Studies on Selection of Controlled Variables

Vidar Alstad

Department of Chemical Engineering Norwegian University of Science and Technology

Thesis outline

- 1. Introduction
- 2. Overview of control structure design and optimizing control
- 3. The null space method for selecting controlled variables
- 4. Measurement selection in the null space method
- 5. Disturbance discrimination in self-optimizing control
- 6. Effect of non-optimal nominal setpoints in self-optimizing control
- 7. Dynamics of controlling measurement combinations
- 8. Self-optimizing control structures for a Petlyuk distillation column
- 9. Energy savings by over-fractionation in the Petlyuk column
- 10. Control structure selection for oil and gas production networks
- 11. Control structure selection for an evaporator example
- 12. Appendices A-E

Presentation outline

- Introduction
- Part I: (Chapters 3 and 4)
 - Self-optimizing control
 - The null space method
 - Measurement selection
- Part II: (Chapters 8,10 and 11)
 - The Petlyuk Column
 - Oil & gas production networks
 - Evaporator
- Part III: (Chapters 5, 6 and 7)
 - Effect of nominal setpoint error
- Concluding remarks and further work

Control structure hierarchy in chemical plants

- Each layer in the control hierarchy operates at different time scales
- Layers connected through the controlled variables
- Focus on the interaction between the local optimization layer and the control layer
- Economics primarily decided by steady-state

Dr.Ing. defense, June 8, 2005

Dr.Ing. defense, June 8, 2005

Introduction - Selection of controlled variables: Petlyuk column

• Persistent disturbance z_A .

- Persistent disturbance z_A .
- ► 7 degrees of freedom: $\mathbf{u}^T = [S, D, B, L, V, R_L, R_V]$

- Persistent disturbance z_A .
- ► 7 degrees of freedom: $\mathbf{u}^T = [S, D, B, L, V, R_L, R_V]$
- \blacktriangleright -2 levels need to be stabilized

- Persistent disturbance z_A .
- ► 7 degrees of freedom: $\mathbf{u}^T = [S, D, B, L, V, R_L, R_V]$
- \blacktriangleright -2 levels need to be stabilized
- \blacktriangleright = 5 steady-state DOF

- Persistent disturbance z_A .
- ► 7 degrees of freedom: $\mathbf{u}^T = [S, D, B, L, V, R_L, R_V]$
- \blacktriangleright -2 levels need to be stabilized
- \blacktriangleright = 5 steady-state DOF
- \blacktriangleright -3 product specifications

- Persistent disturbance z_A .
- ► 7 degrees of freedom: $\mathbf{u}^T = [S, D, B, L, V, R_L, R_V]$
- \blacktriangleright -2 levels need to be stabilized
- \blacktriangleright = 5 steady-state DOF
- \blacktriangleright -3 product specifications
- \blacktriangleright = 2 DOF left. What to control?

Norwegian University of Science and Technology

- Persistent disturbance z_A .
- ► 7 degrees of freedom: $\mathbf{u}^T = [S, D, B, L, V, R_L, R_V]$
- \blacktriangleright -2 levels need to be stabilized
- \blacktriangleright = 5 steady-state DOF
- \blacktriangleright -3 product specifications
- \blacktriangleright = 2 DOF left. What to control?
- Optimize the operation!

 $\min_{R_L,R_V} J(R_L,R_V,z_A,\dots)$

Norwegian University of Science and Technology

Introduction - Strategies for ensuring optimal operation

Introduction - Strategies for ensuring optimal operation

Open loop implementation

Introduction - Strategies for ensuring optimal operation

Dr.Ing. defense, June 8, 2005

Introduction - Strategies for ensuring optimal operation

Part I: Self-optimizing control

- Which variables to measure? y
- \blacktriangleright Which variables to control? c
- What setpoints to use? \mathbf{c}_s

Part I: Self-optimizing control

- Which variables to measure? y
- Which variables to control? c
- What setpoints to use? \mathbf{c}_s
- Can we achieve acceptable steady-state economic performance with constant setpoints?

► ⇒ Self-optimizing control

• Objective: J = "wife happines"

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$
 - \blacktriangleright time used by husband domestic work \leq free time ~~ active

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$
 - \blacktriangleright time used by husband domestic work \leq free time ~ active

- Objective: J = " wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$
 - \blacktriangleright time used by husband domestic work \leq free time ~ active
- Candidate controlled variables (to keep constant):

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$
 - \blacktriangleright time used by husband domestic work \leq free time ~ active
- ► Candidate controlled variables (to keep constant):

$$c = u$$

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$
 - \blacktriangleright time used by husband domestic work \leq free time ~ active
- Candidate controlled variables (to keep constant):

$$\triangleright$$
 $c = u$

▶ c = "hug frequency (by wife)"

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$
 - \blacktriangleright time used by husband domestic work \leq free time ~ active
- Candidate controlled variables (to keep constant):

- c = "hug frequency (by wife)"
- c = "yelling frequency (by wife)"

- Objective: J = "wife happines"
- Manipulated variable: u = "#gifts"
- Constraints:
 - $price * #gifts \leq salary$
 - \blacktriangleright time used by husband domestic work \leq free time ~ active
- Disturbances: d = ["Bad day" "Husband" "Anniversary"]
- Candidate controlled variables (to keep constant):

$$\triangleright$$
 $c = u$

- c = "hug frequency (by wife)"
- c = "yelling frequency (by wife)"
- ▶ c = "smiles (by wife)"

Mathematical formulation

▶ How to find the best set of controlled variables *c*?

$$\begin{aligned} \{c(x, u_0, d)\} &= \arg\min_c \int_{\substack{d \in \mathcal{D} \\ n_c \in \mathcal{N}_c}} J(c, d, n) \\ \mathbf{f}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &= 0 \\ \mathbf{g}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &\leq 0 \\ \mathbf{c}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &= \mathbf{c}_s + \mathbf{n} \end{aligned}$$
 Model equations

$$\begin{aligned} \mathbf{g}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &\leq 0 \\ \mathbf{c}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &= \mathbf{c}_s + \mathbf{n} \end{aligned}$$

Mathematical formulation

▶ How to find the best set of controlled variables *c*?

$$\begin{aligned} \{c(x, u_0, d)\} &= \arg\min_c \int_{\substack{d \in \mathcal{D}\\ n_c \in \mathcal{N}_c}} J(c, d, n) \\ \mathbf{f}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &= 0 \\ \mathbf{g}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &\leq 0 \\ \mathbf{c}(\mathbf{x}, \mathbf{u}_0, \mathbf{d}) &= \mathbf{c}_s + \mathbf{n} \end{aligned}$$
 Model equations Controlled variables

Simplify

$$egin{aligned} \min_{\mathbf{u}_0} J(\mathbf{x},\mathbf{u}_0,\mathbf{d}) & \mathbf{g} \ \mathbf{f}(\mathbf{x},\mathbf{u}_0,\mathbf{d}) &= 0 & \mathbf{Ac} \ \mathbf{g}(\mathbf{x},\mathbf{u}_0,\mathbf{d}) &\leq 0 & \mathsf{dis} \ \mathbf{y}_0 &= \mathbf{f}_{y_0}(\mathbf{x},\mathbf{u}_0,\mathbf{d}) & \mathbf{u} \end{aligned}$$

$$\mathbf{g}' = 0 \ \forall \ \mathbf{d}$$

Active for all disturbances

$$\mathbf{u}$$
 DOF left

$$\begin{split} \min_{\mathbf{u}} J(\mathbf{x}, \mathbf{u}, \mathbf{d}) \\ \begin{bmatrix} \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{d}) \\ \mathbf{g}'(\mathbf{x}, \mathbf{u}, \mathbf{d}) \end{bmatrix} &= 0 \\ \mathbf{y}_0 &= \mathbf{f}_{y_0}(\mathbf{x}, \mathbf{u}, \mathbf{d}) \end{split}$$

The null space method

- Method for selecting self-optimizing controlled variables
- Assume as many c's as u's given disturbances d
- Select a subset of measurements y
- Proposal: Controlled variables as linear combination of measurements

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n_c} \end{bmatrix} = \begin{bmatrix} h_{1,1}y_1 + h_{1,2}y_2 + \ldots + h_{1,n_y}y_{n_y} \\ h_{2,1}y_1 + h_{2,2}y_2 + \ldots + h_{2,n_y}y_{n_y} \\ \vdots \\ h_{n_c,1}y_1 + h_{n_c,2}y_2 + \ldots + h_{n_c,n_y}y_{n_y} \end{bmatrix}$$

$$\mathbf{c} = \mathbf{H}\mathbf{y}$$

• Simple insight: $\Delta \mathbf{c}^{opt}(\mathbf{d})$ should be small

Reduced space optimization problem $\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$ $\mathbf{y}_0 = \mathbf{f}_{y_0}(\mathbf{u}, \mathbf{d})$

- ▶ Simple insight: $\Delta c^{opt}(d)$ should be small
- Find optimal sensitivity matrix:

$$\Delta \mathbf{y}^{opt} = \left(\frac{\mathrm{d}\mathbf{f}_y}{\mathrm{d}\mathbf{d}}\right)_{|\mathbf{u}^{opt}} \Delta \mathbf{d} = \mathbf{F} \Delta \mathbf{d}$$

Reduced space optimization problem

$$\begin{split} \min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d}) \\ \mathbf{y}_0 &= \mathbf{f}_{y_0}(\mathbf{u}, \mathbf{d}) \end{split}$$

- \blacktriangleright Simple insight: $\Delta c^{\textit{opt}}(d)$ should be small
- Find optimal sensitivity matrix:

$$\Delta \mathbf{y}^{opt} = \left(\frac{\mathrm{d}\mathbf{f}_y}{\mathrm{d}\mathbf{d}}\right)_{|\mathbf{u}^{opt}} \Delta \mathbf{d} = \mathbf{F} \Delta \mathbf{d}$$

Select c such that

$$\Delta \mathbf{c}^{opt} = \mathbf{H} \Delta \mathbf{y}^{opt} = \mathbf{H} \mathbf{F} \Delta \mathbf{d} = 0$$

Reduced space optimization problem $\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$ $\mathbf{y}_0 = \mathbf{f}_{y_0}(\mathbf{u}, \mathbf{d})$

- \blacktriangleright Simple insight: $\Delta c^{\textit{opt}}(d)$ should be small
- Find optimal sensitivity matrix:

$$\Delta \mathbf{y}^{opt} = \left(\frac{\mathrm{d}\mathbf{f}_y}{\mathrm{d}\mathbf{d}}\right)_{|\mathbf{u}^{opt}} \Delta \mathbf{d} = \mathbf{F} \Delta \mathbf{d}$$

Select c such that

$$\Delta \mathbf{c}^{opt} = \mathbf{H} \Delta \mathbf{y}^{opt} = \mathbf{H} \mathbf{F} \Delta \mathbf{d} = 0$$

Achieved if

$$\mathbf{HF} = 0$$

Reduced space optimization problem $\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$

$$\mathbf{y}_0 = \mathbf{f}_{y_0}(\mathbf{u}, \mathbf{d})$$

The null space method - Continued How to find H?

- \blacktriangleright Simple insight: $\Delta c^{\textit{opt}}(d)$ should be small
- Find optimal sensitivity matrix:

$$\Delta \mathbf{y}^{opt} = \left(\frac{\mathrm{d}\mathbf{f}_y}{\mathrm{d}\mathbf{d}}\right)_{|\mathbf{u}^{opt}} \Delta \mathbf{d} = \mathbf{F} \Delta \mathbf{d}$$

Select c such that

$$\Delta \mathbf{c}^{opt} = \mathbf{H} \Delta \mathbf{y}^{opt} = \mathbf{H} \mathbf{F} \Delta \mathbf{d} = 0$$

Achieved if

 $\mathbf{HF} = 0$

 \blacktriangleright Select ${f H}$ in the left null space of ${f F}$

Reduced space optimization problem

$$\begin{split} \min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d}) \\ \mathbf{y}_0 = \mathbf{f}_{y_0}(\mathbf{u}, \mathbf{d}) \end{split}$$

The null space method - Continued How to find H?

- \blacktriangleright Simple insight: $\Delta c^{\textit{opt}}(d)$ should be small
- Find optimal sensitivity matrix:

$$\Delta \mathbf{y}^{opt} = \left(\frac{\mathrm{d}\mathbf{f}_y}{\mathrm{d}\mathbf{d}}\right)_{|\mathbf{u}^{opt}} \Delta \mathbf{d} = \mathbf{F} \Delta \mathbf{d}$$

Select c such that

$$\Delta \mathbf{c}^{opt} = \mathbf{H} \Delta \mathbf{y}^{opt} = \mathbf{H} \mathbf{F} \Delta \mathbf{d} = 0$$

Achieved if

 $\mathbf{HF} = 0$

Select H in the left null space of F
Need

$$\#y \ge \#u + \#d$$

Reduced space optimization problem

$$\begin{split} \min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d}) \\ \mathbf{y}_0 = \mathbf{f}_{y_0}(\mathbf{u}, \mathbf{d}) \end{split}$$

- Objective: $\min_u J = (u-d)^2$ $d^* = 0$
- Measurements:

$$y_1 = 0.9u + 0.1d$$

 $y_2 = 0.5u - d$

Optimal input:

$$\frac{\partial J}{\partial u} = 2(u^{opt} - d) = 0$$

$$\Rightarrow u^{opt} = d$$

- Objective: $\min_u J = (u-d)^2$ $d^* = 0$
- Measurements:

$$y_1 = 0.9u + 0.1d$$

 $y_2 = 0.5u - d$

Optimal input:

$$\frac{\partial J}{\partial u} = 2(u^{opt} - d) = 0$$

$$\Rightarrow u^{opt} = d$$

Optimal change:

$$y_1^{opt} = d \quad y_2^{opt} = -0.5d$$

- Objective: $\min_u J = (u-d)^2$ $d^* = 0$
- Measurements:

$$y_1 = 0.9u + 0.1d$$

 $y_2 = 0.5u - d$

Optimal input:

$$\frac{\partial J}{\partial u} = 2(u^{opt} - d) = 0$$

$$\Rightarrow u^{opt} = d$$

Optimal change:

$$y_1^{opt} = d \quad y_2^{opt} = -0.5d$$

• Select
$$c = 0.5y_1 + y_2$$

- Objective: $\min_u J = (u-d)^2$ $d^* = 0$
- Measurements:

$$y_1 = 0.9u + 0.1d$$

 $y_2 = 0.5u - d$

Optimal input:

$$\frac{\partial J}{\partial u} = 2(u^{opt} - d) = 0$$

$$\Rightarrow u^{opt} = d$$

Optimal change:

$$y_1^{opt} = d \quad y_2^{opt} = -0.5d$$

Self-optimizing control - How to select measurements?

Self-optimizing control - How to select measurements?

Self-optimizing control - How to select measurements?

Optimal selection criteria

$$y_{j|j=\{1,\dots,n_y\}} = \arg\min_{y_{0_i}} \bar{\sigma} \left(\tilde{\mathbf{J}}[\tilde{\mathbf{G}}^y]^{-1} \right)$$

Suboptimal

$$y_{j|j=\{1,\dots,n_y\}} = \arg\max_{y_{0_i}} \underline{\sigma}(\mathbf{\hat{G}}^y)$$

 Methods for handling too few and using all measurements

Models

► All measurements y₀:

$$\Delta \mathbf{y}_0 = \mathbf{G}^{y_0} \Delta \mathbf{u} + \mathbf{G}_d^{y_0} \Delta \mathbf{d}$$

Selected measurements y:

$$\Delta \mathbf{y} = \mathbf{G}^y \Delta \mathbf{u} + \mathbf{G}^y_d \Delta \mathbf{d}$$

►
$$\tilde{\mathbf{J}} = \begin{bmatrix} \mathbf{J}_{uu}^{1/2} & \mathbf{J}_{uu}^{1/2} \mathbf{J}_{uu}^{-1} \mathbf{J}_{ud} \end{bmatrix}$$

where $\mathbf{J}_{uu} = \frac{\partial^2 J}{\partial \mathbf{u}^2}$ and $\mathbf{J}_{ud} = \frac{\partial^2 J}{\partial \mathbf{u} \partial \mathbf{d}^T}$

Part II: Petlyuk column

Manipulated variables:

 $\mathbf{u}^T = [S, D, B, L, V, R_L, R_V]$

- Steady-state degrees of freedom: 5
- Minimize cost: $\min_u V$
- Constraints:

$x_{A,D} \ge 0.97$	active
$x_{B,S} \ge 0.97$	active
$x_{C,B} \ge 0.97$	active
$Flows \geq 0 \operatorname{kmol}/h$	
$0 \le R_L, R_V \le 1$	

▶ Disturbances: [F z_A z_B q_l] = [1±0.1kmol/h 1/3±0.1 1/3±0.1 0.477±0.1]

Petlyuk column

Goal with case study two-fold:

- Compare NSM with previously proposed method for selecting self-optimizing controlled variables
- 2. Compare with previously proposed structures (DT_S)

Petlyuk column

Goal with case study two-fold:

- Compare NSM with previously proposed method for selecting self-optimizing controlled variables
- 2. Compare with previously proposed structures (DT_S)
- Two new proposed structures
 - ▶ NSM using both R_V and $R_L \Rightarrow$ using 7 temperatures
 - ► NSM using only $R_L \Rightarrow$ using 7 temperatures

Petlyuk column - Continued - Loss

			Disturb	bances	Noise		
CS #	c_4	c_5	$L_a[\%]$	$L_w[\%]$	L^n_a [%]	$L_w^n[\%]$	
1	c_{tdf}^1	c_{tdf}^2	0.0252	0.2082	0.0117	0.0213	
2	R_V	c_{odf}	0.0607	0.2247	0.0206	0.0847	
3	R_V	DT_S	1.4916	11.88	0.0475	0.2108	
4	R_V	R_L	12.9508	95.16	3.6254	9.3142	
7	R_V	T_{34}	0.4063	2.8982	0.1034	0.1215	
11	R_V	T_4	4.1310	42.029	0.0589	0.1046	

Petlyuk column - Continued - Loss

			Disturb	bances	Noise	
CS #	c_4	c_5	$L_a[\%]$	$L_w[\%]$	L^n_a [%]	$L_w^n[\%]$
1	c_{tdf}^1	c_{tdf}^2	0.0252	0.2082	0.0117	0.0213
2	R_V	c_{odf}	0.0607	0.2247	0.0206	0.0847
3	R_V	DT_S	1.4916	11.88	0.0475	0.2108
4	R_V	R_L	12.9508	95.16	3.6254	9.3142
7	R_V	T_{34}	0.4063	2.8982	0.1034	0.1215
11	R_V	T_4	4.1310	42.029	0.0589	0.1046

NTNU Norwegian University of Science and Technology

- Dynamic simulation
 - Decentralized control structure using PI(D) controllers
 - All PI(D) controllers tuned using Skogestad's IMC tuning rules

Dr.Ing. defense, June 8, 2005

Petlyuk column - Dynamic simulations

• Step in feed composition $z_A: 0.33 \rightarrow 0.43$

Chapter 10, Case I: Gas lifted wells: Save 0.34 - 0.65% (USD 1.7 - 3.7 million/year).

Chapter 10, Case I: Gas lifted wells: Save 0.34 - 0.65% (USD 1.7 - 3.7 million/year). Chapter 10, Case II: GOR varying wells: Increase production with USD

2.6 - 26 million/year.


```
Chapter 10, Case I:
Gas lifted wells: Save 0.34 - 0.65\% (USD 1.7 - 3.7 million/year).
Chapter 10, Case II:
GOR varying wells: Increase production with USD
2.6 - 26 million/year.
Chapter 11:
```

Evaporator case: Better economic performance compared to previously proposed structures.


```
Chapter 10, Case I:
             Gas lifted wells: Save 0.34 - 0.65\% (USD 1.7 - 3.7
             million/year).
Chapter 10, Case II:
             GOR varying wells: Increase production with USD
             2.6 - 26 million/year.
Chapter 11:
             Evaporator case: Better economic performance
             compared to previously proposed structures.
 Chapter 9:
             Energy savings by over-fractionation
```


Part III: Topics in self-optimizing control

Chapter 5: Disturbance classification:
 Propose several rules for disturbance classification

Part III: Topics in self-optimizing control

- Chapter 5: Disturbance classification:
 Propose several rules for disturbance classification
- Chapter 6: Non-optimal nominal point: Show that non-optimal nominal point does not influence candidate ranking.

Effect of non-optimal nominal point

- \blacktriangleright Nominal optimal point: $(\mathbf{u}^*,\mathbf{d}^*)=(\mathbf{u}^{opt}(\mathbf{d}^*),\mathbf{d}^*)$
- \blacktriangleright Actual nominal point: $(\mathbf{u}^0,\mathbf{d}^*) \neq (\mathbf{u}^*,\mathbf{d}^*)$

Effect of non-optimal nominal point

- \blacktriangleright Nominal optimal point: $(\mathbf{u}^*,\mathbf{d}^*)=(\mathbf{u}^{opt}(\mathbf{d}^*),\mathbf{d}^*)$
- \blacktriangleright Actual nominal point: $(\mathbf{u}^0,\mathbf{d}^*) \neq (\mathbf{u}^*,\mathbf{d}^*)$

Example: Nominal optimum

 $(u^*, d^*) = (0, 0)$

Objective:

$$\min_{u}(u-d)^2$$

 Candidate controlled variables:

$$y_1 = 0.1(u - d)$$

 $y_2 = 2u - d$
 $y_3 = 2u - 0.5d$
 $y_4 = u - 3d$

Effect of non-optimal nominal point

- \blacktriangleright Nominal optimal point: $(\mathbf{u}^*,\mathbf{d}^*)=(\mathbf{u}^{opt}(\mathbf{d}^*),\mathbf{d}^*)$
- \blacktriangleright Actual nominal point: $(\mathbf{u}^0,\mathbf{d}^*) \neq (\mathbf{u}^*,\mathbf{d}^*)$

Example: Nominal optimum

 $(u^*, d^*) = (0, 0)$

Objective:

$$\min_u (u-d)^2$$

 Candidate controlled variables:

$$y_1 = 0.1(u - d)$$

 $y_2 = 2u - d$
 $y_3 = 2u - 0.5d$
 $y_4 = u - 3d$

Effect of non-optimal nominal point: Example cont.

Effect of non-optimal nominal point cont.

- Average increase in loss independent of what we control
- Non-nominal point no effect on candidate rank
- True for linear plant and quadratic objective

Part III: Topics in self-optimizing control

- Chapter 5: Disturbance classification:
 Propose several rules for disturbance classification
- Chapter 6: Non-optimal nominal point: Show that non-optimal nominal point does not influence candidate ranking.
- Chapter 7: Measurement combinations and control:
 - Use freedom in NSM to shape plant
 - Filter measurements to avoid RHZ

Part III: Topics in self-optimizing control

- Chapter 5: Disturbance classification:
 Propose several rules for disturbance classification
- Chapter 6: Non-optimal nominal point: Show that non-optimal nominal point does not influence candidate ranking.
- Chapter 7: Measurement combinations and control:
 - Use freedom in NSM to shape plant
 - Filter measurements to avoid RHZ
- Appendix C: Perfect steady-state indirect control:
 E. Hori, S. Skogestad, V. Alstad

Concluding remarks and further work

- Concluding remarks
 - Proposed a systematic method for selecting self-optimizing controlled variables
 - Generalized to handle measurement errors
 - Disturbance discrimination
 - Effect of nominal setpoint error in self-optimizing control
 - Case studies

Concluding remarks and further work

- Concluding remarks
 - Proposed a systematic method for selecting self-optimizing controlled variables
 - Generalized to handle measurement errors
 - Disturbance discrimination
 - Effect of nominal setpoint error in self-optimizing control
 - Case studies
- Further work
 - Varying active constraints
 - Model (non-parametric) uncertainty
 - Non-linear approach
 - More case studies

Concluding remarks and further work

- Concluding remarks
 - Proposed a systematic method for selecting self-optimizing controlled variables
 - Generalized to handle measurement errors
 - Disturbance discrimination
 - Effect of nominal setpoint error in self-optimizing control
 - Case studies
- Further work
 - Varying active constraints
 - Model (non-parametric) uncertainty
 - Non-linear approach
 - More case studies
- Acknowledgments: ABB, Norsk Hydro and The Research Council of Norway

Petlyuk column: Energy savings by over-fractionation

 Energetically optimal to over-fractionate one product stream

$$\begin{split} \min_{\mathbf{u}} V \\ x_{A,D} &\geq x_{A,D}^0 \\ x_{B,S} &\geq x_{B,S}^0 \\ x_{C,B} &\geq x_{C,B}^0 \end{split}$$

Problem formulation

Petlyuk column: Energy savings by over-fractionation

- Energetically optimal to over-fractionate one product stream
- Same vapor flow in main column

Petlyuk column: Energy savings by over-fractionation

- Energetically optimal to over-fractionate one product stream
- Same vapor flow in main column

 Increased savings bypassing a portion of the feed

Petlyuk column - Loss

	Loss [%]							
CS #	F_{-}	F_{+}	z_A –	z_{A+}	$z_B -$	z_{B+}	q_{l} _	q_{l+}
1	0.0	0.0	0.0171	0.0207	0.0166	0.0111	0.0001	0.0000
2	0.0	0.0	0.0037	0.1340	0.2247	0.1666	0.1876	0.1084
3	0.0	0.0	5.0840	11.8810	0.3469	0.8295	1.0441	1.1740
4	0.0	0.0	46.7037	6.3019	95.1660	9.8256	32.4629	6.0578
5	0.0	0.0	0.22826	2.6973	0.30078	0.40385	0.18903	0.12882
6	0.0	0.0	0.43234	inf	0.56891	1.7347	0.20494	0.17341
7	0.0	0.0	0.12667	1.3807	0.22211	0.18703	0.18794	0.11290
8	0.0	0.0	0.82264	inf	1.1556	inf	0.25233	0.31315
9	0.0	0.0	0.11772	1.7075	0.31570	0.16848	0.21236	0.10722
10	0.0	0.0	1.6053	inf	2.3873	inf	0.38058	1.0685
11	0.0	0.0	9.3786	42.029	0.22507	0.28417	0.66607	1.0851
12	0.0	0.0	inf	33.300	0.52408	0.28762	0.77086	1.0070

Petlyuk column - Loss

1

	Loss [%]									
CS #	F_{-}	F_{+}	$z_A -$	z_{A+}	$z_B -$	z_{B+}	q_{l} _	q_{l+}		
1	0.0	0.0	0.0171	0.0207	0.0166	0.0111	0.0001	0.0000		
2	0.0	0.0	0.0037	0.1340	0.2247	0.1666	0.1876	0.1084		
3	0.0	0.0	5.0840	11.8810	0.3469	0.8295	1.0441	1.1740		
4	0.0	0.0	46.7037	6.3019	95.1660	9.8256	32.4629	6.0578		
5	0.0	0.0	0.22826	2.6973	0.30078	0.40385	0.18903	0.12882		
6	0.0	0.0	0.43234	inf	0.56891	1.7347	0.20494	0.17341		
7	0.0	0.0	0.12667	1.3807	0.22211	0.18703	0.18794	0.11290		
8	0.0	0.0	0.82264	inf	1.1556	inf	0.25233	0.31315		
9	0.0	0.0	0.11772	1.7075	0.31570	0.16848	0.21236	0.10722		
10	0.0	0.0	1.6053	inf	2.3873	inf	0.38058	1.0685		
11	0.0	0.0	9.3786	42.029	0.22507	0.28417	0.66607	1.0851		
12	0.0	0.0	inf	33.300	0.52408	0.28762	0.77086	1.0070		

Loss	[%]
L033	1701

	2000 [70]									
$CS \ \#$	n _{x0}	$n_{x^0_{A,D}}$	$n_{x_{C,B}^0}$	$n_{x_{C,B}^{0}}$	n _{x0} B.S.	$n_{x_{B,S}^0}$	L_n^{max}	L_n^{avg}		
1	0.0025	0.0095	0.0639	0.2082	0.0002	0.0007	0.0213	0.0117		
2	0.0040	0.0110	0.0060	0.0174	0.0004	0.0004	0.0847	0.0206		
3	0.0074	0.0207	0.0033	0.0034	0.0025	0.0075	0.2108	0.0475		
4	0.0262	0.0253	0.0245	0.0311	0.2579	1.0198	9.3142	3.6254		
5	0.0040	0.0110	0.0029	0.0035	0.3334	2.5693	0.0861	0.0673		
6	0.0040	0.0110	0.0041	0.0063	0.3088	2.7112	0.0857	0.0587		
7	0.0040	0.0112	0.0028	0.0026	0.4040	2.8982	0.1215	0.1034		
8	0.0040	0.0110	0.0069	0.0126	0.3037	3.6569	0.0864	0.0586		
9	0.0044	0.0128	0.0055	0.0042	0.7108	4.9155	0.7517	0.3805		
10	0.0040	0.0110	0.0132	0.0289	0.3148	inf	0.0881	0.0667		
11	0.0036	0.0108	0.0072	0.0106	0.3439	1.9349	0.1046	0.0589		
12	0.0034	0.0131	0.0087	0.0130	0.3318	1.7321	0.1097	0.0963		
								NTNU		

Norwegian University of Science and Technology