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Batch process challenges 
Process 

– Low volume and high value products 

– Unsteady-state operation 

– Inter – and Intra - batch variation 

 

Instrumentation 
– No or Infrequent or less accurate measurements 

 

Modeling 
– Good kinetic models are rare 

– Poor models  

– Reproducibility less than 5 % 

 

Optimization objectives 
– Economic objective      Modeling and engineering effort should pay off 

– Guarantee high reproducibility and high yield despite of the uncertainties 

– Incorporate safety constraints without losing significant optimization potential 

 



Terwiesch et al., 1994 
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Modeling 

 First principle modeling 

• Mass, energy & momentum balance equations 

 Require physical insight  

 Valid over a wide range with better predictability 

 Modeling and maintenance are both time and resource intensive 

  Emperical modeling 

• input – output data 

 Valid over a short range  

 Poor predictability 

  Hybrid Modeling 

•  Combination of both modeling methods 

 Minimum modeling effort 

 Covers a range of operation 
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Uncertainties and their characterization 

Simplifications and inaccuracies in modeling and disturbances result in 

variations from the real plant 

 

Mathematically these variations are treated as uncertainties  

 

Uncertainties are treated as random variables that follow a specific probability 

distribution 

 

Characterization: involves the selection of probability distribution function and 

their associated parameters, for example, for a normally distributed random 

variable, mean and variance are the parameters 

 

Terwiesch et al., 1994 
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Batch process optimization : Problem formulation 
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Srinivasan et al., 2003 

Feehery and Barton, 1998 
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Batch process optimization : Pontryagin Maximum Principle 
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Reformulation using Pontryagin Maximum Principle  

with adjoint variables λ and Lagrange multipliers μ,ν 

 

require solving Two Point Boundary Value Problem 
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Nominal optimization: Numerical solution approaches 

• Piecewise constant u(t) –  

  Control vector iteration (CVI) 

 decision variables : discretized u in the intervals  

• Polynomial u(t) or u(x)  

   Control vector parameterization (CVP) 

       decision variables : polynomial coefficients 

• Polynominal x(t) and u(t)  

    decision variables : polynominal coefficients of both x 

and u  

Bryson and Ho, 1969; Hicks and Ray, 1971; Ray, 1981;  

Biegler, 1984;  Vassiliadis et al., 1994 

Time 

Controlled  

variable 
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Nominal optimization: Numerical solution approaches 

• Piecewise polynomial x(t) and 

u(t) 

 decision variables: polynominal coefficients of x and u 

in each stage 

• Discrete charges ui 

 decision variables: stage end times, discrete jumps 

  in u 

Bryson and Ho, 1969; Hicks and Ray, 1971; Ray, 1981; 

Biegler, 1984;  Vassiliadis et al., 1994 

Path constraints cannot be handled with-in the stages 

 

In addition to parameterization, numerical integration is also replaced  

with polynominal approximations to reduce computational burden 
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Nominal optimization: Numerical solution approaches 

Srinivasan et al., 2003 

PMP : pontryagin maximum principle 

BCI : boundary condition iteration 

NR : newton –raphson  

QL : quasi-linearization  
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Summary of numerical solution approaches 

Numerical approaches accuracy     # of stages, # of coefficients 

 

Adaptive control vector parameterization techniques are developed by  

including stage times also as decision variables in optimization 

 

Terwiesch et al., 1994 

Schlegel, 2005 
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Interpretation optimal solution 

Lagrange multipliers μ and ν capture the cost deviations 

 in not meeting the active constraints  

0

ft

T TJ S dt T     

0u uJ H S  The cost in not meeting sensitivity constraints   as Hu = 0  

 

Srinivasan et al., 2003 

Uncertainties are inevitable in the modeling and optimization, methods that  

handle uncertainties are needed 
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Classification of Batch process optimization approaches 

Stochastic 

Srinivasan et al., 2002 
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Optimization with uncertain models 

Stochastic optimization 

Best expected value 

Minimum variance 

Threshold 

Variable threshold 

Best worst case 

Best best case  
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M – model with uncertain parameters θ 

Q – specified product quality 

g – product quality requirements 

α – specified level of confidence for quality 

Offline optimization 

Terwiesch et al., 1994 

Given uncertain parameters θ 

No need for measurements 

Typically conservative 
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Optimization with uncertain models in parameters θ 
 Online optimization approaches 

Dealing uncertainty through feedback - 
Measurements are used to estimate x 
and θ  

1. Online reoptimization 

2. Optimal singular feedback control 

3. Optimal nonsingular feedback control 

4. Necessary conditions of optimality 
tracking 

 

 

Explicit uncertainty accounting -  
Measurements are used to estimate x, 
θ, P(θ) 

1. Minimum effort for specified 
confidence of feasible operation 
– Final state uncertainty is predicted by 

propogating the covariance of uncertain 
parameters through system equations and α-
confidence ellipsoid is constructed 

–  u(t) is optimized to locate the desired xset at 
the centre of confidence ellipsoid 

– does not account for future parameter 
estimation accuracy 

2. Dual control  
– also accounts for future parameter estimation 

accuracy 

3. Differential Game    

Two player game  
– Engineer     vs          Nature  

– Iu[u(t),v(t)]           Iv[u(t),v(t)] 

Super structure of stochastic optimization 
 

Bryson and Ho, 1969; Palanki et al., 1993; Terwiesch et al., 1994 

Astroom and Wittenmark, 1989; Meadows and Rawlings, 1991;  

Gupta and Leondes, 1981 

Reduces conservatism and 

improves performance 
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Optimization approach 1 
Dealing uncertainty through feedback 

 model is updated at each sampling 

instant 

 

 re-optimization is performed at 

each sampling instant 

 

 computationally intensive and 

require high effort in modeling 

 

 

Welz et al., 2008 

Würth et al., 2009 

Online reoptimization 
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Singular feedback 

∂H/∂u =0; u(x,λ,t) 

Terwiesch et al., 1994 

Estimation of  

x and θ 

Online singular feedback  

Optimization approach 2  
Dealing uncertainty through feedback 

 Optimal control problem is singular 

when Hamiltonian is linear in control 

u. 

 

 In singular feedback control u(x,λ,t) is 

a function of adjoint variables λ on 

singular arcs, which are solutions of 

TPBVP 

 

 For practical purpose λ is replaced 

with λnom 

 

 It is shown to work well practically but 

cannot always guarantee better 

performance with uncertainties 
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Terwiesch et al., 1994 

Nonsingular feedback 

u(t)=unom(t)+K(t){x(t)-xnom(t)} 
K(t) calculated offline 

Estimation of  

x and θ 

Online nonsingular feedback  

Optimization approach 3 
Dealing uncertainty through feedback 

 It requires online computation effort 

of a P controller 

 

 time-variant corrector gains K(t) is 

performed offline 

 

 dynamic feedback can also be used  

 

 guarantees optimality in case of small 

uncertainties 

 

 large uncertainties are handled with 

multiple nominal profiles and time-

variant corrector gains 
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Optimization approach 4: Necessary conditions of optimality tracking  

 

 Optimal inputs are partitioned as arcs 

η(t) for constraints and parameters π  

for sensitivities 

 

 Solution model is developed as the 

sequence of arcs 

 

 Control laws are developed to adjust 

the arcs η(t) and parameters  π to 

meet the NCO conditions 

 

 Large uncertainties are dealt by 

including switching times of arcs as 

new decision variables in optimization 

Welz et al., 2008 

Necessary Conditions of 

Optimality (NCO) tracking 
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NCO illustration on a fed-batch bioreactor 
S – substrate concentration 

X – biomass concentration 

P – product concentration 

u – feed rate 

 

 

- Kinetic parameters 

Yx, Yp –yield coefficients 

 

 

X

S X

S P
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Reactions 

Model  

equations 

Kadam et al., 2007 



Ramprasad Yelchuru, Optimization of batch processes under model uncertainty, 31/34 

 

NCO illustration 
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NCO tracking implementation 

Path and terminal controllers can be either decentralized PI or Multivariable controllers 
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Conclusions 

 Batch process challenges and numerical solution approaches for nominal optimization are 

discussed 

 

 Stochastic methods for optimization under uncertainty are presented 

 

 Measurement based optimization approaches are described 

 

 NCO tracking is illustrated on an example 

 

Research opportunities 

 Better technique for estimation of states and parameters for a given parameter probability 

distribution is vital as extended kalman filter is sub-optimal for non-gausian random variables 

 

 Developing methods that quantify the lost economic value with various approaches 
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