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A B S T R A C T

Primal–dual feedback-optimizing control is a simple yet powerful approach to optimally handle active
constraint changes at steady state. It is composed of two layers: Constraint control in the upper master layer and
unconstrained optimization or gradient control in the layer below. The master constraint controllers operate
on a slow time scale by updating the dual variables (Lagrange multipliers). This can result in too slow control
of the constraints, for example, for hard constraints that cannot be violated dynamically. To address this issue,
we propose introducing a third fast override constraint control layer. Additionally, to optimally coordinate the
constraint handling between the master and override layers, we need to introduce auxiliary constraints for the
master controllers. A gas-lift oil production optimization case study demonstrates the power of the proposed
scheme.
1. Introduction

Traditional real-time optimization (RTO) solves online a steady-
state optimization problem on a slow timescale (typically every hour)
and implements the optimization results as setpoints to the control
layer [1,2]. Despite the economic benefits, RTO is less used in practice
than one might expect [3], mainly because of the cost of developing
and updating the process model and partly because of too infrequent
updates. Consequently, the full potential of RTO remains unexploited
in process industries [2].

One obvious solution to increase the update frequency (and re-
duce dynamic constraint violations), is to use dynamic optimization,
such as dynamic RTO or economic nonlinear model predictive control
(ENMPC). Although extensively studied in research papers, recent pa-
pers [4,5] highlight numerical challenges hindering widespread adop-
tion of dynamic optimization. Additionally, many process industries
require deploying automatic tools on embedded platforms such as
programmable logic controllers (PLC), which is currently unsuitable for
solving nonlinear optimization online [6].

An alternative approach to significantly increase the update fre-
quency, which is much easier to implement, is to move the optimization
into the control layer. This approach is known as feedback-optimizing
control and was introduced by Morari et al. [7]. In this paper, we
study primal–dual feedback-optimizing control and the main novelty
is to include constraint override to reduce the constraint backoff. One
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important advantage of feedback-optimizing control is the possibility
to decompose the optimization problem and have different closed-loop
response times for each process unit. This can be particularly advan-
tageous in large-scale industrial processes where process dynamics,
measurement delays, and other factors may vary across different units.

Lagrangian relaxation is a useful technique for transforming a con-
strained RTO problem into an unconstrained optimization problem [8].
In dual decomposition, the Lagrange multipliers (𝜆), also known as dual
variables, may be used as manipulated variables to control the con-
straints on a slow time scale [3]. In practice, this may be realized using
a single-loop PID controller with a selector for each constraint [9]. This
corresponds to the diagonal master controller in Fig. 1. The integral
action in the controller permits asymptotically optimal operation, and
the selector automatically switches between active constraint regions.
This avoids the need to identify a new control structure in each active
constraint region.

In the faster layer below (see Fig. 1), in order to satisfy the optimal-
ity condition ∇𝑢 = 0 [10], we may control the estimated Lagrangian
cost gradient to zero (∇𝑢̂ = 0) using the physical manipulated vari-
ables 𝑢 (primal decision variables). Alternatively, especially if the local
optimization problems are coupled, one may instead use a numerical
solver.

The strategy in Fig. 1 is known as primal–dual or simply dual
feedback-optimizing control, and variants have been studied by several
vailable online 8 April 2024
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Fig. 1. Primal–dual feedback-optimizing control scheme with a scalar master controller
typically, PID) for each constraint, followed by a max-selector [9]. For equality
onstraints, the max-selector is omitted. The large dashed box represents the faster
ower layer, where the objective is to drive the Lagrangian cost gradient (∇𝑢 =
∇𝑢𝐉 + 𝝀⊤∇𝑢𝐠) to zero.

researchers [3,9,11–13]. The effectiveness of this strategy has been val-
idated experimentally on a lab-scale rig [14]. However, the optimality
concerning constraint satisfaction is only asymptotic (at steady state)
and because the constraints are handled by the slow master controller,
there may be significant dynamic violations.

If the dynamic violations are not acceptable, one needs to introduce
a back-off from the constraint value for the setpoint in the master
controller, which will result in an economic loss. In particular, this
applies to hard constraints, such as those related to safety and the
environment, where no dynamic violations are acceptable.

Therefore, there is a need for an effective way to improve the dy-
namic handling of constraints within the primal–dual feedback-optimizing
control framework. To address this challenge, we propose incorporating
override constraint control on a fast time scale. The paper serves as
an extended version of our previous studies, where we provided a
short introduction to primal–dual with override [15], a simulation case
study for multi-input override [16], and override pairing procedure for
minimum economic loss in the case of a non-performing estimator [17].

The paper is organized as follows. In Section 2, we study the
existing primal–dual strategy and describe its limitations. To address
the problem with constraint violations, Section 3 introduces override
constraint controllers. To get consistency with the constraint control in
the master controller, it is necessary to introduce auxiliary constraints.
It is also shown how to use multiple inputs for override control, which is
important in many practical cases. The gas lift optimization case study
is considered in Section 4. In Section 5, some alternative and extended
approaches are discussed, before concluding the paper is Section 6.

2. Problem formulation

Consider a general steady-state optimization problem:

min𝐮 𝐽 (𝐮,𝐝) (1a)

s.t. 𝐠 (𝐮,𝐝) ≤ 0 (1b)

Here, 𝐮 ∈ R𝑛𝐮 represents the decision variables, 𝑛𝐮 is the number of
decision variables, 𝐝 ∈ R𝑛𝐝 is the disturbances, and 𝑛𝐝 is the number
of disturbances. The scalar function 𝐽 ∶ R𝑛𝐮 × R𝑛𝐝 → R is the cost
or objective function. Similarly, the function 𝐠 ∶ R𝑛𝐮 × R𝑛𝐝 → R𝑛𝐠
2

epresents the constraints, and 𝑛𝐠 is the number of constraints.
For simplicity, we have not included the state variable 𝐱 in problem
1); that is, any states have been formally eliminated by making use of
he steady-state model equations.

The Lagrange function associated with problem (1) is

(𝐮,𝐝,𝝀) = 𝐽 (𝐮,𝐝) +
𝑛𝐠
∑

𝑗=1
𝜆𝑗𝑔𝑗 (𝐮,𝐝) (2)

here 𝝀 ∈ R𝑛𝐠 denotes the dual variables (Lagrange multipliers) related
to the constraints (1b). The necessary conditions of optimality, known
as the Karush–Kuhn–Tucker (KKT) conditions, can then be expressed
for the problem (1) as follows [18]:

∇𝑢𝑖 (𝐮,𝐝,𝝀) = 0, for all 𝑖 = 1,… , 𝑛𝐮 (3a)

𝑔𝑗 (𝐮,𝐝) ≤ 0, for all 𝑗 = 1,… , 𝑛𝐠 (3b)

𝜆𝑗 ≥ 0, for all 𝑗 = 1,… , 𝑛𝐠 (3c)

𝜆𝑗𝑔𝑗 (𝐮,𝐝) = 0, for all 𝑗 = 1,… , 𝑛𝐠 (3d)

Here, (3a) is the stationary condition, (3b) is the primal feasibility,
(3c) is the dual feasibility, and (3d) is the complementary slackness
condition.

Dual decomposition involves iteratively solving this set of equa-
tions, where the last three equations related to the constraints are
used to compute the dual variables (𝝀), and the stationary gradient
conditions (3a) are used to compute the primal variables (𝐮). Arrow
et al. [19] proved convergence of dual decomposition for the case with
equality constraints.

2.1. Primal–dual feedback-optimizing control

Recently, Krishnamoorthy [13] showed how dual decomposition
can be used as a basis for solving the optimization problem in (3a)–
(3d) using feedback control. He used master controllers for constraints
and local gradient controllers. To enable the use local gradient con-
trollers, he assumed decomposed subsystems (where the cost can be
decomposed for each subsystem as 𝐽 (𝐮,𝐝) = 𝐽1

(

𝑢1,𝐝
)

+ 𝐽
(

𝑢2,𝐝
)

+⋯).
Dirza et al. [9] extended this feedback-optimizing control approach

to include inequality constraints. This requires introducing a max-
selector for the dual variable (𝜆) to satisfy conditions (3b)–(3d). Fig. 1
illustrates the final solution.

Note that in Fig. 1, we have indicated the possible use of a solver,
rather than feedback control [9], for driving the gradient ∇𝐮 to zero.
The use of a solver requires that we have a model for how the gradients
∇𝐮𝐽 and ∇𝐮𝑔 depend on the inputs 𝑢, so it is not relevant in situations
where these are just signals. One reason for allowing for the use of a
solver, is that the focus in the present paper is on override constraint
control, so we do not want to restrict the treatment. Note here that
decentralized feedback control (PID) is most effective for cases with
decomposable subsystems. Also, note that the use of feedback control,
may be viewed as a trick to numerically solve the equations, see Fig. 2.

2.2. Master controller

The master controller is decentralized and consists on 𝑛𝑔 SISO con-
trollers (usually PID). The integral action in the 𝑗’th controller drives
the active constraint 𝑔𝑗 (𝐮,𝐝) (the controlled variable) to zero at steady
state using 𝜆𝑗 as the manipulated variable (MV). For equality con-
straints (which are always active), 𝜆𝑗 can take on also negative values
and a max-selector is not needed. For inequality constraints, we require
𝜆𝑗 ≥ 0 in (3c), which may be realized using a ‘‘max’’ selector with a
minimum value of 𝜆𝑗 = 0.

𝜆𝑗 = max
(

�̃�𝑗 , 0
)

(4)

This selector will deselect the constraint controller when the constraint

becomes inactive.
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The master controller is a decentralized (diagonal) controller, which
generally requires a choice of pairings. However, in this case there
is only one possibility: To satisfy the complementary slackness condi-
tion (3d), which states that at steady state either 𝑔𝑗 = 0 or 𝜆𝑗 = 0, we
eed to pair the measured constraint 𝑔𝑗 (CV or input for the master
ontroller) with the corresponding dual variable 𝜆𝑗 (MV or output for
he master controller):

̃𝑗 ↔ 𝑔𝑗 (5)

ypically, the master controllers are PID-controllers, and often simply
ntegral controllers (𝑐(𝑠) = 𝐾𝑖∕𝑠). Because the controllers may be
eselected by the selector, it is necessary to use anti-windup on the
ntegral action.

Note that we control the measured constraints, which means that
e do not control the constraint via a model, as is done with normal
TO. This is an important benefit of primal–dual feedback-optimizing
ontrol.

.3. Gradient solvers/controllers

We next consider satisfying the optimality (stationary) conditions

𝑢𝑖 (𝐮,𝐝,𝝀) = 0 (6)

here

𝑢𝑖 (𝐮,𝐝,𝝀) = ∇𝑢𝑖𝐉 (𝐮,𝐝) +
𝑛𝐠
∑

𝑗=1
𝜆𝑗∇𝑢𝑖𝐠𝑗 (𝐮,𝐝) (7)

There are two main approaches for solving (6).

.3.1. Equation solver
The most obvious approach is to solve (6) directly for the primal

ariables (inputs) 𝐮 using the model equations, similar to traditional
teady-state RTO. This requires that we have the equations for how
he estimated gradients depend on the inputs 𝑢, and even if we have
his, a numerical solution may be required. Also note that a direct
mplementation of the inputs (primal variables) 𝐮 into the process
ay result in instability (because the estimator might not immediately
rovide accurate state/parameter estimation), so in most cases, a lower
ayer controller, such as a first-order filter or a setpoint controller,
ould need to be added (not shown in Fig. 1).

.3.2. Feedback control
An alternative approach is to use feedback control as a trick to solve

6). Fig. 2 illustrates the idea. In this case, a filter is not needed because
f the tuneable dynamics in the gradient controllers.

The gradient controller may be one ‘‘big’’ controller (e.g., MPC),
ut an important benefit of feedback control is that it allows for easily
ecomposing the system by using decentralized control. An obvious
hoice, is to use single-loop control and pair the gradient ∇𝑢𝑖(𝐮,𝐝,𝝀)

(CV for the controller) with its corresponding primal variable 𝑢𝑖 (MV
for the controller):

𝑢𝑖 ↔ ∇𝑢𝑖 (𝐮,𝐝,𝝀) (8)

A main problem here is that the set of equations is generally
oupled, so the use of individual gradient controllers (e.g., PID) may
ot work well. In such cases, it may be possible to decompose the
ystem into multivariable subsystems (each with several inputs 𝑢𝑖), and
se multivariable gradient controllers (e.g., MPC). To check for the
egree of interactions, and also for tuning purposes, one may consider
he square linearized transfer matrix 𝐆(𝑠) from the inputs 𝑢 to the

controlled variables (gradients 𝐜 = ∇𝐮)

𝐜 = 𝐆(𝑠) 𝐮 (9)

However, note that 𝐆(𝑠) will change depending on the values of 𝜆𝑗 ,
which depends on the disturbances. In particular, there will be non-
smooth changes in 𝐆(𝑠) when there are changes in the active constraints
3

Fig. 2. Using feedback control as a trick to solve ∇𝑢 = 0 for cases with decoupled
subsystems. The gradient controller for each subsystem is typically PID, but it may be
MPC for a multivariable subsystem.

(when 𝜆𝑗 changes to or from zero). In summary, the use of feedback
with gradient controllers is most effective for non-interactive or weakly
interactive subsystems. An important potential advantage of feedback
control is that it allows for using different closed-loop time constants
for each subsystem.

2.4. Limitation of primal–dual approach in Fig. 1

In Fig. 1, the constraints are controlled by the master controller on
a slow time scale, which is undesirable for many constraints. When a
constraint 𝑔𝑗 is encountered, the constraint will be violated (i.e., 𝑔𝑗 > 0)
for some time until the master constraint controller has the time to
increase the dual variable 𝜆𝑗 to its new optimal value, corresponding
to satisfying the constraint. Because the master controller is slow, this
violation can be considerable.

For some constraints, dynamic violations are allowed, as only the
average (steady-state) value matters. For other constraints, we need
to reduce (or completely avoid in the case of hard constraints) the
constraint violation. The simplest approach is to introduce a ‘‘back-off’’
𝑏𝑗 on the setpoint (SP) for the constraint 𝑗. That is, rather than using
𝑆𝑃𝑗 = 0 in Fig. 1, we choose

𝑆𝑃𝑗 = −|𝑏𝑗 | < 0

This will lead to an economic loss (e.g., [20])

𝐿 = 𝛴𝑗 |𝜆𝑗𝑏𝑗 | (10)

where 𝑗 is an active constraints, 𝜆𝑗 is the corresponding Lagrange
multiplier and 𝐿 [$/s] is the economic loss caused by constraint back-
off. The loss in (10) is exact for a small back-off, but it is generally a
reasonable approximation.

The best way to reduce this loss is by tightening the control of the
constraint, allowing for a reduction in |𝑏𝑗 |. For this reason, we propose
adding override constraint control (Fig. 3) for ‘‘critical’’ constraints,
which are here defined as constraints where it is important reduce
or avoid constraint violation, This is discussed in more detail in the
next section. In addition to the override control, we need to introduce
auxiliary constraints for use by the master controllers, so that we can
release constraints when it is economically optimal.

3. Proposed control scheme

3.1. Override constraint controllers

To reduce constraint violation (and thus minimize the need for
back-off) for a ‘‘critical’’ constraint 𝑔𝑗 , we propose to pair it with a
selected manipulated input (primal variable) 𝑢𝑖 and control it using
a fast override controller. This is implemented at the bottom of the
control hierarchy, as illustrated in Fig. 3. At any given time, the selector
(max- or min- selector depending on the case) will choose the process
input 𝑢𝑖 as either the output 𝑢𝑔𝑖 from the override controller or the
output �̃� from the gradient controller (or equation solver).
𝑖



Journal of Process Control 138 (2024) 103208R. Dirza and S. Skogestad

C
b

𝑢

F
t

𝐠

T

C
t
m

𝑢

C
a

𝑢

T
p

d
s
o
n
t
m
t
a
s
(

M
c
o
i
s
b
i

i
c
b

𝑔

T
w

c
s

Fig. 3. Proposed override control for a ‘‘critical’’ constraint 𝑔𝑗 .

hoice of override pairings. It is important to find a good pairing
etween the constraint 𝑔𝑗 and the selected input 𝑢𝑖:

𝑖 ↔ 𝑔𝑗

or choosing pairings and tuning purposes, one may consider the linear
ransfer matrix 𝐆𝐠(𝑠) from the inputs to the override constraints:

= 𝐆𝐠(𝑠) 𝐮 (11)

he following pairing rules are useful [21].

1. ‘‘Pair close rule’’: Select an input 𝑢𝑖 with a large and direct effect
on the constraint 𝑔𝑗 [22]. For example, if the element 𝐺𝑔

𝑖𝑗 (𝑠)
from 𝑢𝑖 to 𝑔𝑗 is approximated as a first-order plus delay transfer
function, then prefer a pairing with a large gain, a small delay,
and a small time constant. A common way of obtaining such
a relationship between the input 𝑢𝑖 and the constraint 𝑔𝑗 is a
step response experiment (using a dynamic model or the actual
process).

2. ‘‘Input saturation rule’’: Select an input 𝑢𝑖 that is not likely to
saturate, for example, at a fully open or closed valve.

hoice of max - or min -selector. The selector rules given in [20] says
hat, if the constraint 𝑔𝑗 is satisfied by a large input 𝑢𝑖, then use a
ax-selector:

𝑖 = 𝚖𝚊𝚡{�̃�𝑖, 𝑢
𝑔
𝑖 }

onversely, if the constraint 𝑔𝑗 is satisfied by a small input 𝑢𝑖, then use
min-selector:

𝑖 = 𝚖𝚒𝚗{�̃�𝑖, 𝑢
𝑔
𝑖 }

uning of override constraint controller. The name ‘‘override’’ is ap-
ropriate because we aim to make short-term corrections 𝑢𝑔𝑖 to the

steady-state optimal solution �̃�𝑖, with the goal of avoiding undesired
ynamic constraint violations (see Fig. 3). However, on a longer time
cale, the steady-state optimization should take over and provide the
ptimal value of the input, 𝑢𝑖 = �̃�𝑖, and also decide whether or
ot a constraint is active. This has implications for tuning (i.e., if
he slower/outer layer is not slow enough, the closed-loop system
ay eventually lead to instability), and to prevent the override con-

roller from interfering with the steady-state optimization, we need
time scale separation between the fast override controller and its

lower gradient controller, typically in the range 4 (minimum) to 10
desired) [21].

aximum number of override constraints. In most cases, each override
onstraint is paired with a different input, meaning that the number
f override constraints (𝑛𝑔,𝑜) cannot exceed the number of inputs,
.e., 𝑛𝐠,𝐨 ≤ 𝑛𝐮. However, if two override constraints cannot be active
imultaneously (for example, a variable with both an upper and lower
ound), it may be possible to pair two override constraints with one
4

nput.
Fig. 4. Proposed override scheme for primal–dual feedback-optimizing control scheme.
For override constraints 𝑔𝑗 , the master controller controls the auxiliary constraint
�̃�𝑗 = �̃�𝑖 − 𝑢𝑔𝑖 . The sign of the gain in the master controller depends on whether there is
a ‘‘min’’ or ‘‘max’’ selector at the bottom of the hierarchy.

Fig. 5. Complete structure of the proposed scheme with gradient controllers and one
override controller with its associated auxiliary constraint �̃�𝑗 .

3.2. Auxiliary constraints

Assigning both the master and override constraint controllers
(Fig. 5) to control the same constraint 𝑔𝑗 may seem like a viable
solution, but it fails to function as desired. The problem is that once
the override takes over the constraint, the master controller will no
longer update 𝜆𝑖, and thus it will not release the constraint even when
it no longer should be active.

To avoid this problem, we propose for override constraints to re-
place, in the master controller, the original constraint 𝑔𝑗 with an aux-
liary constraint �̃�𝑗 , which is the difference between the process input
omputed by the gradient controller and the process input computed
y the override constraint controller:

̃𝑗 = �̃�𝑖 − 𝑢𝑔𝑖 (12)

he proposed solution is shown in Fig. 4. The complete block diagram,
hich includes the gradient controller, is shown in Fig. 5.

For the master controller, the auxiliary constraint is �̃�𝑗 < 0 if the
onstraint 𝑔𝑗 is satisfied by a small input 𝑢𝑖 (and thus we have a min-
elector for the override), and −�̃�𝑗 < 0 if the constraint 𝑔𝑗 is satisfied

by a large input 𝑢𝑖 (and thus we have a max-selector for the override).
To better understand the use of auxiliary constraints, consider the

two directions of constraint switching:

• If a constraint 𝑔𝑗 is originally not active and a disturbance causes
𝑔𝑗 to be violated, the override controller will change 𝑢𝑔𝑖 until the
selector assigns 𝑢𝑖 = 𝑢𝑔𝑖 . At this point, we get a violation (nonzero
value) of the auxiliary constraint, and the master controller will
increase (slowly) the associated dual variable 𝜆𝑗 (which is zero

in the unconstrained case), until we achieve �̃�𝑗 = 0, where
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Fig. 6. Proposed use of auxiliary constraint for case with maximum input constraint on
𝑢𝑖. Note that the physics provide an implicit override, so the grey Min-selector at the
bottom is not part of the control system, but represents the physical input saturation
(valve).

the override and gradient controllers agree on the value for the
process input.

• If a constraint 𝑔𝑗 is originally active, and a disturbance causes
this to no longer be optimal, the master controller will decrease
𝜆𝑗 , which again changes 𝑢𝑖 = �̃�𝑖 (because the override controller
is no longer active), until we get 𝜆𝑗 = 0 where the constraint is
no longer controlled.

3.3. Implicit override for input constraints

All physical process inputs have upper and lower constraints (also
know as saturation limits)

𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥𝑖

𝑢𝑖 ≥ 𝑢𝑚𝑖𝑛𝑖

or equivalently,

𝑔𝑚𝑎𝑥𝑗 = 𝑢𝑖 − 𝑢𝑚𝑎𝑥𝑖 ≤ 0 (13a)

𝑔𝑚𝑖𝑛𝑗 = 𝑢𝑚𝑖𝑛𝑖 − 𝑢𝑖 ≤ 0 (13b)

These input constraints are always ‘‘hard’’ (and thus ‘‘critical’’) because
they cannot be physically violated. Thus, physics provide an implicit
override, and an override controller is not necessary for input con-
straints. However, because there is an implicit override, we still need
to use auxiliary constraints for the master controller (Fig. 6):

�̃�𝑚𝑎𝑥𝑗 = �̃�𝑖 − 𝑢𝑚𝑎𝑥𝑖 ≤ 0 (14a)

�̃�𝑚𝑖𝑛𝑗 = 𝑢𝑚𝑖𝑛𝑖 − �̃�𝑖 ≤ 0 (14b)

If the master controller instead were to control the (physical) con-
straint (𝑢𝑚𝑎𝑥𝑖 or 𝑢𝑚𝑖𝑛𝑖 ), then it would not be possible to exit an input
constraint when it is no longer optimally active.

3.4. Override using multiple inputs

So far, we have for simplicity assumed that an override constraint
𝑔𝑗 is paired with a single selected input (𝑢𝑖). This is not a good solution
in some cases, because it may lead to (dynamic) violation of the
corresponding input constraint (𝑢𝑚𝑖𝑛𝑖 or 𝑢𝑚𝑎𝑥𝑖 ), which means that we may
(at least temporarily) lose control of the constraint 𝑔𝑗 , which may be
unacceptable. For example, assume that we have many users of a scarce
common resource (say, steam in a large chemical plant), then we should
5

not let only one user take care of the balancing.
Fig. 7. Proposed override constraint control with multiple inputs [16].

The obvious solution is to pair the override constraint 𝑔𝑗 with a
ombined input 𝑢𝑐 ,

𝑐 ↔ 𝑔𝑗

he simplest is to use a linear input combination

𝑐 = 𝐌𝐮 =
∑

𝑘
𝑚𝑘𝑢𝑘 = 𝑚1𝑢1 + 𝑚2𝑢2 +⋯ (15)

where 𝐌 is a constant vector for each override constraint 𝑔𝑗 . Here,
selecting all 𝑚𝑘 = 0 except for 𝑚𝑖 = 1 gives the choice 𝑢𝑐 = 𝑢𝑖 studied
so far. Many concerns may determine the selection of 𝐌. If all the
inputs 𝑢𝑘 have been scaled in the same way (say from 𝑢𝑚𝑖𝑛𝑘 = 0 to
𝑢𝑚𝑎𝑥𝑘 = 1), then a reasonable choice for 𝐌 may be 𝐌 = 𝐆𝑔𝑗 where
𝐆𝑔𝑗 is gain matrix from the inputs 𝐮 to the override constraint 𝑔𝑗
(at approximately the frequency corresponding to the closed-loop time
constant of the override controller). It is also possible to make other
choices for 𝐌, including nonlinear combinations, for example, based
on the ratio between how the subsystems use the common resource 𝑔.

An implementation for a single override constraint 𝑔 with multiple
inputs is shown in Fig. 7. We here use the pseudoinverse (right inverse)
of 𝐌 when computing the contribution of the override action on the
inputs 𝑢. The use of the pseudoinverse minimizes the two-norm (sum
of squares) of the individual input changes for a given value of 𝑢𝑐
(e.g., see (A.65) in [22]). The block diagram in Fig. 7 may seem a bit
complicated, but note that we get

𝑢 = 𝐌†𝑢𝑐 + (𝐼 −𝐌†𝐌)�̃�

where 𝐌† is the pseudoinverse of 𝐌. When the override is not active,
we have 𝑢𝑐 = 𝐌�̃� and we get as expected, 𝑢 = �̃�. Also note that the
auxiliary constraint is �̃� = 𝐌�̃�−𝑢𝑔𝑐 . The use of 𝐌 also works in the scalar
case. For example, with 𝐌 = [1 0 0] (pairing the override constraint
with input 1), we get as desired

𝐌† =
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

, (𝐼 −𝐌†𝐌) =
⎡

⎢

⎢

⎣

0 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

4. Case study: Gas lift optimization

This section presents a case study to illustrate the effectiveness of
the primal–dual feedback-optimizing control structure, both with and
without override constraint control. The case study involves a gas-
lift oil production system with four oil production wells (see Fig. 8).
The system includes four gas lift valves (MVs), a manifold, a riser,
and a separator which gives the export gas and produced (export) oil.
This system is a variant of a system that has been studied and used
in [9,23–25]. The model description, and its parameters are available

as supplementary materials.

skoge
Sticky Note
The estimator does not need to be dynamic. It could also be static, like using Ju = Hy based on self-optimizing control (Bernardino and Skogestad, 2024)
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Fig. 8. Flowsheet for gas lift case study.
4.1. Problem description

The system is described by a set of coupled differential–algebraic
equations (DAEs). The detailed model is available in supplementary
material. There are four manipulated variables (MVs, primal variables,
inputs), which are the openings of the four gas-lift valves:

𝐮 =
[

𝑢1 … 𝑢4
]⊤

The system is weakly interactive because a change in one gas lift valve
opening impacts, through the effect on pressure, the gas lift and oil and
gas flow rates of all wells. The considered disturbances are the gas-oil
ratio in the inflow from the reservoir for well 2 and the maximum gas
export 𝑞𝑚𝑎𝑥𝑔 :

𝐝 =
[

𝐺𝑂𝑅2 𝑞𝑚𝑎𝑥𝑔

]⊤

The main objective is to maximize the total oil production 𝑞𝑜. At
steady state we have

𝑞𝑜 = 𝑞𝑜,1 + 𝑞𝑜,2 + 𝑞𝑜,3 + 𝑞𝑜,4

where 𝑞𝑜,𝑖 is the produced oil from reservoir 𝑖. However, at the same
time, one should try to minimize the total gas lift supply,

𝑞𝑙 = 𝑞𝑙,1 + 𝑞𝑙,2 + 𝑞𝑙,3 + 𝑞𝑙,4

The maximum constraint on the total export gas, 𝑞𝑔 ≤ 𝑞𝑚𝑎𝑥𝑔 , provides a
coupling constraint. At steady state, we have

𝑞𝑔 = 𝑞𝑔,1 + 𝑞𝑔,2 + 𝑞𝑔,3 + 𝑞𝑔,4 + 𝑞𝑙

where 𝑞𝑔,𝑖 is the produced gas from reservoir 𝑖.
Any excess gas, 𝑔1 = 𝑞𝑔 − 𝑞𝑚𝑎𝑥𝑔 , must be flared (burned), which

is strongly undesirable for environmental reasons. Therefore, override
control is used for this coupling constraint (denoted 𝑔1). In addition to
the coupling constraint, each gas-lift choke 𝑢𝑖 has a physical constraint
with a maximum valve opening of 1, which provide implicit overrides.
In summary, the steady-state optimization problem can be expressed as
follows:

min𝐮 𝐽 = −𝑝𝑜𝑞𝑜 + 𝑝𝑙𝑞𝑙 (16a)

s.t. 𝑔1 = 𝑞𝑔 − 𝑞𝑚𝑎𝑥𝑔 ≤ 0, (16b)

𝑔𝑢
max
𝑖 = 𝑢𝑖 − 𝑢𝑚𝑎𝑥𝑖 ≤ 0, 𝑖 = 1,… , 4 (16c)

Here, 𝑢𝑚𝑎𝑥𝑖 = 1 is the maximum opening of gas lift valve 𝑖, 𝑝𝑜 is the
price of oil, 𝑝𝑙 is the cost of gas lift supply, and 𝑞𝑚𝑎𝑥𝑔 is the maximum
gas export (see supplementary material for data).
6

Fig. 9. Optimal active constraint regions as a function of the two disturbances, 𝑞𝑚𝑎𝑥𝑔 ,
and 𝐺𝑂𝑅2. The four possible active constraint regions are labeled R-I to R-IV: R-I is a
region where 𝑔1, 𝑔2, and 𝑔3 are active, R-II is a region where 𝑔1 and 𝑔2 are active, R-III
is a region where 𝑔1 and 𝑔3 are active, and R-IV is a region where only the coupling
constraint 𝑔1 (max. gas handling capacity) is active.

4.2. Active constraint regions

For this particular problem, we have five constraints, 𝑛𝐠 = 5 (one
coupling constraint and four max-constraints on the inputs), and there-
fore a maximum of 2𝑛𝐠 = 32 active constraint regions is possible [26].
However, only a subset of these regions are encountered in practice. To
illustrate this, consider a scenario where 𝑞𝑚𝑎𝑥𝑔 varies between 0.0085
and 0.0150 m3/s (equivalent to between 734.40 and 1296.00 m3/day)
and 𝐺𝑂𝑅2 varies between 0.01 and 0.15 m3/m3, while the other 𝐺𝑂𝑅𝑖
(for 𝑖 = 1, 3, 4) are constant. For these two disturbances, Fig. 9 shows
the 4 possible active constraint regions for optimal operation.

Actually, for our purposes the details are not important, because it
does not matter for our proposed method how many regions we may
encounter and which constraints transitions may occur. This is because
the primal–dual feedback optimizing scheme can handle any number
of regions and transitions between them. However, to guarantee that
we can optimally implement override control for 𝑔1, we must require
that 𝑛𝑢 ≥ 𝑛𝑔,𝑜, where 𝑛𝑔,𝑜 is the number of override constraints. This
condition is not satisfied in our case since the four maximum gas-lift



Journal of Process Control 138 (2024) 103208R. Dirza and S. Skogestad

𝑛
t
a

𝑞
d
i
f
m
t
m

4

c
H
𝑔
m
c
p

𝐠

T
t

a
w
w
i
l
T
e

c

4

s
i

𝐆

Fig. 10. Proposed primal–dual control scheme for the case study. For the case without override control, �̃�1 is replaced by the measured constraint 𝑔1. The red lines indicate that
all three Lagrange multipliers are distributed to each of the four gradient controllers.
W
i
a
w

c
a

4

p
c
𝑔

l
s
c

4

o
c
p

c
5
c

4

i
a
a
m

𝐱

(
l

𝛥

W
t

valve openings are implicitly hard constraints, so we have 𝑛𝑢 = 4 and
𝑔,𝑜 = 5. Fortunately, this is not a problem for our case study because
wo of the input constraints (on inputs 3 and 4) are never active for the
ssumed disturbances.

In these simulations, we consider the two disturbances, 𝐺𝑂𝑅2, and
𝑚𝑎𝑥
𝑔 and they are varied over time. At 𝑡 = 5 h, 𝐺𝑂𝑅2 gradually
ecreases over 5 min from 0.1200 to 0.0360, rebounding to 0.1240
n 5 min at 𝑡 = 21 h. Meanwhile, 𝑞𝑚𝑎𝑥𝑔 gradually decreases in 5 min
rom 933.12 to 743.04 m3/day at 𝑡 = 1 h, gradually increases in 5
in to 915.84 m3/day at 𝑡 = 5 h, further gradually increases in 5 min

o 1114.56 m3/day at 𝑡 = 13 h, and finally drops in 5 min to 864.00
3/day at 𝑡 = 21 h.

.3. Simplified problem description

Since 𝑛𝑔 = 5 and 𝑛𝑢 = 4, the primal–dual feedback-optimizing
ontrol ideally requires 5 master controllers and 4 gradient controllers.
owever, in the considered disturbance scenario (Fig. 9), constraints
𝑢max
3 and 𝑔𝑢

max
4 are never active, implying that their associated Lagrange

ultipliers 𝜆𝑖 are always zero. Hence, the number of required master
ontrollers can be reduced to three. In the remaining sections of the
aper, we consider the following three constraints:

=
⎡

⎢

⎢

⎣

𝑔1
𝑔2
𝑔3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑔1
𝑔𝑢

max
1

𝑔𝑢
max
2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑞𝑔 − 𝑞𝑚𝑎𝑥𝑔

𝑢1 − 𝑢max
1

𝑢2 − 𝑢max
2

⎤

⎥

⎥

⎥

⎦

(17)

he associated Lagrange multipliers are denoted 𝜆1, 𝜆2, and 𝜆3, respec-
ively.

The proposed control structure is shown in Fig. 10. All controllers
re SIMC (Simple Internal Model Control)-tuned PI-controllers [27],
ith the closed-loop time constant 𝜏𝑐 as the tuning parameter. Note that
e need a time scale separation between the fast override controller

n the lower layer, the intermediate gradient controllers in the middle
ayer and the slower master constraint controllers in the upper layer.
ypically, we need a time scale separation in the range 4 to 10 between
ach layer.

In the simulations, we will consider two cases: one with the override
ontroller on the coupling constraint 𝑔1 and one without.

.4. Gradient controllers

For tuning the gradient controllers, we consider the square steady-
tate gain matrix 𝐺 from the inputs (𝑢) to the gradients (∇𝑢). Lineariz-
ng in region R-IV gives:

=

⎡

⎢

⎢

⎢

⎢

0.4092 −0.0069 −0.0139 −0.0159
−0.0068 0.5106 −0.0150 −0.0171
−0.0131 −0.0142 1.8861 −0.0327

⎤

⎥

⎥

⎥

⎥

(18)
7

⎣

−0.0149 −0.0161 −0.0325 2.3963
⎦

f

e notice from the nonzero off-diagonal elements that there are some
nteractions between the wells, as expected. However, the interactions
re small, and single-loop (decentralized) gradient controllers will work
ell.

The four gradient controllers were tuned with a closed-loop time
onstant (𝜏𝑐) of 1.5 min. The resulting controllers tuning are available
s supplementary material.

.5. Master constraint controllers

With the four lower-layer gradient controllers tuned and functioning
roperly, we tune the three master constraint controllers. Note that the
oupling constraint 𝑔1 is a common constraint, whereas 𝑔2 = 𝑔𝑢

𝑚𝑎𝑥
1 and

3 = 𝑔𝑢
𝑚𝑎𝑥
2 represent local input constraints.

The three master constraint controllers were tuned with a closed-
oop time constant (𝜏𝑐) of 7.5 min, corresponding to a time scale
eparation of 5 relative to the four gradient controllers. The resulting
ontrollers tuning are available as supplementary material.

.6. Override constraint controller

Inputs 𝑢3 and 𝑢4 never saturate and are therefore candidates for
verride control for the coupling constraint 𝑔1. For the case study, we
hose to use 𝑢3. Inputs 𝑢1 and 𝑢2 may saturate, but the physical valve
rovides implicit override for these inputs.

The override controller for 𝑔1 was tuned with a closed-loop time
onstant (𝜏𝑐) of 0.3 min, which again gives a time scale separation of
relative to the gradient controllers with 𝜏𝑐 = 1.5 min. The resulting

ontrollers tuning are available as supplementary material.

.7. Gradient estimator

To evaluate the gradient of the Lagrange function with respect to the
nputs, see (6), it is necessary to estimate the steady-state cost gradient
nd steady-state constraint gradient. In this case study, we follow [28]
nd linearize at each sample time the nonlinear model to obtain a linear
odel from 𝑢 to the states 𝑥,

̇ = 𝐀∆𝐱 + 𝐁∆𝐮

in deviation variables). The static model for the cost 𝐽 (𝑥, 𝑢, 𝑑) is
inearized in a similar way to obtain

𝐽 = 𝐂∆𝐱 + 𝐃∆𝐮

e do not need to include the dependency of �̇� and 𝐽 on the dis-
urbances 𝑑, because the disturbances are assumed constant into the

̇
uture (𝛥𝑑 = 0), when we follow the ‘‘trick’’ in [28] of setting 𝐱 = 𝟎 to
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Fig. 11. Simulation results with override (green) and without override (red). Without
override we get constraint violation with 𝑔1 > 0.

Table 1
Violation of constraint 𝑔1 for case study.

Without With
override override

Max. constraint violation [m3/day] 176.2760 10.6436
Flared gas during 25 h [m3] 2.9667 0.0444
Average flared gas [m3/h] 0.1187 0.0018

eliminate 𝛥𝐱 and obtain 𝛥𝐽 = ∇𝐮𝐉𝛥𝑢. The estimate of the steady-state
ost gradient then becomes

𝐮�̂� = −𝐂𝐀−𝟏𝐁 + 𝐃 (19)

In this paper, we use an extended Kalman filter (EKF) to estimate
the states and disturbances and based on these estimates, we relinearize
the system at each sample time to obtain the matrices 𝐴,𝐵, 𝐶 and 𝐷.

The same approach is used to estimate the constraint gradient
∇𝑢𝑖𝐠𝑗 (𝐮,𝐝).

The gradient estimates can be achieved using any model-based or
model-free method and the choice of method is not important for the
results for this case study. For various gradient estimation techniques
for RTO, refer to [29,30]. If unmeasurable state variables are present
in model-based estimation, a novel piecewise fuzzy affine observer was
proposed [31].

4.8. Simulation results

We present simulation results for the proposed primal–dual struc-
ture in Fig. 10, both with and without override control.

Fig. 11(a) shows that we reach the steady-state optimal operating
points both with and without override. Fig. 11(b) shows that the
override gives much better control of the coupling constraint (𝑔1).

able 1 shows this in more detail. We note that the amount of flared
as is reduced by about a factor 67 (from 2.9967 to 0.0444 m3 over
5 h), and the maximum violation of the constraint is reduced by about
factor 17. Fig. 12 shows the four inputs (valve positions) for the case
ith override. It shows that the proposed approach is able to move
8

orrectly to all the active constraints. o
Fig. 12. Inputs 𝑢𝑖 (gas lift valve positions) with override (green) and without override
(red).

Fig. 13. Accumulated economic loss [$] caused by ‘‘back-off’’ for the case without
override (the back-off is chosen to achieve the same constraint violation as with
override).

4.9. Discussion of example

4.9.1. ‘‘Back-off’’
For the present case study, we assume that the small amount of

flared gas (0.0444 m3 in 25 h) obtained with the override is acceptable,
so we introduce a back-off on the case without override to get a similar
constraint violation (flaring). We find that the required back-off on the
export gas is 𝑏1 = 137.9 m3/day. In practice, this is implemented by
changing the setpoint for 𝑔1 from SP = 0 to SP = −𝑏1 = −137.9. The
esulting economic loss by adding this back-off is about 14 000 $ (over
5 h) as seen from Fig. 13 where we plot as a function of time the
ccumulated economic loss.

Fig. 14 shows the value of the Lagrange multiplier 𝜆1 for the
oupling constraint 𝑔1 as a function of time. Note that the magnitude
s correlated with the slope of economic loss in Fig. 13. Recall from
10) that the loss imposed by back-off is equal to |𝜆1𝑏1| [$/s]. In our
ase, we have |𝑏1| = 137.9 m3/day = 0.0016m3/s and from the plot of
he Lagrange multiplier in Fig. 14 (yellow line), we find that 𝜆1 is 125.2
$/m3] on average. The average loss is then approximately |𝜆1𝑏1| = 0.20
$/s] and the accumulated loss over 25 h is then 0.20 ⋅25 ⋅3600 ≈ 18000
which agrees well with the final value of about 14 000 $ in Fig. 13.

he 4000 $ discrepancy can be attributed mainly to the unconstrained
peration between 𝑡 = 13 h and 𝑡 = 21 h.
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Fig. 14. The Lagrange multiplier 𝜆1 with ‘‘back-off’’ (and without override) (yellow
ine) is seen to be larger than with override (green line).

Furthermore, from Fig. 11(a) the ideal average profit is
22, 000 $/day, which means that implementing override saves approx-
mately 2% compared to a ‘‘back-off’’ strategy.

.9.2. Necessity of using auxiliary input constraints
To emphasize the need to use the auxiliary input constraint (14)

n the master controller, we compare in Fig. 15 the use of auxiliary
onstraints (green lines) with the incorrect use of the original input con-
traint (13) (purple lines). In the latter case, the Lagrange gradient does
ot go 0 at steady state as it should for optimality (Fig. 15(a)). We see
rom Fig. 15(b) that the reason is that without the auxiliary constraint,
he inputs �̃�1 and �̃�2 (purple lines) do not violate their constraints and
herefore there is no update of the corresponding Lagrange multiplier.
ig. 15(c) confirms that with the auxiliary constraint (green lines) the
agrange multipliers 𝜆2 (associated with 𝑢1) and 𝜆3 (associated with 𝑢2)

are positive (as they should) when the inputs become constrained.

5. Discussion

5.1. Comparison with reduced gradient approach

An alternative feedback-optimizing approach that allows for con-
straint control on a fast time scale, is the region-based approach using
the reduced gradient [32]. However, this requires the user to identify
a different control structure in each possible active constraints region.
In our example, with five constraints (𝑛𝐠 = 5), we may need to identify
up to 2𝑛𝐠 = 32 control structures, which is problematic in practice. On
the other hand, for the primal–dual approach studied in this paper, the
max-selectors in the master constraint controller provide an automatic
switching between the active constraint regions. The disadvantage is
that the master controllers operate on a slow time scale, which may
lead to temporary (dynamic) constraint violations. The focus of the
present paper has therefore been to show how this can be avoided with
fast override control.

5.2. Comparison with numerical solver-based RTO

Compared to the standard numerical solver-based RTO, the pro-
posed approach offers a lower level of complexity, and the constraints
are measured and controlled in a transparent manner (without rely-
ing on a model for the constraints) in the upper layer. Additionally,
when solving Eq. (3a) using feedback controllers, the computation time
requirements are much less, as it uses only PID controllers.

5.3. Additional advantage of feedback implementation

In some cases, the decision variables 𝑢 do not appear explicitly
in the optimal stationary condition (3a) (Lagrange gradient = 0). For
example, this may happen if the constraints are linear in the decision
variables. In such cases a mathematical or numerical solver cannot
be used. However, for primal–dual feedback-optimizing control, this
limitation can be overcome by using feedback as a ‘‘trick’’ to satisfy
(3a), see Fig. 2. In this feedback approach, the primal variables 𝑢 are
9

‘‘indirectly’’ adjusted to satisfy (3a).
Fig. 15. Illustration of necessity of using auxiliary input constraints (14) (green lines)
rather then the original input constraints (13) (purple lines) in the Master controller.

5.4. Possible extension of method of multipliers

Another alternative for reducing the constraint violation is the
method of multipliers (MoM) or augmented Lagrangian [33]. It in-
volves incorporating penalty terms in the Lagrangian cost  to enforce
constraint satisfaction during the (numerical) minimization of 

However, in the implementation of MoM (discretized representa-
tion), the master controller (equipped with a max selector and weight
(𝝆) on the constraint) is limited by the time scale separation con-
cept [14,22], rendering the penalty terms insignificant if the constraint
is controlled in a slow time scale.

𝝀𝑘+1 = max
[

0,𝝀𝑘 + 𝝆𝐠
]

(20)
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Table 2
Summary of the benefits of the proposed method.

No List of benefit

1 Constraints are controlled transparently by the master controller.
2 Override control of constraints in the fast time scale when necessary.
3 Automatic active constraint switching.
4 Allows for local optimizations having different time scales.
5 Drives the system to the optimal steady-state operating point for varying disturbances
6 Uses feedback rather then models whenever possible.
7 No limit on the number of constraints that can be handled optimally at steady state.
V
C

Even with an appropriate (and enforced) value of 𝝆 for the input con-
straint case, incorporating ‘‘back-off’’ remains necessary to minimize
constraint violation further. This suggests that this strategy is inferior
to the proposed override control with and ‘‘auxiliary’’ constraints. This
is expected because the selector in the proposed strategy immediately
eliminates the term from the ‘‘upper layer’’ in the calculation of the
controlled variables (𝐜(𝝀) = 𝐠 (𝐮, 𝐲)).

.5. Decomposing interactive systems

In the case of a non-interactive system, the decomposition and
airing of subsystems are relatively straightforward [9,13]. Here, co-
rdination between the subsystems can achieve steady-state optimal
erformance effectively. However, in the case of a weakly-interactive
ystem, the decomposition and pairing remain apparent, but the coor-
ination between subsystems may only reach steady-state performance
ith a bounded loss [34]. One way to achieve optimal performance is

o reformulate the problem (16); any interaction, such as input, from
ifferent subsystems, is modeled as additional coupling constraints in
ach subsystem.

.6. Main benefit of decomposition using subsystems

In decomposed systems, the proposed approach allows for individ-
al subproblems to have different tunings, closed-loop time constants,
nd sampling intervals. This is particularly beneficial in large-scale
ndustrial processes where different subprocesses may have varying
ynamics and measurement delays.

.7. Comparison with primal decomposition

Yet another alternative to dual decomposition is primal decompo-
ition where the constraint control is moved to the faster layer, which
voids the need for override. The unconstrained optimization is moved
o a slower layer which contains a compensator subsystem to ensure
rimal feasibility (3b) [35]. However, in the fast constraint control
ayer, each subsystem requires an input (primal variable) to handle
ach coupling constraint, meaning that number of inputs (degrees of
reedom) in each subsystem must at least be equal to the number of
oupling constraints. This is often not satisfied, for example, it would
ot be satisfied for our case study if we added a constraint on the
otal gas lift in addition to existing constraint on total gas handling.
n the other hand, dual decomposition does not have this serious

imitation. This is a major advantage of the proposed primal–dual
pproach studied in this paper.

. Conclusion

This paper uses the method of primal–dual feedback-optimizing con-
rol for real-time optimization, which gives optimal switching between
ctive constraint regions. However, a significant drawback is that the
onstraint control is on a slow time scale, which is unacceptable for
ertain critical constraints, as it either results in unacceptable dynamic
iolations or results in economic loss because of constraint back-off.
10

he main contribution of this paper is the incorporation of override
constraint control on a fast time scale and auxiliary constraints on a
slow time scale.

To demonstrate the effectiveness of the proposed method, we ap-
plied it to a case study involving the optimization of gas-lifted oil
production. The results showcased the success of the proposed ap-
proach.

Table 2 provides a summary of the benefits of the proposed method.
In conclusion, the proposed scheme in Fig. 5 offers a flexible and
effective feedback alternative to real-time optimization, making it well-
suited for industrial applications.

As future work, it is interesting to investigate further the strategy of
decomposing highly interactive systems as outlined in Section 5.5.
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skoge
Sticky Note
We submitted instead this paper to Computers and Chemical Engineering. The important result is that the gradient estimate = H y, where H is a constant matrix (found from exact local method) and y are the measurements
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