

* Linearized mechanistic or simple empirical models
can be used

Note: our models agree very well with experiments
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Autonomous supervisor and adaptive LTR controller

30

inlet pressure (controlled variable)

26
24

in [kp a]

20F

Safely operates
_at very large

18

100

10

15

actual valve position (manipulated variable)

20

25
t [min]

30

35

valve openings

z 1%
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10

15

20

25
t [min]

30

35
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Autonomous supervisor and adaptive LTR controller

Adaptation gains

0 10 20 30 40 50

0 5 10 15 20 25 30 35 40 45

t [min]
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Oops, Big disturbance!

Air flow, 1/min
3
—

N
o

4.6

50

4.4

4.2

3.8

Water flow, 1/min

10 20 30 40

t [min]

50

(Emulates a
‘gas-to-oil’
ratio change

0
kover 60%

~

J
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Large change in the operating conditions

inlet pressure (controlled variable)
30 I I i I I ! I

Supervisor quickly
- detects major

i
=
) 24%"'%._.—_.”' ] disturbance

22
ol [+ major problem flag .
18 T 1 1 1 1 1 1 1 1 l r 1
5 10 15 20 25 30 35 40 45
t [min] Moves to safer
actual valve position (manipulated variable) Operating pOint
100 I I 1 I I | I

" y

[“0]

Adaptive control
stabilizes under new
operating conditions

¢t [min]
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What happens if the baseline controller is poorly tuned?

\
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Poorly tuned Pl control as baseline: Adaptation is OFF

inlet pressure (controlled variable)

t [min]
actual valve position (manipulated variable)
100 I | I I I 1 I I

ra

Z [%]

7

0 | l l 1 | | 1 1 |
5 10 15 20 25 30 35 40 45

t [min]
L LllllllJ
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Poorly tuned PI control as baseline: Adaptation is ON

inlet pressure (controlled variable)

4 )

20 | | | | | | T | | T | Desired
18 5 10 15 20 25 30 35 40 45 C|OS€d'|00p
t [min]
actual valve position (manipulated variable) p e rfo rmance
IS recovered!
S - /
NS

1 1 | 1 |
5 10 15 20 25 30 35 40 45
t [min]
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Comparison

[ Large is good ]

Mean valve
opening
Bad baseline + adaptation OFF | 38,45 % 6,2
Bad baseline + adaptation ON 50,42% 0,76
Good baseline + adaptation ON | 53,23% 0,64

T

[Small Is good ]

ISE = [ e?dt

www.ntnu.no
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Take home message

* Our 2-layered anti-slug control system works very well in
practice

« The Iinteraction between the two layers create a very nice
synergy:

v’ Setpoint changes triggered by the supervisor makes the
adaptation work well

v' A well functioning adaptive control makes it possible to
safely operate at large valve openings, thus maximizing
production
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Take home message

K This work resulted in a patent application \

« Cooperation agreement with industrial partner on the
way

 Industrial pilot project (hopefully) coming soon
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Presentation outline

Concluding remarks
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Concluding remarks

We have seen different strategies for near-optimal operation under

uncertainty:

* Null-space method for batch processes

« Simplified optimization scheme of energy storage

systems based on a hierarchical control structure

 Intelligent adaptive anti-slug control system for oll

production maximization
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Thank you for your attention
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Not included in the presentation

Ch. 4: Dynamic online optimization of a house heating system

in a fluctuating energy price scenario.

Ch. 6: A comparison between Internal Model Control, optimal

PIDF and robust controllers for unstable flow in risers.

Ch. 7: Neighbouring-Extremal Control for Steady-State

Optimization Using Noisy Measurements.
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