

Innovation and Creativity

DESIGN OF PLANTWIDE CONTROL SYSTEMS WITH FOCUS ON MAXIMIZING THROUGHPUT

Elvira Marie B. Aske

Department of Chemical Engineering
Norwegian University of Science and Technology

Trondheim, March 27, 2009

Presentation outline

- Introduction (Chapter 1)
- Self-consistency (Chapter 2)
- Maximum throughput (Chapter 3 (4,5,6))
 - Optimal operation
 - Bottleneck
 - Back off
- Dynamic degrees of freedom for tighter bottleneck control (Chapter 4)
- Coordinator MPC (Chapter 5,6)
 - Remaining capacity
 - Flow coordination
 - Industrial case
- Concluding remarks and and further work

Introduction

- Optimal economic operation
- This often corresponds to maximum throughput
 - Constrained optimization!
 - Identifying the constraints?
- How does this affect the plantwide control structure?
 - Frequent disturbances?
 - Moving constraints?

SELF-CONSISTENT INVENTORY CONTROL

Self-consistent inventory control

 Inventory (material) balance control is an important part of process control

```
\frac{dI}{dt} = Rate of change in inventory = Inflow + Generation - Outflow - Consumption
```

- How design an appropriate structure?
- Many design rules in literature, but often poor justification
- Propose one rule that applies to all cases
 - → self-consistency rule

Definitions

- Consistency: steady-state mass balances (total, component and phase) for the individual units and the overall plant are satisfied.
- Self-regulation: an acceptable variation in the output variable is achieved without the need for additional control when disturbances occur.
- Self-consistency: *local* "self-regulation" of all inventories (local inventory loops are sufficient)
 Self-consistency is a desired property because the mass balance for each unit is satisfied without the need to rely on control loops outside the unit

Self-consistency rule

- Rule 2.1. "Self-consistency rule": Self-consistency (local "self-regulation" of all inventories) requires that
- 1. The total inventory (mass) of any part of the process (unit) must be "self-regulated" by its in- or outflows, which implies that at least one flow in or out of any part of the process (unit) must depend on the inventory inside that part of the process (unit).
- 2. ... and the inventory of each component
- 3. .. and the inventory of each phase

Self-consistency: Example

Consistent, but not self-consistent

Self-consistency: Example

Self-consistent: Interchange the inventory loops

Chapter 3,(4,5 & 6)

MAXIMUM THROUGHPUT

Depending on market conditions: Two main modes of optimal operation

Mode 1. Given throughput ("nominal case")

Given feed or product rate

"Maximize efficiency": Unconstrained optimum

Mode 2. Max/Optimum throughput

Throughput is a degree of freedom + good product prices

2a) Maximum throughput

Increase throughput until constraints give infeasible operation Constrained optimum - *identify active constraints* (bottleneck!)

2b) Optimized throughput

Increase throughput until further increase is uneconomical

Unconstrained optimum

Throughput manipulator

Definition. A throughput manipulator is a degree of freedom that affects the network flows, and which is not indirectly determined by other process requirements.

Bottleneck

Definition: A unit is a bottleneck if maximum throughput (maximum network flow for the system) is obtained by operating this unit at maximum flow

- If the flow for some time is not at its maximum through the bottleneck, then this loss can never be recovered
 - → Maximum throughput requires tight control of the bottleneck unit

Back off

Definition: The (chosen) back off is the distance between the (optimal) **active constraint** value $(y_{constraint})$ and its set point (y_s) (actual steady-state operation point),

$$Back\ off = b = |y_{constraint} - y_s|,$$

which is needed to obtain feasible operation in spite of:

- 1. Dynamic variations in the variable y caused by imperfect control
- 2. Measurement errors.

Realize maximum throughput

Best result (minimize back-off) if TPM permanently is moved to bottleneck unit

Bottleneck (active constraint) = max

Note: reconfiguration of inventory loops upstream TPM

Obtaining the back off

- Back off given by $b_{\min} = \max_{d,\Delta} ||y(t) y_s||_{\infty}$
- Exact estimation of back off difficult in practice
- Use controllability analysis to obtain "rule of thumb"
- Estimate back off to find economic incentive:

$$y = (I + GK)^{-1} \cdot G_d d = SG_d d$$

Worst case amplification:

Back off =
$$\max ||y||_2 = ||SG_d||_{\infty} \cdot ||d_0||_2$$

Back off example: PI-control of first order disturbance

Step response in d at t=0

 τ_d : disturbance time constant

 θ : time delay

Frequency response of Sg_d

Process:
$$g(s) = k \frac{e^{-\theta s}}{\tau_1 s + 1}, \ \tau_1 = 10$$

Disturbance:
$$g_d = \frac{1}{\tau_{ds}+1}$$
, $\tau_d = 10$

Controller:
$$c(s) = K_c \frac{\tau_I s + 1}{\tau_I s}$$
 where $K_c = \frac{1}{k} \frac{\tau_1}{\tau_c + \theta}$ and $\tau_c = \theta$

Obtaining the back off (controllability analysis)

 θ_{eff} : effective time delay from TPM to the bottleneck unit

- 1. "Easy disturbance" $\tau_d > 4\theta_{\rm eff}$
 - Benefit of control to reduce the peak
 - Minimum back off: $b_{\min} pprox rac{2 heta_{ ext{eff}}}{ au_d} \cdot k_d |d_0| \leq k_d |d_0|$
- 2. "Difficult disturbance" $\tau_d < 2\theta_{\rm eff}$
 - Control gives a larger back off (but needed for set point tracking)
 - "Smooth" tuning recommended to reduce peak (M_S)
 - Minimum back off:

$$b_{\min} \approx M_S \cdot k_d |d_0| \text{ where } M_S = \max_{\omega} |S(j\omega)|$$

USE DYNAMIC DEGREES OF FREEDOM

Reduce back off by using dynamic degrees of freedom

- TPM often located at feed (from design)
- Not always possible to move TPM
 - Reconfiguration undesirable (TPM and inventory)
 - Dynamic reasons (Luyben, 1999)
- Alternative solutions:
- 1. Use dynamic degrees of freedom (e.g. holdup volumes)
- 2. For plants with parallel trains: Use crossover and splits

Luyben, W.L. (1999). Inherent dynamic problems with on-demand control structures. *Ind. Eng. Chem. Res.* 38(6), 2315–2329.

Dynamic degrees of freedom: Main idea

- Main idea: change the inventory to make temporary flow rate changes in the units between the TPM (feed) and the bottleneck
- Improvement: Tighter bottleneck control, the effective delay from the feed to the bottleneck may be significantly reduced
- Cost: Poorer inventory control (usually OK)

Proposed control structure: Single-loop plus ratio control

Innovation and Creativity

- Change all upstream flows simultaneously
- No reconfiguration of inventory loops
- Bottleneck control only weakly dependent on inventory controller tuning

COORDINATOR MPC

THE APPROACH AND THE IMPLEMENTATION AT KARSTØ GAS PLANT

North Sea gas network

- Kårstø plant:
 Receives gas from
 more than 30
 offshore fields
- Limited capacity at Kårstø may limit offshore production (both oil and gas)

Snøhvit

Melkøya

Motivation for coordinator MPC: Plant development over 20 years

Maximum throughput

- Here: want maximum throughput
 - → Obtain this by "Coordinator MPC":
- Manipulate TPMs (feed valves and crossovers) presently used by operators
- Throughput determined at plant-wide level (not by one single unit)
 - → coordination required
- Frequent changes
 - → dynamic model for optimization

"Coordinator MPC": Coordinates *network flows*, not MPCs

Use Coordinator MPC to optimally adjust TPMs:

- Coordinates the network flows to the local MPC applications
- Decompose the problem (decentralized).
 - Assume Local MPCs closed when running Coordinator MPC
 - Need flow network model (No need for a detailed model of the entire plant)
 - Decoupling: Treat TPMs as DVs in Local MPCs
 - Use local MPCs to estimate feasible remaining capacity (R) in each unit

Remaining capacity (using local MPCs)

Feasible remaining feed capacity for unit k:

$$R_k = F_{k,max} - F_k$$
 current feed to unit $_k$ max feed to unit $_k$ within feasible operation

- Obtained by solving "extra" steady-state LP problem in each local MPC: $F_{k,max}^l = \max_{u_{\iota}^l, F_{\iota}^l} F_{k}^l$
 - subject to present state, models and constraints in the local MPC
- Use end predictions for the variables
- Recalculated at every sample (updated measurements)
- Very little extra effort!

Coordinator MPC: Design

Objective: Maximize plant throughput, subject to achieving feasible operation

- MVs: TPMs (feeds and crossovers that affect several units)
- CVs: total plant feed + constraints:
 - Constraints (R > backoff > 0, etc.) at highest priority level
 - Objective function: Total plant feed as CV with high, unreachable set point with lower priority
- DVs: feed composition changes, disturbance flows
- Model: step-response models obtained from
 - Calculated steady-state gains (from feed composition)
 - Plant tests (dynamic)

KÅRSTØ MPC COORDINATOR IMPLEMENTATION (2008) ort gas Europipell Rich gas T400 21 FC4125AVWA MV CV 21FC4225AVWA StatpipeSGC DPCU Export gas () 15FC0105VW/ Draupner CV CV CV Rich gas T100 X CV MV 21FC5334VWA T200 20FC2001AVWA CO2stripper Half of the 1521 plant included: 21FC5333VWA MV 24FC5071VW/(1) 6 MVs CV Condensate MV CV 22 CVs CV T300 MV CV stanka CV stillation Columns CV

CV

www.ntnu.no

Step response models in coodinator MPC 27FC3208VWA -0.5 RemCapSTPSGC Remaining capacity (R) goes down RemCapSTPBC -0.6 when feed increases... RemCapSTB2 RemCapSTB1 -0.74-0.50 RemCapPT300 -0.50 -0.07 0.70 -0.10 -0.2 RemCapPT100 RemCapMT100 -1.0 RemCapET300 -0.430.08 RemCapET100 -0.17 -0.2 RemCapDPCU -0.40 -0.01 -0.74 -0.07 RemCapBT300 0.00 -0.00 RemCapBT100 0.00 RemCapBS300 -0.37 0.32 -0.04 RemCapBS100 0.02 -0.0 36LI3914 -0.00 -0.00 0.00 36LI3054 -0.00 -0.00 0.00

Experiences

- Using local MPCs to estimate feasible remaining capacity leads to a plant-wide application with "reasonable" size
- The estimate remaining capacity relies on
 - accuracy of the steady-state models
 - correct and reasonable CV and MV constraints
 - use of gain scheduling to cope with larger nonlinearities (differential pressures)
- Crucial to inspect the models and tuning of the local applications in a systematic manner
- Requires follow-up work and extensive training of operators and operator managers
 - "New way of thinking"
 - New operator handle instead of feed rate: R_s (back-off)

CONCLUDING REMARKS AND FURTHER WORK

Main contributions

- Plantwide decomposition by estimating the remaining capacity in each unit by using the local MPCs
- The idea of using a "decentralized" coordinator MPC to maximize throughput
- The proposed self-consistency rule, one rule that applies to all cases to check whether a inventory control system is consistent
- Single-loop with ratio control as an alternative structure to obtain tight bottleneck control

Further work

- Recycle systems not treated
- Information loss in plantwide composition
- Further implementation of coordinator MPC
 - Planned start-up autumn 2009 (after control system upgrade)

Acknowledgments: Gassco, StatoilHydro ASA

