Optimal operation strategies for dynamic processes under uncertainty

Public PhD Defence

Candidate: Vinicius de Oliveira Supervisors: Sigurd Skogestad Johannes Jäschke

Department of Chemical Engineering, Faculty of Natural Sciences and Technology NTNU, Trondheim, Norway

www.ntnu.no

Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty

Main goal

Find implementation strategies for the optimal operation of processes during transients

✓ Focus on cases where *dynamic behavior* is important in terms of economic performance

We are not only interested in finding (numerical) optimal solutions

- → but specially in the practical implementation strategies using feedback control
- → Challenge: disturbances and uncertainties!!

Main question

How to achieve acceptable performance in the face of unknown disturbances and uncertainties?

By *acceptable* we mean:

- Near-optimal economic cost
- stable operation
- minimum constraint violations

Our focus is to find **simple** policies to achieve this goal

Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

✓ Chapters 7 and 8

Optimal operation of energy storage systems

✓ Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: anti-slug control system for oil production optimization

✓ Chapters 5 and 6

Concluding remarks

Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

✓ Chapters 7 and 8

Optimal operation of energy storage systems

✓ Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: Application to anti-slug control

✓ Chapters 5 and 6

Concluding remarks

Null-space method for optimal operation of transient processes (Ch. 8)

We consider a dynamic optimization problem in the form

$$\min_{u} J(x(t_f), d)$$

subject to:

$$\dot{x} = f(x, u, d)$$

 $y = g(x)$
 $p(x, u) \le 0$

 $x \in \mathcal{R}^{n_x}$:=differential states $u \in \mathcal{R}^{n_u}$:=control inputs

 $y \in \mathcal{R}^{n_y}$:=measurements

 $d \in \mathcal{R}^{n_d}$:=uncertain parameters

Nominal solution:

•
$$d_0, u_0, x_0, y_0$$

Achieve near-optimal economic performance despite uncertainty/disturbances without the need for re-optimization*

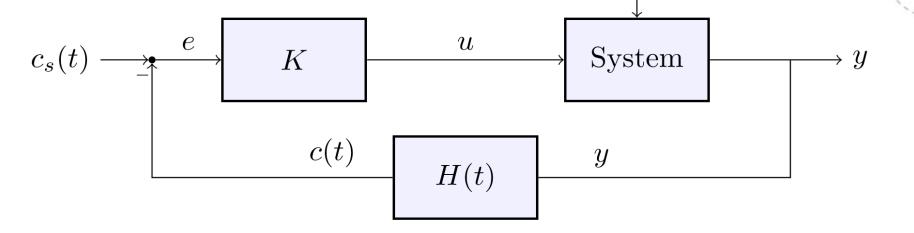
(*) Solving dynamic optimization problems can be veeery timeconsuming

Self-optimizing control

Step 1) Find a function of measurements $c \coloneqq h(y)$ whose optimal is invariant to changes in d

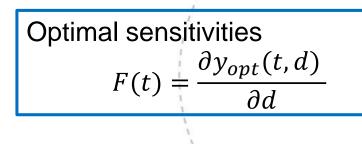
$$c_{opt}(t,d_0) = c_{opt}(t,d_1) = \cdots$$

Step 2) Control c(t) to its reference $c_s = c_{opt}(t, d_0)$ using your favorite controller d



Step 3) Be optimal without re-optimizing despite uncertainties in *d*

Proposed method



Control a linear combination c(t) = H(t)y(t),

(*H* is a $n_u \times n_y$ matrix)

This is the (local) optimal choice if H(t)F(t) = 0

H(t) must lie in the left nullspace of $F(t)^* \rightarrow$ Thus the name, 'Nullspace method'

(*) Nullspace method for steady-state problems originally published in Alstad (2007).

Outline of the procedure

Define main uncertainties dCompute nominal solution d_0, u_0, x_0, y_0 Offline steps • Compute sensitivities F(t) and the matrix H(t)Compute the reference trajectory $c_s(t) = H(t)y_0(t)$ Track references c_s using feedback control Online step • By doing so, we are near-optimal without the need for re-optimization, despite d đ eu $c_s(t)$ KSystem yc(t)yH(t)

www.ntnu.no

Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty

Simulation example: fed-batch reactor

We have two chemical reactions happening

 $A + B \rightarrow C$ and $B \rightarrow D$

Subject to the following dynamics

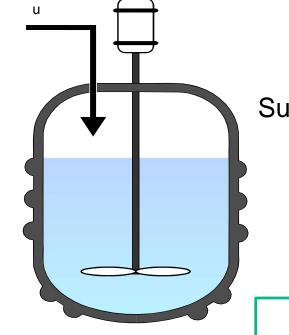
$$\dot{c}_A = -k_1 c_A c_B - \frac{c_A u}{v}$$

$$\dot{c}_B = -k_1 c_A c_B - 2k_2 c_B - \frac{(c_B - c_{B,in})u}{v}$$

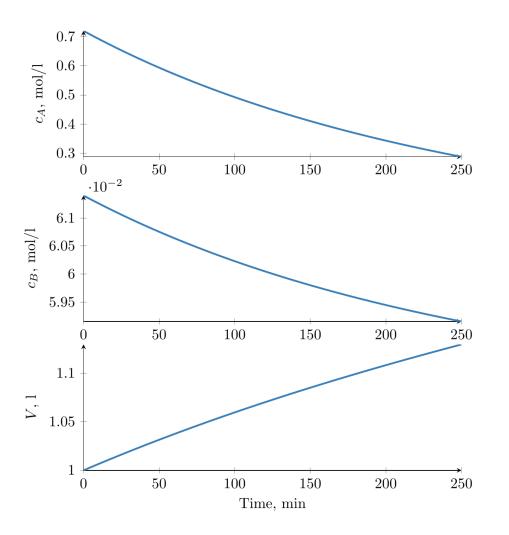
$$\dot{V} = u$$

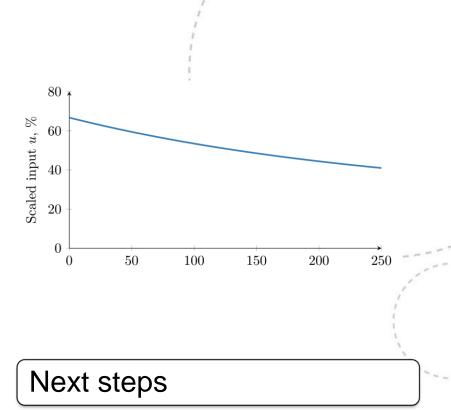
We want to compute to maximize C - D

Main uncertainties (k_1 and k_2)



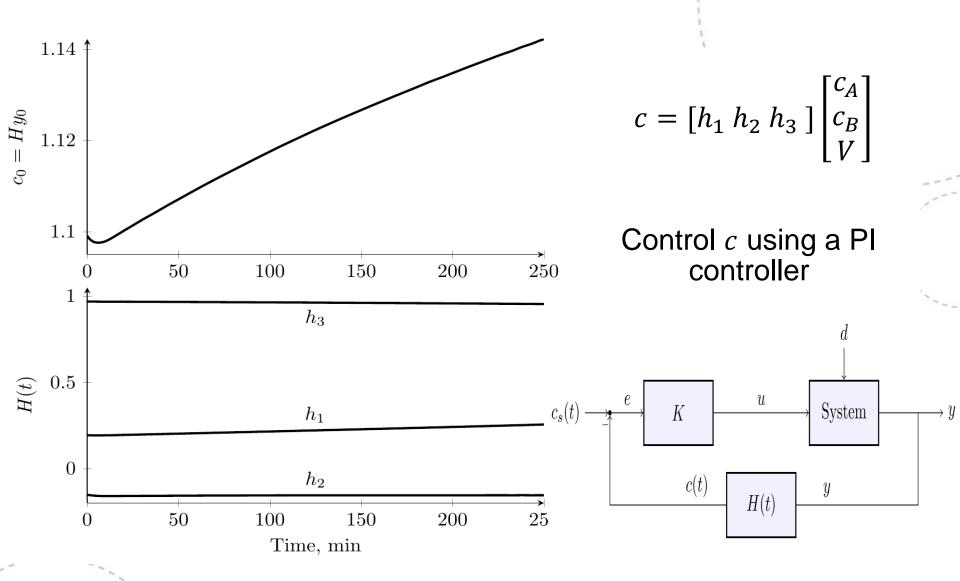
Nominal solution



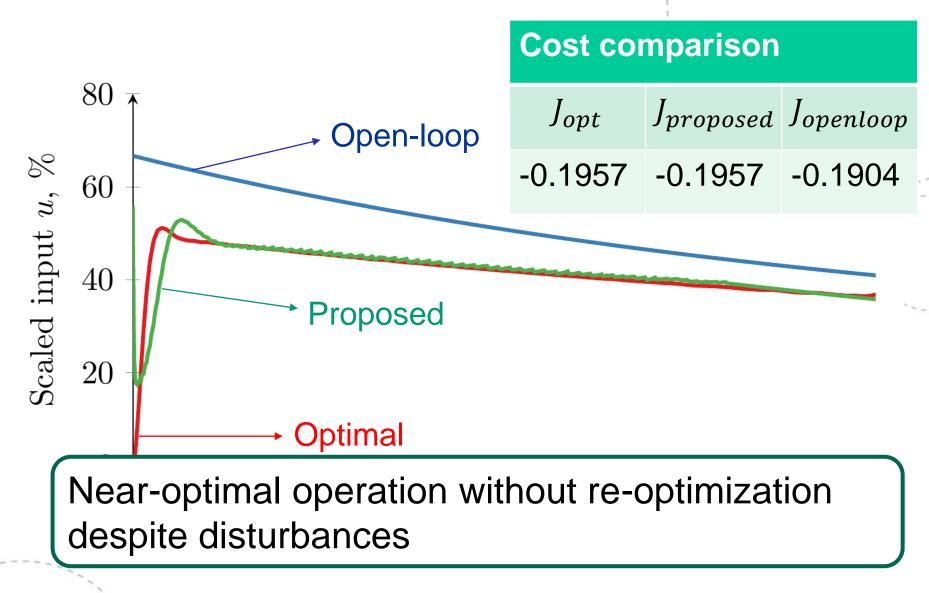


- Compute sensitivity matrix F(t) and combination H(t)
- Obtain $c_s(t) = H(t)y_0(t)$

Example of invariant trajectory



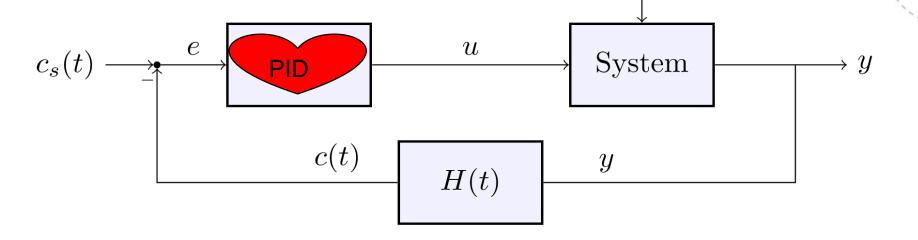
Results with 20% error in k_1 and k_2



What you should remember

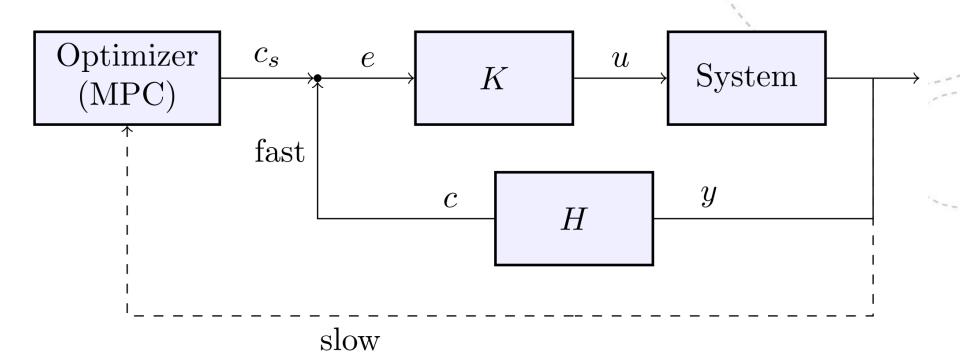
Step 1) Compute reference $c_s(t) \coloneqq H(t)y_0(t)$ whose optimal is invariant due to disturbances. We showed how to compute H(t).

Step 2) Control c(t) to its reference $c_s = c_{opt}(t, d_0)$ using your favorite controller d



Step 3) Be (almost) optimal without re-optimizing despite uncertainties in d

How could you best use the approach? Combine with EMPC



18

Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

✓ Chapters 7 and 8

Optimal operation of energy storage systems

✓ Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: antislug control system for oil production optimization

✓ Chapters 5 and 6

Concluding remarks

19

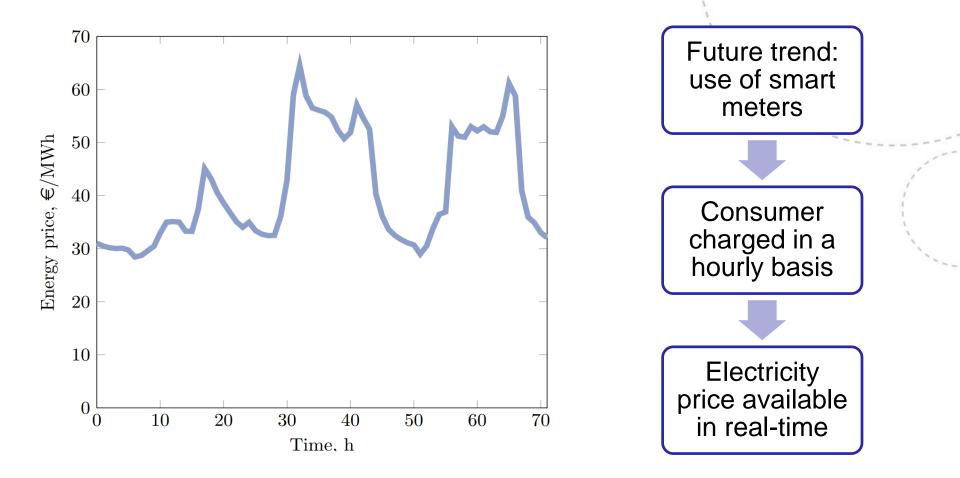
Increase of use of renewable energy

Strong dependence on weather conditions

> Energy production must cover demand at all times

Influence demand by real-time pricing

Example of electricity price in Norway*

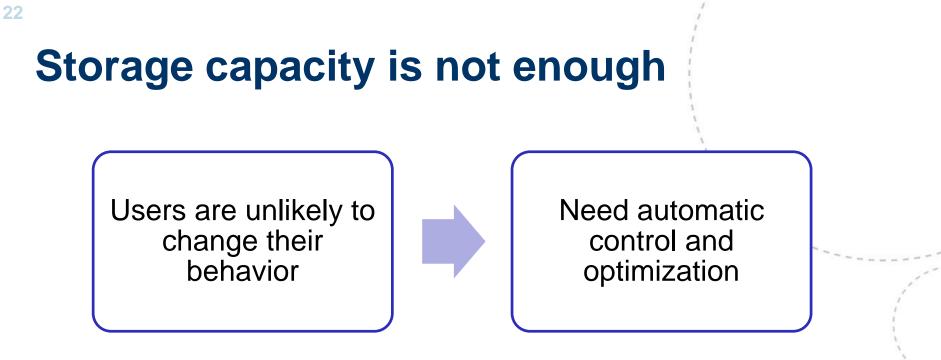


(*) http://www.nordpoolspot.com/

How can end-user take advantage of this scenario?

Key requirement: energy storage

• Allows us to move the consumption to more favorable periods \rightarrow *flexible consumption*



Main requirements:

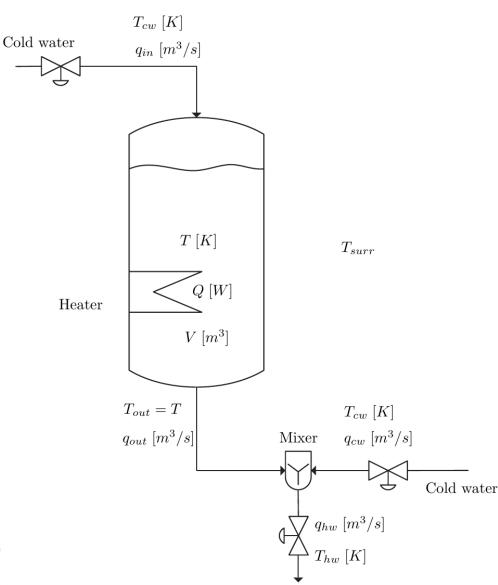
- Near-optimal results → good savings without sacrifices
- Low (computational) cost for widespread use

Some examples of energy storage

- Batteries
- Ice banks

- Building's mass (Topic of Ch. 4)
- Compressed air storage

Process model



Control degrees of freedom (u)

- Electric power: Q
- Inflows: q_{cw} , and q_{in}

Differential variables (x)

- Liquid temperature: T
- Liquid volume: V

Algebraic variables (y)

- Hot water temp. T_{hw}
- Tank outlet: q_{out}

Disturbances (d)

- Hot water flow rate: q_{hw}
- Hot water temp. setpoint: $T_{hw,sp}$
- Electricity price: *p*

Problem formulation

 $J = \int_{t_0}^{\infty} p(t)Q(t) dt \qquad (energy \ cost)$ Minimize:

subject to:

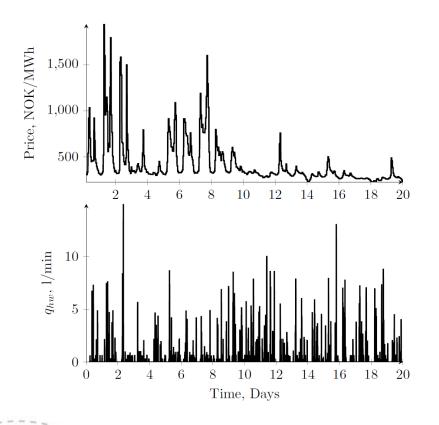
 $\begin{cases} V_{min} \leq V \leq V_{max} \\ T_{min} \leq T \leq T_{max} \\ 0 \leq Q \leq Q_{max} \\ \dot{x} = f(x, d, u) \end{cases}$

Satisfy demand at all times

Most important constraint for optimization $T \geq T_{min} = T_{hw.sp}$

Main complications:

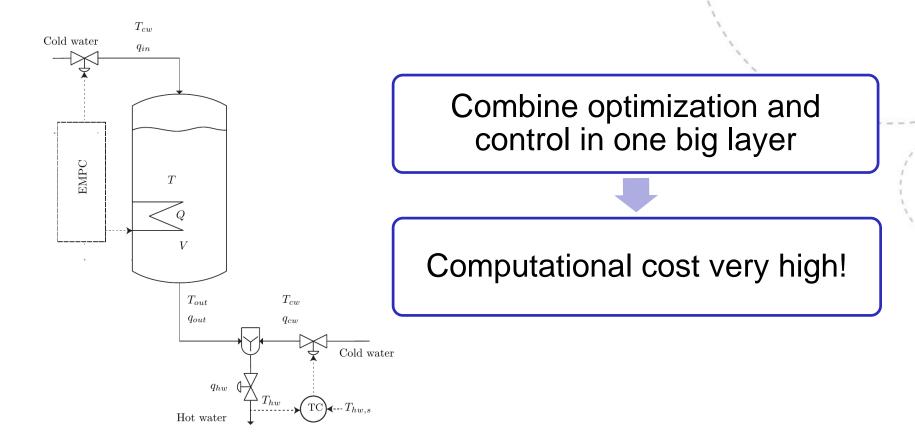
- Time-varying electricity price p(t)
- Time-varying and highly uncertain hot water demand q_{hw}
- Nonlinear dynamics



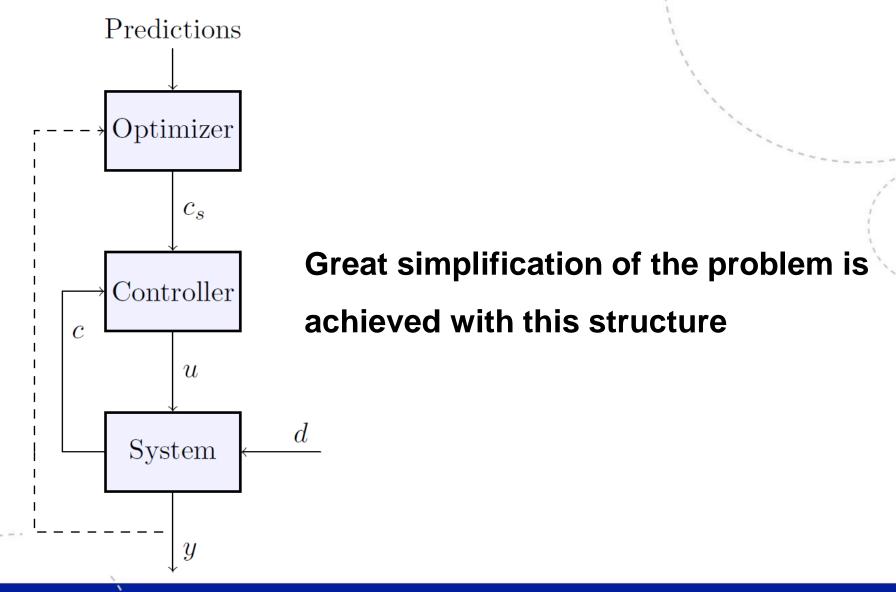
Demand varies in a fast time-scale (s-min) \rightarrow need fast sampling time

Economics evolve in a slower pace (hoursdays)→ need long horizon

Popular at the moment: Economic Model Predictive Control (EMPC)



Proposed hierarchical control structure



Great simplification of the problem by

Right choice of DoF for the optimization.

Use of time-scale separation

Make use of periodic behavior of problem

³⁰ Optimization layer problem formulation

Right choice of decision variables

We use the concept of energy storage $E = \rho c_p V (T - T_{cw})$

Because of the choice of reference temp ($T_0 = T_{cw}$), q_{in} does not affect $E \rightarrow$ Reduction of # of degrees of freedom

Using E(t) as our decision variable \rightarrow problem becomes linear

³¹ Optimization layer problem formulation

time-scale separation

Disturbances can be split into two frequency components

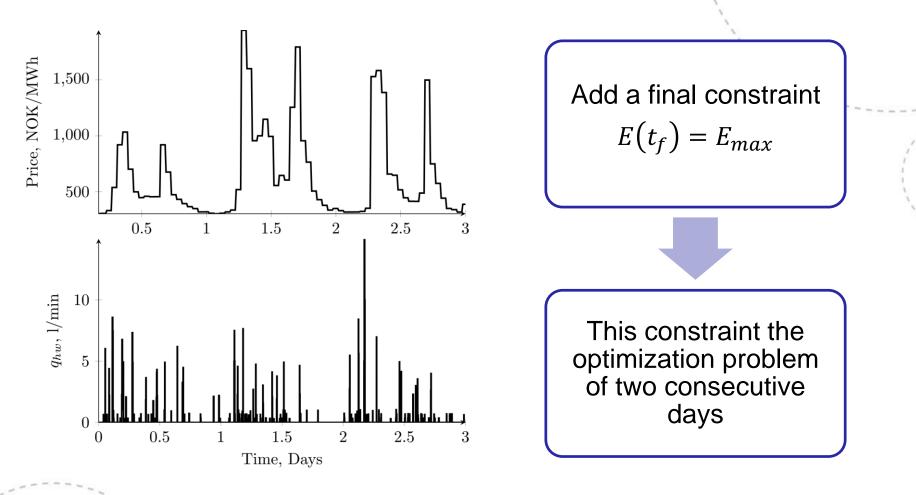
$$d = d_{slow} + \Delta d_{fast}$$

Assume d_{slow} is more important for the economics \rightarrow e.g. electricity price (hours)

- Optimize E according to d_{slow} time-scale
- Use feedback control to reject fast variations Δd_{fast}

Optimization layer problem formulation

Take advantage of the periodicity of the problem



Proposed formulation (in terms of energy storage)

$$\min_{E} J_{N} = \sum_{k=0}^{N-1} p_{k} [E_{k+1} - E_{k} + \Delta t_{o} Q_{k,\text{demand}}] + \sum_{k=1}^{N} \mu[\varepsilon_{k}]^{-1}$$

subject to:

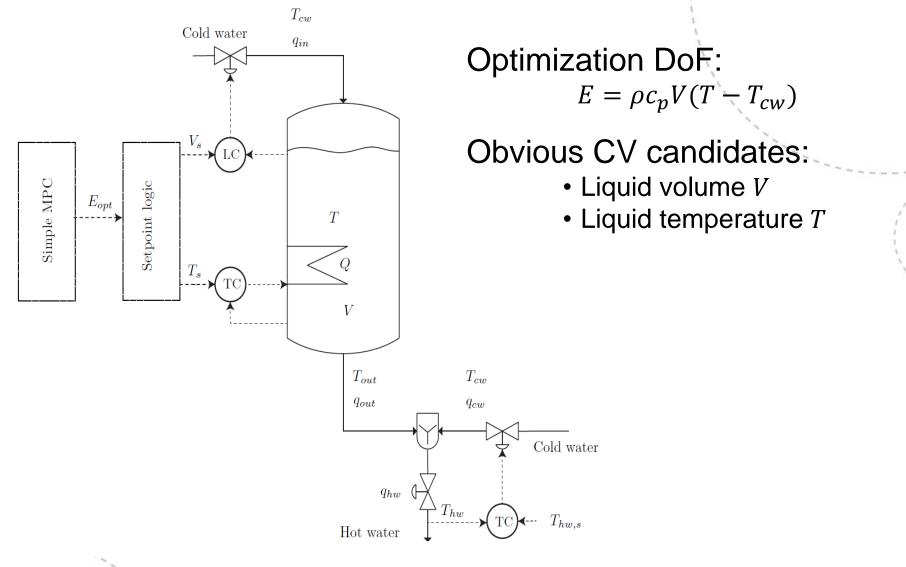
$$E_{min} - \varepsilon_k \leq E_k \leq E_{max}$$

$$0 \leq (E_{k+1} - E_k) / \Delta t_o + Q_{k,\text{demand}} \leq Q_{max}$$

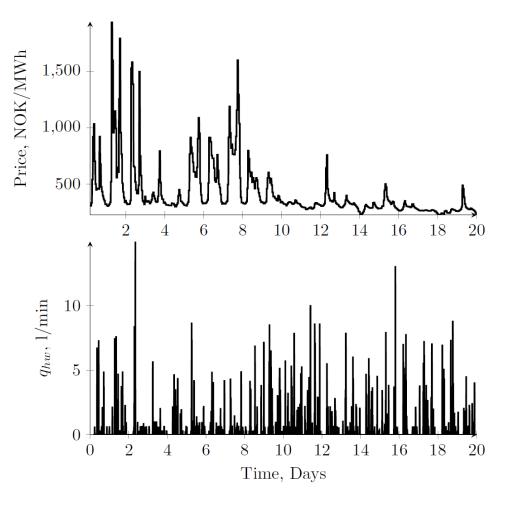
$$E_N = E_{max}$$

Linear program (LP) + Small number of decision variables Very low computational cost

Controlled variable selection



Case study



Compare our approach with:

 Maximum storage policy (full tank all the time)

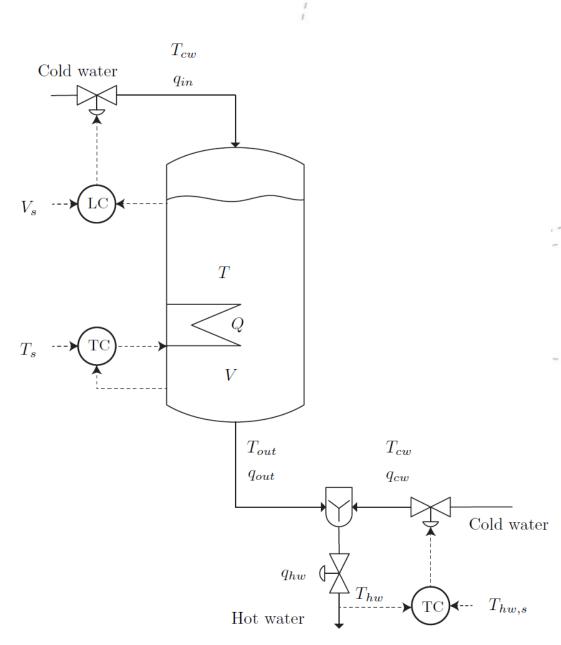
 Ideal case (assume perfect knowledge of the future)

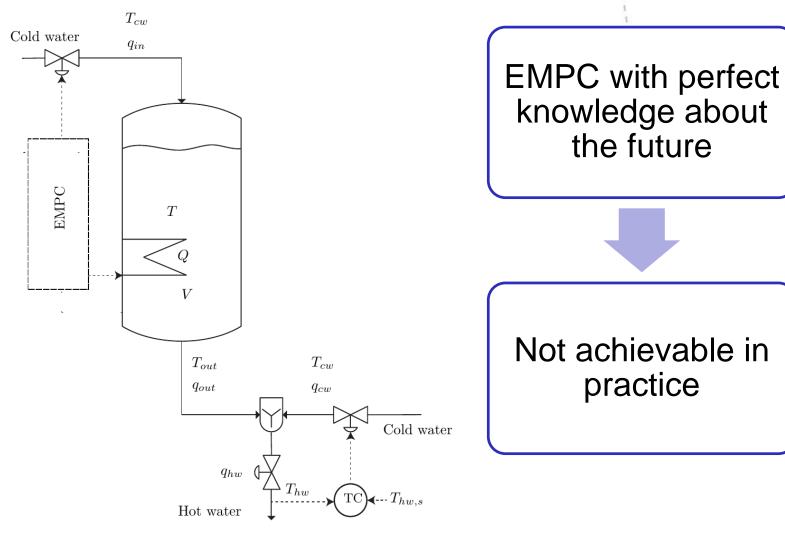
Alternative strategy:

Maximum storage policy:

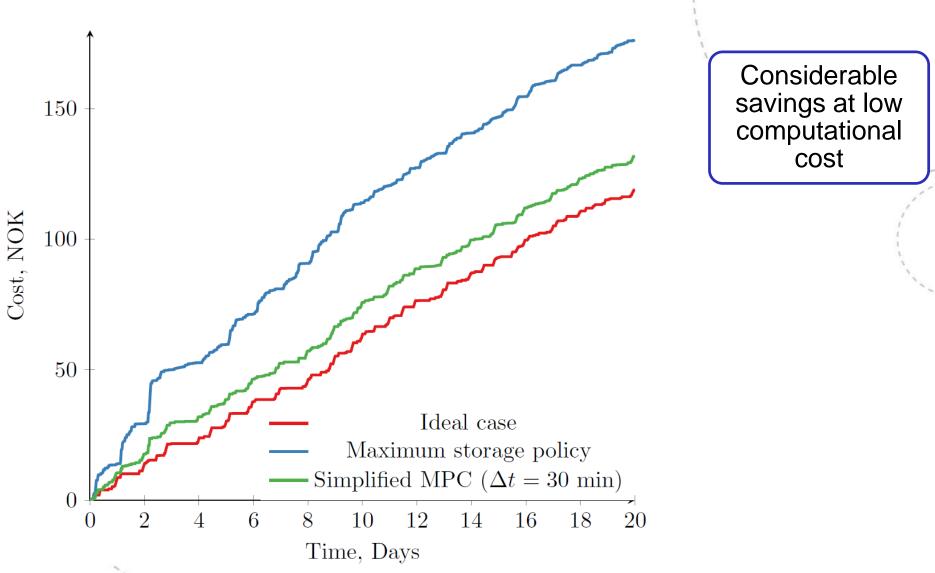
- $T_s = T_{max}$
- $V_s = V_{max}$

Safest policy in terms of constraint violations

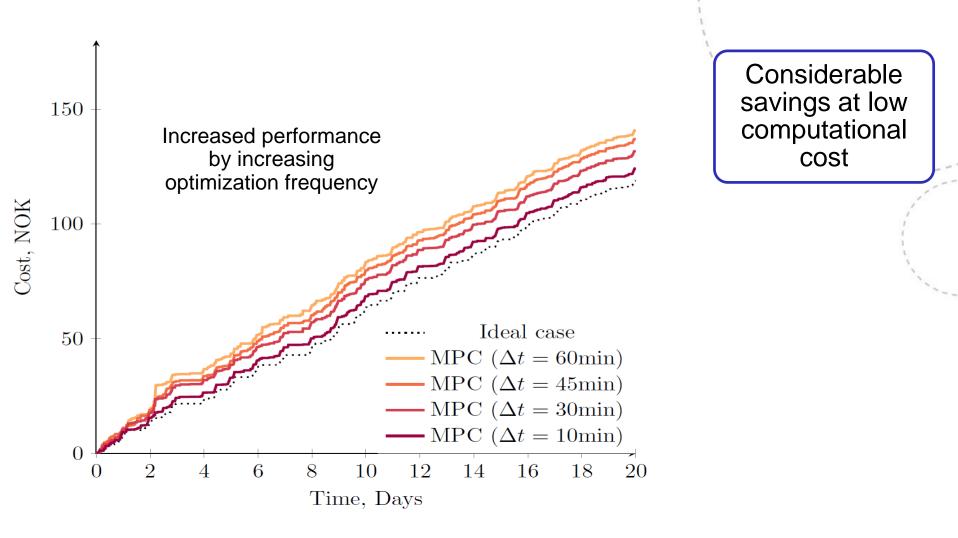




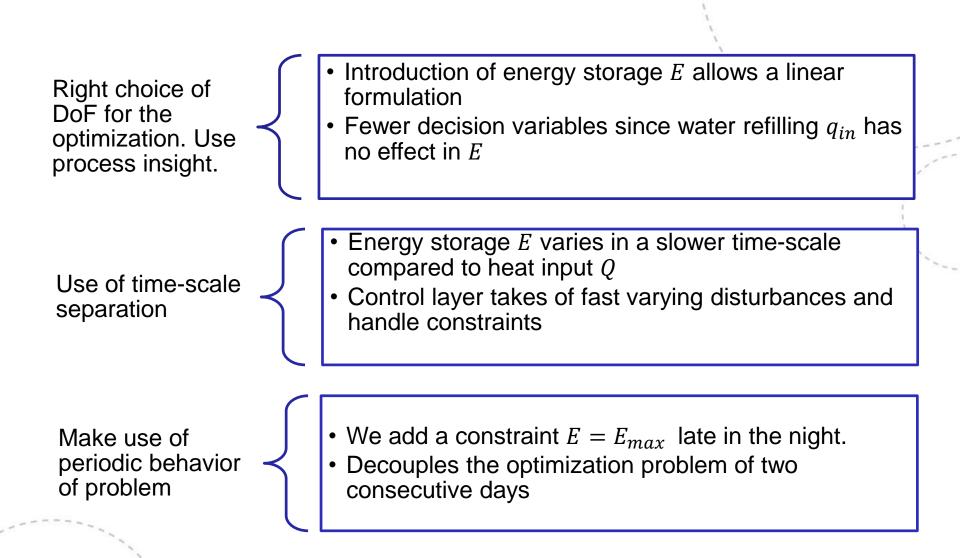
Results



Results

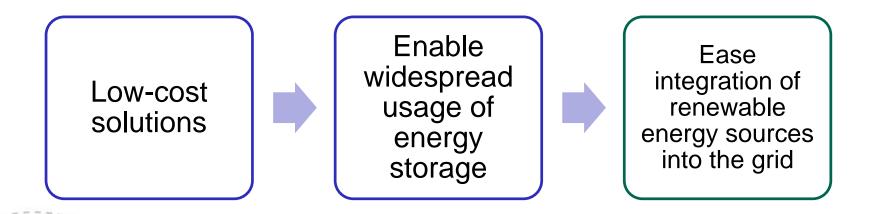


Great simplification of the problem by



Main benefits

- Optimal operation
- Minimum modeling efforts
- Very low computational cost →suitable for embedded hardware



Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

✓ Chapters 7 and 8

Optimal operation of energy storage systems

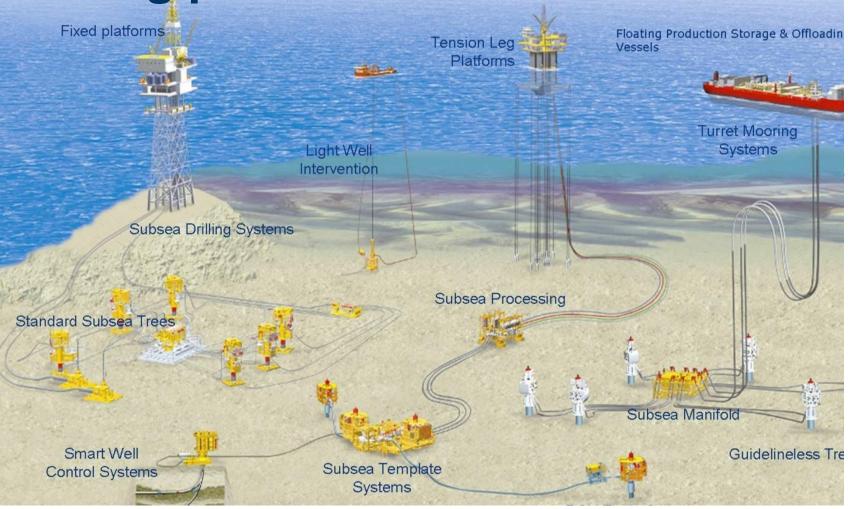
✓ Chapters 2, 3 and 4

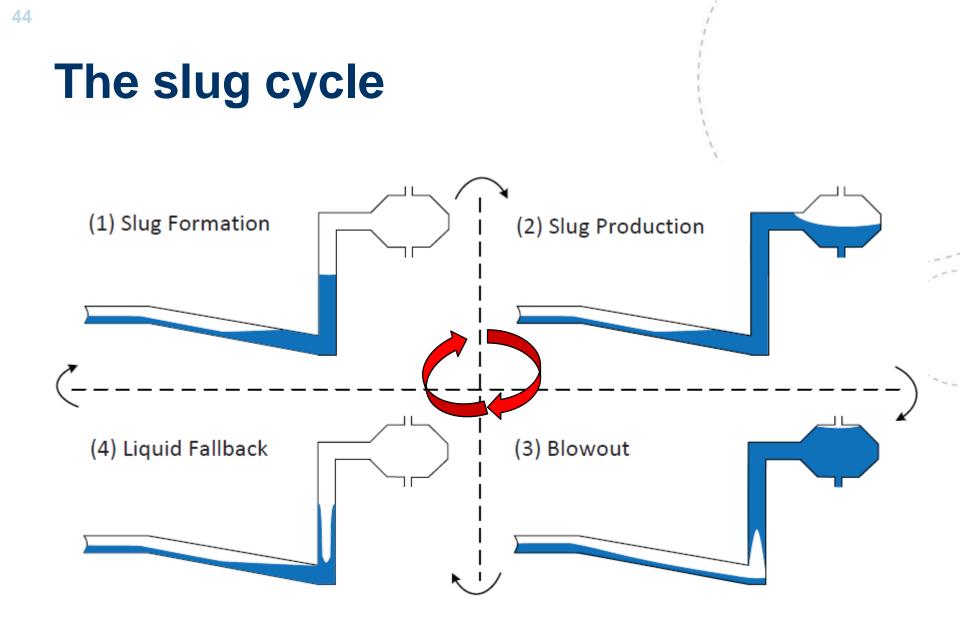
Optimal operation of dynamic systems at their stability limit: antislug control system for oil production optimization

✓ Chapters 5 and 6

Concluding remarks

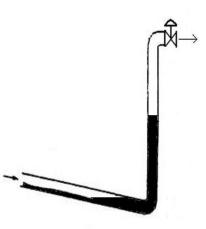
The big picture

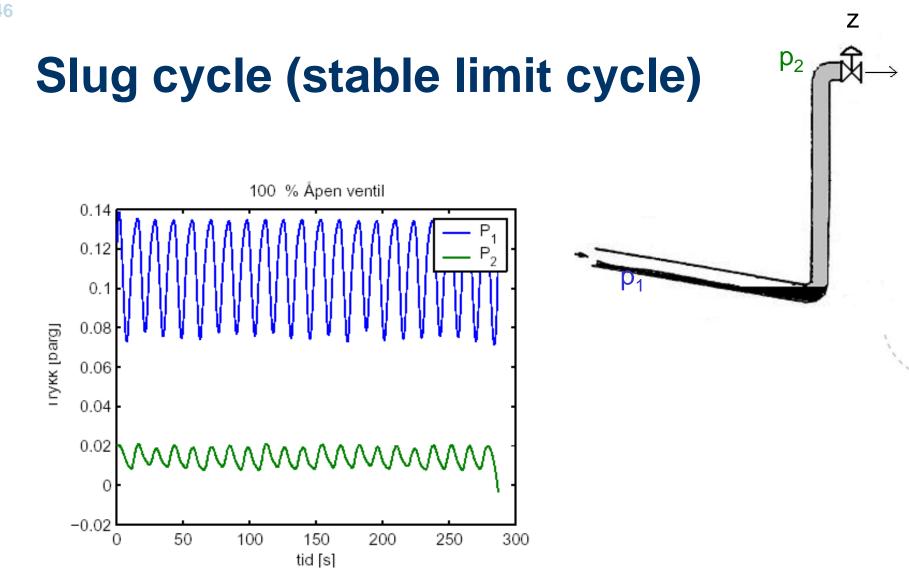




The slug cycle (video)

Experiments performed by the Multiphase Laboratory,

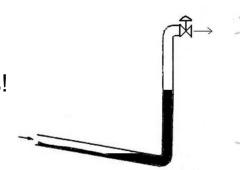


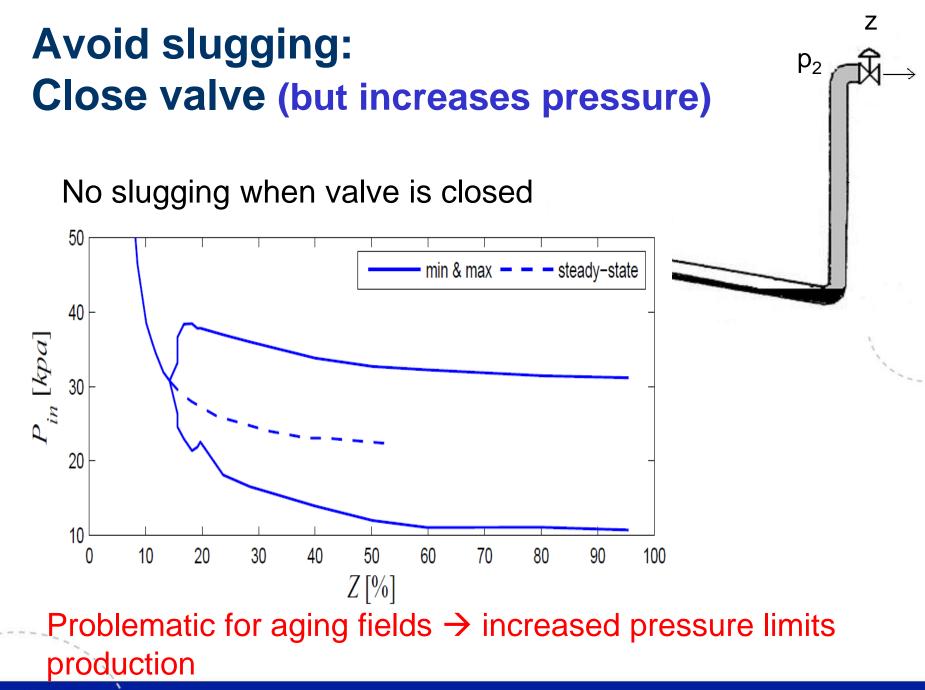


Problems caused by severe slugging

- Large disturbances in the separators
 - Causing poor separation performance
 - − Can cause total plant shutdown → production losses!
 - Increase flaring.
- Large and rapid variation in compressor load

Limits production capacity (increase pressure in pipeline)





www.ntnu.no

Avoid slugging: "Active" feedback control $\stackrel{P_{B-SP}}{\longrightarrow} (PC)$ $\boldsymbol{u}_{\boldsymbol{P}}$ P_{Sep} Inlet separator Topside choke Ρ Riser **Q**_{Sub} PT **U**_{Sub} min & max - - - steady-state Ρ **P**_B Subsea 40 $P_{in}[kpa]$

50

Z[%]

60

70

80

90

100

40

30

20

10

0

10

20

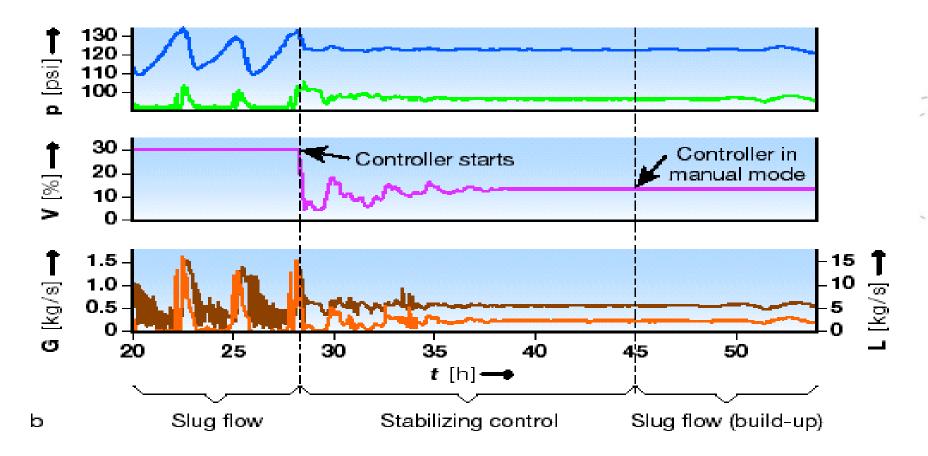
30

wells

Subsea

choke

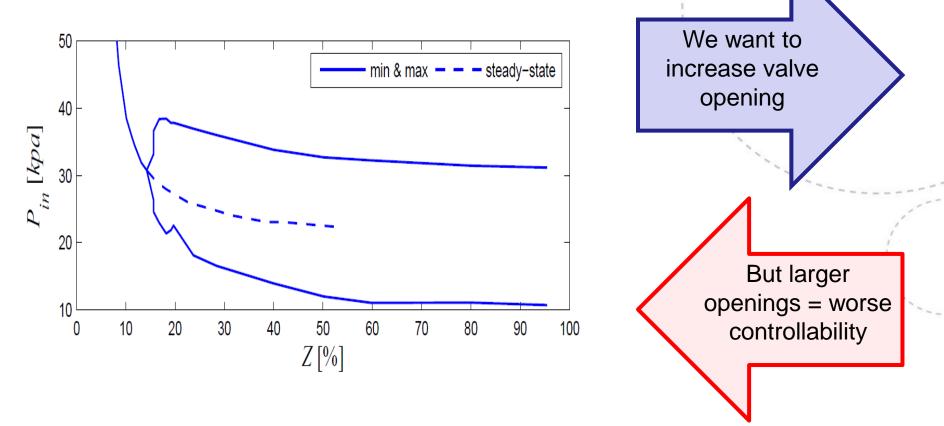
Anti slug control: Full-scale offshore experiments at Hod-Vallhall field (Havre, 1999)



Problems with current anti-slug control systems

- Tend to become unstable (oscillating) after some time
 - Inflow conditions change
 - Require frequent retuning by an expert \rightarrow costly
- Ideal operating point (pressure set-point) is unknown
 - If pressure setpoint is too high \rightarrow production is reduced
 - If pressure setpoint is too low \rightarrow system may become unstable

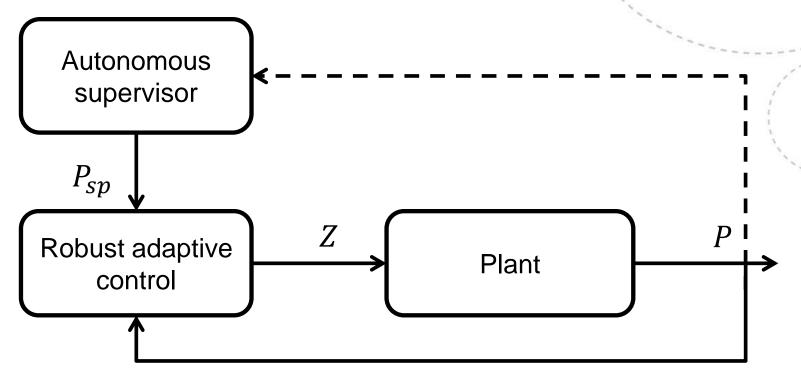
52 Motivation



- The lager the valve opening \rightarrow the more difficult it is to stabilize the system
 - Controller gets more sensitive to uncertainties
 - Process gain is reduced

Our proposed autonomous control system

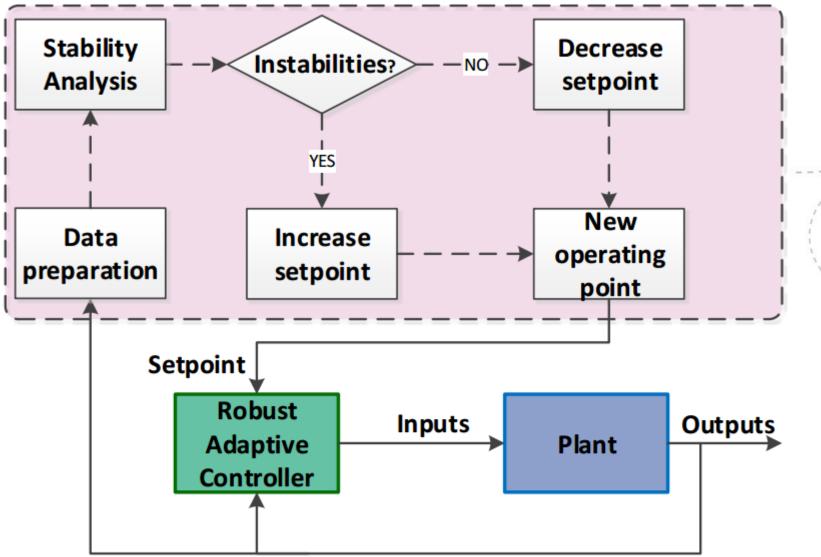
- Periodically checks the stability of the system
- Reduces setpoint if control loop is working fine



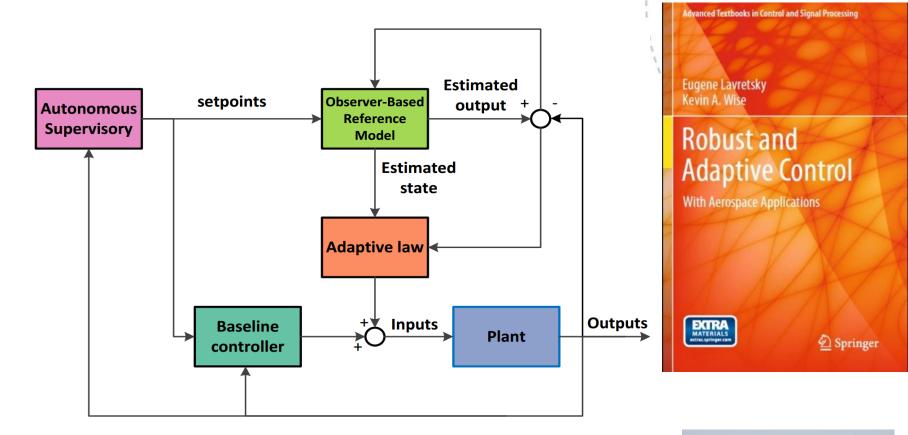
Setpoint change is key for the adaptation to work well

How does it work?

Autonomous Supervisory



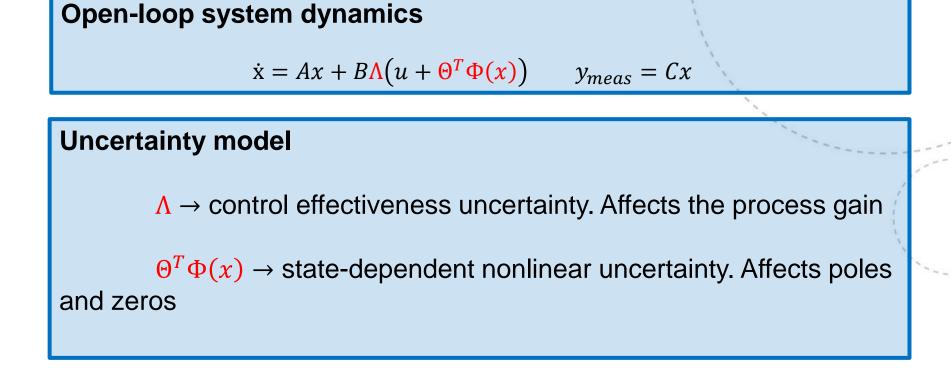
Adaptive control based on adaptive augmentation



Relies on state-of-the-art output feedback adaptive control techniques

 \rightarrow Very successful in the aerospace industry

Adaptive control design



 $\Theta \rightarrow$ matrix of unknown coefficients $\Phi(x) \rightarrow$ vector of Lipschitz basis functions

Adaptive control design

Define reference model

$$\dot{\hat{x}} = A_{ref}\hat{x} + B_{ref}r + \boldsymbol{L}_{\boldsymbol{v}}(\boldsymbol{y} - \hat{\boldsymbol{y}})$$

Output Feedback Adaptive Laws

- $\hat{\Theta} = \Gamma_{\Theta} \operatorname{Proj}(\widehat{\Theta}, \Phi(\widehat{x}, u_{bl})(y \widehat{y})^T)$
- $\hat{K}_u = \Gamma_u \operatorname{Proj}(K_u, u_{bl}(y \hat{y})^T)$
- $u_{adaptive} = -\widehat{K}_u u_{baseline} \widehat{\Theta}^T \Phi(x)$

Robust baseline + adaptive output feedback

 $u = u_{baseline} + u_{adaptive}$

 $u_{baseline} \rightarrow$ computed using your favorite method (PID, H_{∞} , LQG/LTR, ...)

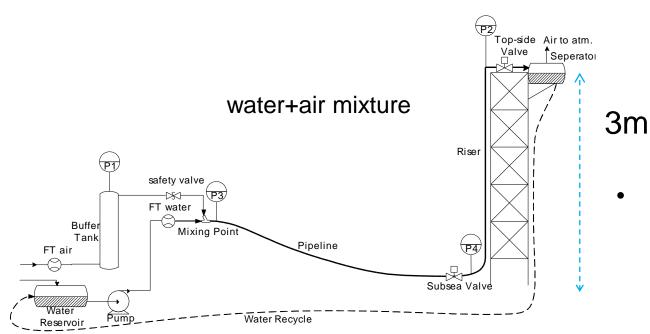
Feedback term to improve transient

dynamics

How does it perform in practice?

2009-2013: Esmaeil Jahanshahi, PhD-work supported by Siemens

Experimental mini-rig



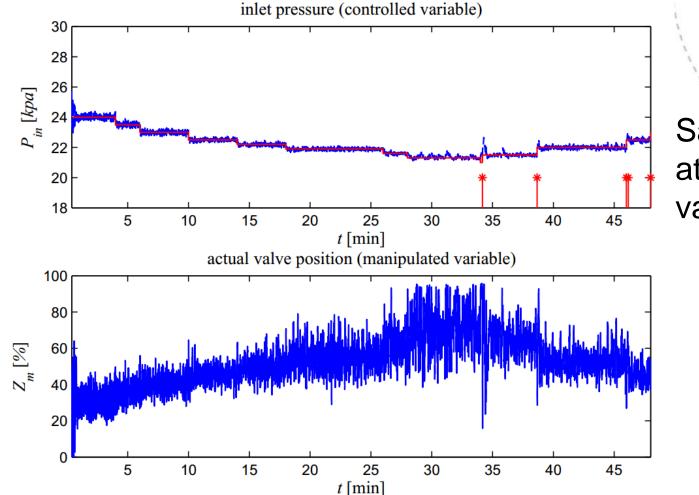
its dynamical behavior is quite similar to that of much larger rigs

• Baseline controller tuned for Z=30%

 Linearized mechanistic or simple empirical models can be used

Note: our models agree very well with experiments

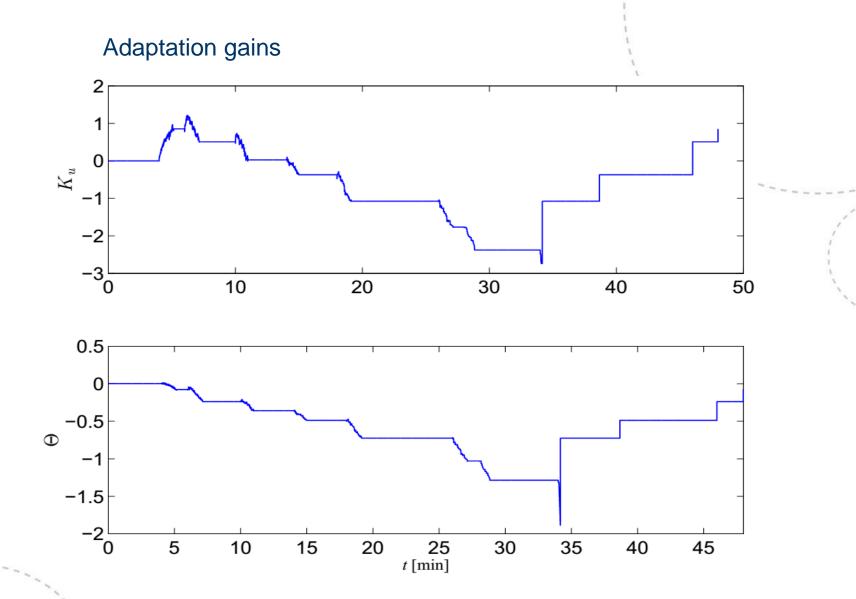
Autonomous supervisor and adaptive LTR controller



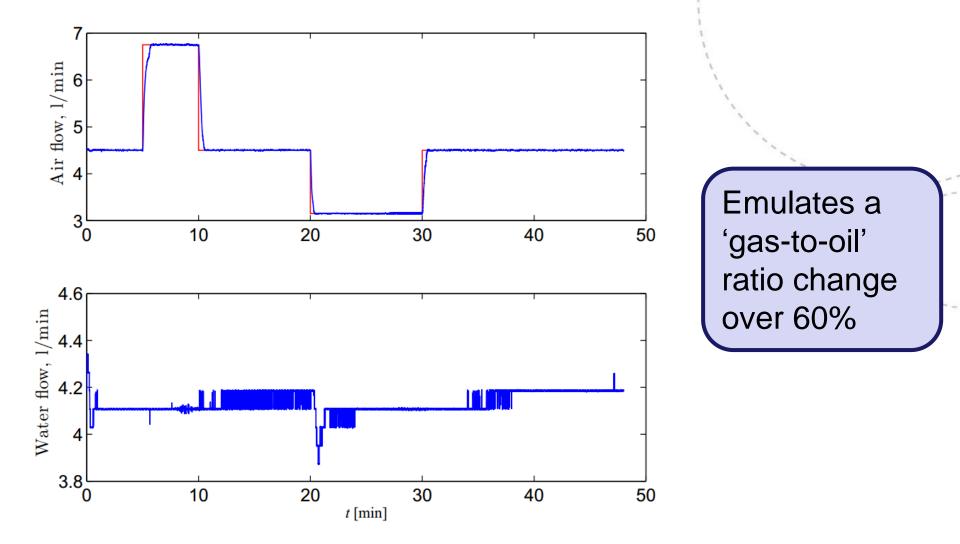
Safely operates at very large valve openings

www.ntnu.no

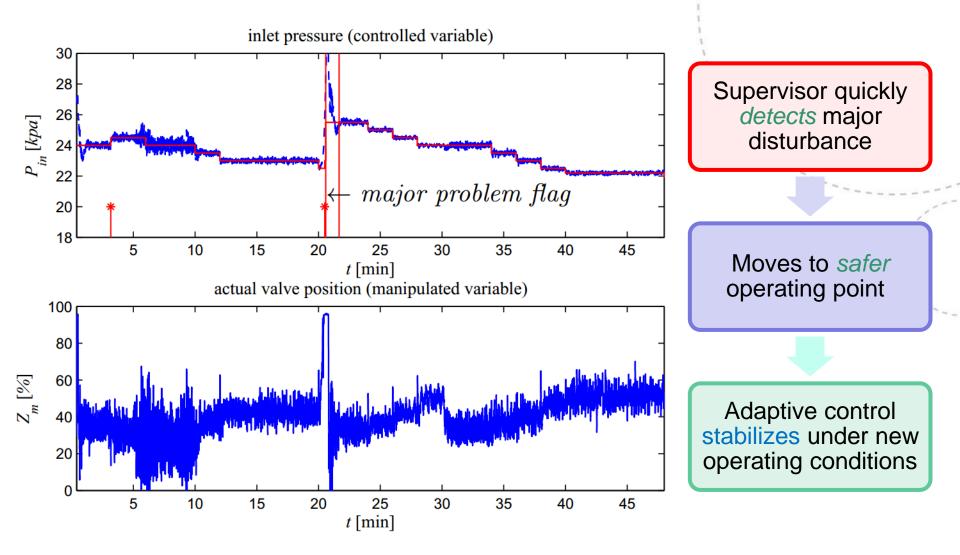
Autonomous supervisor and adaptive LTR controller



Oops, Big disturbance!

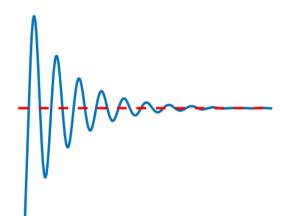


Large change in the operating conditions



www.ntnu.no

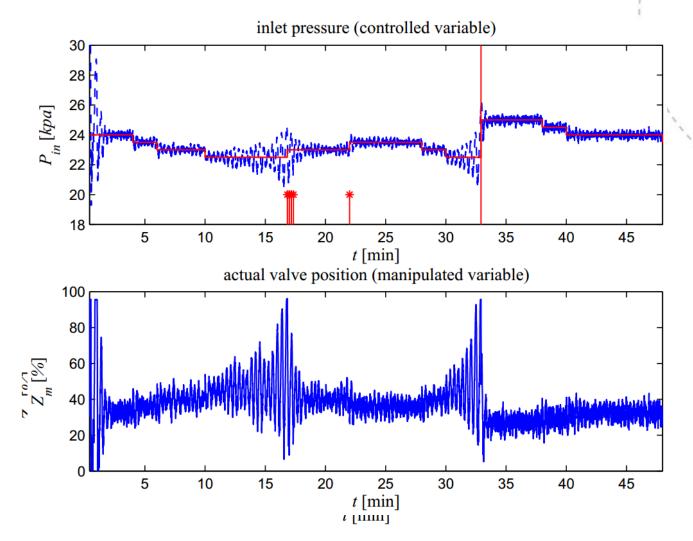
What happens if the baseline controller is poorly tuned?



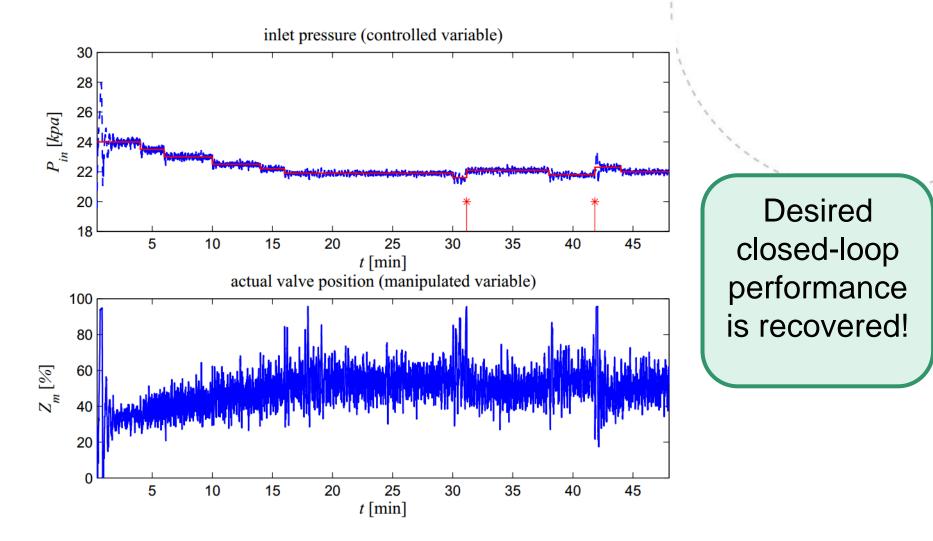
www.ntnu.no

Vinicius de Oliveira | Optimal operation strategies for dynamic processes under uncertainty

Poorly tuned PI control as baseline: Adaptation is OFF



Poorly tuned PI control as baseline: Adaptation is ON



www.ntnu.no

Comparison		
	Large is good	
Case	Mean valve opening	ISE
Bad baseline + adaptation OFF	38,45 %	6,2
Bad baseline + adaptation ON	50,42%	0,76
Good baseline + adaptation ON	53,23%	0,64
		\square
	ſ	Small is good

 $ISE = \int e^2 dt$

Take home message

- Our 2-layered anti-slug control system works very well in practice
- The interaction between the two layers create a very nice synergy:
 - ✓ Setpoint changes triggered by the supervisor makes the adaptation work well
 - ✓ A well functioning adaptive control makes it possible to safely operate at large valve openings, thus maximizing production

Take home message

This work resulted in a patent application

 Cooperation agreement with industrial partner on the way

Industrial pilot project (hopefully) coming soon

71

Presentation outline

Introduction

Near-optimal operation of uncertain batch systems

✓ Chapters 7 and 8

Optimal operation of energy storage systems

✓ Chapters 2, 3 and 4

Optimal operation of dynamic systems at their stability limit: anti-slug control system for oil production optimization

✓ Chapters 5 and 6

Concluding remarks

Concluding remarks

We have seen different strategies for near-optimal operation under uncertainty:

- Null-space method for batch processes
- Simplified optimization scheme of energy storage systems based on a hierarchical control structure
- Intelligent adaptive anti-slug control system for oil production maximization

Thank you for your attention

Not included in the presentation

Ch. 4: Dynamic online optimization of a house heating system in a fluctuating energy price scenario.

Ch. 6: A comparison between Internal Model Control, optimal PIDF and robust controllers for unstable flow in risers.

Ch. 7: Neighbouring-Extremal Control for Steady-State Optimization Using Noisy Measurements.